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Abstract

It is shown how to construct an arbitrage-free short rate model under uncertainty about the
drift and the volatility. The uncertainty is represented by a set of priors, which naturally
leads to a G-Brownian motion. Within this framework, it is shown how to characterize the
whole term structure without admitting arbitrage. The pricing of zero-coupon bonds in such
a setting differs substantially from the traditional models, since the prices need to be chosen
in a different way in order to exclude arbitrage.
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1 Introduction

Nowadays, there is an increasing literature on robust finance, examining financial markets under
uncertainty by exploring new ways of describing the randomness influencing those markets. The
problem is that most of the traditional financial models fail to represent the uncertainty, since
they are based on very strong probabilistic assumptions. This makes it easy to price contracts
on financial quantities, but the models neglect the fact that the evolution of those quantities is
actually unknown and does not follow any probabilistic law.

In theory, there are several different ways to model a financial market. Many models represent
the evolution of asset prices by stochastic processes while the interest rate is assumed to induce
a risk-free alternative investment and hence, it is considered to be deterministic or even to be
constant. Black and Scholes (1973) is the most famous and fundamental one that goes in this
direction. Those models are important for pricing and hedging derivatives on asset prices, for
example. Since the market also offers contracts on interest rates, like bonds or interest rate
derivatives, there are also models dealing with the fact that the evolution of the interest rate is
uncertain. Adapting the methods of Black and Scholes (1973) to the interest rate world, Vasicek
(1977) is one of the most important short rate models, i. e., a model where the instantaneous
spot rate is represented by a certain diffusion process. That paper shows that the absence of
arbitrage implies that the discounted bond prices are martingales with respect to some equivalent
martingale measure by introducing the market price of risk. Compared to Black and Scholes
(1973), the equivalent martingale measure is not unique and has to be given from the outside.
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author thanks Prof. Frank Riedel for valuable advice and comments. Financial support by the German Research
Foundation (DFG) via CRC 1283 is gratefully acknowledged.
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Furthermore, an Ornstein-Uhlenbeck process with constant parameters is used in that model to
describe the evolution of the short rate. Although it makes the model analytically tractable, it has
the undesirable feature of the possibility to obtain a negative interest rate. This is the motivation
of Cox, Ingersoll Jr, and Ross (1985) to use different dynamics for the short rate ensuring the
positivity of the interest rate. However, it makes the model less tractable. The interesting thing
is that those models have an endogenous nature, since the current term structure is meant to
be an output of the model. On the other hand, there are also exogenous models including time
dependent parameters, which is more realistic and allows the theoretical bond prices to fit the
observed prices on the market. Hull and White (1990) is the most famous one, since it generalizes
the earlier mentioned models. A much more detailed overview of the main short rate models can
be found, for example, in Rogers (1995), in Chapter 3 in Brigo and Mercurio (2007), or in Chapter
5 in Filipovic (2009).

In practice, those models are very popular, since they are simple and handy when it comes
to pricing bonds or interest rate derivatives. This is caused by the assumptions on the dynamics
of the short rate, which determine the probabilistic law of the interest rate. Although it makes
the application of the model very easy, this is problematic, since it is not realistic. Besides, the
parameters in the dynamics, that characterize the distribution of the short rate, have to be chosen in
a reasonable way. Because of the incompleteness of bond markets, one usually models the dynamics
of the short rate directly under the equivalent martingale measure, commonly known as martingale
modeling. Hence, not all of the parameters can be obtained by historical data, which can already
be quite imprecise, but by inverting the yield curve. This has usually the advantage of an exact
fit to the observed data, but is based on some questionable assumptions like differentiability of
the yield curve. Indeed, this is not a smooth function. Additionally, it is doubtful to assume that
the parameters matching the theoretical to the real prices today are stable enough to describe the
evolution of the interest rate in the future. Therefore, the aim is to construct a short rate model
with as less as possible assumptions on the parameters of the model. In particular, the parameters
should be characterized by uncertainty apart from a probabilistic framework.

In general, this kind of uncertainty is called “model uncertainty” or “Knightian uncertainty”.
Introduced in Knight (2012), it is considered to be the counterpart of risk, because risk can be
measured by a probability in contrast to uncertainty. This uncertainty should be used when events
in reality are too complex or the related data is missing to calculate the risk of such an event. So
it can be helpful in financial models, since there is usually no reason to believe that the underlying
quantities have a certain distribution. On the other hand, this is difficult to model, because it
is not amenable to the usual stochastic calculus. Thus, there should be a mathematical theory
describing uncertainty about stochastic processes.

Fortunately, there is a recent developement of a whole stochastic calculus describing uncertainty
about the drift and the volatility of stochastic processes, which can be found in Peng (2010). Using
nonlinear expectations, this theory generalizes the usual probability space to define a generalized
normal distribution including uncertainty about the mean and the variance. With this distribution,
it is possible to construct processes where the average behaviour and the volatility are uncertain.
Furthermore, a stochastic integral and a version of Itô’s formula can be obtained within this scope.
For the application to finance, it is also worth mentioning that the notion of martingales in this
framework has slightly different properties than in the usual one, which are very important for
financial markets. Some further results, like the connection to probability theory, a generalized
Itô formula, or a Grisanov transform, can be found in Denis, Hu, and Peng (2011), Li and Peng
(2011), and Hu, Ji, Peng, and Song (2014).

The general idea of Knightian uncertainty is already applied to asset markets in Avellaneda,
Levy, and Parás (1995) and Lyons (1995) or, more recently, in Epstein and Ji (2013) and Vor-
brink (2014). All of them are considering volatility uncertainty, but the latter is the only one
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incorporating a detailed discussion about the concept of arbitrage within this framework. For
more general market models and, especially, the concept of no-arbitrage, one may refer to Beißner
(2013), Bouchard and Nutz (2015), or Burzoni, Riedel, and Soner (2017). Additionally, there are
also models featuring an ambiguous interest rate, like El Karoui and Ravanelli (2009) or Lin and
Riedel (2014). However, there are only a few models about pricing bonds or, in general, contracts
on the interest rate, which simultaneously allow for an uncertain interest rate. On the one hand,
there is Epstein and Wilmott (1999). They recognize the problem of the accurate estimation of
parameters in interest rate models and introduce an interest rate model with no underlying proba-
bilistic assumptions. Instead, they use uncertainty to describe the evolution of the short rate. This
has the advantage that it is not necessary to characterize the interest rate by any probabilistic
law. Apart from that, there is no need to estimate parameters, since there are only bounds for
them that have to be known. Hence, it is convenient to use a worst and best case measure to value
contracts on the interest rate. This typically leads to a range of values for the contract from the
worst to the best, which is similar to the earlier mentioned models about volatility uncertainty.
Unfortunately, the discussion about the absence of arbitrage is, like all of the derivations in the
model, very intuitive and less mathematical. On the other hand, there is Avellaneda and Lewicki
(1996). They adapt the principle of volatility uncertainty to construct an interest rate model that
also leads to a range of values. However, the absence of arbitrage is treated in a very intuitive way,
too. Hence, the aim of this paper is to set up a short rate model including parameter uncertainty,
which also relaxes the probabilistic assumptions of the model, in a mathematically correct way
by using the theory of G-Brownian motion from Peng (2010). Within this scope, it is shown how
to characterize the whole term structure in order to exclude arbitrage. Indeed, there is a special
focus on the concept of arbitrage, since this differs from the classical framework and many models
dealing with Knightian uncertainty skip this part.

The paper is organized as follows. The three succeeding sections focus on volatility uncertainty,
whereas the uncertainty about the drift of the short rate is incorporated afterwards. First of all,
there is a section about the general set up of the model, which includes a construction of the set
of beliefs and the characterization of the short rate. After this section, it is possible to deal with
the pricing of bonds. This causes some problems, resulting in a change of the dynamics of the
short rate. Then one is able to provide bond prices which are not admitting arbitrage. However,
the discussion about the market structure and the absence of arbitrage is done separately in a
succeding section. Afterwards, there is the just mentioned extension to drift uncertainty to get rid
of the choice of parameters. The paper finishes with a conclusion at the end.

2 Model Framework

The fundamental of the model is the short rate, which corresponds to the instantaneous spot
interest rate. This is modeled by a diffusion process and is used to determine all of the bond
prices, i. e., the whole term structure. However, we additionally want to incorporate volatility
uncertainty, which is represented by a set of beliefs. Introduced in Peng (2010), this leads to a
sublinear expectation or, more detailed, to a G-expectation space and a G-Brownian motion by
the paper Denis, Hu, and Peng (2011), which examines the connection between probability theory
and the G-framework. In particular, it enables us to use the G-Brownian motion to describe the
behavior of the short rate and, especially, the uncertainty about its volatility.

2.1 Set of Beliefs

Since the agents are uncertain about the volatility of the short rate, we need to consider more
than one measure, where each measure should represent a different volatility. The construction
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of such a set of measures, which is known as the set of beliefs or set of priors, is done similar to
Vorbrink (2014). In particular, this set can be used to define a sublinear expectation under which
the canonical process becomes a G-Brownian motion.

Let (Ω,F , P ) be a probability space such that Ω := C0

(
[0, T ]

)
, F := B(Ω), and P is the Wiener

measure. Furthermore, we denote by (Wt)t a standard Wiener process on (Ω,F , P ) and we define
the canonical process

Bt(ω) := ωt.

Additionally, (Ft)t is chosen to be the filtration generated by (Bt)t completed by all P -null sets,
i. e.,

Ft := σ(ωs|0 ≤ s ≤ t) ∨N .

The state space for the volatility is given by Θ := [σ, σ], where σ ≥ σ > 0, and the collection of
all Θ-valued, progressively measurable processes θ = (σt)t is denoted by AΘ, which represents the
set of possible volatilities. So we only assume that there is an upper and a lower bound for the
volatility without specifying how the volatility process should behave. Now under each measure
the canonical process should have a different volatility. Hence, we define the measure

P θ := P ◦
(∫ T

0

σtdWt

)−1

for all θ ∈ AΘ and denote by P the closure of {P θ|θ ∈ AΘ} under the topology of weak convergence,

which is the set of all beliefs. Finally, we can define a sublinear expectation Ê as the upper
expectation of the set of beliefs P, i. e.,

Ê(X) := sup
P θ∈P

EP θ (X)

for all measurable X such that EP θ (X) exists for all P θ ∈ P. In particular, Ê can be understood
as a risk measure, since it satisfies the same conditions as a coherent risk measure. For example,
if X is some financial loss, then Ê yields the highest expected loss. However, according to Denis,
Hu, and Peng (2011), Ê corresponds to the G-expectation on L1

G(Ω) and the canonical process

(Bt)t is a G-Brownian motion on the G-expectation space (Ω, L1
G(Ω), Ê). The letter G stands for

a sublinear function, which is, in this case, given by

G(a) = 1
2 sup
σ∈Θ
{σ2a}

for a ∈ R. So now we can use (Bt)t to represent the volatility uncertainty, since the G-Brownian
motion has no mean uncertainty but variance uncertainty, i. e.,

Ê(Bt) = 0 = −Ê(−Bt)

and

Ê(B2
t ) = σ2t > σ2t = −Ê(−B2

t ).

Thus, the canonical process can evolve with a volatility being at most σ and at least σ. Besides, it
is important in this framework to introduce the terminology of “quasi surely”, which generalizes
the notion of “almost surely”, since we are dealing with more than one measure. We say that a
set A ∈ F happens quasi surely if

P θ(A) = 1 for all P θ ∈ P.
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This means that a set happens quasi surely if it happens almost surely under all beliefs. In
particular, all equations in the following should be understood to hold quasi surely. Furthermore,
we also use the terminology “P-quasi surely” if we need to indicate under which set of measures
the statement holds quasi surely.

2.2 The Short Rate

After the construction of the set of beliefs, we are able to use the G-Brownian motion to characterize
the behaviour of the short rate. In general, we want to model it as a diffusion process as it is the
common practice in short rate models. Also the structure is chosen to be similar to the classical
or traditional models.

In most short rate models, the spot interest rate is modeled as a mean reverting process,
since this is reasonable for representing the interest rate. Vasicek (1977), for example, assumes
that the short rate evolves as an Ornstein-Uhlenbeck process with constant parameters. This
approach is extended by Hull and White (1990) to time dependent parameters, which has the
advantage to be more realistic and to admit a better fit to the yield curve. However, the parameters
are still deterministic for tractability reasons, which is a quite undesirable feature of the model.
Nevertheless, we want to have the same structure, but want to get around the problem of parameter
estimation. Hence, the short rate process (rt)t is supposed to be given by the stochastic differential
equation

rt = r0 +

∫ t

0

(
µs − αrs

)
ds+Bt

for some bounded, deterministic function µ and some constant α > 0, where (Bt)t is the G-
Brownian motion. So all in all, the model can be seen as a generalization of the Hull and White
extended Vasicek model, since the dynamics are the same apart from the uncertain parameters. At
this point, the mean reversion level is still time dependent and deterministic, which is generalized
in Section 5, and the volatility is time dependent and uncertain. This is an important difference,
since it is even more general than assuming a stochastic volatility coefficient. In particular, by
Peng (2010), the stochastic differential equation has a unique solution in M̄2

G(0, T ) ⊆ M2
G(0, T ),

given by

rt = e−αtr0 +

∫ t

0

e−α(t−s)µsds+

∫ t

0

e−α(t−s)dBs.

This can be verified by using the Itô formula for G-Brownian motion from Li and Peng (2011), which
is done in Appendix A. So after all, we manage to define the short rate without any assumptions
on its volatility. As we see, the distribution of the short rate has a deterministic mean but the
variance is uncertain. However, we also examine the case of an uncertain mean in the end.

3 Bond Pricing

The next step is to deal with the problem of pricing bonds such that the related market is arbitrage-
free, i. e., determining an arbitrage-free term structure. First of all, we show why the usual
approach from the traditional models fails, which implies that it is not possible to obtain such a
term structure under the given set of beliefs. This leads to an extension of the sublinear expectation
space in order to change the dynamics of the short rate. Although it has a more technical reason,
there is also a very intuitive interpretation for this. All in all, it enables us to find no-arbitrage
prices for bonds.
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3.1 Common Approach

A standard result of the theory of financial markets is that a market is arbitrage-free if (and only
if) the traded quantities on the market are martingales under a measure equivalent to the real
world measure. Indeed, the common practice in short rate models is martingale modeling, since
bond markets are incomplete. This means that there is not a unique martingale measure but many
of them. Thus, one usually supposes that the short rate satisfies certain dynamics under a given
martingale measure. Then the bond prices are chosen such that the discounted bond prices are
martingales with respect to the exogenously given measure in order to exclude arbitrage.

In the case of a set of beliefs, we have to choose a different approach. General results on
pricing under a set of beliefs can be found, for example, in Bouchard and Nutz (2015). In this
framework, the absence of arbitrage is equivalent to the existence of a set of martingale measures
which is in some sense equivalent to the set of priors. In fact, it is sufficient to find a set of equivalent
measures such that the discounted bond price is a martingale under all equivalent measures. This is
actually equivalent to being a symmetric G-martingale under some suitable sublinear expectation.
In particular, one may think of the upper expectation of the set of equivalent measures. However,
since it is popular to model the short rate directly under the martingale measure, we start with a
different approach. We try to find bond prices in such a way that they are martingales with respect
to all measures in the initially given set of beliefs, i. e., symmetric G-martingales under the initially
given sublinear expectation. So this corresponds to the martingale modeling approach, although
we actually want to assume that the set of priors is the set of real world measures. Nevertheless, it
shows that we are forced to change the dynamics of the short rate and hence, the set of measures.

Let us consider a bond market where the price of a zero-coupon bond, which yields a payoff
of 1 at the maturity τ , at time t is given by P (t, τ) for t ≤ τ ≤ T . Furthermore, we define the
discounted bond price

P̃ (t, τ) := e−
∫ t
0
rsdsP (t, τ).

The aim is to choose the price P (t, τ) such that the discounted bond price process
(
P̃ (t, τ)

)
t

is a

martingale under all P θ ∈ P, which is equivalent to being a symmetric G-martingale under Ê, and
satisfies the terminal condition P (τ, τ) = 1. Indeed, it turns out that this does not work.

First of all, we like to do the standard approach of reducing the problem to solving a partial
differential equation. Let us assume that the bond price is a function with a certain structure
and then apply the Itô formula to it. Afterwards, we get some conditions on the bond P if we
want to represent it as an integral with respect to the G-Brownian motion, i. e., as a symmetric
G-martingale. So we suppose that P (t, τ) is a function depending on the current time and the
current value of the short rate. Hence, it holds

P (t, τ) = f(t, rt)

for some function f ∈ C1,2
(
(0, τ)× R

)
. Then, by the Itô formula, we get

e−
∫ t
0
rsdsf(t, rt) =f(0, r0) +

∫ t

0

e−
∫ s
0
rudu∂rf(s, rs)dBs

+

∫ t

0

e−
∫ s
0
rudu

(
∂tf(s, rs) + ∂rf(s, rs)

(
µs − αrs

)
− f(s, rs)rs

)
ds

+ 1
2

∫ t

0

e−
∫ s
0
rudu∂2

rf(s, rs)d〈B〉s.
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Thus, since we want the terms in the last two lines to vanish, we need to find a function solving
the partial differential equations

∂tf(t, r) +
(
µt − αr

)
∂rf(t, r)− rf(t, r) =0

1
2∂

2
rf(t, r) =0

for all (t, r) ∈ (0, τ)× R with respect to the boundary condition

f(τ, r) = 1

for all r ∈ R. From the second partial differential equation, we can deduce that the function f is
linear in the second variable, i. e.,

f(t, r) = g(t) + h(t)r.

Hence, the first partial differential equation now reads as follows:

g′(t) + µth(t) +
(
h′(t)− αh(t)− g(t)

)
r − h(t)r2 = 0.

Since this has to hold for all values of r, we need to have

g′(t) + µth(t) =0

h′(t)− αh(t)− g(t) =0

h(t) =0.

Therefore, f is zero everywhere, which contradicts to the boundary condition. So this approach
actually fails.

Henceforth, we have to doubt if there exists a solution to the initial problem. Indeed, we can
use the probabilistic approach of pricing zero-coupon bonds to show that there is no solution for
the given set of priors at all. So let us assume that

(
P̃ (t, τ)

)
t

is a symmetric G-martingale or,

equivalently, a martingale under all P θ ∈ P. Thus, it holds

P̃ (t, τ) = EP θ
(
P̃ (τ, τ)

∣∣Ft) = EP θ
(
e−

∫ τ
0
rsds P (τ, τ)︸ ︷︷ ︸

=1

∣∣Ft)
for all P θ ∈ P. Hence, we get

P (t, τ) = EP θ (e−
∫ τ
t
rsds|Ft)

for all P θ ∈ P. However, the right-hand side is the bond price in the Hull and White extended
Vasicek model if we consider some deterministic volatility θ = (σt)t ∈ AΘ. Those prices are given
by

EP θ (e−
∫ τ
t
rsds|Ft) = eA(t,τ)−B(t,τ)rt ,

where

B(t, τ) = 1
α (1− e−α(τ−t))

and

A(t, τ) =

∫ τ

t

(
1
2σ

2
sB(s, τ)2 − µsB(s, τ)

)
ds.
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So in particular, we get

P (t, τ) = eA(t,τ)−B(t,τ)rt

for all deterministic volatilities θ ∈ AΘ. Now it is easy to see that this can not hold. The reason is
that we can, for example, consider two different constant volatilities. Then it is obvious that the
prices are not the same, since the value of A(t, τ) changes and the rest stays the same. So we get
a contradiction. This shows us that there is no possibility to choose the discounted bond price as
a symmetric G-martingale. Hence, we need to consider a different set of measures, which actually
corresponds to changing the dynamics of the short rate.

Remark 3.1 The letters A and B are later used to define other functions. Here they are used for
the convenience of the reader, since most of the standard literature agrees on using the letters A
and B for those functions. To avoid confusion, it is clearly explained on which one we refer when
comparing the expressions for the bond prices.

3.2 Extended G̃-Expectation Space

In the following, we change the dynamics of the short rate process. For this purpose, we extend the
sublinear expectation space to use a certain Girsanov transformation. The extension is essentially
based on adding another source of randomness to the model to construct a 2-dimensional G-
Brownian motion by the same procedure as in the beginning. Then we are able to use the results
from Hu, Ji, Peng, and Song (2014), which are including a Girsanov transformation for G-Brownian
motion. Afterwards, it is possible to change the dynamics.

Let (Ω̃, F̃ , P̃ ) be a probability space such that Ω̃ := C0

(
[0, T ],R2

)
, F̃ := B(Ω̃), and P̃ is

the Wiener measure on Ω̃. Furthermore, we denote by (W̃t)t a 2-dimensional Wiener process on
(Ω̃, F̃ , P̃ ) and we define the canonical process

(Bt, B̃t)(ω̃) := ω̃t.

Additionally, let (F̃t)t be the filtration generated by (Bt, B̃t)t completed by all P̃ -null sets. The
state space of the volatility is now given by

Θ̃ :=
{
γ ∈ R2×2

∣∣∣γ11 = γ−1
21 = σ and γ12 = γ22 = 0 for σ ∈ Θ

}
,

which is a non-empty, bounded and closed subset of R2×2. Again, we denote by AΘ̃ the collection
of all Θ̃-valued, progressively measurable processes θ̃ = (θ̃t)t and define the measure

P θ̃ := P̃ ◦
(∫ T

0

θ̃tdW̃t

)−1

for all θ̃ ∈ AΘ̃. Furthermore, we denote by P̃ the closure of {P θ̃|θ̃ ∈ AΘ̃} under the topology of

weak convergence and we define ÊG̃ as the upper expectation of P̃ , i. e.,

ÊG̃(X) := sup
P θ̃∈P̃

EP θ̃ (X)

for all F̃-measurable X such that EP θ̃ (X) exists for all P θ̃ ∈ P̃. Then ÊG̃ corresponds to the

G̃-expectation on L1
G̃

(Ω̃) by Denis, Hu, and Peng (2011) and (Bt, B̃t)t is a G̃-Brownian motion on

the G̃-expectation space (Ω̃, L1
G̃

(Ω̃), ÊG̃). In this case, the sublinear function G̃ is given by

G̃(A) = 1
2 sup
γ∈Θ̃

tr(γγTA) = 1
2 sup
ϑ∈[σ2,σ2]

tr
(
A

(
ϑ 1
1 ϑ−1

))
,
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where A ∈ S2, which is the space of all symmetric 2 × 2 matrices. Hence, the G̃-expectation

space (Ω̃, L1
G̃

(Ω̃), ÊG̃) corresponds to the extended G̃-expectation space in Hu, Ji, Peng, and Song
(2014), which enables us to use their results on G-backward stochastic differential equations and,
especially, the Girsanov transformation for G-Brownian motion. Furthermore, we know that the
two sublinear expectations are equal to each other on the initial domain, i. e.,

Ê(ξ) = ÊG̃(ξ)

for all ξ ∈ L1
G(Ω). Now we consider the G-backward stochastic differential equation

Yt = ξ +

∫ T

t

λsZsds−
∫ T

t

ZsdBs − (KT −Kt),

where ξ ∈ LβG(Ω) and (λt)t is a bounded process in Mβ
G(0, T ) with β > 1. For further details on

G-backward stochastic differential equations like, for example, the definition of K, the interested
reader may refer to Hu, Ji, Peng, and Song (2014). Here we only want to use the Girsanov
transformation without giving further insights. In particular, we know that the solution is given
by

Yt = ÊG̃t
(
EB̃t ξ

)
,

where ÊG̃t is the conditional G̃-expectation and

EB̃t := exp
(∫ T

t

λsdB̃s − 1
2

∫ T

t

λ2
sd〈B̃〉s

)
.

Besides, we can define a sublinear expectation Ẽ by

Ẽ(ξ) := Y0

for all ξ ∈ LβG(Ω) with β > 1. In the expression for (Yt)t, we can see that Ẽ basically corresponds
to an upper expectation of a set of equivalent measures, since the exponential can be seen as a
Radon-Nikodym derivative. Furthermore, we know that

B̄t := Bt −
∫ t

0

λsds

is a G-Brownian motion under Ẽ. Thus, the dynamics of the short rate can now be written as

rt = r0 +

∫ t

0

(
µs − αrs + λs

)
ds+ B̄t

for a G-Brownian motion (B̄t)t. At this point, it is important to mention that such a process (λt)t
is also used in Vasicek (1977). It is also obtained by a Girsanov transformation and is called the
market price of risk, since it measures how much better we are doing with a bond compared to
investing in the short rate per one unit of risk. It is also important to mention that actually (−λt)t
corresponds to the market price of risk, because the process has a different sign in the dynamics
compared to the Vasicek model. In particular, we use

λt :=

∫ t

0

e−2α(t−s)d〈B〉s =

∫ t

0

e−2α(t−s)d〈B̄〉s
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in the following, which corresponds to the variance of the Ornstein-Uhlenbeck process in the usual
framework. The reason for this is twofold. On the one hand, this is a technical reason, since this
certain expression enables us to find no-arbitrage prices in the following. On the other hand, it
is quite reasonable to choose the negative variance as a market price of risk, because the variance
measures the risk and actually, it is more risky to invest in the short rate than investing in the
bond in this model. Another important observation is that the variance process, as it depends
on the quadratic variation of the G-Brownian motion, does not only bear the risk but also the
uncertainty. So one may also refer to (−λt)t as the market price of uncertainty. However, this

is also technically admissible, since the process
( ∫ t

0
e−2α(t−s)d〈B〉s

)
t

is quasi surely bounded. So
after all, we get

rt = r0 +

∫ t

0

(
µs − αrs +

∫ s

0

e−2α(s−u)d〈B̄〉u
)
ds+ B̄t

for the dynamics of the short rate.

3.3 Bond Prices

After changing the dynamics, we can continue searching for bond prices. Now, since the prices
should be martingales under a set of equivalent measures, we want the bonds to be symmetric
G-martingales under the new sublinear expectation Ẽ. In particular, it is sufficient to find a
representation as an integral with respect to a G-Brownian motion, which corresponds to the
(failing) approach in the beginning of this section. However, this approach is successful under the
sublinear expectation Ẽ, as we are dealing with a different G-Brownian motion (B̄t)t. The next
lemma shows how to chose the bond price to find such a representation. Hence, we are able to
exclude arbitrage, but this is done in the next section. Indeed, the expression for the bond prices
are quite similar to the prices from the traditional models, although they have some important
different properties.

Lemma 3.1 Let the price of a bond with maturity τ at time t for t ≤ τ ≤ T be given by

P (t, τ) = exp
(
A(t, τ)−B(t, τ)rt − 1

2B(t, τ)2λt

)
,

where A and B are functions satisfying the ordinary differential equations

A′(t, τ) = µtB(t, τ)

A(τ, τ) = 0

and

B′(t, τ) = αB(t, τ)− 1

B(τ, τ) = 0.

Then it holds

P̃ (t, τ) = P̃ (0, τ)−
∫ t

0

B(s, τ)P̃ (s, τ)dB̄s

and

P (τ, τ) = 1.

10



The proof is just an application of the Itô formula, since the assumptions on the bond price and
the dynamics of the functions A and B are ensuring that the drift terms vanish.

Proof: First of all, define the processes

Λt :=

∫ t

0

e2αsd〈B̄〉s

and

Rt :=

∫ t

0

rsds.

Then the discounted bond price is given by

P̃ (t, τ) =e−
∫ t
0
rsdsP (t, τ)

= exp
(
A(t, τ)−B(t, τ)rt − 1

2B(t, τ)2e−2αtΛt −Rt
)
,

where (rt)t, (Λt)t, and (Rt)t are processes satisfying the dynamics

rt =r0 +

∫ t

0

(
µs − αrs + e−2αsΛs

)
ds+ B̄t

Λt =Λ0 +

∫ t

0

e2αsd〈B̄〉s

Rt =R0 +

∫ t

0

rsds.

Now we can define the function f : [0, τ ]× R3 → R by

f(t, x) := exp
(
A(t, τ)−B(t, τ)x1 − 1

2B(t, τ)2e−2αtx2 − x3

)
in order to apply Itô to f(t,Xt), where (Xt) = (rt,Λt, Rt)t. Then we get

f(t,Xt) =f(0, X0) +

∫ t

0

∂x1
f(s,Xs)dB̄s

+

∫ t

0

(
∂tf(s,Xs) + ∂x1

f(s,Xs)
(
µs − αrs + e−2αsΛs

)
+ ∂x3

f(s,Xs)rs︸ ︷︷ ︸
=:∆1(s)

)
ds

+

∫ t

0

(
∂x2f(s,Xs)e

2αs + 1
2∂

2
x1
f(s,Xs)︸ ︷︷ ︸

=:∆2(s)

)
d〈B̄〉s.

11



Plugging in the derivatives of f yields

∆1(t)

f(t,Xt)
=A′(t, τ)−B′(t, τ)rt −B(t, τ)B′(t, τ)e−2αtΛt +B(t, τ)2e−2αtαΛt

−B(t, τ)
(
µt − αrt + e−2αtΛt

)
− rt

=
(
A′(t, τ)− µtB(t, τ)︸ ︷︷ ︸

=0

)
−
(
B′(t, τ)− αB(t, τ) + 1︸ ︷︷ ︸

=0

)
rt

−B(t, τ)e−2αt
(
B′(t, τ)− αB(t, τ) + 1︸ ︷︷ ︸

=0

)
Λt

=0

and

∆2(t)

f(t,Xt)
= − 1

2B(t, τ)2e−2αte2αt + 1
2B(t, τ)2 = 0.

Hence, it holds

P̃ (t, τ) = P̃ (0, τ)−
∫ t

0

B(s, τ)P̃ (s, τ)dB̄s,

since

P̃ (t, τ) = f(t,Xt).

Apart from that, it is easy to see that P satisfies the terminal condition. �

Now we are able to compare the expression for the bond prices with the one from the classi-
cal model without volatility uncertainty, which is cited in Subsection 3.1. First of all, the solutions
to the ordinary differential equations in Lemma 3.1 are given by

B(t, τ) = 1
α (1− e−α(τ−t))

and

A(t, τ) = −
∫ τ

t

µsB(s, τ)ds.

Thus, we see that the function B is the same in both cases, but now the squared term is missing in
A. However, it corresponds somehow to the additional term in the exponential of the bond price
depending on the market price of uncertainty, although they are not the same if we would drop
the uncertainty about the volatility.

The most important implications of the prices in this model are as follows. Primarily, we do
not have to estimate the volatility for the evolution of the short rate in the future. Admittedly,
there is a price we have to pay for that. We have to know the evolution of the G-Brownian motion
in the past, since the bond price depends on the quadratic variation of the G-Brownian motion.
So this would result in estimating the quadratic variation of the short rate from the past, which,
in particular, can be done. Alternatively, one could also estimate the variance of the short rate as
a proxy for the market price of uncertainty. Furthermore, there is still the mean reversion level
to be chosen, which can be seen either as a good or bad thing. On the one hand, this might be
interesting for practical reasons, since it allows to precisely fit the bond prices to the current yield
curve. On the other hand, we want to get rid of the parameter estimation. Therefore, we extend
the model to uncertainty about the mean reversion level in Section 5.
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4 The Bond Market

Before extending the model, we still need to show that the bond market is arbitrage-free with
respect to the prices from the previous section, since the possibility to make arbitrage is a sign
of mispricing on the market. In order to show this, it is necessary to analyze the corresponding
structure of the bond market. Afterwards, it is possible to define the notion of arbitrage and to
finally show that there is no arbitrage strategy in the market.

4.1 Market Structure

In this subsection, we want to set up the structure of the bond market. Then we can define the
standard notions of the theory of financial markets. Those are including portfolio values of market
strategies and the important property of a market strategy being self-financing.

The market in this model basically consists of two investment opportunities. The first one is
to invest in the short rate, which is represented by the money-market account

Mt = e
∫ t
0
rsds

for t ∈ [0, T ]. Besides, the market provides bonds for all maturities within the time horizon. In
particular, the price of such a bond with maturity τ ∈ [0, T ] at time t is given by the expression
from Section 3. Additionally, we assume that the value of the bond after the maturity grows with
the short rate. This can be seen as investing in the money-market account after receiving the
payoff. Hence, we have

P (t, τ) =

exp
(
A(t, τ)−B(t, τ)rt − 1

2B(t, τ)2λt

)
, t ∈ [0, τ ]

exp
( ∫ t

τ
rsds

)
, t ∈ [τ, T ]

However, we want to use the money-market account (Mt)t as a numéraire in the following, which is
the common practice in models of financial markets. So we restrict to the discounted bond prices

P̃ (t, τ) = e−
∫ t
0
rsdsP (t, τ).

It is worth to mention that, according to the assumption from above, the value of the discounted
bond price is remaining constant after the maturity.

Now the agents can participate in the market by buying and selling a finite number of discounted
bonds over the time horizon. This means that they can choose a finite number of bonds and decide
on how much of them they want to buy or sell to create a portfolio.

Definition 4.1 A market strategy (π, τ) is a stochastic process

π = (π1
t , ..., π

n
t )t

with values in Rn such that πitP̃ (t, τi) ∈ L2
G(Ωt) for all t ∈ [0, T ] for i = 1, ..., n and a partition

τ = (τ1, ..., τn)

such that 0 < τ1 ≤ ... ≤ τn ≤ T for n < ∞. The corresponding (discounted) portfolio value at
time t ∈ [0, T ] is given by

ṽt(π, τ) =

n∑
i=1

πitP̃ (t, τi).

13



Furthermore, we want to restrict ourselves to the class of self-financing strategies. This property
ensures that no money is added to or taken from the portfolio.

Definition 4.2 A marktet strategy (π, τ) is self-financing if
(
πitP̃ (t, τi)

)
t
∈ M2

G(0, T ) for all
i ∈ {1, ...n} and

ṽt(π, τ)− ṽ0(π, τ) =

n∑
i=1

∫ t

0

πisdP̃ (s, τi)

for all t ∈ [0, T ].

Thus, the difference between the portfolio values consists of the so-called gains from trade that can
be found on the right-hand side of the equation in the definition. The assumption

(
πitP̃ (t, τi)

)
t
∈

M2
G(0, T ) is a technical one ensuring that the integrals are well-defined by using the integral

representation of the discounted bond price P̃ in Lemma 3.1.

4.2 No-Arbitrage

Now, as the most important concepts regarding the structure of a bond market are defined, we
can move on examining if there are any arbitrage opportunities hiding in the market. So first
of all, we introduce the notion of arbitrage in this framework and then show that the market is
arbitrage-free.

The concept of arbitrage intuitively describes the fact of making something out of nothing or,
more detailed, getting the chance to win money without any risk of losing some. Since we are
dealing with more than one measure, we need to consider a definition slightly different from the
classical one. However, this is the one chosen in other models using a set of priors, like Vorbrink
(2014).

Definition 4.3 A market strategy (π, τ) is an arbitrage if it is self-financing and it holds

(i)

ṽ0(π, τ) ≤ 0,

(ii)

ṽT (π, τ) ≥ 0 P-quasi surely,

(iii)

P θ
(
ṽT (π, τ) > 0

)
> 0 for at least one P θ ∈ P.

So this is actually a weaker version than requiring that the strategy has to be an arbitrage in the
classical sense with respect to all measures, since the probability of a strictly positive win has not
to be strictly positive under each measure. Therefore, the following result should not be surprising,
as there are, intuitively speaking, a set of equivalent measures and prices such that the discounted
bonds are martingales under all of those measures.

Proposition 4.1 Let the bond prices be given by the expression from above. Then the bond market
is arbitrage-free, i. e., there is no market strategy which is an arbitrage.

14



The proof works like the “easy” direction of the fundamental theorem of asset pricing in the single
measure setting. We assume that there exists an arbitrage and then use the martingale property
of the bond prices to get a contradiction.

Proof: First of all, let us suppose that there is arbitrage. Then there exists a self-financing
strategy (π, τ) satisfying

ṽ0(π, τ) ≤ 0,

ṽT (π, τ) ≥ 0 P-quasi surely,

and

P θ
(
ṽT (π, τ) > 0

)
> 0 for at least one P θ ∈ P.

Hence, there exists a measure P θ ∈ P such that

0 < EP θ
(
ṽT (π, τ)− ṽ0(π, τ)

)
≤ Ê

(
ṽT (π, τ)− ṽ0(π, τ)

)
.

Indeed, we know that Ê and ÊG̃ are the same on L2
G(Ω) and, in particular, that the difference of

the portfolio values is an element of L2
G(Ω). Hence, it holds

ÊG̃
(
ṽT (π, τ)− ṽ0(π, τ)

)
> 0.

Furthermore, we can deduce the same inequality for Ẽ, since

EB̃0 = exp
(∫ T

0

λsdB̃s − 1
2

∫ T

0

λsd〈B̃〉s
)
> 0 P̃-quasi surely.

Thus, we have

Ẽ
(
ṽT (π, τ)− ṽ0(π, τ)

)
= ÊG̃

(
EB̃0
(
ṽT (π, τ)− ṽ0(π, τ)

))
> 0.

Besides, we know that (π, τ) is self-financing and Ẽ is sublinear. So we get

Ẽ
(
ṽT (π, τ)− ṽ0(π, τ)

)
= Ẽ

( n∑
i=1

∫ T

0

πitdP̃ (t, τi)
)
≤

n∑
i=1

Ẽ
(∫ T

0

πitdP̃ (t, τi)
)
.

Now we can use the fact that the discounted bond price is constant after the maturity and the
representation from Lemma 3.1 to deduce

Ẽ
(∫ T

0

πitdP̃ (t, τi)
)

= Ẽ
(
−
∫ τi

0

πitB(t, τi)P̃ (t, τi)dB̄t

)
for all i ∈ {1, ..., n}. However, the integrand is an element of the space M2

G(0, T ) by assumption

and (B̄t)t is a G-Brownian motion under Ẽ. Hence, we know that the expression on the right-hand
side is zero, which is a standard result of the calculus from Peng (2010). So we can deduce

Ẽ
(∫ T

0

πitdP̃ (t, τi)
)

= 0

for all i ∈ {1, ..., n}. In the end, this yields the contradiction. �

Now, as the market is arbitrage-free, we formally know that the bond prices from Lemma 3.1
are applicable to the market.
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5 Drift Uncertainty

As it is mentioned above, we finally want to extend the model to uncertainty about the mean
reversion level of the short rate in addition to the volatility uncertainty, since the mean reversion
level is still a parameter that needs to be chosen. For this purpose, we could replace the integral
of the mean reversion level by the quadratic variation process of the G-Brownian motion, since
it has mean uncertainty. However, this would imply that the evolution of the mean reversion
level and the quadratic variation of the short rate are the same, which is not really satisfying.
Therefore, we need to construct a new set of beliefs to add a new source of uncertainty. Unlike the
previous discussion, we do not show how to change the dynamics of the short rate, but directly
suppose that it is evolving under the modified dynamics, which are adjusted by the market price of
uncertainty. However, it is only shown how to price the bonds such that the discounted bond can
be represented as an integral with respect to a G-Brownian motion without the discussion about
the market structure and no-arbitrage, since this is very similar to the previous case.

5.1 Set of Beliefs

In addition to the G-Brownian motion, we need another process representing the uncertainty
about the drift or, in this particular case, about the mean reversion level of the short rate. So it
is necessary to construct a new set of beliefs in order to add another source of uncertainty to the
model.

Let (Ω̃, F̃ , P̃ ) be the probability space from Subsection 3.2, i. e., Ω̃ := C0

(
[0, T ],R2

)
, F̃ := B(Ω̃),

and P̃ is the Wiener measure on Ω̃. Furthermore, we denote by (W̃t)t a 2-dimensional Wiener
process on (Ω̃, F̃ , P̃ ) and we define the canonical process

(Bt, B̃t)(ω̃) := ω̃t.

Additionally, (F̃t)t is chosen to be the filtration generated by (Bt, B̃t)t completed by all P̃ -null
sets. The state space is now given by

Θ∗ :=
{
γ ∈ R2×2

∣∣∣γ11 = µ, γ22 = σ and γ12 = γ21 = 0 for (µ2, σ) ∈ [µ, µ]×Θ
}
,

which is a non-empty, bounded and closed subset of R2×2, and the collection of all Θ∗-valued,
progressively measurable processes θ∗ = (θ∗t )t is denoted by AΘ∗

. Now we define the measure

P θ
∗

:= P̃ ◦
(∫ T

0

θ∗t W̃t

)−1

for all θ∗ ∈ AΘ∗
and denote by P∗ the closure of {P θ∗ |θ∗ ∈ AΘ∗} under the topology of weak

convergence. Then we can define E∗ as the upper expectation of P∗, i. e.,

E∗(X) := sup
P θ∗∈P∗

EP θ∗ (X)

for all measurable X such that EP θ∗ (X) exists for all P θ
∗ ∈ P∗. Now (Bt, B̃t)t becomes a 2-

dimensional G∗-Brownian motion under E∗, where

G∗(A) = 1
2 sup
γ∈Θ∗

tr(γγTA).
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So we can use the G-Brownian motion (B̃t)t, as in the previous model, to represent the volatility
uncertainty and the quadratic variation process (〈B〉t)t to model the mean reversion level of the
short rate, since it has mean uncertainty, i. e.,

E∗
(
〈B〉t

)
= µt > µt = −E∗

(
− 〈B〉t

)
.

Thus, the process (〈B〉t)t grows with a rate that is at most µ and at least µ. Besides, one should
note that the equations in the following hold P∗-quasi surely.

5.2 Bond Prices

After constructing the general framework, we are able to incorporate the drift uncertainty into
the short rate dynamics. Thus, we quickly introduce the short rate dynamics in this subsection
and the adjustment with respect to the market price of uncertainty. Furthermore, we show how to
price bonds in a manner that is similar to Subsection 3.3.

Now the introduction of the quadratic variation process (〈B〉t)t leads to the dynamics

rt = r0 + 〈B〉t −
∫ t

0

αrsds+ B̃t

for the short rate, since we are uncertain about the mean reversion level. The solution is then
given by

rt = e−αtr0 +

∫ t

0

e−α(t−s)d〈B〉s +

∫ t

0

e−α(t−s)dB̃s.

This can be verified by the Itô formula, which is shown in Appendix A. However, we directly want
to suppose, without changing the dynamics, that the short rate is given by

rt = r0 + 〈B〉t +

∫ t

0

(
− αrs + λs

)
ds+ B̃t,

where (−λt)t is again representing the market price of uncertainty. Therefore, there is the question
on how to choose this quantity. In this case, the uncertainty is not completely characterized by
the variance of the short rate,

λ2
t :=

∫ t

0

e−2α(t−s)d〈B̃〉s,

as in the previous model. Hence, we need to add something representing the uncertainty about
the mean, which is given by

λ1
t :=

∫ t

0

e−α(t−s)d〈B〉s,

i. e., the uncertain part of the mean value of the short rate. Thus, we set

λt := λ1
t + λ2

t

and henceforth suppose that the short rate evolves according to the dynamics

rt = r0 + 〈B〉t +

∫ t

0

(
− αrs +

∫ s

0

e−α(s−u)d〈B〉u +

∫ s

0

e−2α(s−u)d〈B̃〉u
)
ds+ B̃t.

With this particular choice, we can provide an expression for bond prices ensuring that the bond
market is arbitrage-free.
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Lemma 5.1 Let the price of a bond with maturity τ at time t for t ≤ τ ≤ T be given by

P (t, τ) = exp
(
B(t, τ)λ1

t −B(t, τ)rt − 1
2B(t, τ)2λ2

t

)
,

where B is a function satisfying the ordinary differential equation

B′(t, τ) = αB(t, τ)− 1

B(τ, τ) = 0.

Then it holds

P̃ (t, τ) = P̃ (0, τ)−
∫ t

0

B(s, τ)P̃ (s, τ)dB̃s

and

P (τ, τ) = 1.

The proof is again based on the application of the Itô formula and some rearrangement, although
the expressions are looking a little different as we have the additional source of uncertainty.

Proof: First of all, define the processes

Λ1
t :=

∫ t

0

eαsd〈B〉s,

Λ2
t :=

∫ t

0

e2αsd〈B̃〉s,

and

Rt :=

∫ t

0

rsds.

Then the discounted bond prices are given by

P̃ (t, τ) =e−
∫ t
0
rsdsP (t, τ)

= exp
(
B(t, τ)e−αtΛ1

t −B(t, τ)rt − 1
2B(t, τ)2e−2αtΛ2

t −Rt
)
,

where (rt)t, (Λ1
t )t, (Λ2

t )t, and (Rt)t are processes satisfying the dynamics

rt =r0 + 〈B〉t +

∫ t

0

(
− αrs + e−αsΛ1

s + e−2αsΛ2
s

)
ds+ B̃t

Λ1
t =Λ1

0 +

∫ t

0

eαsd〈B〉s

Λ2
t =Λ2

0 +

∫ t

0

e2αsd〈B̃〉s

Rt =R0 +

∫ t

0

rsds.
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So we can define the function f : [0, T ]× R4 → R by

f(t, x) := exp
(
B(t, τ)e−αtx2 −B(t, τ)x1 − 1

2B(t, τ)2e−2αtx3 − x4

)
in order to apply Itô to f(t,Xt), where (Xt)t = (rt,Λ

1
t ,Λ

2
t , Rt). Then we get

f(t,Xt) =f(0, X0) +

∫ t

0

∂x1
f(s,Xs)dB̃s

+

∫ t

0

(
∂tf(s,Xs) + ∂x1

f(s,Xs)
(
− αrs + e−αsΛ1

s + e−2αsΛ2
s

)
+ ∂x4

f(s,Xs)rs︸ ︷︷ ︸
=:∆1(s)

)
ds

+

∫ t

0

(
∂x2f(s,Xs)e

αs + ∂x1f(s,Xs)︸ ︷︷ ︸
=:∆2(s)

)
d〈B〉s

+

∫ t

0

(
∂x3f(s,Xs)e

2αs + 1
2∂

2
x1
f(s,Xs)︸ ︷︷ ︸

=:∆3(s)

)
d〈B̃〉s.

Plugging in the derivatives of f yields

∆1(t)

f(t,Xt)
=B′(t, τ)e−αtΛ1

t −B(t, τ)e−αtαΛ1
t −B′(t, τ)rt

−B(t, τ)B′(t, τ)e−2αtΛ2
t +B(t, τ)2e−2αtαΛ2

t

−B(t, τ)
(
− αrt + e−αtΛ1

t + e−2αtΛ2
t

)
− rt

=e−αt
(
B′(t, τ)− αB(t, τ) + 1︸ ︷︷ ︸

=0

)
Λ1
t −

(
B′(t, τ)− αB(t, τ) + 1︸ ︷︷ ︸

=0

)
rt

−B(t, τ)e−2αt
(
B′(t, τ)− αB(t, τ) + 1︸ ︷︷ ︸

=0

)
Λ2
t

=0,

∆2(t)

f(t,Xt)
= B(t, τ)e−αteαt −B(t, τ) = 0,

and

∆3(t)

f(t,Xt)
= − 1

2B(t, τ)2e−2αte2αt + 1
2B(t, τ)2 = 0.

Hence, it holds

P̃ (t, τ) = P̃ (0, τ)−
∫ t

0

B(s, τ)P̃ (s, τ)dB̃s,

since

P̃ (t, τ) = f(t,Xt).
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Besides, it is easy to see that P satisfies the terminal condition. �

If we compare the expression for the price of the bond with the one from Subsection 3.3, we
see that the function A completely disappears. Instead, we have another term depending on the
market price of uncertainty. So compared to the traditional models, we do not have to do any
estimations about the evolution of the mean reversion level or the volatility in the future. However,
we have to specify the current value of the market price of uncertainty. Therefore, one would have
to estimate the evolution of the mean reversion level and the quadratic variation of the short rate
in the past. Another important fact is that the extended model has, unlike the previous model, an
endogenous nature, since the current term structure is now meant to be an output of the model.

6 Conclusion

This paper shows how to construct a short rate model in a more realistic set up than the traditional
one by incorporating Knightian uncertainty and how to characterize the whole term structure
without admitting arbitrage.

The model is divided into two parts. The first and main part deals with volatility uncertainty
by using a G-Brownian motion. Within this scope, it is shown how to construct the short rate
and in particular, how to price bonds. Furthermore, there is a detailed description of the bond
market structure and the notion of arbitrage in order to prove that the market is arbitrage-free,
since the concept of no-arbitrage under Knightian uncertainty differs from the classical framework.
The second part extends the model to drift uncertainty to completely overcome the problem of
parameter estimation.

A Appendix

A.1 Verification of the Solution to the SDEs in Subsection 2.2 and 5.2

To verify that the solution of

rt = r0 +

∫ t

0

(
µs − αrs

)
ds+Bt

is given by

rt = e−αtr0 +

∫ t

0

e−α(t−s)µsds+

∫ t

0

e−α(t−s)dBs,

we define the function

f(t, x) := e−αtx

and apply Itô to f(t,Xt), where

Xt := r0 +

∫ t

0

eαsµsds+

∫ t

0

eαsdBs.
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Then we get

rt = f(t,Xt) = f(0, X0)︸ ︷︷ ︸
=r0

+

∫ t

0

(
∂tf(s,Xs) + ∂xf(s,Xs)e

αsµs

)
ds+

∫ t

0

∂xf(s,Xs)e
αsdBs

=r0 +

∫ t

0

(
− α f(s,Xs)︸ ︷︷ ︸

=rs

+ e−αseαs︸ ︷︷ ︸
=1

µs

)
ds+

∫ t

0

e−αseαs︸ ︷︷ ︸
=1

dBs

=r0 +

∫ t

0

(
µs − αrs

)
ds+Bt.

Analogously, one can show that

rt = e−αtr0 +

∫ t

0

e−α(t−s)d〈B〉s +

∫ t

0

e−α(t−s)dB̃s

solves

rt = r0 + 〈B〉t −
∫ t

0

αrsds+ B̃t.
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