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A tra�c flow breakdown externality induced by stochastic
road capacity

By Kathrin Goldmann* and Gernot Sieg⇤

Tra�c jams occur even without bottlenecks, simply because of

interaction between vehicle drivers on the road. From a driver

point of view, the instability of free flow arises stochastically.

Because the probability of a tra�c jam increases with a rising road

saturation, there is a tra�c flow breakdown externality. Ignoring

the stochastic nature of tra�c brake downs results in congestion

charges that are too small.

Keywords: hypercongestion, congestion costs, stochastic ca-

pacity, external costs

I. Introduction

Freeway capacity has been defined as the maximum flow rate that can rea-
sonably be expected to traverse a facility under prevailing roadway, tra�c and
control conditions. The traditional view (Small and Chu, 2003; Button, 2004)
is, that, with an increasing number of vehicles on the road, vehicles a↵ect each
others speeds and slow each other down. As more tra�c enters the road, av-
erage speed falls but, up to a point, the flow will continue to rise, because the
e↵ect of additional vehicles outweighs the reduction in average speed. This is the
congested branch of the speed-flow curve. At the point where increased demand
does not increase tra�c flow any further, the roads capacity is reached. The flow
becomes unstable, with the characteristic stop-and-go conditions which are typi-
cal of tra�c jams. This tra�c state is called hypercongestion in economics. The
reasons for tra�c jams could be on the demand side (on-ramps with high inflows,
fluctuations in demand) or on the supply side (tra�c accidents, construction sites,
tunnels or inhomogeneous road design).
However, Sugiyama et al. (2008) showed, that even in the absence of supply

side reasons, tra�c jams (hypercongestion) can occur. For this to happen, it is
su�cient that drivers on a street interact with each other to make the tra�c flow
unstable. There may be deterministic reasons like tailgating, to fast reactions to
speed changes, slow overtaking by trucks, slow reactions because of inattentiveness
or queue-jumping, but in the system, these driving errors occur stochastically
(Schönhof and Helbing, 2007). Some of these factors culminate in a tra�c jam,
but some do not. The probability of their causing a tra�c jam increases with the
saturation of the highway. Therefore, capacity is stochastic (Elefteriadou et al.,
1995; Brilon et al., 2005).
A driver only considers his own costs, but not the time losses other drivers

have due to increased tra�c. We determine the external costs imposed on other
drivers. A stochastic capacity approach enables us to establish a model that
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includes hypercongestion without explicitly modelling queues.

Drivers can be faced with a free flow or congested tra�c on good days and
hypercongested tra�c on bad days. Average travel speed and average travel times
di↵er greatly between the two states. For those reasons, a driver entering the road
in order to travel a certain distance faces a stochastic travel time, depending on
the number of other vehicles on the road. We identify a so far academically
ignored externality of an additional driver on the road. The driver increases the
probability of hypercongestion, a state with ine�ciently long travel times.

Verhoef (1999) shows that hypercongestion is dynamically infeasible when con-
sidering capacity as deterministic. In order to depict hypercongestion in a static
model with continuous demand, inflows onto the road have to exceed the max-
imum possible inflow at some point in the past, which is inconsistent with the
concept of maximum deterministic capacity. Small and Chu (2003) suggest that
hypercongestion on a highway entails a queue of cars waiting in front of a bottle-
neck. Therefore, density within the queue does not exert an e↵ect on the outflow
rate from the bottleneck and on travel time, but only on the number of cars
waiting. Following this interpretation, Small and Chu (2003, p. 326) state that
hypercongestion is irrelevant to users who care only about total travel time.

A few papers have used the bottleneck model (Vickrey, 1969; Small, 2015) for
analyzing hypercongestion, by postulating that bottleneck capacity varies with
the length of the queue. Yang and Huang (1997) identify a dynamic external-
ity, that is, how an additional car influences the queue length and therefore the
bottleneck e�ciency, but do not consider ine�cient hypercongestion states such
as stop-and-go tra�c, but only queues. Consequently, Yang and Huang (1998)
include a queuing externality in the congestion charge and suggest calculating
the flow-dependent travel time and the queuing delay separately, with the former
being predicted by an analytical delay formula, and the latter determined from
network equilibrium conditions. The bottleneck model was extended to stochastic
capacity by Lindsey (1994), Arnott et al. (1999) and Fosgerau (2010). Demand
and bottleneck capacity is assumed to fluctuate from day to day, but as soon as
a given day proceeds, they remain constant for the travel period on this day. For
this reason Lindsey (1994) states, that the model can adequately display capacity
fluctuations due to road work, weather conditions and major truck accidents, but
not temporary capacity fluctuations.

The bathtub model (Arnott, 2013; Fosgerau and Small, 2013; Fosgerau, 2015;
Arnott et al., 2016) analyzes urban hypercongestion. A backward-bending funda-
mental diagram of tra�c flow also applies at the level of an urban neighborhood,
which meets certain conditions (Daganzo et al., 2011). As a result, urban con-
gestion can be analyzed in aggregated form, using a speed-flow relationship.

However, stochastic tra�c flow breakdowns are not covered by the above-
mentioned models. Furthermore, in contrast to urban centers, in our model,
tra�c flow is unidirectional. To obtain a model that is theoretically consistent,
we focus on a predetermined number of homogenous drivers aiming to travel at
the same speed on a circuit or roundabout, that is a circular street without be-
ginning or end. Unidirectional tra�c flows on a road without bottlenecks can be
observed on many highway sections and therefore, our model can best be applied
to hypercongestion situations on highways.
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II. A model of congestion costs

Sugiyama et al. (2008), Nakayama et al. (2009) and Tadaki et al. (2013) per-
formed tra�c experiments on a circuit to investigate the emergence of a jam
without a bottleneck. Their experiments are depicted in Figure 1. Tadaki et al.
(2013) let 10 to 40 homogenous cars enter a circuit of 314 m length one by one,
with the driver of the first car requested to drive slowly until all the cars have
entered. After that, all drivers should drive at a homogenous target speed of
30 km/h. When the number of cars N is low, 10  N  25, they observe free
flow. If the number of cars exceeds 32, the flow jams. However, if the number
of cars is within a medium range, 26  N  31, they detect metastable phases -
stop-and-go tra�c - in which cars stop or nearly stop in jam clusters, alternating
between escaping from the jam cluster and again catching up with it.

N=20 N=30 N=40

Figure 1. Depiction of traffic experiments on a circuit initially performed by Tadaki et al.

(2013)

The expected travel speed of a driver depends on the tra�c situation on the
circuit. If the number of vehicles is small, drivers enjoy free flow and can travel
at the speed they want. If the number of vehicles is large, drivers are stuck in a
tra�c jam and travel speed is low. However, in between, there is an area where
we detect both states alternating. To calculate the expected travel speed, we
consider the two tra�c states identified by Tadaki et al. (2013), free-flow and
jammed. Depending on the number of vehicles N on the circuit, both states
alternate, and from the point of view of a vehicle driver, the tra�c is either
fluid and the average travel speed is v(N) or jammed at a speed of v(N). The
probability of jammed tra�c is p(N) and also depends on the number of other
drivers on the circuit, because the more vehicles, the larger the probability that
the tra�c flow breakes down. A driver on the circuit expects a travel speed1 of

E(v) = p(N)v(N) + (1� p(N))v(N).(1)

If we increase the number of vehicles on the circuit, the expected speed changes

1 In this calculation, we assume that the probability is calculated in such a way that both the free
flow and the jammed tra�c holds for a period of time that is long enough to travel the considered
distance, for example, a whole circuit.



4 INSTITUTE OF TRANSPORT ECONOMICS MÜNSTER WORKING PAPER NO. 26

and the marginal e↵ect is

dv

dN
= (1� p)

dv

dN
+ p

dv

dN| {z }
expected capacity e↵ect

+
dp

dN
(v(N)� v(N))

| {z }
tra�c flow breakdown e↵ect

.(2)

The first two terms on the right hand side of this equation represents the expected
loss of speed if an additional driver enters the circuit. The third term describes
the e↵ect caused by an increased breakdown probability. The third e↵ect is
usually ignored if capacity is considered to be deterministic. Because p is an
increasing function in N (Brilon et al., 2005), and the free flow speed is larger
than that in jam clusters, the tra�c breakdown e↵ect is negative. If capacity
is considered deterministic, the expected loss of speed of an additional vehicle is
underestimated.
Travel time costs c depend on the speed, which in turn depends on the number

of vehicles on the circuit, and the the expected travel time costs C of a driver are

(3) C(N) = p(N)c(v(N)) + (1� p(N))c(v̄(N))

and when we assume homogenous drivers, these costs are the average costs of all
N drivers on the circuit. Social costs are SC = N · C(N) and marginal social
costs are MSC = C + N · C 0. If we were to pay drivers a wage for successfully
completing circuits, and if we allowed free entry to the circuit, drivers would take
part if their travel time cost C for a circuit is less than the amount we pay. In
this decision N · C 0 is the external e↵ect (on other drivers), which is not taken
into account by individual drivers. The marginal external travel time costs are:

(4) N
dC

dN
= N


(1� p) · dc

dv

dv̄

dN
+ p · dc

dv

dv

dN
+

dp

dN
(c(v(N))� c(v̄(N)))

�
.

Considering a distance of a and a time value of t, c(v) = ta/v and dc/dv = �ta/v2,
equation 4 can be written as:

N
dC

dN
= N


(1� p) · (�ta)

v̄2
dv̄

dN
� p

ta

v2
· dv

dN
+

dp

dN

✓
ta

v
� ta

v̄

◆�
.(5)

To summarize, marginal external travel costs on the circuit equal

(6) N
dC

dN
= �Nta


(1� p)

1

v̄2
dv̄

dN
+ p

1

v2
dv

dN

�

| {z }
expected capacity e↵ect

+ Nta
dp

dN

✓
1

v
� 1

v̄

◆

| {z }
tra�c flow breakdown e↵ect

Because the tra�c flow breakdown e↵ect is positive, we can state:

PROPOSITION 1: Ignoring the stochastic nature of tra�c flow breakdowns by

considering capacity as deterministic, underestimates the congestion charge needed

to internalize hypercongestion.

If we assume that p(N) = 0 if N is small and that p = 1 if N is large, the
formula holds for the complete range of N drivers. It is worth noting that the
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number of vehicles on the circuit is fixed and therefore, density on the circuit is
constant and does not increase when tra�c flow breaks down. Therefore, if we
consider tra�c on the circuit in equation 6, N can be replaced by the density.

III. Conclusion

Hypercongestion can occur as a transient response to a demand spike (Arnott,
1990, p. 200), or as a transient reduction in capacity (due, for example, to a tra�c
accident), or as a queue in front of a bottleneck (Small and Chu, 2003). Bottleneck
models have also been modified with stochastic demand and capacity. We focus on
hypercongestion that occurs in a non-linear system without identifiable reasons,
and therefore assume stochastic road capacity without bottlenecks. Departing
from tra�c experiments and a constant number of drivers, we set up a model with
random tra�c jam formations. By doing so, congestion and hypercongestion costs
can be calculated. We identify a previously ignored externality. An additional
vehicle not only reduces the speed of the other vehicles, but also increases the
probability of a tra�c jam developing. This is an important e↵ect that needs to
be quantified when calculating the external costs of hypercongestion.
We do not analyze transitions between di↵erent tra�c regimes, because we re-

gard the tra�c situation as a chain of di↵erent states, but our approach can easily
be expanded to more than two tra�c states. Our model is a static one based on
average speed and flow data with a constant density on the circuit. Applying the
approach to other roads, for example highways, calculating congestion costs or
charges requires a knowledge of speed-flow functions and flow-dependent break-
down probabilities. This information can be extracted from high-frequency tra�c
data. Furthermore, in contrast to a circuit, on highways, the flow usually drops
when tra�c breakes down. This phenomenon can also easily be included in an
empirical application of our model.
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