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Abstract
In contrast to conventional model selection criteria, the Focused Information Criterion 
(FIC) allows for the purpose-specific choice of model specifications. This accommodates 
the idea that one kind of model might be highly appropriate for inferences on a particular 
focus parameter, but not for another. Using the FIC concept that is developed by BEHL, 
CLAESKENS, and DETTE (2014) for quantile regression analysis, and the estimation of 
the rebound effect in individual mobility behavior as an example, this paper provides 
for an empirical application of the FIC in the selection of quantile regression models.
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1 Introduction

Common model selection methods, such as the AKAIKE (1974) criterion (AIC)

and the SCHWARZ (1978) criterion (SIC), do not require the specification of any

purpose of inference. This also holds true for alternative model selection meth-

ods, such as goodness-of-fit tests, which are proposed by, among many others,

DETTE (1999), DETTE, PODOLSKIJ and VETTER (2006), and PODOLSKIJ and DETTE

(2008). However, conditional on the underlying purpose, some specifications

might be better suited than others in terms of estimation efficiency. Recogniz-

ing this argument, CLAESKENS and HJORT (2003) designed the Focused Informa-

tion Criterion (FIC) for the targeted search of parametric regression models that

are estimated using maximum-likelihood methods, thereby explicitly taking the

purpose of inference into account (BEHL, CLAESKENS, DETTE, 2014).

This is of high relevance in many fields of applied research, such as esti-

mating the well-known direct rebound effect, which captures the behaviorally

induced offset in the reduction of energy consumption following efficiency im-

provements (e. g. SORRELL, DIMITROUPOULOS, 2008; FRONDEL, PETERS, VANCE,

2008). To this end, alternative focus parameters, that is, population parameters

defined irrespective of any model specification, are estimated in the context of

individual transportation: First, the efficiency elasticity of mobility demand s:1

ημ(s) :=
∂ ln s
∂ ln μ

, (1)

reflecting the relative change in mobility demand s due to a percentage increase

in efficiency μ (see e. g. BERKHOUT et al., 2000), and, second, the negative of the

fuel price elasticity of mobility demand, ηpe(s):

ηpe(s) :=
∂ ln s

∂ ln pe
, (2)

1For the specific example of individual conveyance, parameter μ designates fuel efficiency,
which can be measured in terms of vehicle kilometers per liter of fuel input.

1



with pe denoting the fuel price per liter.

While ημ(s) is the most natural definition of the direct rebound effect, the

negative of the fuel price elasticity ηpe(s) is frequently the preferred measure for

various reasons (FRONDEL, RITTER, VANCE, 2012), most notably because of the

likely endogeneity of the efficiency variable μ. For instance, if a more efficient

car is purchased in response to a job change that results in a longer commute,

fuel efficiency would not be exogenous (see e. g. SORRELL, DIMITROUPOULOS,

SOMMERVILLE, 2009:1361).

Using both these rebound definitions as focus parameters and the FIC de-

veloped by BEHL, CLAESKENS and DETTE (2014) for quantile regression analysis,

this paper provides for an empirical application of the FIC in the selection of

quantile regression models, thereby building on FRONDEL, RITTER and VANCE

(2012), who investigate the heterogeneity of the rebound effect in individual mo-

bility behavior on the basis of quantile regressions.It will become evident from

our empirical illustration that model selection may depend on both the focus pa-

rameter and the percentiles of the dependent variable under scrutiny.

Because of its usefulness in balancing modeling bias against estimation

variability, the FIC has been increasingly applied in the realm of statistics (see

e. g. CLAESKENS, CROUX, VAN KERCKHOVEN, 2007, CLAESKENS, HJORT, 2008,

and HJORT, CLAESKENS, 2006), but this concept appears to be virtually unknown

in the economics literature. The contributions of BEHL et al. (2012, 2013) represent

the sole exceptions for the literature on economic modeling, while the analysis of

BROWNLEES and GALLO (2008) is a rare example originating from financial eco-

nomics.

The general idea underlying the FIC, which ultimately results from esti-

mating the mean squared error of the focus parameter estimators (CLAESKENS,

HJORT, 2003:902), is to study perturbations of a parametric model, with the

known parameter vector γ0 := (γ0
1, ..., γ0

q)
T as the point of departure. A vari-
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ety of models may then be considered that depart from γ0 in some or all of q

directions: γ �= γ0. On the basis of parameter estimates of the altogether 2q (sub-

)models, that candidate model will be selected for which the FIC is minimal for a

given focus parameter Λ = Λ(γ).

By minimizing the FIC, one captures the trade-off between modeling bias,

which, by definition, is zero for the most general model for which γi �= γ0
i for

i = 1, ..., q, and relative estimation variability, which, by definition, is zero for

the most restricted model for which γi = γ0
i for i = 1, ..., q. For the sake of

simplicity, in our empirical example on how to estimate the direct rebound effect,

we will confine ourselves to q = 1. That is, we choose between just 2q = 2

model specifications, where, for instance, the unrestricted specification includes

the variable fuel efficiency μ, while the restricted specification does not.

The following Section 2 provides for a concise introduction into the concept

of the FIC. Section 3 presents the regression method, followed by the presentation

of the empirical example in Section 4. The last section summarizes and concludes.

2 The Example of the Rebound Effect

To illustrate the concept of the FIC with the empirical example of the heterogene-

ity in individual mobility behavior, we choose both the negative of the fuel price

elasticity of transport demand, −ηpe(s), for the identification of the rebound ef-

fect, as well as the efficiency elasticity ημ(s).

To capture heterogeneity in the rebound response, we estimate the condi-

tional quantile function (CQF) of the logged monthly vehicle kilometers traveled,

ln(s), for a given percentile τ ∈ (0, 1), using quantile regression methods devel-
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oped by KOENKER and BASSETT (1978):

Qτ(ln(si)|pei , zi) = α(τ) + αpe(τ) ln(pei) + zT
i αz(τ)

= (α0(τ))Txi , (3)

where ln(pe) designates logged fuel prices, ln(μ) denotes logged efficiency and

xi := (1, ln(pei), zi, ln(μi))
T, with T indicating the transposition of a vector. z

is a vector of control variables, such as household income, employment status

of adult household members and number of children, and α0(τ) is defined by

α0(τ) := (ξ(τ), γ0)T with ξ(τ) := (α(τ), αpe(τ), αz(τ))T. As efficiency μ is not

included as a regressor in model (3), γ0 = αμ = 0.

Contrasting with specification (3), where efficiency μ is omitted, the re-

bound effect is frequently estimated from a wider model that includes efficiency

variable μ:

Qτ(ln(si)|pei , μi, zi) = α(τ) + αpe(τ) ln(pei) + αT
z (τ)zi + αμ(τ) ln(μi)

= (α f ull)Txi , (4)

where α f ull := (ξ(τ), γ(τ))T and γ(τ) := αμ(τ).

Adopting the terminology of CLAESKENS and HJORT (2003), specification

(3) is called the narrow or null model, as efficiency variable μ is lacking, whereas

it is included in the full model (4). Using the terminology introduced in the pre-

vious section, by estimating the full model, we depart from αμ = γ0 = 0 in just

q = 1 direction: αμ(τ) = γ(τ) �= 0.

In our example, in which model (3) is nested in specification (4), the quan-

tile regression formulae for the FIC adopt a straightforward shape that strongly

resembles those for specifications that are estimated using maximum-likelihood

methods (see e. g. BEHL et al., 2013). While for the derivation of the FIC formula,

the local asymptotics framework is essential, see e.g. BEHL, CLAESKENS, and
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DETTE (2014), following BEHL, CLAESKENS, and DETTE (2014), the FIC for the

null model is given by

FIC0 := ωT
I BBTωI , (5)

where for q = 1 bias vector B :=
√

n(γ − γ0) degenerates to a scalar, B =
√

nγ(τ), and vector ωI is defined by

ωI := I10 I−1
00

∂Λ
∂ξ

− ∂Λ
∂γ

= I10 I−1
00

∂Λ
∂ξ

− ∂Λ
∂αμ

.

I10 and I00 belong to the information matrix

I :=

⎛⎝ I00 I01

I10 I11

⎞⎠ , (6)

whose components are defined as follows:

I00 := lim
n→∞

1
n ∑n

i=1 fi(εi|xi) x0
i (x

0
i )

T, I01 := lim
n→∞

1
n ∑n

i=1 fi(εi|xi) x0
i ln(μi),

I10 := lim
n→∞

1
n ∑n

i=1 fi(εi|xi) (x
0
i )

T ln(μi), I11 := lim
n→∞

1
n ∑n

i=1 fi(εi|xi) ln(μi)
2,

where x0
i := (1, ln(pei), zi)

T and fi(εi|xi) denotes the unknown conditional den-

sity of the error term εi := ln(si) − (α f ull)Txi, which has to be estimated by

smoothing techniques that are explained in the subsequent section.2

The FIC depends on focus parameter Λ via ωI , which also simplifies to a

scalar, as our focus parameter Λ is given by

Λ(α f ull(τ)) = −αpe(τ) = −ηpe(s). (7)

2It bears noting in this context that the intention of the expression f (y; θ, γ + δ/
√
(n)) is to use

a large sample framework that gives squared bias and variance of the same asymptotic size. If
one were to assume that e. g. f (y; θ, γ + δ) is the true model, the bias would always dominate,
as the sample-size grows, which would lead to always choosing the biggest model. In contrast,
the local model of the FIC yields a fruitful approach for modeling the trade-off between bias and
variance, which may be used to approximate the true MSE in practical situations outside this
framework. For a thorough discussion of this framework, see the discussions in CLAESKENS and
HJORT (2003) and the rejoinder to this article.
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Hence, ∂Λ
∂αμ

= 0 and
∂Λ
∂ξ

= (0,−1, 0)T. (8)

From the definition of ωI and derivative (8), it follows that ωI equals the negative

of the second element of matrix I10 I−1
00 .

As becomes evident from the formula for ωI , information matrix I is a key

element for the calculation of the FIC in quantile regression analysis, whereas

for specifications that are estimated by maximum-likelihood methods, the well-

known Fisher information measure represents such a key element (BEHL et al.,

2012). Information matrix I also plays an important role for the asymptotic co-

variance matrix V defined by

V := τ(1 − τ)I−1VxI−1, (9)

where Vx is a covariance matrix that is based on the vector x
f ull
i of the explanatory

variables of the full model:

Vx := lim
n→∞

1
n

n

∑
i=1

xi(xi)
T.

For the FIC formula for the full model, we need the inverse of the asymptotic

covariance matrix V:

V−1 =
1

τ(1 − τ)
IVx

−1I =

⎛⎝ J00 J01

J10 J11

⎞⎠ ,

with the dimensions of the block matrices J00, J01, J10, and J11 equaling those of

matrices I00, I01, I10, and I11, respectively. On this basis, the FIC formula for the

full model reads:

FIC f ull = ωT
J VωJ , (10)

where V captures the relative estimation variability and ωJ is defined similar to
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ωI :

ωJ := J10 J−1
00

∂Λ
∂ξ

− ∂Λ
∂αμ

.

In the one-dimensional case q = 1 investigated here, due to ∂Λ
∂αμ

= 0 and ∂Λ
∂ξ

=

(0,−1, 0)T, ωJ degenerates to the negative of the second element of the vector

J10 J−1
00 .

The FIC formula (10) reflects the fact that for the full model, there is no mod-

eling bias by definition: B = 0, whereas relative estimation variability V vanishes

by definition for the null model and, hence, does not emerge from formula (5). In-

stead, modeling bias B becomes the pivotal factor in FIC formula (5) for the null

model. In short, the FIC formulae for the null and full models reveal the trade-off

between modeling bias and estimation variability.

3 Estimation Method

For obtaining estimates of FIC0 and FIC f ull, linear minimization problems have

to be solved, as is typical for quantile regression methods (KOENKER, 2005). For

instance, estimates of parameter vector α f ull(τ) result from the following mini-

mization problem:

min
α f ull

(
∑

ri>0
τ · ri + ∑

ri<0
(1 − τ) · |ri|

)
, (11)

where underpredictions ri := ln(si)− Qτ(ln(si)|pei , μi, zi) = ln(si)− (α f ull)Txi >

0 are penalized by τ and overpredictions ri < 0 by 1 − τ. This is reasonable, as

for large τ one would not expect low estimates Q̂τ and vice versa, so that these

incidences have to be penalized accordingly.

Just as ordinary least squares methods fit a linear function to the dependent

variable by minimizing the expected squared error, quantile regression methods

fit a linear model by minimizing the expected absolute error, using the asymmet-
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ric loss function ρτ(r) := 1(r > 0) · τ · r + 1(r ≤ 0) · (1 − τ) · |r|, where the indi-

cator function 1(r > 0) indicates positive residuals r and 1(r ≤ 0) non-positive

residuals. ρτ(r) is called ‘check’ function, as its graph looks like a check mark.

For τ = 0.5, in particular, the parameter estimates result from the mini-

mization of the sum of the absolute deviations of ri. This special case of a median

regression is perfectly in line with the well-known statistical result that it is the

median that minimizes the sum of the absolute deviations of a variable, whereas

it is the mean that minimizes the sum of squared residuals, being a special case of

OLS estimation. It is also well known that the median is more robust to outliers

than the mean. This property translates to both median and quantile regressions

in general, which have the advantage that they are more robust to outliers than

mean (OLS) regression methods.

Conditional on pe, μ, and x, the conditional quantile functions (CQFs) given

by (3) and (4) depend on the distribution of the corresponding error terms εi

via the inverse distribution function F−1
εi

(τ). In the special case of homoscedas-

ticity, that is, if the error terms εi were to be independent and identically dis-

tributed (iid) and, hence, the density of the errors and their inverse distribu-

tion function would not vary across observations ( fi(εi) = f (εi) and likewise

F−1
εi

(τ) = F−1
ε (τ)), the CQFs would exhibit common slopes, differing only in the

intercepts α(τ). In this case, there is no need for quantile regression methods if

the focus is on marginal effects and elasticities, such as ηpe(s), as these are given

by the invariant slope parameters, e. g. αpe(τ) = αpe . In general, however, the

CQFs Qτ will differ at different values τ in more than just the intercept and may

well be even non-linear in x.

It also bears noting that in the special case of homoscedasticity, the asymp-

totic covariance matrix V would collapse to

V =
τ(1 − τ)

f 2(F−1(τ))
Vx

−1. (12)
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This strongly resembles the covariance matrix of an ordinary least squares esti-

mator given by σ2Vx
−1. Note that in formula (12), the term τ(1 − τ) reflects the

asymptotic variance of the check function ρτ. This term takes its maximum for

τ = 0.5, but gets small for percentiles close to 0 and 1. In this case, the term

τ(1 − τ) may be dominated by the factor f 2(F−1(τ)), leading to less precise pa-

rameter estimates, whereas the variance of the parameter estimates gets smaller

for quantiles close to the median.

An important step in obtaining estimates of FIC0 and FIC f ull is to find suit-

able estimators for the matrix I. To this end, smoothing techniques can be applied.

BEHL, CLAESKENS, and DETTE (2014), as well as KIM and WHITE (2003), propose

to use the estimator

Î =
1

2ĉnn

n

∑
i=1

1{−ĉn≤ε̂i≤ĉn}xix
T
i , (13)

where ĉn denotes a bandwidth that has to be determined by data-driven proce-

dures, such as Cross Validation, and n denotes sample size.

4 Empirical Illustration

The data used in this illustrating example is drawn from regular surveys on the

mobility behavior of German households (MOP, 2016). Households that partici-

pate in a survey are requested to fill out a questionnaire eliciting general house-

hold information, such as household income and the number of employed house-

hold members, person-related characteristics, and relevant aspects of everyday

travel behavior. In addition, for a period of six weeks in the spring, households

are requested to record detailed travel information for every car in the house-

hold, such as the price paid for fuel with each visit to a gas station, the liters of

fuel consumed, and the kilometers driven. (For more details on the database, see

FRONDEL, RITTER, and VANCE, 2012.)

We use this travel survey information to derive both the regressors and

9



the dependent variable s, which is given by the total monthly distance driven

in kilometers. On the basis of survey information that covers thirteen years,

spanning 1997 through 2009, a period during which real fuel prices rose 1.97%

per annum on average, we first estimate the rebound effect via focus parameter

Λ(τ) = −ηpe(s) = −αpe using quantile regression methods, thereby obtaining

estimates of the rebound that depend on the percentile τ (Table 1). The FIC uni-

formly recommends employing the full model (4) for the estimation of the direct

rebound on the basis of focus parameter Λ(τ) = −ηpe(s). These results illustrate

that a more advanced model than that used by FRONDEL, RITTER and VANCE

(2012) should be applied.

Table 1: Quantile Regression Estimates on the Rebound Effect given by Focus
Parameter Λ(τ) = −ηpe(s) resulting from the null model (3) and the full model
(4).

Null Model (3) Full Model (4)

τ Λ̂0(τ) FIC Λ̂ f ull(τ) FIC

0.1 0.898 (0.114) 55.03 0.869 (0.114) 53.47

0.3 0.714 (0.076) 25.25 0.686 (0.076) 23.41

0.7 0.551 (0.068) 20.00 0.493 (0.068) 18.87

0.9 0.561 (0.080) 26.46 0.551 (0.080) 26.09

Number of obs.: 4,097 4,097

Note: Standard errors are in parentheses.

In line with FRONDEL, RITTER, and VANCE (2012), who estimated the re-

bound effect on the basis of the null model, we also find for the full model sub-

stantially smaller rebound effects for households with a high travel intensity. This

outcome is in accord with intuition: To the extent that those who drive more are

more dependent on car travel, we would expect them to exhibit less responsive-

ness to changes in fuel prices than those who drive less. Yet another source of het-

erogeneity in the rebound estimates is the kind of model specification: although

the discrepancies across the null and the full model are not statistically signifi-

cant, the magnitudes of the rebound estimates differ to some degree, indicating
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that model selection is of relevance in our example.

In this respect, we now employ a subsample of the MOP survey data for

the years 1998 and 1999 and alternatively estimate the rebound effect on the basis

of either Λ(τ) = −ηpe(s) or Λ(τ) = ημ(s) and three models, model (3), model

(4) and model (14), with model (14) being an alternative specification to the null

model (3):

Qτ(ln(si)|μi, zi) = γ(τ) + γμ(τ) ln(μi) + zT
i γz(τ). (14)

Apparently, as model (14) does not include the fuel price variable pe, the focus

parameter Λ(τ) = −ηpe(s) cannot be estimated therefrom. Likewise, the focus

parameter Λ(τ) = ημ(s) cannot be estimated from null model (3), as it does not

include the efficiency variable μ.

While for focus parameter Λ(τ) = −ηpe(s) the recommendations of the FIC

are the same for all percentiles (Table 2), they differ for focus parameter Λ(τ) =

ημ(s). For τ = 0.9, for instance, the FIC prefers the alternative null model (14),

whereas for τ = 0.1, as well as for τ = 0.3, it recommends selecting the full

model (4). Most importantly, there are also divergent recommendations across

focus parameters: While for low percentiles the FIC unanimously selects the full

model (4), for higher percentiles the FIC recommends choosing model (14) for

focus parameter Λ(τ) = ημ(s).

5 Summary and Conclusion

The well-known rebound effect captures the behaviorally induced offset in the

reduction of energy consumption following efficiency improvements. To inves-

tigate the heterogeneity of the direct rebound effect in mobility demand across

different percentiles of the distribution of distance traveled, we have used quan-

tile regression methods and the Focused Information Criterion (FIC) introduced

by BEHL, CLAESKENS and DETTE (2014) for quantile regression analysis. Our
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aim was to choose between competing model specifications, for instance, spec-

ifications in which the likely endogenous variable energy efficiency μ is either

omitted or included.

Table 2: Quantile Regression Estimates of Rebound Effect given by either the

Focus Parameter Λ(τ) = −ηpe(s) or Λ(τ) = ημ(s).

Λ(τ) = −ηpe(s) Λ(τ) = ημ(s)

Λ̂(τ) FIC Λ̂(τ) FIC

τ = 0.1:

Model (3) 1.381 91.41 – –

Model (4) 0.708 55.91 0.443 61.23

Model (14) – – 0.418 75.35

τ = 0.3:

Model (3) 0.853 79.02 – –

Model (4) 0.566 31.89 0.368 54.91

Model (14) – – 0.397 61.37

τ = 0.7:

Model (3) 0.645 58.91 – –

Model (4) 0.556 26.34 0.405 53.49

Model (14) – – 0.456 21.26

τ = 0.9:

Model (3) 0.933 48.82 – –

Model (4) 0.819 36.46 0.293 64.91

Model (14) – – 0.331 28.11

Note: These results are based on MOP survey information for
the years 1997 and 1998 and a total of n = 344 observations.

The FIC is conceived for targeted model searches, whereas conventional

model selection criteria, such as the Akaike criterion (AIC), are mainly designed

to find a model that is optimal in a general sense, regardless of a specific purpose

of the data analysis. The empirical example presented in the previous section has

illustrated that, first, the recommendations of the FIC differ across percentiles

and, second, they may differ across alternative focus parameters to identify the

rebound effect. Given that the FIC is precisely designed for purpose-specific

model selection, we follow this recommendation, arguing that whenever a model

12



is to be chosen that is optimal for the estimation of a certain parameter of interest,

such as the rebound effect here, the FIC is a good choice.
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