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1 Introduction

Benoit and Krishna (1984) proved a finite-horizon perfect folk theorem under two suffi-

cient conditions on the stage-game. The first condition is the full-dimensionality defined

in Fudenberg and Maskin (1986). A stage-game meets the full-dimensionality condition

if the dimension of the set of feasible payoff vectors equals the number of players. The

second condition of Benoit and Krishna (1984) is that each player receives at least two

distinct payoffs at stage-game Nash equilibria. Smith (1995) generalized the result of

Benoit and Krishna (1984) and provided a necessary and sufficient condition for the

finite-horizon perfect folk theorem. Smith’s condition is that the stage-game has recur-

sively distinct Nash payoffs. This basically means that there exists a time horizon T such

that each player receives at least two distinct payoffs at subgame perfect Nash equilibria

of the T -fold repeated game.

In the proof of this result, and under the assumption that the stage-game has recur-

sively distinct Nash payoffs, Smith constructed a family of five-phase strategy profiles to

approximate feasible payoff vectors that dominate the effective minimax payoff vector of

the stage-game. These strategy profiles are not subgame perfect Nash equilibria of the

finitely repeated game. I illustrate this fact with a counter-example. However, the char-

acterization of attainable payoff vectors by Smith remains true. I provide an alternative

proof.

This note is organized as follows. Section 2 provides a counter-example and discusses

the failure of Smith’s (1995) proof. Section 3 recalls the model and formally states the

finite-horizon perfect folk theorem of Smith (1995) and Section 4 provides an alternative

proof the later result.

2 The counter-example

2.1 The stage-game

Consider the three-player stage-game G whose payoff matrix is given in Table 1. In the

game G, player 1 chooses lines (a11 or a21), player 2 chooses columns (a12 or a22) and player

3 chooses matrices (a13 or a23).

The pure action profiles (a21, a
1
2, a

2
3) and (a11, a

2
2, a

2
3) are Nash equilibria of the stage-

game G and each player receives distinct payoffs at those action profiles. Therefore, this

game has recursively distinct Nash payoffs, see Definition 1. Players 1 and 2 have the
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a13 a23
a12 a22

a11 0 0 0 2 2 0
a21 0 0 0 1 1 0

a12 a22
2 2 2 3 3 3
2 2 1 2 2 2

Table 1: Payoff matrix of the stage-game G.

same utility function and are therefore equivalent.3 The pure effective minimax payoff

of player 1 (respectively player 2) equals 1 and is uniquely provided by the action profile

w1 = w2 = (a21, a
2
2, a

1
3).

4

The payoff vector u = (3
2
, 3
2
, 3
2
) is feasible and strictly dominates the effective mini-

max payoff vector µ̃ = (1, 1, 1). The payoff vector u is therefore approachable by means

of subgame perfect Nash equilibria of the finitely-repeated game with discounting; see

Theorem 1.

In the proof of Theorem 1 of Smith (1995) which is stated in page 9 of this note, to

approach the feasible payoff vector u, the author uses a five-phase strategy. I recall it

below and show that it is not a subgame perfect Nash equilibrium profile.

2.2 The five-phase strategy of Smith

The strategy profile used by Smith (1995) employs the concept of payoff asymmetry

family that I briefly recall below.

2.2.1 The payoff asymmetry family

The concept of payoff asymmetry family is introduced by Abreu et al. (1994). Such a

family allows to suitably reward effective punishers after a punishment phase. In our

example, the payoff vectors x1 = x2 = (1.3, 1.3, 1.3) and x3 = (1.4, 1.4, 1.2) form a payoff

asymmetry family relatively to u. Indeed, the payoff family {x1, x2, x3} meets the fol-

lowing requirements:

(A1) xi >> µ̃ for all i ∈ {1, 2, 3}, [strict individually rationality]

3Player i is equivalent to player j in the game G if the utility function of player i is a positive affine
transformation of the utility function of player j.

4The mixed effective minimax payoff of both players 1 and 2 also equals 1 and is uniquely provided
by the pure action profile w1.
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(A2) xii < ui for all i ∈ {1, 2, 3}, [target payoff domination]

and

(A3′) xii < xji for all i, j ∈ {1, 2, 3}, i � j.5 [payoff asymmetry]

I should notice that (A3′) is an adjusted version of the original requirement (3) in

Abreu et al. (1994) where the game meets the NEU (non-equivalent utility) property.

2.2.2 Length of phases

Let βi be the best payoff vector of player i in the game G.

Let ωi be worst payoff vector of player i in the game G.

Choose q such that for all i, ωii + qxii > βii + 1. Take q = 4.

Given q, choose r such that for all j with j � i,

qωjj + rxij > βjj + rxjj + (q − 1)uj + 1. Take r = 86.

Take th(q + r) = 3(q + r).

2.2.3 Smith’s strategy

Let a be the outcome of a public randomization device that has an average payoff of

u = (3
2
, 3
2
, 3
2
).

Let T ≥ th(r + q) and σ be the strategy profile of the finitely-repeated game G(T )

described by the following five phases.

1. MAIN PATH: Play a until period T − th(r + q). [If any player i deviates early,

start 3; if some player deviates late, start 5.6]

2. GOOD RECURSIVE PHASE: Play the stage-game Nash equilibrium profile

(a11, a
2
2, a

2
3) till the end of the finitely-repeated game G(T ).

5The notation i � j means that player i is not equivalent to player j in the game G.
6A deviation is called late if it occurs during the final q + r + th(r + q) periods of the repeated game;

all others are called early deviations.
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3. MINIMAX PHASE: Play wi for q periods. [If player j (with j � i) deviates, start

4.] Set j ← i.

4. REWARD PHASE: Play xj for r periods. [ If i deviates early, restart 3; if some

player deviates late, start 5.]

5. BAD RECURSIVE NASH PHASE: Play the stage-game Nash equilibrium (a21, a
1
2, a

2
3)

until the end of the game.

2.2.4 A profitable deviation from σ

For all k ≥ 0, let T (k) = k + r + q + th(r + q). Let σ′1 be a strategy of player 1 in

which player 1 deviates from a in the first period of the repeated game as well as at

the beginning of each REWARD PHASE and plays her stage-game best response in

each period of the MINIMAX PHASE. This deviation is profitable for large k. In-

deed, if player 1 does not deviate from σ, she gets at most an expected payoff of

A(k) = 1
T (k)
{β1 + 3(k+r+q−1)

2
+ 3th(r + q)}.

If she deviates and plays σ′1, she gets at least B(k) = 1
T (k)
{2(k − dk−1

q+1
e − 2)} where

dk−1
q+1
e is the smallest integer greater than or equal to k−1

q+1
.

As k goes to ∞, A(k) goes to 3
2

and B(k) goes to 8
5
.

This means that for sufficiently long time horizon T and sufficiently high discount

factor δ, the strategy profile σ is not a Nash equilibrium of the finitely-repeated game

G(δ, T ) and therefore not a subgame perfect Nash equilibrium of G(δ, T ).

2.3 Intuition behind the failure of Smith’s proof

Denote by wi the profile of stage-game mixed actions at which player i receives her ef-

fective minimax payoff.7

If the utility function of player i in the stage-game G is equivalent to that of another

player, say player j, then the effective minimax payoff of player i might be strictly greater

than her minimax payoff and player i might even have a strict incentive to deviate from

7The strategy profile defined in page 12 has a slightly different interpretation. Indeed at that profile,
a player whose utility function is equivalent to that of player i might have incentive to deviate. If she
does so, she receives at most her stage-game effective minimax payoff.

page 5



Ghislain-Herman DEMEZE-JOUATSA Bielefeld University

wi. Indeed, it might be the case that only player j plays a stage-game best response at

the profile wi. In that case, it is not convenient to use the five-phase strategy profile of

Smith (1995) to approximate a payoff vector in which player i receives strictly less than

her best response payoff at wi.

Indeed, during the third phase of the five-phase strategy of Smith (1995), player i is

minimaxed using the stage-game action profile wi where she might not be at a stage-

game best response. In addition, during this phase, deviations by any player who is

equivalent to player i (including player i) are ignored. As in the counter-example above,

player i might find it profitable to deviate from an ongoing path (either from the MAIN

PATH or from the REWARD PHASE) to push her fellow players to start the MINIMAX

PHASE where she is punished.

This failure of is not minor in the sense that for any specification of the action profile

to be used in the MINIMAX PHASE where i = 1, at least one player will find it strictly

profitable to deviate from the five-phase strategy of Smith (1995).

Denote a MINIMAX PHASE where i = 1 by MP(1).

Indeed, if for a given specification w1 of the stage-game profile to be repeatedly played

in the phase MP(1) the strategy profile σ is a subgame perfect Nash equilibrium of the

finitely-repeated game G(T ), then at w1 player 3 has to play a13 with strictly positive

probability. Otherwise the punishment payoff of player 1 in the minimax phase MP(1)

will be strictly greater than player 1’s entry in the target payoff vector u = (3
2
, 3
2
, 3
2
).

Given the choice of player 3 in w1, player 2 has to play a22 with probability 1 at the

profile w1. Otherwise she will find it strictly profitable to deviate from σ and repeatedly

play her best response at w1 during the phase MP(1), as she will not be punished if she

does so. Given that player 2 plays a22 with probability 1 in the profile w1, player 1 has to

play a11 with probability 1 in the profile w1. Otherwise she will find it strictly profitable

to deviate and to play a11 with probability 1 in each round of the phase MP(1). There-

fore, only convex sums of payoff vectors (2, 2, 0) and (3, 3, 3) are possible payoff to the

profile of actions w1. This implies that player 1 receives an average payoff greater than or

equal to 2 in each round of the minimax phase MP(1), which is strictly greater than her

entry in the target equilibrium payoff u. This contrasts the idea of punishment behind

a minimax phase, which is to deter deviations. A player should not find it profitable to

start a minimax phase.

The above reasoning teaches that the incentives of any player who is not at her stage-
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game best response at the profile w1 have to be controlled during a minimax phase. Note

that this reasoning is not possible in case the stage-game meets the NEU (non-equivalent

utility) property of Abreu et al. (1994) or the full dimensionality property of Fudenberg

and Maskin (1986). Under those conditions, no player is equivalent to another and

therefore any stage-game profile at which player i plays a stage-game best response and

receives her minimax payoff is suitable for a minimax phase, see Benoit and Krishna

(1984) and Smith (1993) for the finite-horizon perfect folk theorem under those proper-

ties.

The methods of Benoit and Krishna (1984) and Smith (1993) do not easily extend to

games where some players have equivalent utility functions. But still, the finite-horizon

perfect folk theorem for games that possibly violate the NEU condition as stated in

Smith (1995) holds. This note provides a clear proof.

In the next section I recall Smith (1995)’s model and state his finite-horizon perfect

folk theorem. I provide the proof of the latter theorem in Section 4.

3 Smith’s model

3.1 The stage-game

Let G = 〈Ai, πi; i = 1, ..., n〉 be a finite normal form n-player game, where Ai is player

i’s finite set of actions, and πi : A = ×ni=1Ai → R is player i’s utility function. Let Mi

be player i’s mixed action set and let M = ×ni=1Mi. For any profile of actions a ∈ A,

set π(a) = (π1(a), . . . , πn(a)). For any profile of mixed actions µ = (µ1, . . . , µn) ∈ M ,

denote by π(µ) = (π1(µ), . . . , πn(µ)) the vector of expected payoffs of players.

Let J = {1, . . . , n} be the set of players. Let J (i) be the set of players whose utility

function is a positive affine transformation of πi. Let

µ̃i = minµ∈M maxj∈J (i) maxµ′j πi(µ
′
j, µ−j)

be the effective minimax payoff of player i. Normalize the utilities functions of players

such that µ̃i = 0 for all i. Let F = co{π(µ) : µ ∈ M} be convex hull of the set of

expected payoff vectors. Let F ∗ = {u ∈ F : ui > 0, for all i} be the feasible and strictly

rational set.

Given a subset of players J ′ = {j1, . . . , jm} ⊂ J and their mixed actions profile

aJ ′ = (aj1 , . . . , ajm) ∈Mj1 ×Mj2 × · · · ×Mjm ≡MJ ′ , (1)
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let G(aJ ′) be the induced (n−m)−player game for players J \J ′ obtained from G when

the actions of players J ′ are fixed to aJ ′ .

Define a Nash decomposition of the game G as an increasing sequence of h ≥ 0

nonempty subset of players from J , namely

{∅ = J0 ( J1 ( · · · ( Jh ⊆ J}, (2)

so that for g = 1, . . . , h, actions eJg−1 , fJg−1 ∈ MJg−1 exist with a pair of Nash payoff

vectors y(eJg−1) of G(eJg−1) and y(fJg−1) of G(fJg−1) different exactly for players in

Jg\Jg−1, ie

y(eJg−1)i 6= y(fJg−1)i (3)

for all i ∈ Jg\Jg−1.

Definition 1 The game G has recursively distinct Nash payoffs if there is a Nash de-

composition with Jh = J .

3.2 The finitely-repeated game

Let G(δ, T ) be the T−fold repeated game in which players discount the futur with the

parameter δ < 1. Smith (1995) assumed that the monitoring structure is perfect so that

each player can condition her current action on the past actions of all players.

A strategy behavioral strategy of player i in the repeated game G(δ, T ) is a T−tuple

αi = (αi1, . . . , αi,T ) where for all t ∈ {1, . . . , T} and past history ht ∈ At−1 (with A0 = ∅),

αit(h
t) is the (possibly mixed) action that player i intends to play at time t if she observes

ht. The objective function of player i in the finitely-repeated game G(δ, T ) is the expected

discounted sum of her stage-game payoffs:

πδiT (α) := 1−δ
1−δT

∑T
t=1 δ

t−1πit(α)

where πit(α) is player i′s expected payoff at period t with the strategy profile α =

(α1, . . . , αn). The strategy profile α is a Nash equilibrium of the finitely-repeated game

G(δ, T ) if for all player i, αi maximizes the objective function πδiT (·, α−i) of player i.

The strategy profile α is a subgame perfect Nash equilibrium of the finitely-repeated

game G(δ, T ) if after any history ht, the restriction α|ht of α to the history ht is a Nash

equilibrium of the remaining game.

Let
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V (δ, T ) = {πδT (α) = (πδ1T (α), · · · , πδnT (α)) | α is a

subgame perfect Nash equilibrium of G(δ, T )}

be the set of subgame perfect Nash equilibrium payoff vectors of the finitely-repeated

game G(δ, T ).

Theorem 1 (See Smith (1995)) Suppose that the stage-game G has recursively dis-

tinct Nash payoffs. Then for the finitely-repeated game G(δ, T ), ∀u ∈ F ∗ and ∀ε > 0,

∃T0 <∞ and δ0 < 1 so that T ≥ T0 and δ ∈ [δ0, 1] ⇒ ∃v ∈ V (δ, T ) with ‖u− v‖ < ε.

4 A proof of Smith’s folk theorem

I follow Smith (1995) and assume that players condition their choices on the outcome of

a publicly observed exogenous continuous random variable. For simplicity, I also assume

that the discount factor equals 1. The later assumption is without loss of generality as

it does not change the incentives of players if those are strict.

The main ingredient of the proof of Theorem 1 is a multi-level reward path function

whose existence is guaranteed by the recursively distinct Nash payoffs condition, see

Lemma 1. The multi-level reward path function allows to independently leverage the

behavior of players near the end of the finitely-repeated game, no matter if there are

or not players who have equivalent utility functions. In addition, and backwardly, this

multi-level reward path function allows to leverage the behavior of players at any stage

of the finitely-repeated game.

Gossner (1995) used similar method to prove a finite-horizon perfect folk theorem with

unobservable mixed strategies. The advantage of Lemma 1 is that it does not require

the dimension of the set of feasible payoff vectors to equal the number of players nei-

ther each player to have at least two distinct payoffs at Nash equilibria of the stage-game.

Denote by G(T ) the T -fold finitely repeated game G(δ, T ) where the discount factor

δ equals 1. In the game G(T ), the utility of player i at the behavioral strategy α is

πTi (α) := limδ→1 π
δ
iT (α)

which is equal to the payoff average 1
T

∑T
t=1 πiT (α). Let

V (1, T ) := {πT (α) = (πT1 (α), · · · , πTn (α)) | α is a SPNE of G(T )}

be the set of subgame perfect Nash equilibrium payoff vectors of the finitely repeated

game G(T ) and let
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AP = {u ∈ F | ∀ε > 0,∃T0 <∞ so that T ≥ T0 ⇒ ∃v ∈ V (1, T ) with ‖u− v‖ < ε}

be the set of feasible payoff vectors that are approachable by means of subgame perfect

Nash equilibria of finite repetitions of the stage-game G. To prove Theorem 1, we will

show that F ∗ ⊆ AP .

Lemma 1 Suppose that the stage-game G has recursively distinct Nash payoffs. Then

there exists φ > 0 such that for all p ≥ 0, there exists rp > 0 and

θp : {0, 1}n ∪ {(−1, · · · ,−1)} →M rp := M × · · · ×M

such that for all γ ∈ {0, 1}n ∪ {(−1, · · · ,−1)}, θp(γ) is a play path generated by a

subgame perfect Nash equilibrium of the repeated game G(rp). Furthermore, for all i ∈ N ,

γ, γ′ ∈ {0, 1}n we have

π
rp
i [θp(1, γ−i)]− πrpi [θp(0, γ−i)] ≥ φ (4)

π
rp
i [θp(γ)]− πrpi [θp(−1, · · · ,−1)] ≥ φ (5)

|πrpi [θp(γ)]− πrpi [θp(γJ (i)
, γ′
J\J (i)

)]| < 1

2p
. (6)

This lemma says that, if the stage-game G has recursively distinct Nash payoffs, then

we can (almost-) independently leverage the behavior of each player near the end of the

game. This lemma also allows to construct credible punishment schemes and to approx-

imate any feasible payoff vector that dominates the effective minimax payoff vector by

means of SPNE of the finitely repeated game.

Assume that the finitely repeated game will last with a reward phase where players

are rewarded with respect to their behavior in the earlier stage of the repeated game,

that players are informed that the reward path to be used is a SPNE path θp(γ) of the

repeated game G(rp). Furthermore, assume that γ is initialized to the value (1, · · · , 1)

and that each player has the possibility to update her entry in the vector γ each time

where a player whose utility function is not equivalent to her deviates. Inequality (4)

says that, given the profile γ−i of players of the block J \{i}, player i strictly prefers the

path θp(1, γ−i) to the path θp(0, γ−i). Inequality (6) ensures that the incentives of play-

ers of different equivalence classes are almost independent for sufficiently large p. The

strategy constructed in the proof of Theorem 1 does not allow a player to strategically

improve her payoff by giving to players whose utilities’ function are equivalent to her a
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chance to update their entries in the vector γ.

Consider for instance the stage-game whose payoff matrix is given by Table 1. In that

game, player 1 and player 2 have the same utility function and are therefore equivalent.

Figure 3 below displays the relative position of the payoff vectors πrp [θp(γ)] where γ ∈
{0, 1}3 ∪ {(−1,−1,−1). The path θp(−1,−1,−1) will allow to deter deviations that

occurs near the end of the game.

: Relative open ball with radius 1
2p

and centre θ(γ)

player 3

p
la

ye
rs

1,
2

� πrp [θp(−1,−1,−1)]

� πrp [θp(0, 0, 1)]

� πrp [θp(0, 1, 1)] = πrp [θp(1, 0, 1)]

� πrp [θp(1, 1, 1)]
-πrp [θp(1, 1, 0)]

-πrp [θp(1, 0, 0)] = πrp [θp(0, 1, 0)]

-πrp [θp(0, 0, 0)]

Figure 3: An example of relative position of the payoff vectors πrp [θp(γ)].

A detailed proof of Lemma 1 is presented in Section 5.

Proof of Smith (1995)’s folk theorem.

Let u be a feasible payoff vector that lies in the relative interior of F ∗, and let a be the

outcome of a public randomization device that has an expected payoff vector of u.

Obtain φ, r1 and θ1 with p = 1 from the Lemma 1. Let q1 > 0 and q2 > 0 such that

0 < q1πi(w
i) + q2r1π

r1
i [θ1(1, · · · , 1)] <

q1 + q2r1
2

ui (7)
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and

−2ρ+
q1
2
ui > 0 for all i ∈ N. (8)

Given q1, q2 and r1, choose r such that

−2(q1 + q2r1)ρ+ rφ > 0. (9)

Given q1 q2, r1 and r, choose p0 > 0 such that

q2r1
2
ui −

r

2p0
> ui −

r

2p0
> 0 (10)

Apply the Lemma 1 to p0 and obtain rp0 and θp0 . Update q1 ← rp0q1; q2 ← rp0q2r1; r ←
rp0r. The quantities φ, θ1, q1, q2, r, r1 and θp0 are such that

0 < q1πi(w
i) + q2π

r1
i [θ1(1, · · · , 1)] <

q1 + q2
2

ui (11)

−2(q1 + q2)ρ+ rφ > 0 (12)

−2ρ+
q1 + q2

2
ui −

r

2p0
> 0 (13)

and

ui −
r

2p0
> 0 for all i ∈ N. (14)

The T−period equilibrium outcome sequence is

a, . . . , a; θp0(1, · · · , 1)

where a is played for T − r periods and the path θp0(1, · · · , 1) is of length r.

Now I describe the subgame perfect Nash equilibrium σ of the finitely-repeated game

that supports the equilibrium path. For all i ∈ J , let wi be a stage-game action profile

such that

maxj∈J (i) maxmj∈Mj
ui(mj, w

i
−j) = 0.

At the action profile wi, no player of the block J (i) has to be at a best response. Playing

a best response to the action profile wi, a player of the block J (i) receives at most her

effective minimax payoff.

Set γ = (1, · · · , 1). From now on, call a deviation late if it occurs during the final

q1+q2+r periods of the finitely-repeated gameG(T ); all others are called early deviations.

The strategy profile σ involves 5 phases and can be graphed as follows:
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2

1

3

45

Early deviation

Late deviation

Lat
e
de

vi
at

io
n

Early
deviation

N
orm

al
p
ath

N
orm

al
p
ath

N
or

m
al

pa
th N

orm
al path

q1 periods at most q1 + q2
periods

q2 periods
rp0 periods

1. MAIN PATH: Play a until period T − r. [If any player i deviates early, start 2; if

some player deviates late, start 3.] Go to 4.

2. MINIMAX PHASE P (i): During this phase, each player j ∈ J (i) has to play her

action wij while each player of the block N\J (i) can play whatever action she wants.

This phase last for q1 periods. [If any player j ∈ J (i) deviates early, restart 2.; if any

player j ∈ J (i) deviates late, start 3.]

At the end of this phase, for all player j /∈ J (i), set γj = 0 if there is at least one period

of the MINIMAX PHASE where player j played an action different to wij and set γj = 1

otherwise. Go to 5.

3. LATE DEVIATION: Each player can play whatever action she want till period

T − r. At period T − r, set γ = (−1, · · · ,−1). Go to 4.

4. END OF THE GAME: Follow r
rp0

times a SPNE that supports the equilibrium

path θp0(γ).
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5. SPE PHASE: Follow q2
r1

times the SPNE of the game G(r1) whose play path is

θ1(1, · · · , 1). Go back to 1.

For sufficiently large time horizon T , the strategy profile σ is a subgame

perfect Nash equilibrium of the finitely repeated game G(T )

In the following, call a player j /∈ J (i) effective punisher if γj = 1 at the end of the

MINIMAX PHASE P (i). I prove the following:

A) It is strictly dominant for any player j /∈ J (i) to be effective punisher during a

MINIMAX PHASE P (i)

B) No early deviation from the MINIMAX PHASE is profitable

C) No early deviation from the MAIN PATH is profitable

D) No late deviation is profitable

A) It is strictly dominant to be effective punisher during a MINIMAX

PHASE

If player j /∈ J (i) is effective punisher, she receives at least:

1. −(q1 + q2)ρ during the MINIMAX PHASE and the SPE PHASE;

2. some payoff Uj till period T − r;

3. r · πrp0i [θp0(1, γ−j)] in the last r periods of the repeated game.

In total she receives at least −(q1 + q2)ρ+ Uj + r · πrp0i [θp0(1, γ−j)].

If player j is not effective punisher, she receives at most:

1. (q1 + q2)ρ during the MINIMAX PHASE and the SPE PHASE;

2. the same payoff Uj till period T − r;

3. r · πrp0i [θp0(0, γ−j)] in the last r periods of the repeated game.

In total (q1 + q2)ρ + Uj + r · πrp0i [θp0(0, γ−j)] which is less than or equal to (q1 + q2)ρ +

Uj + r · πrp0i [θp0(1, γ−j)]− rφ, see inequality (4). As −2(q1 + q2)ρ+ rφ > 0, it is strictly

dominant for any player j /∈ J (i) to be effective punisher.

B) No early deviation from the MINIMAX PHASE is profitable

If player i ∈ J (i) deviates early from the MINIMAX PHASE, she receives at most:
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1. 0 in the deviation period;

2. q1πi(w
i)+q2π

r1
i [θ1(1, · · · , 1)] in the new MINIMAX PHASE and the following SPE

PHASE;

3. some payoff Ui till the end of the game.

If player i does not deviates, she receives at least:

1. q1πi(w
i) + q2π

r1
i [θ1(1, · · · , 1)] + ui till the end of the SPE PHASE;

2. the payoff Ui − r
2p0

till the end of the game.

As ui − r
2p0

> 0, no early deviation from the MINIMAX PHASE is profitable.

C) No early deviation from the MAIN PATH is profitable

If player i deviates early from the MAIN PATH, she receives at most:

1. ρ in the deviation period;

2. q1πi(w
i) + q2π

r1
i [θ1(1, · · · , 1)] in the MINIMAX PHASE and the SPE PHASE;

3. some payoff Ui till period T − r;

4. r · πrp0i [θp0(γJ (i)
, 1, · · · , 1)] in phase 4.

In total ρ+q1πi(w
i)+q2π

r1
i [θ1(1, · · · , 1)]+Ui+r ·π

rp0
i [θp0(γJ (i)

, 1, · · · , 1)] which is strictly

less than ρ+ q1+q2
2
ui + Ui + r · πrp0i [θp0(γJ (i)

, 1, · · · , 1)], see inequality (11).

If player i does not deviates, she receives at least:

1. −ρ+ (q1 + q2) · ui till the end of the SPE PHASE;

2. the same payoff Ui till period T − r;

3. r · πrp0i [θp0(γ)] in phase 4.

In total −ρ+ (q1 + q2) · ui +Ui + r · πrp0i [θp0(γ)] which is strictly greater than −ρ+ (q1 +

q2) · ui + Ui + r · πrp0i [θp0(γJ (i)
, 1, · · · , 1)]− r

2p0
, see inequality (6).

As −2ρ+ q1+q2
2
ui − r

2p0
> 0, no early deviation from the MAIN PATH is profitable.

D) No late deviation is profitable

If from an ongoing path (MAIN PATH or MINIMAX PHASE) player i deviates late,

then she receives at most:

1. (q1 + q2)ρ till the beginning of the END OF THE GAME;
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2. r · πrp0i [θp0(−1, · · · ,−1)] in the END OF THE GAME.

If player i does not deviate, she receives at least:

1. −(q1 + q2)ρ till the beginning of the END OF THE GAME;

2. r · πrp0i [θp0(γ)] in the END OF THE GAME, where γ ∈ {0, 1}n.

As r ·πrp0i [θp0(γ)] ≥ r ·πrp0i [θp0(−1, · · · ,−1)] + rφ and rφ > 2(q1 + q2)ρ, no late deviation

is profitable. This concludes the proof.

5 Proof of intermediate results

In this section I proceed to the proof of Lemma 1. I first show that under the recursively

distinct Nash payoffs condition, each player has many continuation equilibrium payoffs,

which is necessary for the construction of our multi-level reward path function.

Lemma 2 Suppose that the stage-game G has recursively distinct Nash payoffs. Then

there exists T0 > 0 such that for all T > T0, each player receives at least two distinct

payoffs at SPNE of G(T ).

Proof of Lemma 2.

Let {∅ = J0 ( J1 ( · · · ( Jh = J } be the Nash decomposition of G.

I show by induction that for all l ≤ h there exists T0,l > 0 such that each player of Jl
receives distinct payoffs at SPNE of G(T ) for all T > T0,l.

Players of the block J1 receive distinct payoffs at Nash equilibria of G. Therefore, the

property holds for l = 1. Let l < h such that T0,l exists. Let i ∈ Jl+1\Jl, and let µ

be a Nash equilibrium profile of G(µJl) in which player i receives a payoff that is dif-

ferent to her unique stage-game Nash equilibrium payoff. Let η1 and η2 be two SPNE

play paths of G(T0,l + 1) where each player of Jl receives distinct payoffs. The path

ηi = (µ, η1, η2 · · · , η1, η2) is a SPNE play path. At ηi, player i receives a payoff that is

different to her stage-game Nash equilibrium payoff which is also a SPNE payoff. The

conjunction lemma (see Benoit and Krishna (1984)) guarantee the existence of T0,l+1.

Proof of Lemma 1.

The set AP is non-empty and convex and therefore has a relative interior point x. Let

φ > 0 such that the relative ball B̃(x, 5φn) is included in AP . For all γ ∈ {−1, 0, 1}n

and j ∈ J , let

θj(γ) = xj − φ|J (j)|+ 3φ
∑

j′∈J (j) γj′

and
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θ(γ) = (θ1(γ), · · · , θn(γ)).

For all γ ∈ {0, 1}n, we have

θi(1, γ−i)− θi(0, γ−i) = 3φ;

θi(γ)− θi(−1, · · · ,−1) ≥ 3φ

and

‖θ(γ)− x‖ < 5nφ.

Furthermore, since each player receives distinct payoffs within the set AP and players

within the same equivalence class J (i) have equal entry at the payoff vector θ(γ), we

have that

θ(γ) ∈ B̃(x, 5φn) ⊆ AP .8

Let p ≥ 0 and ε = 1
2

min{φ, 1
2p
}. For each γ ∈ {0, 1}n ∪ {(−1, · · · ,−1)}, there exists

T0γp <∞ so that for all T ≥ T0γp, there exists αγp a subgame perfect Nash equilibrium

of the repeated game G(T ) such that ‖πT (αγp)− θ(γ)‖ < ε.

Take rp = max{T0γp | γ ∈ {0, 1}n ∪ {(−1, · · · ,−1)}}. For all γ ∈ {0, 1}n ∪
{(−1, · · · ,−1)} and p ≥ 0, let θp(γ) be the SPNE play path generated by the SPNE αγp

of the repeated game G(rp).
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