

Bayesian Estimation of Generalized
Partition of Unity Copulas

Andreas Masuhr †

73/2018

† Department of Economics, University of Münster, Germany

wissen•leben
 WWU Münster

Bayesian Estimation of Generalized
Partition of Unity Copulas

Andreas Masuhr

Westfälische Wilhelms-Universität Münster

June 1, 2018

Abstract

This paper proposes two (Metropolis-Hastings) algorithms to estimate General-
ized Partition of Unity Copulas (GPUC), a new class of nonparametric copulas that
includes the versatile Bernstein Copula as a special case. Additionally a prior distri-
bution for the parameter Matrix of GPUCs is established via Importance Sampling
and an algorithm to sample such matrices is introduced. Finally, simulation studies
show the effectiveness of the presented algorithms.

1

1 Introduction

A bivariate copula is a function C : [0, 1]2 → [0, 1] with the following properties1:

1. C(u, 1) = C(0, v) = 0

2. C(u, 1)u; C(1, v) = v

3. C(u, v) is 2-increasing, i.e. for u1, u2 and v1, v2 with u1 ≤ u2 and v1 ≤ v2 it
holds:

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

Then, using Sklar’s theorem, any bivariate distribution FXY(x, y) can be split
up into its marginal distributions FX(x) and FY(y) and its copula C(u, v), with
u = FX(x) and v = FY(y) the following way:

FXY(x, y) = C
(

FX(x), FY(y)
)
. (1)

If X and Y are continuous random variables, then the copula C(u, v) is unique.
Using this representation allows to treat the marginal distributions and their
dependence structure, separately and hence, adds more flexibility to the modeling
process. Various families of copulas have emerged in the past years ranging from
the classic families that are generated by inversion of multivariate distributions
like the Gaussian or t-copula to the class of Archimedean copulas that use certain
generator functions to create copulas. To add even more flexibility in higher
dimensions all these copula families might be mixed using vines (Bedford and
Cooke (2002)) or, within the class of Archimedean copulas bivariate copulas
can be organized hierarchically (Savu and Trede (2010)). Yet another way to
construct copulas is to use a nonparametric approach by trying to directly mimic
the characteristics of the data. The simplest way of doing so is to just use the
empirical copula C∗(u, v):

C∗(u, v) =
1
N

N

∑
i=1

1(Ui<u,Vi<v).

Another nonparametric copula is the Bernstein Copula Baker (2008)). This copula
uses Bernstein polynomials to smoothly approximate the copula density. One

1For more on copulas, see Nelsen (2006)

2

method to estimate Bernstein Copulas is an EM-Algorithm, proposed by Dou et al.
(2016). Recently, another family of nonparametric copulas has been developed, the
so called Generalized Partition of Unity Copulas (GPUC; Pfeifer et al. (2016)). In
contrast to the Bernstein Copula the unit hypercube is no longer approximated by
a finite mixture of functions but by an infinite mixture. As a special case GPUCs
also nest the Bernstein Copula.
This paper proposes a Bayesian MCMC based method to estimate GPUCs and
proceeds as follows: the second section introduces the Generalized Partition
of Unity Copulas. Chapter three describes an algorithm that allows to sample
parameter matrices of Generalized Partition of Unity Copulas. This algorithm
is used in section four to construct a prior distribution for the aforementioned
parameter matrices. Section five in turn presents two MCMC algorithms to
sample from the posterior distribution of these parameters. The two algorithms
are compared based on simulated data in section six and section seven concludes.

2 Generalized Partition of Unity Copulas

The concept of Generalized Partition of Unity Copulas (GPUC) was first intro-
duced by Pfeifer et al. (2016) and applied in the context of risk management
Pfeifer et al. (2017). A GPUC is a copula defined by the density function:

c(u, v) =
∞

∑
i=0

∞

∑
j=0

Mij
φi(u)

αi

ϕj(v)
γj

, (2)

with αi = ∑∞
j=0 Mij =

∫ 1
0 φi(u)du and γj = ∑∞

i=0 Mij =
∫ 1

0 ϕj(v)dv. The generating
functions φi(u) and ϕj(v) can be considered as probability mass functions of
discrete random variables over the non-negative integers Z+ with parameters
u and v, respectively and hence, ∑∞

i=0 φi(u) = ∑∞
j=0 ϕ(v) = 1. In the subsequent

paper I only consider bivariate GPUCs with φi(u) = ϕj(u) for i = j, i.e. copulas
with identical generating functions. Equation (2) denotes the fully parametrized
form GPUC with an infinitely large parameter matrix M. For estimation, I consider
a reduced form GPUC, i.e.

c(u, v) =
m−1

∑
i=0

m−1

∑
j=0

Mij
φi(u)

αi

ϕj(v)
γj

+
∞

∑
i=m

φi(u)ϕi(v)
αi

. (3)

3

This form requires a m×m matrix to parameterize the lower left part of [0, 1]2.
Accordingly, the upper right part can be parametrized by additional parameters
of the generating functions φi(u) and ϕj(v).

Proposition 2.0.1. All fully parameterized GPUCs nest the independence copula if
Mij = αiγj ∀i, j

This property of GPUCs can easily be verified as

c(u, v) =
∞

∑
i=0

∞

∑
j=0

Mij
φi(u)

αi

ϕj(v)
γj

=
∞

∑
i=0

∞

∑
j=0

φi(u)ϕj(v) = 1

Consequently, all reduced form GPUCs don’t include the independence copula
anymore and hence care must be taken when specifying the size of the parameter
Matrix M before estimation. As an example of a GPUC, consider the probability
mass function of a negative binomial random variable as generating function:

φi(u) =
(

β + i− 1
i

)
(1− u)βui.

Therefore,

αi =
∫ 1

0
φi(u)du =

∫ 1

0

(
β + i− 1

i

)
(1− u)βuidu =

β

(β + i)(β + i + 1)

and finally the density is given by,

c(u, v) =
∞

∑
i=0

∞

∑
j=0

Mijβ
2(β+i+1

i)(β+j+1
j)(1− u)β(1− v)βuivj

(β + 1)2(β + i + 1)(β + j + 1)
(4)

for the full form and

c(u, v) =
m−1

∑
i=0

m−1

∑
j=0

Mijβ
2(β+i+1

i)(β+j+1
j)(1− u)β(1− v)βuivj

(β + 1)2(β + i + 1)(β + j + 1)

+
∞

∑
i=m

(β + 1)(β + i + 1)
β

(
β + i− 1

i

)2

(1− u)β(1− v)βuivi (5)

for the reduced form GPUC. Using negative binomial distributions as generating
functions results in a copula with upper tail dependence, according to Pfeifer et al.
(2016).
By using binomial distributions as generating functions, the Bernstein Copula is

4

obtained. Note, that both negative Binomial GPUC and Bernstein Copula can
be represented by mixtures of Beta distributions, offering an appealing way to
simulate them (see appendix). The aim of this paper is to estimate the parameter
matrix of a reduced form GPUC, i.e. a matrix M from the space

Mβ =

{
M : Mij ≥ 0∀i, j;

m

∑
i=1

Mi,j = αj;
m

∑
j=1

Mi,j = αi

}
. (6)

Accordingly, one can define the set Gβ of (m− 1)× (m− 1) GPUC matrix candi-
dates by

Gβ =

{
G : Gij ≥ 0∀i, j; αi − αm ≤

m−1

∑
j=1

Gij ≤ αi; αj − αm ≤
m−1

∑
i=0

Gij ≤ αj;

m−1

∑
k=1

αk − αm ≤
m−1

∑
i=1

m−1

∑
j=1

Gij ≤
m−1

∑
k=1

αk

}
. (7)

Gβ includes all (m − 1) × (m − 1) matrices that can be expanded into eligible
GPUC parameter matrices by adding an m-th row and m-th column to G and
setting the values of these row and column equal to

Gi,m = αi −
m−1

∑
j=1

Gi,j and Gm,j = αj −
m−1

∑
i=1

Gi,j.

3 Sampling GPUC Matrices

In order to use a MCMC-based sampling scheme this section proposes an al-
gorithm to draw from the space of (reduced form) GPUC parameter matrices.
To that end, the matrices M+ and M− that trace upper and lower limits of the
parameter matrix M that are initialized as:

M+
0 |β =


α1 α2 α3 . . . αm

α2 α2 α3 . . . αm

α3 α3 α3 . . . αm
...

...
...

αm αm αm . . . αm

 and M−0 |β =


max{α1 −∑m

j=2 αj, 0} 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

0 0 0 . . . 0

 .

(8)

5

Now, to sample a parameter matrix M, the following algorithm is proposed:

Initialize M = 0;
Initialize m×m matrices R = 0 and C = 0;
Initialize M+

0 and M−0 as in (8);
for i in 1:m do

for j in 1:m do
Draw mi,j uniformly distributed on [M−ij , M+

ij];

Compute ri = αi −∑
j
k=1 Mik and cj = αj −∑i

k=1 Mkj;
Set Rij = ri and Cij = cj;
Update M+ and M− according to:

• M+ = pmin{R, C}, where pmin is the element wise minimum;

• M−ij =

max
{

αi −∑
j
k=1 Mik −∑m

k=j+1 M+
ik , αj −∑i

k=1 Mkj −∑m
k=i+1 M+

kj , 0
}
∀i, j;

end
end

Algorithm 1: Sampling GPUC parameter matrices.
The proof that all matrices generated with this algorithm are GPUC parameter

matrices follows by contradiction: Assume a generated matrix M̃ is not a GPUC
matrix. This might happen in three cases:

1. M̃ij < 0 for some i, j.

2. ∑m
k=1 M̃kj 6= αj or ∑m

k=1 M̃ik 6= αi for some i, j

3. ∑m
i=1 ∑m

j=1 M̃ij 6= ∑m
j=1 αj = ∑m

i=1 αi

Now, it is sufficient to show that the first case cannot happen and that the
subsequent cases would require the former one(s) to happen: For all elements
of M̃ the first case cannot occur, since the minimum M−ij in each draw is limited
from below by 0. The maximum of each cell is non negative as well, which
again is shown by contradiction: Asssume M+

ij is negative for the first time in the

algorithm. Consequently, either αi < ∑
j−1
k=1 Mik or αj < ∑i−1

k=1 Mkj which requires

either M+
i−1,j > αj − ∑i−2

k=1 Mkj or M+
i,j−1 > αi − ∑

j−2
k=1 Mik, which in turn is ruled

out by the definition of the matrices R and C.

6

If M̃i,j ≥ 0∀i, j, then by definition of R and C it follows that M̃i,m = αi−∑m−1
k=1 M̃i, k

and hence the second case cannot happen, either. Consequently, it is trivial that
the third case cannot happen as well, and hence the algorithm always generates
eligible GPUC parameter matrices.
Note, however that this is only the case if the matrices M+ and M− are initialized
as in (8).

4 A Prior distribution on M

The aim of any Bayesian estimation method is to obtain the posterior distribution
of the parameters of interest (or at least a sample of it), given the data. In the case
of a GPUC, the posterior distribtuion is p

(
M, β|u, v

)
∝ p
(

M, β
)

p
(
u, v|M, β

)
. Now,

the joint prior of M and β, p(M, β) can be factorized into p(M, β) = p(β) · p(M|β).
If both, the prior for β and the conditional prior for M are assumed to be flat,
the challenge is to identify the volume of the space that M can be sampled from,
given β in order to determine the value of the conditional prior of M.
To illustrate this consider the simplest case possible, i.e. estimating a 2× 2 matrix
M. In this case there is only one free parameter, M1,1 with M1,2, M2,1 and M2,2

being computed by the constraints on the row and column sums of M. Conse-
quently M1,1 is drawn from the interval [α1 − α2, α1].2 Now, generally, αi depends
on β, for example in the case of a Negative Binomial GPUC: αi =

β
(β+i−1)(β+i) and

thus, an uninformative prior for a 2× 2 matrix M given β is a function of β with
p(M|β) = β + 3 + 2

β .
For arbitrary values of m, a conditionally flat prior can be described by introducing

2That is, because M+
1,1 = α1 and M−1,1 = α1 − α2

7

an auxiliary (m− 1)× (m− 1) random matrix B|β ∼ U(0, M+
0), where M+

0 |β is
defined as in (8). Now, the prior for a m×m matrix M is given by

p(M|β) =
(m−1

∏
i=1

m−1

∏
j=1

M+
0;i,j

∫∫∫
1{B∈G}

(m−1

∏
i=1

m−1

∏
j=1

M+
i,j

)−1

dB
)−1

,

=

(
EB

[
1{B∈G}|β

] m−1

∏
i=1

m−1

∏
j=1

M+
i,j

)−1

=
f (B|β)

EB

[
1{B∈G}|β

] (9)

where G is the set of (m − 1) × (m − 1) matrices that are eligible candidates
for m× m GPUC parameter matrices as defined in (7) and 1{B∈G} denotes the
indicator function that is equal to one if B ∈ G and 0, elsewhere. Evaluating this
integral for large m gets very cumbersome using classical approximation schemes
due to the high dimensionality.
As a solution, an importance sampling approach is proposed to estimate the above
expectation. Following Greenberg (2008), an estimate of E

[
g(x)

]
=
∫

g(x) f (x)dx
with X ∼ F(·) and density f (x) can be computed considering the integral

E
[
g(x)

]
=
∫ g(x) f (x)

h(x)
h(x)dx

and approximating it by a sample of sample of N values Xn from the importance
distribution h(x) and computing

E
[
g(x)

]
≈ 1

N

N

∑
n=1

g(xn)
f (xn)

h(xn)
.

Translated into the setting of GPUCs, p(M|β) is obtained by drawing a sample
of N values Bn from an importance distribution h(B) and then the expectation is
approximated by a weighted average over the drawn sample:

EB[1{B∈G}|β]−1 ≈
(

1
N

N

∑
n=1

1{Bn∈G}
f (Bn|β)
h(Bn|β)

)−1

, (10)

where f (Bn|β) =

(
∏m−1

i=1 ∏m−1
j=1 M+

i,j

)−1

. Here, the importance distribution

h(B|β) is chosen according to the sampling scheme of algorithm 1. Formally,

8

drawing a candidate B from h(B|β) is split into drawing from a set of conditional
distributions when sampling a candidate GPUC B matrix, i.e.:

h(B|β) =p(B1,1) · p(B1,2|M1,1) · . . . · p(B1,m−1|B1,1, . . . , B1,m−2)

· p(Bm−1,m−1|B1,1, . . . , Bm−1,m−2) =
m−1

∏
i=1

m−1

∏
j=1

(M+
i,j,∗ −M−i,j,∗)

−1, (11)

where M+
i,j,∗ and M−i,j,∗ are updated before each subsequent element is drawn and

conditioning on β is dropped for readability. Consequently, every draw from h(B)
is a eligible GPUC parameter matrix candidate and hence, (9) simplifies to:

p(M|β) ≈
(

1
N

N

∑
n=1

h(Bn|β)−1
)−1

. (12)

A comparison between a naive Monte Carlo approximation and a importance
sampling approximation using both 20,000 draws for m = 4 (i.e. 9 parameters
need to be drawn) is given in figure 1. Both approaches work for 4× 4 matrices
but the variance of the importance sampling version is already substantially
lower. Additionally only 0.03% of all matrices drawn by the naive Monte Carlo
simulation are eligible candidates for GPUC matrices. This proportion diminishes
sharply, as m increases and hence, makes estimation via Monte Carlo infeasible.
Once a sample is obtained, the prior is approximated as a function of β using a
log-polynomial model of order k:

log(P̂(M|β)) =
k

∑
i=0

αiβ
i + αk+1log(β) (13)

which serves as a very accurate approximation. Table 3 in the appendix displays
estimates for k = 5 and m = 3, . . . , 20.

5 MCMC algorithms for GPUC Matrices

Besides putting a (conditional) prior on M another necessity is to recompute the
parameter matrix whenever a new value of β̃ is proposed, because M /∈ M|β̃, i.e
M is no longer an eligible GPUC parameter matrix. The following algorithm will

9

Figure 1: Comparison of a naive Monte Carlo approximation (black dots) and the importance
sampling approach (green line). 20,000 draws each for a negative binomial GPUC.

thus be used to reshape the GPUC matrix M:
Initialize Mc = M, Mr = M and Mn = M; while |∑m

i=1 Mn;i,j − αj| ≥ ε for
any j or |∑m

i=j Mn;i,j − αi| ≥ ε for any i do

Set Mr;i,· = Mr;i,· · αi(βt)
αi(βt−1)

for all i;

Set Mc;·,j = Mc;·,j ·
αj(βt)

αj(βt−1)
for all j;

Set Mn = Mr+Mc
2 ;

Set Mc = Mn and Mr = Mn;

end
Set M = Mn

Algorithm 2: Reshaping GPUC matrices
To build a classical random walk Metropolis Hastings algorithm and use the
posterior sample for parameter inference,two properties of GPUC parameter
matrices are important:

Proposition 5.0.1. Consider a GPUC parameter matrix M ∈ Mβ. Further, set(
i∗, j∗

)
= argmini,j

(
0.5−

∣∣∣∣ Mi,j
αmax(i,j)

− 0.5
∣∣∣∣). Then, for two arbitrary Matrices G ∈ Mβ

10

and H ∈ Mβ, M∗ = M + b(G−H) ∈ Mβ, if b ≤ min
(

0.5−
∣∣∣∣ Mi∗ ,j∗

αmax(i∗ ,j∗)
− 0.5

∣∣∣∣, 0.5−∣∣∣∣ α1−g
∑m

i=2 αi
− 0.5

∣∣∣∣).

For the proof consider an arbitrary cell of M, Mk,l = g with k ≥ l. Consequently
no more than αk − g can be additionally put in Mk,l but by adding b(Gk,l − Hk,l)

at most bαk might be added and hence,

g + bαk ≤ αk ⇔ b ≤ 1− g
αk

.

On the other side, Mk,l must not decreased by more than g if k 6= 1 or l 6= 1 or
α1 −∑m

i=2 αi ≤ 0 and might be decreased at most by bαk by adding b(Gk,l − Hk,l)

and hence,

g− bαk ≥ 0⇔ b ≤ g
αk

.

Accordingly, b ≤ 0.5−
∣∣∣∣ g

αk
− 0.5

∣∣∣∣.
If k = 1 and l = 1 and α1 − ∑m

i=2 αi > 0, then M1,1 might be decreased by no
more than g− α1 + ∑m

i=2 αi but by adding b(G1,1 − H1,1) at most b ∑m
i=2 αi might

be subtracted. Hence,

g− b
m

∑
i=2

αi ≥ α1 −
m

∑
i=2

αi ⇔ b ≤ g− α1

∑m
i=2 αi

+ 1

On the other hand, M1,1 must not increased to more than α1 and can be increased
by adding b(G1,1 − H1,1) by no more than ∑m

i=2 αi. Thus,

g + b
m

∑
i=2

αi ≤ α1 ⇔ b ≤ α1 − g
∑m

i=2 αi
.

Consequently, b ≤ 0.5−
∣∣∣∣ α1−g

∑m
i=2 αi
− 0.5

∣∣∣∣
The proof for k ≤ l follows analog and is omitted, here.
Proposition 5.0.1 states that it is always possible to find a value b to add the
difference of two GPUC matrices to another matrix so that this sum is still an
eligible GPUC matrix, a property that will be helpful in formulating a RW-MH
algorithm.

11

Proposition 5.0.2. Consider two matrices Mm×m ∈ Mβ and Nm×m ∈ Mβ. Then for
λ ∈ [0, 1], λM + (1− λ)N ∈ Mβ.

For a proof it is sufficient to assure that ∑m−1
i=0 λMij + (1− λ)Nij = ∑m−1

i=0 λMij +

∑m−1
i=0 (1− λ)Nij = αj. All other properties to fit definition (6) are fulfilled, by

definition.
With this at hand, it is now possible to construct a random walk Metropolis
Hastings algorithm the following way:

Initialize parameters M(0) and β(0);
for i in 1:N do

Propose β̃(i) = β(i−1) + ε, with ε ∼ N(0, 1);
Recompute M(i) using algorithm 2;
Propose M̃(i) = M(i) + b(ρ1 − ρ2), with ρ1, ρ2 ∼ F(M) and b = 0.1

ln(t) ;

If M̃(i) ∈ M, accept M̃(i) with probability a = min
(

p(M̃(i),β̃(i)|u,v)
p(M(i−1),β(i−1)|u,v)

, 1
)

end
Algorithm 3: Random Walk Metropolis Hasting for GPUC

In this algorithm, adding b(ρ1 − ρ2) ensures the random walk property of the
proposal. The decreasing scaling parameter b if helpful to ensure a relatively
stable acceptance ratio, because M̃(i) ∈ M holds for a large share of proposed
matrices. On the down side a low (and even decreasing) scaling parameter b leads
to poor mixing of the Markov chain and hence, slow convergence. To overcome
this issue, an alternative, random blocking sampling scheme is proposed. This
sampler was originated by Chib and Ramamurthy (2010) in the framework of
estimating large DSGE models. Chib and Ramamurthy (2010) propose to divide
the random walk Metropolis-Hastings (RW-MH) algorithm into two steps. The
first step consists of randomly generating blocks of parameters whereas the second
step is the classical RW-MH over the randomly blocked parameters. Both, the
blocks and parameters are drawn in each iteration. In the setting of estimating
DSGE models "genetaring random blocks is [...] straightforward and does not
require comment", in the setting of this paper, however, the method of generating
blocks is essential, due to the nature of the parameter space. The randomized
blocking random walk Metropolis Hastings (RBRW-MH) algorithm used here can

12

be summarized as follows:
Initialize R = 1m×m; M(0) and β(0);
for t in 1:N do

Propose β(t) = β(t−1) + ε, with ε ∼ N(0, 1);
Recompute M(t) using algorithm 2;

Accept
(

M(t), β(t)) with probability α = min
(

p(M(t),β(t)|u,v)
p(M(t−1),β(t−1)|u,v)

, 1
)

;

Set M̃(0) = M(t);
for r in 1:(m2/4) do

Draw i and j from {1, . . . , m}, with Ri,j = 1;
Draw k from {1, . . . , m} \ {i, s : Ri,s = 0};
Draw l from {1, . . . , m} \ {j, t : Rt,j = 0};
Set Ri,j = Rk,l = Ri,l = Rk,j = 0;

Draw $ ∼ N(0, q), q =
γαmax(i,j,k,l)

ln(t) ;

Set M̃(r) = M̃(r−1);

Compute M̃(r)
i,j = M̃(r)

i,j + $, M̃(r)
i,l = M̃(r)

i,l − $, M̃(r)
k,j = M̃(r)

k,j − $,

M̃(r)
k,l = M̃(r)

k,l + $;

Accept (M̃(r)) with probability α = min
(

p(M̃(r),β(t)|u,v)
p(M̃(r−1),β(t)|u,v)

, 1
)

;

end

Set M(t) = M̃(m2/4);
Set R = 1m×m;

end
Algorithm 4: Randomized Blocking Random Walk Metropolis Hastings for
Generalized Partition of Unity Copulas.

The algorithm proposes a new value for β at the beginning of each iteration. Once
β is proposed, the parameter matrix needs to be recomputed in order to have
correct row and column wise sums. After accepting or rejecting the new value of
β, the algorithm selects four elements from M according to Table 1 and adds $

to the elements (i, j) and (k, l) and subtracts $ from elements (i, l) and (k, j). If
$ is small in absolute value the probability of proposing a matrix M̃(r) ∈ M is
sufficiently high to obtain a well mixing Markov Chain, due to proposition 5.0.1.

13

M=



M1,1 . . . M1,j . . . M1,l . . . M1,m
...

...
...

...
Mi,1 . . . Mi,j . . . Mi,l . . . Mi,m

...
...

...
...

Mk,1 . . . Mk,j . . . Mk,l . . . Mk,m
...

...
...

...
Mm,1 . . . Mm,j . . . Mm,l . . . Mm,m


Table 1: Choosing four elements of M

Once a new parameter matrix M̃(r) is proposed, the computing the likelihood
p(u, v|M̃(r), β(t)) boils down to calculating:

p
(
u, v|M̃(r), β(t)) = N

∏
s=1

c
(
us, vs|M̃(r), β(t))

=
N

∏
s=1

c(us, vs|M̃(r−1), βt) +$

(
φi−1(us)φj−1(vs)

αi−1αj−1

)
+ $

(
φk−1(us)φl−1(vs)

αk−1αl−1

)
−$

(
φi−1(us)φl−1(vs)

αi−1αl−1

)
− $

(
φk−1(us)φj−1(vs)

αk−1αj−1

)
and hence, the acceptance probability α can be computed very efficiently. In fact,
a single iteration of the outer loop of algorithm 4 is of the same complexity as one
iteration of the RW-MH sampler in Algorithm 3: O(m2n)

6 Simulation studies

This section compares both proposed samplers by using simulated data sets. The
first data set is generated from a negative binomial GPUC with β = 2 and a
diagonal matrix M. In this setting reduced form and normal form of the copula
coincide and hence, the dimension of M should not play a major role regarding
the ability to adequately mimic the data. Both samplers are compared estimating
a 4× 4 matrix and a 10× 10 matrix and are run for 5, 000 iterations with the first

14

1, 000 being discarded as burn-in sample. The second and third data sets are
generated by Bernstein Copulas with parameter matrices

M1 =


0 0 0 0.25
0 0 0.25 0
0 0.25 0 0

0.25 0 0 0

 , M2 =



0 0 0.1 0 0 0 0 0 0 0
0 0.1 0 0 0 0 0 0 0 0

0.1 0 0 0 0 0 0 0 0 0
0 0 0 0.1 0 0 0 0 0 0
0 0 0 0 0.1 0 0 0 0 0
0 0 0 0 0 0 0 0 0.1 0
0 0 0 0 0 0 0 0.1 0 0
0 0 0 0 0 0 0.1 0 0 0
0 0 0 0 0 0.1 0 0 0 0
0 0 0 0 0 0 0 0 0 0.1


and both samplers are run for 20, 000 iterations with the first 10, 000 observa-
tions being discarded as burn-in sample. Table 2 shows the computing times
(CT) in seconds and efficient sample sizes (ESS) of both samplers; the values
in parentheses show the effective sample size, given β = β̂ = 1

N ∑N
i=1 βi. Point

estimates are computed by averaging over the posterior sample (Bernstein Copula)
and first averaging over β and then, computing the average parameter matrix
M given β̂ (negative Binomial GPUC) according to proposition 5.0.2. Obviously,
the random blocking Metropolis-Hastings sampler outperforms the classical
Metropolis-Hastings algorithm for both copulas and matrix sizes. The time, nec-
essary to compute a single independent observation of the posterior 3 is much
lower for the RBRW-MH algorithm (NB-GPUC: 31s and 78s; Bernstein: 3 and
49s) compared to the RW-MH algorithm (NB-GPUC: 144s and 971s; Bernstein
Copula: 11s and 200s). By investigating both, the likelihood and trace plots for
the Bernstein Copula (see figure 2) it is clear that the Markov chain generated by
the classic Metropolis Hastings algorithm has not even converged, yet, whereas
the RBRW-MH algorithm already converged after roughly 200 (4× 4) and 1,000
(10× 10) iterations, respectively.

3The efficient sample size (ESS) is a measure for the number of independent draws from the
posterior; see eg. Gelman et al. (2004). Computing ESS was done using the coda package in R.

15

ESS CT lnL(M̂, β̂)

NB GPUC 4× 4
RW-MH 48 (4) 6,926 689,1
RBRW-MH 163 (133) 5,120 691,9

NB GPUC 10× 10
RW-MH 9 (5) 8,747 675,1
RBRW-MH 67 (62) 5,258 690,3

Bernstein Copula 4× 4
RW-MH 44 500 370.4
RBRW-MH 240 641 403.3

Bernstein Copula 10× 10
RW-MH 7 1,401 2795.2
RBRW-MH 122 6,099 3140.7

Table 2: Effective Sample Size, computing time and log likelihood of the proposed MCMC algo-
rithms.

7 Concluding Remarks

This paper proposes two MCMC algorithms to estimate Generalized Partition of
Unity Copulas beginning with an algorithm to sample the respective parameter
matrices. It was shown that a uninformative prior distribution of the parameter
matrix given other parameters of the GPUC can be computed using importance
sampling. Two simulation studies compared the algorithms and verified that
the proposed random blocking random walk Metropolis-Hastings algorithm has
promising properties, ie. fast convergence and low autocorrelation. Hence, this
framework offers a way to incorporate GPUC into various types of models.

16

Figure 2: Comparison of the RBRW-MH and the RW-MH algorithm when estimating a Bernstein
Copula. The left column shows results for a simulated data set with M = M1 and the
right column with M = M2. The black lines represent the RBRW-MH and the red lines
represent the RW-MH algorithm.

17

8 Appendix

8.1 Log-polynomial fit of the prior

m const. β β2 β3 β4 β5 log(beta)

3 −8.168 −2.700 0.264 −0.017 0.001 −0.00001 3.661
4 −24.396 −5.269 0.475 −0.030 0.001 −0.00001 8.523
5 −52.010 −8.234 0.690 −0.042 0.001 −0.00002 15.414
6 −92.579 −11.511 0.908 −0.054 0.002 −0.00002 24.353
7 −147.882 −14.515 1.029 −0.057 0.002 −0.00002 35.040
8 −217.445 −18.972 1.360 −0.077 0.002 −0.00003 48.653
9 −307.830 −20.788 1.363 −0.088 0.004 −0.0001 61.793

10 −416.362 −24.294 1.089 −0.039 0.001 −0.00001 80.206
11 −543.687 −32.864 1.984 −0.101 0.003 −0.00003 102.120
12 −709.766 −29.688 0.539 0.052 −0.004 0.0001 118.946
13 −891.356 −35.922 0.527 0.074 −0.005 0.0001 144.568
14 −1, 123.319 −24.221 −2.140 0.317 −0.015 0.0002 153.370
15 -1, 337.284 -67.008 5.310 -0.426 0.019 -0.0003 208.712
16 -1, 658.292 -42.240 1.154 -0.091 0.006 -0.0001 210.521
17 -1, 943.941 -73.886 4.443 -0.301 0.013 -0.0002 265.396
18 -2, 333.162 -52.893 -2.322 0.467 -0.023 0.0003 289.127
19 -2, 750.608 -50.188 -1.457 0.220 -0.008 0.0001 311.079
20 -3, 158.849 -79.790 1.214 0.115 -0.006 0.0001 368.077

Table 3: Estimates of the log-polynomial model for a conditionally flat prior of the negative
binomial GPUC.

18

8.2 Beta-Mixture representation of negative Binomial GPUC and
Bernstein Copula.

Consider a random variable X ∼ Beta(p, q), then the density of X is given by

f (p,q)
X (x) =

(p + q− 1)!
(p + 1)!(q + 1)!

xp−1(1− x)q−1.

The density function of a negative binomial GPUC with parameter matrix M and
shape parameter β is given by

c(u, v) = ∑
i

∑
j

Mi,j

αiαj

(
β + i− 1

i

)(
β + j− 1

j

)
(1− u)β(1− v)βuivj

= ∑
i

∑
j

Mi,j

αiαj

(β + i− 1)!
i!(β− 1)!

(β + j− 1)!
j!(β− 1)!

(1− u)β(1− v)βuivj.

Now, for the negative Binomial GPUC:

αi =
∫ 1

0

(
β + i− 1

i

)
ui(1− u)βdu =

β

(β + i)(β + i + 1)

and hence,

c(u, v) = ∑
i

∑
j

(
Mi,j

(β + i)(β + i + 1)(β + j)(β + j + 1)
β2

(β + i− 1)!
i!(β− 1)!

(β + j− 1)!
j!(β− 1)!

(1− u)β(1− v)βuivj
)

= ∑
i

∑
j

Mij
(β + i + 1)!(β + j + 1)!

i!βj!β
(1− u)β(1− v)βuivi

= ∑
i

∑
j

Mij f (i+1,β+1)(u) f (j+1,β+1)(v)

The density function of a Bernstein Copula with parameter matrix M(m×m) and
αi =

1
m is given by:

c(u, v) = ∑
i

∑
j

m2Mij

(
m− 1

i

)(
m− 1

j

)
ui(1− u)m−i−1vj(1− v)m−j−1

= ∑
i

∑
j

Mij
m!

i!(m− i− 1)!
m!

j!(m− j− 1)!
ui(1− u)m−i−1vj(1− v)m−j−1

= ∑
i

∑
j

Mij f (i+1,m−i)(u) f (j+1,m−j)(v)

19

References

Baker, R. (2008). An order-statistics-based method for constructing multivariate
distributions with fixed marginals. Journal of Multivariate Analysis 99(10), 2312–
2327.

Bedford, T. and R. M. Cooke (2002). Vines–a new graphical model for dependent
random variables. The Annals of Statistics 30(4), 1031–1068.

Chib, S. and S. Ramamurthy (2010). Tailored randomized block mcmc methods
with application to dsge models. Journal of Econometrics 155(1), 19 – 38.

Dou, X., S. Kuriki, G. D. Lin, and D. Richards (2016). Em algorithms for estimating
the bernstein copula. Computational Statistics & Data Analysis 93, 228–245.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2004). Bayesian data analysis
(2. ed. ed.). Texts in statistical science. Boca Raton, Fla.: Chapman & Hall.

Greenberg, E. (2008). Introduction to Bayesian econometrics. Cambridge: Cambridge
University Press.

Nelsen, R. B. (2006). An Introduction to Copulas (Second Edition ed.). Springer
Series in Statistics. New York, NY: Springer Science+Business Media Inc.

Pfeifer, D., A. Mändle, and O. Ragulina (2017). Data driven partition-of-unity
copulas with applications to risk management.

Pfeifer, D., H. A. Tsatedem, A. Mändle, and C. Girschig (2016). New copulas
based on general partitions-of-unity and their applications to risk management.
Dependence Modeling 4(1), 225.

Savu, C. and M. Trede (2010). Hierarchies of archimedean copulas. Quantitative
Finance 10(3), 295–304.

20

	Titelblatt Masuhr WP 73
	Working Paper Masuhr 73
	Introduction
	GPUC
	Sampling GPUC Matrices
	A Prior distribution on M
	MCMC algorithms for GPUC Matrices
	Simulation studies
	Concluding Remarks
	Appendix
	Log-polynomial fit of the prior
	Beta-Mixture representation of negative Binomial GPUC and Bernstein Copula.

