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Abstract

Increasing energy e�ciency is one of the main goals in current German energy

and climate policies. We study the determinants of energy e�ciency in the German

manufacturing sector based on o�cial �rm-level production census data. By means

of a stochastic frontier analysis, we estimate the cost-minimizing energy demand

function at the two-digit industry level using �rm-level heterogeneity. Apart from

the identi�cation of the determinants of the energy demand function, we also analyze

potential drivers of energy e�ciency. Our results suggest that there is still potential

to increase energy e�ciency in most industries of the German manufacturing sector.

Furthermore, we �nd that in most industries exporting and innovating �rms as well

as those investing in environmental protection measures are more energy e�cient

than their counterparts. In contrast, �rms which are regulated by the European

Union Emissions Trading System are mostly less energy e�cient than non-regulated

�rms.
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1 Introduction

Increasing energy e�ciency is a cornerstone of current climate and energy policies in many

countries around the world. The European Union (EU) has set the goal to increase energy

e�ciency by 20 percent by 2020 compared to 2008 in its 20-20-20 targets (EC, 2010).1

Targets for increasing energy e�ciency are set to reduce emissions resulting from the

use of fossil fuels and enhance energy security by reducing import dependencies. Beyond

2020, the EU targets for the year 2030 include an increase in energy e�ciency of at least

27 percent compared to 2008 (EC, 2014).

Germany, in particular, has set ambitious goals to increase energy e�ciency in the

framework of the Energy Transition. The main energy e�ciency target consists in in-

creasing �nal energy productivity2 by 2.1 percent per year until 2050. From 2008 to 2015,

�nal energy productivity, however, only increased by 1.3 percent per year on average,

falling short of the target. To reach the objective by 2020 after all, an average increase

of 3.3 percent per year is necessary, which requires Germany to increase its e�orts to

improve the energy e�ciency in all sectors of the economy. (BMWi, 2016b; Löschel et

al., 2016).

The German manufacturing sector accounts for around 30 percent of �nal energy

demand and also has to contribute to the overall economy wide targets (BMWi, 2016a).

Apart from �nal energy demand, the German manufacturing sector is of particular in-

terest because it is seen as the backbone of the German economy with a share of 20

percent in employment and 25 percent in GDP in 2016 (Destatis, 2017). In addition,

the German manufacturing sector accounts for around 20 percent of Germany's carbon

dioxide emissions (BMWi, 2016a).

If future energy and climate policy objectives are to be met, e�cient policy measures

are of the essence. To evaluate the policy mix and the potential to further increase energy

e�ciency in the manufacturing sector, a better comprehension of energy e�ciency and

its drivers is crucial. This requires analyses based on comprehensive microdata of the

manufacturing sector incorporating �rm heterogeneity. After all, measures to reach the

politically prescribed goals have to be implemented by the individual �rms. Thus, we

estimate the �rm-level energy demand and energy e�ciency for 14 two-digit industries in

the German manufacturing sector using the stochastic frontier analysis (SFA) approach

and data from the o�cial German production census. Furthermore, we analyze di�erent

drivers of the estimated energy (in)e�ciencies.

In our analysis, we focus on drivers which are based on policy instruments and �rm

characteristics. These drivers can be in�uenced by policy makers through di�erent reg-

ulatory incentives, either costs or subsidies. Additionally, our analysis provides insights

about the relationship of di�erent �rm characteristics and energy e�ciency, which can

1The strategy also includes targets for the reduction of greenhouse gas emissions (GHG) and the

increasing use of renewable energy sources (RES).
2Final energy productivity is de�ned as price adjusted gross domestic product divided by total �nal

energy consumption.
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be in�uenced by the �rm itself and is thus of interest for managements. Consequently,

our contribution includes not only the identi�cation of the potential to increase energy

e�ciency at the industry level but also of the in�uence of di�erent drivers, i. e. the re-

lationship between the underlying energy e�ciency and the European Union Emissions

Trading System (EU ETS), the �rms' export status, the �rms' R&D expenditures, their

investments in environmental protection measures, as well as their electricity generation

from renewable energy sources.

We contribute to the literature by applying a parametric stochastic frontier function

approach to the estimation of energy demand and energy e�ciency. This is of great

relevance because little is known about the drivers of energy e�ciency in manufacturing

based on sound econometric analysis of o�cial microdata. We use o�cial German pro-

duction census data (�AFiD�), i. e. a full sample of all manufacturing �rms with more

than 20 employees for the period from 2003 to 2012. This data set is highly reliable and

comprehensive. On top of �rms' energy use, it includes a wide set of covariates allowing

us to capture the �rm-level heterogeneity. To our knowledge, there is no other study

applying a stochastic energy demand frontier model to Germany and so far there are

only very few applications to �rm-level census data.

Energy e�ciency can be estimated using a stochastic frontier function approach, in

the course of which the �frontier� or benchmark of cost-minimizing energy demand is

estimated (as adapted by Filippini and Hunt, 2011). By contrast, previous studies on

energy productivity have usually used energy intensity, i. e. the ratio of total energy

use to an output measure, as an approximation to energy e�ciency, which, however,

appears to be inadequate (Lundgren et al., 2016; IEA, 2012; Filippini and Hunt, 2011;

Bhattacharyya, 2011).

That is, it is important to de�ne these terms and distinguish between energy e�-

ciency, as it is analyzed in our study using a SFA, and energy intensity or productivity.

Energy intensity or productivity are often used in the political debate and also to set

political targets as a proxy for energy e�ciency. As aforementioned, the German �energy

e�ciency� target also refers to an increase in annual energy productivity. The de�nition

of energy intensity is the ratio of energy consumption to GDP at the state or country

level or energy use per output at the industry or �rm level, or per square meter at the

residential level. Energy productivity is the inverse of energy intensity.

Energy e�ciency, as we estimate it, is de�ned as the di�erence between the actual and

predicted energy use (Filippini and Hunt, 2011). Filippini and Hunt (2011) show � based

on country-level data � that it is not clear if energy intensity is actually a good proxy for

energy e�ciency. Lundgren et al. (2016) show the same unclear relationship based on

�rm-level data for the Swedish manufacturing sector. The authors compare the energy

e�ciency scores derived from a SFA with calculated energy intensities using a simple

correlation analysis. The relationship is expected to be perfectly negatively correlated,

if both are perfectly comparable. The authors �nd negative correlations in most sectors,

but with a relatively low magnitude. Thus, they cannot con�rm that energy intensity is
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a clear-cut proxy for energy e�ciency.3

While the stochastic frontier function approach has been applied to analyze energy

demand and energy e�ciency at the country or state level (Filippini and Hunt, 2011;

Evans et al., 2013; Fillipini and Hunt, 2012; Filippini et al., 2014), the approach can

be even more informative at the �rm or plant level taking advantage of the underly-

ing heterogeneity (Lundgren et al., 2016; Boyd and Lee, 2016). The estimation of the

stochastic energy demand function at the �rm level allows comparing �rms to a �frontier�

or benchmark of energy e�ciency in each individual industry.

The use of individual plant- and �rm-level data is very scarce in the literature regard-

ing energy e�ciency due to limited data availability and the novelty of the use of the

research approach to identify energy e�ciency and its drivers. However, the utilization

of microdata is a very important step to exploit in-depth information and heterogeneity

of plants and �rms. In an early study, Boyd (2008) analyzes the energy e�ciency of corn

mills in the US empirically using publicly unavailable plant data. He uses the stochastic

frontier analysis approach as an energy e�ciency management tool. His results support

the ENERGY STAR program by the U.S. Environmental Protection Agency (EPA), ac-

cording to which a product or �rm is eligible for the energy star if it falls above the 75th

percentile of energy e�ciency �for comparable products or facilities� (Boyd, 2008).

The studies closest to ours are conducted by Lundgren et al. (2016) and Boyd and

Lee (2016). Lundgren et al. (2016) analyze energy e�ciency for 14 industries within

Swedish manufacturing based on individual �rm-level data for the years 2000 to 2008.

The authors apply a parametric stochastic frontier approach and the �true random e�ects�

model by Greene (2005a, 2005b), which allows for �rm-speci�c heterogeneity. They �nd

considerable ine�ciencies, in particular in fuel use compared to electricity use. Boyd

and Lee (2016) use a similar approach to analyze the energy e�ciency of �ve di�erent

metal-based durable manufacturing industries in the United States. They apply the

model to six repeated cross sections for each �ve-year census for the years 1987 to 2012

using con�dential plant-level data on energy use and production from the quinquennial

U.S. Economic Census. They also �nd considerable ine�ciencies and consistently better

electrical e�ciency compared to fuel (thermal) e�ciency.

Using German production census data, Petrick et al. (2011) analyze the energy use

patterns and energy intensity in the German industry form 1995 to 2006. They �nd

strong positive correlations between energy intensity, energy use, CO2 emissions, and

emission intensity. Apart from this study, there is no analysis on energy demand and

energy intensity using panel plant- or �rm-level data of the German manufacturing sector

to our knowledge. In contrast to Petrick et al. (2011), we analyze the energy e�ciency of

the German manufacturing sector applying a SFA and on top of that contribute a more

recent analysis for the years 2003 to 2012 to the literature.

Our results suggest that there is still potential to improve energy e�ciency in most

3For a visual analysis of the covariation, see Lundgren et al. (2016). They conclude that one should

be cautious about using energy intensity as a measurement for energy e�ciency.
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industries of the German manufacturing sector. Compared to results from the Swedish

manufacturing sector, the potential, however, appears to be smaller. We identify het-

erogeneous levels of energy e�ciency at the two-digit industry level. Our results for the

mean time-variant energy e�ciency scores range from 0.80 to 0.97, compared to 1 as the

reference point with no ine�ciencies present. Energy intensive industries, pulp & paper

(0.85), chemicals (0.86), and basic metals (0.91), have a rather big potential to increase

their energy e�ciency. Speci�cally, energy intensive industries present a considerable

lever regarding the e�ects of energy e�ciency improvements on overall energy use and

�rms' energy costs. That is, policy makers should consider to incentivize energy e�ciency

increases especially in these industries by applying more comprehensive policy measures.

With our study, we are also among the �rst to estimate the own-price elasticities of

energy demand for the German manufacturing sector. The estimated industry-speci�c

elasticities appear to be rather small in comparison to recent studies of other countries,

ranging from around -0.4 to -0.8. These elasticities give an indication about the respon-

siveness of �rms to changes in energy prices and thus their reactions to price-based policy

interventions, which is of interest for policy makers.

Additionally, we analyze di�erent drivers of energy e�ciency and �nd that exporting

and innovating �rms are more energy e�cient than their counterparts in most industries

of the manufacturing sector. Our study is one of the �rst empirical studies, in which

this positive relationship is identi�ed. Also �rms that invest in environmental protection

measures are more energy e�cient than their counterparts in many industries. That is,

clean technology adoption and energy e�ciency also have a positive relation at the �rm

level. Apart from this, �rms regulated by the EU ETS are mostly less energy e�cient

than non-regulated �rms. Comparing our results to the current literature, does not

allow us to draw a comprehensive conclusion about the relationship between the EU

ETS and energy e�ciency. Additionally, our analysis shows predominantly no signi�cant

relationship between �rms' electricity self-generation from renewable energy sources and

their energy e�ciency.

The remainder of the paper is structured as follows. In Section 2, we describe the

potential drivers of energy e�ciency analyzed in more detail. In Section 3, we outline the

methodology of the SFA approach. Section 4 describes the German production census

and the additional data used. The results of our analysis are shown in Section 5 and

their robustness in Section 6. In Section 7, we conclude with a discussion.

2 Potential drivers of energy e�ciency

Energy e�ciency is one key element in many energy and climate policies, but not the

only one. This fact leads to an interplay with various other aspects and objectives.

The reduction of greenhouse gas emissions as well as the increasing use of renewable

energy sources are also important goals in the German energy and climate policy agenda

(BMWi, 2016b; Löschel et al., 2016). To analyze the interactions between these measures,
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we study the relationship between energy e�ciency and the European Union Emissions

Trading System (EU ETS), the investments in environmental protection measures, and

the use of renewable energy sources for electricity generation. Furthermore, innovation

is not only an integral part of current energy and climate policies, i. e. to develop new

technologies for a low carbon or sustainable economy, but also of Germany's industrial

policy, which is based on the following paradigm: �Germany's economic strength is largely

based on the e�ciency of German industry, and particularly on its innovative strength.�

(BWMi, 2017) In addition, the �(i)ndustry is at the heart of Germany's strong export

performance.� (BWMi, 2017) To better understand the determinants in these key areas

(innovation and export) of the German economy, we study their interplay with energy

e�ciency. Overall, we analyze the relationship of these di�erent drivers with the energy

e�ciency development of �rms in 14 two-digit industries of the German manufacturing

sector. In this section, we shortly describe the determinants used in our analysis in

more detail and additionally give an overview on possible relationships drawn from the

literature.

First, we analyze the relationship between the EU ETS and �rms' energy e�ciency.

The EU ETS is the most important climate policy instrument of the EU and its member

states. With the help of the EU ETS, the EU aims at steering the European economy to

a low carbon pathway. The EU ETS puts a price on the greenhouse gas emissions of the

regulated installations and consequently on fossil fuel use. Theoretically, the use of fossil

fuels should be reduced by this price signal and �rms should face incentives to use energy

more e�cient (Linares and Labandeira, 2010; de Miguel et al., 2015). Thus, we would

expect that regulated �rms are more energy e�cient than their counterparts. However,

the empirical literature on the EU ETS and its impact on �rms is scarce. Martin et al.

(2016) as well as Joltreau and Sommerfeld (2016) give comprehensive overviews on the

impacts of the EU ETS on �rm behavior.

The empirical evidence speci�cally analyzing German manufacturing is even more

limited. Petrick and Wagner (2014) investigate the causal e�ects of the EU ETS regard-

ing emissions, output, employment, and exports. They �nd that the EU ETS reduced

emissions of regulated �rms, but had no signi�cant impact on output, employment,

and exports in the years 2007 to 2010. Lutz (2016) estimates the e�ects on �rm-level

productivity using a structural production function approach and data of the German

production census from 1999 to 2012. He shows that the EU ETS had a signi�cant posi-

tive impact on productivity during the �rst compliance period. Furthermore, Löschel et

al. (2016) investigate the e�ects of the EU ETS on the technical e�ciency of German

manufacturing �rms using data from 2003 to 2012. They apply a di�erence-in-di�erences

approach combined with parametric conditioning strategies and �nd no signi�cant e�ect

of the EU ETS on the performance of regulated �rms. They also analyze the treatment

e�ects at the two-digit industry level for four di�erent industries and only �nd statis-

tically signi�cant results for the paper industry. In this industry, the EU ETS had a

signi�cantly positive impact on the e�ciency of the regulated �rms. The empirical ev-
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idence on the relationship between the EU ETS and energy e�ciency is even scarcer.

Speci�cally regarding energy e�ciency, Lundgren et al. (2016) �nd a mixed relationship

with energy e�ciency, that is in some industries positive, negative, or not signi�cant at

all. We add to this strand of literature and analyze the correlation between the EU ETS

and energy e�ciency in the di�erent industries of the German manufacturing sector.

As a second determinant of energy e�ciency, we analyze the in�uence of the exporting

status of �rms. Exporting could increase energy e�ciency through di�erent channels.

Improved foreign market access could, for example, induce innovation or it may improve

management practices (Roy and Yasar, 2015). From a broader perspective, there is

literature regarding the relationship between exporting behavior and �rm performance

or productivity. Wagner (2012) gives an overview of the literature and summarizes that

exporters are more productive than non-exporters. The higher productivity of exporters

could also be related to higher energy e�ciency. But there is no evidence yet on the

relationship between export status and energy e�ciency. There are, however, studies on

the relationship between export status and energy use. Roy and Yasar (2015) �nd that

exporting reduces the use of fuels relative to electricity. They analyze a �rm-level panel

data set for Indonesia. Batrakova and Davies (2012) show theoretically and empirically

with Irish �rm-level data that exporting increases energy use due to greater output.

However, the e�ect can be o�set by adopting more energy-e�cient technologies and

this reaction is stronger for �rms with higher energy intensity. Cole et al. (2008), and

Dardati and Saygili (2012) analyze Ghanaian and Chilean �rms, respectively. They �nd

that exporting is negatively related to energy intensity. To conclude, so far there is no

study analyzing the association of exporting status to the underlying energy e�ciency.

There is, however, some indication for a negative relationship between energy intensity

and exporting status.

Furthermore, we analyze the correlation between �rms' R&D expenditures, as proxy

for the innovation behavior of �rms, and their energy e�ciency. Innovations, policy in-

centives and high relative energy prices make new technologies often more energy e�cient

than older ones. Thus, innovative �rms may also be more energy e�cient. Popp (2001),

for example, �nds that one-third of the reduction of industrial energy consumption can

be explained by innovation. He uses patent data to create a knowledge stock at the US

industry level. We use the �rms' R&D expenditures as proxy for innovation. However,

it is unclear ex ante how the relationship between innovation and energy e�ciency ma-

terializes for manufacturing �rms. An overview of further literature on the relationship

between energy and technological change can be found in Popp et al. (2010).

The same rationale for more energy e�cient new technologies may also hold for

investments in environmental protection measures. These investments account for the

adoption of technologies, speci�cally green technologies. There are numerous studies

on the determinants of green or clean technology adoption and �rm performance; for a

recent overview see Hottenrott et al. (2016). The relationship between environmental

protection investments and energy e�ciency, however, has not yet been studied to the
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best of our knowledge.

Finally, we analyze the relationship between energy e�ciency and the usage of renew-

able energy sources to self-generate electricity. It is unclear how self-generation relates

to energy e�ciency and as far as we are aware there have been no studies analyzing this

relationship so far. From the perspective of a �rm, investments in renewable energy tech-

nologies increase its capital stock, but could crowd out other investments which could

be favorable for the productivity as well as energy e�ciency of the �rm, as Boyd and

McClelland (1999) suggest.4 The e�ects on the other input factors of the production

function are also not straightforward. Furthermore, the implications depend on the rela-

tive energy prices from self-generated electricity and purchased electricity from utilities,

as well as possible cogeneration of process heat.

As the implications and the magnitude of the di�erent drivers of energy e�ciency are

mostly unclear and never have been analyzed for the German manufacturing sector, we

will study their relationships empirically.

3 The stochastic energy demand frontier approach

The measurement of energy e�ciency based on economic foundations has evolved from

the economic theory of production and the empirical methods for measuring productive

e�ciency. For a general overview of frontier, e�ciency, and productivity analyses, we

refer you to Coelli et al. (2005), Fried et al. (2008), or Kumbhakar and Lovell (2000). For

an overview on the literature and methodology of energy e�ciency measurement based

on economic foundations, see Filippini and Hunt (2015).

The estimation of a measure of e�cient use of energy can be based on a stochastic

demand function of energy (Filippini and Hunt, 2011).5 This is a parametric approach,

which has higher discriminating power in energy e�ciency performance measurement

compared to its nonparametric frontier counterparts like the data envelopment analy-

sis (DEA) (Zhou et al., 2012). The estimated energy demand function gives the cost-

minimizing input combination to produce a given level of output, i. e. energy service.

It indicates the minimum amount of energy that is necessary to produce a given level

of output, given the technology, input prices, and other factors (Filippini and Hunt,

2015). The di�erence between the frontier and the actual energy use can be explained

by allocative or technical ine�ciencies.

Boyd (2008) is a prominent example of a study estimating an energy input require-

ment function using stochastic frontier analysis. He stresses the notion that energy

e�ciency should be measured relative to some benchmark (instead of simply measur-

ing inputs to outputs), which is achieved by stochastic frontier analysis. He focuses on

plant-level energy e�ciency, illustrating his approach by using data on US corn mills.

4This could also be true for the investments in environmental protection discussed above.
5The basic stochastic frontier approach was introduced by Aigner, Lovell and Schmidt (1977) and in

the same year by Meeusen and Van den Broeck (1977).
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While an energy input requirement function uses input amounts in order to explain

minimal requirements for output production (e. g. Boyd, 2008), by contrast, an energy

demand frontier function uses input prices instead of input amounts as an explanatory

variable for energy use (e. g. Filippini and Hunt, 2011, 2012; Evans et al., 2013; Filippini

et al., 2014).6 Thus, the frontier cost (minimizing) level of energy demand is based on

energy prices, given the output and quasi-�xed inputs (Boyd and Lee, 2016).

Filippini and Hunt (2011) and Evans, Filippini and Hunt (2013) estimate an energy

demand function at the country level for a panel of 29 OECD countries. Filippini and

Hunt (2012), Filippini et al. (2014) and Weyman-Jones et al. (2015) build on the

approach by Filippini and Hunt (2011) while adding a Mundlak correction for unobserved

heterogeneity (Mundlak, 1978).

Early panel models for the stochastic frontier function approach did not di�erentiate

between transient and persistent ine�ciencies (for an overview see Filippini and Greene,

2016). We employ the �true random e�ects� model (TRE) proposed by Greene (2005a,

2005b). It is based on the pooled model of Aigner, Lovell and Schmidt (1977) and ex-

tended by �rm-speci�c time-invariant random e�ects. This model's error term subsumes

three di�erent components: a term for time-invariant unobserved �rm-level heterogeneity

(ψi), a �rm-speci�c time-varying ine�ciency term (uit), and a random noise term (νit).

Thus, the TRE model allows estimating the �rm-speci�c time-variant, �transient� energy

ine�ciency uit. A similar approach is used by Lundgren et al. (2016) with Swedish

�rm-level data as well as by Boyd and Lee (2016) with US plant-level data.

Our estimation incorporates both the energy demand function (Equation 1) and the

drivers of its ine�ciencies (Equation 2) within a single-stage approach using maximum

simulated likelihood. We estimate the following short-run stochastic cost-minimizing

energy demand function for �rm i in period t separately for each two-digit industry

within the manufacturing sector:

eit = β0 + β1yit + β2kit + β3lit + β4mit + β5p
e
it + τT + ψi + νit + uit. (1)

In Equation 1, y denotes the gross value of produced output, and k, l, and m denote

capital, labor, and materials, respectively. pe refers to the energy price and T is a time

trend variable, which captures technological change. ψi as introduced by Greene (2005a

and 2005b) is a �rm speci�c random e�ect and allows for time-invariant heterogeneity

at the individual level, which is assumed to be uncorrelated with the other input factors,

the prices and the time trend.

We identify νit and uit by making assumptions about their functional forms. uit can

be referred to as the conditional energy ine�ciency. It is assumed to have a non-negative

truncated normal distribution uit ∼ N+(µit, σ
2
ui). Intuitively, ine�ciencies can only take

positive values as no �rm can be any more e�cient than the frontier. Furthermore, νit

is the usual error term, which is assumed to have a normal distribution νit ∼ N(0, σ2νi).

The complete error term can also be written as εit with εit = νit + uit.

6For a detailed overview and comparison of di�erent economic models see Filippini and Hunt (2015).
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Our variables representing the drivers of energy e�ciency are placed in the mean (µit)

of the non-negative truncated normal distribution of uit, which represents the ine�ciency.

We use the status of regulation by the EU ETS (ETS), the export status (EXP ),

the R&D activity status (R&D), the investment activity in environmental protection

(EPI), and the self-generation of electricity from renewable energy sources (RENEW )

as variables in our conditional ine�ciency model.

The estimation of the conditional ine�ciency follows the model:

uit = γ1ETSit + γ2EXPit + γ3R&Dit + γ4EPIit + γ5RENEWit + ζit, (2)

where ζit is a random error term.

To get an indication of e�ciency or ine�ciency, we use two indicators. First, we

calculate λ, which is de�ned as λi = σui/σνi , and provides information on the relative

contributions of the error term (νit) and the energy e�ciency term (uit) to the decom-

posed error term. If λ is signi�cant, it means that the variance of the conditional energy

ine�ciency term (uit) is signi�cantly greater than 0. Consequently, it indicates that

there are signi�cant di�erences in energy e�ciency between the �rms within the respec-

tive two-digit industry. Second, the energy e�ciency of every analyzed industry can be

translated into an energy e�ciency score EEit, which is given by EEit = exp{−µ̂it}. It
represents the distance of every �rm to the frontier in the respective industry. An energy

e�ciency score of one indicates an industry on the frontier, which would mean that all

�rms and thus the industry are 100 percent energy e�cient.

It is assumed that markets are perfectly competitive and �rms minimize costs (Lund-

gren et al., 2016). Under these assumptions, the estimated e�ciency scores will fully

capture time-variant ine�ciency. Note that time-constant, �persistent� �rm-speci�c in-

e�ciencies are part of the time-invariant heterogeneity term ψi in the TRE model. In

this case, the �rm-speci�c ine�ciency term uit does not capture the �persistent� part of

ine�ciencies and should therefore be considered as a conservative estimate.

4 Data

Our analysis is based on data from the German production census AFiD (Amtliche

Firmendaten für Deutschland � O�cial �rm data for Germany) provided by the Federal

Statistical O�ce and the Statistical O�ces of the Länder. The data is con�dential and

only accessible for scienti�c purposes. The participation is mandatory by law and the

quality of the results is monitored by the Statistical O�ces. It is also used as a basis

for o�cial government statistics. The structure of this longitudinal data set is modular.

Below we describe the di�erent data modules that we combine for our analysis.

The core data set is the Cost Structure Survey (CSS), which contains comprehensive

annual information about output produced and inputs used by �rms in the manufactur-

ing sector. The CSS includes all manufacturing �rms with more than 500 employees and

a random sample of �rms with more than 20 and less than 500 employees. The random
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Table 1: Descriptive statistics of variables in the energy demand functions

Industry ISIC Output Energy use Energy price Capital stock Number of Materials Number

Rev. 4 (EUR 1,000) (MWh) (EUR/kWh) (EUR 1,000) employees (EUR 1,000) of �rms

Food 10 52,800 25,100 0.1427 13,800 183 36,300 3,493

(137,000) (121,000) (1.1676) (35,200) (347) (106,000)

Textiles 13 18,700 12,100 0.1001 7,171 128 9,443 836

(32,200) (29,600) (0.2481) (13,400) (168) (17,500)

Wood 16 25,800 41,600 0.1812 9,924 122 14,900 940

(49,600) (163,000) (1.6779) (24,300) (185) (30,400)

Pulp & paper 17 61,500 145,000 0.1277 29,500 243 30,800 850

(109,000) (447,000) (1.4664) (77,000) (364) (57,200)

Chemicals 20 116,000 294,000 0.3956 53,500 357 57,600 1,453

(482,000) (2,610,000) (15.8516) (244,000) (1,510) (233,000)

Pharmaceuticals 21 128,000 31,400 0.1905 71,800 562 42,400 343

(399,000) (98,400) (1.7417) (273,000) (1,511) (101,000)

Rubber & plastics 22 40,600 17,600 0.1421 15,700 240 20,100 2,165

(98,000) (54,900) (1.8538) (37,900) (534) (51,000)

Basic metals 24 131,000 397,000 0.1398 34,300 360 81,900 1,076

(474,000) (3,480,000) (1.8505) (142,000) (1,028) (308,000)

Fabricated metal 25 25,900 7,630 0.1333 9,711 167 12,200 4,710

products (54,500) (28,100) (1.0905) (22,100) (286) (31,800)

Computer/electronics 26 47,300 7,562 0.2780 22,800 274 33,100 1,717

(164,000) (33,800) (4.9128) (129,000) (688) (179,000)

Electrical equipment 27 68,800 10,200 0.1579 20,700 426 39,300 2,150

(529,000) (72,100) (0.7625) (180,000) (3,891) (354,000)

Machinery 28 54,600 7,590 0.1444 14,000 287 28,000 5,581

(177,000) (44,700) (0.6146) (73,300) (1,141) (109,000)

Other transport 30 109,000 16,700 0.2105 28,700 528 64,900 420

equipment (420,000) (69,500) (3.7269) (159,000) (1,835) (248,000)

Other manufacturing 32 24,800 4,612 0.1511 10,700 173 9,132 1,244

(71,700) (25,800) (0.2325) (40,200) (383) (28,600)

Repair & installation 33 32,500 2,685 0.7371 4,730 193 16,200 999

(154,000) (17,000) (5.0764) (18,300) (617) (79,200)

Notes: Mean values from 2003 to 2012. Standard deviation in parentheses. Source: Research Data Centres of the Federal Statistical

O�ces and the Statistical O�ces of the Länder (2014), own calculations.
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sample is changed every few years. In our sample period from 2003 to 2012, the sample

was renewed in 2003, 2008, and 2012. It is strati�ed by the number of employees and eco-

nomic activity a�liation. The �rms are classi�ed according to ISIC Rev. 4. Appendix A

includes additional information on the industry classi�cation.

Additionally, we use the database AFiD-Panel Industrial Units, which contains an-

nual data from the Monthly Report on Plant Operation, the Census on Production, and

the Census on Investment. This data set is a full sample of all plants in manufacturing

which belong to �rms with a minimum number of 20 employees. This data is combined

at the plant level with the AFiD-Module Use of Energy and the AFiD-Module Environ-

mental Protection Investments. The Energy Use Module includes comprehensive data

on electricity and fuel purchase, sale, and use. It also distinguishes between electricity

generation from fossil or renewable energy sources. The AFiD-Module Environmental

Protection Investments contains information on various investment categories regarding

environmental protection. These categories are waste management, water conservation,

noise abatement, air pollution control, nature and landscape preservation, and soil reme-

diation. We aggregate this information on �rm level to be able to combine all data sets

described.

As measure for output, we use the gross value of production of the �rm. This is taken

from the Census on Production and de�ated using two-digit ISIC de�ators.7 The measure

for labor input is calculated as the annual average of the number of employees reported

monthly in the production census. This annual average of monthly data o�ers more

detailed information on employment compared to the number of employees collected at

the reporting date of the CSS. To compute the �rm's capital stock, we use the perpetual

inventory method. A detailed description of the method and its application to AFiD data

can be found in Lutz (2016). Material expenditures are taken from the CSS and de�ated

in the same manner as our output variable. We also include the �rm speci�c average

energy price in our energy demand frontier function. The energy price is calculated by

dividing the �rm's total energy expenditures by its total energy use, including fuels and

electricity, for each year and �rm. In Table 1, we report the descriptive statistics for

the aforementioned variables of the energy demand function. More detailed descriptive

statistics are presented in Appendix B.

The drivers of energy e�ciency are obtained as followes: in order to identify �rms

which are regulated by the EU ETS (ETS), we match the production census with the

European Union Transaction Log (EUTL) from 2005 to 2012. We use information on

the commercial register number and the VAT number for the merger. This data is also

used in Lutz (2016) and Löschel et al. (2016). More information on the methodology

of the merger is available in Appendix A. The production census provides information

on revenues from exports at the �rm level. We identify a �rm as exporting if the export

revenues are positive (EXP ). Furthermore, we create a dummy variable for the �rm's

7The data on price indexes was retrieved from the Federal Statistical O�ce and has already been

used for example by Lutz (2016).
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Table 2: Descriptive statistics of drivers of energy e�ciency

Industry ISIC Rev. 4 ETS EXP R&D EPI RENEW

Food 10 0.028 0.485 0.160 0.127 0.028

Textiles 13 0.014 0.906 0.313 0.120 0.021

Wood 16 0.039 0.698 0.145 0.092 0.042

Pulp & paper 17 0.179 0.901 0.242 0.207 0.021

Chemicals 20 0.067 0.934 0.591 0.314 0.030

Pharmaceuticals 21 0.040 0.908 0.480 0.224 0.026

Rubber & plastics 22 0.013 0.880 0.364 0.156 0.020

Basic metals 24 0.055 0.915 0.285 0.319 0.024

Fabricated metal products 25 0.001 0.773 0.248 0.148 0.028

Electrical equipment 27 0.005 0.857 0.531 0.142 0.045

Machinery 28 0.003 0.897 0.492 0.124 0.027

Other transport equipment 30 0.022 0.806 0.389 0.164 0.013

Other manufacturing 32 0.005 0.737 0.335 0.089 0.024

Repair & installation 33 0.001 0.596 0.164 0.060 0.032

Notes: Shares over the years from 2003 to 2012. Source: Research Data Centres of the Federal Statistical O�ces and the Statistical

O�ces of the Länder (2014), own calculations.

R&D activity (R&D) di�erentiating between �rms with zero or positive expenditures for

R&D. This data is taken from the CSS and includes all cost of internal R&D activities

as well as joint activities with external research centers or laboratories. The dummy

variable for Environmental Protection Investments (EPI) re�ects whether �rms have

zero or positive investment expenditures in any of the aforementioned investment cat-

egories. The information about the self-generation of electricity with renewable energy

sources (RENEW ) is obtained from the production census. The dummy variable repre-

sents whether �rms produce electricity from renewable energy sources (i. e. water, wind,

geothermal, or solar photovoltaics) or not. We report the descriptive statistics for the

e�ciency determinants at the two-digit industry level in Table 2. The yearly descriptive

statistics of the e�ciency determinants can also be found in Appendix B.

5 Results

In this section, we present the estimated energy demand stochastic frontier as well as

the simultaneously estimated relationships of di�erent drivers and energy e�ciency. In

Table 3, we show the main estimation results. The �rst six columns show the estimated

parameters of the frontier. The following �ve columns present the relation between

several determinants and energy e�ciency. The last two columns contain the estimated

variance parameters of σu and λ. The estimates of λ denote the relative contribution of

the variance in energy e�ciency (σu) compared to the variance of the error (σν). The

statistical signi�cance of λ indicates the presence of energy ine�ciency in the respective

industry.

The results of the estimated energy demand frontier in Table 3 show plausible signs

for the short-run elasticities from an economic point of view. The positive signs for

labor, capital, output and materials can be interpreted as follows: Given the technology

a respective increase in these variables would require an increasing energy demand. The

positive and highly statistically signi�cant time trend hints at the fact that the energy
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use increased over time in all industries. It ranges from 0.027 in the electrical equipment

industry (27) to 0.062 in the pharmaceutical industry (21). These coe�cients can be

translated into an increase of energy use of 2.7 to 6.2 percent per year. In contrast to

this, Lundgren et al. (2016) �nd more heterogeneous results for the time trend in the

Swedish industry. In their analysis, fuel demand decreases in most industries from 2000

to 2008, however, electricity demand increases in many industries.8

Furthermore, we �nd an economically plausible relationship between energy prices

and energy demand: the negative relationship means that rising energy prices reduce the

energy demand. The own-price elasticities of energy demand range from -0.39 to -0.80

in our analysis. When we compare these elasticities to results from the literature, the

elasticities in the German manufacturing sector seem generally to be quite low, especially

in comparison to more recent studies. They are, however, in the range of what Kleijweg

et al. (1989) �nd for Dutch �rms. They use a panel of Dutch �rms for the years 1978

to 1986 and �nd an own-price elasticity of energy of -0.56. Nguyen and Streitwieser

(2008), in contrast, �nd much higher own-price elasticities in the range of -1.68 to -7.27

for two-digit US manufacturing industries, but note that they use a cross section for the

year 1991. In a more recent study, Haller and Hyland (2014) �nd an own-price elasticity

of -1.46 using a long panel of Irish industrial �rms from 1991 to 2009. Bardazzi et al.

(2015) analyze the energy demand of the Italian manufacturing sector utilizing a panel

covering the years 2000 to 2005. They estimate an own-price elasticity of -1.13 for energy.

Note that there are more studies analyzing own-price elasticities in the manufacturing

sector, but in many studies it is possible to split energy use into fuel and electricity use.

We are not able to disentangle the energy use due to our underlying data and therefore

the comparison to these results seems not feasible, cf. Woodland, 1993; Bjørner et al.,

2001; Arnberg and Bjørner, 2007; Boyd and Lee, 2016; Lundgren et al., 2016; Abeberese,

2017.

Regarding the drivers of energy e�ciency,9 our analysis suggests that exporting �rms

are more energy e�cient than non-exporting �rms in most industries. Exporting �rms

are less energy e�cient only in the repair and installation industry (33). The same holds

for innovating �rms. These are generally more energy e�cient except in the repair and

installation (33) industry. Our results are in line with analyses on di�erent productivity

and e�ciency measures presented in Section 2. However, we can show for the �rst time

that there is a positive relationship between exporting or innovating and the energy

e�ciency of manufacturing �rms.

EU ETS regulated �rms, on the other hand, are less energy e�cient in most industries

than their non-regulated counterparts. Only EU ETS regulated �rms in the chemical in-

dustry (20) are more energy e�cient than non-regulated ones. The lower energy e�ciency

of regulated �rms is counterintuitive to our expectations formulated in Section 2. Our

8Note that we cannot disentangle fuel and electricity demand.
9The results of the regression of the determinants presented in Table 3 can be interpreted as follows.

A negative sign means that the �rms with variable status 1 are more energy e�cient compared to the

group with variable status 0.
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results are not in line with the results of Lundgren et al. (2016) for the Swedish manu-

facturing sector; they �nd ambiguous results and no clear-cut trend regarding regulated

and non-regulated �rms. For the chemical industry, for example, they �nd that regulated

�rms are less fuel e�cient, which is in contrast to our results. On the other hand, for

the pulp and paper industry they �nd a similar e�ect, namely that regulated �rms are

also less fuel e�cient than their counterparts. Thus, the EU ETS seems to regulate less

energy e�cient �rms. The incentives for �rms to become more energy e�cient, which

should exist due to the price signal as we stated above, might, however, materialize in

the long term, when the signal is more salient to �rms.

The results for environmental protection investments suggest that �rms which invest

are also more energy e�cient. This positive result applies to the pulp and paper (17),

rubber and plastics (22), fabricated metal products (25), electrical equipment (27), and

machinery (28) industries. Nevertheless in the wood (16) and other manufacturing (32)

industries the picture is negative for �rms which invested in environmental protection.

Thus, overall our results suggest that energy e�ciency and clean technology adoption

seem to be positively related to each other.

The association of energy e�ciency and the use of renewable energy sources is only

statistically signi�cant in three industries. Thus, �rms which self-generate electricity by

using renewable energy are more energy e�cient in the machinery (28) industry and less

energy e�cient in the food (10) and other transport equipment (30) industries. That is,

we cannot draw clear conclusions from our analysis on the relationship between energy

e�ciency and the self-generation of electricity with renewable energy sources.

Table 4: Energy e�ciency and energy intensity

Energy e�ciency (EE) Energy intensity (EI)

Sector ISIC Rev. 4 EEmean EEmedian EImean EImedian

Food 10 0.973 0.999 0.630 0.303

Textiles 13 0.871 0.900 0.721 0.376

Wood 16 0.803 0.835 0.852 0.220

Pulp & paper 17 0.845 0.998 1.176 0.262

Chemicals 20 0.857 0.888 1.152 0.196

Pharmaceuticals 21 0.849 0.878 0.357 0.184

Rubber & plastics 22 0.848 0.881 0.417 0.299

Basic metals 24 0.914 0.925 0.961 0.462

Fabricated metal products 25 0.882 0.898 0.343 0.181

Electrical equipment 27 0.850 0.875 0.179 0.089

Machinery 28 0.874 0.896 0.309 0.098

Other transport equipment 30 0.925 0.942 0.398 0.140

Other manufacturing 32 0.856 0.880 0.226 0.098

Repair & installation 33 0.888 0.854 0.129 0.049

Notes: Energy intensity is measured in kWh/EUR (energy use/output). Source: Research Data Centres of the Federal Statistical

O�ces and the Statistical O�ces of the Länder (2014), own calculations.

There are two indicators for energy e�ciency in our model. The �rst one as mentioned

above is λ, which is shown in the last column of Table 3. We can identify energy

ine�ciencies for most industries in the German manufacturing sector. λ is statistically

signi�cant in almost all analyzed industries. This means that we can reject the null

hypothesis of λ = 0, i. e. there are time-variant di�erences in energy e�ciency between
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the �rms within the respective two-digit industry. The variance of the conditional energy

ine�ciency term u is signi�cantly greater than 0.

The second indicator is the energy e�ciency score: EEit = exp{−µ̂it}. These scores
are presented in Table 4. The highest possible score is 1, which would indicate that there

is no potential for time-variant energy e�ciency improvements in the respective industry.

The mean energy e�ciency scores in our analysis range from 0.803 in the wood industry

(16) to 0.973 in the food industry (10). The results for the median scores range from 0.835

to 0.999 in the respective industries. These results are fairly high, which hints at the fact

that there is actually not much potential to increase energy e�ciency. Note, that this is

the time-variant part of the energy e�ciency and considered in relation to the industry's

own benchmarking technology. Furthermore, the median is larger than the mean in

most industries, except for repair & installation (33). The mass of the distribution is

therefore concentrated above the mean. That is, most �rms in the respective industries

are relatively closer to the frontier and therefore the 100 percent energy e�cient �rm in

each industry.

Policy makers are particularly concerned about energy intensive �rms and industries.

On the one hand, most energy e�ciency goals are set to reduce energy intensity in the

future. On the other hand, there is a concern that especially energy intensive �rms and

industries might lose competitiveness through energy and climate policies as they face

high shares of energy costs. In Table 4, we also include the mean and median energy

intensities measured in energy use per output (kWh/EUR) at the two-digit industry level.

The industries with the highest mean energy intensity in our sample are the pulp & paper

(17), chemicals (20), and basic metals (24) industries. The pulp & paper industry, as

the most energy intensive industry (1.176) in our sample, has one of the lowest mean

energy e�ciencies (0.845). Thus, compared to other industries, there is a high potential

to increase the time-variant energy e�ciency and many �rms are far from utilizing the

optimal cost-minimizing energy demand function of the best performing �rm on the

frontier. The chemicals industry has a medium rank energy e�ciency score compared to

other industries in our sample, but still a relatively low mean energy e�ciency score of

0.857 after all. The basic metal industry has in comparison a rather high energy e�ciency

score, which leads to the conclusion that there is not as much potential for increases in

energy e�ciency. However, there is some potential, because the mean energy e�ciency

score of the basic metals industry amounts to 0.914.

6 Robustness check

A concern that could be raised regarding our estimation might be a simultaneity or

timing problem between the energy demand function and the drivers of energy e�ciency.

Thus, we also use a speci�cation with lagged values of di�erent determinants. The

determinants are lagged for one year, so the results can be interpreted as the e�ect of

the status of the determinant from year t− 1 on the energy e�ciency in year t. We lag
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the exporting status (EXPt−1), the expenditures in R&D (R&Dt−1), the investments in

environmental protection (EPIt−1) and the electricity generation from renewable energy

sources (RENEWt−1). For the EU ETS, we suppose no lagged in�uence, because for

most �rms the regulatory status should be clear for a longer period. The results for the

lagged model speci�cation are presented in Table 5. A comparison of the results of the

contemporaneous and lagged analyses is presented in Appendix C.

The estimation with lagged energy e�ciency determinants reveals that exporting

�rms are for the most part more energy e�cient than non-exporting �rms. This con�rms

the results from our former estimation. The same result holds for the R&D activities of

�rms. Thus, innovating �rms are more energy e�cient than their counterparts in mostly

all estimated industries. The lagged speci�cation of environmental protection invest-

ments suggests that �rms which invested are more energy e�cient than �rms which did

not invest in environmental protection measures. All statistically signi�cant industries

(textiles (13), rubber & plastics (22), fabricated metal products (25), and machinery

(28)) show this result. The results of the electricity generation from renewable energy

sources are mixed. Firms in the chemical (20) industry are more energy e�cient, if they

generated electricity with renewable energy sources in the year before. But in the fabri-

cated metal product (25) and computer & electronics (26) industries �rms with renewable

energy electricity generation are less energy e�cient than �rms without.

Table 6: Energy e�ciency - Lagged e�ciency drivers

Industry ISIC Rev. 4 EEmean EEmedian

Textiles 13 0.861 0.890

Wood 16 0.890 0.867

Chemicals 20 0.869 0.896

Pharmaceuticals 21 0.869 0.894

Rubber & plastics 22 0.856 0.889

Fabricated metal products 25 0.878 0.897

Computer & electronics 26 0.841 0.869

Machinery 28 0.875 0.898

Repair & installation 33 0.909 0.877

Notes: Source: Research Data Centres of the Federal Statistical O�ces and the Statistical O�ces of the Länder (2014), own

calculations.

The energy e�ciency indicators λ and EE show results in a similar range as in the

non-lagged speci�cation above. λ is statistically signi�cant in most industries. The mean

energy e�ciency scores EE range from 0.841 in the computer & electronics (26) industry

to 0.909 in the repair & installations (33) industry. The comprehensive results are shown

in Table 6 and a comparison to the results of the estimation with contemporaneous

variables can be found in in Appendix C.

7 Concluding discussion

Increasing energy e�ciency plays a crucial role in current energy and climate policies.

However, little is known about the determinants and drivers of industrial energy demand

and energy e�ciency. Therefore, insights into these developments are needed. This can
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help to improve the e�ciency of current and future policy instruments and thus to achieve

the overarching climate and energy policy targets. The manufacturing sector, with its

considerable energy use and carbon dioxide emissions, is an important sector when it

comes to contributing to these goals and increasing energy e�ciency. Moreover, the

manufacturing sector is very heterogeneous. We acknowledge this by analyzing energy

e�ciency at the industry level capturing the �rm-level heterogeneity.

We analyze the determinants of energy e�ciency in the German manufacturing sec-

tor by means of a stochastic energy demand frontier analysis. We estimate the energy

demand function at the two-digit industry level allowing for �rm heterogeneity by using

o�cial �rm-level production census data. Furthermore, we analyze potential drivers of

energy e�ciency. The selection of drivers in our analysis is based on the relevance for

research and policy. Except for the EU ETS, our analysis is the �rst to analyze these

drivers. For our analysis, we focus on the following policies and �rm characteristics:

regulation under the European Union Emissions Trading Scheme (EU ETS), exporting

status, R&D activity, investments in environmental protection and electricity generation

with renewable energy sources.

First of all, our analysis shows that there is potential to increase the energy e�ciency

in all analyzed industries of the German manufacturing sector, although the energy

e�ciency scores are in general quite high. The variety in energy e�ciency scores at the

industry level re�ects the heterogeneity of the manufacturing sector as a whole. The mean

of the energy e�ciency scores in some industries is quite high and many �rms are close

to the optimal cost-minimizing energy demand function within the industry, i. e. in the

food industry. On the other hand there are industries with lower mean energy e�ciency

scores, which indicate that many �rms are further away from the cost-minimizing frontier

in the respective industry, i. e. manufacturing wood products. Thus, the time-varying

energy e�ciency might be increased by optimizing production processes according to an

industry benchmark.

Furthermore, energy intensive industries of the German manufacturing sector (pulp

& paper, chemicals, and basic metals industries) seem to have quite a vast potential to

increase their energy e�ciency in comparison with less energy intensive industries. The

potential is estimated compared to the cost-minimizing frontier at the industry level.

Reaching the frontier could lead to more e�cient use of energy, supposably without

harming the competitive position of these industries. Additionally, the changes in energy

demand and e�ciency in energy intensive industries have larger impacts on the overall

goals than those in industries with low energy intensities. Thus, the increase in energy

e�ciency in energy intensive industries is of high importance to reach the underlying

energy and climate policy goals.

Additionally, we �nd that there is also heterogeneity regarding the in�uences of the

analyzed drivers of energy e�ciency. Exporting and innovating �rms are in general more

energy e�cient than non-exporting and non-innovating �rms. Thus, we show that these

measures are positively correlated to higher energy e�ciency in almost all industries
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in the manufacturing sector. Also, in most industries �rms that invest in environmental

protection measures are more energy e�cient than their counterparts which do not invest.

Our results suggest that clean technology adoption and energy e�ciency are closely

related in many industries in the manufacturing sector.

However, EU ETS regulated �rms are mostly less energy e�cient than non-regulated

�rms. The chemical industry is an exception; EU ETS regulated �rms in the chemical

industry are more energy e�cient than non-regulated �rms. Comparing our results to

earlier studies, does not allow us to draw a clear conclusion about the relationship between

energy e�ciency and the EU ETS. Apart from that, our analysis shows predominantly

no signi�cant relationship between �rms' electricity self-generation from renewable en-

ergy sources and energy e�ciency. Our results are generally also robust, if we use one

year lagged variables in the conditional energy e�ciency function to avoid timing or

simultaneity problems.

In future research, the contemporaneous identi�cation of time-variant and time-

invariant �rm-speci�c ine�ciencies could be of interest (cf. Filippini and Greene, 2016).

This could help to better understand the underlying sources of energy (in)e�ciency in

the manufacturing sector and thus to tailor policy instruments according to the speci�c

requirements of the di�erent industries.
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Appendix

A Further data description

Industry classi�cation: The underlying industry classi�cation in the data set is based

on the European implementation NACE Rev. 2 (Statistical Classi�cation of Economic

Activities in the European Community) of the UN classi�cation ISIC Rev. 4. From 2003

to 2008 the industry classi�cation based on NACE Rev. 1.1 was used in the data sets. To

transfer these from NACE Rev. 1.1 to NACE Rev. 2, we use the o�cial reclassi�cation

guide of the statistical o�ces at the four-digit industry code level.

Matching AFiD, CSS, and EUTL: The di�erent internal data sets of the Statis-

tical O�ces of Germany, such as AFiD and CSS, can easily be merged via plant- and

�rm-level identi�ers. However, it requires some e�ort to match external data to AFiD and

CSS, since the information on �rm identi�ers and names is not accessible for researchers.

We match AFiD data at the �rm level with aggregated data from the EUTL for the years

from 2005 to 2012 using the commercial register number and the VAT number. We are

able to match 77 percent (813 �rms) of the �rms in the EUTL with AFiD. The 238 �rms

that are not matched mainly belong to the energy, public, or service sector and thus are

not part of the production census for manufacturing.
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B Further descriptive statistics

Table 7: Detailed descriptive statistics (2003�2012)

Industry ISIC

Rev. 4

Mean SD Skewness Kurtosis P10 P50 P90 N

Output (EUR 1,000)

Food 10 52,800 137,000 6.97 70.00 1,571 11,900 127,000 16,796

Textiles 13 18,700 32,200 5.74 50.10 1,967 8,327 44,700 3,922

Wood 16 25,800 49,600 4.28 28.49 1,868 7,477 67,200 3,899

Paper 17 61,500 109,000 3.96 23.91 3,326 20,800 165,000 3,944

Chemicals 20 116,000 482,000 14.74 282.51 4,231 24,500 203,000 7,727

Pharmaceuticals 21 128,000 399,000 6.34 52.28 3,169 24,200 227,000 1,774

Rubber/plastic 22 40,600 98,000 8.37 96.77 2,889 13,600 95,600 8,615

Basic metals 24 131,000 474,000 11.23 169.02 4,170 25,400 241,000 5,920

Fabricated metal products 25 25,900 54,500 6.91 85.74 2,377 8,700 61,500 17,792

Computer/electronics 26 47,300 164,000 11.43 178.36 2,115 10,500 93,300 7,178

Electrical equipment 27 68,800 529,000 26.33 751.50 2,680 12,800 113,000 8,577

Machinery 28 54,600 177,000 15.86 457.76 2,806 13,500 114,000 22,630

Other transport equipment 30 109,000 420,000 8.82 97.65 2,460 11,700 190,000 2,217

Other manufacturing 32 24,800 71,700 7.40 74.43 1,387 5,761 50,500 5,001

Repair and installation 33 32,500 154,000 18.00 383.98 2,079 8,205 61,100 2,758

Energy use (MWh)

Food 10 25,100 121,000 15.83 324.20 419 3,532 44,600 16,757

Textiles 13 12,100 29,600 11.03 209.32 296 3,033 34,100 3,946

Wood 16 41,600 163,000 7.09 70.08 200 1,751 58,300 3,877

Paper 17 145,000 447,000 5.43 40.96 499 6,192 385,000 3,935

Chemicals 20 294,000 2,610,000 19.12 425.00 509 5,172 205,000 7,740

Pharmaceuticals 21 31,400 98,400 5.44 35.79 428 4,317 54,500 1,829

Rubber/plastic 22 17,600 54,900 9.34 116.05 508 3,791 36,800 8,579

Basic metals 24 397,000 3,480,000 16.17 317.07 870 10,400 225,000 5,903

Fabricated metal products 25 7,630 28,100 37.75 2,678.01 316 1,704 17,300 17,761

Computer/electronics 26 7,562 33,800 13.76 314.35 141 864 12,700 7,102

Electrical equipment 27 10,200 72,100 22.41 606.30 165 1,107 15,500 8,528

Machinery 28 7,590 44,700 27.07 1,020.43 265 1,280 12,700 22,475

Other transport equipment 30 16,700 69,500 11.67 185.63 267 1,872 31,600 2,220

Other manufacturing 32 4,612 25,800 12.38 176.42 103 608 6,660 4,981

Repair and installation 33 2,685 17,000 16.17 290.99 75 387 3,918 2,647

Energy price (EUR/kWh)

Food 10 0.1427 1.1676 80.94 7506.11 0.0485 0.0944 0.2032 16753

Textiles 13 0.1001 0.2481 27.09 853.94 0.0459 0.0786 0.1340 3945

Wood 16 0.1812 1.6779 43.61 2052.12 0.0201 0.0963 0.2450 3872

Paper 17 0.1277 1.4664 51.75 2865.76 0.0344 0.0775 0.1409 3935

Chemicals 20 0.3956 15.8516 61.48 3831.34 0.0373 0.0815 0.1616 7740

Pharmaceuticals 21 0.1905 1.7417 37.71 1527.65 0.0518 0.0879 0.1885 1829

Rubber/plastic 22 0.1421 1.8538 59.42 3814.25 0.0541 0.0908 0.1449 8579

Basic metals 24 0.1398 1.8505 49.55 2753.45 0.0402 0.0765 0.1370 5903

Fabricated metal products 25 0.1333 1.0905 89.43 8743.03 0.0552 0.0954 0.1649 17759

Computer/electronics 26 0.2780 4.9128 64.08 4448.72 0.0602 0.1061 0.2424 7090

Electrical equipment 27 0.1579 0.7625 42.54 2356.68 0.0566 0.0980 0.1946 8521

Machinery 28 0.1444 0.6146 39.04 2203.85 0.0571 0.0956 0.1732 22467

Other transport equipment 30 0.2105 3.7269 46.77 2198.03 0.0522 0.0923 0.1851 2220

Other manufacturing 32 0.1511 0.2325 13.79 299.72 0.0561 0.1056 0.2493 4981

Repair and installation 33 0.7371 5.0764 20.78 536.07 0.0684 0.1379 0.8357 2641

Capital stock (EUR 1,000)

Food 10 13,800 35,200 7.88 91.09 412 3,700 33,500 16,769

Textiles 13 7,171 13,400 5.73 50.78 380 2,685 17,700 3,945

Wood 16 9,924 24,300 5.27 38.19 418 2,269 23,800 3,853

Paper 17 29,500 77,000 7.10 70.99 976 7,612 68,200 3,930

Chemicals 20 53,500 244,000 13.68 250.15 1,063 8,142 87,300 7,754

Pharmaceuticals 21 71,800 273,000 6.53 48.36 1,020 10,000 94,600 1,849

Rubber/plastic 22 15,700 37,900 7.34 74.66 664 4,583 37,500 8,584

Basic metals 24 34,300 142,000 15.27 298.34 815 6,061 67,100 5,903

Fabricated metal products 25 9,711 22,100 7.73 103.67 453 2,870 24,500 17,828

Computer/electronics 26 22,800 129,000 14.19 244.84 388 2,617 30,600 7,222

Electrical equipment 27 20,700 180,000 25.63 711.85 353 2,568 31,500 8,594

Machinery 28 14,000 73,300 40.89 2,320.69 522 3,272 26,100 22,652

Other transport equipment 30 28,700 159,000 12.64 178.67 450 2,887 39,700 2,251

Other manufacturing 32 10,700 40,200 8.83 94.16 245 1,634 19,800 5,009

Repair and installation 33 4,730 18,300 11.50 161.89 273 1,208 8,045 2,742
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Table 7: (continued)

Industry ISIC

Rev. 4

Mean SD Skewness Kurtosis P10 P50 P90 N

Number of employees

Food 10 183 347 7.33 86.55 27 83 394 16,872

Textiles 13 128 168 4.66 36.52 30 71 272 3,990

Wood 16 122 185 4.55 33.62 25 56 287 3,906

Paper 17 243 364 4.84 39.88 33 121 588 3,947

Chemicals 20 357 1,510 16.85 354.58 33 101 605 7,785

Pharmaceuticals 21 562 1,511 5.43 33.96 34 171 928 1,850

Rubber/plastic 22 240 534 8.59 100.22 32 98 544 8,624

Basic metals 24 360 1,028 12.29 214.17 34 115 708 5,933

Fabricated metal products 25 167 286 5.47 48.32 29 75 388 17,912

Computer/electronics 26 274 688 10.67 180.17 31 96 600 7,280

Electrical equipment 27 426 3,891 27.86 807.83 31 101 639 8,645

Machinery 28 287 1,141 35.63 1841.11 31 99 560 22,803

Other transport equipment 30 528 1,835 7.99 80.10 32 99 839 2,261

Other manufacturing 32 173 383 7.88 91.40 27 67 357 5,048

Repair and installation 33 193 617 13.75 233.04 28 70 387 2,784

Materials (EUR 1,000)

Food 10 36,300 106,000 8.88 128.69 529 5,516 91,800 16,885

Textiles 13 9,443 17,500 6.25 67.32 569 3,906 23,800 3,992

Wood 16 14,900 30,400 4.33 31.06 718 3,730 39,700 3,910

Paper 17 30,800 57,200 4.13 25.90 1,234 9,855 78,600 3,952

Chemicals 20 57,600 233,000 13.14 226.64 1,169 11,900 106,000 7,789

Pharmaceuticals 21 42,400 101,000 3.71 17.56 724 7,977 89,800 1,853

Rubber/plastic 22 20,100 51,000 8.43 101.69 1,014 6,087 46,400 8,636

Basic metals 24 81,900 308,000 11.01 172.94 1,333 11,900 146,000 5,936

Fabricated metal products 25 12,200 31,800 9.74 187.67 502 3,118 27,800 17,926

Computer/electronics 26 33,100 179,000 17.28 432.01 856 4,957 50,000 7,284

Electrical equipment 27 39,300 354,000 28.56 889.79 938 6,056 58,300 8,654

Machinery 28 28,000 109,000 23.42 1003.32 807 5,625 54,100 22,818

Other transport equipment 30 64,900 248,000 9.55 124.29 485 5,224 125,000 2,262

Other manufacturing 32 9,132 28,600 8.70 113.70 248 1,871 18,100 5,048

Repair and installation 33 16,200 79,200 11.35 148.99 378 2,391 26,200 2,785

Notes: Source: Research Data Centres of the Federal Statistical O�ces and the Statistical O�ces of the Länder (2014), own

calculations.

Table 8: Descriptive statistics of drivers of energy e�ciency (II)

Year ETS Exports R&D EPI RENEW

2003 0.026 0.772 0.341 0.130 0.014

2004 0.027 0.772 0.339 0.135 0.011

2005 0.028 0.780 0.342 0.108 0.011

2006 0.029 0.788 0.352 0.173 0.013

2007 0.031 0.809 0.359 0.171 0.017

2008 0.027 0.787 0.344 0.158 0.022

2009 0.028 0.791 0.347 0.146 0.028

2010 0.029 0.794 0.352 0.166 0.040

2011 0.029 0.798 0.357 0.183 0.051

2012 0.029 0.797 0.347 0.171 0.065

Notes: Shares over industries, included industries (ISIS Rev. 4): 10, 13, 16, 17, 20-22, 24-28, 30, 32, 33. Source: Research Data

Centres of the Federal Statistical O�ces and the Statistical O�ces of the Länder (2014), own calculations.
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C Comparison of results
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