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Abstract

This paper continues the treatise of vNM—-Stable Sets for to-
tally balanced (cooperative) games with a continuum of players.
We generalize and extend the results obtained by a series of pre-
sentations of this topic (Part LILIILIV,V see [5], [6], [7], [8], [9])-

Thus, the coalitional function is generated by r “production
factors” (non atomic measures). Some ¢ < r factors are normal-
ized ( i.e. “probabilities”) establishing the core of the game. The
remaining factors are represented by non—normalized non atomic
measures. Hence, these factors are available in excess and the
representing measure is not in the core of the game. As previ-
ously, we switch freely between interpretations, e.g., the defining
measures can also be seen as initial distributions in a pure ex-
change market (a "glove game”).

The requirements maintained in our previous presentations,
i.e., orthogonality and the existence of just one carrier “across
the corners” of the market, are completely dropped. All factors
are being distributed all across the market and the core does not
necessarily consist of orthogonal distributions. That is, no more
can we distinguish well defined “corners” of the market or produc-
tion process. Nevertheless, we consider the regime of a production
factor, i.e., the carrier, the coalitions with positive measure, the
distribution of quantities of this factor as a “cartel”; i.e., a large
group of players commanding solely an indispensable domain of
the market or production process.

Within this context we study “standard” vNM-Stable Sets.
The result is an existence theorem of essentially the same na-
ture as in the previous context: for each factor pick a specified
imputation, absolutely continuous w.r.t this factor with density
bounded by 1, then the convex hull of these imputations consti-
tutes a vNM-Stable Set.

We interprete this as a solution concept which, other then the
concepts of the "equivalence theorems” (notably the core), estab-
lish an influence of cartels not only by their power to achieve
certain gains but also by their ability to prevent others from
achieving anything without cooperation.
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1 Introduction and Notation

We consider nonatomic and finite totally balanced games represented as min-
ima of finitely many measures. In the context of finitely many players this
class is equivalent to either the class of market games or the class of linear
production games. (cf. SHAPLEY-SHUBIK[12]).

Our notation is taken from [5], [6], [7], [8] and [9]. For simplicity we refer to
the setup within this series by the “Quasi Orthogonal” case, or for short by
QuO. The orthogonal case has been treated comprehensively by EINY ET
AL.[3] and by ROSENMULLER AND SHITOVITZ[10] and [11].

Presently, we consider a (cooperative) game with a continuum of players,
i.e., a triple (I, Eo,v) where I € R is an interval reflecting the players, E,
is the o—field of (Borel) measurable sets in I (the coalitions), and v (the
coalitional function) is a mapping v : Eo — R, which is absolutely con-
tinuous w.r.t. Lebesgue measure A. We focus on “linear production games”,
that is, v is described by finitely many (absolutely continuous) measures
AN (peR) via

(1.1) v(S) = min{N(S)|peR} (Se€E),
for short
(1.2) v= AN.

C” denotes the carrier of A” (p € R). We assume that v is normalized to
v(I) = 1, more precisely, there is some Q C R, ) # Q # R such that

(1.3) 1 =o) = XNI)<X(I) (peQ, c€R\Q).

The measures generating v are seen as production factors or commodities
(as v can be interpreted as a production game or a market game). The
normalized measures A’ (p € Q) constitute the core of the game, the
production factors represented by A* (p € R\ Q) are thought of to be
available in abundance.

As in QuO, the solution concept we want to discuss is the vINM-Stable
Set (VON NEUMANN-MORGENSTERN [13]|). For completeness we repeat
the definition

Definition 1.1. 1. Let (I,F,v) be a game. An imputation is a mea-
sure & with &(I) = v(I). The set of imputations is denoted by J(v).
The core is the set of imputations

Clv) == {£€d(v)|&=v}

2. An imputation § dominates an imputation n w.r.t S € Eo if § is
effective for S, i.e.,

(1.4) A(S) >0 and &(S) <v(9)



* SECTION 1: INTRODUCTION AND NOTATION % 4

and if
(1.5) E&T)>n(T) (T'eEy, TCS,AT)>0)

holds true. That is, every subcoalition of S (almost every player in
S ) strictly improves its payoff at & versus n. We write € domgn to
indicate domination. It is standard to use & domn whenever € domgn
holds true for some coalition S € Fy.

Definition 1.2. Let v be a game. A set 8 C J(v) is called a vNM—Stable
Set if

e there is no pair & pu € 8 such that & dom p holds true (“internal sta-
bility” ).

o for every m € J(v) \ 8 there exists & € 8§ such that £ dommn is satisfied
(“external stability” ).

We distinguish between the unzform model and the continuous model.
For the present we focus on the uniform model, that is, we assume the densi-
ties of the measures A’ to be piecewise constant, that is, to be stepfunctions.

To this end we fix some t € Nand T := {1,...,t} as well as a partition
of I

(1.6) D = QT = {DT}’TET

into a family of disjoint (measurable) subsets of I, ie., I = Uy D"

The elements of the partition are assumed to be of equal Lebesgue measure,
say

MDU::%(Ten

for some t € N (hence the term “uniform”). The total mass of I is assumed
to exceed 1, that is

AT = AD) = Y=t s

TET T€ET

(naturally, we choose t to be a divisor of t).

The carriers are assumed to be compatible with the partition, that is, for a
suitable T” C T we have

(1.7) c’ = |JD (peR).

TETP

enerated by the atoms

For convenience we introduce the o-algebra F = Fr g
cFand C’" € F (peR).

(“blocks”) of D. Then our assumptions result in I



* SECTION 1: INTRODUCTION AND NOTATION % 5

C?‘
Figure 1.1: The Uniform Model

The description of a uniform model is completed by defining the piece-wise

constant density of a measure A’ by some vector ¢ = {c?},cr € R}, via
(1.8) No= Y dlpr.
TeT

Here 1 denotes the indicator function of a coalition S; the function A? is of
course measurable w.r.t. F. Generally, a vector € RY, generates a function
9% measurable w.r.t. F via

TET
and Y* is an imputation whenever x is a pre—imputation, i.e., whenever

/fﬂ’d)\ = Y XDz, = %Zw =1,

TET TET

ZxT: t

TET

holds true. The normalization of v implies for some element A” (p € Q) in
the core C(v)

N(I) = Y ND)E = 3 =1 = ()

TET TET

Zcﬁ: t

TET

(1.11) ie.

Figure 1.1 indicates the basic features of this model. A' and A* are core
elements while A" is not.
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The discrete nature of the densities A? carries some implications for the es-
tablishment of dominance based on discrete analogues of concepts like coali-
tions, imputations, etc. We refer to these analogues as “pre—concepts”, com-

PO A

pare Part 1, i.e., |5] for the details. Thus, we have “pre—coalitions”, “pre-
imputations”, “the pre-game”, the “pre—core”, etc.

For example, a pre—coalition is a nonnegative vector a = (a.).et € RY,.
A pre—coalition serves to construct coalitions with a corresponding Lebesgue
_)
measure. Indeed, let A be the vector—valued measure defined by
*)

(1.12) Ax) ={A(xND")}

T€T

Then, on one hand, for some T" € F, the vector/pre—coalition

(1.13) a = (a:)rer = {AMTND)} oy = A(T)

TET

evaluates the coalition 7" such that we have

—
(1.14) AT)=eXT)=ea .
(with e = (1,...,1)). Also we have

LA(T|D")

—ANTND") = O

(reT).
Generally, if T is not necessarily measurable w.r.t. F, then

ATIE)(*) =t a-lp-(x),

TET

hence a — up to some re-normalization — describes the conditional distribu-
tion of T w.r.t. E.

On the other hand, let a € RY, be a pre-coalition. Choose ¢ > 0 sufficiently
small such that ea, < X(D7) (7 € T) holds true. Then we can construct (via
Ljapounoffs Theorem) a coalition T¢® satisfying A(T**N D7) =eca, (1 €T)
that is, we have analogous to (1.13),

%
(1.15) AT)=ca, XT**) =cea.
and also
AT*|E)(*) =t > ca,1pr (%)
TeT
Analogously, consider now the measures A” (p € R). Recall that ¢” = {c?} ¢

is the vector defined by the density of A” according to (1.8). Using the ana-

o
logue notation A” for the derived vectorvalued measures we obtain

(1.16) N(x) = {A(xN D)}, oy = {A(N D7)}

TET
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and hence

—
(117)  AN(T°") = {EXNT** N D")} oy = {Ffear}, x5 N(T°7) = ec’a.

Hence c¢” is also interpretet as a linear functional on pre—coalitions, i.e.,
a pre—measure. By (1.11) we have ¢(1,...,1) = t = t\°(I) whenever
A € C(v).

Naturally, we define the pre—game as the (non-linear) functional on pre-
coalitions v : R}, — R given by

(1.18) v(a) = minycrc’a ;
such that v(1,...,1) = t. Then clearly for some coalition 7%
(1.19) v(T**) = v(ea) = cv(a) .

Proceeding we mention the set of pre—tmputations is

ZwT:t}

TET

(1.20) J(v) = {zc e RY

and the pre—core
(1.21) C) = {xedJl)|x>v}

in view of (1.11).
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2 c—Relevant Coalitions

As in the orthogonal and semi-orthogonal case we can exhibit a finite set
of pre—coalitions that are necessary and sufficient to be considered for the
establishment of dominance relations. This is the family of “relevant vectors”
or “relevant pre—coalitions”.

Technically, the generalization of the procedure presented in QuO is straight-
forward, hence we will restrict ourselves to a descriptive treatment and refer
to QuO for the details.

Consider the linear functional induced on pre—coalitions by a measure A’ via
its density, i.e.

(2.1) ¢ : R*—>R, cla) = ZcﬁaT = c’a .

TET

The functional c”(e) reflects the action of A” on coalitions. E.g., for some
pre—coalition @ and some ¢ > 0 admitting a corresponding coalition 7% (see
(1.17)), we have

(2.2) AN (T*) = cf(ea) = ec’(a) = ec’a .

Consequently, the pre-game v appears as a (non linear) functional on pre—
coalitions via
v(a) = minc’(a) .
PER

and hence for some coalition T

cv(a) = minec’(a) = minec’(a) = min N(T°Y = v(T°?) .
pER pPER pER

Definition 2.1. 1. Let
(2.3) A {acR}|c(a)>1 (peR)} .

A° denotes the set of extremal points of A. The elements of A® are
called the relevant vectors or relevant pre—coalitions.

2. For ¢ > 0 a coalition T is called e—relevant if there is a relevant

_)
vector a € A° such that N(T') = ca. We then write T = T°* and
sometimes speak of an e—a—relevant coalition.

Now, as e varies in the above set—up, it is sufficient to consider relevant
vectors. That is, for some pre—coalition a the pre-game evaluated is

min{c’(a) |p € R} = v(a).

and if we normalize a by introducing
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then 1
v(a”) = min{c’(a”) | p € R} U(a)v(a)
Thus, a® is located on the boundary of A. Then, for some & > 0 sufficiently
0
small and & := 51;((‘2))
’. v(a?) 1

< ¢ we have
v(a)

v(T7") =c'v(a®) = ¢

v(T7") =c'v(a’) = ¢ v(a) = cv(a®)

with an obvious choice of T¢*°. That is, for discussing dominance relations,
we can restrict ourselves on the boundary of A. Generally, though a° is
located on the boundary of A, it is not necessarily an extremal point of
A. However, we can find a convex combination of vectors in A€ that repre-

sents a’. The main theorem with respect to e-relevance (“The Inheritance

Theorem”) stipulates that this geometric procedure can be simulated within
the realms of coalitions such that all dominance relations prevail. We copy
the details from Part I [5] as the proof of these facts does not hinge on
quasi—orthogonality.

In what follows, we will - without making this a formal definition - sometimes
refer to a set of coefficients ag = {,},cr as “convez” if

a,>0, (peR)and Zozpzl,

pER
holds true.

Now, the first Lemma is of a purely geometric nature, more or less reflecting
our above considerations.

Lemma 2.2. For any a € A there exists a € A such that

1.a<a
2. There is a set E C A°, say
E = {a®|keK}CA® with K= {1,...,K}

of relevant vectors as well as a set of “convex” coefficients {yx }rek such
that

(24) a = kaa(k)

keK

holds true.
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3. Ifmin{c’a|p € Ry} = 1, then there is some p € R such that for k € K

(@) = cf(a) = (a¥) =1
holds true.

The proof is the one of Lemma 3.2 in Part I of QuO.
We now reformulate the main result of this section .

Theorem 2.3 (The Inheritance Theorem). Let 9, mn be imputations and
let S be a coalition such that 9 domgn. Then there is g > 0 such that for

all 0 < e < gq there is a relevant vector a* € A° and an e—relevant coalition
T = T*¢ C S satisfying

—

AXT)=¢ea* and Ydomrn.
In other words, with respect to domination it is sufficient and necessary to

consider e—relevant coalitions only.

The proof is again taken from the one of Theorem 3.3 of Part I of QuO
(i.e. |5]) as there is no particular reference to the quasi-orthogonal game in
that proof.

The following definitions are copied from our previous conventions.

Definition 2.4. 1. Let x be a pre—imputation and let y € R*. Also, let
a be a pre—coalition. We shall say that * dominates y via a if

(2.5) xa <v(a) and x; >y, foral T with a; >0 .

We write & domg y to indicate domination, omitting the a if the quan-
tification is general.

2. Let v be a pre—game. A set H of pre—imputations is called vINM—-Stable
if

e there is no pair x,y € H such that & domy holds true (“internal
stability” ).

o for every pre-imputation y ¢ H there erists € € H such that
x domy holds true (“external stability” ).

It is rather obvious that a version of the “Inheritance Theorem” holds true
within the domain of pre-imputations as well, that is, in order to formulate
relations of dominance it is sufficient to consider relevant pre—coalitions, i.e.,
extremals of A.

Definition 2.5. For any nonnegative measurable function 9 let
(2.6) m; = essinfpr (r1€T) and m = (m;) 1 -

m is the vector of (essential) minima of 9.



* SECTION 2: &-RELEVANT COALITIONS * 11

Lemma 2.6. Let x be a pre—imputation and let ¥ be a (nonnegative) mea-
surable function. Let m denote the vector of minima of 9. If, for some
pre—coalition a we have x domg, m, then there is g > 0 such that for all €
with 0 < € < gg there s an e—relevant coalition T¢ = T<* such that

(2.7) 9* domyea ¥

holds true.

Proof: Same as in [5], the proof is rather obvious and does not hinge on the
framework of QuO.

q.e.d.

Corollary 2.7. Let H be a vNM-Stable set of pre—imputations. Then
H = {97 |xecH}

1s a vNM-Stable set.

Proof:
1StSTEP :

Let n ¢ J(. Let m be the vector of minima of . Now, if m is an imputation,
then m is measurable, actually n = 9™. Then necessarily m ¢ H. If m is
not an imputation, then all the more m ¢ H.

In any case there is @ € H and a* such that @ domg-m. According to
Lemma 2.6 we know that, for suitable ¢ > 0 we have ¥* domy.ar 17, hence
H is externally stable.

2"STEP : Let 97, 9Y € H and assume for some coalition 7" that 9% domp19Y
holds true. By the Inheritance Theorem we can assume that, for suitable
a* € A° and ¢ > 0, we have

Y*dompear9Y

holds true. But as 9,9 are both E-measurable it is seen at once that this
implies & domg« y, contradicting the internal stability of H. That is H is
internally stable, hence a vNM-Stable set.

q.e.d.

Now, introduce the convex closed set

(2.8) C := {:I;E]RT da = {a,},er “convex” s.t. wEZaPCP} :

Playing between vectors & € C and convex combinations of measures A’ is
suggested by the above expositions concerning relevant vectors and coalitions.
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Remark 2.8. We will hencforth require that the family of pre-measures/linear
functionals/vectors {c”} cr is non—degenerate. Essentially this means that
certain determinants resulting from submatrices taken from that family are
nonsingular. It can be seen that the set of families satisfying n.d. is open
and dense and hence this requirement is satisfied “almost everywhere” in a
topological sense.

To be more precise let us, in a first approach, observe that w.l.o.g. the vectors
{c’} er are the extremals of C. For, if for some o € R

c’ = Z a,c’
pER\{o}

with suitable “convex” coefficients {a,}er\ (o}, then for any a € RT

cga — Z Qpcpa, Z min{cpa/ | ,0 E R \ {U}} ?
peR\{c}
and hence
v(a) = minc’(a) = min c’(a) .
( ) pER ( ) pER\{o} ( )

Hence, ¢? can be omitted from our considerations.

Changing our viewpoint slightly and focussing on non—degeneracy we ask
for the vectors of the family {c”},er to be linearly independent. This condi-
tion will be satisfied by an open and dense set of such families and results
from our requirement about the family being non-degenerate.

For a second example, consider a relevant pre—coalition, i.e., an extremal
a® € A°. Let

(2.9) T = {r€Tla, >0} andR® = {peR|Na = 1} .

We call T® and R® the characteristics of a®. To justify this notion, we
want these two sets to characterize a® as the unique solution of the linear
system of equations in variables {a, } et

c’a = 1 peR®

(2.10) @ = 0 reT\T®.

Again, this to be satisfied for all extremals of A® results from {c”},cr to be
non-degenerate. Clearly, we are asking for a certain set of determinats to
be non—sigular and this will be satisfied by an open and dense set of families

{Cp}pER'

In particular, n.d. implies that, for any pair of characteristics |T®|, |R®| of

some relevant pre—coalition a®, we have |[T®| = |R®| > 0 . Accordingly,
we call (5.6) the characterizing system of a®. Essentially, (2.10) reflects
a system of |[T®| = |R®| equations in |T®| = |R®| variables a, (7 € T®).

So, from now on we will always assume that the family {c’},cr is non-
degenerate in any context that appears suitable.
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Finally consider the set A and its extremals (which induce e-relevant coali-
tions) as well as the set C as defined in (2.8). By definition of A we have
xa > 1 for all x € C and hence A constitutes the normals to C. Nor-
malizing these normals means to restrict the discussion to the boundary of
0A of A or essentially to A°. Hence, some a € 0A constitutes a supporting
hyperplane at C

{reClxa = 1}

In particular, as a consequence of non—degeneracy, any relevant vector, that is
an extremal of A, constitutes a ((t—1)-dimensional) supporting hyperplane,
i.e., a facet of C. Then we have

Lemma 2.9.
(211) C={z R} |za>1(ac A)} ={x R |za® > 1(a” € A°)}
as well as

212) A={acR|za>1(xcC)}={acR,|c’a>1(peR)}

meaning that A and C are related via some kind of duality relationship.
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3 Reduction of The Relevant Pre—Coalitions

In view of non—degeneracy an extremal a® € A° is uniquely defined by its
characteristics, that is the sets

(3.1) T .= {r€T|a, >0} andR® = {peR|[Na = 1}

with [T®] = |R®| > 0. These two sets characterize the vector a® as
the unique solution of the characterizing system, i.e., the linear system of
equations in variables {a, } et

c’a = 1 peR®
(3.2) a, = 0 7eT\T®
Essentially (3.2) reflects a system of |R®| equations in |[T®| = |R®| variables
a, (1e€T9).

Consider a relevant pre-coalition a® € A°. As an extremal of A, a® is
connected to neighboring extremals via a set of edges. In particular, one can
attempt to aproach a neighboring extremal by omitting one of the equations
of the first type in (3.2), that is relaxing one of the constraints defined by
the linear functionals involved in R®. More precisely:

Theorem 3.1. Let a® € A° be a relevant pre—coalition and let T®, R®
be the characteristics with |[T®| = |R®| =: s > 2. Let = € R®. Then
there exists a unique a* = a*™ € A° with characteristics T*, R* such that he
interval

(3.3) [@® a*] = {ta®+ (1 -t)a*|0<t <1}

18 an edge of A and one of the following alternatives hold true:

1. Either there exists T € T® such that

(3.4) T = T\ {r}, R* = R®\ {n}.

2. Or else there exists some o ¢ R® such that

(3.5) T =T, R* = (R®\ {shu{o}.

Proof:
15*STEP :
Recall the characterizing system

c’a =

1
(36) a; =0 (1¢7T%).
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Consider the linear subspace (straight line) obtained by omitting ¢™ from the
system, i.e.,

3.7 LROM c Rt
( ) T® a a, = 0 (T¢T®)

cfa = 1 <peR®\{w}>} |

As a® is an extremal of A, one half of this line intersects A and the other
half runs outside of A. The first halfline will hit the boundary of of A at
some extremal point a* of A.

There are two possibilities: Either a* satisfies a further equation a, = 0 for
some 7 € T®. Or else a* satisfies a further equation ¢’a = 1.

15*STEP :

With respect to the first alternative we have

(3.8) T = T°\{r}, R* = (R®\ {n}).
and a® is the unique solution of the (characteristic) system

c’a = (p e RY)

1
(39) a =0 (1¢T").

2"ISTEP :

In the second alternative a* is the solution of the system

¢a =1 (pe(R®\{r})U{o})

(3.10) a;, = 0 (1¢T%).

Then we have

(3.11) T = T, R = (R®\ {r})U{o}.

q.e.d.

Theorem 3.2. Let a® € A° be a relevant vector and let T®, R® be the
characteristics with |T®| = |R®| =: s. Let T ¢ T®. Then there exists a
unique a* = a*” € A° with characteristics T*, R* such that he interval

(3.12) [@® a*] = {ta®+ (1 —-t)a*|0<t <1}

18 an edge of A and one of the following alternatives hold true:

1. Either there exists o ¢ R® such that

(3.13) T = T°U{7}, R* = R®U{o}.
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2. Or else there exists some T € T® such that

(3.14) T = (T\{FHU{F}, R* = R®.

Proof: The extremal a® is located with the linear subspace/straight line
obtained by adding 7 to the system, i.e.,( omitting the equation a= = 0)

c’a = 1 (peR?)
a- =0 (r¢(T°U{7})) |

The intersection of this line with A constitues an edge of A, the second
vertex of which is a* as described.

q.e.d.

Corollary 3.3. Let a® € A° be a relevant pre—coalition and let T®, R® be
the characteristics. Then a® is located on edges

(3.16) [@® a*] = {ta®+ (1 -t)a*|0<t <1}

with neighboring vertices a*? (p € R®) and a*™ (1 ¢ T®) according to Theo-
rem 3.1 and Theorem 3.2. Moreover,

1. If s = |T®| = |R®| = 1, say R® = {7} and T® = {7}, then a® = €
is a basis vector of R" contained in just one AT. . In this case there
are exactly t — 1 adjacent edges [a®,a*"] for T € T\ {7} with either
T = (T°\{7HU{7}, R* = R® according to (3.13) or else
™ = (T \{7Hu{7}, R* = R® according to (3.14). That is,

there is a departure edge for each a*™ for each T # 7.

2. Is s > 2, then there are exactly t adjacent edges [a®,a*]. These are
either obtained by “departing” in direction of some T as in Theorem 3.2
or by leaving some AT as in 3.1.

3. Any extremal a® of A has at most r positive coordinates.

Definition 3.4. Let a® € A° be a relevant pre—coalition and let T®, R® be
the characteristics. Let 7 € T®, m € R°.

1. We say that a® is reduced to a® via (1,7) € T® x R® if (3.4) is valid.
That is, for the second edge a® described by (3.3) and the corresponding
characteristics we have

(3.17) TY = T°\ {r}, RY = R\ {n}.

We write
T,
a® = a? .

and refer to the operation indicated as a “process of reduction” or just
reduction.
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2. A relevant pre—coalition a® € A° is said to be irreducible if there is
no (1,m,a*) € T® x R® x A® such that

EB’T,?T *

a” = a

holds true.

Lemma 3.5. Let a® € A° be a relevant pre—coalition and let T, R® be

the characteristics. Then there exists an irreducible relevant pre—coalition
a® € A° with characteristics T® C T®, R® C R®.

Proof: Obvious, reduce a® a finite number of steps if necessary.

q.e.d.

Example 3.6. This examples exhibits the situation in the quasi orthogonal
case and shows that we do have an appropriate generalization at hand.

We have to slightly adapt our notation as follows. In the context of QuO
the production factors are enumerated by {0,1,...,r} and {1,...,r} enu-
merates the (orthogonal) elements of the core. Adapting this to our present
version means that we use R ={0,1,...,7} and Q = {1,...,r}. With this
convention we discuss the versions of relevant vectors a®,a® and a® that
appear in that context of QuO.

15*STEP :

First of all, for some 0 € Q consider some relevant vector (of the “second
kind”) a’® determined by equations involving

< (pe(Q\{o})U{0}) = R\{o}
Such a vector is determined by some “undercutting” sequence

(318) 7 = (R,....,7) with ¢ = If=minc) (peQ\{o}).

Tp

That is, each 7, takes the minimal value of the density ¢) over the carrier
C’ (p€ Q\{o}). Hence, the characteristics are

(3.19) T = {7,....7} = {T,}peq and R% = R\ {o}.
By assumptions in QuO, the “undercutting” sequence satisfies

(3.20) E=(T= "= 1lh<1,
1

T€T® PEQ p=

0Po

and the shape of @’ is indicated by

0
1-2 cqvio) 3,

a® = (.1...,..,...,.. . — =g m 11

To
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Thus, the characteristic equations defining this vector are

ca™ =1 (peQ\{s}),
(3.21) a"™ =1
a, =0 (r1¢T9).

Moreover we have

— 0 o 0

o 1 ZpEQ\{J} G, . 1 E :7—61'69\{?0} Cr
= 0 _ >
To 7

c >1.

It is not hard to see that a’®? is irreducible.

2"dSTEP : Next we consider relevant vectors of the “third kind” which
will turn out to be reducible. The characteristic equations now involve all
¢’ (p € R). However, again there is a specific coordinate o which we choose
to be 0 = r. Then the generic relevant vector a’®" of the“third kind” is given
by a sequence

7= (R,....7,7) with 7, = (peQ) and 7, €C".

Accordingly we put
(3.22) T° = {7,....,7, 7}, RE=R={0,1,...,r}.

Now assumptions are

T r r—1
(323) SCTN{FH =) =) l<1<d &+ =(T9).
p=1 p=1 p=1
Each 7, takes the minimal value of the density ¢J over the carrier C”, but
2 is “large” by comparison. Writing I} := > peR_{r) c%}, the shape of a’®"
is as follows.

a®" = (11
IF+c2 —1 11—+ &)

3.24 T —
20 & T d g )

= (..l .0 o, B,
Here o and [ are determined by

a+p =1
3.25
(8:25) ack + B = 1-1r.
Clearly the characteristics of a®" are
Cpaoer — (,OERGZR),

(3.26) a, = (1) (r¢TO) .
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Now consider the linear subspace/straight line described by omitting ¢” from
the above system, that is,

(3.27) LI = {a € R

c’a =1 (peR°\{r}), }
G =0 (r¢TS = {7, 2ED [

We parametrize this line via ¢t — a' with

t 1—(Ir+1)
t o . . r
(328) a' = (..1..5... 1 0 :

..) (teR).

For ¢t = ahs, this parametrization yields after some computation
(3.29) a® = (.. 1.1, ., B,) = a%orn
and for ¢ = hs. we obtain immediately

1 B (l: + h?r)

(3.30) a" = (.1, 0001 -

which is the relevant vector a®®” that appeared in the 18STEP. Thus we
see that one can depart from a’®" along the edge

[ aoer aOEBr]

)

0®r

reaching a”¥", or, in other words, we have a reduction

7,0
aO@r = aO@r.

3"4STEP : Without entering into the details we mention that relevant vec-
tors a® of the “first kind”are irreducible and determined by a characteristic
system involving all ¢” (p € Q).
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4 Truncating the Excess Supply Measures

We denote the irreducible extremals of A by

(4.1) A% = {a® € A°|a® is irreducible } .

Also we define

(42) H = {wecJ()|za®>v(a®) =1 (a® € A®)} D J(v)NC.

The candidates for the construction of vNM-Stable Sets will be certain im-
putations in H, more precisely:

Definition 4.1. Let p € R. A pre—imputation Z* satisfying
(4.3) eH, z<c

15 said to be a truncation of c”. The imputation corresponding to X’ is the
measure

(4.4) &= = Zfﬁ)\“r with density £€° = ZE?ILDT .
TET TET

£” is a truncation measure induced by \’.

Later on, if {Z"} g is a family of truncations, then the convex hull
(4.5) H := ConvH{Z"}

will be considered to be a candidate for the construction of a vNM—Stable
Set.

Clearly, whenever p € Q, that is, whenever ¢” is a pre—core element, then
(4.3) implies Z* = ¢”. Hence, the only truncation of a (pre-) core element is
that (pre—) core element itself. In order to exhibit truncations we, therefore,
can restrict our focus on p € R\ Q. Clearly, for p € R\ Q and some truncation
&’ we obtain Z’a® = c’a® =1 whenever c’a® = 1.

Analogously to the situation in A, we introduce for some o € R, the charac-
teristics of c?. As we do not want to explicitely introduce an enumeration
of A we obtain for the characteristics:

T = {reT|c >0}, A° = {a*€ A°|c’a"=1}.

Then, in view of non—degeneracy, we have
T7 = |A7] = |C?] >0

and ¢’ is the unique solutin of its characteristic system which is the linear
system of equations in variables {x,},ct given by

rza* = 1 a*€ A°
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Next, if we introduce
A% = {a® € A7 |a? is irreducible }

then a truncation Z° has to satisfy Z°a® = 1 for a® € A%®?. Based on
these prerequisites, the following outlines a procedure for the construction of
candidates.

Definition 4.2. We define

B = {reR|3a® € A%, st. 1€ T¥ 0€R?}
(4.7)

A Y

E’ = C°\ E .

The following pre-imputations {Z*} ,cr Provide the candidates for the ex-
tremals of some vNM—-Stable Set H.

Definition 4.3. Let 0 € R\Q. A pre—imputation &° is said to be a standard
truncation vector corresponding to ¢ if the following holds true.

1.
v
(4.8) z7:=c¢ (reE%)
2.
A
(4.9) 77 < (reE%)
3.
Vv N
(4.10) 72=0 (reT\(E°UE"))

such that 2°(C%) = &°(I) = t.

The standard truncation measure & induced by X7 is the corresponding
imputation generated as in Definition 4.2. We call Z° a standard trunca-
tion vector corresponding to c’. The imputation generated is the measure

(4.11) & = Zfﬁ)\“ﬁ with density €70 = £ .= Z T 1pr

reT TeT®

Generally a standard truncation vector/measure Z° /€ results in a (pre-)

A
tmputation, only if Z7(E°) < t holds true.

Theorem 4.4. Let 0 € R\ Q and and let % be a standard truncation. Let
a® € A be a relevant precoalition.
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1. If a® = a® is irreducible (i.e., a® € A®?), then
(4.12) z'a” =1=0v(a?) .

2. If a® = a® is reducible, (i.e., a® € A”\ A®?), then there is a® with
characteristics T® C T®, RY C R®.

3. If a® = a® is reducible, then

(4.13) z7a® <1 = v(a’®) .

Proof:
1tSTEP :

Let a® € A®? be an irreducible relevant vector. Then, for 7 € T® we have
Y
7 € E? and hence 77 = ¢ by (4.8). Consequently

z7a® =c’a® =v(a®) =1.

2"dSTEP : Next let a® € A% \ A®™ be a reducible relevant vector. Con-
sider a sequence of reducible vectors starting with a® and ending in some

irreducible a®, each one being obtained by reducing the previous element of
the sequence. Then, clearly T® C T®, R® C R®.

3"d4STEP : Moreover, in view of (4.8) and (4.9) we have 77 < ¢, for all
7 € T, hence, as 0 € R®

z°a® < c’a® = 1

Theorem 4.5. Assume that, for some o € R,
A
' (E°) < t.

Then there exists an imputation &° such that

(4.14)

I
Q

VAN

o)
Q

(4.15) x’ e H .

3. Whenever o € Q, (i.e., ¢’ € C or equivalently, X° is a core element),
then uniquely

(4.16) ' =c’
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Proof:

The last item is obvious as any pre—core element ¢’ is an imputation and
satisfies all conditions c’a* < 1 for a* € A° and not just the ones for
H. Therefore, we restrict ourselves on ¢ € R\ Q. Then our claim is a
consequence of Theorem 4.4.

q.e.d.

Example 4.6. Again we consider the quasi orthogonal case QuO and com-
pare our present generalization to the previous set up. The notation is as in
Example 3.6.

Forc =0 € R\ Q,ie, ¢ = c® we will exhibit the shape of a truncated

vector V.

15*STEP :

V V
First of all we determine E° = E°. Consider some relevant vector of the
“second kind” a’®’ as discussed in the first step of Example 3.6, with shape

0
1-2 cq\o) 3,
0

To

a = (.11, — == ol 1)

Y
As a’®7 is irreducible we have T® C E°. As the undercutting sequence T®
as well as ¢ can be varied we obtain

E° = Uy T
TOundercutting
Hence, whenever Z° is a truncated vector w.r.t. ¢, then :1_:0|E = CO|E05
o

0

i.e., Z’coinides with ¢” on every undercutting sequence.

2"4STEP : Next, again for ¢ = ¢, we consider relevant vectors of the
“third kind” which turned out to be reducible in the 2"¢STEP of Example
3.6. There we have found a reduction

a’r 1 goer,
As a%®" is irreducible, we conclude that
vV N \Y N
(417) 7,..., 7, € E°, 7. € E°, ie. T® =T°\ {7} CE°, {7,}) C E".
as well as
(4.18) R® = {0,1,...,(r—1)} CR®=R.

Combining we have

V AN V
(4.19) E° = U T, E° = T\E".

T9 undercutting
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and a_zo v =C v .
| EO EO

Recall the situation as presented in Part IV of QuO, in particular Theorem
A

3.3 and the presentation in Section j. There, if Z7(E?) < t holds true
for 0 =0 € R\ Q, then we know that a standard truncation &° = Z° is

A
an extremal of H. Within this context, if 7 (E?) > t , then the core is
stable, that is, for the construction of (candidate for) a vNM-Stable Set one
can dispose of c® or A? respectively.

A
In the present general context, therefore, we would like to claim that Z7(E?) > ¢,
implies as well that ¢’ can be omitted from the construction. This, however,
is presently not within our range.

5 The Facets of C and External Stability

The the extremals of
A = {acRi|c’a > 1 (peR)}

are the relevant pre—coalitions which by the Inheritance Theorem (Theo-
rem 2.3) provide the e-relevant coalitions that are necessary and sufficient
regarding dominance.

The elements of A constitute the normals to the comprehensive convex hull
of the {¢”} g Which is

(5.1) C = {:I; c R"|Ja, “convex” s.t. x> Z(xpcp}

pER

as introduced in (2.8). Hence,
(5.2)
C={zecR,|za®>1(ac A)} ={xcR |za*>1(a® € A°)}.

In view of Remark 2.8 the vectors ¢” are the extremals of C.

Now, let us focus on the facets of C. For a® € A° denote the corresponding
C—supporting hyperplane by

(5.3) H,o = {xeR"'|za®=1} .

As a® is extremal and in view of non-degeneracy, C N H,e is maximal in
dimension and located within the boundary of €. Thus we have

Definition 5.1. Let a® € A°. Then the unique ((t —1)—dimensional) facet
corresponding to a® is

(5.4) F.o = CNHgs.
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Remark 5.2. We imagine C to be very high dimensional while the number
r of the spanning vectors {c”} g is relatively small. Therefore, the facets of
C are generically not compact. Rather they appear as the sum of a halfspace
and the convex hull of the extremals involved. Figure 5.1 describes a possible
structure of C and A — in 2 dimensions, so far from being representative.
Figure 5.2 indicates the same structure in 3 dimensions ... which we have to
imagine in much higher dimensions.

Figure 5.1: The shape of C and A — Two Dimensions
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Rire

Figure 5.2: The shape of C and A — Higher Dimensions

More precisely, let T® and R® be the characteristics of a®, then FY can be
written

F2 =

a

(5.5) =z +2°| Ja, “convex’ : ' = E a,c’, T € ]Rfl.”:.r@
pER®

= ConvH {c” ‘ pE R®} + REF{T(@ .
For p € R® we have ¢ € ©N Hge, Thus the vectors {c’} gs are the
extremals of the facet F) = CN H 0.

In turn the vectors {¢”} _rs determine a® via the characterizing system

pER

c’la = 1 peR*

(56) a = 0 7eT\Tr.
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Somewhat more suggestively written, & € Foe admits of a representation

(5.7) =2 +3" = Y ez,
pER®

with a suitable “conex” set oy = {,},cre 0f coefficients and nonnegative

~T\T®
'\ € ]Rﬁ\.l.@.

Now we combine the geometrical picture of facets with the concept of domi-
nance. As a prerequesit, we consider a version involving the vectors {c”},cr —
which are generally not imputations — in some kind of a dominance relation.

Theorem 5.3. 1. Let ° ¢ C. Then there exists some a® € A° with
characteristics T® and R® as well as £ € CN H,» such that

0

T > ,
(5.8) | ™ | e
za® = 1 = wv(a¥),
Moreover there is a “conver” combination o = {a,},ere such that
(5.9) R D DR e
PER®
holds true.

2. Let x° € C. Then there ezists some a® € A® with characteristics T®
and R® as well as © € CN H ,e such that
(5.10) z<ax'.

Z is a convex combination of the ¢® (r € R®) exactly if T =0,

Proof:

15*STEP : First of all consider the case that % ¢ C. As C is a closed
convex polyhedron we can find some % ¢ C such that z° < x%. Then,
minimizing the distance from £ to C, find some Z in OC such that Z —
is a multiple of a normal, say a®, hence nonnegative.

W.lo.g we can assume that a® is extremal, i.e., a relevant pre—coalition.
Moreover, as & is an element of the face C N H e corresponding to a®, we
have for a suitable “convex” ay,:

£\T®:Z%CP\T®-
pER®

That is, we have

(5.11) z>x% > 2%, hence 1o > x’ 1o -
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as well as

(5.12)  za® = :/E|T®a,®: Z a,c’a® = Z a, = 1 = v(a®).

pER® pER®

Now (5.11) and (5.11) verify (5.8).

2"STEP : Now let 2° € C with ° ¢ JC. Choose £ € OC such that
z < x° holds true. Again, for some facet Fae of C we have T € F,»; let
the characteristics as usual be T®, and R?®; thus

5.13 T = o+ <20 and < x°
p

pER®

| T® T®"

Now, similar to (5.12) we have

(5.14) za® = Zapc”a® = Z a, = 1 = v(a®)

pER® pER®

verifying our second claim.

3"d4STEP : The case that ° € OC is the case can be omitted, as the treat-
ment is obvious.

q.e.d.

Remark 5.4. Note again that formula (5.8) cannot be seen as a dominance
relation, for Z is not necessarily an imputation.

However, if we include the exact case in our discussion, that is, for the mo-
ment assume that ¢*(T) = r (i.e. A’(I) = 1) for p € R, then Theorem 5.3
indeed implies that the pre—core (i.e., the convexy hull of ¢ (r € R)) is ex-
ternally stable. For in this case all imputations outside of C are dominated
while for £° € C we have necessarily ° € C(v) (the pre-core). And as x°
is an imputation, we have by (5.13)

t:ng < Z:}:\T: Z &ch£+Z£I\T® :t—l—Z:}EI\T@

TET TET pER® TET TET TET

which implies necessarily 2° = # and """ = 0, thus

x’ = Z a,c’ € C(v) .

pER®

Now we introduce the truncations Z” and the corresponding measures £ and
show that the dominance relations can as well be established.
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Definition 5.5. Let {Z*} g be a family of truncation vectords and let {Ep}peR
be the corresponding family of truncation measures. Then

(5.15) H = ConvH{z"} g and H= ConvH {£"}

pER

are called a (candidates for) a standard vNM-Stable Set.

We will eventually prove that H and H are indeed vINM-stable.

At this stage let us revive the interpretation we attach to the vNM-Stable
Set of the above structure. This will be a short version of the elaborate
discussion provided in QuO, more precisely in Section 1 of [6]; the reader is
directed to the lengthy discussion provided in that context.

Following HART[4], we interprete some pair (C”, A\?) as a cartel commanding
factor p. Imagine that a vNM-Stable Set is related to a bargaining process
of two stages: in one stage a normalized measure — an “internal” distribution
of wealth within the cartel — is selected in each of the cartels and in another
stage a relative distribution of wealth is determined between the various car-
tels which amounts to selecting a convex combination internal distribution.
This constitutes an “external” procedure resulting in a set of imputations
establishing a vNM-Stable Set.

Thus we perceive to two rounds of the bargaining process: in one round
(“external” from the view of the members of a cartel) (representatives of) all
cartels bargain about a share in the distribution of wealth — that is, they
agree upon a “convex’ «, representing these shares.

The “internal” round of discussions is then engineered within each cartel in
order to establish a (“local”) distribution of the wealth inside each cartel
(normalized, i.e., formally a probability).

The order of organization of these two rounds is not being emphasized, but
could be another important matter. Obviously for cartels on the “short side
of the market” — the core elements — the internal distribution is being dic-
tated by just this core element. For cartels on the long side, players have to
agree about some imputation within this cartel which turns out to necessarily
be a distribution absolutely continuous w.r.t. the factor distribution with a
density bounded by one. In the Orthogonal Case this is a result of the Char-
acterization Theorem [10],[11]). For the Quasy—Orthogonal case it follows
from the constructions of the Truncated Standard Stable Sets in QuO.

The competitive concepts — the Core, the Competitive Equilibrium, the Shap-
ley value etc. assign no wealth to cartels on the long side of the market, see
e.g.BILLERA AND RAANAN [2] or AUMANN AND SHAPLEY |[1] for the (con-
tinuous) Shapley value. The vNM-Stable Set however emphasizes the role
of cooperation — not only by reflecting the “power to achieve” certain wealth
during the bargaining process but also by incorporating the “power to pre-
vent”: a group of cartels cannot achieve anything without including each
cartel on the long side of the market.
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While the “power to achieve” is reflected by internal stability, the “power to
prevent” is reflected by the concept of external stability. Indeed, the core
as the set of undominated imputations is always internally stable. That is,
internal stability and the power to achieve are closely connected. Indeed, that
cartels of the long side should agree to a distribution which assigns them just
nothing is — from the view of cooperative theory — not plausible.

Outside the core one may find imputations that cannot be dominated by
elements of the core. But within a vNM-Stable Set we find always imputa-
tions that can be used to discredit them. Thus, vNM—-Stable Sets result in
reflecting the “preventive power” of cartels because they involve arguments
of prevention via external stability.

Equivalence Theorems for large games between the Core, the Shapley Value,
the Competitive Equilibrium etc indicate that competition forces out coop-
eration in a large market. As a consequence we would rather hold that these
concepts are not appropriate for reflecting the results of cooperation.

Naturally, one has to ponder about the notion of a “cartel” being reflected
by a pair (C”, A?). For now, other than in the orthogonal case or even in
QuO, players or rather small coalitions can be members of different cartels.

Theorem 5.6 (Extern Dominance — via Pre-Coalitions). Let H be a standard
candidate. Let ° € J(v) be a preimputation. If ° ¢ H, then there is & € H
and a relevant irreducible pre—coalition a® such that & domge x° holds true.
That s, H is externally stable.

Proof:

15*STEP :

First of all assume that x° ¢ C holds true.

Then, according to Theorem 5.3, choose a® € A° with characteristics T®
and R® as well as £ € C N Hge such that, with a suitable convex set of
coefficients a,, we have

0

‘ T® > T ‘ T®
(5.16) Plre = 2 % 1o
pER®
za® = 1 = v(a®).

(5.17) T = Z a,z’

By means of Lemma 3.5 we can find a® € A° with characteristics T® and
R® such that
TP C T® and R® C R® .
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By Definition 4.3, we have & | ., = ¢’ | 7o (p € R®) and consequently
T ‘ Te;::/i ‘ T@,thus
= = 0
(5.18) T g=2 16 T | o
Moreover
(5.19) za® = Zoza:p Zac”a :Zap =1
pER® pER® pER®

Now, (5.18) and (6.3) show that
Z domge x°

holds true indeed.
2MdSTEP .

Now assume that that 2° € C holds true. Then we can apply the 2"¢ item
of Theorem 5.3. That is, we can pick some a® € A° with characteristics T®
and R® as well as £ € C N H 4 such that

(5.20) z <a’
Now, by Remark 5.2, in particular formula (5.7), Z € OC admits of a repre-

sentation
~T\T®
E a,c’ +T \

PER®

As Z°(p € R®) is an imputation we have ) 7?2 =t (p € R¥) and hence

t = Zap<2§¢> < Zap<zc¢>

PER® TeT pER® TeT
A~T\T®
§ 0 E
S < CT) + mT
pGR® TET TET
= f < E 0 =t
TGT TET
TT®

hence necessarily & = 0 and all inequalities are equations, that is,

:Zap:i”EIH,

pER®

a contradiction.
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6 Internal stability

Finally we are going to deal with internal stability of H. We start treating
pre—concepts — as we know, this will eventually suffice to establish the corre-
sponding properties of concepts regarding the continuous coalitional function
v. The first theorem — similarly to Theorem 5.3 — deals with the complete
functionals ¢” (p € R). In what follows, we do not speak of dominance in
this context as * and Z are not necessarily imputations.

Theorem 6.1. There is no triple **, T € ConvH{c’ | p € R}, a®inA°,
such that * > Z and, x*a® =1 .

Proof: Assume that,with suitable “convex” a, and 3,, we have
* P om p
= g a,c’ | T = g Byc
pER pER

as well as
x*>z and z*a®=1.
Then
_ ® _ ® <« Sp® _ ® _
1—Zapc”a =x*a” > Ta —Zﬂpcpa ZZBP—l
pER PER PER

yields a contradiction.

Theorem 6.2 (Internal Stability — Pre-Coalitions).
A standard candidate H is internally stable, hence vNM-Stable.

Proof: Let Z,Z € H and let a® be a relevant pre—coalition with character-
istics T®, R® such that
T domge T .

Assume that, for suitable “convex” a, and 3,, we have

_ —p ~ —p
r = Eapzc and * = Eﬁpw.

peER peER

According to Lemma 3.5 we can find a® € A® with characteristics T® and
R® such that
T® C T° and R® CR®.

=c’ (p € R) . Now

By Definition 4.3, we have & | o

| @
(6.1) za® > za® .
follows from dominance. On the other hand

(6.2) za® = Zapzipa@ = Zapcpa,@ = Zap =1

PER PER PER
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as well as
(6.3) za® = Zﬁp:ﬁpa@ = Zﬂpc’)a@ = Zﬁp =1,
pER PER pPER
a contradiction. q.e.d.

Theorem 6.3. {Z°} g be a family of truncations and let {Ep}peR be the
corresponding set of imputations for v. Then

(6.4) H = Coan{Ep}peR

18 a vNM-Stable Set.

Proof: Follows from Theorem 5.6, Theorem 6.2, and Corollary 2.7.
q.e.d.

Remark 6.4. We call H a standard vNM-Stable set quite in accordance
with the notation introduced in [10] and [11]. For, each &’ is absolutely con-
tinuous with respect to A” with a density bounded by 1. H is also called
truncated as its extremal elements are being generated by a simple trunca-
tion procedure applied to the A” (p € R).
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