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MARKOV CHAINS UNDER NONLINEAR EXPECTATION

MAX NENDEL

Abstract. In this paper, we consider nonlinear continuous-time Markov chains
with a finite state space. We define so-called Q-operators as an extension of
Q-matrices to a nonlinear setup, where the nonlinearity is due to parameter
uncertainty. The main result gives a full characterization of convex Q-operators
in terms of a positive maximum principle, a dual representation by means of Q-
matrices, continuous-time Markov chains under convex expectations and fully
nonlinear ODEs. This extends a well-known characterization of Q-matrices.
Key words: Nonlinear expectations, imprecise Markov chains, nonlinear tran-

sition probabilities, generators of nonlinear ODEs

AMS 2010 Subject Classification: 60J27; 60J35; 47H20; 34A34

1. Introduction and main result

Let S be a finite state space with cardinality |S| = d ∈ N. Throughout, we
identify S = {1, . . . , d} and thus the space of all bounded measurable functions
S → R is Rd. A matrix q = (qij)1≤i,j≤d ∈ Rd×d is called a Q-matrix if it satisfies
the following conditions:

(i) qii ≤ 0 for all i ∈ {1, . . . , d},
(ii) qij ≥ 0 for all i, j ∈ {1, . . . , d} with i 6= j,

(iii)
∑d

j=1 qij = 0 for all i ∈ {1, . . . , d}.
It is well known that every continuous-time Markov chain with certain regularity
properties at time t = 0 can be related to a Q-matrix and vice versa. More
precisely, for a matrix q ∈ Rd×d the following statements are equivalent:

(i) q is a Q-matrix.
(ii) There exists a Markov chain

(
Ω,F ,P, (Xt)t≥0

)
such that

qu0 = lim
h↘0

E
(
u0(Xh)

)
− u0

h

for all u0 ∈ Rd, where u0(i) is the i-th component of u0 for i ∈ {1, . . . , d}.
In this case, for each u0 ∈ Rd, the function u : [0,∞) → Rd, t 7→ E

(
u0(Xt)

)
is

the unique classical solution u ∈ C1
(
[0,∞);Rd

)
of the initial value problem

u′(t) = qu(t), t ≥ 0,

u(0) = u0,
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2 M. NENDEL

i.e. u(t) = etqu0 for all t ≥ 0, where etq is the matrix exponential of tq. We refer
to Norris [13] for a detailed illustration of this relation.

Moreover, it can be shown that a matrix q ∈ Rd×d is a Q-matrix if and only if it
satisfies the positive maximum principle and q1 = 0, where 1 := (1, . . . , 1)T ∈ Rd

denotes the constant 1 vector. Here and throughout this paper, we say that a
(possibly nonlinear) operator Q : Rd → Rd satisfies the positive maximum princi-
ple if for u = (u1, . . . , ud)

T ∈ Rd and i ∈ {1, . . . , d} it holds (Qu)i ≤ 0 whenever
ui ≥ uj for all j ∈ {1, . . . , d}.

The notion of a nonlinear expectation was introduced by Peng [14]. Since
then, nonlinear expectations have been widely used in order to describe model
uncertainty, or so-called Knightian uncertainty, in a probabilistic way. Prominent
examples of nonlinear expectations are the g-expectation, see Coquet et al. [2],
and the G-expectation introduced by Peng [15],[16]. Given a measurable space,
we consider the space L∞(Ω,F) of all bounded measurable functions Ω → R.
A nonlinear expectation is then a functional E : L∞(Ω,F) → R which satisfies
E(X) ≤ E(Y ) whenever X(ω) ≤ Y (ω) for all ω ∈ Ω, and E(α1Ω) = α for all
α ∈ R. It is well known, see e.g. [8] or [10], that every convex expectation E
admits a dual representation in terms of finitely additive probability measures.
If E , however, even admits a dual representation in terms of (countably additive)
probability measures, we say that (Ω,F , E) is a convex expectation space. More
precisely, we say that (Ω,F , E) is a convex expectation space if there exists a
set P of probability measures on (Ω,F) and a family (αP)P∈P ⊂ [0,∞) with
infP∈P αP = 0 such that

E(X) = sup
P∈P

(
EP(X)− αP

)
for all X ∈ L∞(Ω,F), where EP denotes the expectation w.r.t. a probability
measure P on (Ω,F). If αP = 0 for all P ∈ P , we say that (Ω,F , E) is a sublinear
expectation space.

If a nonlinear expectation E is sublinear, then ρ(X) := E(−X) defines a co-
herent monetary risk measure as introduced by Artzner et al. [1] and Delbaen
[5],[6], see also Föllmer and Schied [10] for an overview of convex monetary risk
measures. Another related concept are so-called (Choquet) capacites (see e.g.
Dellacherie-Meyer [7]). However, in many applications the functional approach,
using nonlinear expectations, has certain advantages, in particular regarding ex-
tension theorems or the existence of stochastic processes under model uncertainty,
see e.g. Denk et al. [8].

In [14], Peng introduces a first notion of nonlinear Markov chains. However, the
existence of stochastic processes under nonlinear expectations has only been con-
sidered in terms of finite dimensional nonlinear marginal distributions, whereas
completely path-dependent functionals could not be regarded. Markov chains
under model uncertainty have been considered amongst others by Hartfiel [11],
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Škulj [17] and De Cooman et al. [4]. In [11], Hartfiel considers so-called Markov
set-chains in discrete time, using matrix intervals in order to describe model
uncertainty in the transition matrices. Later, Škulj [17] approached Markov
chains under model uncertainty using Choquet capacities, which results in higher-
dimensional matrices on the power set, while De Cooman et al. [4] considered
imprecise Markov chains using an operator theoretic approach with upper and
lower epectations. In [8, Example 5.3], model uncertainty in the transition ma-
trix is being described by a transition operator, which allows the construction
of discrete-time Markov chains on the canonical path space. In continuous time,
in particular computational aspects of sublinear imprecise markov chains, have
been studied amongst others by Škulj [18] or De Bock et al. [3].

In this paper, we now consider continuous-time Markov chains under convex
expectations and extend the above relation between nonlinear Markov chains,
so-called Q-operators and fully nonlinear ordinary differential equations to the
convex case. This relation is established using convex duality, so-called Nisio
semigroups (cf. Nisio [12]) and a convex version of Kolmogorov’s extension theo-
rem, see Denk et. al. [8], which provides an extension to the whole path space. A
similar approach has been used by Denk et al. [9] in order to construct Lévy pro-
cesses under nonlinear expectations via solutions to fully nonlinear PDEs using
Nisio semigroups. Restricting the time parameter to the set of natural numbers
leads to a discrete-time Markov chain, in the sense of [8, Example 5.3]. Through-
out this paper, we will make use of the following two definitions:

Definition 1.1. A (possibly nonlinear) map Q : Rd → Rd is called a Q-operator
if the following conditions are satisfied:

(i) (Qλei)i ≤ 0 for all λ > 0 and all i ∈ {1, . . . , d},
(ii)

(
Q(−λej)

)
i
≤ 0 for all λ > 0 and all i, j ∈ {1, . . . , d} with i 6= j,

(iii) Qα = 0 for all α ∈ R, where we identify α with (α, . . . , α)T ∈ Rd.

Definition 1.2. A convex Markov chain is a quadruple
(
Ω,F , E , (Xt)t≥0

)
, where

(i) (Ω,F) is a measurable space.
(ii) Xt : Ω→ {1, . . . , d} is F -measurable for all t ≥ 0.

(iiii) E = (E1, . . . , Ed)T , where (Ω,F , Ei) is a convex expectation space for all
i ∈ {1, . . . , d} and E

(
u0(X0)

)
= u0. Here and in the following we make

use of the notation

E(Y ) :=
(
E1(Y ), . . . , Ed(Y )

)T ∈ Rd

for Y ∈ L∞(Ω,F).

(iv) For all s, t ≥ 0, n ∈ N, 0 ≤ t1 < . . . < tn ≤ s and v0 ∈
(
Rd
)(n+1)

we have
that

E
(
v0(Xt1 , . . . , Xtn , Xs+t)

)
= E

[
EXs,t

(
v0(Xt1 , . . . , Xtn , · )

)]
with Ei,t(u0) := Ei

(
u0(Xt)

)
for all u0 ∈ Rd and i ∈ {1, . . . , d}.

We say that the Markov chain
(
Ω,F , E , (Xt)t≥0

)
is linear or sublinear if the

mapping E : L∞(Ω,F)→ Rd is additionally linear or sublinear, respectively.
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The following main theorem gives a full characterization of convex Q-operators.

Theorem 1.3. Let Q : Rd → Rd be a mapping. Then the following statements
are equivalent:

(i) Q is a convex Q-operator.
(ii) Q is convex, satisfies the positive maximum principle and Qα = 0 for all

α ∈ R, where α := (α, . . . , α)T ∈ Rd.
(iii) There exists a set P ⊂ Rd×d of Q-matrices and a family f = (fq)q∈P ⊂ Rd

of vectors with supq∈P fq = fq0 = 0 for some q0 ∈ P such that

Qu0 = sup
q∈P

(
qu0 + fq

)
(1.1)

for all u0 ∈ Rd, where the suprema are to be understood componentwise.
(iv) There exists a convex Markov chain

(
Ω,F , E , (Xt)t≥0

)
such that

Qu0 = lim
h↘0

E
(
u0(Xh)

)
− u0

h

for all u0 ∈ Rd.

In this case, for each u0 ∈ Rd, the function u : [0,∞) → Rd, t 7→ E
(
u0(Xt)

)
is

the unique classical solution u ∈ C1
(
[0,∞);Rd

)
of the initial value problem

u′(t) = Qu(t) = sup
q∈P

(
qu(t) + fq

)
, t ≥ 0, (1.2)

u(0) = u0,

and it holds

u(t) = S (t)u0

for all t ≥ 0, where the family
(
S (t)

)
t≥0

is the Nisio semigroup w.r.t. (P , f) (see

Definition 3.2 below).

Remark 1.4. Consider the situation of Theorem 1.3.

a) Notice that the Nisio semigroup
(
S (t)

)
t≥0

can be construted w.r.t. any

dual representation (P , f) as in (iii) and results in the unique classical
solution of (1.2) independent of the choice of the representation (P , f).

b) The same equivalence as in Theorem 1.3 holds if convexity is replaced by
sublinearity in (i), (ii) and (iv) and fq = 0 for all q ∈ P in (iii). In this
case, the set P in (iii) can be chosen to be compact as we will see in the
proof of Theorem 1.3.

Notation. Throughout, we consider a finite non-empty state space S with
cardinality d := |S| ∈ N. We endow S with the discrete topology 2S and w.l.o.g.
assume that S = {1, . . . , d}. The space of all bounded measurable functions
S → R can therefore be identified by Rd. A bounded random variable u thus will
always be denoted as a vector of the form u = (u1, . . . , ud)

T ∈ Rd. On Rd we will
always consider the norm

‖u‖∞ := max
i=1,...,d

|ui|
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for a vector u ∈ Rd. Moreover, for α ∈ R we denote by α ∈ Rd the constant vector
u ∈ Rd with ui = α for all i ∈ {1, . . . , d}. For a matrix a = (aij)1≤i,j≤d ∈ Rd×d,
we denote by ‖a‖ the operator norm of a : Rd → Rd w.r.t. the norm ‖ · ‖∞, i.e.

‖a‖ = sup
v∈Rd\{0}

‖av‖∞
‖v‖∞

= max
i=1,...,d

( d∑
j=1

|aij|
)
.

Inequalities of vectors are always understood componentwise, i.e. for u, v ∈ Rd

u ≤ v ⇐⇒ ∀i ∈ {1, . . . , d} : ui ≤ vi.

All concepts in Rd that inculde inequalities are to be understood w.r.t. the latter
partial ordering. For example, a vector field F : Rd → Rd is called convex if

Fi
(
λu+ (1− λ)v

)
≤ λFi(u) + (1− λ)Fi(v)

for all i ∈ {1, . . . , d}, u, v ∈ Rd and λ ∈ [0, 1]. A vector field F is called sublinear
if it is convex and positive homogeneous of degree 1. Moreover, for a set M ⊂ Rd

of vectors, we write u = supM if ui = supv∈M vi for all i ∈ {1, . . . , d}.

Structure of the paper. In Section 2, we give a proof of the implications
(iv) ⇒ (ii) ⇒ (i) ⇒ (iii) of Theorem 1.3. The main tool we use in this part
is convex duality. In Section 3, we prove the implication (iii) ⇒ (iv). Here, we
use a combination of Nisio semigroups as introduced in [12], a Kolmogorov ex-
tension theorem for convex expectations derived in [8] and the theory of ordinary
differential equations.

2. Proof of (iv)⇒ (ii)⇒ (i)⇒ (iii)

We say that a set P ⊂ Rd×d of matrices is row-convex if for any diagonal matrix
λ ∈ Rd×d with λi := λii ∈ [0, 1] for all i ∈ {1, . . . , d} and all p, q ∈ P we have that

λp+ (I − λ)q ∈ P ,

where I = Id is the d-dimensional identity matrix. Note that for all i ∈ {1, . . . , d}
the i-th row of the matrix λp+ (I−λ)q is the convex combination of the i-th row
of p and q with λi. Therefore, a set P is row-convex if for all p, q ∈ P the convex
combination with different λ ∈ [0, 1] in every row is again an element of P . Note
that for example the set of all Q-matrices is row-convex.

Remark 2.1. Let Q be a convex Q-operator. For every matrix q ∈ Rd×d let

Q∗(q) := sup
u∈Rd

(
qu−Q(u)

)
∈ [0,∞]

be the conjugate function of Q. Notice that 0 ≤ Q∗(q) for all q ∈ Rd×d since
Q(0) = 0. Let

P := {q ∈ Rd×d | Q∗(q) <∞}
and fq := −Q∗(q) for all q ∈ P . Then, the following facts are well-known results
from convex duality theory in Rd.

a) The set P is row-convex and the mapping P → R, q 7→ fq is continuous.
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b) Let M > 0 and PM := {q ∈ Rd×d | Q∗(q) ≤ M}. Then, PM ⊂ Rd×d is
compact and row-convex. Therefore,

QM : Rd → Rd, u 7→ max
q∈PM

(
qu+ fq

)
(2.1)

defines a convex operator which is Lipschitz continuous. Notice that the
maximum in (2.1) is to be understood componentwise. However, for fixed
u ∈ Rd the maximum can be attained by a single element simultaneously
in every component of PM since PM is row-convex, i.e. for all u ∈ Rd

there exists some q0 ∈ PM with

QM = q0u+ fq0 .

c) Let R > 0. Then, there exists some M > 0 such that

Qu = max
q∈PM

(
qu+ fq

)
= QMu

for all u ∈ Rd with ‖u‖∞ ≤ R. In particular, Q is locally Lipschitz
continuous and admits a representation of the form

Qu = max
q∈P

(
qu+ fq

)
for all u ∈ Rd, where for fixed u ∈ Rd the maximum can be attained by
a single element simultaneously in every component of P . In particular,
there exists some q0 ∈ P with fq0 = supq∈P fq = Q(0) = 0.

Proof of Theorem 1.3.
(iv) ⇒ (ii): As Ei is a convex expectation for all i ∈ {1, . . . , d}, it follows that
the operator Q is convex with Qα = 0 for all α ∈ R. Now, let u0 ∈ Rd and
i ∈ {1, . . . , d} with u0,i ≥ u0,j for all j ∈ {1, . . . , d}. Let α > 0 be such that

‖u0 + α‖∞ =
(
u0 + α

)
i

= u0,i + α

and v0 := u0 + α. Then,

Qv0 = lim
h↘0

E
(
u0(Xh) + α

)
− v0

h
= lim

h↘0

E
(
u0(Xh)

)
− u0

h
= Qu0.

Assume that
(
Qu0

)
i
> 0. Then, there exists some h > 0 such that

Ei
(
v0(Xh)

)
− v0,i > 0,

i.e. ∥∥E(v0(Xh)
)∥∥
∞ ≥ Ei

(
v0(Xh)

)
> v0,i = ‖v0‖∞,

which is a contradiction to ∥∥E(v0(Xh)
)∥∥
∞ ≤ ‖v0‖∞.

This shows that Q satisfies the positive maximum principle.
(ii)⇒ (i): This follows directly from the positive maximum principle, considering
the vectors λei and −λei for all λ > 0 and i ∈ {1, . . . , d}.
(i) ⇒ (iii): Let Q be a convex Q-operator. Moreover, let P and f = (fq)q∈P
as in Remark 2.1. Then, by Remark 2.1 c), it only remains to show that every
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q ∈ P is a Q-matrix. To this end, fix an arbitrary q ∈ P . Then, for all α ∈ R it
holds

qα =
1

λ
q(λα) ≤ 1

λ

(
Q(λα) +Q∗(q)

)
=

1

λ
Q∗(q)→ 0,

as λ → ∞. Therefore, qα ≤ 0 for all α ∈ R. Since, q is linear, it follows q1 = 0.
Now, let i ∈ {1, . . . , d}. Then, by definition of a Q-operator, we obtain that

qii ≤
1

λ

(
Q(λei) +Q∗(q)

)
i
≤ 1

λ

(
Q∗(q)

)
i
→ 0

as λ → ∞, i.e. qii ≤ 0. Now, let i, j ∈ {1, . . . , d} with i 6= j. Then, again by
definition of a Q-operator, it follows that

−qij ≤
1

λ

(
Q(−λei) +Q∗(q)

)
j
≤ 1

λ

(
Q∗(q)

)
j
→ 0

as λ→∞, i.e. qij ≥ 0. Therefore, q is a Q-matrix.
It remains to show (iii)⇒ (iv), which is done in the entire next section. �

3. Proof of (iii)⇒ (iv)

Throughout, let P ⊂ Rd×d be a set of Q-matrices and f = (fq)q∈P ⊂ Rd with
supq∈P fq = fq0 = 0 for some q0 ∈ P such that

Q : Rd → Rd, u0 7→ sup
q∈P

(
qu0 + fq

)
is well-defined. For every q ∈ P , we consider the linear ODE

u′(t) = qu(t) + fq, t ≥ 0 (3.1)

with u(0) = u0 ∈ Rd. Then, by variation of constant, the solution of (3.1) is
given by

u(t) = eqtu0 +

∫ t

0

eqsfq ds = u0 +

∫ t

0

esq
(
qu0 + fq

)
ds =: Sq(t)u0 (3.2)

for t ≥ 0, where etq ∈ Rd×d is the matrix exponential of tq for all t ≥ 0. Then, the
family Sq =

(
Sq(t)

)
t≥0

defines a uniformly continuous semigroup of affine linear
operators, i.e.

(i) Sq(0) = I, where I = Id is the d-dimensional identity matrix,
(ii) Sq(s+ t) = Sq(s)Sq(t) for all s, t ≥ 0,
(iii) ‖Sq(t)− I‖ → 0 as t↘ 0.

Remark 3.1.

a) Note that for all q ∈ P and t ≥ 0 the matrix exponential etq ∈ Rd×d is a
stochastic matrix, i.e.
(i)
(
etq
)
ij
≥ 0 for all i, j ∈ {1, . . . , d},

(ii) etq1 = 1.
In particular, etqu ≤ etqv for all u, v ∈ Rd with u ≤ v and therefore, the
semigroup Sq is monotone (see part b) below for a definition).
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b) In line with [8, Definition 5.1], we say that a (possibly nonlinear) map
E : Rd → Rd is a kernel, if E is monotone, i.e. E(u) ≤ E(v) for all u, v ∈ Rd

with u ≤ v, and E preserves constants, i.e. E(α) = α for all α ∈ R. By
part a), it is clear that etq ∈ Rd×d is a linear kernel for all q ∈ P and t ≥ 0.

For the family (Sq)q∈P , or more precisely for (P , f), we will now construct the
respective Nisio semigroup and show that this is the unique classical solution to
the nonlinear ODE (1.2). To this end, we consider the set of finite partitions

P :=
{
π ⊂ [0,∞)

∣∣ 0 ∈ π, |π| <∞}.
For a partition π ∈ P , π = {t0, t1, . . . , tm} with 0 = t0 < t1 < . . . < tm we set

|π|∞ := max
j=1,...,m

(tj − tj−1).

Moreover, we define |{0}|∞ := 0. The set of partitions with end-point t will be
denoted by Pt, i.e. Pt := {π ∈ P | maxπ = t}. Note that

P =
⋃
t≥0

Pt.

For all h ≥ 0 and u ∈ Rd we define

Ehu := sup
q∈P

Sq(h)u,

where the supremum is taken componentwise. Note that Eh is well-defined since

Sq(h)u = ehqu+

∫ h

0

esqfq ds ≤ ehqu ≤ ‖u‖∞

for all q ∈ P , where we used the fact that ehq is stochastic. Moreover, Eh is a
convex kernel as it is monotone and

Ehα = α + sup
q∈P

∫ h

0

esqfq ds = α

since there is some q0 ∈ P with fq0 = 0. For a partition π = {t0, t1, . . . , tm} ∈ P
with m ∈ N and 0 = t0 < t1 < . . . < tm, we set

Eπ := Et1−t0 . . . Etm−tm−1 .

Moreover, we set E{0} := E0. Then, Eπ is a convex kernel for all π ∈ P being a
concatenation of convex kernels.

Definition 3.2. The Nisio semigroup
(
S (t)

)
t≥0

w.r.t. (P , f) is defined by

S (t)u := sup
π∈Pt

Eπu

for all u ∈ Rd and t ≥ 0.

Note that S (t) : Rd → Rd is well-defined and a convex kernel for all t ≥ 0
since Eπ is a convex kernel for all π ∈ P . In many of the subsequent proofs, we
will first concentrate on the case, where the family f is bounded and then use
an approximation of the Nisio semigroup by means of Nisio semigroups w.r.t.
bounded f . This approximation procedure is specified in the following remark.
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Remark 3.3. Let M ≥ 0, PM :=
{
q ∈ P

∣∣ ‖fq‖∞ ≤ M
}

and fM := (fq)q∈PM
.

Then, for all q ∈ PM and u ∈ Rd with ‖u‖∞ = 1 we have that

qu ≤ Qu− fq ≤ ‖Qu‖∞ + ‖fq‖∞ ≤M + max
v∈Sd−1

‖Qv‖∞,

where, in the last step, we used that Q : Rd → Rd convex and therefore continu-
ous. This implies that the set PM is bounded. Therefore,

sup
q∈P
‖qu+ fq‖∞ ≤ sup

q∈P

(
‖q‖‖u‖∞ + ‖fq‖∞

)
<∞ (3.3)

for all u ∈ Rd and thus the operator

QM : Rd → Rd, u 7→ sup
q∈PM

(
qu+ fq

)
is well-defined. Notice that, by assumption, there exists some q0 ∈ P with fq0 = 0
and therefore fq0 ∈ PM . In particular, PM 6= ∅. Let

(
SM(t)

)
t≥0

be the Nisio

semigroup w.r.t. (PM , fM) for all M ≥ 0. Since⋃
M≥0

PM = P ,

it then follows that QM ↗ Q and SM(t)↗ S (t) as M →∞ for all t ≥ 0.

Lemma 3.4. Assume that the family f is bounded, i.e. (P , f) = (PM , fM) for
some M ≥ 0. Then, for all u ∈ Rd the mapping [0,∞) → Rd, h 7→ Ehu is
continuous.

Proof. Let u ∈ Rd and 0 ≤ h1 < h2. Then, by (3.2), for all q ∈ P we have that

‖Sq(h2)u− Sq(h1)u‖∞ ≤
∫ h2

h1

∥∥eqs(qu+ fq)
∥∥
∞ ds ≤ (h2 − h1)‖qu+ fq‖∞,

which implies that

‖Eh2u−Eh1u‖∞ ≤ sup
q∈P
‖Sqh2u−Sq(h1)u‖∞ ≤ (h2−h1)

(
sup
q∈P
‖qu+fq‖∞

)
. (3.4)

Note that supq∈P ‖qu+ fq‖∞ <∞ by (3.3). �

Lemma 3.5. Assume that the family f is bounded. Then,

‖S (t)u− u‖∞ ≤ t

(
sup
q∈P
‖qu+ fq‖∞

)
for all t > 0 and u ∈ Rd.

Proof. Let u ∈ Rd. For a partition π ∈ P of the form π = {t0, t1, . . . , tm} with
m ∈ N and 0 = t0 < t1 < . . . < tm, (3.4) then implies that

‖Eπu− u‖∞ ≤
m∑
k=1

‖Ehku− u‖∞ ≤
m∑
k=1

hk

(
sup
q∈P
‖qu+ fq‖∞

)
= tm

(
sup
q∈P
‖qu+ fq‖∞

)
,
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where hk := tk − tk−1 for all k ∈ {1, . . . ,m}. By definition of S (t) for t ≥ 0 it
then follows that

‖S (t)u− u‖∞ ≤ sup
π∈Pt

‖Eπu− u‖∞ ≤ t

(
sup
q∈P
‖qu+ fq‖∞

)
.

�

Let u ∈ Rd. In the following, we want to consider the limit of Eπu when the
mesh size of the partition π ∈ P tends to zero. For this, we first remark that for
h1, h2 ≥ 0

Eh1+h2u = sup
q∈P

Sλ(h1 + h2)u = sup
q∈P

Sλ(h1)Sλ(h2)u

≤ sup
q∈P

Sλ(h1)Eh2u = Eh1Eh2u,

which implies the inequality
Eπ1u ≤ Eπ2u (3.5)

for π1, π2 ∈ P with π1 ⊂ π2. The following lemma now shows that S (t) can be
obtained by a pointwise monotone approximation with finite partitions letting
the mesh size tend to zero.

Lemma 3.6. Let t ≥ 0 and (πn)n∈N ⊂ Pt with πn ⊂ πn+1 for all n ∈ N and
|πn|∞ ↘ 0 as n→∞. Then, for all u ∈ Rd it holds that

Eπnu↗ S (t)u, n→∞.

Proof. Let u ∈ Rd. For t = 0 the statement is trivial. Therefore, assume that
t > 0 and let

v := sup
n∈N
Eπnu. (3.6)

As πn ⊂ πn+1 for all n ∈ N, (3.5) implies that

Eπnu↗ v, n→∞.
Since (πn)n∈N ⊂ Pt, we obtain that

v ≤ S (t)u.

Next, we assume that f is bounded. Let π = {t0, t1, . . . , tm} ∈ Pt with m ∈ N
and 0 = t0 < t1 < . . . < tm = t. Since |πn|∞ ↘ 0 as n → ∞, w.l.o.g. we may
assume that |πn| ≥ m+ 1 for all n ∈ N. Moreover, let 0 = tn0 < tn1 < . . . < tnm = t
for all n ∈ N with π′n := {tn0 , tn1 , . . . , tnm} ⊂ πn and tni → ti as n → ∞ for all
i ∈ {1, . . . ,m}. Then, by Lemma 3.4, we have that

‖Eπu− Eπ′nu‖∞ → 0, n→∞
and therefore,

v ≥ Eπnu ≥ Eπ′nu ≥ Eπu− ‖Eπu− Eπ′nu‖∞.
Letting n → ∞ we obtain that v ≥ Eπu. Taking the supremum over all π ∈ Pt
yields the assertion for bounded f .
Now, let f again be (possibly) unbounded. It remains to show that v ≥ S (t)u.
By the previous step, we have that v ≥ vM = SM(t) for all M ≥ 0, where vM
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is given by (3.6) but w.r.t. (PM , fM) instead of (P , f). Since SM(t) ↗ S (t) as
M →∞, we obtain that v ≥ S (t), which ends the proof. �

Choosing e.g. πn =
{
kt
2n

: k ∈ {0, . . . , 2n}
}

or πn =
{
kt
n!

: k ∈ {0, . . . , n!}
}

in
Lemma 3.6, we obtain the following corollaries.

Corollary 3.7. For all t > 0 there exists a sequence (πn)n∈N ⊂ Pt with

Eπnu↗ S (t)u

as n→∞ for all u ∈ Rd.

Corollary 3.8. For all t ≥ 0 and u ∈ Rd we have that

S (t)u = sup
n∈N
En1

n
u = lim

n→∞
E2n

2−nu.

Proposition 3.9. The family (S (t))t≥0 defines a semigroup of convex kernels
from Rd to Rd. In particular, for all s, t ≥ 0 we have the dynamic programming
principle

S (s+ t) = S (s)S (t). (3.7)

Proof. It remains to show the semigroup property (3.7). Let u ∈ Rd. If s = 0 or
t = 0 the statement is trivial. Therefore, let s, t > 0, π0 ∈ Ps+t and π := π0∪{s}.
Then, we have that π ∈ Ps+t with π0 ⊂ π. Hence, by (3.5), we get that

Eπ0u ≤ Eπu.
Let m ∈ N, 0 = t0 < t1 < . . . tm = s+ t with π = {t0, . . . , tm} and i ∈ {1, . . . ,m}
with ti = s. Then, we have that

π1 := {t0, . . . , ti} ∈ Ps and π2 := {ti − s, . . . , tm − s} ∈ Pt
with

Eπ1 = Et1−t0 · · · Eti−ti−1
and Eπ2 = Eti+1−ti · · · Etm−tm−1 .

We thus get that

Eπ0u ≤ Eπu = Et1−t0 · · · Etm−tm−1u =
(
Et1−t0 · · · Eti−ti−1

)(
Eti+1−ti · · · Etm−tm−1u

)
= Eπ1Eπ2u ≤ Eπ1

(
S (t)u

)
≤ S (s)S (t)u.

Taking the supremum over all π0 ∈ Ps+t, we get that S (s+ t)u ≤ S (s)S (t)u.
Now, let (πn)n∈N ⊂ Pt with Eπnu↗ S (t)u as n→∞ (see Corollary 3.7) and fix
π0 ∈ Ps. Then, for all n ∈ N we have that

π′n := π0 ∪ {s+ τ : τ ∈ πn} ∈ Ps+t
with Eπ′n = Eπ0Eπn . We then get that

Eπ0
(
S (t)u

)
= lim

n→∞
Eπ0Eπnu = lim

n→∞
Eπ′nu ≤ S (s+ t)u.

Taking the supremum over all π0 ∈ Ps, we get that S (s)S (t)u ≤ S (s+ t)u. �

Now, Proposition 3.9 and [8, Theorem 5.6] imply the following corollary.

Corollary 3.10. There exists a convex Markov chain
(
Ω,F , E , (Xt)t≥0

)
such that(

S (t)u0

)
i

= Ei
(
u0(Xt)

)
for all u0 ∈ Rd, t ≥ 0 and i ∈ {1, . . . , d}.
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Restricting the time parameter of this process to N0, leads to a discrete-time
Markov chain with transition operator S (1) (cf. [8, Example 5.3]). It remains
to show that the Nisio semigroup

(
S (t)

)
t≥0

defines the unique classical solution

to the nonlinear ODE (1.2).

Remark 3.11. Assume that the set P is bounded. Note that P is bounded if and
only if Q is Lipschitz continuous.

a) Then, the Picard-Lindelöf Theorem asserts that, for every u0 ∈ Rd, the
initial value problem

u′(t) = Qu(t), t ≥ 0, (3.8)

u(0) = u0,

has a unique solution u ∈ C1
(
[0,∞);Rd

)
. We will show that this solution

u is given by u(t) = S (t)u0 for all t ≥ 0. That is, the unique solution of
the ODE (3.8) is given by the Nisio semigroup.

b) Since P is bounded, the mapping

q : Rd → Rd, u 7→ sup
q∈P

qu

is well-defined.

The following key estimate and its proof are taken from the proof of [12, Propo-
sition 5]. Recall that, by Remark 3.3, the boundedness of the family f implies
the boundedness of the set P .

Lemma 3.12. Assume that the family f is bounded. Then,

S (t)u− u ≤
∫ t

0

Σ(s)Qu ds

for all u ∈ Rd and t ≥ 0. Here,
(
Σ(t)

)
t≥0

is the Nisio semigroup w.r.t. the

sublinear Q-operator q from the previous remark, or more precisely, the Nisio
semigroup w.r.t. (P , f), where fq = 0 for all q ∈ P.

Proof. Let u ∈ Rd and h > 0. Then, by (3.2), we have that

Sq(h)u− u =

∫ h

0

esq
(
qu+ fq

)
ds ≤

∫ h

0

Σ(s)Qu ds.

Notice that, by Lemma 3.5, the mapping [0,∞) → Rd, t 7→ Σ(t)v is continuous
and therefore locally integrable for all v ∈ Rd. Hence, for all τ ≥ 0 we have that

Ehu− u ≤
∫ h

0

Σ(s)Qu ds =

∫ τ+h

τ

Σ(s− τ)Qu ds.

Next, we show that

Eπu− u ≤
∫ maxπ

0

Σ(s)Qu ds (3.9)



MARKOV CHAINS UNDER NONLINEAR EXPECTATION 13

for all π ∈ P by an induction on m = |π|, where |π| denotes the cardinality of π.
If m = 1, i.e. if π = {0}, the statement is trivial. Hence, assume that

Eπ′u− u ≤
∫ maxπ′

0

Σ(s)Qu ds

for all π′ ∈ P with |π′| = m for some m ∈ N. Let π = {t0, t1, . . . , tm} with
0 = t0 < t1 < . . . < tm and π′ := π \ {tm}. Then, we obtain that

Eπu− Eπ′u ≤ Σ(tm−1)
(
Etm−tm−1u− u

)
≤ Σ(tm−1)

(∫ tm

tm−1

Σ(s− tm−1)Qu ds

)
≤
∫ tm

tm−1

Σ(s)Qu ds,

where we used the sublinearity of Σ(t) in the last inequality. Using the induction
hypothesis, we thus get that

Eπu− u =
(
Eπu− Eπ′u

)
+
(
Eπ′u− u

)
≤
∫ tm

tm−1

Σ(s)Qu ds+

∫ tm−1

0

Σ(s)Qu ds

=

∫ maxπ

0

Σ(s)Qu ds.

By (3.9), it follows that

Eπu− u ≤
∫ t

0

Σ(s)Qu ds

for all π ∈ Pt. Taking the supremum over all π ∈ Pt we obtain the assertion. �

The following theorem states that the family (S (t))t≥0 is differentiable at zero
if the family f is bounded.

Theorem 3.13. Assume that f is bounded. Then, for all u ∈ Rd it holds that∥∥∥∥S (h)u− u
h

−Qu
∥∥∥∥
∞
→ 0, h↘ 0.

Proof. Since f is bounded, it follows that P is bounded (see Remark 3.3). Let
ε > 0. Using Lemma 3.5, the boundedness of P and (3.3), there exists some
h0 > 0 such that∥∥ehq(qu+ fq

)
−
(
qu+ fq

)∥∥
∞ ≤ ‖e

hq − Id‖ · ‖qu+ fq‖∞
≤
(
e‖q‖h − 1

)
‖qu+ fq‖∞ ≤ ε

for all q ∈ P and

Σ(h)Qu−Qu ≤ ε

for all 0 < h ≤ h0. Let 0 < h ≤ h0. Then, we get that

S (h)u− u ≥ Sq(h)u− u =

∫ h

0

etq
(
qu+ fq

)
ds ≥

(
qu+ fq − ε

)
h
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for all q ∈ P . Dividing by h and taking the supremum over all q ∈ P , it follows
that

S (h)u− u
h

≥ Qu− ε. (3.10)

By Lemma 3.12, we have that

S (h)f − f − hQf ≤
∫ h

0

Σ(s)Qf ds− hQf =

∫ h

0

(
Σ(s)Qf −Qf

)
ds ≤ hε.

Again, dividing by h > 0 yields

S (h)f − f
h

−Qf ≤ ε.

Together with (3.10) this implies that∥∥∥∥S (h)f − f
h

−Qf
∥∥∥∥
∞
≤ ε.

�

Corollary 3.14. Let f be bounded, u0 ∈ Rd and u(t) := S (t)u0 for t ≥ 0. Then,
u ∈ C1

(
[0,∞);Rd

)
is the unique classical solution of the ODE

u′(t) = Qu(t), t ≥ 0

with u(0) = u0.

Corollary 3.15. Let f be bounded. Then, there exists some constant L > 0 such
that

‖S (t)u0 − u0‖∞ ≤ Lt‖u0‖∞
for all t ≥ 0 and u0 ∈ Rd.

Proof. Since f is bounded, we have that P is bounded and thereforeQ is Lipschitz
continuous with Lipschitz constant L := supq∈P ‖q‖. For all u0 ∈ Rd we thus
obtain that

‖S (t)u0 − u0‖∞ ≤
∫ t

0

‖QS (s)u0‖∞ ds ≤
∫ t

0

L‖S (s)u0‖∞ ds ≤ Lt‖u0‖∞.

�

Finally, in order to end the proof of Theorem 1.3, we have to extend Corollary
3.14 to the unbounded case. We start with the following remark, which is the
key observation in order to finish the proof of Theorem 1.3.

Remark 3.16. Let P∗ := {q ∈ Rd×d | Q∗(q) < ∞} and f ∗q := −Q∗(q) for all
q ∈ P∗. For all M ≥ 0 let P∗M , f ∗M and Q∗M be as in Remark 3.3 with P being
replaced by P∗. Moreover, let

(
S ∗
M(t)

)
t≥0

be the Nisio semigroup w.r.t. (P∗M , f ∗M)

for M ≥ 0. As ⋃
M≥0

P∗M = P∗,

it follows that S ∗
M(t)↗ S ∗(t) as M →∞ for all t ≥ 0, where (S ∗(t))t≥0 is the

Nisio semigroup w.r.t. (P∗, f ∗). Let R > 0 be fixed. Then, there exists some
M0 ≥ 0 such that Qu = Q∗M0

u for all u ∈ Rd with ‖u‖∞ ≤ R, by choice of P∗
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and f ∗. Let u0 ∈ Rd with ‖u0‖∞ ≤ R. Then, it follows that ‖S ∗
M(t)u0‖∞ ≤ R

for all t ≥ 0 and M ≥ 0, which implies that S ∗
M(t)u0 = S ∗

M0
(t)u0 for all t ≥ 0

and M ≥ M0 by the uniqueness obtained in the Picard-Lindelöf Theorem. In
particular, S ∗(t)u0 = S ∗

M0
(t)u0 for all t ≥ 0, which shows that the nonlinear

ODE (1.2) has a unique classical solution u∗ ∈ C1
(
[0,∞);Rd

)
with u∗(0) = u0.

This solution is given by u∗(t) = S ∗(t)u0 for all t ≥ 0. By Corollary 3.15, we
thus get that S ∗(t)→ I as t↘ 0 uniformly on compact sets.

We are now able to finish the proof of Theorem 1.3.

Theorem 3.17. Let u0 ∈ Rd. Then, u : [0,∞)→ Rd, t 7→ S (t)u0 is the unique
classical solution u ∈ C1

(
[0,∞);Rd

)
of the initial value problem

u′(t) = Qu(t), t ≥ 0,

u(0) = u0.

Proof. By Remark 3.16 the initial value problem

u′(t) = Qu(t), t ≥ 0,

u(0) = u0.

has a unique classical solution u∗ ∈ C1
(
[0,∞);Rd

)
. It remains to show that

u∗(t) = S (t)u0, for all t ≥ 0. Let R := ‖u0‖∞. For all M ≥ 0 let PM , fM ,
QM and

(
SM(t)

)
t≥0

as in Remark 3.3. Let ε > 0. Then, by Dini’s lemma, there

exists some M0 ≥ 0 such that

‖Qv −QM0v‖∞ ≤ ε

for all v ∈ Rd with ‖v‖∞ ≤ R. Further, there exists some constant L > 0 such
that

‖Qv1 −Qv2‖∞ ≤ L‖v1 − v2‖∞
for all v1, v2 ∈ Rd with ‖v1‖∞ ≤ R and ‖v2‖∞ ≤ R. Since, ‖u∗(t)‖∞ ≤ R and
‖SM(t)u0‖∞ ≤ R for all M ≥ 0 and t ≥ 0, we obtain that

‖SM(t)u0 − u∗(t)‖∞ +
ε

L
=
ε

L
+

∥∥∥∥∫ t

0

QMSM(s)u0 −Qu∗(s) ds

∥∥∥∥
∞

≤ ε

L
+

∫ t

0

‖QMSM(s)u0 −Qu∗(s)‖∞ ds

≤ ε

L
+

∫ t

0

(
‖QSM(s)u0 −Qu∗(s)‖∞ + ε

)
ds

≤ ε

L
+

∫ t

0

L

(
‖SM(s)u0 − u∗(s)‖∞ +

ε

L

)
ds

for all t ≥ 0 and M ≥M0. By Gronwall’s lemma, we thus get that

‖SM(t)u0 − u∗(t)‖∞ ≤
ε

L

(
eLt − 1

)
for all t ≥ 0 and M ≥ M0, showing that SM(t)u0 → u∗(t) as M → ∞ for all
t ≥ 0. However, since SM(t)u0 ↗ S (t)u0 as M → ∞ for all t ≥ 0, we obtain
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that u∗(t) = S (t)u0. This ends the proof of this theorem and also the proof of
Theorem 1.3. �

Corollary 3.18. The Nisio semigroup (S (t))t≥0 is uniformly continuous in the
sense that S (t)→ I as t↘ 0 uniformly on compact sets.
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