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Abstract

Human capital investment is one of the most important drivers of growth. In this paper, I
enhance the endogenous growth model of Kung and Schmid (2015) by an educational choice
decision of the household. The engine of growth in the extended model is a composite of
firm-side R&D capital stock and a household-side human capital stock. As households are
able to allocate their time to labor, leisure and educational activities, the model allows to
simultaneously study labor and education choices. The parameters of the non-linear model
can be estimated by advanced Bayesian methods, allowing to study the return on human
capital conditional on the data.

Keywords: Asset Pricing, Endogenous Growth, Human Capital, Bayesian Estimation
JEL: E23, G12, I26, J24, O24

1. Introduction

While labor income, i.e. the return to human capital, constitutes a major share of total
income for most people, the majority of modern general equilibrium asset pricing models does
not explicitly account for the accumulation of human capital and the corresponding optimal
decisions. This is especially surprising given the early pioneering work of Uzawa (1965),
Romer (1986) and particularly Lucas (1988). Even though these authors primarily focus on
macroeconomic implications and economic development, their work constitutes a starting
point to jointly study human capital, its accumulation and its return in a production based
setting. Still, subsequent models as e.g. Dang et al. (2012), Dejong and Ingram (2001)
Malley and Woitek (2011) or Stokey (2012) follow a macroeconomic centered paradigm,
which results in close to zero risk premia. A notable exception is Wei (2005), who is able
to generate small equity premia using time-to-build frictions. Nevertheless, CRRA utility
functions and a consumption process that behaves almost like a random walk severely limit
the asset pricing capabilities.

In the present paper, I propose a human capital model, which does not suffer from
such shortcomings. In order to meaningfully study returns on human capital, I suggest an
extended version of the Kung and Schmid (2015) model of endogenous growth that can
generate sizeable risk premia. This approach endogenously creates long-run risk, i.e. a
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small but persistent component in consumption growth that has previously been modeled
by Bansal and Yaron (2004) or Croce (2014) as an exogenous process. Such a framework in
combination with Epstein and Zin (1989) preferences and Jermann (1998) adjustment costs
for physical capital accumulation allows to match several key asset pricing moments.

While preserving the general structure of the Kung and Schmid (2015) model, which
has its roots in Romer (1990) and Comin and Gertler (2006), I add a parsimonious human
capital accumulation rule. Human capital builds up as time is allocated to education and
schooling activities. The stock of human capital represents the cognitive abilities and skills
of the household and constitutes a non-perfect substitute to organisational R&D capital as in
Stokey (2014). As a result, the model is driven by a “twin engine of growth” (Stokey (2012)),
which is fuelled by firms investing in organisational R&D seeking higher productivity, and
households investing in human capital seeking higher wages. Furthermore, I adopt the
leisure-labor decision as studied by Donadelli and Grüning (2016).

A substantial methodological and empirical contribution of the present paper is the
estimation of the production based asset pricing model using advanced Bayesian techniques,
following Goessling (2018). The pertinent literature almost exclusively relies on calibration
exercises where the model parameters are set to “reasonable” but arbitrary values. In
contrast, the Bayesian estimation of the non-linear model allows to quantify the return
on human capital, conditional on the data, and also provides posterior densities for all
parameters of interest.

The remainder of the paper is as follows. Section 2 introduces the model and derives
the optimality conditions. Section 3 describes the estimation procedure and the data. The
estimation results are presented in section 4. Section 5 concludes.

2. Model

This section presents the human capital model. I derive the optimality conditions and
summarize the economic interactions between the productive sector and households. Addi-
tionally, I introduce the asset prices which are of particular interest for the estimation in
Section 3.

2.1. Production

2.1.1. Final Good Sector

The final consumption good is produced by a representative firm that uses physical
capital Kt, labor hours Lt and a bundle

X
1
ν
t =

(∫ Gt

i=0

Xν
i,tdi

) 1
ν

of intermediate goods Xi,t with i ∈ [0, Gt], according to the constant returns to scale pro-
duction function

Yt =
(
Kα
t (ΩtLt)

1−α)1−ξ
(
X

1
ν
t

)ξ
.

2



The parameter α is the capital share, ξ is the intermediate good share and ν is the inverse
markup.

In contrast to Kung and Schmid (2015) the measure of intermediate goods is a CES
aggregate

Gt =

(
ωN

χ−1
χ

t + (1− ω)H
χ−1
χ

t

) χ
χ−1

as in Stokey (2014), where Nt is the organisational R&D capital and Ht is human capital
provided by the households with weight parameter ω. Moreover, χ is the elasticity of sub-
stitution between organisational capital and human capital. For χ → 1 the function nests
the Cobb-Douglas case, and χ = 0 is the Leontief case. The labor augmenting technological
progress Ωt is an exogenous stochastic process,

Ωt = exp(εt), εt ∼ N (ρεt−1, σ
2). (1)

The final good producing firm maximizes shareholder value using the pricing kernel Mt

of the household, i.e.

max
{It,Lt,Kt+1,Xi,t}t>0,i∈[0,Gt]

E0

[
∞∑
t=0

Mt+1Dt+1

]
,

where dividends Dt are defined as output Yt less capital investment It, wages WtLt and the
total cost of purchasing intermediate patented goods Xi,t at a price Pi,t, i.e.

Dt = Yt − It −WtLt −
∫ Gt

i=0

Pi,tXi,t di.

The evolution of the capital stock Kt is

Kt+1 = (1− δK)Kt + Φ

(
It
Kt

)
Kt, (2)

where Φ(·) is the convex adjustment cost function of Jermann (1998)

Φ(x) =
b1

1− κ
x1−κ + b2.

Thus fluctuations from steady state investment become increasingly costly, preventing ex-
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cessive smoothing.2 The optimal investment decision yields the usual Euler equation

q̃t =
1

Φ′( It
Kt

)
, (3)

q̃t = Et
[
Mt+1

(
α(1− ξ) Yt+1

Kt+1

− It+1

Kt+1

+ q̃t+1

(
1− δK + Φ

(
It+1

Kt+1

)))]
. (4)

Furthermore, optimality yields the demand for labor hours Lt as

Wt =
(1− ξ)(1− α)Yt

Lt

and the demand for intermediate goods Xi,t as a function of the corresponding price Pi,t as

Xi,t(Pi,t) =

(
ξ
Yt
Pi,t

) 1
1−ν

X
1

ν−1

t .

2.1.2. Intermediate Sector

Differentiated intermediate goods Xi,t are provided by monopolistic competitive firms,
which transform consumption goods into intermediate goods at marginal costs of unity.
Thus, the optimal price Pi,t is the solution of the profit maximization problem

Πi,t = max
Pi,t

Pi,tXi,t(Pi,t)−Xi,t(Pi,t). (5)

The inverse demand curve of the final good producer, i.e.

Pi,t = ξYtX−1
t Xν−1

i,t ,

is taken as given by the intermediate sector which implies a symmetric solution to (5) as

Pi,t ≡ Pt =
1

ν
,

Xi,t ≡ Xt.

Substituting the optimal price in the inverse demand function yields

Xt = Kt
αΩt

1−αLt
1−αGt

−ξ+ν
ν (ξ−1) (ξν)−

1
ξ−1 , (6)

2Following common practice, I set the parameters b1 and b2 such that in the deterministic steady state
(denoted by variables without time index) the adjustment costs equal zero. That is, the conditions Φ(I/K) =
I and Φ′(I/K) = 0 imply b1 = (g−1+δK)κ and b2 = (g−1+δK)(1−1/(1−κ)) where g is the deterministic
steady state growth rate of the model.
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hence the profits are

Πi,t ≡ Πt =

(
1

ν
− 1

)
Xt. (7)

Given the profit definition, the value of providing the differentiated good Xt is

Vt = Πt + (1− φt)Et[Mt+1Vt+1], (8)

where φt is the probability that the intermediate good i becomes obsolete. Note that in
contrast to Kung and Schmid (2015), the probability φt is not determined exclusively by the
depreciation rate of organisational R&D, but also includes the depreciation rate of human
capital,

φt = 1− Ĝt+1

Gt

,

where Ĝt+1 is the measure of innovations under the assumption of no investment in Ht and
Nt in period t.

Balanced growth requires the restriction

ν =
ξ

α ξ − α + 1
, (9)

such that final output can be written as

Yt = AtK
α
t (GtLt)

1−α,

where the productivity level is defined as

At = Ωt
1−αξ−

ξ
ξ−1ν−

ξ
ξ−1 . (10)

Thus, in equilibrium, the bundle Gt of organisational and human capital turns endogenously
out to be labor augmenting. This result mirrors the fact that R&D and human capital
increase the efficiency of plain labor hours. Furthermore, sustained growth around a balanced
growth path arises endogenously as an outcome of the agents’ decisions since the production
function is homogeneous of degree one in the accumulating factors Kt, Nt and Ht.

2.1.3. Innovation Sector

The innovation sector combines the organisational research capital of the productive
sector with the human capital provided by households. Note that while human capital
is embodied in the labor time provided to the productive sector, R&D capital has to be
accumulated by investing INt following the accumulation rule

Nt+1 = ϑtI
N
t + (1− δN)Nt, (11)
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where

ϑt = ϑ̄

(
Nt

INt

)1−ηN

(12)

is the productivity externality of Kung and Schmid (2015) and Comin and Gertler (2006).
Free entry in the intermediate patented good producing sector implies that any new idea

will be adopted. Consequently, the innovative sector sells the right to produce the good i at a
price which equals the value to patented good producers, i.e. Vt. Investing in organisational
capital is advantageous as long as the expected discounted marginal revenue is larger than
the marginal cost of investing (which equals unity), i.e.

1 = Et
[
Mt+1Vt+1

∂Gt+1

∂Nt+1

∂Nt+1

∂INt

]
. (13)

Note that in the limiting case Gt = Nt, condition (13) reduces to

1

ϑt
= Et[Mt+1Vt+1],

which is equation (20) in Kung and Schmid (2015).

2.2. Representative Household

2.2.1. Utility & Wages

The representative household has Epstein and Zin (1989) preferences,

Ut =
[
(1− β)u

1−γ
θ

t + β
(
Et
[
U1−γ
t+1

]) 1
θ

] θ
1−γ

,

where β is a time-preference parameter and ut the intratemporal utility. I adopt the notation
of Caldara et al. (2012) and define the composite parameter

θ =
1− γ
1− 1

ψ

,

which can be interpreted as a measure of the deviation to the CRRA-utility case (θ = 1). In
particular, γ is the risk aversion parameter and ψ the intertemporal elasticity of substitution.
In contrast to Kung and Schmid (2015) or Donadelli and Grüning (2016), I extend the model
by introducing an education choice. Intratemporal utility ut is given as

u(Ct, Et, Lt) = Ct
(
T̄ − Lt − Et

)τ
,

where Ct is consumption, Lt labor time and Et the time invested in education, i.e. schooling
time. Overall available time is denoted by T̄ and the elasticity of non-leisure time is τ . The
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budget constraint is

Ct = Da
t +WtLt,

thus consumption Ct is financed by aggregate dividends Da
t and labor income WtLt. Solving

the decision problem of the household yields the required compensation for labor time as

Wt =
τCt

(T̄ − Lt − Et)
. (14)

2.2.2. Human Capital Investment

The evolution of the human capital stock is determined by

Ht+1 = ΨtHtEt + (1− δH)Ht, (15)

where Et is the education time provided by the households and δH is the depreciation rate
of human capital. Thus, the specification is similar to Dang et al. (2012) or Malley and
Woitek (2011) with a minor difference: In the spirit of Comin and Gertler (2006) and Kung
and Schmid (2015), Ψt is taken as given by the representative household, but evolves as

Ψt = Ψ̄
1

E1−ηH
t

, (16)

where ηH ∈ [0, 1] is the elasticity of new human capital with respect to time devoted to
education.3 As a consequence, ∂Ψt

∂Et
< 0, i.e. the production technology of new human

capital exhibits diminishing returns with respect to education.
Concerning the education choice, the decision to allocate time to schooling and training

is made with a believed return in mind, i.e. a belief on W̃ ′(Ht) = ∂Wt

∂Ht
> 0 as there is no

direct compensation. As an example, public knowledge might have it that the marginal
wage with respect to human capital depends on the level of human capital (e.g. proxied
by occupational groups). For parsimony, I adopt a simplified variant where the households
take present marginal wages as a reference for future marginal wages, denoted as W̃ ′(Ht+1).
Thus

W̃ ′(Ht+1) =
∂Wt

∂Gt

∂Gt

∂Ht

.

Using the first order condition with respect to education

∂ut
∂Et

= λ2
tΨtHt

3Note that the asymmetry between human capital accumulation (15) and R&D accumulation (11) is
a technical necessity, since the time devoted to education Et cannot grow in equilibrium. Consequently,
education time Et has to be scaled by a growing variable, e.g. the level of human capital Ht, for balanced
growth to exist.
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allows to relate the Lagrange multiplier of the budget constraint λ1
t and the Lagrange mul-

tiplier of the human capital equation λ2
t by

λ1
tWt = λ2

tΨtHt.

Optimality with respect to Ht+1 yields

λ2
t = Et

[
λ1
t+1W̃

′(Ht+1) + λ2
t+1(Ψt+1Et+1 + (1− δH))

]
,

where substituting the Lagrange multipliers yields

Wt

ΨtHt

= Et
[
Mt+1

(
W̃ ′(Ht+1) +

Wt+1

Ψt+1Ht+1

(Ψt+1Et+1 + (1− δH))

)]
(17)

and the households pricing kernel is defined as

Mt+1 = β

(
U1−γ
t+1

Et[U1−γ
t+1 ]

)1− 1
θ(

ut+1

ut

) 1−γ
θ
−1
(

∂ut+1

∂ct+1

∂ut
∂ct

)
. (18)

2.3. Aggregate Resource Constraint

Final output is consumed, invested into new capital stock, invested in new R&D capital,
and used to buy intermediate goods, hence market clearing implies

Yt = Ct + It + INt +GtXt. (19)

2.4. Returns and Asset Prices

The risk free rate is the inverse of the expected stochastic discount factor,

Rf
t =

1

Et[Mt+1]
.

Using the model specification, I study the asset pricing implications of three particular
assets: stocks of the final good producing firm, a claim to aggregate market dividends, and
a claim to human capital returns. Recalling that the dividend of the final good sector is

Dd
t = Yt − It −WL

t Lt −
1

ν
GtXt,

the corresponding stock price and its (log) return are

V d
t+1 = Dd

t + Et[Mt+1V
d
t+1],

rdt = log

(
V d
t

V d
t−1 −Dd

t−1

)
.
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Correspondingly, given the aggregate market dividend

Da
t = Ct −WtLt,

the price of the market claim and its (log) return are

V a
t = Da

t + Et[Mt+1V
a
t+1],

rat = log

(
V a
t

V a
t−1 −Da

t−1

)
.

Furthermore, I model a hypothetical claim to human capital returns with dividends

DH
t = Wt (20)

leading to the prices V H
t and (log) return rHt . Note that in contrast to consumption based

models with an exogenous labor/leisure process as in Dittmar et al. (2014), an additional
claim based on WtLt provides little insights as the labor choice is not prone to additional
sources of risk.

2.5. Steady State & Solution

To solve the model all growing variables must be detrended. I use the level of organisa-
tional capital Nt as deflator, such that e.g. stationarized consumption is defined as

Ĉt =
Ct
Nt

.

Deterministic steady state variables are written without time indices. Thus, in steady state

Ĉ ≡ Ĉt ≡ Ĉt+1.

Given the stationarized equilibrium conditions, the system of equations is reduced to a
minimum and then solved numerically. In particular, I solve the model in log-variables,
where log (detrended) consumption ĉt is defined by

Ĉt = exp(ĉt).

Following Kung and Schmid (2015) the policy functions are computed using a second order
perturbation around the deterministic steady state.

3. Estimation method and data

Production based asset pricing models are commonly calibrated rather than rigorously
estimated. In the next subsection, I suggest a Bayesian approach where only few parameters
need calibration, whereas the joint posterior density of all remaining parameters is properly
estimated. Based on the posterior distribution, population moments are compared to their
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empirical counterparts. I also report Bayesian Impulse Response Functions (BIRF) and
discuss their implications. Finally, I compute the distribution of human capital returns.

3.1. Estimation method

The non-linear model is estimated by a randomized Quasi Sequential Markov Chain
Monte Carlo technique.4 The estimation approach combines Gerber and Chopin (2015)
and Deligiannidis et al. (2016). It makes use of two particle filters to approximate the
likelihood and the posterior density.5 Several tuning approaches, randomized quasi Monte
Carlo numbers, and Markov Chain Monte Carlo moves make the technique flexible, easy to
parallelize and clearly superior to standard MCMC variants.

The estimation algorithm generates samples from the joint posterior distribution of pa-
rameters θ given data y1:T = {y1, . . . ,yT},

p(θ|y1:T ) ∝ p(y1:T |θ)p(θ),

and thus allows to estimate any function of interest of θ.6 The expression p(y1:T |θ) is the
likelihood of the data y1:T conditional on the parameters θ, and p(θ) is the density of the
prior distribution. The subset of parameters that are estimated and their prior distributions
are listed in Table 1.

Some model parameters are calibrated. In particular, I fix β and the mean growth rate
g, such that the deterministic steady state of the risk-free rate is close to its empirical
counterpart. Furthermore, I presuppose that a third of the available time is allocated to
labor, and ten percent is allocated to education. Thus, the balanced growth restriction (9)
and the restrictions on the steady states jointly determine the values ϕ̄H , ϕ̄N ,ν and τ . The
depreciation rate of human capital, δH , is set to 0.04 which is roughly in line with Stokey
(2012). Calibrating this parameter is motivated by the lack of human capital related data.
Hence, a direct identification of δH is impossible. Although the structural model and the data
indirectly provide information on human capital related parameters, the calibration reduces
the degrees of freedom in favour of more conclusive inference on the common parameters.
Additionally, I follow Kung and Schmid (2015) and set the depreciation rate of R&D to
δN = 0.0375.

3.2. Data

I obtain quarterly data from 1950 to 2016 for consumption, capital investment and GDP
from the Bureau of Economic Analysis (BEA). Quarterly real return and T-Bill data are from
the Center for Research in Security Prices (CRSP), and the consumer price index (CPI) is
obtained from the Bureau of Labor Statistics (BLS). Consumption is constructed as the sum

4For details, refer to Goessling (2018).
5Note that the approach is related to the methods recently applied by Gust et al. (2017) who estimate a

non-linear macroeconomic model by a MCMC approach. In contrast, the method applied in this paper is
far more general and robust.

6Note that θ denotes a set of parameters and should not be confused with the composite parameter θ of
the utility function.
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Parameter Description Prior/Calibration

Panel A: Estimated Parameters
α Physical capital share U(0.26, 0.4)
κ Capital adjustment costs elasticity U(0.1, 1)
γ Relative risk aversion U(0, 15)
ψ Elasticity of intertemporal substitution U(0.5, 4)
δK Physical capital depreciation rate U(0, 0.1)
ηN Elasticity R&D capital U(0.4, 0.8)
ηH Elasticity human capital U(0.2, 0.8)
ξ Intermediate goods share U(0.2, 0.8)
ω R&D weight U(0.2, 0.8)
χ Elasticity of capital substitution U(0, 1)
σ Productivity shocks volatility U(0, 0.4)
ρ Productivity shock persistence U(0.9, 1)

lev Leverage factor aggregate return U(1.8, 4)
σ∆y Measurement error volatility ∆y N ∗(0.01, 0.12)
σ∆c Measurement error volatility ∆c N ∗(0.01, 0.12)
σ∆i Measurement error volatility ∆i N ∗(0.01, 0.12)
σrf Measurement error volatility ∆rf N ∗(0.01, 0.12)
σreq Measurement error volatility ∆req N ∗(0.01, 0.12)

Panel B: Calibrated Parameters
β Time discount factor 0.996
g Steady state growth rate 1.0045
δH Human capital depreciation rate 0.04
δN R&D capital depreciation rate 0.0375

Table 1: Prior Distributions and Calibrated Parameters. This table reports the
prior distributions used for inference in Panel A. Furthermore, calibrated parameters
are reported in Panel B. The remaining parameters are numerically calculated such
that: the steady state growth rate equals 1.0045; the steady state of labor equals a third
of available time; educational time equals a tenth of available time; and the balanced
growth condition (9) holds. U(·, ·) denotes a uniform distribution and N (·, ·) is the
normal distribution, where an asterisk denotes a truncation to the interval [0,0.1].

of non-durable consumption and services, investment from domestic fixed capital investment
and output from GDP. The risk-free rate is constructed using the 90 days Treasury bond
returns, and the equity return is proxied by the value-weighted total return market index.
All nominal data series are deflating by the CPI.

11



The observation equations are linear and incorporate measurement errors,

yt =


∆ct
∆yt
∆it
rft

lev · rat

+N

0, diag


σ2

∆c

σ2
∆y

σ2
∆i

σ2
rf

σ2
req


 , (21)

where ∆ denotes growth rates of the model variables and yt denotes the vector of observed
variables. Furthermore, the diag(x) operator denotes a quadratic matrix with diagonal
elements x. Note that I explicitly account for leverage in the observed equity returns by
introducing a leverage factor, such that the complete estimated parameter vector is θ =
(α, κ, γ, ψ, δK , ηN , ηH , ξ, ω, χ, σ, ρ, lev, σ∆i, σ∆y, σ∆c, σrf , σreq)

′.

4. Results

4.1. Parameter Estimates and Model Moments

Table 2 reports the estimation results: the mean, mode and median as well as 90%
Bayesian intervals. In light of the relatively small Bayesian intervals some model parameters
are well identified, e.g. α, κ, γ, δK , σ and ρ. On the other hand, the intervals for the
elasticities ηN and ηH , ξ and χ are relatively wide, and their posterior distributions are
still close to their prior distributions. This is partly due to the lack of observable data
about human capital and R&D capital, and partly due to the model inherent structure that
allows to generate similar growth rates for consumption, output and so forth with different
parameter combinations.

Note that the point estimates for some parameters slightly differ from the parameters
used by Kung and Schmid (2015). This is intuitively clear, as the estimation approach
by equation (21) adds an additional layer of measurement errors to the model variables.
While a conventional calibration only matches chosen model moments, I jointly estimate
the measurement error standard deviations along with the deep model parameters. As
shown in Table 3 Column I, this results in a highly superior model fit, even though no
moments are targeted initially. To calculate the model implies moments, I identify the θ
particle with highest posterior density and use it to simulate the model. Note that due to the
mostly flat priors, this estimator virtually equals the maximum likelihood estimator. Table
3 contrasts the population moments obtained from 100 simulation runs of the model over
304 quarters with time aggregated statistics of the empirical data. Considering Column I in
Table 3, the estimated model is able to reproduce the empirical moments. Notice that the
simultaneously estimated parameters of the observation equation, Table 2 Panel B, allow
to disentangle the endogenous model fit from the contribution of the measurement errors.
In particular, Column II in Table 3 reports the moments excluding the exogenous error
innovations. In line with the parameter estimates, the measurement error is negligible for
consumption and output growth rates. In contrast, for investment growth, risk-free rate
and equity return, measurement errors contribute roughly 35, 90 and 85 percent of the
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Parameter Mean Mode Median Interval

Panel A: Model Parameters
α 0.4488 0.4488 0.4501 [0.4004,0.4942]
κ 0.9416 0.9962 0.9559 [0.8393,0.9959]
γ 7.7903 8.9851 7.9253 [4.4960,10.6472]
ψ 2.3603 2.0425 2.2669 [1.7763,3.2893]
δK 0.0269 0.0154 0.0208 [0.0068,0.0689]
ηN 0.5776 0.5957 0.5752 [0.4238,0.7485]
ηH 0.5011 0.4701 0.5007 [0.2314,0.7659]
ξ 0.4052 0.3020 0.3701 [0.2157,0.7169]
w 0.7658 0.8742 0.7728 [0.5352,0.9781]
χ 0.2965 0.1004 0.2856 [0.0309,0.5958]
σ 0.1852 0.0280 0.1780 [0.0178,0.3721]
ρ 0.9901 0.9918 0.9908 [0.9811,0.9971]

Panel B: Measurement Parameters
lev 1.9833 1.8145 1.9379 [1.8099,2.3084]
σ∆i 0.0172 0.0172 0.0172 [0.0158,0.0188]
σ∆y 0.0029 0.0034 0.0031 [0.0009,0.0044]
σ∆c 0.0044 0.0044 0.0043 [0.0039,0.0048]
σrf 0.0089 0.0087 0.0089 [0.0083,0.0097]
σreq 0.0825 0.0817 0.0824 [0.0763,0.0891]

Table 2: Parameter Estimates. This table reports the mean, mode, median and a
Bayesian 90% confidence interval of the marginal posterior distributions.

variation, respectively. This reflects two well known challenges for production based asset
pricing models, namely too low an investment volatility, and negligible volatility in the risk
free rate. Furthermore, the “pure” model generates too high positive correlations between
the growth rates of the macroeconomic variables.

4.2. Bayesian Impulse Response Functions

Given the draws from the posterior distribution of θ, it is straightforward to construct
Bayesian Impulse Response Functions (BIRF). For each draw θi, I compute the IRF to a
one-standard-deviation shock of the exogenous process (1). Results are reported in Figure
1. The dark (light) grey areas correspond to pointwise the middle 50 (90) percent of the
impulse responses.

The medians of the BIRF provide support for procyclical consumption (Panel A), pro-
cyclical expected consumption growth (Panel F), increasing education time (Panel E), and
increasing labor hours (Panel B), i.e. households optimally decrease their leisure time to
work more and thus exploit a good economic environment. Additionally, households allocate
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Data Model
I II

Panel A: Macro Moments
σ∆c % 1.18 1.37 1.04
σ∆i % 4.88 4.55 2.99
σ∆y % 2.04 2.08 2.08
σ∆c/σ∆y 0.58 0.66 0.5
σ∆i/σ∆c 4.12 3.33 2.87
σ∆i/σ∆y 2.39 2.19 1.45
corr[∆i,∆y] 0.71 0.65 1
corr[∆c,∆y] 0.63 0.66 0.86
corr[∆c,∆i] 0.54 0.41 0.81

Panel B: Return Moments
E[rf ] % 1.11 0.97 0.98
σrf % 1.77 1.74 0.078
E[ra] % 6.9 4.79 2.6
σra % 16.54 16.97 2.7
E[rd] % - - 2.84
σrd % - - 3.19

Table 3: Population Moments. This table reports annualized moments for the
parameter vector θ with the highest posterior density. The moments are calculated
from 100 simulations of the model over 304 quarters. The first 80 quarters are dropped
from the calculation of the population moments. Panel A shows the macroeconomic
moments, and Panel B the return moments. The data column reports the empirical
annualized moments. Column I reports the moments using the observation equation,
while Column II reports the raw model moments.

more time to education in order to increase their future human capital. Thus, in contrast
to the results of Wei (2005) or Dejong and Ingram (2001), the estimated model implies a
procyclical education choice. This is in line with Malley and Woitek (2011) who investi-
gate the empirical link between college enrollment and output, and find evidence in favor
of procyclicality. Moreover, the education dynamics can be interpreted in the spirit of King
and Sweetman (2002) who provide empirical evidence for procyclical skill retooling using
Canadian administrative data.

4.3. Returns on Human Capital

Similarly to the BIRFs, I quantify the return on human capital by calculating population
moments of the model for each draw of θ. Pooling the population moments allows to
construct intervals for the mean and standard deviation of the return series conditional on
the data. Table 4 shows the characteristics of human capital returns implied by the data
set and the model.

In particular, the expected return of the unlevered human capital claim exhibits a mean
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Figure 1: Bayesian Impulse Response Functions. This figure reports the BIRF
of consumption (Panel A), labor (Panel B), wages (Panel C), output (Panel D), edu-
cation (Panel E) and expected consumption growth (Panel F). Intervals are calculated
pointwise and variables are in logs.

Moment Mean Interval

E[rH ] 3.69 [2.6,5.0]
σrH 5.38 [4.3,7.0]
corr[rH , ra] 0.043 [0.026,0.06]

Table 4: Human Capital Return Moments. This table reports the mean and
a 90% interval of the annualized human capital return moments conditional on the
posterior distribution of θ. The moments are calculated by simulating the model over
1000 quarters for each draw θi, where the first 250 quarters are dropped from the
calculation of the moments.

of 3.69 percent with intervals of 2.6 to 5 percent across the posterior draws. The mean
standard deviation is 5.38 with interval [4.3, 7.0], and the correlation between the (levered)
equity return and the human capital claim is small, but positive, with an absolute mean value
of 0.043. The low correlation in the characteristics of the equity and the human capital return
is partly due to the exogenous shocks in equation (21). Nevertheless, this result resembles
the notion of human capital claims as a new and atypical asset class. Endogenizing the
difference in characteristics constitutes an essential feature for future models.

5. Conclusion

In contrast to the extant literature, the human capital model presented in this paper
matches key asset pricing facts. Further, it allows to study human capital accumulation
and its return within a modern production based framework. Based on the data set, the
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estimated model quantifies the return on human capital in a range of about 2 to 5 percent.
An interesting possible future extension is the inclusion of wage rigidities. As Donadelli and
Grüning (2016) show, such an extension can improve the fit of the Kung and Schmid (2015)
model to macroeconomic dynamics.

Apart from its model theoretic contributions, the paper adds to the literature by imple-
menting an advanced, fully non-linear Bayesian estimation method to a modern production
based asset pricing model. This approach is superior to a simple calibration of asset pricing
models. A promising perspective for future work is to combine global solutions techniques
(i.e. projection methods) with a detailed Bayesian analysis. On the empirical side, an obvious
route for future research is to add observations equations related to the model parameters
that are still calibrated.
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