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Abstract

We consider a robust version of the full information best choice
problem (Gilbert and Mosteller (1966)): there is ambiguity (repre-
sented by a set of priors) about the measure driving the observed
process. We solve the problem under a very general class of multiple
priors in the setting of Riedel (2009). As in the classical case, it is
optimal to stop if the current observation is a running maximum that
exceeds certain thresholds. We characterize the decreasing sequence
of thresholds, as well as the (history dependent) minimizing measure.
We introduce locally constant ambiguity neighborhood (LCAn) which
has connections to coherent risk measures. Sensitivity analysis is per-
formed using LCAn and exponential neighborhood from Riedel (2009).

1 Introduction

How is one to make the best choice among sequentially presented options
when no recall is possible? Many scenarios in economics can be reduced
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to this question. In the well known secretary problem the employer is try-
ing to pick the highest ranked among sequentially presented candidates for
a position (Ferguson (1989)). In job search models, the unemployed agent
is choosing among job offers trying to maximize life wealth (Lippman and
McCall (1976)). In house selling problems the realtor is maximizing the
profit in a series of take-it-or-leave-it bids (Porteus (2002)). These admit-
tedly stylized problems are not trivial, and as such represent a useful first
step towards more complex models and applications of the theory of optimal
stopping (Ferguson (2006), Peskir and Shiryaev (2006)).

We consider the following best choice problem: a venture capitalist (the
agent) is looking to invest and her budget allows her to invest in only one
of the several sequentially presented start-up companies. She assumes the
start-ups are similar and evaluates them by calculating a certain score. Due
to the similarity of the start-ups and her familiarity with the matter, she
treats the scores as realizations of independent and identically distributed
random variables, the distribution of which is known to her. She believes
that, given the high competition and failure rate among start-ups, only the
company with the highest overall evaluation is the one that will be profitable.
There is no recall: the decision not to invest in a start-up cannot be reversed.
Hence, she is interested in maximizing the probability of choosing the start-
up company with the highest valuation1 .

This is one of the ways to formulate full information best choice (FIBC)
problem, one of the best known optimal stopping problems in discrete time
(Gilbert and Mosteller (1966), Bojdecki (1978), Samuels (1982), Ferguson
(1989)). Formally, the agent is interested in detecting the maximum of a
finite sequence of i.i.d. random variables (Xt), i.e. identifying the stopping
time τ that maximizes the probability P (Xτ = max(X1, X2, . . . , XT )). The
solution is elegant: it is optimal to stop only if the current observation is also
the current maximum that exceeds some threshold value. The thresholds are
decreasing, can be calculated in advance and depend only on the number of
remaining observations (Gilbert and Mosteller (1966), Bojdecki (1978)).

The “full information” in the name of the FIBC problem refers to the
fact that the agent knows the distribution of start-ups’ scores. The reasons
to question this strong assumption are numerous. There is no objective
way to be certain that the distribution the agent uses is the correct one.
Considering a set of measures “around the assumed probability” would make

1This formulation is based on a related problem in Bruss, Ferguson, et al. (2002).
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the solution more robust. Even if one adopts the subjective probability
approach, a single prior is not a reasonable assumption as shown by the
Ellsberg paradox (Ellsberg (1961)). Indeed, even rational agents allow for
Knightian uncertainty, or ambiguity, and behave in a way that is ambiguity-
averse. A well established model of ambiguity aversion is maxmin expected
utility theory, formulated by Gilboa and Schmeidler (1989). It assumes that
the agent considers a set of priors and behaves pessimistically in a certain
sense: when choosing the optimal action the agent first considers optimal
actions over all of the priors and then chooses the one which has the lowest
expected payoff2.

In this paper we formulate and solve the FIBC problem under multiple
priors in the setting of Riedel (2009). We show that the optimal stopping time
is of the same form as in the classical case: it is completely characterized by
a decreasing sequence of thresholds. We also characterize the measure under
which the single prior problem is equivalent to the multiple priors one; it is
highly history dependent.

The theory of optimal stopping under multiple priors in discrete time is
developed in Riedel (2009). It shows that each adapted optimal stopping
problem under multiple priors has a minimizing measure that reduces the
problem to a single prior optimal stopping problem. One of the conditions
that a set of priors has to fulfill in order to be used in an optimal stop-
ping problem under multiple priors is time consistency. It can be viewed
as a mechanism that ensures that backward induction procedure gives the
same optimal behavior as ex-ante optimization along all possible paths, thus
avoiding dynamic inconsistencies.

Among the few optimal stopping problems completely solved in the mul-
tiple priors setting is the secretary problem (Chudjakow and Riedel (2013)),
a better known, yet simpler predecessor to the FIBC problem. After identi-
fying the minimizing measure, the authors proceed to solve the single prior
optimal stopping problem. As will be seen, due to the complexity of the
FIBC problem, this approach is not viable in our case. Indeed, several ad-
vances/generalizations in the theory of optimal stopping under multiple pri-
ors were necessary for the problem to be solved in some generality: construc-
tion of the set of priors, identifying certain extremal measures and adaptation
of non-adapted problems among others.

2Extensions and applications are numerous; for a recent review of ambiguity aversion
theory see Gilboa and Marinacci (2016).
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Time-consistency is explicitly taken into account in the construction of the
set of priors that we propose. We start with a set of measures that contains
a uniform distribution. It can be thought of as “marginal ambiguity” due to
the fact that it describes uncertainty about uniform measure in each period.
Using certain predictable processes, we paste these single period measures
using a dynamic product of Radon-Nykodim derivatives to obtain a set of
priors for the whole process. Random variables Xt are not independent nor
identically distributed under each measure in the set of priors. However,
as marginal ambiguity remains constant, they can be considered as having
identical and independent ambiguity in each period.

Identifying the minimizing measure in optimal stopping problems under
multiple priors is not always easy. We use ideas from first order stochastic
dominance3 to identify certain extremal measures within the set of priors.
Extremal measures can facilitate solving the problem and characterizing the
minimizing measure, as will be the case in the solution of the FIBC problem.

We note that, to the best of our knowledge, all of the so far solved prob-
lems of optimal stopping under multiple priors use sets of priors that can
be considered special cases of our construction (in particular the exponential
neighborhood in Riedel (2009) and the set of multiple priors in Chudjakow
and Riedel (2013)). Indeed, our construction is quite general and allows
for complex sets of priors that cannot be parametrized by a real parameter,
or even countably many of them. Furthermore, the extremal measures we
introduce play an important role in all of the already available solutions.

The probability of stopping at the maximum value in the FIBC problem
depends on future observations. This means that the problem is not adapted,
hence the theory of optimal stopping under multiple priors cannot be applied
directly. We formulate an equivalent and adapted version of the problem
by conditioning on currently available information and minimizing over all
priors. This was already done in Chudjakow and Riedel (2013) and we show
that the same approach works with our more general construction, while
offering additional details that allow the procedure to be potentially used in
other applications.

Even with a deep understanding of the classical FIBC problem it is not
immediately clear how multiple priors affect the solution. If one thinks in
terms of minimizing measures the “opposing effects of ambiguity” in FIBC
appear: if the agent stops, the worst that can happen are high outcomes, and

3See Levy (2015).
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if she continues, low outcomes would be the worst. This makes identifying
the minimizing measure difficult. We initially avoid it altogether by finding
suitable representations for values of stopping and continuing. Somewhat
surprisingly, the representations are just monotone functions of a single vari-
able. Naturally, it is optimal for the agent to stop once the value of stopping
exceeds the value of continuing; this leads to the decreasing thresholds, as in
the classical case.

Once we have the solution, we are able to identify the minimizing measure.
It is history dependent: the agent’s observations and actions up to a certain
moment influence what she perceives to be the worst probability measure
from that moment on. In particular, under the minimizing measures variables
Xt are not independent. This has a technical consequence that the FIBC
problem under the minimizing measure is not equivalent to a single prior
version of the FIBC problem4.

Our theoretical results are in accordance with experimental studies of
the FIBC problem which is, due to its simple formulation, suitable for be-
havioral research. The oldest study on the subject (Kahan, Rapoport, and
Jones (1967)) shows that agents do not recognize the underlying probability
distribution well; this may be another reason to consider multiple priors in
models of human behavior. Corbin, Olson, and Abbondanza (1975) shows
that agents do not consider the observations as independent, even when they
are informed that they actually are. More recently, Lee (2006) demonstrates
that the observed behavior of participants in the study is best described
by threshold rules. Overall, this is a positive indication that optimal stop-
ping under multiple priors can be a viable model for real human behavior in
optimal stopping problems.

We also establish a connection with the theory of coherent measures of
risk, which at its core also has multiple priors (Artzner et al. (1999) , Föllmer
and Schied (2011)). One could interpret the behavior of the FIBC agent op-
erating in the multiple prior setting as follows: she considers her investment
opportunity as a financial position, and chooses behavior that is optimal with
respect to a certain risk measure. We introduce a locally constant ambiguity
neighborhood (LCAn) that we use as the set of marginal ambiguity. This
way we, effectively, describe marginal ambiguity by a risk measure wich turns
out to have connections with the well known Average Value at Risk 5.

4See discussion after the formulation of the theorem 3.1 below.
5See ch. 4 in Föllmer and Schied (2011).
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We finally investigate the way ambiguity affects the optimal behavior by
considering two examples: exponential neighborhood introduced in Riedel
(2009) and LCAn. Both examples can be considered robust neighborhoods
around the initial measure. By deriving the explicit equations for the values
of the optimal thresholds we are able to peform numerical calculations in
both cases. Calculations offer two interesting conclusions. First, for “small
sets of priors” the threshold values converge to the classical FIBC solution,
establishing its robustness. Second, in both settings, the ambiguity averse
agent stops earlier. This is different than the conclusions of the similar anal-
ysis on the secretary problem Chudjakow and Riedel (2013), where the agent
could stop both earlier and later, depending on parameters that describe the
set of priors.

We revisit the classical FIBC problem in section 2. In section 3 we first
present the generalized way of constructing the set of priors for problems
of optimal stopping and identify extremal measures within it. We then for-
mulate and solve the FIBC problem under multiple priors. Examples with
numerical calculations can be found in section 4, where we introduce the
LCAn neighborhood and identify its extremal measures. Proofs and valu-
able additional material are in the appendix.

2 The Original FIBC Problem

For the sake of completeness we formulate the classical FIBC problem and
briefly revisit its solution.

At each period t ∈ {1, 2, . . . , T} the agent observes the process Xt which
consists of random variables independently and, without loss of generality6,
uniformly distributed on the interval [0, 1]. Let (Ω, (Ft)0≤t≤T , P0) be a filtered
probability space with Ω = [0, 1]T being the product space, Ft being the
σ-algebra generated by random variables X1, X2,. . .,Xt, and P0 being the
product of the (given) uniform marginal measures. We denote the set of
all stopping times with T and the running maximum of the process with
Mt = max(X1, X2, . . . , Xt).

The agent is interested in detecting the maximum: finding the optimal
stopping time τ that maximizes the probability P0(Xτ = MT ) of stopping
at Xt with the highest valued realization. If we define the reward process

6Indeed, if the distribution F = FXt
was not uniform, a simple transformation would

suffice: X ′t = F−1(Xt).
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Yt = P (Xt = MT ) we can formulate the FIBC problem as the following
optimal stopping problem.

Problem 1 (FIBC problem – non-adapted version). Find τ ∗ ∈ T such that:

E[Yτ∗] = max
τ∈T

E[Yτ ] = max
τ∈T

P0(Xτ = Mn).

The process Yt is not adapted to the filtration Ft, so the theory of optimal
stopping cannot be applied. We define the adapted payoff process Ŷt = E[Yt |
Ft] and the problem can be equivalently formulated as:

Problem 2 (FIBC problem – adapted version). Find τ ∗ ∈ T such that

E[Ŷτ∗] = max
τ∈T

E[Ŷτ ].

The problems are equivalent in the sense that the same stopping time
solves both problems. Indeed, using the law of iterated expectation, one can
easily prove that E[Ŷτ ] = E[Yτ ] holds for any τ ∈ T 7.

In the classical FIBC problem it is optimal to stop if the current value
Xt is a candidate (i.e. Xt = Mt) that exceeds a certain threshold at that de-
creases with time: the less time remains the lower valued candidate the agent
is willing to accept. More precisely the optimal stopping time is given with
τ∗ = min{t |Xt = Mt ≥ aT−t} where the numbers an satisfy the equations:

a0 = 0;
n∑
j=1

1

jajn
= 1 +

n∑
j=1

1

j
, n ∈ N.

For details see equation 1.2 in Samuels (1982) and original papers Gilbert
and Mosteller (1966) and Bojdecki (1978).

3 FIBC Problem under Multiple Priors

In the classical formulation of the FIBC problem above (Problems 1 and 2)
the agent was maximizing the probability of stopping at the highest value of
the process. The probability measure used for calculating the expectation was

7It is worth pointing out that, although this equivalence is straightforward in the
single prior case, the process of adaptation of payoff will be somewhat more complex in
the multiple prior setting, as will be seen in the lemma C.2 below.
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the one given prior P0. In a multiple prior setting the agent performs all her
calculations over a set of priors and then makes the most cautious/pessimistic
decision.

Before the FIBC problem under multiple priors can be formulated, some
technical preparation is needed when it comes to the set of priors. We do so
in the first subsection, while the problem’s formulation and solution are left
for the second subsection.

3.1 The Set of Multiple Priors

We present a relatively general construction of the set of priors for problems
of optimal stopping under multiple priors. The idea is to first introduce, for
each period, the “marginal set of priors”, and then to paste those in a time
consistent manner to form the set of priors for the whole proces (Xt).

Let (S,S, v0), S ⊂ R, be a given probability space. Without loss of
generality we assume that v0 is strictly positive; this is clearly the case when
v0 is uniform. We furthermore assume that v0 has a positive and bounded
density. We define a set Ω = ST , for T ∈ N, a sigma field F = ⊗Tt=0 S
(generated by projections Xt : Ω → S) and a probability measure P0 =
⊗Tt=1v0 (under which the projections Xt are i.i.d8).

Let
VA = {vα : F → (0, 1) |α ∈ A}

be a set of probability measures on S indexed by some fixed set A. Since
sets of multiple priors are used to model ambiguity one can, analogously,
think of the set VA as the set of marginal ambiguity. We note that marginal
ambiguity will remain constant, i.e. the set VA is fixed and does not change
with the flow of time9.

The set of priors on Ω is obtained by pasting together measures from VA.
In order to do the pasting in a time-consistent manner we define a set A of

8Although we use i.i.d. random variables the arguments that follow can readily be
adjusted to the case when random variables are not identically distributed (but are still
independent).

9Again, careful reading of the arguments that follow shows that one does not lose on
generality by fixing an identical set of beliefs at every step.
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all predictable processes with values in A:

A =

a = (at)t≤T

∣∣∣∣∣∣
at+1 = at+1(x1, x2, . . . , xt) ∈ A, xs ∈ S, s ≤ t < T ;
dva1
dv0
· dva2
dv0
· . . . · dvat

dv0
∈ L0(Ω,Ft, P0|Ft), t ≤ T

 ,

where L0 is the set of all measurable functions. As can be seen, A contains
all processes that are predictable in a sense that their value at time t + 1
depends on past realizations of random variables. The second requirement
in the definition is technical, but revealing: requiring a “dynamic product”
of Radon-Nykodim derivatives to be measurable with respect to Ft allows us
to assign a measure to each process in A; we do so below.

For each a ∈ A we can define a probability measure P a on (Ω, (Ft)) by
defining its density process:

dP a

dP0

∣∣∣∣
Ft

=
t∏

s=1

dvas
dv0

, (1)

and, finally, we set
P = P(VA) = {P a | a ∈ A}.

All measures in the set P are equivalent; this is due to the definition of the
set VA within which all the measures are equivalent. We note that random
variables Xt are not independent under every measure P ∈ P . In fact, the
only measures under which they are independent are those that correspond
to direct products, i.e. processes a ∈ A such that for each t the function at
is constant.

Although we use the set P as the set of priors to formulate and solve the
FIBC problem under multiple priors, the generality of its construction allows
for other applications: under mild assumptions on the set VA the theory of
optimal stopping under multiple priors from Riedel (2009) can be applied.
We prove this result in Appendix A, where we also offer some further details
on optimal stopping under multiple priors that are relevant for our solution.

Extremal Measures In order to be able to solve and reduce a multiple
prior problem to a single prior one, we define “extremal measures” within
the set P . The ideas we use are those of the theory of (first order) stochastic
dominance ( Levy (2015)).

9



Let us denote by v ∈ VA the measure (if it exists) such that:

v(X1 ≤ x) ≥ va(X1 ≤ x), for any x ∈ R and any va ∈ VA. (2)

As can be seen the minimizing measure v ∈ VA is the one that puts the most
weight on the lowest valued outcomes.

This allows us to single out the measure P = ⊗nt=0v ∈ P (under which the
variables Xt are independent!). Measures v ∈ VA and P = ⊗nt=0v are defined
analogously. Characterizations of extremal measures and a useful lemma are
offered in Appendix B.

3.2 FIBC Problem under Multiple Priors

Let P be a set of multiple priors obtained by pasting together one-period
multiple priors sets VA indexed by some set A. We assume VA satisfies all
the conditions of lemma A.1, with v0 being the uniform distribution. We
also assume that the set VA contains both a measure v that satisfies the
lower extremal property and a measure v that satisfies the upper extremal
property.

Let X, Y , F be as in section 2. Note that while Xt are independent under
the reference measure P0, they are not independent under every P ∈ P . The
agent is solving the problem:

Problem 3 (FIBC problem under multiple priors – non-adapted version).
Find τ ∗ ∈ T such that

min
P∈P

EP [Yτ∗ ] = max
τ∈T

min
P∈P

EP [Yτ ].

Since the duality equality

max
τ∈T

min
P∈P

EP [Yτ ] = min
P∈P

max
τ∈T

EP [Yτ ] (3)

holds10, the following interpretation is plausible: the agent maximizes the
probability of stopping at the maximum of the given process under the “worst
possible” measure in the set P .

Similarly as in Problem 1, this problem needs to be reduced to an adapted
problem; this will allow us to solve it using the theory of optimal stopping

10See theorem 2 in Riedel (2009).
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under multiple priors. For that purpose we define the adapted payoff process
under multiple priors:

Zt = ess inf
P∈P

EP [Yt|Ft].

Problem 4 (FIBC problem under multiple priors – adapted version). Find
τ ∗ ∈ T such that

inf
P∈P

EP [Zτ∗] = sup
τ∈T

inf
P∈P

EP [Zτ ].

Problems 3 and 4 are equivalent – the same stopping time solves both
problems. The equivalence in the multiple priors setting is less clear than it
was in the single prior setting; we prove it in Appendix C. The proof does
not depend on the definition of the payoff process, hence it holds for any
non-adapted process under multiple priors.

The following theorem completely characterizes the solution of the FIBC
problem under multiple priors.

Theorem 3.1. 1. There is a decreasing sequence of thresholds (bt)t=1,...T

such that the optimal stopping time τ ∗ that solves the BCIF problem
under multiple priors is:

τ ∗ = min{t |Xt = max(X1, X2, . . . , Xt) > bt}. (4)

2. Thresholds bt are the unique solutions of equations wt(x) = rt(x), t <
T , where functions rt and wt are defined recursively:

rT (m) ≡ 1, rt(m) = EP

[∏
s>t

1Xs≤m

]
; wT (m) ≡ 0,

wt(m) = ess inf
v∈VA

(∫ 1

m

max(rt+1(x), wt+1(x)) dv(x) + wt+1(m)

∫ m

0

dv(x)
)
.

Specially, bT = 0.

3. The minimizing measure P ∗ = P a∗ is given by the predictable process

a∗t (x1, . . . , xt) =

{
act(x1, . . . , xt), t < τ ∗

α, t ≥ τ ∗
, (5)
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where vα = v and

act(x1, . . . , xt) = arg min
a∈A

(∫ 1

max(x1,...,xt)

max(rt+1(x), wt+1(x)) dva(x)+

wt+1(max(x1, . . . , xt))

∫ max(x1,...,xt)

0

dva(x)
)
.

(6)

The duality equation (3) holds for the process Zt, too. A reasonable at-
tempt at solving Problem 4 would be to identify the minimizing measure
and solve the classical, single prior optimal stopping problem under the min-
imizing measure. One could even hope that one of the measures P or P
would turn out to be the minimizing measure, thus allowing the problem to
be reduced to the classical FIBC problems 1 and 2. The theorem shows that
the minimizing measure is significantly more complicated than that. This is
due to the fact that the multiple priors setting creates opposing effects about
what is “pessimistic”: when the agent stops the worst measures are those
that put the most weight on high outcomes, and when she continues the
worst measures are those that put the most weight on the lowest outcomes,
while accounting for future behavior.

As can be seen, the minimizing measure P ∗ is highly history dependent
and even depends on the act of stopping. This implies that random variables
Xt are not independent under P ∗. Hence, an agent operating in a multiple
prior setting views the FIBC problem in a way that is substantially different
from that of an agent making decisions under the single prior. This is true
on a technical level, too: the reduction to the classical FIBC problem via
the probability integral transform (as indicated on pp.51-52 in Gilbert and
Mosteller (1966)) is not possible.

The proof ultimately relies on several careful backward inductions and
can be considered a multiple priors version of the proof offered in Samuels
(1982). The details are available in the appendix. Although tedious, the
proof offers significant insight into the FIBC problem.

The proof reveals that, if at time t the agent observes value xt that is a
running maximum, then the expected value (under multiple priors) of con-
tinuing is wt(xt) while the expected value of stopping is r(xt). Hence, the
stopping rule prescribed by τ ∗ merely says that the agent stops if payoff
of stopping exceeds the payoff of continuing; this is in accordance with the
theory of optimal stopping (under multiple priors). Furthermore, the multi-

12



ple prior Snell envelope of the adapted version of the FIBC problem under
multiple priors can be expressed in terms of functions rt and wt:

Ut = max(rt(Xt)1Xt=Mt , wt(Mt)).

The (classical) FIBC problem is “end-invariant” in the following sense:
“optimum decision numbers depend only upon the number of remaining
draws”, as noted in Gilbert and Mosteller (1966). The proof reveals that,
once the set P is fixed, the same is true for the FIBC problem under multi-
ple priors. Indeed, its solution was derived by backward induction and was
shown to depend only on the values of the current observation and the run-
ning maximum. Naturally, the cutoff points bt depend on the on the set of
priors P ; we explore this dependency numerically in the next section.

4 Examples

What is the effect of introducing multiple priors to the FIBC problem? How
does the optimal stopping time change once ambiguity is introduced? We
try to give some answers to these and related questions in this section.

The sequence of cutoff points that define the optimal stopping time in
the classical version of the problem has been well studied (already in Gilbert
and Mosteller (1966)) and their asymptotic behavior is well understood (
Samuels (1982)). However, due to the complexity of the minimizing measure
and recursive equations in 3.1, that kind of analysis is not trivial in our
setting. We focus our attention on the simple case when T = 3; it will be
seen below that even this case is computationally cumbersome and leads to
highly nonlinear equations. Given the comments about the end invariance
of the FIBC problem in the previous section, what follows is effectively an
analysis of the final three periods of any FIBC problem with the horizon
T ≥ 3; the notations we use reflect this fact.

4.1 Classical Case

For the sake of completeness we briefly review the numerical values of the
optimal stopping time in the classical FIBC problem. In our context, it
corresponds to the case when VA is a singleton with its only element being
the uniform measure. Omitting the straightforward calculations we present
the interesting parts of the result.

13



Functions rt and wt take the following form:

rT−1(x) = x, rT−1(x1, . . . , xT−2) = x2

wT−1(m) = 1−m, wT−2(m) =

∫ 1

m

max(x, 1− x) dx+m(1−m).

The cutoff points that define the stopping time are

bT = 0, bT−1 =
1

2
, bT−2 =

2 +
√

24

10
≈ 0.6899.

Note that bT−1 and bT−2 are the solutions of the equations m = wT−1(m)
and m2 = wT−2(m) respectively.

4.2 Exponential Neighborhood

The exponential neighborhood is the set of priors Pα,β introduced in Riedel
(2009). It has important connections to Girsanov theory and arises naturally
in statistics where it is referred to as exponential family. It has been used to
model uncertainty in optimal stopping problems related to finance (option
pricing), as well as ambiguous versions of the house pricing problem and the
parking problem11.

In the context of this paper it can be introduced by setting A = [α, β]
and:

VAEXP =

{
va

∣∣∣∣∣ dvadv0
(x) =

eax∫ 1

0
eat dt

, a ∈ A

}
,

where v0 is the uniform measure on the interval [0, 1]. It is known12 that v =
vα and v = vβ. The exponential neighborhood is simply: Pα,β = P(VAEXP ).

We have already seen that rT (x) = 1 and wT (x) = 0 for any x ∈ [0, 1].
Direct calculations yield:

rT−1(x) =
eβx − 1

eβ − 1
, wT−1(x) =

eβ − eβx

eβ − 1
.

Equating rT−1(x) = wT−1(x) we obtain

bT−1 =
1

β
ln
eβ + 1

2
.

11See section 4 in Riedel (2009).
12For details see section 4 in Riedel (2009).
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α β bT−1 bT−2 α β bT−1 bT−2
0 0 0.5000 0.6899 -2 2 0.7169 0.8084

-0.01 0.01 0.5013 0.6905 -5 5 0.8627 0.9048
-0.1 0.1 0.5125 0.6958 -10 10 0.9307 0.9518
-0.25 0.25 0.5312 0.7047 -1 2 0.7169 0.8144
-0.5 0.5 0.5619 0.7200 -1 3 0.7851 0.8582
-1 1 0.6201 0.7512 -2 1 0.6201 0.7406

-1.5 1.5 0.6722 0.7811 -3 1 0.6201 0.7335

Table 1: Exponential neighborhood – Values of the cutoff points bT−1 and
bT−2 for different values of α and β.

The expression for wT−2 is more cumbersome:

wT−2(m) =
1

eβ − 1
min
a∈[α,β]

(
1∫ 1

0
eat dt

(
a

∫ 1

m

eax max(eβx − 1, eβ − eβx) dx

+(eβ − eβm)(eam − 1)

))
,

while rT−2 = (rT−1)
2.

As can be seen, explicitly calculating the cutoff point bT−2 (i.e. solving
the equation wT−2(m) = rT−2(m)) is not computationally easy and to obtain
the approximations of its value one can resort to mathematical software13.
Table 1 provides approximations of values of cutoff points bT−1 and bT−2 for
different values of parameters α and β. If the difference β − α is interpreted
as the “amount of ambiguity” one can notice that the increase in ambiguity
causes later stopping. The last four rows seem to imply greater sensitivity of
cutoff point values to the change in β, than in α. This is somewhat expected
given the shape of the exponential function.

13All the graphs and data for the tables were made using Wolfram Matematica, Re-
search (2015).
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Figure 1: Exponential Neighborhood - Graphs of functions wt−2(x) (decreas-
ing) and rT−2(x) (increasing) for α = −1 and β = 1. The point of intersection
is bT−2.

4.3 Local Constant Ambiguity Neighborhood

The locally constant ambiguity neighborhood (LCAn) is the set whose “marginal
ambiguity” is:

VACLA =

{
va

∣∣∣∣ 1

λ
≤ dva
dv0
≤ λ

}
.

The constant λ ≥ 1 describes the “amount of ambiguity” – greater values of
λ imply greater ambiguity about the “correct measure” that drives the pay-
off process. Case λ = 1 corresponds to the case where there is no ambiguity
and the set VACLA reduces to a singleton containing v0. The LCAn is simply:
QλCLA = P(VACLA). As can be seen the set VA cannot be parametrized by a
real parameter, nor even countably many real parameters. In that sense, it
differs substantially from the exponential neighborhood, or any other analo-
gously created neighborhood that depends on a fixed family of distributions.

One can interpret the marginal ambiguity of LCAn as follows: the agent
is certain about which events are possible/impossible (described by measure
v0), but she allows for the possibility that for any sufficiently “small event”
it’s probability is up to λ-times overestimated or underestimated by v0.

LCAn bears some resemblance to the well known ε-contamination from
Huber (1981), which was already used in the context of ambiguty in the
well known paper Maccheroni, Marinacci, and Rustichini (2006). In our
context, ε-contamination could be described as the set of measures, the range
of densities of which lies within the interval [1 − ε, 1 + ε]. Arguably, this is
a less natural model of ambiguity than LCAn when it comes to describing
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belief by a set of priors. Beyond the obvious fact that ε cannot be greater
than one (which discounts for the possibility of any event being more than
twice underestimated) there seem to be indications that humans innately
think logarithmically, rather than linearly (Dehaene (2003)). In particular,
to put it in more plastic terms, this may mean that it is more natural to
think of [1/2,2] as a neighborhood around the point 1 than [0.5,1.5]; this
corresponds to the way in which the ambiguity around “small events” is
modeled by LCAn.

We note that the set V λ
CLA is related to certain sets that appear in the

theory of risk measures. In particular, the well known risk measure known as
average value at risk can be characterized by a similarly defined set (chapter
4 in Föllmer and Schied (2011)). It is well known that there are mathematical
connections between risk measures and the theory of multiple priors. It is
also well known that ambiguity (in the sense of multiple priors) could be
viewed as a way to describe model uncertainty. The same is true for risk
measures and model uncertainty in finance.

Due to the similarities between the set that characterizes AVaR and
LCAn, one could argue that LCAn introduces robustness to the dynamic
of the FIBC problem in a way that is closer to robustness in finance. Indeed,
at each moment t the agent evaluates the values of all her possible present
and future actions, then chooses the least risky one with respect to the risk
measure induced by the set LCAn. Arguably, this makes the LCAn an at-
tractive option for future (dynamic) models in economics and finance where
uncertainty needs to be introduced.

With the set QλCLA defined, we can turn to the question of the existence
of extremal measures within it. We answer this question in our context, i.e.
with the reference measure v0 being the uniform measure on the interval
[0, 1], and we do so by focusing on the monotone function characterization of
extremal measures (see equation (9)). It would seem plausible, that measures
v and v are the ones that put the most weight on the right and, respectively,
left end of the interval [0, 1]; we prove this result in lemma 4.1 below. We
actually prove that the densities of extremal measures are given with:

dv

dv0
=

1

λ
1[0, λ

λ+1 ] + λ1[ λ
λ+1

,1] =: ϕ,
dv

dv0
=

1

λ
1[0, 1

λ+1 ] + λ1[ 1
λ+1

,1] =: ϕ.

By similar logic as above, the worst measure for U-shaped payoffs should be
the one that puts the most weight on an interval that contains the minimum
of the payoff function; this result related to extremal measures is included in
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the lemma. The formulation of the lemma requires us to define the following
set of densities of measures in VλCLA:

Dλ
CLA =

{
dv

dv0

∣∣∣∣ v ∈ VλCLA}
=

{
ϕ : [0, 1]→ R

∣∣∣∣∫ 1

0

ϕ(x) dx = 1, 1
λ
≤ ϕ(x) ≤ λ

}
.

Lemma 4.1. 1. For every increasing, bounded measurable function g :
[0, 1]→ R and every ϕ ∈ Dλ

CLA the following inequality holds:∫ 1

0

g(x)ϕ(x) dx ≥
∫ 1

0

g(x)ϕ(x) dx.

2. For every function h : [0, 1] → R which is decreasing on [0, k] and
increasing on [k, 1] for some k ∈ [0, 1] and for every function ϕ ∈ Dλ

CLA

there exists a function ψ ∈ Dλ
U such that:∫ 1

0

h(x)ϕ(x) dx ≥
∫ 1

0

h(x)ψ(x) dx,

where

Dλ
U =

{
λ1[c,c+ 1

λ+1 ] +
1

λ
1[0,c]∪[c+ 1

λ+1
,1]

∣∣∣∣c ∈ [0, λ

λ+ 1

]}
. (7)

It can be seen that the set Dλ
U ⊂ Dλ

CLA is the set of densities that put
the most weight on the interval

[
c, c+ 1

λ+1

]
, which is in accordance with the

considerations preceding the formulation of the lemma.
Analogous results can be formulated about decreasing functions and the

inverted-U-shaped functions.
Definition of the function wT−2 and the monotonicity of functions wT−1

and rT−1 imply that the function wT−2 is U-shaped. Lemma 4.1 allows us
to narrow down the search for the minimizing measure within the set Dλ

U ,
which in turn allows for mathematical software to be used to identify the
minimizing measure, plot the graph of the function wT−2 (see figure 2) and
calculate the value of the cutoff point bT−2. Similarly as before, we provide a
table with the approximate values of cutoff points bT−1 and bT−2 for different
values of λ.
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λ bT−1 bT−2 λ bT−1 bT−2
1 0.5 0.6899 2 0.7500 0.8182

1.01 0.5050 0.6916 3 0.8333 0.8754
1.1 0.5455 0.7073 4 0.8750 0.9057
1.25 0.6000 0.7318 8 0.9375 0.9524
1.5 0.6667 0.7671

Table 2: LCAn – Values of the cutoff points bT−1 and bT−2 for different values
of λ.
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1.2

Figure 2: LCAn - Graphs of functions wt−2(x) (decreasing) and rT−2(x)
(increasing) for λ = 3/2. The point of interesection is bT−2.

It is worth noting that in both examples we presented the agent stops
later than in the classical case. It is not hard to see that this is true for the
period T − 1 for any set of multiple priors, but is less obvious for periods
t < T − 1, hence it remains a conjecture. This is different from the results
of Chudjakow and Riedel (2013) where it was found the agent could stop
both earlier and later than the agent not facing ambiguity, depending on the
shape of the set of multiple priors.

5 Conclusion

We formulated and solved the multiple priors version of the classical full
information best choice problem under rather general conditions. We showed
that the solution can be fully characterized via a set of decreasing thresholds,
just as in the classical case. Instead of identifying the minimizing measure
and then solving the single prior problem, we solve the problem with a more
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direct approach using the theory of optimal stopping under multiple priors.
More generally, we have demonstrated that the theory of optimal stopping

under multiple priors can accommodate complex problems, hopefully paving
the way for even harder problems to come. In this context, of interest is
our result about adapting any non-adapted optimal stopping problem under
multiple priors.

Our results fit into a wider setting of dynamic problems under multiple
priors: we described a construction of a set of priors for the whole process
using only a single-period set of priors. The construction ensures that the
resulting set of priors is time consistent, thus allowing for “variables with
independent and identical ambiguity” to be used practically and in some
generality to model uncertainty in multi-period models, even beyond the
theory of optimal stopping.

Although the theory of maxmin expected utility is a mature one, non-
trivial examples of the sets of multiple priors in dynamic settings are rare. We
introduced one such example using ideas from the theory of risk measures:
locally constant ambiguity neighborhood is a set of priors in which ambiguity
of probability about th ’small’ events remains constant. The set itself has
promising interpretations in terms of model uncertainty and invites future
research in the context of risk measures. It also opens possiblities in the
other direction – to explicitly use sets of priors related to established risk
measures in the context of dynamic economic problems under ambiguity.

As it is becoming increasingly evident that economic models with a single
probability measure are not capturing the reality in a satisfactory way, it
becomes necessary to investigate robust models that manage to take into
account Knightian uncertainty of economic problems; we hope this paper
convincingly presents one such model.

Appendix A Applicability of the Theory of

Optimal Stopping under Multi-

ple Priors

For the theory of optimal stopping to be applied to processes with bounded
payoffs the set of priors P has to satisfy three assumptions. It should be L1

weakly closed and all the measures within the set P should be equivalent.
The set P should also be time consistent: for any two measures, the measure
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that allows the agent to “switch” between them at some (possibly random)
time must also be in the set P ; see assumptions A2 − 4 in Riedel (2009).
The following lemma shows that the set P satisfies those assumptions once
we impose mild conditions on the set VA.

Lemma A.1. Assume the set VA satisfies:

1. v0 ∈ VA

2. All the densities
dva
dv0

, a ∈ A, are strictly positive and bounded

3. The set VA is weakly closed in L1(S,S, v0)

Then the set of measures P(VA) satisfies assumptions A2, A3 and A4 in
Riedel (2009).

Proof. The assumption A2 is satisfied because all the densities in VA are
strictly positive and bounded.

For the weak compactness it is sufficient to show that the set P is closed
and bounded by a uniformly integrable random variable. Since all the den-
sities are bounded, the latter is obvious. Closedness is a consequence of the
third assumption in the formulation of the lemma: weakly closed sets are also
strongly closed, thus the closedness is inherited from weak closedness in each
period by pasting. To see this, it suffices to recall that a sequence of positive
functions convergent in L1 has a subsequence that converges pointwise (al-
most everywhere). With this the closedness can be proven using the classical
argument (that a limit of a sequence of elements of the set also belongs to
the set) by exploiting the previous remarks.

It remains to prove the time consistency. Due to the predictability of each
of the functions ak this is straightforward: Let P a and P b be two measures

with densities dPa

dP0

∣∣∣
Ft

=
∏t

s=1
dvas
dv0

and dP b

dP0

∣∣∣
Ft

=
∏t

s=1
dvbs
dv0

respectably and

let τ be a stopping time. Define ct = at when t ≤ τ and ct = bt when t > τ .
The resulting measure from the property A4 coincides with the measure P c

with density dP c

dP0

∣∣∣
Ft

=
∏t

s=1
dvcs
dv0

which obviously belongs to P ; this is exactly

what was supposed to be proven14.

14This lemma could alternatively be proven by showing that the set P coincides with
the time-consistent hull “around” the set of all direct product measures from VA; see pp.
868 in Riedel (2009), or Riedel (2004).
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The theory of optimal stopping under multiple priors guarantees the ex-
istence of the stopping time τ ∗ ∈ T such that:

max
τ∈T

min
P∈P

EP [Eτ ] = min
P∈P

EP [Eτ∗ ],

where Et is a bounded payoff process adapted to the filtration Ft. The min-
imal optimal stopping time τ ∗ is given with

τ ∗ = min {t ≥ 0 | Ut = Et} , UT = ET , Ut = max

(
Et, ess inf

P∈P
EP [Ut+1 | Ft]

)
,

where U is the recurcively defined multiple priors value process. Furthermore,
the theory guarantees the existence of the measure Q∗ ∈ P such that the
value process under multiple priors of the optimal stopping problem under
multiple priors coincides with the value process of the (single-prior) optimal
stopping problem of the process Et under the measure Q∗; this allows the
possibility of reducing the multiple priors problems to the classical ones. For
further details see Theorems 1 and 2 in Riedel (2009).

Appendix B Details on Extremal measures

It is easy to prove that the inequality:

P (Xt+1 ≤ x|Ft) ≥ P (Xt+1 ≤ x|Ft)) (8)

holds for any t > 0, x ∈ R and P ∈ P , and a characterization in terms of
monotone functions is straightforward along the lines of the classical proofs
of theorems on first order stochastic dominance (Levy (2015)). Specifically,
the measure P ∈ P satisfies the inequality

EP [h(Xt+1) | Ft] ≤ EP [h(Xt+1) | Ft] (9)

for each t > 0, each P ∈ P and each bounded, increasing real function h.
We note an immediate consequence of the monotone characterization of

the extremal measures (9):

Lemma B.1. For any function gt : St → R that is bounded, measurable and
increasing in its last argument the following equality holds:

ess inf
P∈P

EP [g(X1, ..., Xt, Xt+1) | Ft] = EP [g(X1, ..., Xt, Xt+1) | Ft]
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Proof. Since the filtration F is generated by X1, . . . , Xt it suffices to show
that, for an arbtirary history X1 = x1, X2 = x2, . . ., Xt = xt, the following
inequality holds:

EP [g(X1, ..., Xt+1) | X1 = x1, . . . , Xt = xt]

≥ EP [g(X1, ..., Xt+1) | X1 = x1, . . . , Xt = xt].

This, however, is true because of the monotone characterization of the ex-
tremal measures (9). Indeed, once we fixed the values of random variables
X1, X2, . . . , Xt, the function gt can be interpreted as a function of a single
variable Xt+1 and the inequality follows directly from the inequality (9).

An analogous result holds for the decreasing functions.

Appendix C Equivalence of Problems 3 and

4

A version of this result appears in Chudjakow and Riedel (2013); the analysis
we offer contains additional details and, due the generality of the construction
of the set of priors P , applies to a broader class of problems.

We begin by proving an auxiliary result based on Lemma 8 in Riedel
(2009).

Lemma C.1 (Iterated version of Lemma 8 in Riedel 2009 and corollar-
ies). Let P1, P2, . . . , Pn be measures in P, τ ∈ T a stopping time, and
A1, A2, . . . , An sets in Fτ that form a partition of Ω.

1. There exists a measure P ∈ P such that for any r.v. Z:

EP [Z | Fτ ] =
n∑
k=1

EPk [Z1Ak | Fτ ]. (10)

2. For any r.v. Z and any k ∈ {1, . . . , n} the equality EP [Z1Ak ] =
EPk [Z1Ak ] holds.

3. The equality EP [Z] =
∑n

k=1E
Pk [Z1Ak ] holds for any r.v. Z and any

k ∈ {1, . . . , n}.
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Proof. 1. This claim is just an iterated version of Lemma 8 in Riedel (2009).
2. First, we note that for any set Ak and any r.v. Z, by plugging Z1Ak

in (10) we have:

EP [Z1Ak | Fτ ] =
n∑
i=1

EPi [Z1Ak1Ai | Fτ ] = EPk [Z1Ak | Fτ ] (11)

In particular for an arbitrary set B ∈ Fτ we have:

EPk [1AkB] = EPk [1AkB | Fτ ] = EP [1AkB | Fτ ] = EP [1AkB], (12)

Since measures P and Pk are both in P the Radon-Nykodim derivative dPk
dP

is well defined. Thus, using (11), for an arbitrary set B ∈ Fτ , the following
holds:

EP

[
EP

[
dPk
dP

1Ak | Fτ
]
1B

]
= EP

[
dPk
dP

1Ak1B

]
= EPk [1AkB]. (13)

Combining (12) and (13) we obtain15:

EP

[
dPk
dP

1Ak | Fτ
]

= 1Ak . (14)

Now, multiplying the well known identity

EP

[
dPk
dP
| Fτ

]
EPk [Z | Fτ ] = EP

[
dPk
dP

Z | Fτ
]

with 1Ak (which is Fτ -measurable) we obtain:

EP

[
dPk
dP

1Ak | Fτ
]
EPk [Z1Ak | Fτ ] = EP

[
dPk
dP

Z1Ak | Fτ
]
.

Using the equations (11) and (14) the last equality can be rewritten as:

EP [Z1Ak | Fτ ] = EP [Z1Ak | Fτ ] = EP

[
dPk
dP

Z1Ak | Fτ
]
.

15If M is F measurable then E[Z | F ] = M iff for any B ∈ F the equality E[M1B ] =
E[Z1B ] holds.
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Finally, taking expectation over P in the last equality, we obtain the desired:

EP [Z1Ak ] = EP
[
EP [Z1Ak | Fτ ]

]
= EP

[
EP

[
dPk
dP

Z1Ak | Fτ
]]

= EP

[
dPk
dP

Z1Ak

]
= EPk [Z1Ak ]

3. Direct consequence of 2. .

With this we are prepared for the following lemma:

Lemma C.2. For Yt, Zt and P as defined above the following equality holds:

min
P∈P

EP [Zτ ] = min
P∈P

EP [Yτ ] (15)

Proof of Lemma C.2. Let us, for each t, denote by Qt and Rt measures that
minimize the adapted and non-adapted payoffs at time τ = t, i.e. Zt1{τ=t}
and Yt1{τ=t}, respectfully (the existence of these measures is guaranteed by
Riedel (2009); see Lemma 10 therein). Using the law of iterated expectation
for multiple priors (Lemma 4 in Riedel (2009)) we obtain:

EQt
[
Zt1{τ=t}

]
= min

P∈P
E
[
Zt1{τ=t}

]
= min

P∈P

[
ess inf
P ′∈P

EP ′ [Yt | Ft]1{τ=t}
]

= min
P∈P

[
ess inf
P ′∈P

EP ′ [Yt1{τ=t} | Ft]
]

= min
P∈P

[
Yt1{τ=t}

]
= ERt

[
Yt1{τ=t}

]
. (16)

By the third claim of lemma C.1 above there exist the measures Q,R ∈ P
such that

∑T
t=1E

Qt [Zt1{τ=t}] = EQ[Zτ ] and
∑T

t=1E
Rt [Zt1{τ=t}] = ER[Zτ ].

Combining the second claim of the same lemma with the equation (16) above
we have, for each t:

EQ[Zt1{τ=t}] = EQt [Zt1{τ=t}] = ERt [Zt1{τ=t}] = ER[Zt1{τ=t}] (17)

Furthermore, arg minP∈P E
P [Zt1{τ=t}] = Q for each t, which allows us to

write:

min
P∈P

EP [Zτ ] = min
P∈P

T∑
t=1

EP
[
Zt1{τ=t}

]
=

T∑
t=1

EQ
[
Zt1{τ=t}

]
= EQ [Zτ ] . (18)
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Similarly, we conclude that:

min
P∈P

EP [Yτ ] = min
P∈P

T∑
t=1

EP
[
Yt1{τ=t}

]
=

T∑
t=1

ER
[
Yt1{τ=t}

]
= ER [Yτ ] . (19)

Finally, the left hand side of equation (18) and (19) are equal because of (17),
hence the right hand sides are also equal, which completes the proof.

Appendix D Proof of the Theorem 3.1

For the sake of convenience, we begin by defining a sequence of functions

it+1(x1, . . . , xt, xt+1) = 1xt+1≤max(x1,...,xt)

for t < T . Note that this allows the random variable 1Xt+1≤Mt to be written
in terms of the function it+1 as follows:

1Xt+1≤Mt = it+1(X1, . . . , Xt, Xt+1).

As a preparation for the proof of theorem 3.1 we prove a result on the
representation of the payoff process Zt.

Since X1, . . . , Xt are independent under P we can derive the following
representation for functions rt:

rt(m) =
∏
s>t

EP [1Xs≤m] = (v(X1 ≤ m))T−t,

where the second equality is due to the definition of the measure v. It is now
obvious that rt is an increasing function.

The next lemma describes the expected (ambiguous) Zt in terms of the
function rt:

Lemma D.1. For each t ∈ {1, . . . , T} the following representation holds:

Zt = 1{Xt=Mt}rt(Xt) (20)
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Proof. Note that:

Zt = ess inf
P∈P

EP
[
1{Xt=Mt=MT } | Ft

]
= 1{Xt=Mt} ess inf

P∈P
EP
[
1{Mt=MT } | Ft

]
.

(21)
Define the process:

Rt = ess inf
P∈P

EP
[
1{Mt=MT } | Ft

]
,

and the function:

rt(x1, . . . , xt) = ess inf
P∈P

EP
[
1{Mt=MT } | X1 = x1, . . . , Xt = xt

]
.

Clearly, the following equalities hold:

Zt = Rt1{Xt=Mt} = rt(X1, . . . , Xt)1{Xt=Mt}. (22)

Thus it suffices to show the following:
Claim: For each t the equality Rt = rt(Mt) holds almost surely.
The claim is proven by backward induction.
Since RT = rT (MT ) = 1 the claim trivially holds in the last period so we

turn to the case t < T .
We begin by deriving a recursive expression for Rt (using the law of

iterated expectations for multiple priors16) as follows:

Rt = ess inf
P∈P

EP
[
1Mt=Mt+1=MT

| Ft
]

= ess inf
P∈P

EP

[
ess inf
Q∈P

EQ
[
1Mt+1=MT

| Ft+1

]
1Mt=Mt+1 | Ft

]
= ess inf

P∈P
EP
[
Rt+11Mt≥Xt+1 | Ft

]
.

If we denote the realization of Mt with mt (i.e. mt = max(x1, . . . , xt)) we
can rewrite the last equality in terms of the functions rt and rt using (22)
and the induction hypothesis as follows:

rt(x1, . . . , xt) = ess inf
P∈P

EP
[
rt+1(Mt+1)1Xt+1≤mt | X1 = x1, . . . , Xt = xt

]
= rt+1(mt+1) ess inf

P∈P
EP
[
1Xt+1≤mt | X1 = x1, . . . , Xt = xt

]
.

16Lemma 4 in Riedel (2009).
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In the last equality above we used the fact that on the set {Xt+1 ≤ mt} the
equality Mt+1 = Mt holds.

Since 1Xt+1≤Mt = it+1(X1, . . . , Xt, Xt+1) and the function it+1 is decreas-
ing in its last variable we can use lemma B.1 to identify P as the minimizing
measure in the last expression:

rt(x1, . . . , xt) = rt+1(mt)E
P
[
1Xt+1≤mt | X1 = x1, . . . , Xt = xt

]
=

( ∏
s>t+1

EP [1Xs≤mt ]

)
EP
[
1Xt+1≤mt

]
= rt(mt);

the last equality is due to the definition of rt.

We note that Lemma D.1 proves that infimum in the definition of the
adapted payoff Zt is attained for v.

For the sake of convenience we also state a simple result about mono-
tonicity of integral functions in the setting of our problem.

Lemma D.2. Let g(x1, . . . , xt, xt+1), t < T , be a function increasing (de-
creasing) in each of the first t arguments. For any P ∈ P the function

hP (x1, . . . , xt) = EP [g(X1, . . . , Xt, Xt+1) | X1 = x1, . . . Xt = xt]

is increasing (decreasing) in every argument, as is the function

h(x1, . . . , xt) = ess inf
P∈P

EP [g(X1, . . . , Xt, Xt+1) | X1 = x1, . . . Xt = xt].

Proof. The elementary proof of the first part of the lemma is omitted. Once
one notices that h = ess infP∈P h

P the second part follows immediately from
the first part and the properties of the essential infimum.

We turn to proving the core of the theorem and for that purpose we define
the value process U of the FIBC optimal stopping problem under multiple
priors:

UT = ZT ; Ut = max(Zt, ess inf
P∈P

EP [Ut+1 | Ft]), t < T.

The analysis will focus on the properties of the second argument in the
maximum above so we define:

Wt = ess inf
P∈P

EP [Ut+1 | Ft], 0 ≤ t < T.
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As can be seen from the value process, the random variable Wt describes the
expected value (under multiple priors) of the payoff the agent will receive if
she does not stop at time t given the available information. The definition
above implies:

WT−1 = ess inf
P∈P

EP [ZT | FT−1], Wt = ess inf
P∈P

EP [max(Zt+1,Wt+1) | Ft].

If we introduce the sequence of functions:

w∗t (x1, . . . , xt) = ess inf
P∈P

EP [Ut+1 | X1 = x1, . . . , Xt = xt], 0 ≤ t < T.

the equality Wt = w∗t (X1, . . . , Xt) clearly holds. Furthermore:

Lemma D.3. For each t ∈ {0, 1, . . . , T − 1} the function w∗t is decreasing in
every variable.

Proof. The proof is by backward induction.
We first consider w∗T−1. Notice that:

w∗T−1(x1, . . . , xT−1) = ess inf
P∈P

EP [ZT | FT−1]

= ess inf
P∈P

EP [1XT=MT
| X1 = x1, . . . , XT−1 = xT−1]

= ess inf
P∈P

EP [iT (x1, . . . , xT−1, XT ) | X1 = x1, . . . , XT−1 = xT−1]

Since iT is obviously decreasing in first T −1 variables, we can use the above
lemma D.2 to conclude that w∗T−1 is decreasing in every variable.

For t < T − 1 we have:

w∗t (x1, . . . , xt) = ess inf
P∈P

EP
[

max
(
1Xt+1=Mt+1rt+1(Xt + 1),

w∗t+1(x1, . . . , xt, Xt+1)
)
| X1 = x1, . . . , Xt = xt

]
= ess inf

P∈P
EP
[

max
(
it+1(x1, . . . , xt, Xt+1)rt+1(Xt + 1),

w∗t+1(x1, . . . , xt, Xt+1)
)
| X1 = x1, . . . , Xt = xt

]
.

The function it+1 is decreasing in its first t arguments and the function rt+1

is decreasing in every argument. The function w∗t+1 is decreasing in every
argument by assumption. Thus, the result now follows from the fact that
the maximum of decreasing function is a decreasing function and the lemma
D.2.

29



The last result allows us to formulate a simple representation of the pro-
cess Wt:

Lemma D.4. For each t ∈ {0, 1, . . . , T−1} there exists a decreasing function
wt(m) such that Wt = wt(Mt).

Proof. We begin the proof by backward induction by noting that, since ZT =
1XT=MT

and

WT−1 = ess inf
P∈P

EP [ZT | FT−1] = ess inf
P∈P

EP [1XT=MT
| FT−1],

we have, due to the definition of w∗T−1,

w∗(x1, . . . , xT−1) = ess inf
P∈P

EP [iT (x1, . . . , xT−1, XT ) | X1 = x1, . . . , XT−1 = xT−1]

= EP [iT (x1, . . . , xT−1, XT ) | X1 = x1, . . . , XT−1 = xT−1]

= P (XT ≥MT−1),

where the second equality is due to lemma B.1. It thus suffices to define
wT−1(m) = P (XT ≥ m). Indeed, the function wT−1 is clearly decreasing and
the equality wT−1(Mt) = WT holds because of the previous considerations.

Suppose that for t < T there exists a decreasing function wt+1 such that
wt+1(Mt+1) = Wt+1. This allows us to rewrite Wt in terms of wt+1 and rt+1:

Wt = ess inf
P∈P

EP [max(Zt+1,Wt+1) | Ft] =

= ess inf
P∈P

EP
[
max

(
rt+1(Mt+1) · 1Xt+1=Mt+1 , wt+1(Mt+1)

)
| Ft
]

= ess inf
P∈P

(
EP
[
max (rt+1(Xt+1), wt+1(Xt+1)) · 1Xt+1≥Mt | Ft

]
+ wt+1(Mt+1) · EP [1Xt+1<Mt | Ft]

)
,

where the last equality is due to:

max
(
rt+1(Mt+1) · 1Xt+1=Mt+1 , wt+1(Mt+1)

)
=

max (rt+1(Xt+1), wt+1(Xt+1)) · 1Xt+1≥Mt + wt+1(Mt+1) · 1Xt+1<Mt .
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Since Wt = w∗t (X1, . . . , Xt), and Mt = Mt+1 on the set Xt+1, we can write:

w∗t (x1, . . . , xt) =

ess inf
P∈P

(
EP
[
max(rt+1(Xt+1), wt+1(Xt+1)) · 1Xt+1≥Mt | X1 = x1, . . . , Xt = xt

]
+ wt+1(Mt) · EP [1Xt+1<Mt | X1 = x1, . . . , Xt = xt]

)
= ess inf

v∈VA

(∫ 1

mt

max(rt+1(x), wt+1(x)) dv + wt+1(mt)

∫ mt

0

dv
)
,

where mt = max(x1, . . . , xt) and the last equality is due to the definition of
the set P in section 3. Thus, by setting

wt(m) = ess inf
v∈VA

(∫ 1

m

max(rt+1(x), wt+1(x)) dv + wt+1(m)

∫ m

0

dv
)
, (23)

for t < T , we get wt(mt) = w∗t (x1, . . . , xt) which, due to the definition of w∗t ,
implies wt(Mt) = Wt.

Finally, since wt(max(x1, . . . , xt)) = w∗t (x1, . . . , xt), the function w∗t is
symmetric; thus, the monotonicity of the function wt is a consequence of the
monotonicity of the function w∗t as described by the lemma D.3.

We now turn to proving that the stopping time is of the threshold type.
The proof of the last lemma reveals that the functions wt are defined

by the recursion wT−1(m) = P (XT ≥ m) and, for t < T − 1, the equation
(23). Equivalently, we can expand the definition to include the final period
by setting wT (m) = 0 and wt as defined by the expression in the equation
(23) for t < T .

It is clear that, for each t < T , the equalities wt(1) = rt(0) = 0 hold
and that the functions rt are strictly increasing, while the functions wt are
(weakly) decreasing. Thus, for t < T , there exists a unique bt ∈ [0, 1) such
that wt(bt) = rt(bt). Additionally, we define bT = 0. We record the previous
considerations, along with the proof of the monotonicity of the sequence (bt),
in the following lemma.

Lemma D.5. For each t < T there exists a unique bt ∈ [0, 1] such that the
equality wt(bt) = rt(bt) holds. Furthermore, for each t < T the inequality
bt > bt+1 holds.
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Proof. Suppose t < T . Note that, due to the definition of the sequence
(bt) and the fact that the function rt+1 is strictly increasing, the following
(in)equalities hold

max(rt+1(x), wt+1(x)) = rt+1(x) > rt+1(bt+1) = wt+1(bt),

for each x ∈ (bt+1, 1]. Hence:

wt(bt+1) = ess inf
v∈VA

(∫ 1

bt+1

max(rt+1(x), wt+1(x)) dv + wt+1(bt+1)

∫ bt+1

0

dv

)
> ess inf

v∈VA

(∫ 1

bt+1

wt+1(bt+1) dv + wt+1(bt+1)

∫ bt+1

0

dv

)
= wt+1(bt+1).

(24)

Note, also, that the definition of rt implies rt(x) < rt+1(x) for any x ∈ (0, 1).
Thus, given the previously obtained inequality (24), we get:

wt(bt+1) > wt+1(bt+1) = rt+1(bt+1) > rt(bt+1). (25)

With the inequality (25) proven we can turn to proving the inequality
stated in the formulation of the lemma.

Suppose the opposite: bt ≤ bt+1. The definition of bt and the mono-
tonicity of rt imply: wt(bt) = rt(bt) ≤ rt(bt+1) < wt(bt+1), where the last
inequality is due to the previously proven inequality (25). This, however, is
in contradiction with the monotonicity of wt.

To complete the proof of the first two parts of the theorem it remains to
prove the equality (4); we do so in the following lemma:

Lemma D.6.
τ ∗ = min{t |Xt = Mt > bt}

Proof. In the context of FIBC the optimal stopping time is given with:

τ ∗ = min{t | Zt = Ut} = min{t | Zt ≥ Wt}.

Using the representations for Zt and Wt obtained in lemmas D.1 and D.4
respectfully, the inequality Zt ≥ Wt = wt(Mt) can only be satisfied when
Xt = Mt (in which case Zt = rt(Mt)), hence:

τ ∗ = min{t | Xt = Mt, rt(Mt) ≥ wt(Mt)}.
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Finally, due to the monotonicity of rt and wt and lemma D.5, the inequality
rt(Xt) ≥ wt(Xt) is satisfied only when bt ≤Mt = Xt.

It remains to note that the essential infimum in (23) is attained (see
Lemma 10 in Riedel (2009)). This, with the definitions of Wt and Ut, and
Lemma D.1 proves the third part of the theorem. Indeed, before stopping
the minimizing measure is the one attained in (23), and once the agent stops
the her payoff is Zt, and lemma D.1 implies that the minimizing measure is
v.

Appendix E Proof of Lemma 4.1

Proof of claim 1 of Lemma 4.1. We define an operator G : L1([0, 1]) → R

with

Gϕ =

∫ 1

0

g(x)ϕ(x) dx,

and note that it is (Lipschitz) L1-continous. Indeed, using the fact that g is
increasing and bounded:

|Gϕ1 −Gϕ2| =
∣∣∣∣∫ 1

0

g(x)(ϕ1(x)− ϕ2(x)) dx

∣∣∣∣ ≤ C

∣∣∣∣∫ 1

0

ϕ1(x)− ϕ2(x) dx

∣∣∣∣ ,
where C is a positive constant that bounds |g(x)|.

Let Dλ
S be the set of all the step functions within the set Dλ

CLA. We will
prove that Dλ

S is dense17 in Dλ
CLA. For an arbitrary ϕ ∈ Dλ

S and an arbitrary
ε > 0 one can choose a step function ϕ1 such that 1

λ
≤ ϕ1(x) ≤ ϕ(x) ≤ λ

and: ∣∣∣∣∫ 1

0

ϕ1(x)− ϕ(x) dx

∣∣∣∣ < ε

2
. (26)

If one defines I =
∫ 1

0
ϕ1(x) dx ≤ 1 and:

γ =
1−

∫
B
ϕ1(x) dx∫

A
ϕ1(x) dx

17With respect to L1 metric.
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for A = {ϕ1(x) ≤ I} and B = [0, 1]\A it is easy to check that, for sufficiently
small ε, the function ϕS = γϕ11A+ϕ11B is a function that belongs to Dλ

CLA.
Furthermore, direct calculations show that the inequality∣∣∣∣∫ 1

0

ϕ1(x)− ϕS(x) dx

∣∣∣∣ < ε

2
(27)

holds18. Combining the inequalities (26) and (27) gives:∣∣∣∣∫ 1

0

ϕS(x)− ϕ(x) dx

∣∣∣∣ < ε,

which proves the density.
As the operator G is continuous and the set Dλ

S (which contains ϕ) is

dense in Dλ
CLA, for the claim to hold it suffices to show that for any ϕ ∈ Dλ

S

the inequality Gϕ ≥ Gϕ holds. We do so in the remainder of the proof.

Let us fix ϕ ∈ Dλ
S:

ϕ =
n∑
i=1

di1[ci−1,ci], ∈ Dλ
CLA. (28)

Without loss of generality we can assume that there is an indexm ∈ {1, . . . , n}
such that cm = 1/(1 + λ).

Set ϕ0 = ϕ. The idea is to create a finite sequence of functions (ϕi) in
which the last element is ϕ with the inequality Gϕi ≤ Gϕi−1 being satisfied
for any i > 0.

If ϕ0 = ϕ the proof is done. If not, we choose the step function ϕ1 such
that it differs from ϕ0 by the value it takes on two appropriately chosen
intervals. For that purpose we define:

j = min{i | di < λ}, j′ = max{i | di > 1/λ}.

Note that since ϕ0 6= ϕ we have j < m < j′. We now focus on the intervals
[cj−1, cj] and [cj′−1, cj′ ] and set the value of ϕ1 to be λ on the former interval
or 1/λ on the latter by “repositioning the weight” of ϕ0.

18The inequality (27) is in fact equivalent to (26).
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If (λ − dj)(cj − cj−1) ≤ (dj′ − 1
λ
)(cj′−1 − cj′) we “reposition the excess

weight” from the interval [cj′−1, cj′ ] to the interval [cj−1, cj], that is we define:

ϕ1 =ϕ01[0,1]\([cj−1,cj ]∪[cj′−1,cj′ ])
+(

dj + (dj′ − 1
λ
)
cj′−1 − cj′
cj − cj−1

)
1[cj−1,cj ] +

1

λ
1[cj′−1,cj′ ]

.

The inequality Gϕo ≤ Gϕ1 is satisfied. Indeed, direct calculation yields

Gϕo −Gϕ1 =

∫ cj

cj−1

g(x)(ϕ0(x)− ϕ1(x)) dx+

∫ cj′

cj′−1

g(x)(ϕ0(x)− ϕ1(x)) dx

= −(dj′ − 1
λ
)
cj′−1 − cj′
cj − cj−1

∫ cj

cj−1

g(x) dx+ (dj′ − 1
λ
)

∫ cj′

cj′−1

g(x) dx,

and one can use the monotonicity of the function g and the inequalities
j < m < j′ to make the following estimation:

Gϕo −Gϕ1 ≥ (dj′ − 1
λ
)

(
g(cj′−1)(cj′−1 − cj′)−

cj′−1 − cj′
cj − cj−1

g(cj)(cj−1 − cj)
)

= (dj′ − 1
λ
)(cj′−1 − cj′)(g(cj′−1)− g(cj) ≥ 0.

When the inequality (λ− dj)(cj − cj−1) > (dj′ − 1
λ
)(cj′−1 − cj′) holds one

can construct the function ϕ1 using an analogous ”weight repositioning”.
If ϕ1 = ϕ the proof is done. If not, one can create ϕ2 from ϕ1 as above. As

the step function ϕ has finitely many steps the procedure ends after finitely
many iterations.

Proof of claim 2 of Lemma 4.1. We begin by fixing ϕ ∈ Dλ
CLA and defining:

µ1 =

∫ k

0

ϕ(x) dx, µ2 =

∫ 1

k

ϕ(x) dx.

We will identify two functions ψ1 and ψ2, defined on [0, k] and [k, 1]
respectively, such that the function ψ := ψ11[0,k] + ψ21(k,1] is the one that
satisfies the claim. These will be the functions that “reposition the weight”
µ1 and µ2 within the intervals [0, k] and [k, 1], such that most weight is on
the upper part of the former and the lower part of the latter.

First we focus on the interval [0, k]. The first claim showed how to identify
the step function ϕ that, for a fixed, decreasing and bounded function g,
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minimizes the integral on the right hand side of (E) among all the functions
ϕ whose range is within the interval [1/λ, λ] and whose total weight is equal
to 1. Note that ϕ was simply the function that put the most weight possible
on the upper part of the interval [0, 1]. Focusing on the interval [0,k], where
the function h is decreasing, we are in a similar situation: among all the
functions with a range within [1/λ, λ] and whose integral is equal to µ1 we

are looking for a function ψ1 that minimizes the integral
∫ k
0
h(x)ψ1(x) dx.

Analogous reasoning to the one in the proof of the first claim19 will lead us
to the conclusion that ψ1 has to be the function that puts the most weight
as possible on the upper part of the interval [0, k]:

ψ1 =
1

λ
1[0,c1] + λ1(c1,k], .

for an appropriately chosen c1. Identifying the precise value of c1 is not
difficult: since the inequalities clearly k

λ
≤ µ1 ≤ kλ hold, there exists c1 ∈

[0, k] such that:
c1
λ

+ λ(k − c1) = µ1.

This proves the inequality:∫ k

0

h(x)ϕ(x) dx ≥
∫ k

0

h(x)ψ1(x) dx. (29)

Similarly, by focusing on the interval [k, 1] one can identify the function ψ2

(and the corresponding c2) which puts the most weight on the lower part of
the interval, such that:∫ 1

k

h(x)ϕ(x) dx ≥
∫ 1

k

h(x)ψ2(x) dx =

∫ 1

k

h(x)

(
λ1[k,c2] +

1

λ
1(c2,1]

)
dx.

(30)
Direct calculations show that Dλ

U 3 ψ := ψ11[0,k] + ψ21(k,1] and the claim
follows by combining (29) and (30).
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