No. 581 February 2018

On the Prospects of Using Machine Learning
for the Numerical Simulation of PDEs:
Training Neural Networks to
Assemble Approximate Inverses

H. Ruelmann, M. Geveler, S. Turek

ISSN: 2190-1767

On the Prospects of Using Machine Learning for the Numerical Simulation of
PDEs: Training Neural Networks to Assemble Approximate Inverses

Hannes Ruelmann* Markus Geveler! Stefan Turek?

Abstract

In an unconventional approach to combining the very successful Fi-
nite Element Methods (FEM) for PDE-based simulation with tech-
niques evolved from the domain of Machine Learning (ML) we
employ approximate inverses of the system matrices generated by
neural networks in the linear solver. We demonstrate the success
of this solver technique on the basis of the Poisson equation which
can be seen as a fundamental PDE for many practically relevant
simulations [Turek 1999]. We use a basic Richardson iteration ap-
plying the approximate inverses generated by fully connected feed-
forward multilayer perceptrons as preconditioners.

Keywords: machine learning, FEM, preconditioning, SPAI

1 Introduction

There is conclusive evidence that we are on the edge of a techni-
cal revolution driven by artificial intelligence. To be more precise
Machine Learning is a class of methods that can solve a multitude
of problems by storing knowledge to and inferring it from a knowl-
edge base that had previously been created via a training process.
These techniques can be seen as a black box framework since they
are strong in providing classification or even regression when ex-
ploring and altering large (unstructured) datasets for example for
pattern recognition in text-, image-, video- or — in general — signal
processing [Goodfellow et al. 2016]. Due to its success the hard-
ware industry and chip vendors adapt their roadmaps to satisfy an
ever larger demand to computing hardware that is especially tai-
lored for ML. For example, due to the fact that the underlying com-
putations in many cases don’t need high precision, low (e.g. half-)
precision accelerators are hitting the hardware ecosystem like Intel
Knights Mill and NVIDIA Pascal and Volta or new microarchitec-
tures are developed like Google’s TPUs.

However at the moment it is unclear in what way and in how far
these comparatively new methods and — alongside with them the
modern and future compute hardware — can be exploited to assist
solving PDEs in technical simulations: In the course of discretising
multidimensional PDEs at a certain point we have to deal with a
high number of degrees of freedom leading to the global system
matrix being large and sparse. Hence, iterative methods have to be
chosen over direct ones. In the former everything breaks down to

*TU Dortmund, email: hannes.ruelmann @math.tu-dortmund.de

TTU Dortmund, email: markus.geveler @math.tu-dortmund.de

iTu Dortmund, ECCOMAS co-chairman for Scientific Computing,
email: ture@featflow.de

how clever the linear solver can adapt to the system to be solved
and here using specially tailored solvers that are implemented in
a target hardware-oriented way can be orders of magnitude faster
than simple ones.

The idea of this paper is based on the observations, that (1) besides
pattern recognition ML can also be used for function regression and
(2) that preconditioners in linear solvers can be kind of underdeter-
mined and yet yield a good preconditioner: In previous studies we
were able to show, that Sparse Approximate Inverses (SPAI) are a
good representative of such a preconditioner [Geveler et al. 2013].
The application of an approximate inverse can be broken down to
sparse matrix vector multiply (SpMV) and with sophisticated stor-
age formats SpMV kernels map decently to for example GPUs. In
contrast to that usual implementations of SPAI algorithms to assem-
ble the approximate inverse are (in spite of their good parallelisation
properties) quite expensive. Hence the idea is to compute a rough
draft of an explicitly stored preconditioner in a different way and
therefore provide an alternative to SPAI: Use the system matrix as
input to a trained neural network and render the result into another
(sparse) matrix that is used as an approximation to its inverse. This
way the output of the function regression process in the machine
learning pipeline is a matrix like in many image processing cases
the output of this process would be another (enhanced) image.

In order to pioneer into the fusing of FEM and ML in this paper we
provide insight into how such a system could work and concentrate
on providing evidence that the resulting inverses can numerically
compete with other preconditioners.

2 A concise application of neural networks in
a linear solver

2.1 Model problem and FEM discretisation

As a starting point we define the Poisson equation to be our model
problem, which is posed as: Find u : 2 — IR such that

—Au=f in€, u=0 ondf. €8

Following the guidelines of [Braess 2013] we can convert this prob-
lem by using the variational formulation of (1) and the well-known
Galerkin method into a discrete problem:

Find up, € V}, such that

an(un,vn) = bp(vn) Yup € Vi, . 2)

In our case V}, is the finite element space of linear polynomials,
which are zero on the boundary. The domain {2 is the unit square
(0,1)? discretized with regular triangles 7}, and a conforming re-
finement at the midpoints of the edges.

The global system matrix can be written as

N N
(An)ij = Z/ Vo; Vedz =Y AT . (3)
m=1 Km m=1

with a nodal basis {¢1,...,¢a} and the local element matrices

AE;”) on the element K,,. Analogously we can proceed with the

right hand side as (bx); = [, fida.

2.2 Training tensor and basic iteration

To solve the corresponding system of equations Apup, = by, with
a sparse matrix A, € IR™*" which satisfies the M-matrix prop-
erty [Saad 2003], we want to use a neural network. Hence a mech-
anism is needed to bring up a sufficiently large training dataset
(called a training tensor). For this purpose we construct instances
of A} by randomly shifting the inner nodes on the finest level by
maximum half the grid step size.

As the solver we use the Richardson iteration, which reads in its
fixpoint formulation as:

2D = 2 L oMby — Apz®) “)

Here M is an approximate inverse we generate with the neural net-
work.

3 Constructing a Machine Learning frame-
work for solving linear systems of equa-
tions

3.1 Neural Network design and preconditioner con-
struction

The design space for Neural Networks is very large. Since this pa-
per is meant as a starting point for the exploration of fusing FEM
and ML we keep it as simple as possible and employ straightfor-
ward choices where possible. Therefore we use fully connected
feed-forward multilayer perceptrons. Fully connected means that
every neuron in the network is connected to each neuron of the
next layer. Moreover there are no backward connections between
the different layers (feed-forward). The evaluation of such neu-
ral networks is a sequence of chained-up matrix vector products.
The entries of the system matrix are represented in the input layer

Approximate
layer Inverse

System Matrix Input Hidden Output
layer layer

Figure 1: Model of a neural network for matrix inversion

vector-wisely (cf. Figure 1). In the same way, our output layer con-
tains the entries of the approximate inverse. Between these layers
we can add a number of hidden layers consisting of a bunch of hid-
den neurons. How many hidden neurons we need to create strong
approximate inverses is a key design decision and we discuss this
below.

3.2 Training and testing phase

In figure 2 we can see how we want to handle the neural network.
First of all we use a pile of matrix pairs (A); and its corresponding
inverse (A;l)i to train the neural network via supervised learning.
With some test data we can identify whether the neural network is
able to generalise. This way we can determine how good the neu-
ral network works for approximating inverses of general matrices
that are somehow similar but not identical to those used in train-
ing. Whether we are able to produce a suitable approximate inverse

e R R

(AD)

data

test training

data

Figure 2: Model of a neural network to generate an approximate
inverse

mainly depends on the structure of the neural network and the train-
ing algorithm.

In general our supervised training algorithm is called backward
propagation with random initialisation. Alongside a linear prop-
agation function

ol = W - Ootal + b

with the total (layer) net input o1, the weight matrix W, the vector
for the bias weights b and the total output of the previous layer
Orotal, We Use the rectified linear unit (ReLu) function as activation
function a(x) [Goodfellow et al. 2016] and thus we can calculate
the output y of each neuron as:

y:=a(zj:01 "wij>

Here o; is the output of the preceding sending units and wj; the
corresponding weights between the neurons.

For the optimization we use the L2-error-function and employ for
the update for the weights:
wé“‘l) = wi(jt) + - 04 - 0
with the output o; of the sending unit, -y learning rate and §; sym-

bolises the gradient decent method:

5 — @) - (6 — o), if neuron j is an output neuron
) J'(45) - > es(0k - wjz), if neuron j is a hidden neuron.

With these definitions we can describe the training and testing
phases with the pseudocode presented in Algorithm 1.

Algorithm 1 test and training phase

input: np), M, Mepochs Mbatch: Mrains U Mtests Ptestbatch
- define the neural network (1), 1)
- initialize weights
- initialize bias neurons b
« define error function and optimizer
start training:
for i in Teepoch 40
A = load-training-matrices (7v(5in)
Ainv = load_training-inverses (7pain)
for j in npyecp, do
X= A,hmchj
y = Adinv_bitch ;
apply optimizer: (W, b) = opt(x, y, 1)
test phase:
for i in 7 (egibarch do
A =load_test_data (n.qegt)
evaluate the neural network
apply error function or test scenario
output: W, b

4 Numerical experiments

4.1 Preconditioner quality

In order to get an impression on whether it is possible to gain
suitable approximate inverses with neural networks we eliminate

for any complicated tweaks and start with networks for a fixed
problem size (i.e. degrees of freedom) n and train it with pairs of
(dense) system matrices and their inverses.

#it it down K
n Jo—o0.7 GS NN before | after
9 49 17 8 2.13 5.9 1.6

49 273 95 21 4.52 29.8 29
225 1323 463 66 7.02 127.3 7.8

m-l;wmz'
—_

961 5879 | 2057 | 39 52.74 516.0 | 234

Table 1: Iteration and condition number &, tol = 1.0-107°, 3 layer
neural networks

In Table 1 we deploy the results for using the approximate
inverse of the system matrices with problem size-specific neural
networks in Richardson iterations (labelled NN) in comparison to
the damped Jacobi (J) and Gauss-Seidel (GS) defect correction
methods. In addition to the iteration number the reduction of the
condition number x is shown for the neural networks. For the
problem size levels 2, 3 and 4 the number of neurons in the 3
hidden layers equals the corresponding matrix dimension. The
number of training epochs is set to 1 000.

As we can see from the data for every test configuration the
neural network is able to generate a matrix that serves well as a
preconditioner. The corresponding Richardson method needs less
iterations than the damped Jacobi or the Gauss-Seidel method.
Moreover the condition number is strongly reduced by the neural
networks-generated preconditioner.

With neural networks it is a priori not possible to determine which
number of hidden neurons and how many training epochs would
work out best. Even other parameters like the learning rate and
the matrix dimensions between the neurons have a large impact
on the iteration numbers: The level 5 configuration needs even
less iterations to converge than the previous level 4 configuration,
because the parameters - fewer neurons with the same amount
of training epochs and the online learning - fit better to that
configuration. With error functions like the L2-loss function we
can get a training accuracy and a rough idea of how good a neural
network will be functional in the test and application phase, but a
good enough accuracy for one network can be much too low for
another case.

4.2 Time to solution and memory control

Initialisation and application The timings and the speedup be-
tween two different large neural networks and the Jacobi as well as
the Gauss-Seidel method are shown for refinement level 4 in Fig-
ure 3. The underlying hardware is a Intel Xeon E5-2670 with 8
cores and a frequency of 2.60 GHz.

The noticeable differences between the methods are resulting from
the initialisation time on the one hand and from the numbers of it-
erations on the other hand. While the Jacobi method needs only
3.59¢-05 s to initialize the neural network with 50 neurons needs
3.44e-03 s and the network with 225 neurons needs 5.80e-03 s for
the assembly. However the Gauss-Seidel defect correction needs
1.50e-02s. The neural networks and the Gauss-Seidel are able to
catch up with a lower number of iterations. For instance we get
ity = 990, itgs = 346, itnynso = 32 and itynoos = 23 for a
tolerance of 107 and it; = 2323, itas = 812, itynso = 106
and it Ny N225 = 72 for a tolerance of 103, Here it is noticeable
that we do not need that many neurons even if the iteration number
might decrease a bit.

0.06 —O—Jac 85 | |[—©—Jac-NN50
——GS —¥—GS - NN 50
NN 50 8
—+— NN 225

2 0.04 Va/p/"k_. 5 s
- ©
[0 [
£ g 7
0.02 6.5
: . — 6
0 55
2 4 6 8 10 2 4 6 8 10
tolin 10 tolin10

Figure 3: Time and speed-up between Jacobi, Gauss-Seidel and
the neural network preconditioned Richardson iteration

Memory footprint Due to storage problems for larger matrices
we use the online learning method in which we train our network
with only one pair of system matrix and associated inverse in each
training step instead of the batch learning with 100 pairs for the
lower level. Moreover we reduce the number of the hidden neurons
to 100 in each hidden layer for the level 5 configuration.

In addition we found that we do not need as many neurons in the
hidden layer as in the input layer. This leads to a reduction of the
weight matrices and therefore to decreased assembly and applica-
tion times.

Since we use fully connected neural networks the structure of the
matrix which depends on the node numbering is irrelevant. Hence
for further simplification we can assume a banded system matrix
and instead of using every matrix entry as input data, we save the
matrix bands sequentially. By utilizing the matrix symmetry we can
reduce the input data even more. Like for the unit square we have
to store only 4 bands instead of 7. The resulting benefits are shown
in table 2.

n 49 225 961 3969 16129
full || 2401 50625 923521 15752961 260144 641
n 289 1457 6481 27281 111889
diag 180 868 3780 15748 64260
% 7497 1.715 0.409 0.100 0.025

Table 2: Storage of a n X n matrix with a dense (full) storage, the
number of non-zeros (n) and by utilizing the symmetry (diag), unit
square

Reducing time to solution and memory footprint We now em-
ploy a sparsity pattern which leads to less storage requirements and
a faster application owing to smaller weight matrices. Due to the
large matrix size the first matrix vector multiplication correspond-
ing to the input layer and the last one to assemble the output matrix
are the most expensive operations. By reducing the number of input
values the first matrix vector multiplication can be reduced as well.
Again we take a look at a matrix resulting from refinement level 4.
By utilizing the sparsity pattern the dimension of the weight matrix
is changed from 50.625 x 225 to 868 x 225 which equates to a fac-
tor of 58. For a new test matrix the assemble time is lowered from
4,378 1073 s t0 2,474 - 1073 s. Since one of the two expensive
operations is decreased massively the initialisation time is nearly
halved.

Training Another benefit we generate from a reduced amount of
input values is to simplify the training in general. Table 3 displays
the iteration number of a Richardson iteration scheme with the ap-
proximate inverse of three different neural networks with the same

setting as above. The first one uses the sparse storage format and
is trained with 10 000 pairs of input matrices and inverses in 1 000
training cycles. The other are trained on a dense storage format
with a greater amount of 25 000 input data and 1500 respectively
2000 training epochs. With the dense storage the neural network

NNparse (1000) NN f4,1:(1 500) NN (2000)
06 | 07| 08 06 | 0,7 1081 060,708
33 | 27 23 118 | 110 | 88 29 | 24 | 37
37 | 31 26 110 | 94 | 82 31 | 25 | 20
35 | 29 25 109 | 93 | 81 29 | 24 | 22

Wl | —|| €

Table 3: Number of damped Richardson iterations with a sparse
and a full storage for neural networks trained with different prob-
lem sizes

got a greater weight matrix between the input and the first hid-
den layer. To adjust the greater amount of weights we need much
more training data and epochs. Moreover we see the behaviour of
the damped Richardson method with different damping parameters
which is again difficult to optimise a priori.

On the other hand we lose the flexibility of the dense format and are
bounded to a ’fixed’ matrix structure. In most PDE-based simula-
tions only sparse matrices with a predefined matrix structure due to
the coupling of degrees of freedom and their numbering are used
which neutralize this disadvantage. Moreover we can get more
flexibility by adding zeros in those matrix locations where they are
needed and take the benefits described above.

4.3 Designing sparse approximate inverses

To be competitive to SPAI and ILU preconditioners we have to fas-
ten up the second large matrix vector multiplication and produce
sparse output matrices. In general the inverse of a sparse matrix is
not a sparse matrix. That is the reason why we use a filter method
to reduce the approximate inverse of the matrix afterwards.

Table 4 contains the iteration number of the damped Richardson
iteration method (w = 0.8) with an approximate inverse out of a
neural network compared to the exact inverse after setting all en-
tries smaller than e to zero. With this filter method the matrix can
be reduced to a sparse matrix. The underlying neural network is the
same as above.

€ #it (NN) | n(NN) % # it (exact) | n (exact)
0.00 23 50625 | 100.0 1 50625
0.01 24 35469 | 70.1 9 35319
0.02 29 26755 | 52.8 12 26 663
0.03 48 21029 | 41.5 21 21095
0.04 58 17133 | 338 38 17173
0.05 279 14171 | 28.0 620 14233

Table 4: Number of iterations with the Richardson solver (w =
0.8) and different filtered approximate inverses in comparison to
the filtered accurate inverse

As we can see it is possible to reduce the approximate inverse by
approximately % and still get a converging method. In comparison
to that the Gauss-Seidel method, which operates on nearly 50% of
the mat5rix entries, needs 462 iterations to reach the same tolerance
of 107°.

5 Conclusion and future work

We were able to demonstrate that it is at least possible to bring
up simple learning systems that extrapolate strong approximate in-

verses for FEM matrices. Many of the descibed techniques are
presented in detail in [Ruelmann 2017] and we are also preparing
a follow-up publication that dives into many other aspects we ab-
stained from presenting in this short introduction [Ruelmann et al.
2018]. The current state of our research triggers a lot of questions
that have to be answered by future work, including

e [s it possible to bring up an optimised performance model de-
scribing the complete process from training a specific network
for a problem over initialisation (aka assembly of the approx-
imate inverse) up to the application?

e What is an optimal (or at least better) design for the neural
network — since there are many screws to adjust e. g. the
number of hidden layers and neurons as well as the size of
the training data, the learning rate or the functions like activa-
tion, propagation and loss function in addition to the choice
of the optimizer?

e Since our results indicate that the potential of the resulting
approximate inverses is really big — how competitive is it
with SPAI? A simple SPAI-1 method for example theoreti-
cally should speed up convergence in the order of magnitude
of Gauss-Seidel. Note that in our results, the preconditioner
is (much) better than GS.

e How beneficial will neural networks be as smoother or pre-
conditioner in stronger solvers especially multigrid?

e How well will the neural network cope with larger alteration
of the problem than modelled in the training tensor?

e What is the shape of a ML system for arbitrary matrices with
arbitrary sizes, sparsity patterns, coefficients?

Acknowledgements

This work has been supported in part by the German Research
Foundation (DFG) through the Priority Program 1648 Software for
Exascale Computing (grant TU 102/48).

References

BRAESS, D. 2013. Finite Elemente: Theorie, schnelle Loser und
Anwendungen in der Elastizitdtstheorie. Springer-Verlag.

GEVELER, M., RIBBROCK, D., GODDEKE, D., ZAJAC, P., AND
TUREK, S. 2013. Towards a complete FEM-based simulation
toolkit on GPUS: Unstructured Grid Finite Element Geometric
Multigrid solvers with strong smoothers based on Sparse Ap-
proximate Inverses. Computers and Fluids 80 (July), 327-332.
doi: 10.1016/j.compfluid.2012.01.025.

GOODFELLOW, 1., BENGIO, Y., AND COURVILLE, A. 2016. Deep
Learning. MIT Press. http://www.deeplearningbook.
org.

RUELMANN, H., GEVELER, M., AND TUREK, S. 2018. Machine
Learning-generated Sparse Approximate Inverses. under prepa-
ration.

RUELMANN, H. 2017. Approximation von Matrixinversen mit
Hilfe von Machine Learning. Master’s thesis, TU Dortmund,
Dortmund, Germany.

SAAD, Y. 2003. Iterative methods for sparse linear systems. STAM.

TUREK, S. 1999. Efficient Solvers for Incompressible Flow Prob-
lems: An Algorithmic and Computational Approach, vol. 6.
Springer, Jan. 3-540-65433-X.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

	EB 581
	EB 581 a

