HOCHSCHULE RUHR WEST
UNIVERSITY OF APPLIED SCIENCES

INSTITUT INFORMATIH

Internal Report 16-01

SIMPLEHYDRA

Darius Malysiak
Angela Lausberg

Uwe Handmann

SimpleHydra
HRW Technical Report
Darius Malysiak
Angela Lausberg

Uwe Handmann

Contents

. Introduction 5
L Theory 7

L1 Motivation and previous workl oo 7
L2 A coarse look on the structurd oo oo 8
L3 Network protocol and communication facilitied 10

IL3.1. SH communication o 11

IL3.3 Efficient socket handling 11
11.3.4 Memory management and space efficiencyd 14
L4 Dypamic topologiedo 15
4.1 Self-confieuring clusterd 18
L5 Cluster Managementl 18
L6. Workload distribution paradigmdo 19
ML6.1. SHunitdo 20
062 TLoadbalancind 20
L7 Inner workines of SH 21
L8 SimpleHvdra deployment in a clusted oo 23
L9 Application Example and Performance Indicationd 23
[L9.1 The Beownlf cluster IGOR o o v 23
11.9.2 The APFel person detection systemd ... 24
ML93 Resultd 26

013, KTubled o o 32
LIL4. Vectard o o 33
ILIL5 Q119119<1 34

MIL7. Tmaged 37
V. Core moduld 41
V.1, Serialization o 41
[IV.1.1. Serializable Objectd 41

IV.1.2. X Serialization« . vt 44

NG . . . e 45

IV.21. Timerd oo 48

V.3, Virtual Disk Operating Systemd 50
V.4 Directories 52
V.5, Loading Libraries during Runtimd 53
[V.6. Database Supporfl 54
V.61, MvSQU 54

IV.6.2. SQLitd . . . o o 55

NG . 63

V.8 Thread Poold 68
V.9, A Threadd o 72
IV.10. BEEZVIEW . . . o o o o oo o 74
o1 . . 75

V.12, Processed 77
Mmmmmmmﬂ 82
[V.13.1. SvsV Shared Memordl 82
[V.13.2. POSIX Shared Memory 83
IV.13.3. Shared Mutexed o o oo 4
V.13.4. Shared Semaphored 85

V14 Crvptographd 86
V141 Block Cipherd 86
[V.14.2. Hash Functiond 88
[V.14.3_ Pseudorandom Number Generatord 89
[[V.14.4. Public Key Cryptography 91

V.15 Svstem Elementd 94
IVA51. CPU . . o 94
V152 System Diskd 94
[V.15.3. Network Interfaced 95
IV.15.4. Svstem USerd o oo 95
I[V.15.5. System Groupsl 96

V. Network moduld 97
V1. Socketd 97

V.2 TCP Connectiond o o o oo 99

V.3, TCP /UDP Servers oo 101

V4 Wake On LAN o o o 101

V5. CURI . ..o 101

I\Vl. QpenCll 103
........................... 103

VI.2. OpenCL Programd 106

VL3, Higher OpenCIL wrappeﬂ 107

IVIl. Machine Learning 111
IVIL1. Neural Networkd o oo e 111
.................................... 115

IVIL3. Kernel PCAl 115
IWIL4. Genetic Aloorithmd o o o oo e 116

117
IVIIL1. Reading / Writing XML Filed 117
IVIIL.2. Reading / Writing Config Filed 120

IX. Visualization 125
IX.1. Displaving Imaged o o oo 125

[X.2. Plotting Datal 126

[X.3 Viewing Video Streamd« o v o 127

131

X1 General Concept of a TCP serverl o o oo e 131

X2 A TCP Callback Serverd oo 142

IXl. _Setting up the framework 145
Mu_’&u% 149
XIT1.1. Preparing the Noded 149
IXIL.1.1. Startine the daemon as normal used 152

IXIL1.2. Option: RCSClientPortl o o oo 153

IXI1.1.3. Option: TCPRCSServerPortl 153

IXII.1.4. Option: TCPRCSServerFrameTimeoutl 153

|XH__1 5 Ontm;_:FOPR(‘SQPrverListenTimeouﬂ 154

IXIL1.6. Option: RCSTypd . . . o o o o 154

Chapter

|XH__1 7 Ontm_BQSﬂthrmmsl 154
) -

Or)hon [I%GTOPRC 154
XIL1.11. Option: TCPRCSPart 155

SHU 00mn11at10n [162
XI12.3. SHU Deployment 163
IXIL3. Creatineg Cluster Applicationd 169

Java / Pvthon Umtq

LAl Java SHUd 180

jcationl 183

W 185
.............................. 186

A 1ster IVlanagement Protocag 187
X ending (Asvnchronous) Svstem Commandd 187
X Requesting (Large) Files from a Nodd 189
XII1.3. Sending Files to a Nodd 189
W@ 190
IL5. (Rapid) (Avnchronous) SHU Deplovmentl 190
............ 190

Bibliography 199
IList of Algorithmd 203
IList of Figured 205

Chapter

Abstract

Abstract

This internal report discusses the theoretical and practical aspects of the cluster manage-
ment framework Simple Hydra, which was developed in order to allow researchers the quick
setup of classical small to mid-scale computation clusters while being as lightweight and
platform independent as possible. We motivate crucial design choices with a theoretical
analysis in the aspect of time and space complexity, furthermore we give a comprehen-
sive introduction regarding the frameworks usage (which includes examples and detailed
description of fundamental concepts as well as data structures). In addition to that we
illustrate application scenarios with complete source code examples. Furthermore we
hope that this document proves valuable not only as a development report but also as a
practical manual for SimpleHydra.

. Introduction

Observing the development of CPUs as well as algorithms over the last 10 years one can
clearly see the trend towards parallel structures. Modern CPUs feature up to 24 parallel
and independent computation units (cores) whereas GPUs exhibit several thousand of
primitive and co-dependent units (shaders). This change in architecture brings up the
challenge of harnessing the provided computation power, which might require only subtle
changes in already existing algorithms or a complete redesign if not the development of
new entirely algorithms. Nevertheless the induced problems sparked a new fire on many
fundamental algorithmic concepts, an example would be the sheer amount of published re-
search regarding the parallelization of (training and evaluating) artificial neural networks.
Another interesting research topic is the utilization of multiple system-local devices, e.g.
deploying an already GPU-optimized algorithm among multiple GPUs (which for example
presents the problem of high communication latencies and low memory bandwidth). Yet
there is another level of abstraction above the system local parallelization, although cer-
tain system components provide an overwhelming amount of computation power, which
also increases with future hardware revisions, one has to realize the incorporated limits.
A single computation unit, let it be a high performance multi-GPU system, could provide
about 8-16 GPUs and 96 CPU cores, which in combination with optimized algorithms
would exhibit a splendid performance compared to the classical one-CPU-core approach.
The next intuitive way of increasing the systems processing power would be to deploy
several of such computation units. The researcher will face a new but similar set of
problems when it comes to the efficient distribution of work among the available units,
furthermore the aspect of fault management steps much further into the foreground, since
the only way of obtaining a systems state is by incorporating monitoring capabilities into
the network communication protocol. These problems will increase further in the case of
heterogeneous units as one has to distribute adequate workloads.

It is hard to deny the temptation of approaching the field of distributed multi-GPU cluster
systems in a scientific context, yet the researcher is faced with the challenge of setting up
the infrastructure, this does not only include the acquiring of hardware but also the devel-
opment of the corresponding software. In most cases a very problem-specific solution will
be developed which allows e.g. a research group to commence its work, yet makes it diffi-
cult if not impossible for other researcher to utilize the groups infrastructure in a different
context. The authors of this work faced this challenge within the scope of the research
project “APFel” [MGT4], in which a heterogeneous multi-GPU cluster has been developed

Chapter 1. Introduction

for the purpose of efficient object detection in a large multitude of videostreams. This
report describes the correspondingly developed framework Simple Hydra, which represents
a generic tool that enables its user to quickly deploy small- to mid-scale heterogeneous
cluster systems with arbitrary topologies. Furthermore it provides functions with a slim
interface for e.g. database management and GPU computation.

This report is segmented into three major parts, first we will describe previous work and
motivate our approach, design decisions will be explained along with a theoretical analysis
of the frameworks structure. The second part will introduce the reader to the frameworks
elements as e.g. data structures or module structure, every concept will be illustrated
with source code listings. The last part presents the explanation of how to use the frame-
work to setup a cluster and deploy workloads within it. Future revisions of this report
will include chapters and sections for other parts of SimpleHydra, yet currently we will
describe only the frameworks elements which are required for a successful application in
the context of cluster system,

We hope that other researchers in the field of multi-GPU clusters will benefit from our
work or even build upon it.

Labor omnia vincit

Il. Theory

In this section we will discuss the frameworks structure, motivate our design ideas with
with previous works and a detailed analysis in terms of space and time complexity.

11.1. Motivation and previous work

There exists a wide variety of different Big-Data problems, be it in scientific research or
industrial applications. Developed solutions (algorithms or systems) often benefit from
computation clusters, i.e. they are constructed to be parallelizable such that they may
be distributed among many computation nodes.

Although cluster computing is a very interesting and active field of research, it is difficult
to access for many (small) research institutes. Professional high performance systems are
often unaffordable, thus universities or research institutes usually decide to use inexpensive
Beowulf clusters [SBST95| or related approaches. Examples are [DHLT03], [CDMQ02
or [AV02], yet most clusters are designed to solve domain specific problems. If they
provide a generic API, they often do not include support for cluster management, e.g.
adding new nodes or updating/reconfiguring existing nodes. Additionally most Beowulf
clusters assume heterogeneous nodes or a static topology, which is a serious restriction for
partial system upgrades. Solutions are usually implemented by using plain communication
abstractions like PVM [Sun90] or MPI [I2693], which provide a simple and efficient way
for distributed computing, yet these APIs do not address generic concepts of cluster
computing (e.g. load balancing strategies, node management). Many (domain specific)
extensions for these interfaces exist, e.g. [DBPDPT06](enhanced PVM load balancing) or
[DNGEVQQ (PVM over ATM lines), which address certain aspects of cluster computation.
Often do frameworks include large dependencies to other external libraries, which are not
guaranteed to work with future revisions.

The SCMS [UPAMOQ] framework addresses the management problems of Beowulf clusters
and provides a practical set of functions. Yet its purpose is solely the management, it
does not include inherent support for computation tasks. Building upon SCMS and other
frameworks, SCE [UPASQT] provides a solution including support for computation tasks
by using MPI. Yet, a rigorous analysis of its structure and implementation (e.g. of the
low-level network communication with respect to current technologies) is omitted.

We aim to address the problems of Beowulf based computation by providing an integrated

Chapter II. Theory

but modular framework which not only enables one to rapidly deploy and manage Beowulf
clusters but also scales well for huge systems (>1000 nodes). Additionally our framework
includes support for OpenCL based computation which alongside our support for dynamic
heterogeneous topologies provides the basis for a flexible system structure.

Section will outline the general structure of our system, while the critical aspect
of network communication will be addressed in section [L3l The previously mentioned
dynamic topologies will be explained in section [L4 We will conclude this paper with the
description of the IGOR cluster which was utilized in the APFel research project [HMHI3)]
for distributed and GPU-accelerated people detection. Additionally we will elaborate on
the results which were obtained by using SimpleHydra on the aforementioned cluster, thus
demonstrating the frameworks potential.

11.2. A coarse look on the structure

We begin by describing the frameworks modular structure which incorporates the largest
modules:

e Core
e Network
e Cluster

The "Core’-module provides all basic data structures and management functions for the
remaining elements, e.g. file system support, IPC (inter-process communication) support,
a thread management system, time measurement components, serialization facilities and
others. All fundamental communication methods are provided by the ’Network’-module,
due to its size and complexity we will describe its structure more detailed in section [L3l
The 'Cluster’-module contains high level management routines which enable developers
to quickly deploy canonical (i.e. framework provided) management clients and servers for
a cluster infrastructure.

In addition to these modules, SimpleHydra (SH) provides a wide functional variety in the
areas:

e data exchange (e.g. Matlab interface, XML support for basic XML access and
configuration files, MySQL database connectivity)

e image processing (e.g. elementary image manipulation, OpenCL based high perfor-
mance object detection)

e machine learning (e.g. LIBSVM wrapper, generic and adaptive neural networks
with OpenCL support)

Chapter II. Theory

UnitTests
< o
[ONEN}

= || o 5| €
SlR2(|3]I=]8
cll=|l= >
|l ®© © Ol i ; ;
olls||>X "('U' E = ‘ ClUSter ‘ ‘ OCL Image processing || OCL Machine learning
Ol g

> oT 2 ‘ Network ‘ ‘ Image processing OpenCL ‘

Core

Figure II.1.: The structure of SimpleHydra, each block represents a module, all modules
beneath another module are required for its functionality

e hardware support for video input devices (e.g. V4L devices, AVT cameras)
e data visualization (e.g. video streams, images or functions)

Fig. [LIlillustrates the described components and shows their dependencies, i.e. a module
requires the components it stands on. The environment requirements in terms of soft-
and hardware are very puristic throughout the different modules. Due to efficiency (e.g.
threading, time measurement) / cost (e.g. licenses) considerations we decided to imple-
ment the framework only for Linux/Unix systems. SH provides interfaces to proprietary
libraries, e.g. Matlab, yet this is a requirement solely for the corresponding module (e.g.
'Matlab’-module). Due to the frameworks size, we decided to utilize CMake and bash
scripts for the build chain. This allows a fast creation of customized build configurations,
e.g. for a small embedded system like a RaspberryPi one could only build the modules
"Core’ and ’Network’. The minimal software requirements are a Linux/Unix system, a
C++ compiler, the C++ standard library and CMake. There are no hardware restric-
tions. In order to keep things brief, we just list the external dependencies for each module
(’<o>’ indicates it as being optional):

e Core(<o>libz,<0>libX11, libpthread)

e Network

e Cluster

e Database (libmysql || libmariadbclient, libboost_regex)
e Hardware (libVimbaCPP, libVimbaC)

e OpenCL (libOpenCL)

e Matlab (libmat)

Chapter II. Theory

e ImageProcessing (libpng, libjpeg)

OpenCLImageProcessing

OpenCLMachineLearning

MachineLearning (1ibSVM)

XML (libxml2)

Visualization (Qt5, libcustomplot, qwt)
e UnitTests

The reason for such a sparse amount of small external libraries lies in the fact, that SH
implements many data structures and elementary control mechanisms from scratch. This
is needed to provide system-local thread safety while keeping the data access to primitive
data containers (e.g. linked lists) fast. The framework incorporates a build chain which
generates release and debug make scripts for static and shared libraries (module wise). In
addition to these libraries one can build an executable containing the unit tests.

11.3. Network protocol and communication facilities

One of the most critical aspects in building a cluster is the communication bandwidth
and latency between nodes. It is not only a question of choosing an appropriate physical
interface but also the communication protocol. Professional high performance systems
often use the Infiniband interface which provides a 2.5GBs link [Tin0I] and drive their
data with TCP. Infiniband also has a much smaller latency of ~ 1.7us compared to GigE
ethernet ~ 48us [CouQ9]. Although one might be tempted to use this interface for IPC,
it does come with high hardware costs (NICs, switches etc.). Thus for small research
institutes GigE (available on almost any modern computer) represents a cost efficient
alternative to aforementioned HPC systems.

The concept of Beowulf clusters exists since 1995 [SBST95] and initially described a set of
Ethernet-connected workstations, whose communication based on a token exchange via
UDP. Yet UDP is a stateless IP based method to transmit data, i.e. one does not have
congestion control, receive control, ordering of packet fragments or reachability informa-
tion about the communication partner. For simple domain specific Beowulf clusters the
choice of using UDP might be well founded, e.g. small and sparsely exchanged tokens
under the restriction of largely available network / node capacities. But for a generic ap-
proach, e.g. taking the management and control of the cluster into account, with respect
to unknown fields of applications as well as heterogeneous hardware configurations, the
control requirements for network communication will converge to the feature set of TCP.

10

Chapter II. Theory

Thus we decided to implement the communication via connection-based TCP, the reasons
for this choice will become clearer when we discuss the management feature set of SH.
It should be mentioned that the SH framework does also utilize UDP for e.g. dynamic
cluster topologies and is not restricted to TCP based communication, yet it does not
provide high communication facilities with UDP.

11.3.1. SH communication

Before discussing the internal mechanism we would like to point out that even though
we will carry the described communication facilities throughout the remaining paper, SH
provides a generic API which allows developers to change/ implement existing or new
communication protocols down to the choice of sockets (e.g. as far as to choose packet
sockets).
Communication, in management or computation relevant tasks, uses TCP payloads p of
the form

p= [hld] (IL1)

where h is 4 bytes long and contains the size in bytes of the actual data d. Thus the
shortest communication beacon will be 4 bytes large. In order to avoid synchronization
problems or race conditions during heavy data exchanges, we define each data transmission
to be of a request-response form.

11.3.2. Worker threads

When it comes to socket communication under Linux/Unix systems the usual naive way
of handling incoming connections is to start a single thread for each one of them. This
approach is unfeasible for large scale servers as it will clog the system with management
overhead. Thus in large server applications the concept of binned worker threads is
applied, this is depicted in Fig. Our system allocates a thread pool of n worker threads
tw, and starts a single connection handling thread ¢;. Every connection request will be
processed by t; and delegated to a fitting thread ¢,,;. The term fitting’ already indicates
that the choice of 7 is not arbitrary, the simplest strategy would be an even distribution
among the workers. Due to time restriction we only implemented this approach, i.e. each
single worker can handle up to m connections, in case of nm existing connections every
incoming connection will be dropped. A more advanced way would consider the current
load of the worker threads and e.g. choose the one with the lowest value.

11.3.3. Efficient socket handling

The Linux kernel provides different mechanisms for accessing data in a socket (or checking
for available data), namely select, poll and epoll. A call to select is the most basic way

11

Chapter II. Theory

Cry
accept C t; | €«———

t'w,(] tw,l e tw,n—l

Figure I1.2.: The concept of binned worker threads; one thread ¢; handles the incoming
connection requests cry, creates the connection ¢; and assigns it to an appropriate worker
thread t,,,; (bin)

of checking for available data, it informs the kernel about all file descriptors (i.e. socket
descriptors) it would like to check for new events. This approach does not scale well with
a growing number of open file descriptors. The same holds for poll which differs to select
only in the number of maximal file descriptors (i.e. it has no fundamental limit compared
to the bit mask approach of select [Ste97]). The epoll function removes this drawback as
it only considers the active file descriptors, i.e. it does not require to provide the kernel
with a list of desired elements. Both approaches were thoroughly analyzed in [GBSP04],
who showed that epoll exhibits a measurable performance gain of up to 79% for sparse
connection activity. Thus we decided to utilize edge-triggered epoll in our framework.
SimpleHydra’s worker threads use so-called frame assemblers, in order to explain those
we must begin with the problem they solve. For the sake of simplicity assume that only
a single worker thread ¢, exists and handles m connections. For each of these m con-
nections t,, o will have to assemble the corresponding data streams, as they may arrive in
(ordered) fragments. Furthermore ¢, o must apply the desired action (e.g. a callback) to
the data streams payload. Thus each connection c; is assigned a single frame assembler
a; which handles the logic behind the assembling (buffer management and construction)
as well as the interpretation of the data. The interpretation is done via frame handlers
fh; which are an integral part of each frame assembler (one per assembler).

The process structure of socket management within a worker thread is illustrated through
alg. @ Yet another problem arises in the context of binned worker threads. Let us assume
tw,o processes the low-level socket descriptor sd; of ¢;, how does he find a; efficiently in
order to deliver the received data to it? In order to solve this we applied an unordered
hash list (O(log(n))) holding the tuples (sd;,a;) with sd; being the key. One should
note that this problem could be solved differently e.g. by including a connection id into
the header h, thus the worker thread could up look the frame assembler in a linear array.
Yet this would require a management of available slots in the array. Using the socket
descriptor as a key for the linear array itself is unfeasible due to its numerical range (4/8
bytes), i.e. this would restrict the array to be continuously growing with each new con-
nection (especially critical for the case of very frequent closed and reopened connections

12

Chapter II. Theory

over a long time period), i.e. we would gain O(1) worst-case lookup time for the cost of a
limited system runtime due to a finite memory amount. This dilemma can not be avoided
for situations with a variable amount of non-persistent connections.

Algorithm 1 Worker thread ¢,,; socket management

1: while worker is active do

2 (num, event) =getActiveConnections; — epoll
3 for i=0; num - 1 do — determine request type
4 if eventli].req=="disconnect” then

5: find and delete connection from container;
6 end if

7 if eventli].reqg=="connect” then

8 create and add connection to container;

9: end if

10: if event|i].reqg=="data” then

11: find and call assembler a;;

12: end if

13: end for

14: end while

Each worker thread contains a private epoll system which is used to observe the socket
descriptors of all assigned connections. Thus we can summarize the average time com-
plexity Tsoer 0f our approach as follows (for the sake of simplicity we chose intuitive index
names).

Lemma 1. Let act; be the number of active connections in t,,; with i € [0,n — 1] and
act; € [1,m]. Furthermore let D be a data structure, capable of holding integer values,
with functions Dger, Daga, Daer and corresponding average complexity sets Ogzei(g(k)),
Ouaa(a(k)), Oge(d(k)) for k contained elements. Then the average time complexity for a
single iteration of t,,; is

Tsock,i = O(E(aCtz)f(k)) (112)

with f being a function from the largest of the mentioned complexity sets.
Furthermore the complete average complexity (for a single parallel iteration of all worker
threads) is given by

Tsoor = O(max(E(act;))f(k)) (IL.3)

(2

13

Chapter II. Theory

Proof. We have to distinguish two cases, firstly the case of E(act;) = 0, where the above
statements obviously hold. Secondly the more interesting case of E(act;) > 0. First one
has to observe that E(act;) can be splitted into E(dis;) + E(new;) + E(get;), where the
expectancy values refer to the case of disconnect requests, new connections and existing
connections, respectively. Furthermore there exist factors «, 5, with aRE(act;) = E(dis;)
etc. (e.g. B = (E(del;) — E(get;))/E(act;)). Every worker has to retrieve the active
sockets, this can be done in constant time due to pre-allocated kernel structures (or in
E(act;) steps from a rigorous point of view). After the descriptors have been retrieved one
must process each one of them (i.e. E(act;) descriptors), they may inform the program
over disconnections, new connections or data for existing connections. For each request
type one must execute data structure routines, i.e. Dgey, Dger, Daqa, respectively. Let
G € Ouet(g(k)),d" € Opaalalk)),d € Ou(d(k)) be arbitrary functions. We can summarize
the complexity for the processing of all requests by

O(E(act;)(ad + Ba' +~¢")) (IL.4)

which is dominated by the function with the largest asymptotic behavior, i.e. f. Thus
we obtain the complexity for a single iteration and for multiple parallel iterations (as n
is constant). O

On the basis of lemma [it is simple to conduct further runtime analysis depending
on the assumed distribution of act; and the utilized data structure D. The extension
for inclusion of high level functions for each request type can be done by adding their
complexity to the complexity of the corresponding data structure routines (i.e. d,a,g).
One can also deduct that for a constant time complexity within the described threading
concept, all of the data structures operations must be able to finish in constant average
time.

11.3.4. Memory management and space efficiency

Apart from the operating systems send and receive buffers, two additional buffers are
required in which an assembler a; can iteratively construct the outgoing and incoming
data streams. In our system each a; constructs an appropriate receive buffer for every
incoming data stream, thus we allocate memory only if it is required (depicted on the left
image in Fig. [L3]). Regarding the outgoing data we have chosen a different approach.
The worker thread contains a single transmit buffer which is shared among the managed
sockets. Each socket will either send all of his queued data or fail, under this restriction we
can reduce the amount of required memory significantly (see the right image in Fig[[L3).
Yet this strategy can not be applied for incoming (fragmented) data streams, as we have
to store incomplete data streams over time until all fragments have been received.

The required buffer size for an incoming data stream is determined once the first 4

14

Chapter II. Theory

tw ,’l: t’LU ,7:
sd; 1.) receive data :ﬁgiﬂ);gﬁ;igg}p (de, (aj, fhj)) 2.) write data out_buffer
2.) construct frame 1.) create data
3.) call frame handler CSd’
with local buffer 3.) send until /
4.) free the buffer success or error

Figure I1.3.: Left side: t,,; receives a data fragment within an iteration and directs them
to the appropriate assembler a;, which stores it in a local buffer and continues with frame
reconstruction. Once a frame has been completely received, the framehandler fh; will
commence the interpretation of the payload. Right side: the frame handler fh; attempts
to send data over sd;, first the data is copied into the worker threads shared output buffer,
afterwards the worker thread attempts send all data contained in the buffer (i.e. only the
existing payload). The colored rectangles represent different contexts.

bytes (i.e. the header) have been received. Additionally the send process only considers
the existing data in the shared output buffer, .i.e. it does not send all allocated buffer
bytes. The output buffer size is determined during runtime by analyzing certain system
attributes.

As mentioned before our protocol uses a simple request-response scheme, this simplifies
the logic behind frame assembling. Through the use of TCP we receive data fragments in
correct order, thus the assemble process is a simple concatenation of bytes. The process
of frame construction is depicted in alg. Bl each computational step can be done in O(1).
The complexity is mainly determined by the call to fh;, which can commence arbitrary
actions with respect to the received payload.

Thus we can summarize the complexity of our communication protocol with

Theorem 1. Let Q) be the average complezity set for actions taken by framehandlers fh;
in a giwen context and w € Q. The basic SimpleHydra network communication system,
with respect to a single (parallel) iteration of all worker threads, exhibits a complexity of

Teom(.) = O(m?X(E(acti))(f(k:) +w(.))) (I1.5)
Proof. Follows directly from lemma [0 and the corresponding remarks. O

11.4. Dynamic topologies

The communication topology of a Beowulf cluster is star shaped, with a management
node in the center which distributes work among the available nodes (including itself).

15

Chapter II. Theory

Algorithm 2 Frame assembling in a;

Require: data fragment d

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

1
2
3
4
5:
6
7
8
9

. [static init] buffer = (J; bytes = 0; payload_size = 0;
. if bytes < 4 then

append d to buffer;
bytes += sizeof(d);
return

. end if
. if bytes > 4 A payload_size == 0 then

payload size = h — h=Dbytes|0,..,3]
append d to buffer;
bytes += sizeof(d);
return
end if
if payload_size > 0 then
append d to buffer;
bytes += sizeof(d);
if bytes == payload_size then
call fh; with buffer
buffer = (J; bytes = 0; payload_size = 0;
end if
return
end if

16

Chapter II. Theory

Management node Computation node

: e TCP : ,
*| Mgmt Service |<&————>| Mgmt Client

: Direct : IPC
. |communication -

Comp. Task

Figure I1.4.: The canonical network service structure of SimpleHydra, the dashed rect-
angles represent different address spaces. Management of the computation nodes is done
via a TCP connection between two corresponding services. These services are independent
of the actual computation task but can communicate with it either via direct addressing
or IPC. The node interaction during computation tasks is also done via TCP connections.

This topology is usually assumed to be static in terms of e.g. node count or communi-
cation interface. Additionally it is assumed that the nodes are similar (if not identical)
configured. Yet some applications benefit from a dynamical topology, e.g. one which al-
lows the insertion or removal of nodes during runtime, where the nodes may be differently
structured (e.g. powerful multi-GPU nodes).

Thus we designed our framework in a way which allows the configuration of such clusters,
furthermore we provide a low-level API which allows not only the construction of highly
dynamic topologies but also their runtime management.

The general structure of this system is depicted in Fig. [I.4] where the management node
executes two distinct (independent but connected) subprograms; the management service
and the computation task. The management service is capable of e.g. keeping track of
each node’s available computation resources, copying data onto nodes or executing arbi-
trary system commands. The computation task has the responsibility of managing work
distribution among the nodes.

Each node runs the corresponding counter parts; the management client and the SH
Unit. We will describe the concept of SH Units in the next section, for now it should
suffice to consider an SH Unit as distributed workload. Similar to the management node,
the subprograms on a computation node are independent but connected. The motivation
for this design was to keep the cluster stability as high as possible. Even if an SH Unit
fails, e.g. enters an endless loop, the management node can still use the connection to the
management client to stop the Unit through the node’s operating system.

The management service and computation task are being executed in the same system
process (but in separate threads). For the sake of simplicity let us assume that each node
already runs the management client. First the management service will be started, it will

17

Chapter II. Theory

find all available nodes on the network (predefined or dynamic, details in next subsection)
and setup a connection to them (i.e. the running clients). Afterwards it will distribute
SH Units among them and start the computation task. Each SH Unit will then connect
to the computation task and the actual work may commence.

We point out that the computation nodes establish the connection, thus they have to han-
dle only two connections (one for management and one for computation tasks), whereas
the management node will handle its connections efficiently via the approach described
in section [L3l

11.4.1. Self-configuring clusters

We will now detail how the connections between nodes are being established. Within the
previously described approach one might assume that the management node carries an
initial list of all potentially available nodes. This is not required as we designed Simple-
Hydra for self-configuring clusters.

The management client contains an UDP Remote Control Service (UDPRCS), one of its
functionalities being the ability to reply to home beacons (33 Byte large UDP broadcasts
containing information about the management node). First the management node M will
send a home beacon, all available nodes n; may answer to it, M will wait for a defined
time and create a list N = {n;} of available nodes. Independent of that, the nodes n; will
connect to the management service at M (the required data is extracted from the home
beacon). The management node may use N to verify if all nodes have connected to it.
Afterwards M will use these connections to distribute data and instructions to the nodes.
Once the nodes have received all initial data they will execute the instructions (e.g. set up
a connection to the computation task on M). This scheme is illustrated in Fig. [L3] for
the sake of understanding we omitted the details of synchronization e.g. the management
client will wait until the SH Unit has been successfully deployed. Additionally we left out
the details of network communication like response messages.

Using the UDPRCS one can build architectures which allow the online expansion of
computational resources. Yet, this approach works only on local subnets and thus Sim-
pleHydra also supports the use of static node lists. These node lists allow the configuration
of clusters in wide area networks, i.e. the provide the possibility for grid computing.

11.5. Cluster Management

One often underestimated point is the management of a cluster, this includes tasks as
setting up single nodes, keeping track of available nodes, updating software (e.g. libraries)
on nodes and many more. For larger cluster systems (>20 nodes) these tasks create
serious overhead for the administrator and introduce downtimes to the cluster. In order

18

Chapter II. Theory

Management node Computation node

-| Mgmt Service |: .| Mgmt Client

. | 1) UDP Broadcast Beacon :
. UDPRCS [. .T| UDPRCS .

2) UDP Unicast reply

3.2) send SH Unit :
3.1) start task ; 3.3)|deploy SH Unit l

Comp. Task ‘ 4) create connection < v

5) computation traffic

Figure I1.5.: The process of self-configuring clusters with SimpleHydra. The numbers
inside the annotations denote the order of execution. First the management node attempts
to find all available nodes on the local subnet via a UDP broadcast. The available nodes
reply to the beacon and extract the servers connection information (e.g. address, port)
fromt it. Using this information they establish a connection to the management server
which, once all nodes have connected, starts the computation task and sends an SH Unit
to the nodes. Once a node received the Unit, it will deploy and execute it. The actual
computation may then begin. For the sake of transparency the synchronization details of
communication have been omitted.

to accommodate this we provide a generic function set along with the management service,
including e.g.:

e Remote shell (synchronous, asynchronous, parallel on multiple nodes)
e File copy
e Resource querying (CPU load, free HDD space etc.)

A developer can use these functions to create solutions for more complex tasks, e.g. update
multiple nodes by copying a script to them and using a parallel shell to execute it.

11.6. Workload distribution paradigm

Let us consider the following scenario, an existing cluster with identically configured
nodes (i.e. identical soft- and hardware) should be upgraded during runtime with one
additional node. Yet this node contains almost completely different hard- and software
(still a Linux/Unix system though). If the workload (i.e. the data and program code)
would have been distributed as binary data, it would be impossible to use it on the new
node. In order to address situations like this we developed the concept of SH Units.

19

Chapter II. Theory

11.6.1. SH units

An SH Unit is a data structure u = (P, d), with P being an arbitrary payload and d a
deployment script. Technically u has the form of a compressed archive which contains
C/C++ source files and binary data (i.e. the payload P), the deployment script (i.e. d)
usually consists of a single "*.sh’ file. Alg. Blillustrates the process of deployment on the
computation node.

Algorithm 3 Deployment of an SH Unit «

Require: SH unit «
1: unpack archive into temporary folder
2: execute d — e.g. compile source files and execute the binary

The algorithm is very short as all deployment logic will be included in the deployment
script. It can execute arbitrary commands, compiling the source files within the payload
is only one of them. It may also gather system information and provide them to the
executed binary or copy needed files to specific locations. The only statically defined
step in the context of an SH Unit is the execution of the deployment script, which can
also be used for administrative tasks. As mentioned in section [L.4] the started SH Unit
(i.e. the compiled binary) can communicate with the management service through IPC.
Thus, although the Unit is started as a new process the management service still has
low-level control over it. In order to enable rapid prototyping we provide SH Unit /
computation task templates for e.g. map and pipe skeletons. The developer might also
create completely new tasks with ease (as our system provides a transparent and generic
class structure).

11.6.2. Load balancing

During runtime it is crucial to distribute the workload adequately among the nodes.
Factors may be power efficiency [WLIQ], memory attributes [LLSWQ4] or domain specific
optimizations [CKOT], just to name a few. We do not aim to provide implemented solutions
for any of such problems, instead our framework provides the needed infrastructure for
implementing the corresponding solutions.

The management service does not have to be completely idle during computation, it may
e.g. collect information about the nodes. This can be done by e.g. polling all nodes
with a fixed frequency or letting the nodes themself transfer a status report ([LG). The
computation task may utilize this information for an arbitrary scheduling algorithm.

20

Chapter II. Theory

Management node] Computation node C

Mgmt Service Mgmt Client
1) Establish connection

2) send a free ID

4) save in database 3) Reply with report

"

: ID

1 CPU count
: CPU infos
1
1
1
1

Periodic or single

updates possible RAM in bytes

GPU count
GPU information

Figure I1.6.: The simplified registration process of a new node ¢ and the management
node M. First ¢ establishes the connection to M, which in turn sends a free ID (this
number is removed from the pool of available IDs until ¢ disconnects or the registration
fails). The computation node then acknowledges this number by sending it back as an
attributes of a system report R. The management node then saves the report data in
a local database and assigns the ID to the corresponding connection. It is possible to
update the report data periodically (i.e. ¢ sends periodic updates) or only per request
(i.e. M requests an update from c).

I.7. Inner workings of SH

Every connected node is being assigned a unique node id which is stored in a temporary
database on the management node. A computation task can access the contained entries
(which also include other node meta data) and e.g. decide whether a node is capable of
executing a certain operation. The details of collecting meta data is depicted in Fig. [L0]
the client ¢ connects to M, during this process ¢ gets assigned a node id and additionally
sends a small system report R. R contains e.g. the number of OpenCL devices, CUDA
devices, CPU information, the amount of RAM, available HDD space and many more.
At the end of the registration the report data is saved in a local database. A workload
scheduling algorithm can utilize this meta information for a balanced distribution of tasks.
It is also possible to periodically update the report information for a set of nodes (single
updates are possible as well). For the sake of understanding we left out any timers (which
are used in steps 2 and 3) within this illustration.

The communication between management client and SH Unit on the node side is done
via IPC mechanisms. For this and other purposes, SimpleHydra supports both, System
V and POSIX based shared memory IPC. Another application for IPC is the libraries
visualization module (see Fig. [LT), which uses shared mutexes for synchronization with
the Qt based window system. It must be noted that although SimpleHydra provides an
object oriented interface to this window system, the system itself provides a low level C

21

Chapter II. Theory

Figure I1.7.: The window system is part of the visualization module, it contains e.g.
sophisticated plot features, image viewers with annotation functions, video viewers and
cluster management tools like e.g. parallel remote shells.

language interface, which allows its use in native C programs.

We will now explain how our protocol avoids race conditions and synchronization prob-
lems. Let us assume (without loss of generality) three communication parties A, B and
C' are communicating with each other, A and B are separate threads on a management
node while C'is a thread on a computation node. Furthermore let A be receiving a large
file from C' and B preparing to request a status report from C. The protocol uses a
sequential request-response format, i.e. the communication tasks are queued and will be
sequentially processed. For our example this means that while A receives data, no other
communication will occur on this connection (i.e. B will wait for A to finish). This al-
lows a simple and fast message parsing for each connection as the receiver can be sure
that he receives a coherent payload stream, i.e. only the data from one communication
context (no interleaved fragments). Once A has received all the data, the next enqueued
communication will commence, i.e. B will send a request to C'; which in turn will respond
with a status report. It must be noted that such a connection scheme has its drawbacks,
e.g. for a connection which transfers mostly large files, short messages will experience a
great latency. Yet in the context of Beowulf cluster computing one usually avoids great
amounts of network communication due to the small bandwidth and high latency of Eth-
ernet, additionally the exchanged data blocks are often small and in similar size. Due to
these reasons we implemented the described sequential approach, yet our framework gives
the user the freedom to implement a (situation-)optimized communication scheme.

22

Chapter II. Theory

11.8. SimpleHydra deployment in a cluster

In order to efficiently use our software we also optimized the deployment in an existing
infrastructure. A Beowulf cluster makes little to no assumptions about the used hardware
([SBSTAT] refers to the computation nodes as simple workstations), thus a corresponding
framework should be able to deal with a large variety of hardware configurations. The
most relevant hardware elements are system memory, CPUs, GPUs, HDDs and network
interfaces, which our framework handles in a generic manner. Many frameworks incor-
porate similar functionality but achieve it through the use of external libraries, which
often are restricted to certain hard- or software configurations and can change their APIs
anytime (which forces one to adapt the framework).

In order to circumvent these problems and restrictions we designed our framework from
scratch with only a minimal amount of external dependencies (the biggest being the Qt
framework for the visualization module). This makes deployment in a network environ-
ment very easy, for the basic distribution of workloads one only needs to copy a small
(pre-built) client demon to the workstation (if no pre-built demon is available, one has to
compile it either on the workstation or with a fitting cross-compiler). No further config-
uration is required, especially no external libraries besides the C/C++ standard library.
This deployment can be archived via e.g. a small shell script, the client demon itself is
very puristic and effectively consumes no system resources. Once this demon has started,
the workstation becomes an available computation node. It should be noted that this
demon can reside on the workstation after the computation tasks finished, thus the work-
station will be made available for e.g. tasks of another management node.

The demon also determines the available system features, e.g. OpenCL, CUDA, memory
amount etc., yet it is also possible to configure it with a static configuration file which de-
fines the available services. These static configuration files are useful in the case of strongly
varying or special environments, which can make it difficult to reliably determine certain
system features.

11.9. Application Example and Performance Indications
In order to test and demonstrate the potential of SimpleHydra we constructed a Beowulf
cluster IGOR (Intelligent GPU based Object Recognizer) and utilized it within the APFel

research project. Throughout this section we will describe IGORs system structure, the
deployed tasks and discuss the results.

11.9.1. The Beowulf cluster IGOR

IGOR consists of 15 nodes in total, which are equipped as follows:

23

Chapter II. Theory

Figure I1.8.: The two node types used in IGOR. The left picture shows very compact
mini-ITX case with one discrete GPU, 16GB RAM and one HDD of 1TB. The right side
depicts a large ATX tower with 64GB RAM, multiple GPUs and HDDs (8TB).

e 1 nodes: Intel i7 4770, 3x Radeon 7990, 64GB RAM, 12TB HDD (3 disks)
e 6 nodes: Intel i7 4770, 1x Radeon 7970, 16GB RAM, 1TB HDD

2 nodes: Intel i7 4770, 1x Radeon R9 290x, 16GB RAM, 1'TB HDD

2 nodes: Intel i7 4770, 1x Geforce GTX780-Ti, 16GB RAM, 1TB HDD

2 nodes: Intel i7 4770, 2x Radeon R9 290x, 64GB RAM, 8TB HDD (2 disks)

1 nodes: Intel i7 4770, 3x Geforce GTX780-Ti, 64GB RAM, 8TB HDD (2 disks)

1 node: Intel i7 4770, 16GB RAM, 1TB HDD

The last node was used as a dedicated management node, i.e. it did not participate in the
execution of SH Units (Fig. shows the two different types of nodes). Thus in total
IGOR features 56 x64 CPU-cores with 3.6GHz, 368GB of system memory and 55872 GPU
shaders, with a total of ~ 107 TFlops (synthetic, FP32 GPU) and 2.38 TFlops (synthetic,
FP32 CPU). Except for the identical CPU the nodes exhibit different amounts of RAM,
different GPU counts and types (this implies different local tool chains and interfaces)
and different amounts of HDD storage. The nodes were interconnected via a dedicated
GigE switch and used different versions of ArchLinux.

11.9.2. The APFel person detection system

Our detection system (Fig[ILA) is described in [HMHI3] with more detail, for this paper
we will give a short summary and discuss our testing methods.

24

Chapter II. Theory

! !

[Video database 1] [Video database N]

N /

[Management node]

N

Detector 1| m n & [Detector mJ

Figure I1.9.: The detection system of the APFel project. The client obtains images
from different video databases, he uses the management node of the Beowulf cluster
as an abstraction proxy to the collected computation power of all m GPUs (which are
distributed over n) nodes. The management node receives detection requests which also
contain the corresponding image, it delegates these requests to a node with an available
GPU, receives the results and forwards them to the client.

Two problem instances have to be distinguished; the classifier training and the case of
detection tasks.
The detection algorithm utilizes a linear GPU-based support vector machine (SVM),
which was trained with up to 1600 elements of dimension 3565. In order to find the optimal
training parameters we used a gridsearch with the crossvalidation error as an objective
function. We splitted the search grid into equally sized tiles and distributed them among
the nodes which in turn executed the corresponding grid search. The management node
collected the results and extracted the best parameters.
Regarding the case of detection tasks we employed a similar strategy. As depicted in
Fig. ML9 the management node receives detection requests, finds a node capable of
handling them and delegates the task accordingly. The system processes multiple parallel
videostreams with 10 fps.

25

Chapter II. Theory

11.9.3. Results

The most time consuming task during the construction of IGOR was the configuration of
the different node types, as they contained either AMD or NVidia GPUs we needed to
configure different tool chains. In order to speed up this process we utilized HDD image
tools. For a more homogeneous hardware configuration a distributed filesystem might be
better suited.

Our highly optimized GPU-based HOG-algorithm [HMHIJ],[MHI4] executes the detec-
tion on a single image in ~ 60ms (processing ~ 14GB during this time). The detection
tasks were deployed among the nodes in a first come - first serve strategy, i.e. the task
was assigned to the first found node with an unoccupied GPU. As we used our system
in an offline mode (i.e. with recorded images), we handled the case of 'no free nodes’ by
simply letting the task wait until a CPU/GPU was available. The computing performance
scaled linearly with the cluster’s GPU count, i.e. detection times with videostreams were
reduced by a factor of 1/m with m GPUs. The distributed gridsearch during SVM train-
ing reduced the training time by a factor of 14, as the SVM was trained on 14 identical
CPUs in parallel. We measured raw communication latencies between the nodes of ~
45us while transferring 1kB of management payload for a low amount of 30 connections.
These latencies have been completely masked by the (in comparison) large computation
times of ~60ms (detection process) and ~20s (linear SVM gridsearch step) / ~15m (RBF
SVM gridsearch step). During our evaluation we used a total of 8 worker threads on the
management node, i.e. 1 worker thread for the management server and 7 for the com-
putation tasks (as we used the management service only for collecting the nodes system
load). We successfully tested the insertion and removal of nodes during the clusters live
operation, the whole system was capable of handling the gained or lost capacity with ease.
Thus our system was able to process ~345fps i.e. ~34 parallel video streams or in terms
of data volume 4.8 TB/s.

The systems structure (i.e. the distributed camera system from Fig. [L.9)) also illustrates
SimpleHydra’s adaptation potential, since due to the decoupling between the manage-
ment system and the distributed workload one can easily develop custom solutions and
control their deployment.

26

I1l. Data structures

In order to use the SH framework one has to be familiar with the provided data structures,
the following sections will provide a coarse introduction, for further details one should refer
to the API documentation. All data structures reside in the namespace “SHCore”.

111.1. Buffers

Buffers represent the most primitive form of containers, they are essentially augmented
wrapper classes for unsigned-char arrays. There are a total of three buffer classes; Ba-
sicBuffer, PrimitiveBuffer and Buffer. The class BasicBuffer represents the parent class
for all other buffer classes, it never gives upownership over the internal char-array, i.e. it
manages the memory internally.

N —

//an empty buffer object, its size can be changed through ’resize()’
SHCore:: BasicBuffer bl;
SHCore:: BasicBuffer b2(40); //a buffer of 40 bytes

A buffer object does not care about the actual data types within the internal char-array,
a pointer to the actual data array can be obtained via

unsigned charx data = b2.getmp_data ();

This pointer should never be freed externally, its main use is to copy data into/from the
buffer object. Once the object has been destroyed any allocated memory will be freed as
well. The objects data can be written to or read from file via

=N

void writeBufferToBinaryFile (const std::string& filename) const;
void readBufferFromBinaryFile (const std::string& filename);

void writeBufferToTextFile (const std::string& filename) const;
void readBufferFromTextFile(const std::string& filename);

The binary methods will write the char array as is into the given file, any previous content
will be deleted. The text methods on the other hand will write the data into a text file. If
data is read from a file (binary or text) any previously allocated internal data will be freed
and replaced with the files content. A buffer file does not contain any header information.
In some cases it might come in handy that an existing char-array can be wrapped into
a buffer object in order to prevent unnecessary memcpy calls. For such situations one

27

Chapter III. Data structures

should use the class “PrimitiveBuffer”, which is identical to the “BasicBuffer” with the
subtle difference that it can be assigned an existing array of data.

unsigned char a[40];
SHCore:: PrimitiveBuffer bl(a,40);//a buffer of 40 bytes

The assigned data will never be owned by the object, i.e. once the object is destroyed
the data will be left untouched. This way one might quickly provide data to certain
methods without giving up control over the object, an example would be the cryptographic
methods in the Core module. Yet this is only partially true, the assigned char-array can
be manipulated via the parent class’s methods (i.e. “resize()”) will delete the assigned
memory (this would be a fatal for the stack allocated data in the previous listing).

The class “Buffer” extends the PrimitiveBuffer by a method to change the assigned data
anytime.

=N

unsigned char+* a = new unsigned char [40];
SHCore:: Buffer b1(30); //a buffer of 30 bytes
SHCore:: Buffer b2(a,40,true); //deep copy of a
bl.set_mp-_data(a,40); //takes ownership

It must be pointed out that the Buffer will always take ownership over the data, further-
more in the case of a deep copy one does not give up ownership but the copy operation
might be unnecessary.

I11.2. Lists

SH provides several templated types of lists; non-cyclic singly linked lists (NCSLists) and
non-cyclic doubly linked ones (NCDLists). The prefix “Fast” indicates a non-thread safe
class, e.g. “FastNCSList”. In this section we will discuss the principles behind each list
type, for further information one should refer to the API documentation.

111.2.1. NCSList

A (thread-safe) non-cyclic linked list is composed of a chain of “GenNCSListElement<T>"
which have the following (simplified) form

0O Ul W+

GenNCSListElement (unsigned long id = 0);
virtual ~GenNCSListElement ();

inline void setm_data(const T& data);
inline T getm_data() const;

inline T& getm_data_ref ();

inline unsigned long getID ();

private:

28

Chapter III. Data structures

9 unsigned long m_id;
10 T m_data;
11 GenNCSListElement<T>x mp-_-neighbor ;

The instances of elements will be managed by the corresponding List object, i.e. when
the list is destroyed all element instances will be destroyed as well. This however does not
necessarily apply for the each elements’ assigned data. If the element contains non-pointer
types <T> the data will be deleted with the list element. For pointer types the data will
be left untouched. Yet each list class provides two memory management methods

1 /xclears the list and deletes all pointed to objects

2 in case of pointersx/

3 void destroy ();

4 /xclears the list and deletes all pointed to array objects

5 in case of pointersx/

6 void destroyArrays();

7 /xjust clears the listx*/

8 void clear ();
which can be used to free the list, in case of pointers the corresponding data will be
destroyed as well. If a “destroy” method is called in case of non-pointer data, the methods
behavior is identical to just calling “clear()”. A final remark regarding the memory
management of a list; if a list object is copied, all list elements will be copied sequentially,
which can introduce significant overhead for large lists. An example for instantiating a
list object is

1 SHCore:: NCSList<int> 1;

2 1.appendLast (5); //add a number

3 //print it

4 printf ("%d\n” ,1.getListElementAtPos (0));

The attribute “mp_neighbor” points to the next element in the list and is managed by the
list object, the last list element will point to NULL. Accessing list elements data (i.e. the
data of type T contained within the list elements) can be done by calling “getListElemen-
tAtPos” or through iterators (see the next sections). The call to “getListElementAtPos”
involves relative high overhead as it internally traverses the list up to the desired posi-
tion (the same holds for its operator “[|”, which will return a reference to the data). By
reading the simplified view one might have observed that the list elements contain an ID
attribute. This integer is a number unique among the list elements, the standard enu-
meration algorithm uses a sequential numbering of each added list element, i.e. it does
not analyze for usable ID gaps among the existing list elements. This approach is fast
yet has the significant drawback of possible duplicate IDs if to many remove and append
operations have been commenced. The lists behavior is unaffected by duplicated IDs!
Yet for external uses one might need a more reliable ID management, thus every list class
provides a collision free ID management, where collision-free random IDs will be assigned

29

Chapter III. Data structures

to each object. If a collision can’t be avoided, the list element will receive the ID 0. An
unavoidable collision is defined if after 500 attempts no free random ID could be found,
one should note that this approach might involve increasing overhead for data insertion
as the list grows (thus the default is to use simple IDs). The list constructor expects a
boolean value for indicating the ID generation algorithm (“true” for simple IDs, “false”
for complex ones).

—

NCSList (bool simple_ids = true);
NCSList (const NCSList<I>& list ,bool simple_ids=true);

If a user doesn’t require any type of identification for list elements, he can safely ignore
the ID generation and leave the boolean parameter at the default value.

As mentioned in the beginning of this section every list without a “Fast” prefix is implicitly
thread-safe. It uses internally a read/write lock, i.e. there can be parallel read accesses
but only one write access, which also prevents any concurrent read attempt. Due to the
unidirectional links within the list, it is only possible to remove the first element, which
can be done via

void removeFirst ();

11.2.2. NCDList

The major drawback of an singly linked list is the relatively time consuming task of
removing elements at positions “within” the list. Even if one has access to the designated
element it can not simply be removed as its predecessor is unknown. The non-cyclic doubly
linked list (NCDList) addresses this point by managing list elements with an additional
pointer to their previous list element.

O 00O Ui W

=
N = O

GenNCDListElement (unsigned long id = 0);
virtual ~GenNCDListElement ();

inline void setm_data(const T& data);
inline T getm_data() const;

inline T& getm_data_ref ();

inline unsigned long getID ();

private:

unsigned long m_id;

T m_data;

GenNCDListElement<I’>%* mp_successor ;
GenNCDUListElement<I’>% mp_predecessor ;

The interface is an overset of NCSList, new methods are

1
2

void removeLast ();
enum GenNCDList<T>::NCD_ERROR.CODE

30

Chapter III. Data structures

3 removeElement (GenNCDListElement<T>% element);
4 enum GenNCDList<T>::NCD_ERROR.CODE
b} removeElementByPosition (unsigned long position);
which enable one to remove elements at arbitrary positions. removeElementByPosition
uses a sequential search as described in the case of NCSList, while removeFElement directly
removes the element. The last method requires the element to be known/available in
advance, obtaining elements can be done via iterators, a manual sequential search after
obtaining a NCSLists first or last element via
1 GenNCDListElement<I>x getFirst ();
2 GenNCDListElement<T>x getLast ();
or simply by storing/managing references to the list elements externally.
111.2.3. List Iterators
In order to iterate over a lists elements and thus over its data one can use iterators, e.g.
1 SHCore:: FastNCSList<int> data;
2 data.appendLast (50);
3
4 for (SHCore:: FastNCSList<int >::Iterator it = data.getStart ();
5 it != data.getEnd(); ++it)
6 {
7 GenNCSListElement<int>* element = it .getElement ();
8 int value = element—>getm_data ();
9 printf(”value %d\n” ,value);
10 }
the same holds for NCDLists which also allow reverse traversing
1 SHCore:: FastNCDList<int> data;
2 data.appendLast (50);
3
4 for (SHCore:: FastNCSList<int >::Reverselterator it = data.getEnd();
5 it != data.getStart (); —it)
6 {
7 GenNCDListElement* element = it.getElement ();
8 int value = element—>getm_data ();
9 printf(”value %d\n” ,value);
10 }

31

Chapter III. Data structures

111.3. KTuples

A KTuple is a data structure very similar to std::vector, yet it provides several new
features. A KTuple is thread safe and applies the same read/write paradigm as the list
structures, it features control over the expansion factor in case “stack-usage” and methods
for control over freeing heap allocated data. A simple example is

—
SO0 Tk W+~

e T o O o Gy G eeT gy
OO Ui Wi -

/xa tuple with 50 allocated slotsx/
SHCore : : KTuple<int> dataArray (50);

/xincreases the tuple by current_sizexgrowth_factor and puts
'—1’7 into the 51 slotx/
dataArray.push(—1);

/xupdate the 17th elementx/
dataArray .setElement (16, —5);

/xupdate the 16th elementx/
dataArray [15] = —10;

/xprints 0 ’Ix/
printf (”data %d\n” ,dataArray.getElement (0));

/xprints '—1'Ix/
printf (”data %d\n” ,dataArray.getElement (50));

One very important fact about KTuples is that the internal data array will be initialized
via the data types (i.e. T’s) default “constructor”! In case of primitive data types it
will default to ’0’ while for complex data types it will always call the default constructor.
[terating over a KTuple is straight forward

0O Ul W~

/xa tuple with 50 allocated slotsx/
SHCore : : KTuple<int> dataArray (50);

for (long long i = 0;i<dataArray.getm_size();++1)
{

Jxprints 0 !Ix/

printf (”data %d\n” ,dataArray.getElement (i));

}

After the discussion of data management in the context of lists, the semantics of following
methods should be clear by their name

=N

/xwill resize the tuple to size if ’sizel=—1"x/
void clear (long long int size = —1);

void eraseWithDestructor ();

void eraseArrayWithDestructor ();

32

Chapter III. Data structures

Similar to the lists a KTuple returns references to the data via the “[]” operator. If a
KTuple is initialized with a size i > 0, the stack pointer (i.e. the pointer which indicates
the position where after a call to “push” a new element will be inserted) will point onto
the first position behind the i-th element. Only calls to “push” allow an expansion of the
tuple size.

I11.4. Vectors

Despite a similar name, SHCore::VectorN does not have much in common with std::vector.
The suffix "N’ stands for a wildcard N € {1, ...,8} or in other words; there exist a total of
8 Vector and FastVector classes, e.g. Vectorl, Vectorb etc. A Vector class is a template
container with N slots of independent data types T7...73. An example would be

N O UL Wi

SHCore:: Vector3<int , float ,std :: string > v;
v.setElementl (4);

v.setElement2 (7.89f);

v.setElement3(” testing”);

printf ("%d %f %s\n” ,v.getElementl (),
v.getElement2 (), v.getElement3 ().c_str ());

As before the thread safety is created via read/write locks, FastVectorN classes do not
use getter or setter methods and expose their members for public access. Due to thread
safety considerations all returned values are copies of the original data. For applications in
linear algebra one should use FastVectorN classes, which provide template specializations
for int, float and double. These specializations allow for e.g. int

O 00O Ui W

=
N = O

/xsubtract two wvectors of same typex/

FastVectorN<int ,... ,int> operator +(FastVectorN<int ..., 6 int>& b)
/xadd b to each element of the wvectorx/

FastVectorN<int ,... ,int> operator +(int b)

/x subtract to wvectors of same typex/

FastVectorN<int ,... ,int> operator —(FastVectorN<int ..., 6 int>& b)
/xsubtract b from each element of the wvectorx/

FastVectorN<int ,... ,int> operator —(int b)

/xget the scalar product of both wvectorsx/

int operator x(FastVectorN<int ..., int>& b)

/xmultiply each wvector element with bx/

FastVectorN<int ,... ,int> operator x(int b)

For the sake of completion we show an example for FastVectorN

1
2
3
4

SHCore:: Vector3<int , float ,std :: string > v;
v.m_datal = 4;

v.m_data2 = 7.89f;

v.m-data3d = "testing;

33

~J O Ot

Chapter III. Data structures

printf ("%d %f %s\n” ,v.m-_datal,
v.m_data2, v.m_data3.c_str ());

111.5. Queues

The Queue class in SH provides a versatile thread safe queue with a slim interface, its
design is best explained through a simple listing

O 00O Uik W

—
W = O

Queue<int> queue (50);
for (unsigned int i=0;i<40;i++)
{
queue—>enqueue (i);
}
//get the data
for (unsigned int i=0;i <40+5;i++)
{
printf ("%d ” ,queue—>dequeue ());
}
printf (”\n”);

The constructor parameter represents the maximal capacity of the queue i.e. one can
not enqueue more elements than the capacity allows. It usually poses no problem to call
dequeue on an empty queue since this method will return a default value of template
type T. Yet it is often desired to ensure that a valid (i.e. previously enqueued) element is
obtained from the queue, for this purpose one can refer to the following member functions

T dequeueBlockingOnEmpty () ;
T dequeue(int& res);

The first method will wait if the queue is empty, once an element becomes available it
migh (in case of multiple consumers) return this element. It is important to understand
that in case of multiple threads which are all calling dequeueBlockingOnEmpty, the thread
which successfully dequeues the element will be determined randomly. But even this
approach might not be suitable for all scenarios, let us consider the situation in which
two threads operate on the same queue, one enqueues elements while the other thread
consumes these elements. If the consumer also needs to process other things besides the
elements from the queue it would be a waste of time to wait until a new queue item
becomes available. A simple strategy to solve this problem is to check if the value which
is returned from a dequeue call actually represents a previously enqueued element. The
method dequeue(intéd res) provides this functionality, the integer res will contain 0 if the
value was previously enqueued or -1 otherwise. Once a queue is destroyed it will also

34

Chapter III. Data structures

delete all enqueued elements, in case of pointers the corresponding objects will be left
untouched.

111.6. Matrices

SimpleHydra provides slim and efficient 2D /3D matrix classes with automatic type recog-
nition, row- and column-major alignment, pinned memory support and support for CSV /bi-
nary export. As the matrix types play a very import role in OpenCL, CUDA, cluster
computation, linear algebra and many more fields, we will discuss its features in more
detail.

/xor MATRIX DATA_ ALIGNMENT-COLUMN-MA.JORx /

SHCore:: Matrix2<float >

m(SHCore : : Matrix : : MATRIX DATA ALIGNMENT_ ROW_MAJOR,
false);

=N =

allocates a 2 dimensional matrix in column-major format and no pinned memory, the
shown values are identical with the default ones, i.e. the constructor call from above is
equivalent with

1 SHCore:: Matrix2<float> m;

If one instantiates a matrix object no memory will be allocated, this is done via

1 m.initMatrix (rows, columns);

In case of multiple “initMatrix” calls, any previously allocated memory will be deleted
(this does not delete objects in case of pointers, only the internal matrix space which
contains the pointers). Any copy constructor or assignment operator will perform a
sequential copy of all matrix elements. After initializing a matrix one can start working
with the matrix object, yet although memory has been allocated now, the matrix elements
(or slots) themself are undefined. A call to resetMatriz will set all internal memory byte-
wise to zero. If one desires a specific value, the method globalSetMatrixz(unsigned char val)
can be used, which essentially does the same as resetMatriz but with a different value.
For complex or general data types T one can use globalSetMatrizVal(T val) which also
does the same as the previous methods but for complex values. In case of debug situation
it can be beneficial to peek into a (small) matrix, which is accomplished through the
method printData, as it prints the matrix data on the CLI (complex data types will be
identified by the static output string "ABSTRACT”). Setting the actual matrix data can
be done on different ways

1 /xupdate entry in row 1 and column 3%/
2 m.setData(0,2,74.123f);

35

3
4
)
6
7
8
9
10
11
12
13
14

Chapter III. Data structures

/xupdate entry in row 2 and column 3%/
m(1,2) = 74.123f;

/xupdate entry in row 3 and column 3%/
*(m. getDataRef(2,2)) = 74.123f;
/xupdate entry in row 12 and column 3x/
m. getRawDataRow (11)[2] = 74.123f;
/xupdate entry in row 13 and column &.
THIS ONLY WORKS IN COLUMN MAJOR FORMAT!

*/

m. getRawDataColumn (2)[12] = 74.123f;
/xupdate entry in row 15 and column 3%/
m. getDataPtr [ELEMENTINDEX | = 74.123f;

The matrix size can be obtained via getRowCount and getColumnCount, it must be noted
that the matrix classes are not thread safe!
Matrices can be saved to text or binary files via

1 /xCSV exportx/

2 void writeMatrixToFile(const std::string& filename);

3 /xBinary exportx/

4 void writeMatrixToBinaryFile (const std::string& filename);

5 /xCSV export without headerx/

6 void exportMatrix(const std::string& filename);

7 /*Binary export without headerx/

8 void exportMatrixBinary(const std::string& filename);
For reasons of numerical precision one should always consider saving the matrix in a
binary format. The CSV format is as follows: in case of a header the first line will contain
the string '#rows,#columns’ followed by one line per row or column in case of row-major
or column-major, respectively. The value will be saved as “double-strings” (this must be
and will be adapted in the future to be simple type specific). All stringified double values
are saved according to the standard “C” locale. Binary files follow a similar concept, i.e.
one header line as before, followed by binary data in the next line. Calling a CSV export
method in case of abstract data types will result in an error message with no file written,
only binary export methods can be used in this case. The following routines can be used
to read a matrix from a CSV /binary file

1 /«CSV importx/

2 void readMatrixFromFile (const std::string& filename);

3 /«xBinary importx/

4 void readMatrixFromBinaryFile (const std::string& filename);
The correct datatype has to be set a-priori during object construction. The data alignment
can be queried via

1 enum MATRIX DATA ALIGNMENT getDataAlignment () const;

and the data type with

36

Chapter III. Data structures

1 enum Toolbox :: SHDATA. TYPE getDataType() const;

A 3 dimensional matrix is nearly identical with a 2 dimensional, except for the one ad-
ditional dimension. The resulting differences are a third index k for all addressing op-
erations, which is interpreted as the index of a matrix slice / matrix level, each slice in
turn is handled as a previously discussed 2 dimensional matrix. A 3 dimensional ma-
trix is saved slice by slice, i.e. a series of 2 dimensional matrices. The header contains
"#Hrows,#columns, #levels’ and is followed in the next line by concatenated 2 dimensional
matrix slices.

11.7. Images

The SH framework supports a convenient and thread safe image structure in form of a
class called “Image”. Yet in case of image processing one might require fast manipulation
methods for e.g. pixel values, instead of providing a non-thread safe class e.g. “Fastlmage”
we provide alternative “Fast” methods within the class. An image can be created via

1 Image<unsigned char>x im =
2 new Image<unsigned char> (320,240,
3 Image<unsigned char >::IMAGE DATA_ALIGNMENT RGB) ;

Where the first two constructor parameters determine the image dimensions while the

third parameter determines the data alignment. Currently SH only supports interleaved

alignments; RGB(A), BGR(A) and GRAY(A). The template value determines the datatype
for each channel, in the example above we create an image with three channels, each of

type unsigned char. The image class features a rather large set of methods, in this section

we will only focus on the most common tasks when it comes to image objects, the reader

should refer to the Doxygen documentation for more information.

Pixels in an image can be accessed through channel tuples

KTuple<unsigned char> color (3);
color.setElement (0,255);
color.setElement (1,0);
color.setElement (2,255);
im—>filllmage (&color);

T W N~

or the corresponding non thread safe method

FastKTuple<unsigned char> color (3);
color.setElement (0,255);
color.setElement (1,0);
color.setElement (2,255);
im—>filllmageFast (&color);

TR W N~

37

Chapter III. Data structures

For highly frequent pixel operations, e.g. setting a subset of pixels with a loop, one
should use the non thread safe methods as they perform significantly faster. The previous
example showed how to fill an image with a single color, it is of course possible to set
individual pixels or even manipulate the raw data

O© 0O Ui Wk~

=
N = O

FastKTuple<unsigned char> color (3);
for (unsigned int i=0;i< im—>getm_width ();i++)
{
for (unsigned int j=0;j < im—>getm_height ();j++)
{
im—>getPixelFast(&color ,i,j);
color—>setElement (1,0); //delete green info
im—>setPixelFast(&color ,i,j);
}
¥
//obtain a reference to the raw data
unsigned charx data = im—>getmp_image_data ();

Reading and writing images is done through functions provided by the image processing
module, SH currently supports the image formats JPEG and PNG, future versions will also
support BMP files. As this report does not feature a description of the image processing
module, we will briefly show how to read and write image files in case the mentioned
module has been compiled.

If the ImageProcessing module is available, it is possible to read images via reader /writer
objects, i.e. a single class allows reading and writing of certain image file formats. This
shows how to read a JPEG image,

N O UL Wi

JPEGReaderWriter<unsigned char>x jpeg_reader =
new JPEGReaderWriter<unsigned char >();

jpeg.-reader —>readlmage (”image. jpeg” ,
SHCore : : Image<unsigned char >::IMAGE DATA _ALIGNMENT RGBA) ;

SHCore: : Image<unsigned char>* image = jpeg_reader—>getmp_image ();

the call to getmp_image returns a reference to the internal image object, yet this does
not transfer ownership, the image is still owner by the reader. In order to take ownership
one has to use obtain_mp_image. Besides the image filename, the readlmage method
also accepts the definition of data alignment for the read image (the default is RGB).
The general rule for allowed alignments is that no channel reduction may occur, e.g. if an
image contains three channels one can not request the GRAY alignment, the read method
will abort the reading in such cases. Yet it is possible to increase the channel count, e.g.
a single channel image can be read as an RGB image.

Writing an image can be done by calling the writelmage method on the reader/writer
object

38

Chapter III. Data structures

1 jpeg_reader —>setmp_image (some_image);
2 jpeg-reader —>writeImage(”image2.jpeg” ,10);

This will update the internal image object (transferring ownership) and save the data as
“image2.jpeg” with a quality of 10 (highest possible value for JPEG).

39

IV. Core module

IV.1. Serialization

We will distinguish two kinds of serialization procedures; serializing a serializable object
and A serialization.

IV.1.1. Serializable Objects

In order for an object to be serializable it has to extend the class Serializable and imple-
ment the methods serialize as well as deserialize. Our following example features a very
small data class

O© 0O UL~ W~

{

lass MyData : public Serializable

MyData(){ m-a=0; m_b=0; m_s="Hello”; }
virtual “MyData ();

void serialize (){

//calculate the required size of the buffer

unsigned long total_serialized_data_size =
getRequiredStringBufferSize (m_s)
+Serializable : : INT_SIZE
+Serializable : : DOUBLE_SIZE

)

//allocate the serialization buffer

DELETE NULL_ CHECKING (mp_serialized_data_buffer);
resetSerializationOffset ();
this—>mp_serialized_data_buffer =

new SHCore:: Buffer(total_serialized_data_size);

//insert the data
addString (m_s);
addInt (m_a);
addDouble(m.b);

}

41

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Chapter IV. Core module

void deserialize (){
initSerializationOffsetForDeserialization ();

//get the data

m_-b = getDouble ();
m-a = getInt ();
m-s = getString ();

//free the serialization buffer
DELETE NULL_ CHECKING (mp_serialized_data_buffer);

}

int m_a;

double m_b;

std::string m_s;
}

Although it is mostly self-explanatory we will step through the process. As a first re-
mark, it is mandatory to call resetSerializationOffset before starting the serialization.
for reasons of safety one should also delete any existing serialization buffer. Before al-
locating a new serialization buffer we need to calculate the required size, for primitive
types this can be easily done via a provided set of static methods from Serializable,
e.g.getRequiredStringBufferSize(). Once done we allocate the buffer and update the class
member mp_serialized_data_buffer. Regarding primitive data types it is again easy to
copy the data into the data buffer (e.g. using addString()). We strongly advise not to
use “memcpy” in combination with these helper methods (use it only in case you have
enough knowledge about the stack pointer within Serializable)! In order to copy complex
data types into the buffer one should use addCharA() and provide a char pointer to the
data.

Derserialization is done in a similar manner, it starts with a mandatory call to initSerial-
izationOffsetForDeserialization. Afterwards we simply copy the data from the stack (in
reversed order) with helper methods like e.g. getDouble. It is not required to delete the
serialization buffer, yet for reasons of safety we do it anyway.

For very complex objects one has to account for the serialization of all subcontainers, i.e.
one has to serialize them and copy the linearized data into the main objects serialization
buffer.

The serialization buffer can be accessed via get_mp_serialized_data_buffer, keep in mind
that the buffer belongs to the serialized object, never attempt to delete it externally! The
usual serialization process is similar to

MyData md;
md.a = 20;

42

md.b = 3.156;
md.s = ”"World” ;

md. serialize ;

Bufferx data = md. get_mp_serialized_data_buffer ();

SO 0T W

—_

//hand the data to other elements

Chapter IV. Core module

while deserialization follows

//acquire the serialized buffer
MyData md;

md. set_mp_serialized_data_buffer (buffer);
md. deserialize ;

00 O ULk Wi+

printf (”Members %d %F %s\n” ,md.a,md.b,md.s);

An even shorter way would consists of

class MyData : public Serializable

{

MyData(){ m-a=0; m_b=0; m_s="Hello”; }
virtual “MyData ();

void serialize (){
registerString (m.s);

registerElement <int >(1);
10 registerElement <double>(1);

O© 0O UL~ W~

12 allocateBuffer ();

14 //insert the data
15 addString (m_s);
16 addInt(m.a);

17 addDouble(m.-b);

18

19 3}

20

21 void deserialize (){
22

23 //get the data

24 mb = getDouble ();
25 m.a = getlnt ();

26 m-s = getString();

43

Chapter IV. Core module

28 //free the serialization buffer
29 resetBuffer ();

30

31}

32

33 int m.a;

34 double m_b;

35 std:: string m_s;

36 }

this merely represents a new revision of the serialization interface, the underlying me-
chanics remain unchanged.

IV.1.2.)\ Serialization

In certain situations one might encounter the need to serialize an existing class instance
with the restriction of avoiding to extend it via Serializable. This is very common in
network communication where a set of primitive data types must be added to a serialized
data stream. For this reason SimpleHydra features the so called A serialization or anony-
mous serialization, which allows the serialization of data without a wrapper class. Let us
study an example;

—

unsigned int a = 40;
double b = 3.14;
std::string s = ”"Hello”;

W DN

Our goal is to create a buffer large enough to contain the these three variables and copy
them into the same. Just as described in the previous section one could create a wrapper
class which extends Serializable, yet if this situation only occurs a few types this approach
might overkill.

unsigned int a = 40;
double b = 3.14;
std::string s = "Hello”;

SerializationStack data;

data.registerElement <unsigned int >(1);//just one uint
data.registerElement <double > (1); //just one double
data.registerString(s); //and one string
data.sealStack ();

O© 00O UL W~

11 data.addUlnt(a);
12 data.addDouble(b);
13 data.addString(s);

15 Bufferx buffer = data.getStackBuffer ();
16 //do something with "buffer’

44

Chapter IV. Core module

The class SerializationStack, just as the name indicates, represents a stack whose size is
calculated via calls to e.g. registerElement. Every such call increments the required buffer
size, yet it does not allocate any memory until the call to sealStack. Afterwards we can
add the actual data in a similar fashion as before.

Deserialization is also much alike

O© 0O UL Wk~

//get the serialized data

unsigned int a = 0;
double b = 0;
std::string s;

SerializationStack data;
data.setStack (buffer);

s = data.getString();
b = data.getDouble ();
a = data.getUlnt ();

Please note the existence of registerString, registerCString, registerCharA and registerUCharA,

which are methods of SerializationStack that should never be mixed. The only thing they
all have in common is the fact that each method will reserve an unsigned integer slot on
the stack in order to store the corresponding data types length. Never attempt to mix
them, registerString should only be used for std::string, registerCString only for plain

0 terminated C-string, registerCharA for signed char arrays and registerUCharA for un-
signed char arrays.

IV.2. Timing

Currently SH provides an interface to measuring time and scheduling events through
system based timers. Let us first discuss the facilities for measuring time. For the most
simple cases in which one desires to measure the time between two events and receive the
output on the CLI, it will most likely be sufficient to use the TIC and TOC macros

SOl W N~

TIC

for (int 1=0;i<20;4++1i)

{

Toolbox :: sleep_ms (500);

}
TOC

This example also introduces the set of sleep functions, namely sleep_ms, sleep_us, sleep_ns
, contained within the class Toolbox. Due theit nature as macros, TIC and TOC can be
used only once in a given context, the expansion further clarifies on that

45

Chapter IV. Core module

O© 00O Ui W+

e S Sy e
W= O

//TIC

struct timespecx a = SHCore:: TimeToolbox :: createTick ();
struct timespecx b = SHCore:: TimeToolbox :: createTick ();
struct timespecx diff = SHCore:: TimeToolbox:: createTick ();
clock_gettime (0, a);

//TOC

clock_gettime (0, b);

SHCore:: TimeToolbox :: tickDiff (a,b, diff);

printf (”Process took = %.9Lf s\n”,
SHCore :: TimeToolbox : : getTime (diff));
SHCore :: TimeToolbox : : freeTicks(&a,&b);
(if (diff!=0){free(diff); diff=0;}};

It is obvious that an attempt to use TIC' again would be futile, the compiler would
complain about variable re-declaration. In order to reuse these macros one has to augment
them with TIC- and TOC-

O 00O Ui W~

TIC
for (int 1=0;i<20;4++1i)

{

}
TOC.

TIC.
Toolbox :: sleep_-ms (1100);
TOC

Toolbox :: sleep_ms (500);

Keep in mind that a TOC is required at the end in order to free the allocated variables.
Seeing the time difference in a console is a neat thing, what about getting the numerical
result for further processing? This can be done equally easy with

U W N =

TIC

TOC.

long double timespan = SHCore:: TimeToolbox :: getTime (diff);
TOC

The same holds for measuring the average time over multiple iterations

OO Uik WD
—~

INIT_ TIME_AVG
for (unsigned int i=0;i<1000;i++)

TIC.
AVG.TOC

}
SUM.AVG.TIME_UP

46

Chapter IV. Core module

which also outputs the average time on the CLI. Multiple averaging in the same context
is done via INIT_TIME_AVG_ whereas the numerical value is obtained by simply dividing
the summed up time through the amount of iterations

1
2
3
4
5
6
7
8

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

INIT_TIME_AVG
for (unsigned int k=0; k < eval_count; ++k)
{
TIC_
for (int i=0; i < size; 4++i)
{
for (int j=0; j < size; 4++j)
{
array [i][j] = 0;
}
}
AVG.TOC
}
SUM_AVG_TIME_UP
//get the numerical value
long double result = avg_time / (long double)step_counter___;
INIT_TIME_AVG._
for (unsigned int k=0; k < eval_count; ++k)
{
TIC_
for (int i=0; i < size; 4+i)
{
for (int j=0; j < size; 4++j)
{
array [j][i] = 0;
}
}
AVG.TOC
¥
SUM_AVG_TIME_UP

In addition to local time measuring SH features a global counterpart. The correspond-
ing functions are semantically identical to the previous ones, yet they expect an integer
parameter which specifies the global timer. An example

W N =

GLOBAL.TIC (0)
for (int 1=0;i<20;4++1i)

{

47

Chapter IV. Core module

4 Toolbox ::sleep_ms (500);
5}
6 GLOBAL.TOC(0)

The macros for global timing start with the prefix "GLOBAL.” while following part
is identical to the previous functions. Every local timing function has a global coun-
terpart, thus we won’t describe the functions in detail. Yet it is important to under-
stand what goes on in the background, instead of using local timespec structs the func-
tions depend on global ones. These are named ”__GLOBAL_TIMERx TICK_A” and
7’ _GLOBAL_TIMERx_TICK_B” where x stands for a number from 0 to 7, thus one can
utilize a total of 8 global timers. Regarding the measuring of average times SH uses global
variables for each timer, these are named ”__avg_timex” ”__step_counterx___" with x being
in the same range as before. The difference between two times is stored in global timespec
variables named ”__GLOBAL_TIMERx_DIFF”.

IV.2.1. Timers

The second large area of time facilities is occupied by synchronous and asynchronous
timer classes. A synchronous timer is always considered to be blocking and non-periodic,
in other words once a thread starts a synchronous timer, the thread will block at the call
until the timer expires, furthermore it will not restart itself. An asynchronous timer on
the other hand is always non-blocking and >can< be periodic. Let us first take a look at
synchronous timers

1
2

SHCore:: SynchronousTimer sync_timer ;
sync_timer .setOneShotTime (2 ,0);

This creates a synchronous timer, sets it for a single shot 2 seconds and 0 nano seconds
after the start. Of course the corresponding event must be registered before the timer is
started

SHCore :: FunctionTask<void ,
SHCore : : NO_STATIC_.THREAD_REF___>x ft2 =
new SHCore:: FunctionTask<void,
SHCore : : NO_.STATIC_THREAD_REF___>();

//prepare the notifier callback
//create the callback container
SHCore:: ThreadObjectCallback<void,
SHCore:: Testcallee ,void+*>x ol =
new SHCore:: ThreadObjectCallback<void,
SHCore:: Testcallee ,voidx*>();

//assign the callee objects to the containers
ol—>set_mp_callee_object (tc);

48

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Chapter IV. Core module

//assign the functions to the containers
ol—>set_mp_object_method (&SHCore:: Testcallee::p);

//assign the parameters for the function
ol—>set_mp_parameter (NULL);

//create the queue and enqueue the objects

SHCore :: PersistentCallbackQueuex c_queue =
new SHCore:: PersistentCallbackQueue ();

c_queue—>enqueueCallback(ol);

//register the queue at the function task
ft2—>registerCallbackQueue(c_queue);
) [FHEREEE register it
sync_timer .setTask (ft2);

start it
sync_timer .startTimer ();

/ KK KKK KKK

Any reader unfamiliar with SH function task should briefly skip to section [V.8 and read
up on the topic! Done? Perfect! The listed code will not only assign the event but
also start the timer, which in turn blocks the calling thread until the trigger time of 2
seconds elapsed and the event has been processed. In other words, the blocking time
can be greatly influenced by the duration to complete the registered action. Although a
synchronous timer will trigger an event only once, it can be restarted any amount of times,
the trigger time can be updated between calls to startTimer. Keep in mind that although
the function task remains registered it might need to be primed again e.g. by filling the
callback queue (the above example circumvents that by using a persistent queue).

An asynchronous timer is very similar, yet besides the fact of running in a separate thread
it also differs in the choice of periodic and non-periodic operation

SHCore :: AsynchronousTimer
async_timer (SHCore :: Timer : : TIMER TYPE_SINGLE_SHOT) ;

async_timer .setOneShotTime (5,0);
SHCore:: Testcalleex tc = new SHCore:: Testcallee (1);

//create the task and register it
SHCore:: FunctionTask<void ,
SHCore : : NO_STATIC_.THREAD_REF__>x ft1 =
SHCore :: quickDeployCallbackTaskDRef <void,
SHCore:: Testcallee ,void+*>(tc, &SHCore:: Testcallee::p,
NULL) ;

49

15
16
17
18
19
20
21
22
23
24
25

Chapter IV. Core module

async_timer .setTask (ftl);

//start it

async_timer .startTimer ();

//wait some time for the execution of the timer
SHCore:: Toolbox :: sleep_ms (10000);

/xthread should have stopped by now, but we try
it anyway: it should workx/
async_timer .stopTimer ();

This creates a non-periodic timer, assigns an event to it, sets the trigger time to 5 seconds,
starts it and waits 10 seconds for it to have finished. The call to stop Timer will cause the
calling thread to join the terminating timer thread. Just as with synchronous timers any
asynchronous timer can be restarted any number of times. One also has to note that the
total time between trigger events is actually at least set time + event time. The periodic
case can be achieved through

T W N~

SHCore:: AsynchronousTimer

async_timer2 (SHCore: : Timer : : TIMER_ TYPE_PERIODIC) ;
async_timer2 .setPeriodicTime (0,200000000);//200ms
async_timer2 .setTask(ftl);
async_timer2.startTimer ();

Where the time between triggered events still remains unchanged, the only difference
is that all events will happen concurrently in another thread. A call to stopTimer will
gracefully stop (and join) the thread, i.e. a the thread will terminate once the last triggered
event has finished.

IV.3. Virtual Disk Operating Systems

In order to provide the developer with a quick and easy way to write NCurses-based
interfaces, SimpleHydra provides the concept of virtual disk operating systems (VDOS).
The complete VDOS interface is provided by only two classes, namely VDOSCLI and
VDOS. The first class represents a monolithic NCurses system without any logic besides
the management of CLI I/O and a multi window terminal. All operating system logic has
to be implemented by extending VDOSCLI. Let us take a look at the following ”Hello
World OS”

T W N~

/ /3 terminal windows and in a system called ”HMI”
VDOSCLI cli (3,”HMI”);
HelloOS helloOS;

veli.setVDOS(&helloOS);

20

co O

Chapter IV. Core module

helloOS .setCLI(& c11i);

veli.startCLI ();

with following implementation

O© 00O Ui W -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

class HelloOS : public VDOS
{
HelloOS (){}
virtual “HelloOS (){}
virtual void processInput(
unsigned int window, std::string in)
{
std::string s = std::string (”Hello World ”)
+ in.substr(0,in.size()—1);
m_cli—>printResult (window,s);
m_cli—>askQuestion (window, ” Satiesfied?”, 7Y/N”)
}
virtual void processAnswer (
unsigned int window, std::string in)
{
std::string s = in.substr (0,in.size()—1);
if (s.compare(”Y”)==0)
m_cli—>printResult (window,” Nice!”);
else
m_cli—>printResult (window,”:— (7);
}
¥

Now to the details! A call to startCLI will start a multi window terminal in the current
CLI. the user can switch between the windows via the F4 key, while pressing the F3 key
will terminate the window system and the calling thread will proceed beyond startCLI.
This does not imply that any actions executed by our VDOS HelloOS will immediately
terminate! Any user input within a window, terminated by a press on RETURN, will
result in a call to processInput. The method parameters are the user input (including
the line break) and the associated window number. In our example the input string is
concatenated with "Hello World” and returned without the trailing line break. This is
done via a call to printResult, keep in mind that the output can also occur in a different
window (see the method signature). processAnswer is used for HMI dialogues, after
printing the described string, the input process method will ask the user a question (with
hinting the desired answer types, e.g. "Y” or "N”). The user will be prompted for an
answer, which in turn will be processed by processAnswer.

The VDOS cli features more features, which are going to be extended with future SH

o1

Chapter IV. Core module

versions. Currently on can only modify the prompt string via updateCLIPrefiz.

IV.4. Directories

A common use-case is the parsing of directories and the extraction of file meta-data. In
order to ease such task SH provides the classes Directory and DirectoryFEntry. The ratio-
nale is that a directory instance (non-recursively) reads the file list of a given directory,
for every file (”everything is file”) a single DirectoryEntry object will be created. A simple
example would be

O 00O Uik W -

—
W N = O

Directoryx* dir;
dir .readDirectoryFilesAndDirectories (” /tmp”);
DirectoryEntryx dir_entry = dir.getNextFile ();
while(dir_entry != NULL)
{ dir_entry —>printInfo ();

printf (”\n”);

dir_entry = dir—>getNextFile ();
}

Keep in mind that this approach might lead to a serious memory overhead for large
amounts of files. If only either directories or files are desired one should use the meth-
ods readDirectoryDirectories or readDirectoryFiles, respectively. One can access the files
meta-data through DirectoryFEntrys public attributes. In order to use the object for other
directories or parsing tasks one can simply call a read method, any information about
previous directories will then be discarded.

Another useful class is File, which represents an abstraction for regular files. It provides
methods for reading a file’s contents as well as mapping a file into local address space.
Let’s start with the first case

0O Ul W+

File f(std::string(SimpleHydra_Install_Path) +
std::string (7 /UnitTests /Res/TestFilel.txt”));

f.readFile ();
PrimitiveBuffer data(f.getData(),f.getSize());

data.printfBuffer (BasicBuffer : : BUFFER_DATA TYPE UCHAR) ;

This also illustrates the use of a global and static variable called SimpleHydra_Install_Path
which contains the installation path for SH (e.g. ”/usr/local/SH”). Furthermore one

D2

Chapter IV. Core module

can see the use of unit-test resources which are located under ”UnitTests/Res” in the
installation path. In itself the listing shows how to use the File class in order to read a
file’s content, keep in mind that File internally uses an unsigned char array as a buffer.
Yet readFile also accepts two parameters, the first is an offset from which on the file’s
content should be read, the second one represents the amount of bytes to read. In order
to write a file one has to distinguish two cases, first the situation in which the desired file
already exists and the other in which the file has not been created yet. Both cases require
the use of the writeFile function which will overwrite the files previous content. It is also
possible to assign new data to the object via a call to assignData, this is mainly a virtual
operation as the data will not be written to the file until writeFile is called. A new and
0-filled file with the provided name will be created in case that the desired file doesn’t
exist. Its size will equal the sum of the specified offset and size.

One might need to share a files contents with e.g. another process, this can be done
through a shared memory mapping, in which any change to the files data will be written
to the corresponding file location. The File class also supports the private mapping,
in which any change to a files content will be kept local to the process, i.e. no other
process will see these changes. A mapped file will cause the writeFile method to fail.
This behavior is well defined as if a file is mapped as a shared object, any change to the
data will be immediately written to the corresponding disk content (there is no need for
a write method). Should a file be mapped in a private manner one has to synchronize
its contents with the file location through a call to syncMap. The File classes destructor
will unmap any mapped data, in case of privately mapped data no synchronization will
be done. Just as in the case of reading a file, should the desired file not exist a new one
will be created and mapped. Another restriction for mapping a file lies in the nature of
memory mapping, a mapped file can not be increased in size, one can only work in the
existing area.

Keep in mind that reading and mapping are complementary operations, should a file
object currently be mapping a file any call to readFile will unmap the data (in case of
a private mapping no synchronization will occur), the same holds vice versa (any loaded
and modified data will be discarded without disk synchronization).

IV.5. Loading Libraries during Runtime

Another use-case is the dynamic loading of shared libraries, under Linux this is done via
the system calls dlopen etc. SH features a wrapper class called DLLoader which provides
a reference counting for implicit unloading. This can be explained best with an example

1
2
3
4

typedef void (*EXTFUNCTION.INT) (int);

EXT_FUNCTIONINT p_function = NULL;
DLLoader loader (”1libz.so0”);

23

O© 00~ O Ot

Chapter IV. Core module

loader.load ();
p_function = (EXT_FUNCTION.INT)
loader. getElementAddress (” functionXYZ”);

loader . unload ();

In this listing we have created a unction pointer of type EXT_FUNCTION_INT, the
shared object loader is associated with the libz library. Each call to load will actually
load the library (i.e. map the library into the processes address space), the function will
return immediately should the library already be mapped. The address of an element
within the library can be obtained via a call to getElementAddress (be carefull as it might
return NULL), in out example we query the object for the address of functionXYZ. At
the end a call to unload indicates that we are done with the library in this context. This
is also the point where reference counting comes into play, each call to load increments an
object internal counter by one, whereas a call to unload decrements the counter by one.
Should the objects internal counter reach zero during a call of unload then it will unmap
the library from the processes memory. The rationale is that one loader object is shared
among multiple context which at the end call the unload method, thus the loaded library
will be unmapped only when all contexts have finished their work with it.

One last and very important note: There is no implicit unmapping/unloading when a
loader object is destroyed, thus one has ensure that a every load call is fitted with a
corresponding unload call!

IV.6. Database Support

SimpleHydra features support for MySQL (external mysqglclient library is required) as
well as SQLite (included as amalgamation version of SQLite), in the following sections
we will talk about the individual interfaces (which are relatively short).

IV.6.1. MySQL

The MySQL interface is only available through the database module. Currently mainly
two classes exist, MySQLWrapper and MySQ)LToolboz, future releases of SH may very
likely expand the MySQL support. The usage is depicted in the following listing

N OO W

SHDatabase : : MySQLWrapper sql_wrapper ;
sql_wrapper.connect(”127.0.0.1”7 ,”root” ,”pw” ,”imageDB”);

SHDatabase : : MySQLToolbox sql_toolbox;

FastKTuple<std :: string*> attributes (3);
FastKTuple<std :: string> values (3);

o4

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Chapter IV. Core module

attributes.setElement (0, new std::string (”methodID”));
attributes.setElement (1, new std::string (”cameralD”));
attributes.setElement (2, new std::string(”transactionID”));

values.setElement (0, new std::string(”1”7));
values.setElement (1, new std::string(”2”7));

values.setElement (2, new std::string(737));

std::stringx s = sql_toolbox.createlnsertQuery(&attributes ,
&values ,”imageTable”);

attributes.eraseWithDestructor();
values.eraseWithDestructor ();

sql_wrapper.query(*s);

delete s;

The database connection is established through the wrapper class while the SQL toolbox
is utilized to create the query string. One should note that the input tuples contain string
pointers, this design choice is motivated by overhead reduction, especially in case of long
strings one can avoid the time for string copying. From the above listing it becomes
obvious that one drawback of this design choice is the high risk of memory leaks (the
string objects must be explicitly deleted). Due to time constraints the described interface
it all of SHs MySQL support, yet as stated before this will likely change in future SH
releases.

1IV.6.2. SQLite

Although mentioned before we repeat that SH contains the entire SQLite implementa-
tion, thus one can’t use an external SQLite library if SH is being used. This may pose
a serious drawback which can be circumvented by rebuilding SH with the option "nolnt-
ernalSQLite” set to true. Yet in both cases the SQLite interface of SH will be available.
We will briefly introduce the three main interface classes, SQLiteToolboz, SystemDB, Sys-
temDBFEntry, and conclude the section with some application examples.

If one desires to create a class for a specific database, the class should extend SystemDB,
usually one will also create classes which can represent entries from certain tables in the
database, these classes should extend SystemDBEntry. In order to illustrate this we will
assume the following scenario; we attempt to create an object oriented wrapping for the
database "TestDB’ which contains only one table named "Tablel’.

1
2
3

class TablelEntry: public SystemDBEntry {
public:
TablelEntry ();

25

Chapter IV. Core module

virtual “TablelEntry ();
virtual void abandonData ();

int m_IDTablel;
std:: string m_string;
long long int m_int;
Bufferx mp_blob;

};

class TestDB: public SystemDB {
public:
TestDB (const std ::string& path);
virtual "“TestDB ();

TablelEntry* getEntry(const std::string& s);
int addEntry(TablelEntryx entry);

int updateEntry (TablelEntry* entry);

int deleteEntry (int id);

Iz

The tables structure is depicted through its public attributes, the attribute ’string’ is
assumed to be unique and 'IDTablel’ is auto-incremented. The database class will provide
a method to query an existing entry, to delete a single entry, to add a new entry and to
alter an existing one. The entry classes methods are defined as

1 TablelEntry :: TablelEntry

2 {

3 m_IDTablel = 0;

4 m_int = 0;

5 mp-blob = NULL;

6 }

7

8 TablelEntry::” TablelEntry

9 {

10 DELETE_NULL_CHECKING (mp_blob) ;
11 }

12

13 void TablelEntry ::abandonData
14 {

15 mp_blob = NULL;

16 }

A call to abandonData will make the object abandon any associated data. This is useful
in the following case: the objects pointer type members reference external data, yet once
the object is destroyed it will attempt to delete the pointed to objects, in order to prevent
any disaster one should call abandonData and simply set the internal pointers to NULL.

26

Chapter IV. Core module

We can now take a look on the database class.

O 00O Ui W

TestDB :: TestDB (const std ::string& path) : SystemDB(path)
{}

int TestDB:: deleteEntry (int id)

3/ ———————————— open a connection
if (this—connect () = —1)
{
return —1;
}

std::string delete_query =
std:: string ("DELETE FROM ‘Tablel ¢ WHERE ‘IDTablel‘= \””)
+ Toolbox::intToString (id) + (7\7;”);

sqlite3_stmt* delete_query_statement = NULL;

int res = sqlite3_prepare_v2(

mp_handle

delete_query.c_str (),

strlen (delete_query.c_str ()),

&delete_query_statement ,

NULL

);

if (res != SQLITE.OK)

printf ("ERROR: could not create delete statement %d\n” ,res);
return —1;

}

//execute the statement
res = sqlite3_step(delete_query_statement);

//we expect only one result

if (res != SQLITEDONE)

printf ("ERROR: could not execute delete statement %d\n” ,res);

//clean up
res = sqlite3_finalize (delete_query_statement);

if (res != SQLITE.OK)
{

printf ("ERROR: could not free delete statement %d\n” ,res);

}

return —1;

48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81

Chapter IV. Core module

//clean up
res = sqlite3_finalize (delete_query_statement);

if (res != SQLITE.OK)
{

}

return 0;

}

printf ("ERROR: could not free delete statement %d\n” ,res);

TablelEntryx TestDB:: getEntry(const std::stringé& s)

{
TablelEntry* entry = NULL;

S open a connection
if (this—connect () = —1)

{

return entry;

}

J) get the rows of the table
std::string tablel_query =

std::string ("SELECT * FROM ‘Tablel * WHERE ‘string ‘= \"”) +
s + (7\” ORDER BY ‘rowid‘ ASC LIMIT 0, 50000;”);

sqlite3_stmtx tablel_query_statement = NULL;
int res = sqlite3_prepare_v2(

mp_handle

tablel_query.c_str (),

strlen (tablel_query.c_str ()),

&tablel _query_statement ,

NULL

);

if (res != SQLITE.OK)

82 {

83
84
85
86
87
88
89
90
91
92
93
94
95

printf ("ERROR: could not create statement %d\n” ,res);

return entry;

}

//execute the statement
res = sqlite3_step(tablel_query_statement);

//we expect only one result as ‘string’ is unique

if (res != SQLITEDONE)
{

printf (”%s\n” ,tablel_query.c_str ());

printf ("ERROR: could not execute statement %d\n” ,res);

o8

96
97
98
99
100
101
102
103
104
105
106
107

Chapter IV. Core module

//clean up
res = sqlite3_finalize (tablel_query_statement);
if (res != SQLITE_.OK)
{
printf ("ERROR: could not free statement %d\n” ,res);
}
return entry;
}
//wrap up the result

108 entry = new TablelEntry ();

109 unsigned charx data__ = NULL;

110

111 entry—>m_IDTablel =

112 sqlite3_column_int (tablel_query_statement , 0);
113 entry—>m_string=

114 std::string((const charx)

115 sqlite3_column_text (tablel_query_statement , 1));
116 entry—>m_int=

117 sqlite3_column_int64 (tablel_query_statement , 2);
118

119 data.-. = (unsigned charx)

120 sqlite3_column_blob (tablel _query_statement , 3);
121

122 if (data__ != NULL)

123 {

124 entry—mp_blob =

125 new Buffer(sqlite3_column_bytes(tablel_query_statement , 3));
126 memcpy(entry —>mp_blob—>get_mp_data (),

127 data__ ,entry—>mp_blob—>get_m_length ());

128 }

129

130 //clean up

131 res = sqlite3_finalize (tablel_query_statement);
132 if (res != SQLITE.OK)

133 {

134 printf ("ERROR: could not free statement %d\n” ,res);
135 }

136

137 return entry;

138 }

139

140 int TestDB:: addEntry(TablelEntry* entry)

141 {

142 //open a connection

143 if (this—>connect () = —1)

29

Chapter IV. Core module

144 {

145 return —1;

146 }

147

498 /) insert data

149 std::string add_query (?INSERT INTO 7\

150 7 ‘Tablel ‘(string ,int ,blob) VALUES(?,?,7);”);
151

152 sqlite3_stmt* add_query_statement = NULL;

153 int res = sqlite3_prepare_v2(

154 mp_handle,

155 add_query.c_str (),

156 strlen (add_query.c_str ()),

157 &add_query_statement ,

158 NULL

159);

160

161 if(res != SQLITE.OK)

162 {

163 printf (”"ERROR: could not create insert statement %d\n” ,res);
164 return —1;

165 }

166

167 sqlite3_bind_text (add-query_statement , 1,

168 entry—>m_string.c_str (), —1, SQLITE.STATIC);
169 sqlite3_bind_-int64 (add_query_statement , 2,

170 entry—>m_int);

171 sqlite3_bind_blob (add-query_statement , 3,

172 entry —>mp_blob—>get_mp_data (),

173 entry —>mp_blob—>get_m_length (), SQLITE_STATIC);
174

175 //execute the statement

176 res = sqlite3_step(add_query_statement);

177

178 //we only expect one row

179 if (res != SQLITEDDONE)

180 {

181 printf ("ERROR: could not execute insert statement %d\n” ,res);
182

183 //clean up

184 res = sqlite3_finalize (add_query_statement);
185 if(res != SQLITE.OK)

186 {

187 printf ("ERROR: could not free insert statement %d\n” ,res);
188}

189

190 return —1;

191 }

60

Chapter IV. Core module

192

193 //clean up

194 res = sqlite3_finalize (add_query_statement);

195 if (res != SQLITE.OK)

196 {

197 printf ("ERROR: could not free insert statement %d\n” ,res);
198 return —1;

199 }

200

201 return 0;

202 }

203

204

205 int TestDB::updateEntry (TablelEntry* entry)

206 {

207 //open a connection

208 if (this—connect() = —1)

209 {

210 return —1;

211 }

212

28 /))—/———F——————— insert data

214 std::string update_query = std::string (?’UPDATE ‘¢Tablel ‘¢ 7\
215 7set string=7?, int=7, blob=7, 7\

216 7 WHERE ‘string ‘=\"") + entry—>m_string + std::string (”\”;”);
217

218 sqlite3_stmt* update_query_statement = NULL;

219 int res = sqlite3_prepare_v2(

220 mp-_handle,

221 update_query.c_str (),

222 strlen(update_query.c_str ()),

223 &update_query_statement ,

224 NULL

225);

226

227 if (res != SQLITE.OK)

228 {

229 printf ("ERROR: could not create update statement %d\n” ,res);
230 return —1;

231 }

232

233 sqlite3_bind_text (update_query_statement , 1,

234 entry—>m_string.c_str (), —1, SQLITE.STATIC);
235 sqlite3_bind_int64 (update_query_statement , 2,

236 entry—>m_int);

237 sqlite3_bind_blob (update_query_statement , 3,

238 entry—>mp_blob—>get_mp_data (),

239 entry—>mp_blob—>get_m_length (), SQLITE_STATIC);

61

Chapter IV. Core module

240

241 //execute the statement

242 res = sqlite3_step(update_query_statement);

243

244 //we only expect one row

245 if (res != SQLITEDONE)

246 {

247 printf ("ERROR: could not execute update statement %d\n” ,res);
248

249 //clean up

250 res = sqlite3_finalize (update_query_statement);

251 if (res != SQLITE_OK)

252

253 printf ("ERROR: could not free update statement %d\n” ,res);
254}

255

256 return —1;

257 }

258

259 //clean up

260 res = sqlite3_finalize (update_query_statement);

261 if(res != SQLITE.OK)

262 {

263 printf ("ERROR: could not free update statement %d\n” ,res);
264 return —1;

265 }

266

267 return 0;

268 }

SimpleHydra does not provide much wrapping for the vast SQLite API, yet if one does
not need to handle binary data (i.e. blobs) it is possible to write much more readable
functions with the SQLiteToolbox class. Let’s assume we want to update an entry in
Tablel but without altering the corresponding BLOB attribute, the following function
would achieve this

1 int TestDB ::updateEntryNOBLOB (TablelEntry* entry)
2 {

3 //open a connection

4 if (this—>connect () = —1)

5 {

6 return —1;

7}

8

9 /) insert data

10 std::string update_query (UPDATE ‘CLKernel‘ set string=);
11

12 update_query = update_query +

62

Chapter IV. Core module

13 entry—>m_string + std::string(”, int=");
14 update_query = update_query +
15 Toolbox::longLongToString (entry—>m_int);

16
17 update_query = update_query + ‘WHERE string ‘=\"") +
18 entry—>m_string + std::string (7\”;”);
19
20 int res =
21 SQLiteToolbox :: executeStaticSQLiteStatement (
22 mp-handle, update_query);
23
24 return res;
25 }
The connect method of SystemDB is a protected element, thus it can only be used by
the classes themself, every method should call the connect function (multiple calls pose
no threat). The rationale behind is that once the connect method was called the object
internal database connection will be active until the object is destroyed, thus there is no
explicit disconnect method.
More examples can be obtained by studying the SH source code in ” /Core/Database” for
the various SH databases.
IV.7. Threading
One major aspect of SimpleHydra is its threading system, besides an obligatory thread
class it also features a scheduling system and thread pools. We will begin with writing a
basic thread class
1 class ExThread : public Thread
2 {
3 ExThread (){}
4 virtual “ExThread(){}
5
6 public void preFlag()
T A
8
9 }
10
11 public void postFlag()
12 |
13
4)
15
16 public void run()
17 {

63

Chapter IV. Core module

18 while (m_shutdown_flag = false)

19

20 printf (” Thread (%u/%ull) wrote to stdout\n”,
21 m_local_thread_id , m_system_thread_id);

22

23 Toolbox :: sleep_ms (500);

24 }

25}

26 }

The threads logic is implemented inside the run method, which in our example contains
the most common structure; a while loop with a sentinel called m_shutdown_flag (a mem-
ber of Thread). In order to run the thread we write

ExThread t;
t.run ();

Toolbox :: sleep_ms (5000);

/xThe thread will automatically be
stopped once the object gets destroyed.x/

t.stop ();

0O Ui WhN

The thread can be stopped explicitly with a call to stop, if a running thread object gets
destroyed, the corresponding system thread will also be stopped. This promise of thread
control can only be guaranteed iff setting the sentinel value true will induce an exit of
the (currently executed) run method. Yet often this is not the case, observe the following
situation

1 class ExThread : public Thread
2 {

3 ExThread(){m-a=true;}

4 virtual “ExThread(){}

5

6 public void run()

[

8 while (m_shutdown_flag = false)
9 {

10 while(m_a = true)

11 {

12 Toolbox :: sleep_ms (500);
13 }

14 m_a = true;

15 }

16 }

17

18 private:
19 bool m_a;

64

20

}

Chapter IV. Core module

This run method will never exit once it started, furthermore it can’t be stopped by the
sentinel value alone. In order to deal with such situations the thread class provides two
methods; preFlag and postFlag. Their purpose is to ensure that all conditions are met in
order for the sentinel to control the run method. preFlag should contain all logic which is
required before setting the sentinel to false, where as postFlag deals with all logic after the
sentinel has changed to false. Internally the thread classes stop method will call preFlag,
set m_shutdown_flag to false and call postFlag before attempting to join the corresponding
system thread. In our example

O© 03O Ul W+

{

}

lass ExThread : public Thread

ExThread () {m_a=true;}
virtual “ExThread(){}

public void postFlag()

{

m_a = false;

}

public void run()

{

while(m_shutdown_flag =— false)

{

while(m_a =— true)

{

Toolbox :: sleep_ms (500);

}
m_a = true;
}
}

private:
bool m_a;

The rationale is that m_a will be set to false, this will enable the sentinel to fully control
the run method as the inner while loop won’t be entered again. It would lead to dead
locks if one would use the preFlag method instead, as the inner while loop would exit
yet m_a could set true again and the inner while loop would be entered again before the

sentinel would be evaluated! Let us take a look at the following brain teaser

T W N~
~

class ExThread : public Thread
ExThread (boolx external_a, bool internal_a){
m.a = internal_a;
mp-a = external_a;

65

Chapter IV. Core module

6

7 if(external_a = NULL){
8 mp_t = new ExThread(&m-a, false);
9 mp_t—>run ();

10 }

11 else

12 mp-t = NULL;

13 }

14 virtual “ExThread()

15 {

16 if (mp.a != NULL)

17 xmp_a = false;

18

19 delete mp_t;

20 %}

21

22 public void postFlag()

23 {

24 m_a = false;

25}

26

27 public void run/()

28

29 while (m_shutdown_flag = false)
30 {

31 if (mp.a != NULL)

32 while(m_a = true)

33 {

34 Toolbox :: sleep_ms (5);
35 xmp_a = true;

36 }

37 else

38 while(m_a = true)

39 {

40 Toolbox :: sleep_ms (500);
41 }

42

43 m.a = true;

44 }

45 }

46

47 private:

48 bool m_a;

49 boolx mp_a;

50 ExThread* mp-t;
51 }

If we use it in the following way

66

Chapter IV. Core module

=N =

ExThread t(NULL,true);
t.run ();
Toolbox :: sleep_ms (5000);

t.stop ();

our program will most likely hang! Why? First we note that if we provide a null pointer
in the constructor, the objects run behavior will be left unchanged to our previous ex-
ample. If the thread object is provided with a real pointer, the run method will start to
continuously set the corresponding boolean variable true. This poses a problem as our
thread (7)) object will start a thread T3 itself and provide it with a pointer to its m_a
member. In order to controllably stop 77 we need to ensure that 75 won’t interfere with
our strategy of setting Tis m_a to false. A reasonable solution would be to stop 75 before
the call to postFlag. This is an example where the preFlag method comes in

© 00O Ui Wb -
—~

class ExThread : public Thread

ExThread (boolx external_a, bool internal_a){
m_a = internal_a;
mp-a = external_a;

if (external_a == NULL){
mp_t = new ExThread(&m-.a, false);
mp_t—>run ();

}
else
mp_t = NULL;
}
virtual “ExThread ()
if (mp.a != NULL)
xmp-a = false;
delete mp_t;
}
public void postFlag()
{
m_a = false;
}
public void preFlag()
{

if (mp_t != NULL)
mp_t—>stop ();

}

public void run()

67

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7

Chapter IV. Core module

}

false)

{
while (m_shutdown_flag —
{
if (mp.a != NULL)
while(m_a =— true)
{
Toolbox :: sleep_ms (5);
*mp-a = true;
}
else
while(m_a =— true)
Toolbox :: sleep_ms (500);
}
m_a = true;
}
}
private:
bool m_a;

bool* mp_a;
ExThreadx mp-_t;

This approach will take care of of the problem as it ensures that 75 will be stopped.
As long as one ensures that the sentinel has full control over the run method, the thread
will always be stoppable via stop or by deleting the object.

IV.8. Thread Pools

Thread pools are essentially a set of running threads which reside in a (mutex-based)
waiting state until a task is enqueued in the pool. We will first discuss the general task
architecture and afterwards show how to apply it in thread pools. All tasks are extensions
of the class Task, SimpleHydra provides one such extension namely the class FunctionTask,
which provides a generic way to schedule asynchronous work. Every child class of Task
must implement the method runTask, which in the case of FunctionTask looks like

0O Ul W+

—~ <

68

oid runTask(Thread* executing_thread = NULL)

//execute the function only if it exists
if (mp_execution_function != NULL)

{

//execute the desired function

mp_execution_function (executing _thread ,

mp_function_parameter);

9
10
11
12
13

Chapter IV. Core module

}

//run the callback
callback (executing_thread);
}

Before considering the details, once a task is scheduled in a thread pool, an arbitrary
thread will claim the task object, execute its runTask method and delete it afterwards.
The general idea within FunctionTask is to first call a static function via a member
function pointer mp_execution_function, this pointer is set via setmp_function. If the
function pointer is set to NULL, the call will be omitted. An important note about the
requirements for such a functions signature; the parameter list can either be (Thread*,U)
or Thread*. In other words, the function must always accept a thread pointer and can at
most have another parameter of template type U. An example for both cases would be

—
OO0 Tk WN

11
12
13
14
15

int f(Thread* t, double a)

{

if (t != NULL)

printf (”f called by thread %ull \n”,
t—>get_m_system_thread_id ());

return (int)a;

}

std::string g(Threadx t)

{

if (t != NULL)

printf(”g called by thread %ull \n”,
t—>get_m_system_thread_id ());

return std::string(”Hello”);

}

Thus the return type is arbitrary and any returned value will be discarded within the
function task. It is also important to check ¢ for NULL as it is the parameters default
value (i.e. SH does not enforce a ”legit” pointer value). Yet the call of callback also needs
to be clarified, the parent class Task provides the ability to register a so called callback
queue (CallbackQueue). A callback queue itself may contain callback objects (Callback)
which provide a very generic interface for delegating tasks. Every class which extends
Callback must implement callbackMethod, which is the method that gets called once an
object is dequeued from the callback queue. Time for another illustrative example

S UL Wi~

class ExCallback : Callback

{
ExCallback (){}

virtual “ExCallback (){}

void callbackMethod ()

69

Chapter IV. Core module

T A

8

9 }

10 }

The class ObjectCallback provides the feature to register non-static methods for execution,
just as with static functions, any registered member function must provide a signature

with either (Thread*,V) or Thread®. Let us assume the functions from before reside in a
non static context of a class ExFoo, the usage in a object callback would be

printf(”hello world\n”);

1 ObjectCallback<int ,ExFoo,double> oc_f;
2 ObjectCallback<std :: string ,ExFoo> oc_g;
3

4 ExFoo foo;

5

6 oc_f.set_mp_callee_object(&foo);

7 oc_g.set_mp_callee_object(&foo);

8

9 oc_f.set-mp_object_method (&(ExFoo::1f));
10 oc_g.set-mp_object_method (&(ExFoo::g));
11
12 oc_f.set_-mp_parameter (36);//a double value
13

14 //explicit calls
15 oc_f.callbackMethod ();
16 oc_g.callbackMethod ();

We added the explicit calls at the end to illustrate the rationale, usually oc_f and oc_g
would be registered in a callback queue which in turn would be handled by a thread pool.
For the sake of completion we show the registration

CallbackQueuex q = new CallbackQueue ();

g—>enqueueCallback(oc_f);
g—>enqueueCallback(oc_g);

oL

Thus a call to

1 g—>runElements ();

would be tantamount to

oc_f.callbackMethod ();
2 oc_g.callbackMethod ();

—_

An important note about the ObjectCallback constructor; the boolean parameter deter-
mines if the registered object should be deleted once its callback method was called (in
any case it will be removed from the queue). In order to follow our red line we register
this queue in a function task object

70

Chapter IV. Core module

1
2
3

FunctionTask<void ,void>x ft = new FunctionTask<void,void>();

ft —>registerCallbackQueue(q);

The callback queue must be a heap object as the function task takes ownership during
the assignment. Let us now venture to finally create a thread pool.

=N

/xcreate a TP with 10 threads and an TP ID of 1x/
ThreadPool tp(10,1);

tp.scheduleTask(ft);

Again we created the function task as a heap object as scheduleTask will claim ownership
and delete the function task after a thread has executed it. A possibly trivial note;
although the callback queue contains two callback objects, they will all be executed by
one and the same thread from the pool, parallelism happens on a task-object-level, i.e.
tasks will be executed concurrently and not the actions contained in the task. Once a
thread pool is no longer needed one can stop it by simply deleting the object. in our
example we enqueued function tasks without any reference to static functions, only the
callback objects will execute some (more or less useful) logic.

For the sake of brevity; there is a way of defining function tasks for static functions
without any parameters at all (i.e. not even a Thread*® parameter)

=N

SHCore :: FunctionTask<void ,
SHCore : : NO.STATIC_THREAD_REF__>x ft =
new SHCore:: FunctionTask<void,
SHCore : : NO_.STATIC_THREAD_REF___>();

This will create a function task for functions returning void and expecting no parameters
at all, e.g.

void f(){};

Another feature are persistent callback queues, which differ from ordinary callback queues
in the fact that any enqueued callback objects will not deleted but also re-enqueued after
execution

SO Wi~

//create the queue and enqueue the objects
SHCore :: PersistentCallbackQueuex c_queue =
new SHCore:: PersistentCallbackQueue ();
/xo0l will always exist in the queue until
it’s explicitly removed by the queue itself.x/
c_.queue—>enqueueCallback(ol);

The enqueued callback objects are owned by the queue and will only be deleted upon the
queues destruction (of course without calling them).

71

Chapter IV. Core module

IV.9.)\ Threads

No threading system would be complete without the possibility to use anonymous threads
(X threads). Starting an anonymous thread is done by utilizing thread pools with a single
thread.

struct lamda_t_s{
std:: atomic_bool done;
int external_int ;
ThreadPoolx tpool;

}s

/xlambda functions as wrappers for the tasks
(”mutable —> wvoid” ensures mon—constness
of captured—by—value value)x/
auto funcl = [] (Threadx*, voidx var) —> void
{
struct lambda_t_sx param =
(struct lambda_t_sx)var;

O© 03O Ui W~

I = B o S s
Ui LN — O

int external_int = param—>external_int;
ThreadPool* tpool = param—>tpool;

=
oo 3 O

printf (” Thread pool %d and parameter %d\n” ,
tpool—>get_m_threadpool_.id (), external_int);

DN DD
_ O ©

param—>done = true;

}s

A bunch of 5 threads can be started with

\V)
\V)

1 struct lambda_-t_s param[5];

2 ThreadPoolx* threadpools = new ThreadPoolx[5];
3

4 for (unsigned int i=0;i<5;++1)

51

6 threadpools[i] = new ThreadPool(1,i);
7

8 param[i].done = false;

9 param[i].external_int = i+5;

10 param[i].tpool = threadpools[i];

11

12 FunctionTask<void , void*>% ft = new FunctionTask<void,voidx > ();
13 ftl-—>setmp-_function (funcl);
14 ftl—>setmp_function_parameter (param+i);

16 threadpools[i]—->scheduleTask (ft1);

72

Chapter IV. Core module

and synchronized via

O 00O Uik W

e T o O e S e G SO Y
OO Uik Wh — O

//wait until all functions have finished
bool finished = false;

while(finished = false)

{
SHCore:: Toolbox :: sleep_ms (10);

finished = true;

for (unsigned int i=0;i<5++1i)

{
//as long as one thread (pool) hasn’t finished we will continue
if (param[i].done = false)

finished = false;
break;

}
}
}

don’t forget the clean up

S UL W N~

//clean up
for (unsigned int i=0;i<devices;++i)

{

delete threadpools[i];

}

delete [] threadpools;

In fact there exists another way of starting anonymous threads, yet it represents a rather
"dirty” approach of getting the job done. Although the following code looks more inviting
through its compactness

O 00O Uik WhN -

QUICK. THREAD_START (uniquel)

for (int 1=0;i<20;4++1){
printf(”hello\n”);
Toolbox :: sleep_ms (500);
}

QUICK THREAD_END(uniquel ,NULL)
QUICK_THREAD_JOIN (uniquel)

it induces some code overhead (one new structure declaration for a context local thread).
This becomes obvious in the expansion of the above macros

—

struct uniquel_struct{
static void* uniquel_function (void* parameter_-_) {

73

© 00~ O U~

10

12
13
14
15
16
17
18
19
20
21

Chapter IV. Core module

for (int 1=0;i<20;4++1){
printf(”hello\n”);
Toolbox :: sleep_-ms (500);
}
}
¥
pthread_attr_-t uniquel_thread_-attr__;

pthread_t uniquel_system_thread_id-_;
pthread_attr_init(&uniquel_thread_attr__);
pthread_attr_setdetachstate (&uniquel_thread_attr__

PTHREAD_CREATE_JOINABLE) ;
pthread_create(&uniquel_system_thread_id__,

&uniquel_thread_attr__

&uniquel _struct :: uniquel _function , 0);
pthread_join (uniquel_system_thread_id__, 0); \
pthread_attr_destroy(&uniquel_thread_attr__);

The expansion also indicates the way of passing external parameters to logic enveloped
by QUICK_THREAD_START and QUICK_THREAD_END, through the use of the static
parameter parameter___. In order to keep the anonymous threads referencable an unique
identifier must be specified, in the example above we have chosen uniquel as an identifier.

Of course it is not mandatory to join the started thread, i.e. the macro QUICK_THREAD_JOIN

may be omitted.

IV.10. BlitzView

For systems or environments which attempt to keep a small footprint regarding external
libraries it would be a burden to install SHs visualization module as it requires Qt which
in turn exhibits its own external dependencies. For such cases (especially for the case of
a minimal SH installation) one can turn to the class BlitzView (BV) which enables one
to display images without additional modules, the only requirement is the X11 library
(which should be present anyway for system that attempt to visualize data). We will
explain it with a short example

1
2
3
4
5
6
7
8
9

SHCore : : Image<unsigned char>x image = //...
//create and start the blitzview

SHCore:: BlitzView bv(640,480,” Image” ,30);
bv.start ();

//wait a moment for it to start
bv.waitForStart ();

74

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Chapter IV. Core module
bv.showImage (image) ;
SHCore:: Toolbox :: sleep_ms (5000);

bv.clearWindow (255,0,0);
SHCore:: Toolbox :: sleep_ms (5000);

bv.showImage (image);

SHCore: : Toolbox :: sleep_-ms (5000);
bv.setWindowSize (800,600);
SHCore:: Toolbox :: sleep_ms (5000);
for (int i = 0;1<300;++1i)
{
bv.setPixel(10+i,10,0,0,0);
SHCore:: Toolbox :: sleep_ms (100);
}
//stop the blitzview

bv.shutdownJoin ();

The last call already indicates the thread nature of BV, we begin by crating a BV instance
of size 640x480, the value 30 defines the responsivity time (in ms) for an internal keep-alive
loop (one can safely ignore this parameter and leave it at the default valu of 30). Once
the BV has been started we can issue commands like showImage, the follow up commands
should be self explanatory (otherwise consult the Doxygen documentation). BV exhibits
both, thread- safe and non thread-safe functions, similarly to the data structures the
non thread-safe methods are indicated by the prefix "fast”. A final note about closing
windows, once a window was closed its content is lost i.e. there is no hide/show mechanism
for BV windows.

IV.11. Compression

SimpleHydra also features a pragmatic interface to zlibs compression routines, which
are wrapped in a slim class called compressionBox. The following listing shows how to
compress a buffer object

0O Ul W+

unsigned int size = 5000;

Buffer testInput(size);
CompressionBox box;

box .setCompressionLevel (5);

//fill the buffer ’testInput’ with some data

75

10
11

Chapter IV. Core module

/).

Bufferx compressed = box.compressNoStream (&testInput);

This example compresses a buffer of 5000 bytes into a new buffer called compressed,
note that we are working with memory resident elements, i.e. the input and output
will reside in the process’s memory (as indicated by the methods suffix 'NoStream’).
Currently SH only supports that form of compression, later versions might include support
for stream based compression, i.e. the possibility for feeding data incrementally to the
object. The compression level lies in the range between 0 (no compression) and 9 (maximal
compression), any compressed data can be decompressed through e.g.

Bufferx decompressed = box.decompressNoStream (compressed , size);

where size is the decompressed size, this parameter does not have to be set, yet if the
original datas size is not specified, the decompression will be mucht more inefficient. Note
that the usage of this parameter is boolean, either set the size or leave it at the default
value of 0! If one desires to work with files instead of buffers the following methods can
be used instead

=W N

void compressFile(const std::string& input_file ,
const std::string& output_file);

void decompressFile(const std::string& input_file ,
const std::string& output_file);

which should be self explanatory (the compression method will use the previously set
compression level). Keep in mind that every zlib compressed data can be handled by
these methods, no matter where it resides be it buffers or files, thus even externally
compressed (headerless !) data can be handled by this class. The following methods
allow for some performance tweaking

—

void setDecompressNoStreamSegmentSize(unsigned int size);
void setFileReadChunkSize (unsigned int size);

where the first one specifies the read ahead step for buffer decompression in case of an
unknown original size, where the second method does the same for the case of files. Note
that for file decompression there is no parameter regarding the original size, which is
due to the fact that files are considered to be a streaming data source. Later versions of
SH might add support for non-streaming decompression. For the sake of completion we
conclude this section with an example of file de-/compression

\V)

box.setCompressionLevel (9);
box.compressFile (”input.txt”, ”output.txt”);
box.decompressFile(”output.txt”, 7input2.txt”);

76

Chapter IV. Core module

IV.12. Processes

Our framework also provides access to deeper system elements like e.g. processes, in this
section we will discuss the corresponding classes Process, ProcessHelper, ProcessToolbox
and UsageLimiter. Regarding the attributes and behavior of Linux system processes
we defer the user to the corresponding MAN pages and literature, in the following we
will assume the reader to be familiar with the basic mechanics of system processes. An
example can often explain things better than a thousand words

O 00O Ui W

Process p(22693);
p.printProcInfo ();
for (unsigned int i=0;i<20;++1)

{
p.updateTimeValues();
p.printCPUTime ();
SHCore :: Toolbox :: sleep_ms (1000);
}

An instance of Process represents and object oriented access to a system process, in this
case we create the object with a PID 22693 as constructor parameter. The PID specifies
the system process to which this instance will correspond, if no PID is specified the object
will be considered unprimed, which results in errors on most of its methods. In our exam-
ple we first call update Time Values which will print all available process attributes on the
CLI, this is followed by a for-loop which updates the processes CPU times and print them
on the CLI which is followed by a pause of 1 second. If the object was constructed with no
PID it can be primed by using update PID, the second parameter in the classes constructor
and updatePID specifies if the CPU times of the processes children should be summed up
in the processes CPU times, the default value TIME_DETAIL_ WITHOUT_-CHILDREN
sets this to be false. The following methods require the calling process to have kill-rights
to the mapped process, e.g. by running under root or the same user id as the mapped
process

=W N

int killProcess();

int stopProcess ();

int resumeProcess();
int interruptProcess();

These methods should be self explanatory, the following methods require even root rights

—_

int setAffinity (FastKTuple<unsigned int> &cpus);
int setPriority (int prio);

The mapping between a system process and the corresponding object is a loose one,
i.e. the system process can vanish without informing the object. In order to address
such situations one can use the method doesExist which reliably checks if the process

7

Chapter IV. Core module

still exists. Technically it checks if a process with the specified PID exists and if this
process has the right start time (upon mapping/priming the object records the processes
start time). The class contains one static method called getSelf which returns a process
instance to the calling process, this is useful for e.g. enabling a process to control itself by
checking its consumption of CPU cycles. Additionally the class contains a vast amount
of public member variables which correspond to the processes system attributes, we will
only elaborate on a few of them as they are linked to certain class methods. The member
m_cpu_usage_perc contains the processes average CPU usage (in percent) at the last call
of update TtmeValues, this average value is calculated as follows

t(werage = (10 - a) * t(werage + o * AJ/Atv (IV]')

which is a linear interpolation between the last percentual usage and the new one, AJ
represents the jiffie difference and At the time difference between the last and current
call to updateTimeValues. One can view this calculation as an averaging over all updates
with an exponential decay

Theorem 2. Let t be the value for t,, which is the initial average time. The averaging
rule

tav,i = (10 - Oé) * tav,ifl + o % 12'71 (IVQ)
can be expressed as
n—1
tavn = (1=)" T+a) (1—a)" (IV.3)
=0

Where t; = (AJ/At); represents the usage in percent between update i and i — 1.

Proof. Let us first note that

tav,O { (IV4)
t(w,l = E— OzE+ Ozli) (IV5)
taU,Z = (1 - OZ)2£+ OZ(]. — Oz)EO + Ozfl (IV6)
which in turn leads to
tav,?) = (1 - &)3£+ Oé(l - O4)250 + 05(1 - Oé)gl + OéEQ (IV?)

This allows us to conclude with a complete induction over n. The statement holds for
n = 0, let the statement now be valid for n — 1 i.e.

n—2
tawnet = (L—a)" 'H+a) (1-a)" > (IV.8)
=0

78

Chapter IV. Core module

by simply inserting this equation into that of ¢,, , we obtain the desired expression in the
same manner as for tav,1s tav,2s tav,3-

n—2
tawn = (L—a) [(1—a)"M+ad (1—a)" 7]+ oty (IV.9)
=0
n—2
= (1—a)"t+a) (1-a)" "+ at, (IV.10)
=0

n—2

= (I1-a)t+a Z(l —)" a1l — o) D-mbg L (IV.1T)
i=0
n—1

= (I—a)'i+a) (1-a)" ' (IV.12)
i=0

O

The proof (see t4y 1, tav2, tav,3) also shows the dampening effect for previous utilization

values, one should also note that setting a@ = 1 completely removes any predecessing
utilization value. This approach is useful for situations where the utilization has sporadic
high/low peaks, which wouldn’t be recorded in a naive approach (i.e. for « = 1). With
a < 1 one can predictavely smooth out any occuring fluctuations for the average value.
A last remark regarding the situation in which the underlying system process ceases to
exist, any call to updateTimeValues will record a new jiffie delta of 0, i.e. no additional
CPU usage will be summed up and the average consumption will continously decrease
with any following call to the mentioned method.
Let us now discuss the remaining classes, ProcessHelper currently provides only the static
method getAllProcesses, which in as the name suggests returns a list of all currently
existing processes in the system. The class ProcessToolbox also contains only one static
method called spawnProcess which is utilized for e.g. deploying Java based SHU server
applications. Let us take a brief view on how this is done

00 O ULk Wi+

FastKTuple<std :: string > params(3);
params.setElement (0, "—cp”);
params.setElement (1, Toolbox:: getCurrentDirectory ());
params. setElement (2, ”Main”);
Processx java_proc =
ProcessToolbox::spawnProcess(” /usr/bin/java” ¶ms);

This shows how to spawn a new process with several parameters and obtain an object
mapping to it.

79

Chapter IV. Core module

The class UsageLimiter is another practical tool, it allows to register several processes
in it and limit the amount of consumed CPU cycles. Note that in order to utilize this
functionality it is mandatory to have Kkill-privileges for all these processes! An usage
example would be

—_

QOO0 Uk W+~

UsageLimiter ul (0.9);
ul.setTimeSlotSize (500000); //500us
ul.setPerc (0.5);

ul.registerProcess (5036);
ul .registerProcess (10436);

ul.start ();
Toolbox :: sleep_ms (5000) //5s
ul .stop ();

Now this requires some explanation; The limiter operates on a specified time slot, in
our case we set this slot to be an interval of 500us. The processes will be limited for
that specific amount of time, here we define that all registered processes can consume
at most 50% of these 500us, i.e. both registered processes can consume a combined
amount of 250us CPU time. Furthermore the start and stop methods already indicate
the limiters thread nature, i.e. the limiter will operate from a new thread. Setting a
too low value for the time slot might induce a serious overhead since after each passed
'time slot” amount of time the average time for all registered process objects will be
updated, i.e. the corresponding files in /proc will be parsed. Yet on the other hand a
too high values will make the processes less responsive. The optimal default values must
be obtained through evaluation on the particular systems. The limiting system provides
an interesting adaptation over time which we will briefly explain through the following
pseudo code

80

Chapter IV. Core module

Algorithm 4 Limiting algorithm for processes

1: process_set_cpu_time = 0;

2: work_time = 0;

3: sleep_time = 0;

4. work_rate = m_perc; — slot percentage

5: while limiter active do

6: resume all processes;

7 work_time = work_rate*m_time_slot;

8: sleep_time = m_time_slot - work_time;

9: sleep_ns(work_time);

10: stop all processes;

11: sleep_ns(sleep_time);

12: update average CPU times for all processes;

13: — sum up the percentual average CPU usage of each process
14: process_set_cpu_time = Y PC7 t,,(4);

15: work_rate = min(work_rate / process_set_cpu_time * m_perc, m_perc);

16: end while

The actual implementation differs in some minor aspects, yet follows the outlined
design. During the first iteration the processes will work for work_rate xtime_slot, e.g. in
our example 250us, the sleep time will equal 0 during this iteration thus the for loop will
swiftly jump to the beginning. At the end the loops end the work rate will be recalculated,
now two different situations may occur:

1. The processes consumed less than (or equal) the allowed time in the time slot, i.e.
work_rate /process_set_cpu_time > 1 which implies work_rate/process_set_cpu_timex
m_perc > m_perc. In this case the next iteration will be identical to the first one
since the minimum function return m_perc (i.e. work_rate = m_perc as before).

2. The processes consumed more than the allowed time, i.e. work_rate/process_set_cpu_time <
1 which implies work_rate/process_set_cpu_time x m_perc < m_perc. Now the work
rate will be reduced for the next iteration, i.e. the processes will work for a shorter
time and sleep for a longer time in order to compensate for this large consumption.
In other words; the process will have less time to execute in the time slot which will
hopefully reduce the amount of consumed CPU cycles to the desired maximum of
250us within 500us.

If a registered system process should die within an active usage limiter, the processes time

will not be considered any more. A usage limiter can be restarted an arbitrary amount
of times.

81

Chapter IV. Core module

IV.13. Interprocess Communication

Interprocess communication (IPC) plays a crucial role in SHs cluster functions, we will
not cover SysV or POSIX shared memory in detail and assume the reader to be familiar
with the fundamental concepts. SimpleHydra provides wrapper classes for both interfaces,
SysV and POSIX, please note at this point that due to the nature of IPC the following
classes should be seen as husks which are primed with the actual memory objects.

The general interface to shared memory is provided through the class SharedMemory

=N

void* getAttachedMemory ();
size_t getSize ();

int markDisposable ();

int detachMemory ();

The rationale behind this design is as follows. Shared memory is usually disposed by
the operating system once all involved processes have explicitly declared not to be inter-
ested in it anymore and the memory was marked as disposable by one process, a call
to markDisposable will issue a corresponding system call, the actual memory will not be
deleted until all processes which have mapped the memory call detachMemory. Note that
if a process exits it will automatically unmap any shared memory, yet it will not automat-
ically mark the shared memory as disposable. The method getAttachedMemory returns
a void pointer to the beginning of the corresponding shared memory whereas getSize will
return the size of the shared memory. In the following sections we will explain the system
interface specific class API and show how to actually allocate shared memory and prime
wrapper objects. The reader should also refer to the Doxygen documentation in order
gain a more detailed understanding of a classes behavior.

IV.13.1. SysV Shared Memory

Let us begin with a short example of how to create a shared SysV memory segment inside
a program pa

O 00O Ui W~

e Sy
W= O

SHCore: : SharedMemorySysV shared_memory (0777);

//create a SysV shared memory block of at least
/ /1024 bytes under the ID 2004
shared_memory . allocateMemory (2004 ,1024);

//...use the memory

//detach the memory
shared_memory . detachMemory () ;

//mark it for deletion
shared_memory . markDisposable ();

82

Chapter IV. Core module

Another program pg would be able to use this memory as well by simply attaching it
through the corresponding ID

N O UL Wi

SHCore : : SharedMemorySysV shared_memory (0777);
shared_memory . attachMemory (2004 ,1024);

//...use the memory

//detach the memory
shared_memory . detachMemory () ;

In this example p4 is responsible for freeing the memory, one has to keep in mind that
shared memory will only be freed if it has been marked as disposable and all processes
have detached it (detachment occurs implicitly once the process exits, yet marking it as
disposable does not happen automatically). One also needs the correct access rights to
the memory segment otherwise the attachment process will fail.

IV.13.2. POSIX Shared Memory

Shared memory according to the POSIX standard has the benefit of being indexed through
arbitrary string instead of numbers, which eliminates the need for e.g. hash functions to
obtain unique memory IDs. The remaining elements are identical to SimpleHydras SysV
wrapper, i.e. the memory is created via

SO0 Tk WN

—

SHCore : : SharedMemoryPOSIX shared_memory (0777);
shared_memory . allocateMemory ("memTEST” ,1024);

//.. do something with the shared memory

//detach the memory
shared_memory . detachMemory () ;

//mark it for deletion
shared_memory . markDisposable ();

and indexed via memTest afterwards pg could use it via

N OO W

SHCore : : SharedMemoryPOSIX shared_memory ;
shared_memory . attachMemory ("memTEST” ,1024);

//.. do something with the shared memory

//detach the memory
shared_memory . detachMemory () ;

83

Chapter IV. Core module

IV.13.3. Shared Mutexes

A shared mutex is essentially an ordinary mutex memory block which resides in a shared
memory area, the required size for storing a mutex can be obtained via

SHCore : : SharedMutex : : getRequiredSMSize ();

Once the shared memory (shared_memory) has been created one can instantiate a shared
mutex in pa as follows

=N

SHCore :: SharedMutex s_mutex(&shared_memory);

//create the mutex
s_-mutex . createMutex ();

Afterwards the mutex can be used just like any ordinary mutex

e Sy
W= O

© 00 O ULk WD -
—~

//wait 10s
printf (”Shared mutex ready\n”);
SHCore: : Toolbox :: sleep_ms (10000);

s_mutex .lockMutex ();
for (unsigned int i=0;i<30;4++1i)

printf ("PID 1 %d\n” ,i);
SHCore:: Toolbox :: sleep_-ms (1000);
}

s_mutex . unlockMutex ();

s-mutex . destroyMutex ();

The program pg could then use this mutex and synchronize its operation with p4 through

O© 0O Ul W

O e T e S G G S G ST Y
OO Ul W N~ O

SHCore : : SharedMemorySysV shared_memory (0777);
shared_memory . attachMemory (2004,
SHCore : : SharedMutex :: getRequiredSMSize ());

SHCore : : SharedMutex s_mutex(&shared_memory);

//load the existing mutex
s_mutex .loadMutex ();

//commence work
s-mutex .lockMutex ();
for (unsigned int i=0;i<30;4++1i)

printf ("PID 2 %d\n” ,i);
SHCore:: Toolbox :: sleep_-ms (1000);

}

s-mutex . unlockMutex () ;

84

Chapter IV. Core module

18
19 //detach the memory
20 shared_memory .detachMemory () ;
A call to destroyMutexr will destroy the mutex which resides in the shared memory, yet
this is a very critical operation since there is no guarantee that no other process currently
holds a lock on that mutex. SimpleHydra currently provides no means of ensure a safe
mutex destruction, yet the idea to solve this problem is to allocate an array of shared
mutexes and manage the access to this array via a central and shared r/w mutex (i.e.
sharedRW Mutex, which is identical to an ordinary shared mutex except to the read and
write lock operations according to pthread_rwlock-t) as follows:
pp obtains the lock through
1 rw_mutex .lockMutexR ();
2 if (scmem[0]!=0)
3 s_mutex.lockMutex ();
4 rw_mutex . unlockMutex () ;
while p4 uses
1 rw_mutex .lockMutexW () ;
2 s_mutex.lockMutex ();
3 //indicate the destroyed mutex
4 s.mem|[2]=0;
5 rw_mutex . unlockMutex ();
6
7 s_mutex.destroy ();
in order to destroy the shared mutex once it is obtained (s-mem is a IPC shared char
array in which each char element represents an available mutex, i.e. 0 for unavailable and
1 for available, in our example we enumerated the mutexes in a way that the third char
element reflects the existence of s_mutez). Keep in mind that the same problem occurs at
the point of a mutexes creation, yet it can be solved analogously the previous discussion.
IV.13.4. Shared Semaphores
Shared semaphores are very similar to mutexes (only the names of the corresponding
functions are different), thus we will only show a brief example on how to instantiate one.
1 SHCore:: SharedSemaphore s_sem(&shared_memory);
2
3 //create the semaphore with initial value 1
4 s_sem.createSemaphore (1);

The synchronization problems regarding the creation and destruction of shared semaphores
persist in the same way as previously in the context of shared mutexes, yet this also implies
they can be solved in the same manner.

85

Chapter IV. Core module

IV.14. Cryptography

The cryptography section of the core module features a huge set of wrapper classes to
methods within LibTomCrypt. This includes access to hashing functions, block ciphers in
various chaining modes, public key cryptography and PRNGs. Due to the large amount of
supported ciphers we can’t possibly discuss every corresponding class, instead we will focus
only on one representive class of each part (as the others are mostly identical regarding
their structure).

IV.14.1. Block Ciphers

Each cipher exists as an extension of the class CipherBox which provides the following
interface

O© 0O UL W

R R N N R e e el el e e
TR W, OO0 O WND —O

int encryptFile (std::string input_file ,
std::string output_file);

int decryptFile (std::string input_file ,
std::string output_file);

BasicBufferx encryptBuffer(BasicBufferx buffer);
BasicBufferx decryptBuffer(BasicBufferx buffer);

int encryptBufferRaw(BasicBufferx input_buffer ,
BasicBuffer+* output_buffer);

int decryptBufferRaw(BasicBufferx input_buffer ,
BasicBuffers* output_buffer);

int encryptBuffer(BasicBuffers* input_buffer ,
BasicBuffer+* output_buffer);

int decryptBuffer(BasicBufferx input_buffer ,

BasicBuffer* output_buffer);

int encryptFileRaw (std::string input_file ,
std::string output_file);

int decryptFileRaw (std::string input_file ,
std::string output_file);

int encryptFileInPlaceRaw (std:: string input_file);
int decryptFileInPlaceRaw (std:: string input_file);

The details for each function can be found in the Doxygen documentation, we will just
briefly outline the already self explanatory methods. The first two methods should pri-
mary be used for any kind of chaining which does not allow arbitrarily sized blocks (e.g.
CBC). The encrypted files will contain a small header which usually contains only the orig-
inal data size. Methods 3 and 4 do the same but for data within buffers, whereas method

86

Chapter IV. Core module

5/6 should only be used for chaining modes which support arbitrarily sized blocks (e.g.
counter mode CTR) as they won’t add any header information. Methods 7/8 are the
counterparts for the first two, these should also only be used with chaining modes which
support variably sized blocks (e.g. CTR). The last two member functions are special cases
of the previous two, these should be used for very large files since all the previous file en-
cryption methods will load the input file into memory and encrypt them into memory as
well. The *cryptFilelnPlaceRaw methods will only preload small chunks of the files and
write the resulting cipher text immediately back to the disk. In order to further explain
the usage we will discuss the class AESCipherTert with an example

O 00O Uik W

32

unsigned char key[32] = {0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
unsigned char iv[16] = {0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
SHCore: : AESBox aes_box (key, iv, 32, CipherBox:: CHAINING.MODECTR);
//one full block of 16 bytes
unsigned char pt[16] = {0x01, 0x02, 0x04, 0x08,
0x10, 0x02, 0x01, 0x03,
0x05, 0x06,0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
SHCore:: Buffer pt_buffer (pt,16,true);
pt-buffer.printfBuffer (SHCore:: Buffer : : BUFFER_ DATA TYPE UCHAR) ;
SHCore:: BasicBufferx ct_buffer =
aes_box.encryptBuffer(&pt_buffer);
ct_buffer —>printfBuffer (SHCore:: Buffer : : BUFFER_DATA TYPEUCHAR) ;
SHCore:: BasicBufferx pt_buffer2 =
aes_box.decryptBuffer(ct_buffer);
pt_buffer2 —>printfBuffer (SHCore:: Buffer : : BUFFER_DATA TYPE_UCHAR) ;
¥

Here we have used AES with a 32 bytes key, overlooking the fact that it is set to zero
we note that one could also specify a smaller key, the accepted sizes are listed in the
Doxygen documentation for each cipher class (the same holds for any other parameter).

87

Chapter IV. Core module

Once the class was instantiated with an initialization vector (IV), key and chaining type
we can continue to the en-/decryption of some dummy data. Since we have chosen the
counter mode chaining out input data does not have to be aligned to the ciphers native
block size. The Interface usage of BasicBuffer instead of Buffer, as data often exists in
a plain array we can use PrimitiveBuffer (a subclass of BasicBuffer) instances to carry
the array into the cryptographic methods (a primitive buffer will never take ownership of
the actual data). To be technically correct we have to mention the existence of a subclass
between CipherBoz and the actual cipher class, which is called TomCrypt Wrapper. Yet
this is merely an intermediate segmentation step which provides no additional interface
functions, thus the user might safely ignore this class. Note that once set the chaining
mode can not be changed, the same holds for the key and IV.

IV.14.2. Hash Functions

Each available hash function is a subclass of HashFunction, which exhibits the following
interface

O© 0O Ui W

I
N = O

Jf————— - Single element hashing

BasicBufferx getSingleHash(BasicBufferx input);

int getSingleHash(BasicBuffer* input, BasicBuffers output);
BasicBufferx getSingleFileHash (std::string input_file);

int getSingleFileHash (std::string input_file , BasicBufferx output);
Jf————— - Continuous hashing

int process(BasicBufferx input);

BasicBufferx getHash ();

int getHash(BasicBufferx output);

virtual void reset ();

The details can again be found in the Doxygen documentation. Every hash function can
operate either as a hasher for single buffers or as a data accumulator until the actual hash
of all accumulated data is retrieved. Do never mix these operation modes! The first mode
is used via the first 4 methods which are already explained mostly by their name. The
last three methods correspond to the second operating mode, the object is fed with data
via calls to process until the hash is retrieved via getHash. Of course no input data is
buffered via process only the internal hash functions state is updated. Again an example
for illustration

1
2
3
4
)
6

MD5HashFunction md5;

//file hash test

SHCore:: BasicBufferx output = md5.getSingleFileHash (” test.txt”);
output—>printfRawBufferHex ();

delete output;

88

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Chapter IV. Core module

//——— state test
unsigned int size = 1;
unsigned charx pt =
DataGenerator<unsigned char >::getRandomNumberArray (0,255, size);
SHCore:: Buffer input(pt,size ,false); //will also delete the array
//two iterations
md5. process(&input);
md5. process(&input);
output = md5.getHash ();

output—>printfRawBufferHex ();

delete output;

Here we get the MD5 hash for a file called test.txt and later use the same object as
an incremental hasher which is fed twice the same input. Note that after a call to any
”get method” the usage of the hash object can safely be switched to the other mode of
operation, e.g. after the last call to getHash in our example we can use the object for
instant hashing via e.g. getSingleHash.

1V.14.3. Pseudorandom Number Generators

Pseudorandom number generators (PRNGs) play an important role in cryptographic sys-
tems (as we will see in the case of public key ciphers), SimpleHydra provides two kinds
of PRNGs; a set of algorithmic PRGNs (e.g. Fortuna, RC4 or Yarrow) and one secure
PRNG (which extracts random data from /dev/random). All PRNGs extend the class
PRNG which provides the following interface

RO OO0 Ui WN -

—_ =

int addEntropy(BasicBufferx entropy_buffer);
int sealEntropy();

int resetPRNG ();

BasicBuffer*x retrieveEntropyState ();

int setEntropyState(BasicBufferx entropy);

BasicBufferx getRN (unsigned long length);

89

12
13
14
15
16
17

Chapter IV. Core module

int getRN (BasicBufferx output);
prng_statex getState ();

int getldx ();

Every PRNG must first be seeded with some entropy, this is done through addEntropy
(multiple calls possible, each will add more entropy), afterwards the PRNGs accumulated
entropy must be sealed through sealEntropy. A PRNG with a sealed entropy pool can be
used to obtain pseudorandom numbers by calling getRN, in order to update the PRNG
with fresh entropy one has to call resetPRNG and repeat the previously described steps of
adding entropy. The member functions retrieve EntropyState and setEntropyState provide
a way of retrieving the underlying PRNGs state, this can later be used to re-prime a PRNG
to the previous state, a call to setEntropyState will replace the PRNGs current state (i.e.
replace the current entropy but >won’t< seal the entropy pool). A similar description
applies to the methods getState and getldx which also access internal PRNG elements, we
won’t explain them at this point and defer the reader to the LibTomCrypt documentation
and SH source code. Let us view an example of applying an algorithmic PRNG

O© 0O UL W

o S SRy
T W N —=O

FortunaPRNG prng;
const charx seed = "hello world”;
PrimitiveBuffer buffer ((unsigned charx)seed,sizeof(seed));

prug.addEntropy(&buffer);
prng.sealEntropy ();

for (int i=0;i<15;4++1)

{
BasicBufferx output = prng.getRN (40);
output—>printfRawBufferHex ();

delete output;

}

Here we obtain 15 40 byte sequences via the Yarrow PRNG which is seeded with 11 bytes
from the string ”hello world”. This also demonstrate the usage of PrimitiveBuffer as a
husk for plain arrays.

The class SecurePRNG behaves quite different as it merely represents an interface to /de-
v/random. This implies that addEntropy, sealEntropy, resetPRNG, retrieveEntropyState
and setEntropyState have become meaningless. Yet a new method has been added to the
PRNG interface

int kickstartPRNG (PRNG+ prng, int entropy-bits);

90

Chapter IV. Core module

This one allows to prime any PRNG instance through /dev/random i.e. the PRNG will be
augmented with entropy_bits bits from /dev/random and its entropy pool will be sealed
afterwards. It is important to note that getState will return NULL for the secure PRNG.

IV.14.4. Public Key Cryptography

Currently SimpleHydra only provides access to RSA encryption and Diffie Hellman key
exchange, later versions will also provide access to ECC. Le us first discuss the RSA
classes RSA and RSAKey, an RSA key can be constructed with the help of the RSA class
and a PRNG

O 00O Uik W -

SHCore::RSA rsa;

SHCore : : FortunaPRNG prng;

const charx seed = "hello world”;

SHCore:: PrimitiveBuffer buffer ((unsigned charx)seed, sizeof(seed));
prug.addEntropy(&buffer);

prug.sealEntropy ();

rsa . makeKey(&prng ,1024);

rsa.printKey ();

SHCore: : RSAKey*x key = rsa.getKey ();

key—>printKey ();

Here we create an RSA key of length 1024 (bits), all the keys elements can be accessed via
RSAKeys public attributes

O© 0O Ul W

O e T e S G G S G ST Y
OO Ul W N~ O

bool m_private;

unsigned charx mp_e;

unsigned charx mp_d;

unsigned charx mp_N;

unsigned charx mp_p; //p factor of N

unsigned charx mp.q; //q factor of N

unsigned charx mp_qP; // 1/q¢ mod p CRT param
unsigned charx mp.dP; //d mod (p - 1) CRT param
unsigned charx mp.dQ; //d mod (q- 1) CRT param

//length in bytes

long long m_e_length;
long long m_d_length;
long long m_N_length;
long long m_p_length;
long long m_q_length;

91

18
19
20

Chapter IV. Core module

long long m_qP_length;
long long m_dP_length;
long long m_dQ_length;

Each element is saved as binary data in the corresponding character array (the first array
element is the most significant byte of the integer), all RSA attributes are unsigned thus
there is no indicator for the sign i.e. all attributes are plain (i.e. not encoded) positive
integers whose bits are stored in each character array. The parameter m_private indicates
whether the key is a private key i.e. if it contains d and e (and corresponding intermediate
values). When we created our RSA key in the example from above we created a private
key, keep in mind that each method of RSA which expects a PRNG as parameter assumes
the PRNG to be ready (i.e. have a sealed entropy pool). The complete class interface
consists of

O 00O Uik W -

DO DD DD b= = = b e e
N OO0 Uk WwWwhdH—O

int makeKey (PRNG+ prng, int bit_length = 1024,
long e = 65537);

BasicBufferx encryptKey (PRNGx prng, HashFunctions hf,
std::string tag, BasicBufferx key);

BasicBufferx decryptKey(HashFunctionx hf,
std::string tag, BasicBufferx cipher_t);

BasicBufferx getSignature (PRNG+ prng, HashFunctions hf,
BasicBuffer+ message, unsigned long salt_size = 8);

int verifySignature (HashFunctionx hf, BasicBufferx signature,
BasicBufferx message, unsigned long salt_size=8);

int exportKey(BasicBufferxx buffer , bool export_as_private = true);
int importKey(BasicBufferx buffer);
RSAKey* getKey ();

void printKey ();

We already met the first method, the next two member functions allow the encryption
of keys (e.g. for symmetric ciphers), note the requirement for a hash function which is
used to hash the given tag (which can be an empty string). In order to decrypt the key
again one needs to provide not only the right decryption key but also the previously used
tag. Every key will be encrypted according to PKCS_1_OAEP. Through getSignature one
can obtain the signature for a given message, verification is done with verifySignature.
Signatures will be created acording to PKCS_1_PSS. Once a key has been generated it
can be exported into a buffer via ezportKey, the second function parameter specifies if the
full key should be exported as such or if only the public key part should be inserted into

92

Chapter IV. Core module

the buffer (this method will not change the current internal key). A call to importKey
will import a previously exported key, this will replace any active internal key.

We conclude the section and chapter with a brief discussion about SHs support for the
Diffie Hellman key exchange.

O© 0O Ui W

WWWWWWWNNNNNNDNDNNDNDNRFREFRFRE R
DU W OOOOIDD R WD OO U WN —=O

DHKeyExchange dhl;
DHKeyExchange dh2;
FortunaPRNG prng;
FortunaPRNG prng2;

//create the private keys
dhl.createKey(&prng ,128);
dh2.createKey(&prng2,128);

//export the public keys
BasicBufferx dhl_pk = dhl.exportKey ();
BasicBufferx dh2_pk = dh2.exportKey ();

BasicBufferx secretl = dhl.createSharedSecret(dh2_pk);
BasicBufferx secret2 = dh2.createSharedSecret(dhl_pk);

//compare the secrets
if (secretl —>get_m_length () != secret2—>get_m_length ())

{
}

else

{

printf ("ERROR: secrets differ in size\n”);

for (unsigned int i=0;i<secretl—>get_m_length();++1)

{
if(secretl —>get-mp_data ()[i] != secret2—>get_mp_-data ()[i])
printf ("ERROR: secrets differ %u\n”,i);
printf (”"%02x 7 ,secretl—>get-mp-data ()[i]);

Yprintf (?\n”);

//free memory
delete dhl_pk;

delete dh2_pk;
delete secretl;
delete secret2;

It is crucial to consider the Doxygen documentation before using this class as it pro-
vides some important information about the member functions. In this example we have
first created the private and public keys via createKey, the PRNG is expected to
be uninitialized otherwise it will be reinitialized through a secure PRNG. We created
two objects dh1_pk and dh2_pk which correspond to each side in the DH key exchange

93

Chapter IV. Core module

protocol, afterwards the public key of each object is obtained by exportKey. In a practical
implementation both sides would exchange these keys and later call createSharedSecret
in order to calculate the common key, the example ends by comparing the generated
common key of both communication parties.

IV.15. System Elements

IV.15.1. CPU

The class SystemCPU provides a simple way of querying the systems CPU information
(which is obtained via the file ’/proc/cpuinfo’). SH considers any logical CPU as a system
CPU thus on a system with e.g. two physical CPUs, each with eight core one could access
their description through

O© 0O Ul W+

FastKTuple<SystemCPUx> cpus;

for (int i=0;i<16;4++1)

{
cpus . add (new SystemCPU(1i));

cpus[i].printCPUlnfo ();

}

cpus . eraseWithDestructor ();

All CPU attributes are accessible through the classes public members, a call to loadInfo
will update the CPU information, this is useful for e.g. situations in which the clock rate
has changed.

During the process of deserialization an empty object is required, i.e. a SystemCPU
instance which is not associated with any CPU, such an object can be obtained by using
the default constructor.

IV.15.2. System Disks

The following two lines are enough to access a system disks attributes

—

SHCore:: SystemDisk sda(”/dev/sda”);
sda.printInfo ();

just as in case of SystemCPU all disk attributes are accessible through the classes public
members. Yet there is a subtle difference when it comes to the contained partitions as
each of them is described by an instance of DiskPartition. Since these classes use the
blklib library one may need root privileges to access the disk information, furthermore
any information about mount points for partitions will only be obtained if the partition

94

Chapter IV. Core module

is actually mounted.

During the process of deserialization an empty object is required, i.e. a SystemDisk
instance which is not associated with any disk, such an object can be obtained by using
the default constructor.

IV.15.3. Network Interfaces

With the help of the class InterfaceToolbox one can easily access all existing NICs in a
system. InterfaceToolbox provides a set of static functions

=W N

static FastNCSList<NetworkInterfacex>x getAlINICs();

static FastNCSList<NetworkInterfacex>x getAllRealNICs();
static NetworkInterfacex getFirstRealNIC ();

static NetworkInterfacex getNIC(const std::string& nic_.name);

As the names already give a hint about the underlying function we will only briefly
elaborate on them. A ”real” NIC is any NIC besides the systems loopback device (i.e.
”10”), yet one has to be careful when it comes to system which provide a different naming
scheme, SH assumes that "10” is the loopback device. For details we defer the reader to
the Doxygen documentation.

IV.15.4. System Users

As before in the case of system disks we begin with two lines of code

—_

SystemUser user (”root”);
user . printInfo ();

which also might require root privileges in order to retrieve the information for all users.
Instead of using a user name one might also use the corresponding UID. If a list of all
existing users is desired

QSOOI UL WN

—

FastNCSList<SystemUser*>x users
= SystemUser:: getAllSystemUsers ();
for (auto it = users—>getStart ();
it != users—>getEnd();++it)
{

it .getElement()—>getm_data()—>printInfo ();
pI’il’ltf(77 __________ \nw);

¥

users—>destroy ();

delete users;

will get the job done. The user password is obtained from the shadow file, this im-
plies that no password will be obtained on system which still write their users password
into the passwd file. Since there are different ways of hashing the password (e.g. MD5,

95

Chapter IV. Core module

SHA256, SHA512) the static function getEncryptedPassword expects an 1D string param-
eter ("1"=MD5, 75"=SHA256, "6”"=SHAb512) in order to return the right hash value.
Also keep in mind that each hash value is of the form ”idsalt$hash”.

IV.15.5. System Groups

In order to keep it brief, information about system groups is obtained very very similar
to the case of system users

—_

SO0 Uk W+

FastNCSList<SystemGroupx>% groups
= SystemGroup:: getAllSystemGroups ();
for (auto it = groups—>getStart ();
it != groups—>getEnd();++it)
{

it .getElement()—>getm_data()—>printInfo ();
printf ("————\n”);

}

groups—>destroy ();

delete groups;

Yet there is one major difference and possible source for serious memory overhead, each
group object will carry a list of corresponding user objects, for systems with many large
groups this might induce problems if many group objects are instantiated.

IV.15.6. System Information

The class SystemInformation provides the means to obtain a summary of many system
specs, e.g. all system CPUs, meta data for a list of sytem disks, the system log (i.e. the
all systemd kernel messages) and currently used memory. Be aware that in case of a large
system log an object may exhibit a very large memory footprint.

Tk W N~

FastKTuple<std :: string> disks;
disks.push(”/dev/sda”);

SystemInformation info(&disks);
info.printSystemInformation ();

During the process of deserialization an empty object is required, i.e. a SystemInformation
instance which is not associated with any disk, such an object can be obtained by using
the default constructor.

96

V. Network module

The network module contains all of SimpleHydras core components for network com-
munication, just as with the core module it follows the paradigm of providing practical
wrapper classes while still allowing access to the underlying operating system compo-
nents. The chapters first section introduces the fundamental socket architecture upon
which more complex system as e.g. TCP servers can be built. Thus the following sections
will illustrate the design of TCP/UDP servers and corresponding helper classes.

V.1. Sockets

All TCP and UDP socket classes are extensions of Socket which represents an abstract
wrapper class for file descriptors (i.e. socket file descriptors) regarding network commu-
nication. Let us create a UDP socket, send some data and receive a response

UDPSocket udpSocket (710.2.129.203” ,5000,” enol” ,
ADDRESS_TYPE_IPV4) ;

Before venturing into sending and receiving let us briefly discuss the constructor param-
eters, an UDP socket will be associated with an IP address, keep in mind that this isn’t
binding, the IP resides as meta information within the object until e.g. a call to “bind”.
The second parameter represents the local socket port and is followed by the specification
of the interface which should be used, the last parameter specifies whether IPv4 or IPv6
should be used. Both last parameters are optional and default to the first found real NIC
(i.e. not the loopback device) and IPv4, respectively. Yet even with two parameters the
first one can pose a serious challenge as one must know the desired source IP. In order to
ease the instantiation of sockets (TCP, UDP and RAW) the class SocketFactory provides
static helper methods. One could use e.g.

—_

UDPSocket+* udpSocket =
SocketFactory :: createUDPSocketFirst NICIPv4 (port);

which creates an UDP socket on the first found real NIC. The corresponding operating
system file descriptor will be created along with the object, furthermore a poll system
descriptor will be created in which the socket descriptor will be registered. In order to
receive or send data the socket will need associated user space buffers, which will be
created with the object as well, the constructor will attempt to instantiate buffers of a

97

Chapter V. Network module

default size of 65000 bytes, should the underlying socket use larger OS internal buffers
then these larger values will be used for the object internal buffer. This ensures that a
call to the receive and send methods will always be able to obtain the complete OS socket
data. Once a socket has been created it can be bound to the specified IP/Port information
through a call to bindSocket(), this ensures that all data sent over this socket will originate
from the mentioned address tuple. Now finally to the send/receive operations

© 00 O ULk W
~

—
>

Bufferx receiveBuff = udpSocket.getRecvBuffer ();
Buffersx sendBuff = udpSocket.getSendBuffer ();

udpSocket . m_remote_address = 710.2.129.2007 ;
udpSocket . m_remote_port = 5000;

//send some (junk) data to port 5000 of the remote address
for (unsigned int i=0;i<sendBuffer—>get_-m_length;++1)

sendBuff —>get_mp_data [i]=1;

— =
[N
—

udpSocket .send (0);

This illustrates an important concept of the class, the socket also includes information
about the remote side (IP and port); if both values are specified before the call to send it
suffices to use “send(0)”. If a different port is desired one can simply call “send(PORT)”,
should a smaller fragment of the send buffer be sent one can specify the portion by
issuing “send(0,SIZE)”, in case of a different IP one must use “send(0,SIZE,IP)”. In order
to receive data one can use

itn bytes = udpSocket .receiveFromWho ();

The method accepts a timeout value, by default it is set to Oms (i.e. an instantaneous check
for available data), a value of -1 corresponds a blocking call. Should some data have been
received one can query the sender address through the variables m_remote_address and
m_remote_port, yes, the target attributes of the UDP socket get updated every time when
something was received via this method. This function is especially useful when it comes
to receiving broadcasts and determining their source. The function returns the amount
of received bytes. Yet in high speed communication it might be undesired/unnecessary
to execute these updates (string allocations would waste CPU time), for such cases the
class provides a simpler version called send which is identical to receiveFromWho except
that it does not process any source address information.

In order to send a broadcast the UDP socket class provides the method sendBroadcast
which exposes the same interface as the send method, the only difference is the target
address which must be a valid subnet broadcast address. The socket must also be bound
before attempting to broadcast packets.

TCP sockets are somewhat similar to the UDP variant yet they differ by being connection

98

Chapter V. Network module

oriented or stateful. Creating a TCP socket on e.g. port 5000 is done via

[

TCPSocket* tcpSocket =
SocketFactory :: create TCPSocketFirstNICIPv4(5000);

which is identical to the UDP variant. Yet before sending or receiving data one has to
call connectIPv/ which will attempt to establish a TCP connection

tecpSocket.connect (710.2.111.20” ,5900);

any existing TCP connection over this socket will be closed. On close inspection it becomes
obvious that TCPSocket provides no methods for sending or receiving data, these funtions
are contained within the “Connection”-class family which will be discussed in the next
section.

Checking if connection still active.

V.2. TCP Connections

The family of “Connection” classes is grouped as follows; Connection and Connection-
Poll are extensions of GenericConnection, the child classes differ among each other by
the underlying polling strategy for sockets, while Connection uses epoll ConnectionPoll
utilizes the classic poll system. These classes represent the two fundamental branches in
the family tree; TCPConnection builds upon Connection and TCPConnectionPoll upon
ConnectionPoll. The behavior of both branches is nearly identical thus we will state the
example only for the epoll variant which exposes a special set of parameters for the under-
lying poll system (this is the only difference between both branches in the TCP context).
An object can be instantiated via 3 constructor types

1. No external epoll registration:

1 TCPConnection (unsigned int connection.id ,

unsigned int receive_buffer_size =
DEFAULT_RECEIVE BUFFERSIZE,

unsigned int send_buffer_size =
DEFAULT_SEND_BUFFER SIZE,

int epoll_in_events=MAX EPOLL EVENTS,

int epoll_out_events=2)

O UL W N

2. Registration within an external epoll-in system:

TCPConnection (unsigned int connection_id ,
int epoll_in_fd ,
struct epoll_eventx active_in_events ,
unsigned int receive_buffer_size =
DEFAULT RECEIVE BUFFERSIZE,

Tl W N~

99

Chapter V. Network module

unsigned int send_buffer_size =
DEFAULT_SEND_BUFFERSIZE,

int epoll_in_events=MAX EPOLLEVENTS,

int epoll_out_events=2)

© 00

3. Registration within an external epoll-in and epoll-out system:

TCPConnection (unsigned int connection_id ,
int epoll_in_fd , int epoll_out_fd ,
struct epoll_event*x active_in_events ,
struct epoll_eventx active_out_events,
unsigned int receive_buffer_size =

DEFAULT RECEIVE BUFFER SIZE
unsigned int send_buffer_size =
DEFAULT SEND_BUFFERSIZE,
int epoll_in_events=MAX EPOLLEVENTS,
int epoll_out_events=2)

SO0 Tk W+

The choice of a constructor is a final decision which can not be reverted during an objects
lifetime. An example for choosing the second variant would be the following situation; a
worker thread (among many others) manages an internal set of TCP connections (i.e. it
polls the ready-to-read descriptors within an epoll registry), thus if the connection objects
would carry an own epoll descriptor registry it would induce two sources of unnecessary
overhead: 1) the worker thread would need to iterate over many registries (CPU time) and
2) each registry would contain only a single socket descriptor (memory). Let us assume
the object has been constructed via one of the listed methods, a connection can then be
established through

U W N =

int connect(unsigned int remote_port,
const std::string remote_ip,
const std::string& local_ip="",
unsigned int local_port=0,

const std::string& local_device="")

The information about target IP and port is mandatory all other parameters are optional.
Specifying the local IP will induce that the connection will be created through this address
(i.e. the underlying socket will be bound), this holds analogously for the port and device
parameter. In case of an already existing connection a call to this method will close
it and attempt to connect to the given target, independent of the attempts success,
the previous connection will be closed. Each constructor variant will create internal
send /receive buffers of the specified (or default) size, yet one has the option to replace
these buffers with external ones via

setExternalBuffer (SHCore:: Bufferx send, SHCore:: Bufferx recv);

100

Chapter V. Network module

The exchange can not be reverted! At this point we are also able to close the gap between
TCP sockets and TCP connections. If a TCP socket has successfully connected to a target
one can assign this socket to an existing TCP connection via

void set_mp_socket (Socket*x socket);

This method will also adapt the internal buffers size if it’s too small in order to hold the
sockets waiting data. Any existing socket e.g. obtained through a connect call will be
deleted and replaced (the connection will take ownership over the socket object).
Communication is handled by a set of three methods

N —

int send._data(unsigned int data_length ,int timeout=-1);
int wait_for_data (unsigned int expected_data ,int timeout=-1);
int receive(int timeout = —1);

which indicate their function through the naming, as usual a timeout value of -1 is asso-
ciated with no timeout whereas the time is measured in milliseconds.

V.3. TCP / UDP Servers

The creation of TCP and UDP servers is explained in great detail within chapter [X] thus
we omit it in this context.

V.4. Wake On LAN

A very practical feature is provided by the WOLFacility class as it enables one to utilize
a NICs Wake On LAN (WOL) feature. Its usage is as simple as

[

SHNetwork : : WOLFacility wol;
wol .sendWOLPacketUDP (” 60:a4:4c:b5:¢2: 77);

V.5. CURL

The singleton class CURLWrapper provides wrapper methods for elemental CURL fea-
tures

e Get an HTTP(s) ressource with or without HT'TP header
e Get an FTP(s) ressource with or without FTP header
e Get an SCP ressource

e Put an FTP(s) ressource

101

Chapter V. Network module

e Put an SCP ressource
e Send an email via STMP TLS.

Two short usage examples for HT'TP

TR W N~

SHNetwork : : CURLWrapper* wrapper = SHNetwork : : CURLWrapper : : getInstance ();
SHCore:: BasicBufferx data = wrapper—>getHTTP(” http:// google.de”);
data—>printfBufferChar ();

delete data;

and FTP

0O UL W~

SHCore:: BasicBufferx header;

wrapper—>getFTPwHeader(” ftp://ftp .u—tx.net/archlinux/” ,&data,&header);
data—>printfBufferChar ();

header—>printfBufferChar ();

wrapper—>putFTP (” ftp://x:x@Qlocalhost/test.txt” ,data);

delete data;
delete header;

102

VI. OpenCL

SimpleHydra provides abstraction/wrapper classes for most OpenCL structures, we dis-
tinguish between wrapper and helper classes. The set of wrappers consists of OpenCL-
Program, OpenCLKernel, OpenCLDeviceCapabilities, OpenCLContext and OpenCLCom-
mandQueue. These classes feature many (but not all) attributes of the corresponding
context. With coming SH revisions these classes will be continuously expanded. For all
details we defer the reader to the self explanatory header files as well as the Doxygen
documentation (further details can also be obtained from the sources). Just as in the
previous chapters we will discuss the usage of the module and show common pitfalls.
The main logic is implemented in the helper classes which are explained in the following
sections.

VI.1. Creating the context

An OpenCL context can be created very comfortably via

1
2

OpenCLContextHelper helper;
helper.setupPlatform (platform_id , false);

An OpenCLContextHelper instance can handle exactly one OpenCL context (i.e. a device
subset of one platform). The call to setupPlatform is mandatory, it defines the desired
platform for further operations (the second parameter determines if information about all
found platforms should be printed to stdout). Once the platform has been chosen, one
continues with the selection of devices through following methods

1

helper.initCLContext (std :: vector <unsigned int> device_list);

which expects a list of device indices within the chosen platform,

1

helper .initCLContextAIIGPU ();

which selects all GPUs in the platform,

1

helper .initCLContextAlICPU ();

which selects all CPUs in the platform,

1

helper.initCLContextAllDevices ();

103

Chapter VI. OpenCL

which simply selects all available platform devices. Every of these methods will not
only create an OpenCL context for the selected devices, it will also create corresponding
command queues and capability objects, which can be obtained through the following
functions

SO W~

OpenCLDeviceCapabilitiesx getDeviceCaps (unsigned int device);
FastKTuple<OpenCLDeviceCapabilitiesx>x getAllDeviceCaps ();
OpenCLPlatformx getPlatformInfo ();

OpenCLContextx getCLContext ();

OpenCLCommandQueuex getCommandQueue (unsigned int device);
FastKTuple<OpenCLCommandQueuex>* getAllCommandQueues();

Keep in mind that all indices are relative to the actually selected devices and not to the
devices available on the platform. Additionally one has to respect that once a wrapper
class is assigned a native OpenCL element, it will claim ownership over it. Once the
context has been created one can use it to execute kernels or manage device memory. Let
us create a context for a single GPU, allocate some memory, and execute a simple kernel

O 00O Ui W -

OpenCLHelper cl_helper;
cl_helper.quickSetupSingleDevice (platform , device);

//system for the first device in the context

FastVector3<OpenCLDeviceCapabilitiess,
OpenCLCommandQueue * ,
OpenCLContextx> cl_system ;

cl_system = cl_helper.getContextHelper()—>getSingleDeviceSystem (0);

//print device caps
cl_system .m_datal—>printCapabilities ();

We utilized the OpenCLHelper class in order to create the context and request an Open-
CLSystem, i.e. a triplet of capabilities, command queue and context, for the first (and
only) context device. This is followed by a debug output of the capabilities and the
creation of a kernel helper

O© 0O Ui W

10
11
12

std::string cl_source (”\
7 __kernel void testKernel(__global floatx input, 7\
7 __global floatx output) 7\

77{” \

” unsigned int globalldx = get_global_id (0); ” \

7 output[globalldx] = 3.0f % input[globalldx];”

77}’7

)i

SHOpenCL : : OpenCLKernelHelper kernel_helper;

kernel_helper.createKernelFromSourceString(cl_source ,
std::string (7 testKernel”),

104

13
14
15
16

Chapter VI. OpenCL

cl_system.m_datal—>getm_id (),

cl_system .m_data3—>getm_context (),

std::string (77));
kernel_helper.printLastBuildLog ();

which is used to create and build the OpenCL program and additionally create an OpenCL
kernel. This is a rather interesting helper class, as it solely provides methods for creating
a ready-to-tun kernel object. In order to create an intermediate form, i.e. an OpenCL
program, one has to replace or augment the kernel helper with OpenCLProgram (see the
corresponding section). We will now allocate the desired amount of device memory for
our kernel and copy data into it.

1 OpenCLMemoryHelper<float> memory_helper (context—>getm_context (),
2 context_helper —>getCommandQueue(0)—>getm_queue ());
3
4 cl.-mem gpu_data_a = memory_helper.createReadWriteMemory (1024);
5 cl.mem gpu_data_b = memory_helper.createReadWriteMemory (1024);
6
7 float buffer [1024];
8 for (unsigned int i=0;i<1024;++1i)
9 {
10 buffer [i] = i;
11 }
12
13 memory_helper . writeBufferBlocking (gpu_-data_a, buffer , 1024);
The listing should be self explanatory, a (template) memory helper instance is used to
allocate a buffer for 1024 float values. A corresponding host buffer is created, filled with
values and copied to the device. Now the kernel parameters must be set as well as the
grid dimensions.
1 cl_helper —>setuplDDefaultDims (256 ,4,0);
2
3 //set the kernel parameter
4 kernel_helper —>setKernelParameter (0,sizeof(cl.mem),&gpu_-data_a);
5 kernel_helper —>setKernelParameter (1,sizeof(cl.mem),&gpu_data_b);
6
7 INIT_TIME_AVG
8 for (unsigned int i=0;i <10000;i++)
9 {
10 TIC.
11 cl.-helper —>launchKernelBlocking(kernel_helper —>getKernel () ,0);
12 AVG.TOC
13 }
14 SUM_AVG_TIME_UP

We setup a one dimensional thread grid of 4 OpenCL blocks each containing 256 threads
(i.e. 1024 threads). We then set the kernel parameters and execute the kernel 10000 times

105

Chapter VI. OpenCL

in order to measure the average execution time. Afterwards we verify the data and do
the required clean up.

float return_buffer [1024];
memory_helper . readBufferBlocking(gpu-data_b, return_buffer, 1024);

for (unsigned int i=0;i<1024;++1)
{
if (return_buffer[i] != 3xbuffer [])
printf (”Error in buffer [%u] %f != %f \n”,
i,buffer[i],return_buffer[i]);

}

delete cl_helper;

delete kernel_helper;
clReleaseMemObject(gpu-data_a);
clReleaseMemObject (gpu-data_b);

—
SO 00O Tk W+~

[
INGEICH TN

VI.2. OpenCL Programs

On might encounter situations in which an intermediate OpenCl program representation
is required. For this purpose one can refer to the OpenCLProgram class. Besides being a
wrapper for an OpenCL program, it also features management options as e.g. saving a
program object to a file.

1 //create an empty husk
2 OpenCLProgram clprogram ;

Once the class has been instantiated we can assign it an OpenCL program through the
following ways

1. Assign an already existing OpenCL program via setCLProgram

2. Load the programs source from a file, create the OpenCL program without building
it; create ProgramFromSourceString

3. Load the programs source code from a file, create and build the OpenCL program
for a single device; createAndBuildProgramFromSourceString

4. Build an assigned (method 1 or 2) OpenCL program for a single device; buildAc-
tiveProgram

5. Load a binary for a single context device or multiple context device; loadProgram
or loadProgramMultiDev

106

Chapter VI. OpenCL

An important note, just as mentioned earlier the wrapper classes take ownership of the
OpenCL object, thus it is a bad idea to e.g. use an existing kernel wrapper object, obtain
its OpenCL program and assign it to an OpenCLProgram instance.

VI1.3. Higher OpenCL wrapper

As most OpenCL development utilizes work flows very similar to the one in the previous
section, SimpleHydra also features more abstract wrappers for speeding up the devel-
opment without discarding access to any lower system elements. The previous kernel
example can be expressed in the following more compact way

O 00O Uik W

std::string cl_source (”\
7 __kernel void testKernel(_-_-global floatx input,”\
7 __global float* output) 7\

77{” \

” unsigned int globalldx = get_global_id (0); ” \
” output[globalldx] = 3.0f * input[globalldx];”
77}”

);

OpenCLHelper cl_helper;
cl_helper.quickSetupSingleDevice (platform , device);

//system for the first device in the context

FastVector3<OpenCLDeviceCapabilitiess,
OpenCLCommandQueue * ,
OpenCLContext«> cl_system ;

cl_system = cl_helper.getContextHelper()—>getSingleDeviceSystem (0);

//print device caps
cl_system .m_datal—>printCapabilities ();

//load a kernel from a file
OpenCLKernelHelper kernel_helper;
kernel_helper.createKernelFromSourceString(cl_source ,
std::string (" testKernel”),
cl_system .m_datal—>getm_id (),
cl_system .m_data3—>getm_context (),
std::string (7”));
kernel_helper.printLastBuildLog ();

OpenCLKernelx cl_kernel = kernel_helper.getKernel();
cl_kernel—>printKernellnfo ();

//our work data

107

Chapter VI. OpenCL

36 unsigned int size = 1024xsizeof(float);
37 OCLBuffer input(size);
38 OCLBuffer output(size);

39

40 for(unsigned int i=0;i<size;++1i)

41 |

42 ((float x)input.get-mp-data ())[i] = i;
43 }

44

45 input .setOCLSystem (cl_system .m_data2,cl_system . m_data3);
46 output.setOCLSystem (cl_system .m_data2,cl_system .m_data3);
47

48 input.createDeviceData ();

49 output.createDeviceData ();

50

ol input . uploadData ();

52

53 //setup grid

54 cl_helper.setuplDDefaultDims (256,size /256 ,0);

55

56 //set the kernel parameter

57 clomem a. = input.getDeviceDataPtr();

58 clomem b_ = output.getDeviceDataPtr();

59 kernel_helper.setKernelParameter (0,sizeof (cl.mem), &a_);
60 kernel_helper.setKernelParameter (1,sizeof (cl.mem), &b_);
61

62 INIT_TIME_AVG
63 for (unsigned int i=0;i <10000;i++)

64 {

65 TIC_

66 cl_helper.launchKernelBlocking(cl_-kernel ,0);
67 AVG.TOC

68 }

69 SUM_AVG_TIME_UP

70

71 //read the data back from the device
72 output.downloadData();

73

74 for (unsigned int 1=0;i<1024;4++1)

75

76 if (return_-buffer[i] != 3xbuffer [])

7 printf (”Error in buffer [%u] %f != %f \n”,
78 i,buffer[i],return_buffer[i]);

9 1

Besides allowing for the use of more than 1024 values, the example avoids the usage of
any memory helpers. In fact SimpleHydra provides various wrappers for commonly used
data structures;

108

Chapter VI. OpenCL

e OCLBuffer for one dimensional arrays

e OCLMatriz2 and OpenCLMatriz3 as extension of Matriz2 and Matriz3, respec-
tively.

e OCL2DReadImage, OCL2DWriteImage for read-only and write-only OpenCL 2D
images, respectively.

109

VIl. Machine Learning

VIl.1. Neural Networks

SimpleHydra features a flexible way of training neural network, more specially it provides
an interface for injection of different heuristics at significant locations. The following
listing shows the initialization of a neural network with 2 hidden layers, each with 25
neurons and a tanh activation function

O 00O Ui W~

unsigned int

unsigned int

hidden_neurons = 25;

layer_count = 2;

SHCore : : FastKTuple<unsigned int> layer_neurons(layer_count);

layer_neurons

layer_neurons .
layer_neurons .

layer_neurons

.setElement (0,2);
setElement (1,hidden_neurons);
setElement (2,hidden_neurons);
.setElement (3 ,1);

SHML: : NNStructureFullyConnectedFF nn_structure (layer_count ,layer_neurons);

nn_structure .
nn_structure
nn_structure .
nn_structure .

nn_structure .
nn_structure
nn_structure .
nn_structure .

(
.setActivationFunction (
(
(

(
.setSumFunction (
(
(

setActivationFunction (0 ,NN_ACTIVATION FUNCTION_UNIT
1

)i
,NN_ACTIVATION FUNCTION_TANH) ;
setActivationFunction (2 ,NN_ACTIVATION FUNCTION.TANH) ;
setActivationFunction (3 ,NN_ACTIVATION_FUNCTION_UNIT) ;
setSumFunction (0 ,NN_.SUM_FUNCTION_CANONICAL_SUM) ;
1 ,NN_SUM_FUNCTION_CANONICAL_SUM) ;

setSumFunction (2 ,NN.SUM_FUNCTION_CANONICAL_SUM) ;
);

setSumFunction (3 ,NN.SUM_FUNCTION_CANONICAL_SUM

SHML:: NNRepresentationCanonicalMatrix* rep =
(SHML:: NNRepresentationCanonicalMatrix *)
nn_structure .synthesize (NN.REPRESENTATION.TYPE_ CANONICAL MATRIX) ;

Thus the network contains a total of 4 layers (one input layer and one output layer in
addition to the hidden layers), note the unit functions for in- and output. The input
layer (i.e. first layer) consists of 2 neurons while the output layer contains 1 neuron. The
rationale behind the listing is a strict separation of network structure and its synthesized

111

Chapter VII. Machine Learning

form. In this case the synthesized form SHML::NNRepresentationCanonicalMatrixz con-
sists of a set of matrices which in turn contain the weights for each layer. The training
algorithms work entirely on this synthesized form, yet before one can start a training the
corresponding training data must be set via

O 00O Uik W

CLOLW WWWNDNDNDDDNDINDNDNDNDN = s
AR W OO UTERE WINHEFOOOIDUUkR WD = O

unsigned int sample_count = 20;
SHML: : NNDataModelNative model (sample_count*sample_count ,2,1);

//sample the sine function

double x1_start = —1.14;

double x1_end = 1.14;

double x2_start = —1.14;

double x2_end = 1.14;

double x1_step = (xl_end—x1_start)/(double)(sample_count);
double x2_step = (x2_end—x2_start)/(double)sample_count;

//these are the initialization parameters

unsigned int x_.dim = 2;

unsigned int y_.dim = 1;

double samplelnc = x1_start;

for (unsigned int i=0; i < sample_count*sample_count; ++i)

{

SHCore : : FastKTuple<double> x(x_dim);
SHCore : : FastKTuple<double> y(y_dim);

if (i % sample_count = 0)
samplelnc += x1_step;
x[0] = samplelnc;
x[1] = x2_start + x2_step * (double)(i%sample_count);
y[0] = sin(std::sqrt(x[0]*x[0] 4+ x[1]*x[1]));

model . setData(i,x,y);

}

The listing shows the subsampling (20 x 20 grid starting at (—1.14, —1.14)) of the function
sin(|z]) with z € R?. The structure SHML::NNDataModelNative represents a wrapper
which carries the training data into the training algorithm. The interesting part is the
training interface, which we explore line by line

N —

double eta = 0.1;
double alpha = 0.9;
unsigned int max_iterations = 100000000;

112

Chapter VII. Machine Learning

4 double error_threshold = 0.01;

b}

6 SHML:: NNTrainerBackProp bp_trainer;

7

8 SHML: : NNBackPropHeuristicSlowDown slowDown ;

9

10 bp-trainer.addPreEpochHeuristic(&slowDown);

11

12 bp_trainer.setParameters(alpha, eta, max_iterations, error_threshold,
13 sample_count*sample_count , true);

14

15 bp_trainer.setTrainingData(&model);

16

17 bp_trainer.setRepresentation(rep);

18

19 bp_trainer.prime ();

20

21 bp_trainer.initWeightsRandom(—0.001,0.001);

22 /xbp_trainer.initWeightsRandomFanIn (—0.001,0.001);x/
23

24 bp_trainer.initBias (1);

25

26 bp_trainer.useFullMomentum (false);

27

28 bp_trainer.useShuffling (true);

29

30 bp_trainer.trainPar (SHML:: NNTrainerBackProp : : PARALLEL_ MODE_TYPE_SPLIT_SAMPLES) ;

SHML::NN TrainerBackProp is the actual training algorithm, vanilla backpropagation in
this case, SHML::NNBackPropHeuristicSlowDown represents a so called heuristic, this
one is predefined in SimpleHydra. NNBackPropHeuristicSlowDown will slow the gradient
descent down in case of many sequentially successful gradient steps, its parameters consist
of public attributes

unsigned int m_epoch_error_counter;
unsigned int m_interval;

double m_inc;

double m_dec;

=N

m_epoch_error_counter will contain the number of how often the absolute batch error has
increased during m_interval epochs, i.e. the number of error regressions in a given epoch
number. m_inc and m_dec represent the number of how much the learning rate should be
increased or decreased, after m_interval epochs without or with error regressions, respec-
tively. A call to prime will initialize the training algorithm with all heuristics, parameters
and given training data. Afterwards one can set the range of weight and bias initializa-
tion; init WeightsRandom will init the weights with uniformaly distributed numbers in
the given range, two alternatives exist; initWeightsRandomFanIn(a,b) which initializes

113

Chapter VII. Machine Learning

the weights in the range of [—a+/6/f;,b7/6/f;] i.e. with respect to each neurons fan-in f;
(i.e. the number of the neurons incoming connections) and init WeightsRandomFanInOut
which also includes the fan-out through [—a+/6/ f;, b1/6/ f;]. The method useFullMomen-
tum defines if the momentum approach (and thus the momentum coefficient) should also
be applied to the bias weights. A heuristic can be added via three methods, each repre-
senting a specific point during the backpropagation training.

e addPreFEpochHeuristic adds a heuristic which is applied before a batch iteration.

e addSampleHeuristic adds a heuristic which is applied between loading the sample
from the training set and using it for gradient calculation.

e addPostEpochHeuristic adds a heuristic which is applied after a batch iteration.

The basic idea is to write child classes for the corresponding parameter types which
implement the process method. The training algorithm, be it Quickprop or iRProp, will
always call this method of its asociated heuristic objects. We won’t go into detail of the
methods signatures, instead we only mention that all provided parameters can be used
to enhance / modify the actual training algorithm (see vanilla backprop above). Finally
one can commence the training through a call to trainPar (multicore support) or train
(single core).

SimpleHydras machine learning module also provides iRProp+/-, Quickprop, RProp+/-
(which is available by setting uselRProp(false) for the NN TrainerIRProp object). In order
to decide between + and - one has to call use Backtracking(true) or useBacktracking(false),
respectively.

A neural networks representation can be saved via saveNN and loaded through load NN.
Once the network has been loaded it can be provided to an instance of NNEvaluator via
setRepresentation which enables one to evaluate the network. For the sake of brevity we
list a small example

O© 00O Ui W+

rep—>saveNN (”nn. bin”);

delete rep;

rep = new NNRepresentationCanonicalMatrix ();
rep—>loadNN (”nn. bin”);

NNEvaluator eval;

eval .setRepresentation (rep);

eval .prime ();

/xload n data samples as row vectors into matriz xzx/
/xallocate a corresponding matriz y with n rows and k columnsx/

eval.evaluateNetwork (x,y);

114

Chapter VII. Machine Learning

14/« //parallel evaluation

15 evaluateNetworkParallel (PARALLEL MODE_TYPE_SPLIT_.SAMPLES, z,y);
16 «/
Regarding data preprocessing SH provides classes for principal component analysis (PCA)
and kernel principal component analysis (KPCA). It can be simply described with the
following listing
1 SHCore:: Matrix2<double>* circleData =
2 SHCore : : MultiDimDataGenerator <double >:: generateCircleData(10,1.0,—-0.2,0.2);
3
4 SHML: : PCA<double >:: calculatePCATransformation (xcircleData ,xcircleData ,1);
9
6 circleData—>printData ();

The first parameter is the actual data from which the covariance matrix is calculated
and the second parameter represents the data which is to be transformed. Note that the
provided data will be modified, yet as shown in the listing above, it poses no problem if
the covariance data is identical to the transformation data.

VIL.3. Kernel PCA

In addition to the standard PCA SH provides the kernel PCA which exhibits an interface
similar to the previous one

—_ =

RO OO0 Uik W+

SHCore :: Matrix2<double>x* circleData =
SHCore : : MultiDimDataGenerator <double>:: generateCircleData(10,1.0,—-0.2,0.2);

struct SHCore:: DataStatistics<double>::KernelParams params;
params.m_type = SHCore:: DataStatistics<double>::KERNEL.COVARIANCE_TYPE RBF;
params. m_rbf_sigma = 0.1;

SHML: : KernelPCA<double >::calculatePCATransformation(xcircleData ,* circleData ,
1,params);

circleData—>printData ();

The main difference lies in the kernel parameter which must be provided in the transfor-
mation call, the attributes of KernelParams should be self explanatory by their names.

115

Chapter VII. Machine Learning

VIil.4. Genetic Algorithms

Since the support for genetic optimization currently can be considered to be in an pre-
alpha stage we mainly mention SHs support for it. A currently supported (yet trivial)
example is shown in the following listing

—

QOO0 JO U WN -

PopulationHelper helper (4,0.6,0.01);
helper.createlnitialPopulation (150);
helper.reportCurrentPopulation ();

for (unsigned int i=0;i<550;++1)

{
}

helper.reportCurrentPopulation ();

helper .iterateOneGen ();

A population helper is responsible for the creation of entities, its parameters are chro-
mosome length in bits, propability for crossover and propability for mutation in each
generation, respectively. A call to createlnitialPopulation will create a starting popula-
tion with the specified amount of individuals, reportCurrentPopulation will print a short
summary of the current population, iterateOneGen will iterate one generation. Future
revisions will extend this approach to enable a flexible “blackbox optimization”.

116

Viil. XML

SimpleHydra provides a general access layer to XML files and a set of reader/writer
classes for XML-based configuration files. The following two sections will explain the
manipulation of general XML files and the handling of configuration files, respectively.

VIIl.1. Reading / Writing XML Files

This framework features two powerful classes in order to create and manipulate XML
files, these are SimpleXML and SimpleXMLFExtended. All provided methods are thread
safe! Lets assume we have the following XML file/structure saved in data.zml

1 <main>

2 <tagl attribl1="50"></tagl>

3 <tagl attribl1="60">Some data</tagl>
4 <tag3d attrib88="50">

5 <tagl attribl1="50">DATA!</tagl>
6 <tagd>

7 something?:—)

8 <tag4d>

9 yes!; —)

10 </tagd>

11 </tagd>

12 </tag3>

13 </main>

At first we will attempt to write a parser capable of reading and manipulating these
structures. We begin with Simple XML as we are not going to require any methods of the
other (more generic) class.

SimpleXML sxml;
sxml. parseFile (?data.xml”);

This will result in parsing the given file and saving it as a tree in memory, once done we
can access all nodes and their corresponding attributes as well as data. Let us clarify
these terms in detail; a node is a representation of an XML tag, each node may contain
attributes or enclosed data. Regarding our example we will obtain at least two "tagl”
nodes, none of both will contain any data but one will contain an attribute (namely
7attribl”). Let us now access the first "tagl” tag

117

Chapter VIII. XML

1 std::vector<std::string> path;

2 path.push_back (”main”);

3 std::string attrib;

4 int res = sxml.readNodeAttribute(path, "tagl”, ”"attribl”, attrib);

5 if(res!=0)

6 printf (’ERROR reading attribute\n”);

7 else

8 printf(”attribute value %s\n”, attrib.c_str ());
This will result in obtaining the attribute of the first "tagl” node, sadly we have two
equally named "tagl” nodes. In order access the second one we need to specify which
sibling on this tree level we desire.

1 //get the first sibling

2 res = sxml.readNodeAttribute(path, ”tagl”, ”attribl”, attrib ,1);

3 if(res!=0)

4 printf ("ERROR reading attribute\n”);

5 else

6 printf(”attribute value %s\n”, attrib.c_str ());
Note that the vector path specifies the actual level within the XML tree. This will be
more important now as we attempt to read the content enclosed in the "tagl” tag within
the only "tag3”.

1 std::string content;

2 //path=main->tag3

3 path.push_back(”tag3”);

4 res = sxml.readNodeContent(path, ”tagl”, content, 0);

5 if(res!=0)

6 printf (’ERROR reading node content\n”);

7 else

8 printf(”’node content %s\n”, content.c_str ());
Note the 0 as the last parameter which is merely an explicit specification which sibling
we desire, in this case we could ommit it (i.e. use the default value of 0). Now let us add
a new attribute to this node

1 res = sxml.addNodeAttribute(path, ”"tagl”, "newAttrib”, "randomVall23” , 0);

2 if(res!=0)

3 printf (’ERROR adding node attribute\n”);

4 else

5 printf(’node attribute added\n”);

Manipulating node content can be done in a very similar way, we defer the reader to
the API documentation for the corresponding methods. The class SimpleXMLExtended
provides essentially vectorized versions of SimpleXML’s methods, thus we won’t discuss it
at this point but instead point to the mentioned documentation. There is a small subtlety

118

Chapter VIII. XML

when it comes to adding new nodes, all discussed methods required a path under which
the desired node was located, the same holds for addNode. This method will add a new
node at the specified tree level, which poses no problem as long as we don’t try to add
a node at the top most layer, since there are no layers above and the method requires a
path(/node) under which to add the new node. In order to solve this problem one has to
use addNodeSibling instead, which will add the node as a sibling instead of as a child in
the given path(/node). Once we are done with everything it could be wise to save the file

sxml.saveXMLTree(” data2.xml”);

The described mechanics favor a very iterative style of parsing the tree, they especially
prevent any direct access to the XML tree. If one requires access to the tree, it can be
done by obtaining the root node through getRootElement. Since SimpleXML is nothing
more than a smart wrapper for libxml2 everything beyond its functionality must also be
implemented by using the libxml2 API.

After reading, manipulating and saving an existing XML file let us create a new file from
scratch. All it requires is call to

TR W N~

int res = createEmptyTree(”root”);
if(res!=0)

printf ("ERROR creating empty XML tree\n”);
else

printf (XML tree created\n”);

This creates an empty XML tree and inserts a first node called "root”, if saved at this
point we would get an XML file with

1
2

<root>
</root>

In order to add another node on the tree root level we again use addNodeSibling, everyhing
else is identical to the case of starting with an existing file.
We conclude this section with discussing a small subset of methods within Simple XML.

O Tk W N+~

int nextNode ();

int childNode ();

void listNodeAttributes(xmlNodePtr node);
void printXMLTree(xmlNodePtr node);
xmlNodePtr get_m_current_node ();

void reset_current_node ();

The SimpleXML class contains an internal tracking mechanism for iterating node-wise into
the XML tree, one can think of this functionality as a little helper approach for handling
libxml2 nodes during a custom search in the loaded XML tree. After calling parseFile
the internal tracker starts at the root node, by calling nextNode or childNode the tracker
will advance to the respective node. In the latter case it will position itself on the first

119

Chapter VIII. XML

child node of the previous node. The methods listNodeAttributes and printXMLTree will
list the attributes of the given node or print the XML tree from the given start node,
respectively. The currently tracked node can be obtained via get_m_current_node, while a
call to reset_current_node will reset the tracker.

VIIl.2. Reading / Writing Config Files

SimpleHydra will feature four manager classes for reading and writing config files, namely
ConfigReaderMarkl, ConfigReaderMarkIl, ConfigReaderMarkIII and ConfigReaderMarkIV.
Currently only Markl has been implemented, it exhibits the restrictions of always reading
the whole xml file into memory (which might be inefficient for huge (>50MB) XML files).
Furthermore it only supports flat (i.e. non-recursive) config files. Before discussing the
MarkI class itself we briefly explain the supported XML format.

1 <!— An example file for the Markl reader —>

2 <config>

3 <!— Options can be grouped into sections —>

4 <section name="first”>

5 <!— Fach parameter in a section has a >>>unique<<<
6 name and a type according to the class enums —>

7 <!— scalars —>

8 <parameter name="paraml” type="STRING”>
9 This is a test string

10 </parameter>

11 <parameter name="param?2” type="DOUBLE’>
12 8.14159265358979323846264338327950288/
13 </parameter>

14 <parameter name="param3” type="FLOAT”>
15 3.1415926

16 </parameter>

17 <parameter name="param4” type="INT”">

18 — 2147483647

19 </parameter>

20 <parameter name="param5” type="LONG”>
21 —9228372036854755808

22 </parameter>

23 <parameter name="param6” type="UINT">
24 4147483647

25 </parameter>

26 <parameter name="param7” type="ULONG”>
27 18446744073709551615

28 </parameter>

29

30 <!— wectors: the numbers are separated by commata
31 while the strings are splitted via subtags —>

120

Chapter VIII. XML

32 <parameter name="paraml4” type="STRING.ARRAY”>
33 <string>This is a test stringl</string>

34 <string>This is a test string2</string>

35 </parameter>

36 <parameter name="param8” type="DOUBLE ARRAY”>
37 83.141592653589793238462643383279502884 ,6.141592653589798238462643383279502884,
38 </parameter>

39 <parameter name="param9” type="FLOAT ARRAY”>
40 3.1415926,6.1415926,9.1415926

41 </parameter>

42 <parameter name="paraml0” type="INT_ARRAY”>

43 — 2147483647, — 1147483647

44 </parameter>

45 <parameter name="paramll” type="LONGARRAY”>
46 —9223372036854755808,—223372036854755808

47 </parameter>

48 <parameter name="paraml2” type="UINT_ARRAY”>
49 4147483647,1147483647

50 </parameter>

51 <parameter name="paraml3” type="ULONGARRAY”>
52 18446744073709551615,9446744073709551615,1446744073709551615
53 </parameter>

54

55 </section>

56

57

58 <!— And another section —>

99 <section name="second”>

60 <parameter name="paraml” type="STRING”>
61 This is a test string again

62 </parameter>

63

64 <parameter name="param2” type="DOUBLE’>
65 2.14159265858979328846264338327950288/,
66 </parameter>

67 <parameter name="param3” type="FLOAT”>
68 2.1415926

69 </parameter>

70 <parameter name="param4” type="INT”">
Tl — 1147483647

72 </parameter>

73 <parameter name="param5”’ type="LONG’>
T4 —5223872036854755808

75 </parameter>

76 <parameter name="param6” type="UINT”>
TT 2147483647

78 </parameter>

79 <parameter name="param7’ type="ULONG”>

121

Chapter VIII. XML

80 11446744078709551615

81 </parameter>

82

83 <parameter name="paraml4” type="STRING.ARRAY”>
84 <string>This is a test stringl</string>

85 <string>This is a test string2</string>

86 </parameter>

87 <parameter name="param8” type="DOUBLE ARRAY”>
88 2.141592653589793288462643383279502884 ,1.14159265358979823846264,338327950288,
89 </parameter>

90 <parameter name="param9” type="FLOAT ARRAY”>
91 1.1415926,3.14/15926,6.1/15926

92 </parameter>

93 <parameter name="paraml0” type="INT_ARRAY”>

04 — 1147483647, — 147483647

95 </parameter>

96 <parameter name="paramll” type="LONGARRAY”>
97 —972036854755808,—23372086854755808

98 </parameter>

99 <parameter name="paraml2” type="UINT_ARRAY”>
100 83647,47483647

101 </parameter>

102 <parameter name="paraml3” type="ULONGARRAY”>
103 46744073709551615,996744073709551615,886744073709551615
104 </parameter>

105

106 </section>

107 </config>

All parameters are enclosed in the root section jconfigs;, which has can provide multiple
option groups called jsections. In case of multiple sections each must have a unique
name! The actual options regarding their data type are depicted in the upper listing.
Each options name must be unique within the enveloping section. Now lets take a look
at how to read and write such files, let our config file contain

1 <config>

2

3 <section name=" Sectionl”>

4

9 <parameter name="Paraml” type="UINT">
6 4147483647

7 </parameter>

8

9 <parameter name="Pram2” type="UINT_ARRAY”>
10 4147483647,1147483647
11 </parameter>
12
13 </section>

122

14

15 <section name="Section2”>

16

17 <parameter name="Paraml” type="STRING”>

18

This is a test string

19 </parameter>

20

21 </section>

22

23 </config>

Chapter VIII. XML

Reading this file can be done via

O 00O Ui W

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

//open the file and read all sections
ConfigReaderMarkl conf_reader(” test.xml”);
conf_reader.readAllSections();

//iterate over all sections and read the params
FastNCSList<XMLConfigMarkISectionx>* sections
= conf_reader.getSections ();

FastKTuple<unsigned int> ids;
std::string s;
unsigned int some_int;

for (FastNCSList<XMLConfigMarkISection* >::Iterator it
= sections—>getStart ();
it != sections—>getEnd ();
++it)

{

std::string section_type = it.getElement()—>getm_data()—>getName ();

if (section_type.compare(” Sectionl”) = 0)

some_int = XMARKI1 UINT.CAST (Paraml, it);

unsigned intx* int_array = XMARKI UINTARRAY CAST(Param2,it)—>getParam ();
for (unsigned int i=0;i<XMARK1.UINTARRAY_CAST(Param2,it)—>getSize();++1)

{

ids.push(int_array[i]);
}
}

//Node information
if (section_type.compare(” Section2”) = 0)

{

}
}

s = XMARKI.STRING_CAST (Param1, it);

123

Chapter VIII. XML

The listing should be self explanatory for the most part. One should note that e.g.
XMARKI1_UINT_CAST represents a parametrized macro for stack allocated iterators,
for heap based iterators (i.e. iterator pointers) one should use XMARK1_UINT-CAST-H.
Let us take a look at writing a config file

O© 0O UL~ WwhN -

G S Sy e
wWN = O

//create the section
XMLConfigMarkISection section ;

//the parameter
XMLConfigMarkIUInt parameter (” paraml” ;45333);

section .addParameter (parameter);

ConfigWriterMarkl conf_writer;
conf_writer.addSection(it.getElement()—>getm_data());

conf_writer.writeConfig (” output.xml”);

124

IX. Visualization

Before introducing any code examples we must briefly explain the technical approach
behind our visualization system. The object which represents an interface to the GUI
system follows the singleton pattern. The GUI system provides a fixed amount of image
viewers, video viewers and plot windows, once started it also provides various widgets
for data manipulation e.g. an editor for matrices. Due to technical reasons/limitations
of the Qt framework all draw events are executed in a separate thread, this situation in
turn requires the use of a command queue for communication between the GUI thread
and a user context. We mention this as SH provides synchronous and asynchronous calls
to the GUI system, a synchronous call will wait until the draw event actually finished,
whereas any asynchronous method will only send the command into the aforementioned
queue and return immediately afterwards. Both approaches have benefits and drawbacks;
synchronous calls ensure that e.g. a certain image has been displayed before returning
control to program, yet in certain situations this may be undesired e.g. if one plans on
displaying exactly one image. In the latter case it is simply unnecessary to wait for the
draw event to complete, which incorporates a relatively high latency due to the frequency
at which the command queue is processed. Sending commands to the GUI system is in
general thread safe, i.e. the requests of multiple threads will be enqueued in the order of
their arrival and will be processed sequentially. The use of asynchronous calls may not
be equally adequate in the case of highly frequent draw calls; e.g. a thread may enqueue
20 draw calls which will, very likely, be processed with a certain delay and in a speed so
high that only the last enqueued image becomes the visible item on the screen.

IX.1. Displaying Images

First the visualization system has to be initialized

WindowSystems* ws = WindowSystem:: getInstance ();
ws—>startMainSystem (4,0,0 ,NULL,NULL) ;

The first three integers in the methods signature represent the amount of image viewers,
video viewers and function plotters, the NULL pointers at the end will be discussed later
in the context of video viewers. Let us assume we want to display an image, with an
active GUI system this can be done rather easily via

125

Chapter IX. Visualization

\V)

SHCore : : Image<unsigned char>x im = ... //get image pointer
ws—>updatelmagelnIlmageViewerSync (0 ,im);
ws—>showImageViewerSync (0);

This listing will show the image im in the first (of four) image viewer, furthermore we use
a synchronous call to draw the image. Yet this alone is not enough in order to show the
image, the mentioned image viewer must be set visible through showlImage ViewerSync
(again a synchronous call).

The amount of available image viewers can not be adjusted after a call to startMainSys-
tem, the window system must be stopped in order to be reinitialized through a call to
startMainSystem, multiple calls to this method will return without problems or changes
to the system.

1X.2. Plotting Data

The third parameter in startMainSystem determines the amount of available plot viewers.
The set of plot functions is rather huge compared the amount of image viewer calls, thus
we will focus only on the basic aspects and defer the reader to the Doxygen documentation
for more information. We begin with the case of plotting 2-dimensional data points

=W N

WindowSystem* ws = WindowSystem:: getInstance ();
ws—>startMainSystem (0,0 ,2 ,NULL,NULL);
ws—>resizePlotViewerSync (640,480,0);
ws—>showPlotViewerSynec (0);

Now we create the actual data

00 O UL~ Wi

FastKTuple<double> x(50);
FastKTuple<double> y (50);

for (unsigned int i=0;i<50;++1)

= (double)i /50.0;

= x[i]xx[i];

<o
I

In order to plot these arrays we have to insert a graph into the corresponding viewer
before adding the data

=W N

//add graph to first viewer
ws—>addGraphSync (0);

//add data to first graph in first viewer
ws—>addDataSync (&x,&y,0,0);

In order to plot a curve, i.e. a set of connected and formatable points we just have to
exchange a single function call

126

Chapter IX. Visualization

O© 00O Ui W+

10
11
12

SHCore : : FastKTuple<double> x_curve (50);
SHCore : : FastKTuple<double> y_curve (50);

for (unsigned int i=0;i<50;++1)

{
x_curve[i] = (double)i /50.0;
y-curve[i] = sin(x_curve[i]);

}

ws—>showPlotViewerSync (1);
ws—>addGraphSync(1);
ws—>addCurveSync(&x_curve ,&y_curve ,1);

The example also indicates the availability of synchronous and asynchronous functions.
The plot viewer interface also features the possibility of updating existing graphs

O© 00O UL~ WN

for (unsigned int i=0;i<5000;++1i)

{
double x = (double)i /5000.0;

double y = xxx;
ws—>addDataRealTimeSync (x,y,0,0);

Toolbox :: sleep_ms (50);
}

This will continously add points to an existing graph, currently this can not be applied
to curves (this limitation will be lifted in future versions of the framework). The adding
of more points into a graph raises the question of how many points remain visible after
some time, let alone the choice of visible points. The graph will start to scroll in order to
display the last N added data points, the scroll width is implicitly determined by a member
attribute called realTimeWidth which in turn can be adjusted through setRealTimeWidth
(the default value is 0.1), the value determines the visible segment size along the x-axis.
The formatting of plotted data, be it simple graphs or curves, can be done visually in the
plot viewer.

IX.3. Viewing Video Streams

The facilities for displaying video streams are currently in a kind of infant stage, although
it is possible to display such streams, it is rather rudimentary in its technical approach.
This is very likely to change in future SH versions and for the sake of completion we will
briefly explain the current interface and technical background. The second parameter in
startMainSystem determines the amount video viewers

127

Chapter IX. Visualization

1 SHVisualization :: WindowSystem* ws = SHVisualization :: WindowSystem:: getInstance ();
2
3 SHCore:: KTuple<unsigned int>% video_sizes = new SHCore:: KTuple<unsigned int >(2);
4 video_sizes —>setElement (0,1600);
5 video_sizes —>setElement (1,1200);
6
7 SHCore: : CommunicationHeapx c_heap = new SHCore:: CommunicationHeap();
8
9 //start the window system
10 printf(”starting the window system\n”);
11 ws—>startMainSystem (0,1,0,c_heap,video_sizes);
12 ws—>showVideoViewer (0);
whereas the last two parameters determine the video source and video size. The definition
of the video size should be self explanatory, the tuple contains two numbers (width and
height) for each video source. In our case we have only a single video source, represented
by a communication heap. The display strategy is very simple, each video viewer will poll
the communication heap with a certain frequency and try to obtain an available image
object.
1 for (unsigned int i=0;i <60;i++)
2 {
3 //get an image
4 im = ...
5 //wrap it into a com heap object
6 CommunicationHeapElement_Image heap_image =
7 new CommunicationHeapElement Image<unsigned char>(im);
8
9 //dump it on the heap
10 c_heap—>dumpOnHeap_callingSerialize(heap_image);
11
12 //wait some time
13 Toolbox::sleep-ms (100);
14 }
15 //clean up
16 ws—>stopWindowSystem () ;
17 delete video_sizes;
18 delete c_heap;

This for-loop will dump an image onto the communication heap, the method dumpOn-
Heap_callingSerialize will call the given objects serialize method before obtaining its seri-
alization buffer. The given object will be claimed by the heap, any existing object on the
heap will be deleted. This is the default behavior of a communication heap, in order to
change that one has to extend the communication heap class and overwrite the ”dump”
methods. Just mentioned at the beginning of the section this approach is very naive, by
default the communication heap features no (ring)buffer for storing images which haven’t

128

Chapter IX. Visualization

been displayed so far.

What about the case in which multiple video sources exist? The method startMainSystem
actually expects an array of communication heap objects, the amount of video viewers
determines the amount of expected objects in this array. Each video viewer will start in
a separate thread.

129

X. Building a Multithreaded TCP
Server

Writing a high performance multithreaded TCP server is everything but easy! In this
chapter we will not only describe how to implement a working such a server, we will also
introduce the problems which naturally occur when attempting such an endeavor. Firstly
it is important to understand the class hierarchy of a TCPServer, in order to facilitate
that, this chapter provides a Top-Down explanation of the servers design. Furthermore
we assume the reader to be familiar with basic network programming and shorten our
listings by omitting namespaces and long comments. Most variable names already give
a strong hint about the variables functional purpose. The first section will introduce the
internal mechanisms of a TCP server while the second section introduces introduces a
comfortable wrapper concept for the previously described server concept.

X.1. General Concept of a TCP server

The class TCPServer extends the thread class and already implements all required meth-
ods in order to be run as a thread. It provides methods to register callbacks, setCon-
nectCallback and setDisconnectCallback, for the event of client connects and disconnects,
respectively. Yet it provides no logic for connection registration and connection handling.
In order to fully understand the more abstract classes which build upon T'CPServer, we
will now explain how to write the required logic. Let us assume we extend TCPServer
with a class ExtTCPServer, which implements the methods listener_method and create-
WorkerThreads. The body of listener-method will handle all incoming connections

1
2
3
4
)
6
7
8
9

10
11

void ExTCPServer:: listener _method (){

int socket_fd;

struct sockaddr_in connection_data;
unsigned int size = sizeof(sockaddr_in);

m_is_active = true;
//listen for new connections

if (listen (mp_socket—>get_m_socket_fd (),
ClusterLibServer :: LISTENER . QUEUE_SIZE)==-1)

{

131

Chapter X. Building a Multithreaded TCP Server

12 printf ("ERROR: could not setup a listener socket\n”);
13 exit (1);

14 }

15

16 while(m_shutdown_flag = false)

17 {

18

19 //wait until connections arrive (event based)

20 int waiting_event_count = epoll_wait(m_epoll_in_fd ,
21 mp_active_in_events ,

22 ClusterLibServer:: MAX EPOLL EVENTS, —1);

23

24 //process each waiting event

25 for (int i=0;i<waiting_event_count ;i++)
26 {

27 //in case of the listener socket

28 if (mp_active_in_events[i].data.fd =
29 this—>mp_socket—>get_m_socket_fd ())
30 {

31 //check if socket has been closed

32 if ((mp-active_in_events[i].events &

33 (EPOLLRDHUP | EPOLLHUP)) != 0)

34 {

35 printf ("ERROR: listener socket is closed =" \
36 ”shutting down server\n”);
37 m_shutdown_flag = true;

38 m_thread_self_terminated = true;
39 m_is_active = false;

40 return;

41 }

42

43 size = sizeof(connection_data);

44 socket_fd = accept(mp-socket—>get_m_socket_fd (),
45 (struct sockaddrx)&connection_data ,&size);

46

47 if (socket_fd = -1)

48 {

49 printf (”stopping listening: error on accept” \
50 "or socket closed\n”);

51 continue;

52 }

53

54/ /printf(” connection accepted with FD

55 //create a (non-autonomous) connection from socket data

56 //TCPConnection™ connection = new TCPConnection(0,false);
57 TCPSocket* tcpsocket = new TCPSocket(socket_fd);
58

59 //fill the socket information into the socket object

132

60
61
62
63
64
65
66
67
68
69

Chapter X. Building a Multithreaded TCP Server

charx c_strbuffer = new char|[500];
inet_ntop (AF.INET,& connection_data.sin_addr , c_strbuffer ,500);

tcpsocket—>m_address_type = Socket :: ADDRESS_ TYPE IPV4;
tcpsocket—>m_local_address = m_local_address;
tcpsocket—>m_local_port = m_local_port;
tcpsocket—>m_remote_address = std::string(c-strbuffer);
tcpsocket—>m_remote_port = ntohs(connection_data.sin_port);

//free the cstring buffer

70 delete|[] c_strbuffer;

71

T2)) *FFFFFFIE hand the connection over to a worker thread *¥¥FFsssrsxxx
73 long int t_index = findNextBestWorkerThread ();

74 if (t_index != -1)

75 {

76 mp._worker_threads|[t_index]—>addConnection (tcpsocket);
a

78 else

79 {

80 tepsocket —>closeSocket ();

81 delete tcpsocket;

82 }

83

84 }

85

86 if (mp_active_in_events[i].data.fd = m_epoll_.read_poker)
87 {

88 //close the main socket

89 mp_socket—>closeSocket ();

90

91 m_shutdown_flag = true;

92 m_thread_self_terminated = true;

93 m_is_active = false;

94 return;

95 }

96 }

97 } }

It becomes clear that the server incorporates an epoll system which contains the listener
sockets file descriptor. The listener method is called by the starting thread, it exits only
once the listener sockets stops functioning or in case of a triggered stop. Regarding the
latter situation; the server stops controlled by “pocking” himself (i.e. the epoll system)
awake after setting the boolean variables to their shutdown values. Yet let us discuss the
details, the listener socket is set to non-blocking mode, thus a call to listen will return
immediately. Inside the while loop epoll_wait ensures that only in case of waiting incoming
connections the while loop will actually proceed. If one or more events are waiting the

133

Chapter X. Building a Multithreaded TCP Server

inner for loop will handle them; as accept returns a new socket descriptor, it is swiftly
used to instantiate a TCPSocket which in turn is handed over to the next best worker
thread, via the worker threads addConnection method. The listings last fragment shows
the “poker” passage, the epoll system contains an internal “dummy” descriptor, to which
the method stopServer writes, this will induce the servers shutdown.

So far we haven’t discussed the creation of worker threads, which we will now catch up
to. The following listing shows an example of how to implement create WorkerThreads

O© 00O Ui~ W

O e T o S S Gy SO S G S
O Ul W N~ O

void ExTCPServer:: createWorkerThreads () {
for (unsigned int i=0;i<m_worker_thread_count;i++)
{
//Create worker thread, update the pokers and start the thread
mp_worker_threads|[i] = new
ExWorkerThread (
m_max_connections / m_worker_thread_count,
(ExComFacility*) mp_cn_facility);

mp._worker_threads[i]—>setDisconnectCallback(
this—>mp_disconnect_callback);
mp._worker_threads|[i]—>setConnectCallback (
this—>mp_connect_callback);
mp._worker_threads[i]—>setComFacility (
mp_cn_node_facility);
mp._worker_threads[i]—>start (i);

b}

Although very short this listing depicts some very important facts. The class TCPServer
has an array of TCPServer WorkerThread pointers, which yet does not point to any object,
the servers create WorkerThreads class has to to execute this job. Using this strategy
one can provide custom worker threads to his server. On closer inspection one notices
that the servers connect/disconnect callbacks are handed over to the worker thread, this
is necessary as the worker thread is the responsible connection handler (i.e. it must
ensure that the methods get called in the respective situations, but depending on ones
server design this might not be required at all). Another curious element emerges in the
upper listing, a class called ExComFacility, which plays a very crucial role in the servers
functionality. Yet, first things first, we still have to actually implement a worker thread
class called ExWorkerThread.

The class ExWorkerThread will extend TCPServerWorkerThread, which in turn is an
extension of Thread (i.e. it will feature another asynchronous context). In order to
instantiate objects one has to implement the method addConnection, which might look

like

N —

void ExWorkerThread:: addConnection (TCPSocket* tcpsocket) {
if (m_connection_count > m_max_connections)

{

134

© 00~ O U~

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Chapter X. Building a Multithreaded TCP Server

printf ("ERROR: maximal amount of connections already ”\
"present in worker\n”);

tcpsocket —>closeConnection ();

DELETE NULL_CHECKING (tcpsocket);

}

m_socket_container.external WRLock ();

/xabort if locked:

xrequired only if another thread calls

x TCPServerWorkerThread :: killAllConnections (),

x in order to prevent new connections from being acceptedx/
if (m_socket_container. m_lock_list = true)

{

tepsocket —>closeConnection ();

DELETE NULL_CHECKING (tcpsocket);
m_socket_container.external WRUnlock () ;

return;

}

/ /register socket in local epoll system
/xwe don’t meed a special mutex for the following operations,
as epoll is thread safex/
struct epoll_event epoll_event;
epoll_event.events = EPOLLIN | EPOLLET |
EPOLLRDHUP | EPOLLERR;
epoll_event.data.fd = tcpsocket—>get_m_socket_fd ();

int error = epoll_ctl(m_epoll_in_fd , EPOLL.CTL_ADD,

tepsocket —>get_m_socket_fd (), &epoll_event);
if (error = —1)
{
printf ("ERROR: could not register poker "\

”within in—epoll of worker thread %d\n”,
m_local_thread._id);
exit (1);

}

//create a tep connection

TCPConnection* connection = new TCPConnection (0,
m_epoll_in_fd ,mp_active_in_events ,
DEFAULT RECEIVE BUFFER SIZE
DEFAULT_SEND_BUFFER SIZE,
CallbackServerWorkerThread : : MAX EPOLL EVENTS, 2) ;

//assign the socket the new connection
connection—>set_mp_socket (tcpsocket);

135

52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81

Chapter X. Building a Multithreaded TCP Server

//assign the shared buffer
connection—>setExternalBuffer (mp_send_buffer ,
mp-_receive_buffer);

m_connection_count++;

//create the frame assembler
ExFrameHandlerx frame_handler =
new ExFrameHandler(connection ,
mp_callback_facility ,mp_callback ,this);
ClusterLibFrameAssemblerx assembler =
new ClusterLibFrameAssembler (connection ,
frame_handler);

/ /register the buffers
SHCore:: FastVector4<SHCore:: Bufferx,SHCore:: Buffer x,
FrameAssembler x , TCPConnectionx>% container =
new SHCore:: FastVectord<SHCore:: Bufferx,
SHCore:: Buffer * ,FrameAssembler x , TCPConnection * > ();

container —>m_datal=connection—>get_mp_receive_buffer ();
container —>m_data2=connection—>get_mp_send_buffer ();
container —>m_data3=assembler;

container —>m_datad=connection ;

(x(m_socket_container.getMap ()))
[connection—>get_mp_socket()—>get_m_socket_fd ()] = container;

m_socket_container .external WRUnlock () ;

}

This is even more information to digest, let us take the above listing apart! Just in the
beginning the method checks if the worker thread can even handle another connection,
if not the socket is closed. The variable m_socket_container is a member of TCPServer-
WorkerThread, this is the data structure D from the theoretical analysis in chapter [l (i.e.
the central limiting element in our servers connection handling)! It indexes a quadruple
of send buffer, receive buffer, frame assembler and connection. technically it is a thread
safe version of an STL unordered map. In this example we use the already existing frame
assembler ClusterLibFrameAssembler which is used for communication in cluster services
(we dedicated a whole chapter on frame assembling, i.e. [L3.3]). The only new class is
ExFrameHandler, which holds all server logic! Once a connection can be accepted by the
worker thread, he will register the connection in his container member and assign a ded-
icated frame assembler to it. The assembler itself gets assigned a frame handler, whose
handlePayload method will be called by the assembler each time a complete frame was
assembled. The created TCP connection object features shared buffers as well as a shared

136

Chapter X. Building a Multithreaded TCP Server

epoll-in system. The shared buffers should be no surprise after studying chapter [yet
the shared epoll-in system seems a bit puzzling. The reason lies in the servers structure;
each worker thread handles a certain amount of connections, he will iterate through all
descriptors which have available data, this data will be forwarded to the corresponding
assemblers, once an assembler calls the associated frame handler it will process the data.
The key point is that a frame handler is forbidden to explicitly receive data (i.e. call a
receive method for the connection)! Because of that, a TCP connection does not require
a dedicated epoll-in system. Keep in mind that no mechanisms are in place which pre-
vent the programmer to call a receive method in the frame handler, if he does I'T WILL
RESULT IN CHAOS (never call a receive method in a frame handler, i.e. in the context
of a worker thread)! The external lock calls to the container

Before venturing down any further, let us briefly recap what we have done so far. In order
to create a TCP server we have extended the class TCPServer, which requires us to create
worker thread objects that can handle the incoming TCP connection. In order to achieve
this we implemented a new class FxWorkerThread as an extension of TCPWorkerThread.
As its parent class is abstract we must implement addConnection, which in a nutshell,
registers incoming connection.

We are still missing the frame handler class ExFrameHandler, which as an extension of
FrameHandler requires an implemention of handlePayload:

1

ExFrameHandler : : ExFrameHandler (

GenericConnection* connection ,
ClusterNodeComFacilityx com_facility)
AssembledFrameHandler (connection , com_facility){
/+xcreate a frame for sending packages (this frame object
should be wused for communication only together with the
com—facility , i.e. check if a communication is already
in progress before sending data)x/
mp_frame = new ClusterLibFrame (connection);
//register the external active node list
mp-node_com_facility = com_facility ;
//currently serving no node
m_serving _node_id = 0;
}
int ExFrameHandler:: handlePayload (Bufferx payload)
{
payload—>printfRawBuffer ();
delete payload;
//send response
SerializationStack data;

137

26
27
28
29
30
31
32
33
34
35
36
37

Chapter X. Building a Multithreaded TCP Server

data.registerElement <unsigned int >(2);//just two numbers
data.sealStack ();

data.addUlnt (3);
data.addUlnt (123);

Bufferx buffer = data.getStackBuffer ();
mp_frame—>sendFrame (buffer);

return 0;

}

This is rather unspectacular but illustrates one important fact, the method handlePayload
must dispose of the buffer! Furthermore the constructor creates a ClusterLibFrame for the
connection, this object will provide a convenient way to send data (see handlePayload).
The final element in our TCP server is a communication facility, which in targets a
specific situation. A TCP server class usually provides functions to communicate with
the connected clients. Yet in our current design there is no way for the server to access the
client connections, as only the worker threads actually create connection objects. A very
difficult situation arises now as we are about to handle situations with at least 3 concurrent
threads; T7 calls a method of the TCP server s; in order to send data to a client, T, waits
for incoming TCP connections in data context of s; and T3 (a worker thread) handles
the communication with the clients. This is where the CommunicationFacility comes in,
it provides methods which 7} can use for client communication. The idea is to use a
com facility as an abstract interface for the worker threads data structure, thus the class
TCPServer already contains a member

CommunicationFacility* mp_cn_node_facility;

which can be used for that purpose. We will now implement a basic example called
ExComFacility in order further explain the idea

O© 00O Ui W+

e Sy
wWN = O

class ExComFacility: public CommunicationFacility {
public:
ExComFacility (){
mp_active_nodes = new
SHCore : : ThreadSafeUnorderedMap<unsigned int , ClusterNodex >();
pthread_mutex_init(&m_-mutex ,NULL);
¥
virtual “ExComFacility (){
pthread_mutex_destroy(&m_mutex);
/xdelete the list of mode objects (the nodes are owned by the frame
handlers, thus they are not destroyed)x/
delete mp_active_nodes;

}

138

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61

Chapter X. Building a Multithreaded TCP Server

void addNode(ExNodex node)

{

mp._active_nodes—>insertElement (node—>m_node_id ,node);
¥

virtual int sendRequestToNode(unsigned int node_id ,

SHCore:: Buffer* request, SynchronizationCallbackx callback)
{
int result = 0;
//get the node

ClusterNodex node = NULL;

try

{

node = mp_active_nodes—>getElement (node_id);

}

catch(const std::out_-of_-range &oe)

{

return —1;

}

if (node = NULL)

{
printf ("ERROR: could not send data to node with id %d\n”, node_id);

return —1;

}

// Wait until any active connection ceased. Afterwards lock the node for other communication.
node—>lockMutex () ;

//Set the callback
node—>setCallback (callback);

//Send data
result = node—>get_mp_frame()—>sendFrame (request);

//wait for result
callback—>lock (node_id);

return result;

}
protected:
SHCore:: ThreadSafeUnorderedMap<unsigned int , ClusterNodex>+ mp_active_nodes;

pthread _mutex_t m_mutex;

}

139

Chapter X. Building a Multithreaded TCP Server

An object of this class will be instantiated within the constructor of EzTCPServer, the
com object will be forwarded up to the frame handler, which will create an internal
instance of FxNode and insert it into the com object via insertElement. We haven’t
shown this but the strategy should be much clearer now, 7} will indirectly access the com
object through the TCP servers interface. In our example we use an unordered map to
store the node pointers by their corresponding node id (i.e. an unique attribute among all
nodes in all frame handlers). The call to node->lockMutex() will simply attempt to lock
a mutex that resides in the node object, once the mutex has been acquired every attempt
by another thread to communicate with the attempt will halt (this assumes that every
other thread also tries to lock the mutex). Afterwards a callback object will be handed to
the node, whose purpose is to provide the node with a mechanism to toggle a (callback
internal) sentinel, which in turn will allow 7} to escape from callback->lock(node_id). The
internal gears may look like

O 00O Uik W -

O e T e S S G Gy G S G B e
O 0D UL W H—O

void ExSynchronizationCallback ::lock (unsigned int node_id)
{
/xNow wait until the sequence ended, this will be indicated by
‘callback . m_done == true’ which will be set by some
framehandler. A spinlock may seem to be a wasteful approach ,
yet the average waiting time is expected to be wvery short.
This method will introduce a 50us latency! m_done is atomic
v/
while (m_done = false)
{

SHCore:: Toolbox :: sleep_us (50);
}
¥
void ExSynchronizationCallback :: unlock (unsigned int node_id)
{
/ /unlock via exiting the spin lock
m_done = true;
¥

As described in the comment, the unlock function will be called by a frame handler (i.e.
we must ensure that our frame handler calls it). Thus we again delegate all logic into the
frame handler! Let us assume that a “Hello” dialogue consists of two messages mq, mo;
where m; is sent to the client and contains the string 'Hello’, while my represents the
clients response to the server (contains only the string "World’). The TCP server will
provide a method

T W N~
~

void ExTCPServer::sendHelloToNode (unsigned int node_id)

//the callback
ExSynchronizationCallback comCallback;

140

Chapter X. Building a Multithreaded TCP Server

//send ’hello’
SerializationStack data;
data.registerString (" Hello”);
data.sealStack ();

data.addString (” hello”);
Bufferx buffer = data.getStackBuffer ();

//send data via facility
mp_cn_node_facility —>sendRequestToNode(node_id , buffer ,&comCallback);

}

By using the com facility 77 will wait until any active dialogue with node node_id has
ended. Afterwards it will lock the node and begin the communication. The logic in the
frame handler will be (we simply adapt our previous code)

21

int ExFrameHandler:: handlePayload (Buffer*x payload)

{
//extract the reply

SerializationStack data;
data.setStackCopy (message);

std::string s = data.getString();//World??
delete payload;

printf ("%s\n” ,s.c-str ());

//the sequence is over
mp-node—>unlockMutex ();

SynchronizationCallback* sync_callback =
mp-_serving_node—>getCallback ();

//this will release the lock
sync_callback —>unlock(m_serving_node_id);

return 0;

}

This shows the previously mentioned node object within the frame handler, which is avail-
able to T via the com facility in the TCP server. Before the message has been sent to the
client, the node object received the callback object, which in turn is used by the frame
handler to unblock 77 at the dialogues end.

141

Chapter X. Building a Multithreaded TCP Server

X.2. A TCP Callback Server

So far we have only provided a rough outline on how to write a TCP server and we
haven’t even discussed the client. it is easy to understand that even the most careful and
experienced developer will likely spend a lot of his time with debugging the system. In
order to avoid a reinvention of the wheel, SimpleHydra provides a TCP server husk called
“Callback Servers”. A callback server is essentially an implementation of the previously
described TCP server, the only element which must be provided is the logic in the frame
handler. The following example shows how to create a callback server

O© 0O Ui W

DO DO RN D DD = = = b = e s s s
= WN R OO0 Ui WwN — O

ExCallbackServer server_callback;
SHNetwork :: CallbackServer* callback_server =
SHNetwork :: ServerFactory :: getCallbackServerInstancelPv4 (
50000/« portx/,
1/« worker threadsx/,
100 /«max connectionsx*/,
&server_callback);
computation_server—>startServer ();
//sendHelloToNode
SHCore:: SerializationStack data;

data.registerString (" Hello”);
data.sealStack ();

data.addString (” hello”);

SHCore:: Bufferx buffer = data.getStackBuffer ();

/x This will pack 0| buffer into the send buffer and send itx/
callback_server —>sendCommandSync (node_id ,0, buffer);
}

Which without a doubt is more favorable than a development from scratch. Yet in order
to understand the class EzCallbackServer one has to read the previous section (we assume
this has been done).

1
2
3
4
5
6
7
8

#include <Network/GenericCallback.h>
class ExCallbackServer: public SHNetwork:: GenericCallback {

ExCallbackServer (){}
H

“ExCallbackServer (){}

int call (SHCore:: Thread* t, voidx var)

142

Chapter X. Building a Multithreaded TCP Server

9 {
10 SHNetwork :: CallbackDatax data = (SHNetwork:: CallbackDatax)var;
11 SHCore:: Bufferx payload = data—>mp_message;
12
13 //extract the reply
14 SHCore:: SerializationStack data;
15 data.setStackCopy (message);
16 std::string s = data.getString();//World??
17 delete payload;
18
19 printf ("%s\n” ,s.c_str ());
20
21 //the sequence is over
22 mp-node—>unlockMutex () ;
23
24 SynchronizationCallback* sync_callback =
25 mp_serving_ node—>getCallback ();
26
27 //this will release the lock
28 sync_callback —>unlock(m_serving_-node_id);
29
30 return O0;
31 }
32
33 }

This should take care of the server side. Now to the callback client

ExCallbackClient client_callback;
SHNetwork :: CallbackClientx callback_client =
new SHNetwork:: CallbackClient(ip-of_server ,port_of_server ,

node_id ,&client_callback);

callback_client —>run ();

O© 00O UL W+

//wait some time

SHCore:: Toolbox :: sleep_ms (50000000);

e
N = O

callback_client —>shutdown ();

The clients constructor will attempt to connect with the provided server, afterwards the
client starts his work in a separate thread. The callback is

1 #include <Network/GenericCallback.h>

2

3 class ExCallbackClient: public SHNetwork:: GenericCallback {
4

5 ExCallbackClient (){}

143

NoR0 RN o))

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Chapter X. Building a Multithreaded TCP Server

“ExCallbackClient (){}

int call (SHCore:: Thread* t, voidx var)

{

SHNetwork : : CallbackDatax data = (SHNetwork:: CallbackDatax)var;
SHCore:: Bufferx payload = data—>mp_message;

//extract the message

SHCore:: SerializationStack data;
data.setStackCopy (message);

std::string s = data.getString ();//Hello??
unsigned int type = data.getUlnt ();//0%?

printf (" (%u):%s\n” ,type,s.c-str ());

//send a reply
data.reset ();

data.registerString (" World”);
data.sealStack ();

data.addString (" World”);

Bufferx buffer = data.getStackBuffer ();
mp-_serving_node—>sendFrame ();

return 0;

}

}

In a nutshell a callback server requires callback objects which provide a call() function,
this function is called once the frame handler has received a payload which contains no
management information (i.e. control messages for the callback server). The same holds
for the callback client. Keep in mind that the payload should not be deleted within call.
Yet what if the roles are reversed, i.e. the client sends the 'Hello’ and the server has to
answer? One can simply reverse the scene and use

ClusterLibFramex frame = ExCallbackClient—>get_mp_frame ();

to obtain the frame clients frame object in order to send data to the server. A strong
word of advice; never mix server and client roles while using the callback classes! Always
fix a communication paradigm, otherwise write your own TCP server!

144

Xl. Setting up the framework

The process of setting up SimpleHydra is easily done via CMake. Even the most basic
configuration requires several prerequisites must be fulfilled; libtomcrypt and libtomfast-
math. Yet several scripts simplify the correspondig installations, we assume the sources
have already been checked out into the folder “SimpleHydra”. In order to install the
following libraries it might be required to add the user group 'wheel’ to the system, which
can be done by issuing sudo groupadd wheel. Change into the “3rdParty” subfolder via
cd 3rdparty, where you will find all required libraries. For the sake of completion we will
explain all available libraries and the modules that depend on them. The most basic ver-
sion consist only of “SHCore”; change into “libtomfastmath-master” via c¢d and issue the
commands . /buildz6], sudo make install. Afterwards issue cd .., cd libtomcrypt-develop.
./buildz64 and sudo make install. Please ensure that “libpthread”, “libX11”, “libcurses”,
“libpanel” and “libz” are available on the system (note that only “libpthread” is manda-
tory, yet for convenience we will compile SH with the other libraries)! We are now ready
to compile a basic version of SH; issue cd .., cd .., cmake . and cmake-gui .. Press
“configure” in the open CMake window, make sure that:

e Only the module “Core” is selected

BLAS_TYPE is set to “NOBLAS”

e CLMATH_TYPE is set to “NOCLMATH”
LAPACK_TYPE is set to “NOLAPACK”

LMSENSORS_TYPE is set to “NO_LM_SENSORS”

MAGMA_TYPE is set to “NOMAGMA”

VIMBA_TYPE is set to “NO_VIMBA”

Press twice on “Configure” followed by a click on “Generate” and close the window.
The build system features the following build methods: “make SH” (compile SH and the
embedded QT window system) and “make SHNOQT” (compile only the SH libraries and
use an already compiled window system). As we are about to commence the first build
we will compile the target “SH” (although it will skip the build of the window system due
to the slim selection of modules). The complete list of build targets is:

145

Chapter XI. Setting up the framework

e SH (includes the next 4 targets)

e SH shared_release

e SH static_release

e SH shared_debug

e SH static_debug

e SH.NOQT (includes the next 4 targets)
e SH NOQT _shared_release

e SH NOQT static_release

e SH NOQT _shared_debug

e SH NOQT static_debug

Once the libraries have been built we install them via sudo make install_all, this will

install the header files into “/usr/include/SH” and the libraries into “/usr/lib/SH” (yet
this can be changed in the CMake GUI). Additional installation targets are:

e install_shared_release
e install_shared_debug
e install static_release
e install_static_debug

As mentioned above we will now briefly list the 3rd party libraries and the SH modules
which depend on them:

Cluster: Network module, Core module

e SDL: Core module, all sub-libraries within SDL2

Visualization: Core module, QCustomPlot, QT5

Database: Core module, libmysglclient, boostregex

Hardware: Core module, liblmsensors, libv412, VimbaSDK

ImageProcessing: Core module, libjpeg, libpng

146

Chapter XI. Setting up the framework

e MachineLearning: 1ibSVM

e Matlab: Core module, libmat

e Network: Core module, XML module

e OpenCL: Core module, libOpenCL

e OpenCLImageProcessing: Core module, ImageProcessing module, OpenCL module
e OpenCV: Core module, Visualization module, OpenCV >=4.8

e XML: Core module, libxml2

We strongly advise to use the libraries from the “3rdParty” folder if they are available in
it.

147

XIl. Setting up a Cluster

In this chapter we will discuss how to actually use SimpleHydra for its main purpose;
distributed computation, cluster computation, cluster management etc. First we will
discuss how to set up the involved nodes, this is followed by a tutorial on how to create a
set of distributed processes with an example of calculating a good old mandelbrot fractal!

XIl.1. Preparing the Nodes

SimpleHydra needs to be installed on all nodes, note that a node can be an arbitrary
Linux based system e.g. an existing workstation or a dedicated cluster node, these dif-
ferent node types can also be mixed together. The framework itself is merely a set of
passive components which are utilized by a background daemon called SHClientDaemon,
this daemon will handle the incoming management connections and deploy the local pro-
cesses.

Let us assume that the daemon sources have been checked out into a folder called
SHClientDaemon, the installation can be completed by simply issuing cmake . followed
by make and make install_shared_release. The make file also features the targets in-
stall_shared_release, install_static_release and install_static_debug, yet these are most likely
interesting only for developers. it is crucial to understand the mechanics behind the dae-
mon, the installation will do the following things

e copy the daemon executable into /usr/bin

e copy a default configuration file into /etc/SHClient
e create a systemd profile called SHClientDaemon

e activate and start the systemd profile

It is wise to configure the daemon after the installation, which can be done through the
file /etc/SHClient/clientConfig.xml, let us take a look at the file structure

1 <!— An example configuration file for the cluster node management client —>
2 <config>

3

4 <!— FEwerything which is needed to start the mgmt client —>

149

Chapter XII. Setting up a Cluster

9 <section name=" General”>

6 <parameter name=" RCSClientPort” type="UINT”>

7 16001

8 </parameter>

9 <parameter name="TCPRCSServerPort” type="UINT”>

10 16005

11 </parameter>

12 <parameter name="TCPRCSServerFrameTimeout” type="UINT”>

13 250

14 </parameter>

15 <parameter name="TCPRCSServerListenTimeout” type="UINT”>

16 250

17 </parameter>

18 <!— Determines the type of used RCS serwvices;

19 0 = UDP RCS Only, 1 = TCP RCS only, 2 = UDP & TCP RCS —>

20 <parameter name="RCSType” type="UINT”>

21 2

22 </parameter>

23 <!— A list of client group IDs to which this RCS client will reply —>
24 <!— Predefined groups are ALL=0, ALL.OCL=1, ALL.CUDA=2, ALL.CPU.ONLY=8 —>
25 <parameter name="RCSClientGroups” type="UINT_ARRAY”>

26 0,1,2,3

27 </parameter>

28 <!— The time (in ms) a client will wait before starting

29 the next conmection attempt to the mgmt server—>

30 <parameter name="MgmtClientConnectionInterval” type="UINT”>
31 500

32 </parameter>

33 <!— The amount of connection attempts to the mgmt server—>
34 <parameter name="MgmtClientConnectionAttempts” type="UINT”>
35 500

36 </parameter>

37 <!— This determines if the client should also use TCP RCS—>
38 <parameter name="UseTCPRCS” type="UINT”">

39 0

40 </parameter>

41 <!— The port on which a TCP RCS client will listen for connections—>
42 <parameter name="TCPRCSPort” type="UINT">

43 30000

44 </parameter>
45 </section>

46

47 <!— The node attributes —>

48 <section name="System”>

49 <!— An wunique client identifier —>

50 <parameter name="CNMClientName” type="STRING”>
51 An unnamed management client
52 </parameter>

150

Chapter XII. Setting up a Cluster

93 <!— The desired node ID, i.e. the ID that the client wishes to obtain—>

94 <parameter name="DesiredNodeID” type="UINT”>

55 2

56 </parameter>

57 <parameter name="OSName” type="STRING”>

58 Linux

59 </parameter>

60 <parameter name="Architecture” type="STRING”>

61 x64

62 </parameter>

63 <parameter name="SHUDeploymentPath” type="STRING”>
64 /tmp

65 </parameter>

66 <!— The full path to the systems checkout folder , i.e. the

67 folder to which, during an update, the SH sources will be checked out to.

68 <parameter name="SHCheckoutPath” type="STRING”>

69 /tmp

70 </parameter>

71 <!— The full path to the system database, this must not exceed
72 511 chars! If it doesn’t exist, it will be created on runtime. —>

73 <parameter name="SystemDB” type="STRING”>

74 /home/lowwang /SHDB. db

75 </parameter>

76 <!—— A list of system capabilities—>

77 <parameter name="SystemCapabilities” type="STRING.ARRAY”>
78 <string >FullSH</string >

79 </parameter>

80 <!—— The amount of physical CPUs —>

81 <parameter name="Physical CPUCount” type="UINT">

82 1

83 </parameter>

84 <!—— The amount of cores per CPUs —>

85 <parameter name="CoresPerCPU” type="UINT">

86 8

87 </parameter>

88 <!—— The amount of HDDDevs in the next parameter —>
89 <parameter name="HDDCount” type="UINT">

90 1

91 </parameter>

92 <!—— A list of "HDDCount’ HDDDevices —>

93 <parameter name="HDDDevs” type="STRING_.ARRAY”>

94 <string >/dev/sda</string >

95 </parameter>

96

97 <!—— The amount of OpenCL devices in the client —>
98 <parameter name="OCLDevCount” type="UINT">

99 1

100 </parameter>

151

Chapter XII. Setting up a Cluster

101 <!—— A list of OCL platform indices, one for each device
102 <parameter name="CLPlatforms” type="UINT_ARRAY”>
103 0

104 </parameter>

105 <!—— A list of OCL device indices, one for each device, a total of *OCLDevCount’ —>
106 <parameter name="CLDevices” type="UINT_ARRAY”>

107 0

108 </parameter>

109 <!—— A list of typenames for each OCL device —>

110 <parameter name="OCLTypes” type="STRING.ARRAY”>

111 <string >7970</string >

112 </parameter>

113

114 <!—— The amount of CUDA devices in the client —>

115 <parameter name="CUDADevCount” type="UINT">

116 0

117 </parameter>

118 <!—— A list of typenames for each CUDA device —>

119 <parameter name="CUDATypes” type="STRING_.ARRAY”>

120 <string >780GTX</string >

121 </parameter>

122

123 </section>

124

125 </config>

, a total of *OCLDevCount’ —>

Well that’s a lot of options which shall be explained in the following sections. Before
discussing them we would like to note a few things regarding control over the daemon.

The daemon can be controlled through the systemd interface; start it with sudo sys-
temctl start SHClientDaemon, restart via sudo systemctl estart SHClientDaemon, stop it
with sudo systemctl stop SHClientDaemon, enable with sudo systemctl enable SHClient-
Daemon and disable it with sudo systemctl disable SHClientDaemon. The daemon can
also be started manually; stop the systemd process and call /usr/bin/SHClientDaemon
/etc/SHClient/clientConfig.zml, in case of debug versions one should start it via GDB.

XI1.1.1. Starting the daemon as normal user

By default the daemon will be running with root privileges, if one desires to run it as
a normal user it can be done via a small change in the file /etc/systemd/system/SH-
ClientDaemon.service. One has to change the option User=root to the desired value, but
beware that several features as e.g. remote updating of the installed SimpleHydra version
can only be executed if the daemon has root priveleges. It might also require to chose
ports above 10000 in order to enable the daemon to open sockets. After each edit to the
mentioned config file one has to issue sudo systemctl reload, otherwise the changes will
not be updated.

152

Chapter XII. Setting up a Cluster

XI1.1.2. Option: RCSClientPort

When it comes to dynamic network topologies one has to rely onto the UDP-based RCS
(Remote Configuration Services), SimpleHydra also features TCP-based RCS yet these
will be discussed later. In a nutshell RCS are used to acquire meta information of the
nodes before the main TCP management connection is established. An example: let there
be 10 nodes with unknown IP addresses, the management node desires to establish a TCP
connection to each of them, yet this requires the knowledge of all IP addresses (the man-
agement node might not even know how many nodes are available in the network)! The
management node can use RCS for that, it will repeatedly broadcast an unfragmentable
UDP frame into the local network, hopefully every node will receive this frame and reply,
the node will reply with a UDP unicast to the management node, thus informing it about
its IP and availability. The option RCSClientPort defines on which port the client will
listen for these UDP broadcasts, every number below 10000 requires root privileges.

XI1.1.3. Option: TCPRCSServerPort

TCP-based RCS are very similar to the UDP variant, yet they focus on another use case
since there are no TCP broadcasts. Let us assume there are again 10 nodes available
but the management node knows about their existence and their IP addresses. Their
existence does not imply their availability for cluster computation, this is where TCP
RCS come into play. The management node can attempt to connect to a TCP RCS
server on the client, if e.g. no connection could be established it can assume that the
node is unavailable. The bold faced ”server” indicates the change of roles in the case of
TCP RCS, UDP RCS does not use connections and the central information sink is the
management node, thus the management node is called an UDP RCS server, whereas in
the TCP case the client provides services and waits for connections from a management
node, thus the client now assumes the role of an RCS server. Since TCP RCS provides a
much more reliable way of communication it is also used for more than simple exchanges
of meta data. One example is the capability of updating the SimpleHydra framework on
the node. The client daemon will provide both variants, UDP and TCP RCS, thus it
also requires information on which port the daemon should listen for incoming RCS TCP
connections. The option TCPRCSPort defines that, just as with the UDP counterpart,
every number below 10000 requires root priveleges for the daemon.

XI1.1.4. Option: TCPRCSServerFrameTimeout

In case of TCP RCS the server will wait for the specified amount of ms for an incoming
frame. The value must be greater than 0 in order to keep the server responsive and
stoppable.

153

Chapter XII. Setting up a Cluster

XI11.1.5. Option: TCPRCSServerListenTimeout

This timeout value determines how long the server attempts to listen for an incoming
connection, as before, in order to keep the server responsive and especially stoppable one
has to set a value greater than 0.

XI11.1.6. Option: RCSType

This option determines which kind of service should actually be used, valid values are 0 =
UDP RCS Only, 1 = TCP RCS only, 2 = UDP & TCP RCS. Independent of the option
value the daemon will start both services, the specified value determines which of both
active RCS variants shall react to incoming data (UDP) or connections (TCP).

XI11.1.7. Option: RCSClientGroups

The RCS client group is a very important concept in SH, each first incoming RCS frame
(UDP and TCP) specifies a client group, the daemon will check if this client group is
contained within the set RCSClientGroups. 1f the received client group is not contained
in it; the daemon won’t answer (UDP) or send a negative response (TCP). In any case the
management node won'’t register the client as available! Predefined groups are ALL=0,
ALL_OCL=1, ALL_.CUDA=2, ALL_CPU_ONLY=3, which in turn should be self explana-
tory.

X11.1.8. Option: MgmtClientConnectioninterval

With this option we are leaving the RCS area, once the node has received a positive RCS
advertisement (i.e. with a valid group ID), it will attempt to connect to the manage-
ment server which resides on the management node. This option specifies the delay (ms)
between the connection attempts to the server.

X11.1.9. Option: MgmtClientConnectionAttempts

In addition to MgmtClientConnectionInterval this option specifies how many connection
attempts should be made.

X11.1.10. Option: UseTCPRCS

By default the TCP RCS are used in parallel with the UDP variant, yet if for some reason
TCP RCS should not be used, it can be deactivated by setting this option to 0.

154

Chapter XII. Setting up a Cluster

XI11.1.11. Option: TCPRCSPort
The port under which the TCP RCS server will be started.

XI11.1.12. Client metadata

So far we have described daemon related options, yet the client configuration also specifies
a large amount of meta data about the client system. We will not discuss the correspond-
ing data types as they are outlined in the default configuration file.

CNMClientName: The name of the node (does not have to be unique)

DesiredNodeID: Once the management client connects to the server it will send this
node ID. If the server allows it, i.e. if it hasn’t been used for another node, the node
will be allowed to carry this id. If the server denies the clients wish, it will assign a
valid ID to the client. Thus regarding the configuration one should try to distribute
unique IDs yet it is technically not required to do so.

OSName: An identifier for the local operating system.
Architecture: A string which should indicate the system hardware architecture.

SHUDeploymentPath: The folder into which a SHU will temporarily be distributed,
e.g. /tmp.

SHCheckoutPath: The folder into which the SH sources will be checked out in case
of a remote update.

SystemDB: The full path to the SimpleHydra database file, if it does not exist an
empty database will be created instead.

SystemCapabilities: A list of available SH modules/features, there are no predefined
standard values.

Physical CPUCount: The count of physical CPUs in the system, i.e. real CPUs and
not logical ones (especially not cores).

CoresPerCPU: the amount of cores or logical CPUs per physical one.
HDDCount: The amount of available HDDs.

HDDDevs: A list of HDD device files (full path), the number of entries must corre-
spond to the value of HDDCount.

OCLDevCount: The amount of OpenCL capable devices.

155

Chapter XII. Setting up a Cluster

e CLPlatforms: An integer list of OpenCL platform indices, one entry for each
OpenCL device

CLDevices: The corresponding list of device indices for each OpenCL device.

OCLTypes: A string list of OpenCL device names, the strings can be arbitrary
descriptions. One entry per OpenCL device.

CUDADevCount: The amount of CUDA capable devices in the system.

CUDATYypes: The NVidia analogon to OCLTypes.

XIl.2. Creating SimpleHydra Units

Although it induces a step learning curve we decided to explain the usage of SimpleHydra
with a real world example, i.e. we don’t play the "hello world” game in this chapter. In
order to understand the following sections is absolutely mandatory to understand callback
servers/clients and the SHU concept (both topics have been explained before, yet we will
deeply elaborate on SHUs). How should the following sections be read and how are they
outlined?

First things first! As we venture into our example we will greatly expand on the involved
subconcepts, each section marked with ”7*” is considered as an additional information
source which is not necessarily required to understand the following topics. It is highly
advisable to read the following sections multiple times and experiment with the provided
example.

In this example we will compute the classical Mandelbrot fractal on multiple CPUs, the
reader should obtain the example projects called SHMandelbrotDemoUnit (SHU) and
SHMandelbrotDemoApp (application for the management node). We assume the projects
have been put into equally named folders, thus let’s change into SHMandelbrotDemo Unit
and discuss the folders structure.

XI11.2.1. The Mandelbrot SHU

The subfolders data, DeploymentScripts, SHUnits and src are typical for SHUnit projects
and must exist in any case! The data folder should be used for small amounts of static
data as it will be distributed with the SHU file, the term small is very relative and should
be quantified with respect to the SHU processing (see the later chapter for a detailed
description of SHU deployment). The directory DeploymentScripts contains bash scripts
which manage the deployment process on the node, the compiled SHU files will be put
into the folder SHUnits while the actual source files reside in src.

156

Chapter XII. Setting up a Cluster

For now let’s focus on the SHUSs source files, within src and besides the CMake script we
find the C++ source file Main.cpp which contains

nt main(int argc, charx argv([])

—— -

SHU_INIT

————————— - start the computation client
//the server logic is contained within this callback object
WorkCallbackClient client_callback;

O© 00 JO Ui W
R
N

printf (”Going to connect to %s : %u\n” ,shu_server_ip.c_.str(),shu_server_port);
10 SHNetwork:: CallbackClientx callback_client =
11 new SHNetwork:: CallbackClient(shu_server_ip ,shu_server_port ,
12 shu_com_struct—>m_node_id ,& client_callback);

14 callback_client —run ();

17 SHU_CLOSE

19 return 0;
20 }

One should note that we do not omit the namespaces in this and following listings, as we
are discussing a real world application. Each SHU’s entry point, i.e. the main function,
must start with a call of the macro SHU_INIT and end with a call to SHU_CLOSE!
All program logic must fully reside between these two calls. The Mandelbrot SHU uses
a standard callback server/client paradigm for communication, the client logic is fully
contained within WorkCallbackClient which resides in the file NetworkCommunication,/-
WorkCallbackClient. A corresponding object called client_callback is created and passed
to the instance of the callback client. The first interesting thing are the additionaly passed
parameters shu_server and shu_server_port, since they apparently haven’t been declared
in the main function. The declaration is hidden in the SHU_INIT macro which features
even more useful variables (see the corresponding section)! The variables content is in-
dicated by their name, shu_server_ip provides the IP address of the management server
while shu_server_port provides the corresponding port. The variables are filled ”within”
the macro, we won’t bother with the technical details in this section. We remind the
reader that a callback client is designed to be run as a thread, yet in this example we
do not call the classes start method, instead we directly call "run()”, i.e. no additional
thread is started! The rationale behind this approach is that once the client’s state ma-
chine exits, the SHU will commence a graceful shutdown.

Before continuing to the callback logic let us summarize the targeted idea. The SH
management daemon on each computation node establishes a connection with the man-

157

Chapter XII. Setting up a Cluster

agement node, the management node will send a SHU file to each connected node, once
the a node receives the the complete SHU it will commence the deployment. The deploy-
ment consists of compiling the SHU content into an executable and its start as a new
process which is fully controlled by the management daemon. In our example this process
features the logic indicated by the previous listing.

We now venture into the callback clients logic, the idea can be quickly summarized; once
the connection has been established the client will receive a parameter set of which region
of the fractal he should compute, the computation itself is splitted into so called tiles i.e.
rectangular and disjoint areas of the designated fractal space. This can be further ex-
pressed by concrete numbers, let’s assume we attempt to calculate the fractal in an image
area of 4096x2160, each of 4 nodes will calculate a fractal space with dimension 1024x540
which in turn shall be splitted into tiles of size 30x30 (we allow fragmented tiles!). Once
a node has computed a tile it will transmit this result to the management node, which
in turn will acknowledge the received data, once the client received the acknowledgment
it will begin to compute the next tile. On the side of the management node the received
tiles will be placed in a queue and periodically dequeued for live printing into an image
viewer.

The NetworkCommunication folder also contains the callback servers header file, as it
provides the definition of message types

U W N~

enum WORK COM REQUEST TYPE{WORK COM REQUEST_TYPEINCOMING DATA UNIT=
SHNetwork :: CallbackServer : : RESERVED_TYPE_SIZE,
WORK_COM_REQUESTTYPE_START_PROCESSING,
WORK_COM_REQUEST_-TYPEINCOMING_RESULT_UNIT, WORK_COM_REQUEST_-TYPE_OK,
WORK_-COM REQUEST TYPE SET REGION } ;

Note the definition of the enums start value, we remind the reader that this is mandatory
for a successful message parsing (see chapter[X]). It also declares the communication structs

O© 0O Ui W

I
N = O

struct MandelFragment

{
unsigned int m_global_pos_x;
unsigned int m_global_pos_y;

Iz

struct MandelFragmentQueueElement
{
unsigned int m_global_pos_x;
unsigned int m_global_pos_y;
SHCore : : Image<unsigned char>x mp_image;

}s

The usage of these structures will be explained alongside the following listing, at this
point it suffices to say that the first struct is directly used in the communication while
the second one is only used with the management nodes queue.

158

Chapter XII. Setting up a Cluster

The callback client features a set of internal variables which we will not explain in detail,
it uses a method called createPalette in order to compute the color palette for the fractal
and a method calculatePatch to actually calculate an image tile. We will not elaborate
on the computation itself and consider these methods as black boxes, our main focus lies
on the method call. Tt starts with the canonical message extraction

1 SHNetwork :: CallbackDatax data = (SHNetwork:: CallbackDatax)var;

2

3 unsigned int type_size =

4 sizeof(enum WorkCallbackServer:: WORK. COM REQUESTTYPE) ;

5 enum WorkCallbackServer : : WORK.COMREQUESTTYPE type =

6 (enum WorkCallbackServer : : WORK COM REQUESTTYPE)

7 SHNetwork : : CallbackServer :: getCRequestType (data—>mp_message , type_size);

Afterwards the method enters a long switch statement which itself only distinguishes be-

tween two options, the chronologically first being WorkCallbackServer:: WORK_COM_REQUEST_TYPF
The first message the client will receive contains the parameters for the upcoming com-

putation task e.g. fractal area and tile size. The corresponding case-block begins with

a rather unspectacular data extraction which is followed by a reply to the server (type
SHNetwork::CallbackServer:: CALLBACK_SERVER_REQUEST_TYPE_OK), additionally

the color palette is created after the hopefully successful response.

1 //unpack the data

2 SHCore:: Buffer* data_unit = new SHCore:: Buffer (

3 data—>mp_message—>get_mp_data()+type_size ,

4 data—>mp_message—>get_m_length()—type_size ,true);
)

6 /«Some lines with data extraction proceduresx/

T /...

8 ... */

9

10 //acknowledge the regions

11 SHCore:: Buffer response (sizeof(

12 SHNetwork :: CallbackServer : : CALLBACK SERVER REQUEST.TYPE)) ;

13 SHNetwork :: CallbackServer :: setCRequestType(&response ,

14 SHNetwork : : CallbackServer : : CALLBACK_ SERVER REQUEST_TYPE. OK, type_size);
15 data—>mp_frame—>sendFrame(&response);

16

17 createPalette ();

18

19 break;

Thus the first steps on client side are:

1. Receive a parameter frame of type
WorkCallbackServer:: WORK_COM_REQUEST-TYPE_SET_REGION.

159

Chapter XII. Setting up a Cluster

2. Reply to the server with frame of type
SHNetwork::CallbackServer:: CALLBACK_SERVER_REQUEST_TYPE_OK.
3. Calculate the color palette.

Once the server received the clients response it will send a frame of type WorkCall-
backServer:: WORK_COM_REQUEST_-TYPE_START_-PROCESSING, which will be pro-
cessed by the second case-block, which contains the following simplified code

1 /xunspectacular calculationsx*/

2

3 //calculate the patches

4 for (unsigned int i=0;i<fragment_count_x;++i)

5 {

6 for (unsigned int j=0;j<fragment_count_y;++j)

T A

8 calculatePatch (...);

9 mp_patch_image—>serialize ();

10

11 SHCore:: Buffer response (type_size+

12 sizeof (struct MandelFragment) +

13 mp_patch_image—>get_mp_serialized_data_buffer()—>get_m_length ());
14

15 /xset the typex/

16 SHNetwork : : CallbackServer :: setCRequestType(&response ,

17 WorkCallbackServer : : WORK_.COM_REQUEST_TYPE INCOMING_RESULT_UNIT, type_size);
18

19 /x fill the MandelFragment structx/

20

21 /+xcopy the structs contents into the responsex/

22

23 /+xcopy the serialized image into the responsex/

24

25 data—>mp_frame—>sendFrame(&response);

26

27 /wait for OK

28 SHCore:: Bufferx ack = data—>mp_frame—>readFrame();

29 int ack. = SHNetwork:: CallbackServer :: getCRequestType (ack,
30 sizeof (WorkCallbackServer : : WORK.COM REQUESTTYPE)) ;

31 if(ack. != WorkCallbackServer:: WORK. COM REQUEST-TYPE.OK)
32 {

33 printf (”Send result was not acknowledged %u instead of %u\n”,
34 ack_, WorkCallbackServer : : WORK. COM REQUEST_TYPE.OK) ;
35 }

36 delete ack;

37}

38 }

The final part of the communication protocol can be summarized as

160

Chapter XII. Setting up a Cluster

1. Wait for start frame of type
WorkCallbackServer:: WORK_COM_REQUEST_-TYPE_START_PROCESSING

2. Compute an image tile ;.
3. Send t; to the server.

4. Wait for an acknowledgement from the server, i.e. a frame of type

textit WorkCallbackServer: WORK_COM_REQUEST_TYPE_OK
5. If any tiles are left to compute go back to step 2).

Although very simplistic in its nature, the protocol shows several important concepts in
designing a communication in the callback server/client paradigm. At first one should
note the sequentially called function readFrame, this would not be possible on the server
side because such a call might consume events which are designated for other connections
(the connections share the same epoll system for incoming network events). Furthermore
the client enters an semi-autonomous state in which he transmits the computed data and
continues to do so after receiving a receive acknowledgment. This could be enhanced by
omitting the receive acknowledgment, the reason for the implemented approach lies in the
possibility for the server to control the data flow from each client (i.e. congestion control).
Let us briefly talk about some technicalities which happen in the background. Once a
SHU gets fully deployed, i.e. the sources are compiled and the executable is started as a
new system process, it can live at most until the connection between management client
and server is closed. The daemon will ensure that no deployed SHU resides on the system
once the connection ended! Although this approach ensures a consistent and clean system
state it also induces some subtle problems. In case of an active SHU the corresponding
process will be ”brutally” terminated once the management connection breaks down, this
might result in e.g. data loses or hanging server applications. Thus the developer must
account for such situations in the design of his protocol. It is entirely legit to let the SHU
process die before actually tearing down the management connection.

The SHU can be compiled by issuing cmake . followed by make all_units in the base
directory, this will create all four types (static debug, static release, shared release and
shared debug) of the SHU in the mentioned folder. Additionally it is possible to build the
binary directly through a call of make, this won’t create any SHU files yet enables one to
debug the SHU process locally e.g. by running it in a GDB session. It is highly advisable
to take an existing SHU project, e.g. this one, and adapt it to the specific needs, this
of course requires some basic knowledge about CMake. If one desires to e.g. create a
deployment for JavaScript-based SHUs (i.e. client applications written in JavaScript), we
strongly suggest the study of sections XKIL2.2] XIT.4] and

161

Chapter XII. Setting up a Cluster

XI1.2.2. SHU Compilation *

A SimpleHydra Unit file is compiled by a toolchain of CMake and bash scripts. The
CMake target for the shared release SHU looks like

add_custom_target (unit_shared_debug

COMMAND -mkdir "/tmp/SHUnits"

COMMAND -mkdir "/tmp/SHUnits/tempsrc"

COMMAND cp -f -r "${PROJECT_SOURCE_DIR}/*" "/tmp/SHUnits/tempsrc"

COMMAND rm -rf "/tmp/SHUnits/tempsrc/bin"

COMMAND rm -rf "/tmp/SHUnits/tempsrc/DeploymentScripts"

COMMAND rm -rf "/tmp/SHUnits/tempsrc/SHUnits"

COMMAND rm -rf "/tmp/SHUnits/tempsrc/CMakeFiles"

COMMAND rm -rf "/tmp/SHUnits/tempsrc/CMakeCache.txt"

COMMAND rm -rf "/tmp/SHUnits/tempsrc/Makefile"

COMMAND cp -f "${PROJECT_SOURCE_DIR}/DeploymentScripts/deployment \
_shared_debug.sh" "/tmp/SHUnits/tempsrc/deployment.sh"

COMMAND cp -f "${PROJECT_SOURCE_DIR}/DeploymentScripts/rapid \
_deployment_shared_debug.sh" "/tmp/SHUnits/tempsrc/rapid_deployment.sh"

COMMAND sh "${PROJECT_SOURCE_DIR}/SHUnits/_deploy_helper.sh" 0

COMMAND rm -rf "/tmp/SHUnits/tempsrc"

COMMAND cp -f "/tmp/SHUnits/*.tar.gz" "${PROJECT_SOURCE_DIR}/SHUnits"

COMMAND rm -rf "/tmp/SHUnits")

One can see that it relies on access to the /tmp folder where it creates a temporary
directory called SHUnits. The following lines are self explanatory; up to line 10 the
tempsrc folder will contain only the src and data folder and the main CMakeLists.txt. In
line 11 the bash script deployment_shared_debug.sh will be copied to the tempsrc folder
as well, yet its name will be changed to deployment.sh. This will be the main deployment
script, all required logic is contained in it. We will discuss the internal mechanics later
on, for now we continue to analyze the CMake target from above. Line 12 copies another
script, rapid_deployment, into the tempsrc folder, this script is very similar to the previous
one, yet it will be used for deploying cached SHUs. The 13th line in the target calls
the script _deploy_helper.sh with the parameter 0, looking into the script one finds the
following switch-block

case $1 in
0)
GZIP=-9 tar -zcvf ../sh_unit_shared_debug.tar.gz ./
echo "O"

1)

162

Chapter XII. Setting up a Cluster

GZIP=-9 tar -zcvf ../sh_unit_shared_release.tar.gz ./

echo "1"

2)
GZIP=-9 tar -zcvf ../sh_unit_static_debug.tar.gz ./
echo "2"

3)
GZIP=-9 tar -zcvf ../sh_unit_static_release.tar.gz ./
echo "3"

*)
echo "Unknown option"

esac

Thus the script packs and deflates the contens of tempsrc into corresponding archives,
which will be saved in the parent directory of tempsrc i.e. SHUnits. Once this has been
done the CMake target will delete the directory tempsrc and copy the created archive
into the projects SHUnits folder, afterwards the temporary directory will be deleted from

/tmp.

XI11.2.3. SHU Deployment *

A SHU deployment is a two phase process; firstly the SHU file must be extracted on the
node and the deployment script must be involved, secondly the compiled application must
register itself in the nodes database and the shared memory area of the client daemon.
Additionally one has to distinguish between an initial deployment and a rapid deployment,
which in turn can be asynchronous or synchronized! Let us first discuss initial deployment
(be advised that the following listings might contain memory leaks due to simplification
for this documentation).

—_ =

RO OO0 Ui WN -

//register the shu and the shu server within the shared memory object
struct SharedMemSHUComStruct* shu_mem_object =
(struct SharedMemSHUComStruct*)mp_shared_mem_raw ;
shu_mem_object —>m_shu_server_port = shu_serverport; //shu server port
shu_mem_object —>m_shu_pid = 0;
shu_mem_object —>m_rapid_-deployment = 0;
shu_mem_object—>m_synchronized_deployment = 0;
int 1 = std::min(512,(int)(mp-node—>m _system_db_file.size ()+1));
memcpy (shu_mem_object—>m_system_db_filename ,
mp-node—>m_system_db_file.c_str (),1); //sh db
1 = std::min(512,(int)(mp-node—>m_shu_deployment_path.size ()+1));

163

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Chapter XII. Setting up a Cluster

memcpy (shu_mem_object—>m_system_deployment_path ,
mp-node—>m_shu_deployment_path.c_str (),1); //deployment path
memcpy (shu_mem_object—>m_shu.id ,shu_name , shu_name_length); //shu id
memcpy (shu_mem_object—>mp_shu_server_ip ,
shu_server_ip ,shu_server_ip_length); //shu server ip

//extract the unit
std::string command =

std::string (”tar —C”)+ path + std::string(” —xzvf 7)+ file ;
system (command. c_str ());

//delete the archive
command = std::string ("rm ”7) + file ;
system (command. c_str ());

//execute the deployment script in the background
command = std::string(”sh ”7) +

path + std::string(”/deployment.sh &”);
system (command. c_str ());

This listing is a simplified fragment from the file Network/TCPClient/ClusterNodeMan-
agementClient.cpp, it illustrates the logic behind the deployment. Once the SHU file will
be transferred with additional meta data regarding the server counterpart e.g. IP, port
and SHU name, this information is saved in the shared memory segment of the client dae-
mon and will be accessed by the SHU process later on. Afterwards the archive is extracted
into the nodes deployment path, the archive will be removed and the deployment script
deployment.sh will be executed. The listing shows that this last step actually backgrounds
the script execution i.e. the system call returns immediately. That’s the position where
we distinguish synchronous and asynchronous (as shown in the listing) deployments, the
corresponding synchronous call has the form

O© 0O UL Wk

e S e S NG SR SRS
SO WD~ O

//execute the deployment script in the background
command = std ::string(”sh ”) + path + std::string(”/deployment.sh &”);
system (command. c_str ());

//wait until it started up

int res = mp_shu_deployment_semaphore—>decSemaphore ();
if(res = —1)
{

printf ("ERROR: could not decrement the semaphore\n”);
}
m_shu_active = true;

//send a corresponding answer to the server
SHCore:: Buffer response(type_size);
ClusterNodeManagementServer :: setRequest Type(&response ,

164

Chapter XII. Setting up a Cluster

17 ClusterNodeManagementServer : : CLUSTERNODE_ MANAGEMENT_REQUEST_TYPE SHU_OK) ;
18 mp_frame—>sendFrame(&response);

The script is still sent to the background, yet a semaphore in the daemons shared memory
is used by the daemon to recognize when the SHU process has started, i.e. the SHU process
will increment the semaphore. This is the point at which we focus on the deployment
script

cmake

make

GZIP=-9 tar cvfzp rapid.tar.gz rapid_deployment.sh bin data
cd bin/shared/debug

./simpleHydraUnitTemplate_shared_debug

which calls CMake in order to generate the makefile, compiles the sources through a call
to make and curiously packs the binary in a compressed archive. Finally it calls the
compiled binary and thus starts the SHU process. As mentioned before, the first action
in a SHUs main function must be the call of SHU_INIT which contains the following logic

printf ("ERROR: could not attach shared memory for shu com struct\n”); \

FA
\

10 struct SHNetwork :: SharedMemSHUComStruct+* shu_com_struct =
11 (struct SHNetwork :: SharedMemSHUComStruct)

12 shared_memory . getAttachedMemory (); \

13 \

14 /xget the semaphorex/ \

15 SHCore:: SharedSemaphore shu_sem(&shared_memory); \

1 SHCore : : SharedMemoryPOSIX shared_-memory (0777); \

2 int res____ = shared_memory .attachMemory (

3 SHNetwork :: ClusterNodeManagementClient : : SHUSHARED MEM NAME, \
4 sizeof (struct SHNetwork :: SharedMemSHUComStruct)); \

5 if(res__.. = —1) \

6 {\

7

8

9

16 res____ =

17 shu_sem.loadSemaphore ((unsigned charx)&(shu_com_struct—>m_deployment_sem)); \
18 if(res_.__.. = —1) \

19 {1\

20 printf ("ERROR: could not load semaphore from shared memory for shu” \

21 com struct\n”); \

2} \

23 \

24 /xregister within the com structx/ \

25 SHCore:: Process* self_process = SHCore:: Process:: getSelf (); \
26 shu_com_struct—>m_shu_pid = self_process—>m_pid; \

27\

28 /xget shu server informationx/ \

165

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Chapter XII. Setting up a Cluster

unsigned int node_id = shu_com_struct—>m_node_id; \

std::string shu_server.ip ((const charx)shu_com_struct—>mp_shu_server_ip); \
unsigned int shu_server_port = shu_com_struct—>m_shu_server_port; \

/xany path longer than 512 chars will be truncatedx/

int

string_length = std::min((int)strlen (argv[0])+1,512); \

memcpy (shu_com_struct—>m_shu_binary_filename ,argv [0],string_length); \

\

if (shu_com_struct—>m_rapid_deployment = 0) \

{\

166

/+xsave the deployed shu in the database for later rapid deploymentx/ \
SHCore : : SHUDB db; \

db.setDBPath(std::string ((const charx) \
shu_com_struct—>m_system_db_filename)); \

/+xdelete any previous entryx/ \
db.deleteEntry (std :: string ((const charx) shu_com_struct—>m_shu_id)); \

/xread the compiled packagex/ \
SHCore:: Buffer compiled_package; \
compiled_package.readBufferFromBinaryFile (
std::string ((const charx)shu_com_struct—>m_system_deployment_path) \
+ std::string (7/7) + \
std::string ((const charx) shu_com_struct—>m_shu_id) \
+std ::string (7 /rapid.tar.gz”)); \

/+xadd it to the dbx/ \
SHCore : : SHUDBEntry entry; \

entry .m Name = std:: string ((const charx) shu_com_struct—>m_shu_id); \
entry . m_BinarySize = 0; \
entry . m_PackageSize = compiled_-package.get_m_length (); \
entry . m_PackageFilename = \

std::string ((const charx) shu_com_struct—>m_shu_id) \

+ std::string (”7.tar.gz”); \
entry . m_DeploymentPath = \

std::string ((const charx)shu_com_struct—>m_system_deployment_path); \
entry . m_RequiredLibs = std::string(”="); \
entry . mp_SHUPackage = compiled_package.get_mp_data (); \
entry. m_packageBlobSize = entry.m_PackageSize; \
entry.mp_Binary = 0; \
entry.m_binaryBlobSize = 0; \
entry . m_ConfigFileContent = std::string(””)
entry . m_ConfigFileName = std::string(””); \
entry .m VARL = std ::string (””); \
entry .mp_-VAR2 = 0; \
entry.m_VAR2Size = 0;

”

A

db.addEntry(&entry); \

7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Chapter XII. Setting up a Cluster

\
/xabandon the data pointers as they are managed by other entities,
otherwise the destruction of ’entry’ would free themx/ \
entry.abandonData (); \
P\
\
/xindicate a finished deploymentx/ \
if (shu_com_struct—>m_synchronized_deployment = 1) \
{\
res____. = shu_sem.incSemaphore (); \
if(res.__. = —1) \
{\
printf ("ERROR: could not increment semaphore in” \
"shared memory for shu com struct\n”); \
A
}

First a handle to the shared memory is obtained by the system in order to access the
semaphore and meta data. The SHU process will then obtain its PID through a Pro-
cess object called self process, which is also accessible after the macro call, and write it
into the shared memory, thus making it available for the client daemon. The attribute
m_rapid_deployment within the shared memory indicates if a rapid deployment should
commence, in our current situation (i.e. initial deployment) this value will be set to 0 by
the client daemon (see the deployment listing further above). Thus the if-clause will be
entered and the SHU will be registered in the nodes SH database, this also includes the
saving of the archive rapid.tar.gz which was created by the deployment script! Although
the archive won’t be deleted after the call, it will be disposed right after a reboot as it
resides in the /tmp directory.

The same indicator-variable strategy is used for the synchronized deployment, the shared
variable m_synchronized_deployment indicates if the SHU process should increment the
shared semaphore. All shared data is stored in structure of type SharedMemSHUCom-
Struct and accessible by the SHU process under the name shu_com_struct right after the
macro call. As this point it should be clear that the shared memory is indeed an active
communication gateway between client daemon and the active SHU process.

Let us briefly talk about the macros counterpart, the macro SHU_CLOSE

1
2
3
4
5
6
7
8
9

/x this step is mandatory for each SHU x/ \

/* clean up the shu information x/ \
shu_com_struct—>m_shu_pid = 0; \
shu_com_struct—>m_shu_server_port = 0; \

memset (shu_com_struct—>m_shu_binary_filename ,0,512); \
shu_com_struct—>m_shu_binary_filename [0] = *\0’; \
memset (shu_com_struct—>mp_shu_server_ip ,0,64); \
shu_com_struct—>m_shu_server_ip [0] = ’\07; \

memset (shu_com_struct—>m_system_db_filename ,0,512); \

167

10
11
12
13
14
15
16
17
18
19
20

Chapter XII. Setting up a Cluster

shu_com_struct—>m_system_db_filename [0] = *\0’; \
memset (shu_com_struct—>m_system_deployment_path ,0,512); \
shu_com_struct—>m_system_deployment_path [0] = ’\0’; \
shu_com_struct—>m_rapid-deployment = 0; \
shu_com_struct—>m_synchronized_deployment = 0; \
res____ = shared_memory .detachMemory (); \
if(res._._. = —1) \
{\

printf ("ERROR: could not detach shared memory for shu com struct\n”); \
A\
delete self_process; \

Which essentially wipes all data from the shared memory. There is one subtle danger in the
current approach, the client daemon detects active SHUs only via the PID in the shared
memory. Should a SHU process terminate due to errors, the PID won’t be updated and
might be reused by some other process. If the client daemons server connection breaks,
it will read the PID from shared memory and attempt to kill the corresponding process,
which could obviously result in severe problems. Future versions of SH will circumvent
this problem by additionally comparing the process’ start time.

So far we have discussed the initial deployment, synchronized and asynchronized, let us
now venture to the process of rapid deployment. The corresponding passage in the TCP
cluster client (asynchronized) is

O 00O Ui W~

DO DO DD DO N = = = = = s e
=W OO0 Tt WM - O

//get the shu from the database

SHCore : :SHUDB db ;

db.setDBPath(mp-node—>m_system_db_file);

SHCore: : SHUDBEntry* entry = db.getEntry(std:: string (shu-name));

//write the file
std::string file = path + std::string(”/”);
file = file + std::string(shu_-name) + std::string(”.tar.gz”);
//save the file
SHCore:: Toolbox :: writeArrayToFile (file |,
entry —>mp_SHUPackage, entry—>m_packageBlobSize);

//register the shu and the shu server within the shared memory object
struct SharedMemSHUComStruct* shu_mem_object =

(struct SharedMemSHUComStruct*)mp_shared_mem_raw ;
shu_mem_object —>m_shu_server_port = shu_serverport; //shu server port
shu_mem_object —>m_shu_pid = 0;
shu_mem_object—>m_rapid_deployment = 1;
shu_mem_object —>m_synchronized_deployment = 0;
int 1 = std::min(512,(int)(mp-node—>m _system_db_file.size ()+1));

memcpy (shu_mem_object—>m_system_db_filename ,
mp_node—>m_system_db_file.c_str (),1);

1 = std::min(512,(int)(mp-node—>m_shu_deployment_path.size ()+1));

memcpy (shu_mem_object—>m_system_deployment_path ,

168

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Chapter XII. Setting up a Cluster

mp_node—>m _shu_deployment_path.c_str (),1);
memcpy (shu_mem_object—>m_shu_.id ,shu_name ,shu_name_length);
memcpy (shu_mem_object—>mp_shu_server_ip ,

shu_server_ip ,shu_server_ip_length);

//extract the unit

std::string command = std::string(”tar —C”)+
path + std::string (? —xzvf 7))+ file ;

system (command. c_str ());

//delete the archive
command = std::string ("rm ”) + file ;
system (command. c_str ());

//execute the deployment script in the background
command = std::string(”sh ”) + path +

std::string (” /rapid_deployment .sh &”);
system (command. c_str ());

The notable differences are that the SHU file is acquired from the local database, the
rapid_deployment.sh script is called instead of deployment.sh and m_rapid_deployment
is set to 1. Since all the remaining code is very similar if not identical to the initial
deployment we won’t further discuss it. Let us conclude this section with a brief look into
the new deployment script

cd bin/shared/debug
./simpleHydraUnitTemplate_shared_debug

which does nothing besides executing the already compiled binary.

XI1.3. Creating Cluster Applications

A short recap about the concept of cluster applications might be in order at this point. A
cluster application is executed on the management node and consists of a single process
which is being parametrized by an XML file. This process will start the management
and computation server (usually as separate threads), it will handle the cluster setup
(e.g. RCS configuration) and deploy the SHUs. before discussing the Mandelbrot server
application we will elaborate on the XML configuration file (which is mandatory for all
server applications).

1
2
3
4
)

<!— An ezxample configuration file for the cluster node
management server —>
<config>

<section name=" General”>

169

Chapter XII. Setting up a Cluster

6 <!— An wunique server identifier —>

7 <parameter name="CNMServerName” type="STRING”>

8 An unnamed management server

9 </parameter>

10 <!— The port on which the UDP RCS server will listen

11 for replies —>

12 <parameter name="RCSServerPort” type="UINT”>

13 16000

14 </parameter>

15 <!— The port to which the UDP RCS client will attempt to send
16 the beacons —>

17 <parameter name="RCSClientPort” type="UINT">

18 16001

19 </parameter>

20 <!— The port to which the TCP RCS client will attempt

21 to connect —>

22 <parameter name="TCPRCSServerPort” type="UINT”>

23 16005

24 </parameter>

25 <!— The time a TCP RCS client will wait for a reply from a
26 TCP RCS server. —>

27 <parameter name="TCPRCSClientTimeout” type="INT">

28 250

29 </parameter>

30 <!— Determines the type of used RCS services; 0 = UDP RCS Only,
31 1 = TCP RCS only. If one chooses to use TCP, the use of a TCPRCSTargetList

32 list becomes mandatory!

33 —>

34 <parameter name="RCSType” type="UINT”>

35 1

36 </parameter>

37 <!— The RCS group the server wants to connect—>
38 <parameter name="RCSClientGroup” type="UINT”>

39 0

40 </parameter>

41 <!— These settings also apply to the an IP target list; RCSBeaconCount is
42 the mazimum for each target!—>

43 <!— The amount of beacons to send, —I=continuous—:>
44 <parameter name="RCSBeaconCount” type="INT”">

45 10

46 </parameter>

47 <!— The time between beacons in ms—>

48 <parameter name="RCSBeaconDelay” type="UINT">

49 50

50 </parameter>

51 <!— The recv timeout for beacons—>

92 <parameter name="RCSBeaconRecvTimeout” type="UINT”>
53 50

170

Chapter XII. Setting up a Cluster

54 </parameter>

95 <!— Boolean wvalue which determines if the RCS client should register the
96 server once he received a beacon. This comes in handy if one decides to use
97 TCP RCS instead , in that case the beacons can be used a survey of reachable
98 machines before actually a TCP conmnection is being made. In other words,
99 this option is only relevant for UDP RCS.

60 —>

61 <parameter name="UseConnectionRequestBeacons” type="UINT”>

62 1

63 </parameter>

64 <!— Boolean wvalue which determines if UDP unicast

65 beacons should be send instead of UDP subnet broadcasts —>

66 <parameter name="UseRCSTargetList” type="UINT”>

67 0

68 </parameter>

69 <!'— A list of IPs for UDP beacon wunicasts —>

70 <parameter name=" RCSTargetList” type="STRING_.ARRAY”>

71 <string>10.2.129.184</string>

72 <string>10.2.129.185</string>

73 <string>10.2.129.186</string>

74 </parameter>

75 <!— A list of IPs/Ports for TCP RCS, if mno port is specified

76 the walue of TCPRCSServerPort will be used —>

77 <parameter name="TCPRCSTargetList” type="STRING.ARRAY”>

78 <string>10.2.129.184:16005</string>

79 <string>10.2.129.185</string>

80 <string>10.2.129.186:16005</string>

81 </parameter>

82 <parameter name="CNMServerPort” type="UINT”>

83 10001

84 </parameter>

85 <parameter name="CNMServerWTCount” type="UINT”>

86 1

87 </parameter>

88 <parameter name="CNMServerMaxConnections” type="UINT”>

89 1000

90 </parameter>

91 </section>

92

93 </config>

The options are

e CNMServerName: A string which indentifies the server

e RCSServerPort: This is the port under which the server accepts UDP RCS replies,
this number will be advertised via UDP beacons.

e RCSClientPort: The port to which UDP broadcasts will be directed.

171

Chapter XII. Setting up a Cluster

172

TCPRCSServerPort: The port to which the TCP RCS client will connect by default.
This value may be overridden in the target list!

TCPRCSClientTimeout: The time in ms which the TCP RCS client will wait for
an answer from the server. This value must be greater than 0, setting a high value
might result in a less responsive client.

RCSClientGroup: The RCS group which we desire, as described before the client
will only positively reply to messages that feature a group ID within their set of
registered IDs.

RCSBeaconCount: The amount of UDP beacons to send, a value of -1 indicates a
continuous broadcast of beacons. The beacon count refers to a single target in case
of using a target list, in which case the value must be greater than -1!

RCSBeaconDelay: Time in ms between to consecutive beacon broadcasts.
RCSBeaconRecvTimeout: Timeout in ms while waiting for UDP replies.

RCSType: The RCS type to be used, valid values are 0 = UDP RCS Only, 1 =
TCP RCS only. If one chooses to use TCP, the use of a TCPRCSTargetList list
becomes mandatory!

UseConnectionRequestBeacons: Determines if the beacons (UDP) or messages (TCP)
should induce a connection attempt of the nodes management client to the corre-
sponding network endpoint.

UseRCSTargetList: Determines if the server should use a target list, i.e. use RCS
(UDP/TCP) only for the listed IPs. Setting this option to 1 will result in unicast
communication, thus UDP beacons won’t be broadcasted anymore which is useful
for cluster setups over different subnets or network areas. Yet one sacrifices the
ability to discover unknown nodes in the network.

RCSTargetList: The RCS list for UDP RCS.

TCPRCSTargetList: The list for of IPs for TCP RCS, this list is mandatory for
TCP RCS as no broadcast mechanics are available in TCP.

CNMServerPort: The port on which the management server listens for incoming
connections.

CNMServerWTCount: The amount of worker threads for the management server.

CNMServerMaxConnections: Limit for established connections.

Chapter XII. Setting up a Cluster

The concept of using UDP as well as TCP RCS will become more clear in section XIL3.1]
when we explain the Mandelbrot server application. We will assume that the application
uses mostly default values as listed above, any exception will be mentioned explicitly.

XI11.3.1. The Mandelbrot Server Application

The content of SHMandelbrotDemoApp looks similar to that of SHMandelbrotDemo Unit,
there are less subdirectories yet those which remain are equally named as in the previous
example. Just as before we begin with the file Main.cpp, which contains much more logic
than before

1 /xwvariable declarationsx/

2 unsigned int total_timeout = 30000;

3 unsigned int expected._clients = 3;

4 unsigned int ms_time_counter = 0;

95 bool sync_deploy = false;

6

7 SHCluster:: ClusterServer clusterServer;

8

9 if (arge = 1)

0 {

1 clusterServer.startClusterServerFromXML (” serverConfig .xml”);
2

3 if (arge = 2)

4

5 clusterServer.startClusterServerFromXML (argv [1]);
6 }

These lines show that the application expects either a configuration file in its runtime
directory or a CLI parameter pointing to the file’s location. They also fully deploy the
cluster management server, i.e. the RCS and management services are started according
to the values in the configuration file. This is followed by a while loop which delays the
processing until either the expected amount of clients (expected_clients) has connected to
the server or the timeout total_timeout was exceeded.

1
1

1
2

3
4
)
6
7
8
9
0
1

//give it some time to start up and the clients to register
while(clusterServer.getMgmtServer()—>getNodeCount ()

< expected_clients && ms_time_counter < total_timeout)
{

SHCore :: Toolbox :: sleep_ms (500);
ms_time_counter 4+= 500;

}

ms_time_counter = 0;

SHCore : : FastKTuple<unsigned int>x nodelDs =
clusterServer.getMgmtServer()—>getNodelDs ();

173

12

Chapter XII. Setting up a Cluster

expected_clients = nodelDs—>getm_size ();

Afterwards the server continues with the assumption that all expected clients have con-
nected, i.e. it updates the variable expected_clients to the number of connected machines.

O Tl W+~

int res = 0;

long long res2 = 0;

unsigned int shu_port = 20000;

std::string shu_ip = clusterServer.getMgmtServer()—>getAddress();

std::string shu_file = ”/root/workspace/SHMandelbrotDemoUnit /SHUnits /sh_unit_shared_debu
std::string shu_.name = ”TestUnit”;

At this point we must note a technical fact from behind the scenes, the method startClus-
terServerFrom XML will use the first real NIC in the system and obtain its IP. The code
above shows how to query this address, additionally it shows which SHU file we are about
to deploy to the nodes. The string shu-name defines the name under which the SHU will
be registered on the clients, this identifier must be unique otherwise it might happen that
an already deployed SHU will be overwritten on the client (see section XIL2.3] for details
about the deployment process). We are going to start the computation server on port
20000, which is indicated by shu_port. With these values we can continue to the actual
deployment, yet first we have to start the computation server, this is a wise decision as
the deployed SHU will immediately attempt to connect to the computation server.

O© 00O UL W+

—
N = O

//the server logic is contained within this callback object
WorkCallbackServer server_callback;

//get the queue
SHCore : : Queue<MandelFragmentQueueElementx>% queue =

server_callback .getResultQueue ();
SHNetwork :: CallbackServerx computation_server =
SHNetwork :: ServerFactory:: getCallbackServerInstanceIlPv4 (shu_port ,
1,100,&server_callback);

computation_server—>startServer ();

Here we also see the callback servers "logic object” server_callback, which will be discussed
later. Now finally to the deployment

0O Ul W+

for (unsigned int i=0;i<nodeIlDs—>getm_size();++1)

{
//deploy a SHU

if (sync_deploy = false)

{

res = clusterServer.getMgmtServer()—>sendSHUnit (nodeIDs—>getElement (i),
shu_file , shu_name,shu_ip ,shu_port);

174

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Chapter XII. Setting up a Cluster

else
{
res = clusterServer.getMgmtServer()—>sendSHUnitSync (nodeIDs—>getElement (i),
shu_file , shu.name,shu_ip ,shu_port);
//get the SHU’s PID on the client (ONLY FOR SYNC DEPLOYMENTS)
res2 = clusterServer.getMgmtServer()—>getSHUPID (nodeIDs—>getElement (i));
if(res2 = —1)
{
printf ("ERROR getting SHU PID\n”);
}
else
{
printf (”SHU is active on client %u with PID %l1d \n” ,
nodeIDs—>getElement (i),res2);
}
}
if(res = —-1)
printf (”ERROR deploying SHU\n”);
}
}

In this example we commence an asynchronous SHU deployment, i.e. we continue right
after the dispatching the SHu file to the node, this allows us to quickly dispatch the SHU
data, yet it introduces the problem of finding out if a client has deployed the unit. We
address this problem with the same strategy as in the case of finding the available nodes.

O 00O Uik W

—
W = O

//increase the timeout
total_-timeout *x= expected_clients;
//wait until all clients connected
while(computation_server—>getNodeCount() < expected_clients
&& ms_time_counter < total_timeout)
{
SHCore :: Toolbox :: sleep_ms (500);
ms_time_counter 4= 500;
¥
ms_time_counter = 0;
printf ("%u/%u computation clients registered\n”,
computation_server —>getNodeCount (), expected_clients);
computation_server—>printNodelDs ();

The code shows that we wait until either all expected clients have connected to the
computation server or a timeout value has been exceeded. That was the last preparation
step before starting the actual computation! Since the following steps involve a huge
amount of parameter calculation we will greatly simplify the code and only discuss the

175

Chapter XII. Setting up a Cluster

important structural steps.

1 //initial deployment to all nodes
2 for (unsigned int j=0;j<nodelDs—>getm_size();++j)

34

16 }

/+xaccumulate all required data and send it
to the current clientx/

int res = computation_server—>sendCommandSync (nodeIDs—>getElement (j),
WorkCallbackServer : : WORK_.COM REQUEST_TYPE SET REGION,& data) ;

//once the node received the data; start processing

res = computation_server—>sendCommandAsync (nodeIDs—>getElement (j),

WorkCallbackServer : : WORK.COM_REQUEST - TYPE.START PROCESSING) ;

//error checks

We remind the reader of the clients callback structure, the first message the expected by
the client is of type WorkCallbackServer:: WORK_COM_REQUEST-TYPE_SET_-REGION,
which is indeed sent in the first place. There is a very important reason why the first
message is sent in a synchronous way whereas the second message is being sent asyn-
chronously. SimpleHydra’s default frame assembler are designed for single frames and do
not feature any kind of queueing mechanics for frame streams. Thus we can only send the
last frame without synchronization, since it is the last message which is actively sent by
the server, afterwards the client will enter a request-response loop with the server. Back
to the actual messages, once the client received all computation parameters we send the
7g0” signal through a message of type

WorkCallbackServer:: WORK_COM_REQUEST_-TYPE_START_PROCESSING.

O© 0O UL Wk

while(processing_counter < expected_results)
{

//process the results obtained so far
MandelFragmentQueueElement* client_res = queue—>dequeueBlockingOnEmpty ();

/

//unpack the data and copy it into the final image
final_image —>insertSubImageFast (client_res —>mp_image,
client_res —>m_global_pos_x, client_res—>m_global_pos_y);

delete client_res —>mp_image;
delete client_res;
if (processing_counter % update_interval = 0)

ws—>updatelmageInIlmageViewerSync (0, final_image);

176

Chapter XII. Setting up a Cluster

17}
18 ++processing_counter;
19 }

The listed while-loop runs as long as there are missing tiles, in each iteration the client
will query the the queue for new results. We note that the queue is contained within
the callback object and filled once data is obtained inside the objects call method, the
while-loop attempts to dequeue one element in each iteration (and blocks in case of an
empty queue). FEach received tile will be copied into the final image. Once a total of
update_interval tiles has been received the current partial image will be redisplayed in an
image viewer.

After receiving all tiles the final image is being shown for a short time, which is followed
by an "ungraceful” termination of all deployed SHUs

1 //kill all deployed SHUs

2 for (unsigned int j=0;j<nodeIlDs—>getm_size();++j)

3 {

4 printf(” Attempting to kill SHU on node %u\n” ,nodeIDs—>getElement(j));
5 //kill the SHU

6 res = clusterServer.getMgmtServer()—>killActiveSHU (nodeIDs—>getElement (j));
7 if(res = —1)

8 A

9 printf ("ERROR terminating SHU on node %u\n”);

10}

11 else

12 {

13 printf (”SHU terminated\n”);

14 }

15 }

16

7 J)——————————— - kill the computation server

18 computation_server—>stopServer ();
19 delete computation_server;

In the end it is not surprising how much logic is contained within the main function, after
all it must set up the infrastructure! We can now focus our attention onto the callback
server’s logic within the file NetworkCommunication/WorkCallbackServer.cpp and the
contained member function call

1 /xmessage extractionx/

x Incoming results are always of the form

177

Chapter XII. Setting up a Cluster

9 x <serialized_MandelFragment | serialized_-image>

10 ko /

11 case WorkCallbackServer:: WORK.COM_REQUEST_-TYPEINCOMING_RESULT_UNIT:
12 {

13 SHCore:: Bufferx data_unit = new SHCore:: Buffer (

14 data—>mp_message—>get_mp_data()+type_size ,

15 data—>mp_message—>get_m_length()—type_size ,true);

16

17 //get the fragment header

18 struct MandelFragment fragment ;

19 memcpy(&fragment , data_unit—>get_mp_data (), sizeof(struct MandelFragment));
20

21 SHCore:: Bufferx serializedImage = new SHCore:: Buffer (

22 data_unit—>get_-mp_data()+sizeof(struct MandelFragment),
23 data_unit—>get_m_length()—sizeof (struct MandelFragment) ,true);
24

25 //get the image

26 SHCore : : Image<unsigned char>x image = new SHCore::Image<unsigned char >();
27 image—>set_mp_serialized_data_buffer (serializedImage);

28 image—>deserialize ();

29
30 MandelFragmentQueueElement* res = new MandelFragmentQueueElement ();
31 res—>mp_image = image;

32 res—>m_global_pos_x = fragment.m_global_pos_x;
33 res—>m_global_pos_y = fragment.m_global_pos_y;
34 res—>m_node.id = data—>mp_serving_node—>get_-m_node_id ();

35

36 mp_queue—>enqueue(res);
37

38 delete data_unit ;

39

40 //send a response
41 SHCore:: Buffer response(sizeof(

42 SHNetwork :: CallbackServer : : CALLBACK SERVER.REQUEST.TYPE)) ;
43 SHNetwork :: CallbackServer :: setCRequestType(&response ,

44 WORK_COM REQUEST-TYPEOK, type_size);

45 data—>mp_frame—>sendFrame(&response);

46

47 break;

48

49 }

Since it is a very short method we listed the complete content. The only expected message
type is WorkCallbackServer:: WORK_COM_REQUEST_-TYPE_ INCOMING_RESULT_UNIT,
each message also contains the tile image with some meta data. Once the attached data
has been extracted it is packed in a MandelFragmentQueueElement structure and en-
queued within the callback objects result queue. The last lines show the sending of an

178

Chapter XII. Setting up a Cluster

acknowledgment to the client.
In order to build the server application one has to issue the commands cmake . followed
by make.

XI11.3.2. The Neural Network Server Application

Another included demo application is the distributed training of neural networks (SHNeu-
ralNetworkDistApp). We won’t describe the application in too much detail since its com-
munication structure exhibits an approach which is similar to the distributed mandelbrot
application, thus we defer the reader to the (documented) source code which follows the
canonical neural network implementation contained in the SHML module. We will in-
stead briefly explain the strategy for computation distribution; the application distributes
the computation by splitting the training data into equally sized fragments, one for each
node. The network structure and all starting weights are deployed to all nodes, i.e. each
node knows the entire network and the starting weights. The following training procedure
can be summarized as

1. Send start command to all nodes.
2. All nodes compute an average gradient over their training subset.

3. All nodes send their result back to the management node, which sums up the aver-
aged gradients and updates the network weights

4. The management node sends the updated weights to all nodes, which in turn update
their local network representation.

5. The process starts back at 1) or stops if the maximal amount of iterations was
reached or the maximal error was undershot.

Each node will of course split its local training set among all available computation cores
(which is identical to the canonical implementation).

XIl.4. Deploying Java / Python Units*

SimpleHydra features proof of concept examples for deploying Java and Python SHUs,
furthermore it provides an extensible subsystem which allows external applications to ac-
cess the client daemons shared memory. We strongly recommend to read sections
and XIL.2.3] before studying this feature.

SimpleHydra is a native C/C++ framework, which makes communication with, or in-
tegration of other languages reasonably difficult. An example being data exchange, e.g.
exchanging unsigned long long with a Java application (which provides no native primitive

179

Chapter XII. Setting up a Cluster

datatype of that kind). It is of course possible but a cumbersome endeavor in general.
SimpleHydras main feature is the controlled deployment of processes among a set of con-
nected nodes, the shear size of its API makes a JNI approach unfeasible, let alone a
wrapping for Python. We decided to provide a generic interface to a small subset of SH’s
main features, namely the controlled distribution of processes.

As described in previous sections the deployment relies heavily on access to the client
daemons shared memory. Thus we developed a wrapper application Simple HydraSystem-
Facilities which provides access to this memory segment. It can be installed through the
well known calls cmake ., make and make install, this should result in a binary named
SHSF located in /usr/bin. The compilation requirements are an SH installation with at
least Core, Network and XML module.

XI11.4.1. Java SHUs

We assume the reader has obtained the sample projects SimpleHydraUnitJavaTemplate
amd SimpleHydraJavaApp TemplateJava, of which we additionally assume to be extracted
in equally named folders. Let us first discuss the SHU template, the structure within
SitmpleHydraUnitJavaTemplate looks very similar to native SHUs, yet the source folder
contains no C/C++ files, in the aspect of source code only a Java file called Main.java
resides in it.

O 00O Ui W~

public class Main
{
private interface CLibrary extends Library
{
CLibrary INSTANCE = (CLibrary) Native.loadLibrary (”c¢”, CLibrary.class);
int getpid ();
public static void main (String[] args)
{
int pid = CLibrary .INSTANCE. getpid ();
Process child;
String cmd;
String line;
System .out.println (”java unit active with PID ”"+pid);
try
{
cmd = "SHSF” 4+ 7 —register —shu—pid ”+pid;
child = Runtime.getRuntime ().exec (cmd);
cmd = "SHSF” 4+ 7 —print —shu—node—id” ;
child = Runtime.getRuntime ().exec (cmd);

180

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65

Chapter XII. Setting up a Cluster

BufferedReader input = new BufferedReader (
new InputStreamReader (child.getInputStream()));
while ((line = input.readLine()) != null)
{
System .out.println (line);
}
input . close ();
cmd = "SHSF” 4+ 7 —print—shu—server—ip”;
child = Runtime.getRuntime ().exec (cmd);
input = new BufferedReader (
new InputStreamReader (child.getInputStream()));
while ((line = input.readLine()) != null)
{
System .out.println (line);
}
input . close ();
cmd = "SHSF” 4+ 7 —print—shu—server —port”;
child = Runtime.getRuntime ().exec (cmd);
input = new BufferedReader (
new InputStreamReader (child.getInputStream()));
while ((line = input.readLine()) != null)
{
System.out . println (line);
}
input . close ();
Thread . sleep (10000);
cmd = "SHSF” 4+ 7 —unregister —shu”;
child = Runtime.getRuntime (). exec (cmd);
}
catch(Exception e)
{
System .out.println (e);
}
System .out.println (”java unit inactive”);
}

As mentioned before this is merely a proof of concept example, the Java application will
first determine the PID of its corresponding Java system process (which is done via JNA
and a set of jar archives included in the SHU file). The idea is to use the exact and already
existing deployment routines in the ClusterNodeManagementClient to start and control
the Java process. The client daemon exerts control by knowing the process’s PID, this

181

Chapter XII. Setting up a Cluster

is where the SH system facilities come into play. The Java code above shows a system
call with the command SHSF -register-shu-pid PID, this will result in an update of the
shared pid variable within shared memory, its value will be updated to PID. The beauty
lies in the hidden logic, the tool SHSF will not only register the new PID but also in-
dicate the deployment through the shared semaphore (in case of a desired synchronous
deployment)! This strategy is applicable to any language which provides access to the
systems shell and starts applications in a new system process. Keep in mind that just
as with native C/C++ SHUs the first call in a Java SHU’s main function must be the
registration via SHSF.

Let us dive a bit into technicalities, the registration of a PID via SHSF induces a
call to a parametrized macro called SHU_INIT_.EXTERNAL(PID). This macro is com-
pletely identical to its unparameterized counterpart SHU_INIT, remember that the de-
ployment type will be indicated by the client daemon through shared variables e.g.
m_synchronized_deployment, in this respect no communication with the SHU process is
required, all required information is the SHUs PID. Even the caching of the compiled
source code (in this case a jar archive) can be done transparently through the deployment
scripts in combination with the mentioned macro.

cd ..
cd "${DIR}/src"

cp *.jar ../bin
javac -cp jna-platform-4.1.0.jar:jna-4.1.0.jar -d ../bin Main.java

GZIP=-9 tar cvfzp rapid.tar.gz rapid_deployment.sh bin data

cd ..
cd "${DIR}/bin"

java -cp jna-platform-4.1.0.jar:jna-4.1.0.jar:. Main

The content is similar to the native SHUs, at first the rapid deployment package will be
created (after the java sources have been compiled), which will be written by the macro
into the SH database. Afterwards the Java process will be started. One subtle difference
exists when it comes to the compilation of Java SHUs, Java does not distinguish between
e.g. static or shared builds. Thus the example only features two make targets called
unit_java and all_units, if one desires to debug the Java application we strongly suggest
to do it in a native Java development environment. SimpleHydra should be seen in this
concept only as a way of deploying Java clients among the nodes.

182

Chapter XII. Setting up a Cluster

X11.4.2. Java Server Application

Within SimpleHydraJavaApp TemplateJava/src we find two main files, Main.java and
Main.cpp. The idea is to create an executable binary which deploys a controllable local
Java process.

—
OO 00JO Tk WN

S S WO W WWWWWWWWNNDNDNDNDDNDNDNDDNDN = s s
DO OXRXTDDU R WNHFEFOOONDDU R WNFE OO0 Utk W -

/xthe SHU paramsx/
unsigned int shu_port = 20000;
std::string shu_ip = clusterServer.getMgmtServer()—>getAddress();
std::string shu_file =
” /home/lowwang /workspace/SimpleHydraUnitJavaTemplate/” \
?SHUnits /sh_unit_java.tar.gz”;
std::string shu_name = ”TestUnit”;

J)————— - start the computation server (i.e. python script)
//at this point one could provide the script with some information

//about the available clients
SHCore : : FastKTuple<std :: string > params(3);

params.setElement (0, "—cp”);

params.setElement (1, SHCore:: Toolbox :: getCurrentDirectory ());
params.setElement (2, ”Main”);

SHCore:: Process* java_proc =

SHCore:: ProcessToolbox:: spawnProcess(” /usr/bin/java” ¶ms);
printf(”Java process spawned with PID %d\n” ,java_proc—>m_pid);

//wait a bit until the server started up (e.g. initialized all
//required network facilities)
SHCore:: Toolbox :: sleep_ms (5000);

Y e - deploy the SHU

SHCore : : FastKTuple<unsigned int>x nodelDs =
clusterServer.getMgmtServer()—>getNodelDs ();
expected_clients = nodelDs—>getm_size ();

for (unsigned int i=0;i<nodelDs—>getm_size();++1)
{
//deploy a SHU
res = clusterServer.getMgmtServer()—>sendSHUnitSync (nodeIDs—>getElement (i),
shu_file , shu_name,shu_ip ,shu_port);
if (res = —1)

{
printf ("ERROR deploying SHU\n”);

183

Chapter XII. Setting up a Cluster

43 }

44

45 //get the SHU’s PID on the client

46 res2 = clusterServer.getMgmtServer()—>getSHUPID (nodeIDs—>getElement (i));
47 if(res2 = —1)

48 {

49 printf ("ERROR getting SHU PID\n”);

50 }

51 else

52 {

53 printf (”SHU is active on client %u with PID %l1d\n” ,
54 nodeIDs—>getElement (i) ,res2);

55}

56 }

57

58 //let the main process sleep until the java process finished (spinlock)
59 while(java_proc—>doesExist () == true)

60 {

61 SHCore:: Toolbox ::sleep_ms (500);

62 }

63

64 delete java_proc;

65

66 //— - kill the SHU

67

68 //kill all deployed SHUSs

69 for (unsigned int j=0;j<nodelDs—>getm_size();++])

70 {

71 printf(” Attempting to kill SHU on node %u\n” ,nodeIDs—>getElement(j));

72 //kill the SHU

73 res = clusterServer.getMgmtServer()—>killActiveSHU (nodeIDs—>getElement (]));

74 if(res = -1)

(G

76 printf ("ERROR terminating SHU on node %u\n” ,nodeIDs—>getElement(j));
T}

78 else

79 |

80 printf (”SHU terminated\n”);

81 }

82 }

This code should look familiar as it follows for the most part our discussed Mandelbrot
application, at least regarding the cluster setup. The difference is the type of computation
server, which is started as a Java process with effectively no logic (in this example)

1 public class Main
2 {
3 public static void main (String[] args)

184

16

Chapter XII. Setting up a Cluster

System .out.println (”Hello World!”);

try{
Thread . sleep (10000);

}tcatch (Exception e)

{
}

System .out.println (” Exiting”);

System .out.println (e);

}
}

For distributed Java based computation one might use this example and implement the
required network communication, SH merely provides the rails for process delivery. Keep
in mind that just as with native SH applications, once the client daemon loses the con-
nection to the server it will kill the deployed Java SHU.

X11.4.3. Python SHUs

The deployment of python based SHUs is very similar to the Java case thus we won'’t
discuss it in detail. The only difference comes from Pythons script nature which implies
the absence of a compiled binary. This results in a rapid deployment archive (see the
previous section) which is essentially the original SHU file, i.e. the rapid deployment will
be identical to the initial deployment. This should become even clearer by looking at the
deployment script

GZIP=-9 tar cvfzp rapid.tar.gz rapid_deployment.sh src data
cd ..
cd "${DIR}/src"

python Main.py

We provide a proof of concept in the projects Simple HydraUnitPythonTemplate and Sim-
pleHydraClusterAppPython Template, analog to Jave case the network communication
should be implemented in Python and the application itself should be developed in a
Python environment.

185

Chapter XII. Setting up a Cluster

XI1.5. Docker support

It is also possible to deploy SH Docker instances, currently we do not provide any docket
image which could host an SH client, yet we have successfully tested this form of deploy-
ment. A reader interested in this application should refer to e.g. [?] or one of the many
tutorials regarding the setup of docker images. A common problem which we encountered
was the question about port forwarding of UDP ports (e.g. for UDP RCS), the following
line shows the command string in order to start the SH cluster node management client
(it can not run as a daemon due to the nature of docker containers)

sudo docker run —name CLIENINAME —i —p 16001:16001/udp —t base/archlinux /usr/bin/SHC

issuing the listed command will start an instance of the management client in a new
Docker container named CLIENTNAME (adding -d’ and removing -i’ as a flag will
execute the Docker command in the background). Once the client (and docker container)
exited it is not possible to restart the management client again, yet by deleting the old
(inactive) container one can bypass this restriction through

sudo docker rm CLIENTNAME
sudo docker run —mname CLIENTNAME —i —p 16001:16001/udp —t base/archlinux /usr/bin/SHC

In our experiments we used a casual ArchLinux Docker distribution which was retrofitted
with all required libraries in order to compile every SH module. Updating SH in an existing
Docker container can be done by starting a new container with the current SH/Linux
image, updating the local installation followed by e.g.

docker export CONTAINER-ID | docker import — base/arch

which will update or create the specified image.

186

XIll. Cluster Management Protocol

This chapter describes the network protocol for communication in the context of cluster
management. As many elements in the protocol are similar to each other we will focus on
explaining the corresponding technical details and avoid redundancies by only mentioning
the communication strategy for similar components. A reader interested in more technical
details should refer to the documented source code otherwise he might wait for the SH
cluster communication whitepaper (which is planed to be released but this might take
some time...).

The following section will briefly introduce the associated component and explain it from
a logical and technical perspective, any special cases and design choices will be discussed
along the way.

Xl1ll.1. Sending (Asynchronous) System Commands

We distinguish between two kinds of system commands, synchronous and asynchronous
ones. A synchronous command is a shell command (i.e. an arbitrary shell string) which
will be executed on a cluster node, the command source (i.e. the node which issued
the command) will wait until the recipient finished executing it and has returned its std
output. In other words the issuing node will wait until the target returned the commands
complete standard output. There is a limit to the outputs length, should it be exceeded
then only the first output fraction will be returned. An asynchronous command on the
other hand will not return any results, which in turn implies that the issuer will not wait
for any data.

ClusterMGMTServer ClusterMGMTClient

send serialized command string ¢
L4

deserialize and execute the command, wait for termination and fetch the every std output
reply with fetched output

Figure XIII.1.: The structure of SimpleHydra, each block represents a module, all
modules beneath another module are required for its functionality

Figure [XIIT] shows the logical view on the communication strategy (a simple “ping-

187

Chapter XIII. Cluster Management Protocol

pong” message exchange of serialized binary data) behind sending synchronous commands
to the client. Yet when it comes to the technical realization one has to deal with synchro-
nization challenges among multiple threads which are distributed among cluster nodes.
Fig. depicts the most simple situation; one caller sends a system command to a
single node, no other actors compete for communication with the same node.

We assume that a complete cluster has been set up. At first the actor (e.g. the main
routine) calls the management servers sendSystemCommand function, which in turn will
create an instance of SingleClusterNodeSynchronizationCallback, this helper object so;
provides an interface which enables the server to synchronize itself (in terms of data and
time) with the following communication cascade. Once the synchronization object was
instantiated the server continues by calling sendRequestToNode from his ClusterNode-
ComFucility member and provides so; as a parameter. At this point the communication
facility object takes charge of handling the communication, the first step is the mutex lock-
ing of the node object (keep in mind that we are about to start a communication sequence,
i.e. a temporary and virtual P2P communication with a node). Under the assumption
that every communication sequence attempts the same mutex lock in the beginning we
can assure that only one sequence is active at a time. Afterwards the node object will
be provided with a reference to so; followed by obtaining the nodes frame object via get-
Frame. The communication facility resumes its actual task by calling sendFrame with the
corresponding serialized data (which merely contains type IDs), this function will return
immediately once the data was sent over the socket. At this point the synchronization
object steps into action, the communication facility synchronizes itself with the nodes
response via a call to lock (will leads the communication facility into a spinlock wait, yet
the lock method accepts a boolean flag which allows the use of a semaphore instead of
a spinlock, for short latency communications one should omit this parameter and stick
to the spinlock). The worker thread will eventually receive the nodes response and de-
liver it to the corresponding frame assembler (which will commence the assembling in the
worker threads context). Once the data was assembled successfully it will be handled by
the associated frame handler (still in the same thread context), which in turn delivers
the data (i.e. the programs output on the node) to so; and stops the communication
facilities (spin)lock through a call to unlock. Once the communication facility is allowed
to continue it will return immediately with an error code which indicates if the actual
transmission was successful. The server will check so;s sequence indicator in order to
determine if everything went according the protocol (i.e. if the program was executed
and successfully transmitted the output). In this case the server will query the received
output from so; (since so; will be destroyed when sendSystemCommand returns) and
return it to the actor.

An asynchronous command is very similar to the synchronous call (see Fig. XIIL3]), the
only difference, from a technical point of view, lies in the type of response from the node,
instead of receiving the commands output the server will receive a confirmation about the

188

Chapter XIII. Cluster Management Protocol

successfully transmitted command. Since the server will not wait for the clients successful
command execution the error code returned by sendAsyncSystemCommand (Fig. XIIL4)
can not indicate any kind of successful execution.

XI111.2. Requesting (Large) Files from a Node

The cluster node management server provides two methods to obtain files from a given
node, these two methods getFile and getLargeFile. The function differ slightly regarding
their signature, the first one will return the requested files content inside a buffer object,
while the second function writes the returned data to a local file. The rationale behind
these two different approaches is as follows; getFile should be used in situations where
the files content is small enough in order to handle it within system memory, the second
function should be used if one requires a large amount of data (e.g. ;4Gb) from a single
file (since it is to large for system memory anyway, it will be saved to the local disk).
Both functions are not restricted to a certain file sizes, e.g. one can use getFile for large
files and getLargeFile for small files as well.

The logical and technical description for getFile is very similar to the case of executing
a synchronous system command, thus we will not describe it any further, the interested
reader should refer to the source code in order to see all details. Requesting a large file on
the other hand incorporates a slightly different form of communication since the client will
deliver multiple messages. Fig. KIILA depicts the logical view onto the communication,
after the client has received the request for a large file he will respond with a confirmation
which has the first chunk and the total number of chunks attached to it. Afterwards the
server will request iteratively request all remaining file chunks in the already described
ping-pong manner. The technical realization is quite similar since it follows the previously
illustrated paradigm, yet in this case the communication sequence consists of more than
just two exchanged messages. Fig. [XIILG shows this in more detail, as long as the
sequence has not finished no other communication will be possible by using the frame
object from node X.

XI1.3. Sending Files to a Node

The interface (i.e. sendFile) for sending files from the management server to a single
cluster node expects only three parameters; the node ID, the local file path and the
remote path (i.e. the local path on the target node). Thus there is only one function which
inherently works with files stored on local disks. This function distinguishes internally
between large and small files, it will switch to a chunked transmission should the local
file size exceed the threshold value (see Fig. XIILT), which is identical to the case of
requesting large files.

189

Chapter XIII. Cluster Management Protocol

XI11.4. Node (Un-)Registration

The process of registering a node is the very first action before any kind of communication
can occur in a cluster environment. At this point one should not confuse the registration
with the actual TCP connection establishing, a client might very well be connected to
the cluster management server, yet without a successful registration procedure he will
be unable to perform any sort of communication! Thus we will describe the registration
under the assumption that a client has established a TCP connection to the server. Figures
XTIL8 and XTIL9 depict the logical structure of the node registration and unregistration,
respectively.

From Fig. XIIL8 it becomes obvious that a total of four messages will be exchanged,
the corresponding technical realization is very similar to the situation of requesting large
files, thus we will not explain it beyond the logical representation. The unregistration
process is a simple ping-pong process.

XI1.5. (Rapid) (Aynchronous) SHU Deployment

We omit the logical view on the process of (asynchronous) SHU deployment since it corre-
sponds to the case of sending a (a)synchronous command to the client. Fig. XITLI0lshows
the technical details (and similarities to sending synchronous commands), one should keep
in mind that the process of SHU deployment can take a long time since the deployment
confirmation will only arrive after the unit files have been compiled and the binary suc-
cessfully registered itself on the node. For parallel deployment onto multiple nodes one
should utilize asynchronous deployments and poll the clients for the currently active SHU
PID via getSHUPID, if a value > 0 is returned one can be confident about a successful
deployment.

The same statements hold for rapid SHU deployments, be it synchronous or asynchronous!
Although a rapid deployment bypasses the compilation process it also may take quite some
time to get the SHU running (e.g. because of long setup procedures due to custom CMake
scripts). Thus SH provides asynchronous rapid deployments.

XI11.6. Requesting System & Short CPU Usage Reports

Requesting a complete system report via requestSystemReport or a short CPU report
via requestShortCPUReport involves a simple ping-pong communication scheme as in the
previously described cases. In this (short) section we merely want to point out two
important aspects; firstly that both operations essentially induce the same computation
overhead on the client, secondly that for highly frequent polling operations one should refer
to requestShortCPUReport as it helps to reduce the memory and computation overhead.

190

Chapter XIII. Cluster Management Protocol

The method requestSystemReport will return a complete system CPU report i.e. all
existing CPU jiffie values for all CPUs on the client, in technical terms this amounts to
a (client side) serialization and (server side) deserialization of SystemStatus objects. In
situations of high frequent polls one is motivated to reduce every kind of overhead to
reduce latencies induced by computation time. In exactly these situations one should use
requestShortCPUReport as it merely commands the client to read all jiffie values, compute
the corresponding load values for each CPU and transmit these floating point numbers
to the client. Thus one reduces the amount of transmitted data and circumvents the
computation overhead as no object marshalling occurs.

191

\\\\\\\\\\\\\\\\\\\\\\\\\\\ . A
(sIo11a Jo 580 Ul TINN 10 ,Jeyng) 9pod 10116
Vﬁ\‘:&_&%ﬁ ““ "
H Konsep
I | R R S E "
(ereaied
[pojojdwos sem asuanbas ayy yi]
_ 2ouanbaga}e|dwo))|
I e | B R S B [
()1o1e01pL 0100
[8posiods ~~~ """ 7Tt TToooood "
I S)
N (xamnpiool
\\\ |\
Woojuids Jixe,
¢ (poojun
- Y ittt »
Q I,
Q A (yeouenbagaeje|dwo)ayealpul
O D "
A.m h (indyno pauinjal)ejeqionijop
— 9pOU WOl S)NSal PUBWWIOD H
P [epou wouy Ajdaa 10) yep]
- daI-105-31eM)
= .Aemopojuids,
D) o
m (proor
\\\\\\\\\\\\\\\\\\\)
O)
a0 ("")oweligpuas
® D "
Py
n H (Jeweijeb
& o E B e e e [
M (erequ)xoeqieies
P s M
] OXeI0]
L& .aseqejep woly 1oalqo apou jab,
u \ (1109lq0ouks ejequi’pl)apoNo | 1senbaypuas
—
C 1100lqOouAs »
L — <Z1>0Bq|[eQUONEZIUO0IYOUASEPONIaISN|D3|BUIS: |109lq0oUAS _A meu
—
[l LBlequi <- ojul ejaw @ Bulys puewWwoD azijeuss,
< ()PUSIWOWISAGPUSS
S BuL}S PUBLILIOD pUE (J]aPOU
e sJejoweled ay) sepinoid
~ Jasn [euseixe uy
a ZTISTXEU00 UBRy
= (&)
C <g1>pealy LissiopiarsnioApealy L | | <er>epoNariersnioxaepon | | <er>ewersqriesnyxeweis | | ~<zi>AIoeJW0)apoNIaISnI) ANIOE JW0D <ZI1>19NIBS LINDINIBISNDIoMBS LNOWD w

Figure XIII.2.: The structure of SimpleHydra, each block represents a module, all

modules beneath another module are required for its functionality

Chapter XIII. Cluster Management Protocol

ClusterMGMTServer ClusterMGMTClient

send serialized command string

|
4
H send reply, afterwards deserialize and execute the command

immediately continue with other operations

Figure XIII.3.: The structure of SimpleHydra, each block represents a module, all
modules beneath another module are required for its functionality

193

Chapter XIII. Cluster Management Protocol

wwwwwwwwwwwwwwwwwwwwwwwwwww -
Ny\‘:um_mm%m “““ "
H Konsep
1 | I R S B "
H ()101e01pUl@OUBNDAga)e|dwOoD)eb
[8pos jolis ~~ "7 7T T T T "
O "
A (xamnpojun
www »
Joojuids jixa,
¢ (oojun
'_\ wwwwwwwwwwwwwwwwwwwwwwwwww)
A ()aouanbagaje|dwodajedipul
'ﬂ \\\\\\\\\\\\\\\\\\\\\\\\\\ M
¢
M (MiNN)ereassnizp
SpOU LOJ} UOHEWIUOO POAI0ST PUBLILICO H
[epou wouy A|daa 10) yep] H
|dai-105-31EM)
Jem pojuids,
¢
(proo;
0)
A (Joweigpuss
ﬁ Xeweiy "~ T TTTTTThRTToToTTTToTmTmmmmTTTT "
Py
iV (Jowei1eb
wwwwwwwwwwwwwwwwwwww)
(evequipioeqiiedies
wwwwwwwwwwwwwwwwwwww)
()xenppiool
.2seqejep woij 103[qo apou 196,
¢ (1108lqoouAs elequi‘pr)apoNo [1sanbaypuss
155 e e e "

_ <T>¥OeqIE;

|
1D9|BUIS 1198lq0JUAS _A

LBIEQU <- OJul BJoW B BuLlS PUBLILIOD 9Z|[B1as,

(1- 10 o) @po2 Joud

("")puewwogwa)sAgpuss

BuLs puewwos pue gjapou
siajoweled ay sapiroid

J19SN [eusa)xe uy

ZTISTXe)U00 Ulely

— <€}>PEaIY LIBNIONNIBISNID: APESIU LA : <€1>8PONGI 18IS X8PON

— <g1>oWel qIIaIsn|:XaWel]

e

300

—AN«v_w?_ww._r_\‘muS:wﬁ:_Uw_w\r_ww._.s_mu_zo ;

<
¥2
—

Figure XIII.4.: The structure of SimpleHydra, each block represents a module, all

modules beneath another module are required for its functionality

Chapter XIII. Cluster Management Protocol

ClusterMGMTServer

ClusterMGMTClient

request large file

»

read first file chunk
(- confirmation with attached large file chunk and total number of chunks_
loop]
[while chunks remain]
request next chunk

| .
________________ confirmation with attached large file churk | |

[final chunk]

request last chunk

Figure XIIIL.5.: The request for a single large files from a given node, which will deliver
the file in small chunks.

195

AUNYD 18U 10} 3 1sanbai asedaid pue yuNYd aAes,

o -
“““““““““““““““““)
W\‘:‘&a%‘im “““ ’
Fonsap
D R | E e S S S ’
[TonieAdeaiooq ™~~~ T T T Tt oo oo ooooooooooooooooooooo »
()io101pUeoUBNbeGe18|dWOTeD
[&posiolis ~~ " TTTTTTTITC K
oojuids yxa,
(ooun
[[
¢ Joouanbagere/dWo0aIEaIPUl
[[
(nNJereaieep
Hunuo 1se ones,
UNUD XaU
e

[ENEEEES

su

lewau juawbely | pun]

LSHUNYO JO JAGUINU [B10} BU) PUE SUNYD IS} BU) JOBIIX

BP0 10118 10 YUNYD 181

S$)uNyo ||e anes]

| IR SR

BpON

Chapter XIII. Cluster Management Protocol

<¥1>X @PON |eussxX3

JHem sjoojuids,
ool
3 \\\\\\\\\\\\\\\\\\\ ¥
(Joweigpuas
““““““““““““““““““ \
(Joweigieb
““““““““““““““““““)
(ERquoEqEoR!
““““““““““““““““““ N
T
,2Seqelep Wolj 108lqo apou a6,
(1198lq00uAs el QUIPI)PONO L1SeNbaypuas
5 e ’
wau

[ORIBUST11221a03UAS [¢

LBleq <- OJuI oW BZI[eNss,

(10113 J0 5585 Ul TINN 10 ,Jong) 5p0d 10115

ied [eoo] pue ed ejowas ‘jepou

sJejowesed ay} sepiroid
Jesn [euselx® Uy

EnEre

J81SN|J APEBIYLM

— <gi>peaiy 1oy

THeTSNIOXOPON _g: R aﬁzou%ozaﬁ;aaaﬁsoui

— <C1>19MRS INOWIBISNID MBS TNOINO

L=

ting cluster

n an exis

t

Figure XIII.6.: The process of receiving a chunked file from node X
environmen

Chapter XIII. Cluster Management Protocol

ClusterMGMTServer ClusterMGMTClient I

£
LargeFile? J

[If the file size exceeds the threshold value]

indicate incoming large file and attach first fragment

v

J save first chunk

confirmation for large file chunk

[while chunks remain]
send next chunk

»
confirmation for large file chunk lJ

M ------- - e - o confirmation forarge fl'e chunk
[final chunk]
send last chunk N
7]
¢77777777777777777777777777777777;qn[ir[ngtjop[ogfjnglicljufnlg J
[else]

indicate incoming file and attach serialized content N

q
Ll = - o ol confirmation for received file

Figure XIII.7.: Logical view onto the deployment process of a single file to a single

node.

ClusterMGMTServer ClusterMGMTClient

establish connection

Figure XIII.8.: the logical view on node registration

ClusterMGMT Server ClusterMGMTClient

: send unregister request
Ereply with unregister confirmation

Figure XIII.9.: The logical view onto the process of node unregistration

197

Chapter XIII. Cluster Management Protocol

e —— -
[[] onier dedooq T 1 15 e S "
()101e01pUl@oUBNbagaB|dWOoD)eb
; Téposioiis ~ "7 T TTT TS K
e 1 g S »
Wfoojuids yxa,,
¢ ()®o0jun
'ﬂ \\\\\\\\\\\\\\\\\\\\\\\\ M
< ()aouant Da)eolpul
'ﬂ \\\\\\\\\\\\\\\\\\\\\\\\ M
¢
N (TINN)ereqsaniep
e M
()xaInpsfoojun 4
9pou WOJ) Uonewyuod Juawkojdep i
[epou wiouy Ajdai 1oy el
|dor-10)3Em|
JHEem yojuids,
¢
[FR]
[~ ’
D (Joweigpuas
R B "
<
iy (Joweigieb
\\\\\\\\\\\\\\\\\\\)
(elequ)xoeqiiedies
\\\\\\\\\\\\\\\\\\\)
(xennprool

1108[qOouAs

le

L9seqejep wouy 10a[qo apou }ob,

(1108lqOouAs elRqWIPI)SPONO L }Senbaypuas

— <Z)>UONBZIUCIYOUASEpONJIaIsn|Da|bul ”Eom.EOoiw_A

JBIBQW <- OJul BJOW B NHS 8ZI[elss,

(1- 10 0) apoo Joud

(")munHspues

aloydewagasn pue
MOdIOAIBSNHS ‘dIHOABSNHS
‘BWENNHS ‘lldNHS ‘alepou
sisjoweied sy} sepiroid

18sn [ewa)xa uy

ZTISTXe1U05 Uy

_ <€1>PEalU LISYIOMIBISNO: APESIYLAN ; _ <€1>8PONGI HBISN|D X3PON

— <€1>9WelJqriisIsn|):Xowel]

— <2>AN10B4W0D8PONILBISNID:AjlI0BJWOD

—Am_v_miww._ys_o_\,:m«m:,O:m?.wm._,_\,_o_zo ;

0
D
i

Figure XIII.10.: The sequence diagram for deploying a SHU onto node X in a set up

cluster environment.

Bibliography

[12693]

[AV02]

[CKO1]

[Cou09]

[DBPDP+06]

[DHL*03]

[DNGFV00]

[GBSP04]

MPI: A message passing interface. In: Supercomputing ’93. Proceedings,

1993. — ISSN 1063-9535, S. 878-883

ApAwmS, Joel ; Vos, David: Small-college Supercomputing: Building a
Beowulf Cluster at a Comprehensive College. In: SIGCSE Bull. 34 (2002),
Februar, Nr. 1, 411-415. http://dx.doi.org/10.1145/563517.563498 —
DOIT 10.1145/563517.563498. — ISSN 0097-8418

CHERKASOVA, L. ; KARLSSON, M.: Scalable Web server cluster design
with workload-aware request distribution strategy WARD. In: Advanced Is-
sues of E-Commerce and Web-Based Information Systems, WECWIS 2001,
Third International Workshop on., 2001, S. 212-221

Councir, HPC A.: Interconnect Analysis: 10GigE and InfiniBand in High
Performance Computing / HPC Advisory Council. 2009. — Forschungs-
bericht

D1 Biacio, C. ; PENNELLA, G. ; DE Paori, E. ; GraNDI, R. ; GI-
AMMARINO, F.: PVM advanced load balancing in industrial environment.
In: Parallel, Distributed, and Network-Based Processing, 2006. PDP 2006.
14th Furomicro International Conference on, 2006. — ISSN 1066-6192, S.

5 pp-—

DuBinsk1, John ; HUMBLE, RJ ; LOKEN, Chris ; PEN, Ue-Li ; MARTIN,
PG: Mckenzie: A teraflops linux beowulf cluster for computational astro-
physics. In: Proc. of the 17th Annual International Symposium on High
Performance Computing Systems and Applications, 2003

D1 NapoLl, C. ; GIORDANO, M. ; FURNARI, M.M. ; VITOBELLO, F.: PVM
application-level tuning over ATM. In: Parallel and Distributed Processing,
2000. Proceedings. 8th FEuromicro Workshop on, 2000, S. 391-397

GAMMO, Louay ; BRECHT, Tim ; SHUKLA, Amol ; PARIAG, David: Com-
paring and evaluating epoll, select, and poll event mechanisms. In: In
Proceedings of 6th Annual Linux Symposium, 2004

199

http://dx.doi.org/10.1145/563517.563498

[GDMO02]

[HMH13]

[Jin01]

[LLSW04]

IMG14]

[MH14]

[SBS*95]

[Ste97]

[Sun90]

[UPAMO0]

GRANT, Jeffrey D. ; DUNBRACK, RL ; MaNION, Frank J. ; OCHS,
Michael F.: BeoBLAST: distributed BLAST and PSI-BLAST on a Be-
owulf cluster. In: Bioinformatics 18 (2002), Nr. 5, S. 765-766

HoMMEL, S. ; MALYSIAK, D. ; HANDMANN, U.: Model of human clothes

based on saliency maps. In: Computational Intelligence and Informatics
(CINTI), 2013 IEEE 14th International Symposium on, 2013, S. 551-556

JIN, Hai ; Buyya, Rajkumar (Hrsg.) ; CORTES, Toni (Hrsg.): High Perfor-
mance Mass Storage and Parallel 1/0: Technologies and Applications. 1st.
New York, NY, USA : John Wiley & Sons, Inc., 2001. — ISBN 0471208094

LiaANG, Tyng-Yeu ; Liu, Yen-Tso ; SHIEH, Ce-Kuen ; Wu, Chun-Yi: A
new approach to distribute program workload on software DSM clusters.
In: Parallel Architectures, Algorithms and Networks, 2004. Proceedings. Tth
International Symposium on, 2004. — ISSN 1087-4089, S. 201-206

MATTHIAS GRIMM, Sebastian Hommel Uwe H. Darius Malysiak M. Dar-
ius Malysiak: Analyse von Personenbewegungen an Flughéfen mittels
zeitlich riickwérts- und vorwértsgerichteter Videodatenstrome (APFel) -

Teilvorhaben Videobasierte kameraiibergreifende Bildsequenzanalyse. In:
BMBF Abschlussbericht (2014)

MALYSIAK, D. ; HANDMANN, U.: An Algorithmic Skeleton for Massively
Parallelized Mean Shift Computation with Applications to GPU Architec-
tures. In: Computational Intelligence and Informatics (CINTI), 2014 IEEE
15th International Symposium on, 2014

STERLING, Thomas ; BECKER, Donald J. ; SAVARESE, Daniel ; DORBAND,
John E. ; RANAWAKE, Udaya A. ; PACKER, Charles V.: Beowulf: A
Parallel Workstation For Scientific Computation. In: In Proceedings of the
24th International Conference on Parallel Processing, CRC Press, 1995, S.
11-14

STEVENS, W. R.: UNIX Network Programming: Networking APIs: Sockets
and XTI 2nd. Upper Saddle River, NJ, USA : Prentice Hall PTR, 1997.
— ISBN 013490012X

SUNDERAM, V. S.: PVM: A Framework for Parallel Distributed Comput-
ing. In: Concurrency: Practice and Ezperience 2 (1990), S. 315-339

UTHAYOPAS, P. ; PAISITBENCHAPOL, S. ; ANGSKUN, T. ; MANEESILP,
J.: System management framework and tools for Beowulf cluster. In: High

[UPASO1]

[WL10]

Performance Computing in the Asia-Pacific Region, 2000. Proceedings. The
Fourth International Conference/Exhibition on Bd. 2, 2000, S. 935-940
vol.2

UTHAYOPAS, Putchong ; PHATANAPHEROM, Sugree ; ANGSKUN, Thara
; SRIPRAYOONSAKUL, Somsak: Sce: A fully integrated software tool for
beowulf cluster system. In: Proceedings of Linux Clusters: the HPC' Revo-
lution Citeseer, 2001, S. 25-27

WANG, Leping ; Lu, Y.: Power-efficient workload distribution for vir-
tualized server clusters. In: High Performance Computing (HiPC), 2010
International Conference on, 2010, S. 1-10

List of Algorithms

203

List of Figures

I1.1.

The structure of SimpleHvdra, each block represents a module, all mod-

[1.2.

ules beneath another module are required for its functionality
The concept of binned worker threads: one thread ¢; handles the in-

coming connection requests cr;. creates thelconnection c¢; and assigns

I1.3.

it to an appropriate worker thread t,; (bin)

Left side: t,

_; receives a data fragment within an iteration and directs

them to the

appropriate asgembler a;, which stores it in a local buffer

and continues with frame r¢construction. Once a frame has been com-
pletely received, the framehgndler fh; will commence the interpretation
of the payload. Right side: the frame handler fh; attempts to send data
over sd;, first the data is copied into the worker threads shared output
buffer, afterwards the work¢r thread attempts send all data contained
in the buffer (i.e. only the|existing payload). The colored rectangles

[1.4.

represent different contexts. L.

The canoni

al network service structure of SimpleHydra, the dashed

rectangles rq
putation no
ing services.
task but ca

ppresent different address spaces. Management of the com-
les is done via a TCP connection between two correspond-
These services are independent of the actual computation
) communicate with it either via direct addressing or IPC.

The node i

teraction during computation tasks is also done via TCP

I1.5.

connections.
The process

of self-configuring clusters with SimpleHydra. The num-

bers inside the annotations denote the order of execution. First the
management node attempts to find all available nodes on the local sub-
net via a UDP broadcast. The gdvailable nodes reply to the beacon and
extract the servers connection infformation (e.g. address, port) fromt it.
Using this information they estgblish a connection to the management
server which, once all nodes hgve connected, starts the computation
task and sends an SH Unit to [the nodes. Once a node received the

Unit, it will

deploy and execute|it. The actual computation may then

begin. For the sake of transparency the synchronization details of com-

munication have been omitted.

205

I1.6.

The simplified registration process of a new node ¢ and the management

node M. First ¢ establishes the connection to M, which in turn [sends
a free ID (this number is removed from the pool of available ID{ until
¢ disconnects or the registration fails). The computation nodd then
acknowledges this number by sending it back as an attributeq of a
system report R. The management node then saves the report data in
a local database and assigns the ID to the corresponding connectipn. It
is possible to update the report data periodically (i.e. ¢ sends periodic

I1.7.

updates) or only per request (i.e. M requests an update from c).
The window system is part of the visualization module, it contains e.g.

sophigticated plot features, image viewers with annotation functions,
video |viewers and cluster management tools like e.g. parallel remote

I1.8.

shells.
The two node types used in IGOR. The left picture shows very com-

pact mini-ITX case with one discjete GPU, 16GB RAM and one HDD
of 1TB. The right side depicts aflarge ATX tower with 64GB RAM,

I1.9.

multiple GPUs and HDDs (8TB).
The detection system of the APFel project. The client obtains images

from different video databases, he uses the management [node of the
Beowulf cluster as an abstraction proxy to the collected ¢omputation
power of all m GPUs (which are distributed over n) nodeg. The man-
agement node receives detection requests which also contajn the corre-
sponding image. it delegates these requests to a node withlan available

XIII.1.

GPU, receives the results and forwards them to the client.

The structure of SimpleHvdra, each block represents a module, all mod-

XIII.2.

ules beneath another module are required for its functionality
The structure of SimpleHvdra. each block represents a module. all mod-

XIII.3.

ules beneath another module are required for its functionality
The structure of SimpleHvdra, each block represents a module, all mod-

XII1.4.

ules beneath another module are required for its functionality
The structure of SimpleHvdra. each block represents a module. all mod-

ules beneath another module are required for its functionality
The request for a single large files from a given node, which will deliver

the file in small chunks. oo
The process of receiving a chunked file from node X in an existing

cluster environment

21

XII1.10. The sequence diagram for deploying a SHU onto node X in a set up

cluster environment.

Impressum

internal report 16-01
ISSN: 2197-6953

1. Auflage, 29.01.2016

© Institut Informatik, Hochschule Ruhr West

Anschrift

Institut Informatik
Hochschule Ruhr West
Lutzowstralle 5

46236 Bottrop

