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OPTIMAL MANAGEMENT OF DEBT-TO-GDP RATIO WITH
REGIME-SWITCHING INTEREST RATE

GIORGIO FERRARI, NEOFYTOS RODOSTHENOUS

ABSTRACT. We consider the problem of a government that wants to manage the country’s debt-to-
GDP (gross domestic product) ratio. The latter evolves stochastically in continuous time, and its
drift is given by the interest rate on government debt, net of the growth rate of GDP. We further
allow the interest rate to be affected by an exogenous macroeconomic risk process modelled by a
continuous-time Markov chain with N states. The debt-to-GDP ratio level can be reduced by the
government, e.g. through austerity policies in the form of spending cuts, or increased, e.g. by public
investments. The aim of the government is to choose a policy which minimises the total expected
cost of having debt plus the total expected cost of austerity policies, counterbalanced by the total
expected gain from public investments. We model this as a bounded-variation stochastic control
problem over an infinite time-horizon with regime switching, and we provide its explicit solution.
To the best of our knowledge, such a problem has not been previously solved in the literature. We
show that it is optimal for the government to adopt a policy that keeps the debt-to-GDP ratio
in an interval, whose boundaries are depending on the states of the risk process, and are given
through a zero-sum optimal stopping game with regime switching. We completely characterise
these boundaries as solutions to a system of nonlinear algebraic equations with constraints. Finally,
we put in practice our methodology in a case study of a Markov chain with N = 2 states; we provide
a thorough analysis and we complement our theoretical results by a detailed numerical study on the
sensitivity of the optimal debt ratio management policy with respect to the model’s parameters.

Keywords: Debt-to-GDP ratio, government debt ratio management, regime switching, singular
stochastic control, zero-sum optimal stopping game, free-boundary problem.

OR /MS subject classification: Dynamic programming/optimal control: Markov; Probability:
stochastic model applications; Games/group decisions: stochastic.

1. INTRODUCTION

It has been observed that during the financial crisis that started in 2007, debt-to-GDP ratio (also
called the “debt ratio”) exploded from an average of 53% to circa 80% in many countries. Ever
since, there has been a huge debate in the economic and political community on the sustainability of
public debt. Using different statistical and methodological approaches, many researchers conclude
that high government debt has a negative effect on the long-term economic growth, makes the
economy less resilient to macroeconomic shocks (e.g. sovereign default risks and liquidity shocks),
and poses limits to the adoption of counter-cyclical fiscal policies. For example, it has been shown
in [33] (see also [14]) that when government debt grows, private investment shrinks, and future
growth and future wages lower. In [29] the authors argue that high government debt hurts growth
even in the absence of a crisis. This negative impact on economic growth from high debt levels
has been observed in 18 different advanced economies (see [9]). The common view derived from
the empirical evidence is that, from the perspective of a government’s general economic planning,
it is important to reduce high levels of debt ratio in order to maintain fiscal sustainability and
support stronger fundamentals. However, in [26] researchers from the International Monetary Fund
also suggest that reducing the debt ratio might not be always the most sensible approach. The
conclusion seems to apply in particular to those countries enjoying sufficient “fiscal space” (this is
the distance between the government’s debt ratio and an “upper limit”, calculated by the Moody’s
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ratings agency, beyond which the government should reduce debt in order to avoid default). For
countries like U.S.A.,; Germany, and Great Britain, it is argued that the costs of reducing debt
outweighs any benefits. When deciding their economic planning, governments are then presented
with two questions: How much is too much? and How low is too low?. In this paper, we propose a
mathematical formulation of the optimal debt ratio’s management problem faced by a government
that addresses both of these questions.

In our model, the GDP of the country is a geometric Brownian motion with growth rate g and
volatility (per unit of GDP) o. The real debt evolves exponentially with rate r + Ay;, which is the
interest rate on debt that the government pays at time ¢. This consists of a fixed deterministic com-
ponent r and a stochastic, time-varying component \y,. As a matter of fact, this is a generalisation
of the standard exponential evolution of real debt with constant rate that one can find in classical
textbooks of macroeconomics (see [2], among others). The stochastic, time-varying component of
the interest rate is driven by a continuous-time Markov chain Y with N states, modelling market
factors that are not under the control of the government. In this sense, Ay, is the additional interest
that the government pays on debt at time t, e.g. due to a change of the credit rating of the country,
or to a mass sell-off of government bonds. As a result, in absence of any intervention, the debt-to-
GDP ratio evolves stochastically following geometric dynamics with regime switching in the drift
r+ Ay, — 9.

When in debt, the government incurs an instantaneous cost which may be interpreted as an op-
portunity cost resulting, e.g., from private investments crowding out, less room for financing public
investments, and from a tendency to suffer low subsequent growth (see [9], [29], [33], among others,
for empirical studies). The government may intervene in order to decrease or increase the level
of the debt ratio, and we assume that these policies have an instantaneous effect. Consequently,
the cumulative amount of debt ratio’s increase and decrease are the government’s control variables.
Any decrease of the debt ratio results in proportional costs, whereas any increase results in pro-
portional benefits. The objective of the government is to minimise the total expected discounted
costs incurred by debt and the cost of decreasing the debt ratio, net of the benefits arising from an
increase of the latter.

The mathematical formulation associated with the above problem is that of a bounded-variation
stochastic control problem in which the state process is a linearly controlled geometric Brownian
motion with regime-switching. This is due to the N-state Markov chain Y affecting the interest
rate to be paid on debt. We succeed in determining the explicit solution to this problem. To the
best of our knowledge, this is the first paper which solves a singular stochastic control problem with
regime switching and controls of bounded-variation.

Contribution and Methodology. We solve this problem without relying on a classical guess-and-
verify approach. Indeed, if we attempt to follow such an approach, we should solve a system
of N coupled ordinary differential equations with gradient constraints (the coupling is through
the transition rates of the Markov chain Y'), and then verify that the obtained solution satisfies
the dynamic programming equation which takes the form of a variational inequality. Given the
complexity of the problem under consideration, this approach seems not to be feasible. In fact, even
in the example of N = 2 regimes addressed in Section 6, the guess-and-verify approach would require
proving existence and uniqueness of a quadruple solving a highly nonlinear system of four algebraic
equations with constraints (see (6.5)—(6.8) with (6.9)—(6.10) below). Obviously, the complexity
increases with N (see Remark 6.1).

Instead, here we tackle the problem via a direct probabilistic approach, by relating the bounded-
variation stochastic control problem to a zero-sum game of optimal stopping (Dynkin game). This
is accomplished by first proving an abstract existence and uniqueness result for the optimal debt-
management policy, upon relying on a suitable application of Komlds’ theorem. Using this result, we
apply Theorems 3.1 and 3.2 of [22], and provide the form of a Dynkin game with regime switching,
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whose value v coincides with the first derivative of the control problem’s value function V. We then
study the Dynkin game by employing mostly probabilistic arguments, and we prove the structure
of its saddle point. This consists of a couple of entry times to two connected regions (the so-called
“stopping regions” ) whose boundaries a and b depend on the current regime of the Markov chain Y.
For any such regime %, we then prove that v is everywhere continuously differentiable, thus implying
the well-known smooth-fit condition of v at the boundaries of the stopping regions. Such a regularity
of v, in turn, immediately gives that V is C? for any regime i. Hence, through this direct approach,
we manage to prove that V is a classical solution to the corresponding dynamic programming
equation, which we use to provide the structure of an optimal control rule. At any time, this
prescribes to keep the (optimally) controlled debt ratio process inside the interval [a(Y7),b(Y:)],
either in a minimal way (i.e. according to a Skorokhod reflection) if it is already inside, or with an
immediate jump, if it suddenly goes outside (i.e. according to a lump-sum increase/decrease). Thus,
these two levels defining the interval, trigger the timing at which the government should optimally
intervene to either increase or decrease the debt ratio.

It is worth noticing that in order to prove the existence of an optimal control policy we need to
impose a condition on the (constant) marginal costs of increasing and decreasing the debt ratio.
Interestingly, this condition also plays a fundamental role in establishing an ordering of the optimal
stopping boundaries a(i) and b(i) across the N different regimes i. In particular, this general result
can be exploited to provide the geometry of the stopping regions and the structure of the value
function of the Dynkin game. As a byproduct, one can determine the explicit equations that the
optimal boundaries a and b necessarily satisfy. These equations follow from the C'-property of v
previously proved. We put in practice our methodology in Section 6 in a case study of N = 2
regimes. To the best of our knowledge, also the study of the case with N = 2 regimes appears in
this paper for the first time. Finally, we complement our theoretical results by a detailed numerical
study on the sensitivity of the optimal debt ratio management policy with respect to the model’s
parameters.

Literature Review. The only papers, brought to our attention, that employ continuous-time
singular stochastic control methods for public debt management are the recent [6] and [7] (see also
[5] for a theoretical model with classical controls of optimal currency government debt portfolio and
debt payments). In [0], the debt ratio evolves as a linearly controlled one-dimensional geometric
Brownian motion and the government can only reduce its level. The objective is to minimise the
total expected costs arising from having debt and intervening on it. Instead, in our model, the
government can both reduce and increase the debt ratio, and the dynamics of the latter is affected
by two sources of uncertainty: a Brownian motion and a continuous-time Markov chain. In [7],
the problem is again to only optimally reduce the debt ratio, but in this case the government
takes into consideration the evolution of the inflation rate of the country. The latter evolves as an
uncontrolled diffusion process which makes the problem a fully two-dimensional singular stochastic
control problem. This clearly leads to a completely different mathematical treatment than this
paper.

Also the literature on singular stochastic control problems with regime switching is still limited,
and most of the papers deal only with Markov chains with NV = 2 states and with monotone controls.
We refer, e.g., to [19] and [32] where the optimal dividend problem of actuarial science is formulated
as a one-dimensional monotone follower problem; to [16] for an irreversible investment problem; to
the recent [8] for an optimal extraction problem. In this paper, we provide the complete solution to
a singular stochastic control problem under regime switching with N > 2 states, where the control
processes are not monotone but have paths of bounded variation.

Outline of the Paper. The rest of the paper is organised as follows. In Section 2, we set up
the model and provide the control problem formulation of the government. In Section 3, we prove
the existence and uniqueness of the optimal debt ratio management policy, and we introduce the
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associated Dynkin game. In Section 4, we study the Dynkin game and we characterise its saddle
point. These results are then used in Section 5 to construct the optimal debt ratio management
policy. A case study with IV = 2 regimes is then considered in Section 6, for which we also provide a
detailed comparative statics analysis (see Section 6.2) and comparison with the non-regime-switching
case (see Section 6.3). Finally, Appendix A collects the proofs of some results of the paper.

2. SETTING AND PROBLEM FORMULATION

Let (Q,F,P) be a complete probability space rich enough to accommodate a one-dimensional
Brownian motion W := (W});>0 and a continuous-time Markov chain Y := (Y;);>0. To be more
precise, Y is such that for all t > 0, Y; € M := {1,2,..., N} for some N > 2, and it has an
irreducible generator matrix @ := (¢;;)1<ij<n With

qijAt + O(At) lf] 7é 7
P(}/t-l-At :]|Y; :i7}/YS7S < t) =
1+ g At + O(At) if j = 1.

Here ¢;; > 0 for (i,5) € M x M with j # 4, and ¢;; = — Z#i ¢;j < 0 for each i € M. The Markov
chain Y jumps between the states at exponentially distributed random times, and the constant
gi; gives the rate of jumping from state ¢ to j. We take Y independent of W, and denote by
F := {F;,t > 0} the filtration jointly generated by W and Y, and as usual, augmented by P-null
sets.

We assume that in absence of any intervention by the government, the debt-to-GDP ratio evolves
according to the stochastic differential equation (SDE)

(2.1) dX? = (r+ Ny, — ¢)XPdt + o X2dW;,, t>0, X)=uz>0.

These dynamics might be seen as a stochastic version of the one proposed in classical macroeconomic
textbooks, see e.g. [2]. Here g € R is the growth rate of the GDP, whereas 7+ Ay, is the interest rate
on government debt. This interest rate consists of a basis fixed component r > 0, and of a time-
varying stochastic component Ay, which represents the additional interest rate that the country has
to pay at time ¢t when the macroeconomic conditions are in state Y; € M.

Assumption 2.1. Without loss of generality, we assume that A1 > Ao > --- > Ay, hence Ay, €
[An, A1), P-a.s. for allt > 0.

In the following we will often denote by X*%% the unique strong solution to (2.1) starting at time
zero from level x > 0 when Yy = i € M; that is,

; —g—Loet [P,
(2.2) th,l,O _ xe(’" 9—39)t+ o )‘ysldSJ”’Wt’ t>0.
We also denote by Y}’ the Markov chain Y; started from state i € M at initial time.

Remark 2.2. Dynamics (2.1) can be justified in the following way. In absence of any intervention
by the government, the nominal debt Dy grows at time t > 0 at rate r+ Ay, ; i.e., dD; = (r+Ay;)Ddt.
Assuming that the GDP, v, evolves stochastically as a

dpy = gpedt + o dWr,
an application of Ité’s formula shows that X° := D/ follows the geometric dynamics (2.1).
The government can increase or decrease the current level of the debt-to-GDP ratio by, e.g.,
making investments on infrastructures or imposing austerity policies in the form of spending cuts,
respectively. Denoting by 7; the cumulative amount, e.g., of spending cuts made up to time ¢ > 0 in

order to reduce the debt-to-GDP ratio, and by & the cumulative amount, e.g, of investments made
up to time ¢ > 0, the dynamics of the adjusted debt-to-GDP ratio read as

(2.3) dX; = (r+ Ay, — ) Xedt + o XodWy + d& — dny, ¢ >0, Xo=2z € R,.
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Given that £ and 7 represent the cumulative interventions, it is natural to model them as non-
decreasing stochastic processes, adapted with respect to the available flow of information F. Hence
we take & and 7 in the set

U :={9:Q xRy — R;, F-adapted and such that t — 9, is a.s.
nondecreasing, left-continuous and ¥y = 0}.

We suppose that the government cannot make at the same instant in time lump-sum interventions
to increase and decrease the debt ratio; i.e., we assume that the increments A& = &4 — & and
Any := my — 1 are supported on disjoint subsets of Ry. We then denote by ¢ the process belonging
to

V :={(:Q xRy — R, F-adapted and such that ¢ — ¢ is a.s.
(locally) of bounded variation, left-continuous and (p = 0},

whose unique minimal decomposition is given by the two nondecreasing processes £ and 7; that is,
Yt = ft — M, for all £ > 0.
For any ¢ = & —n € V, equation (2.3) admits the unique strong solution

(24) XPe =Xt [w+ / - / % fo}, t>0,
0.6) Xs™ [0,4) Xs™

where we have stressed the dependency on ¢ € V and on the initial datum (z,7) € Ry x M by
writing X %%, Here, X% is as in (2.2), and it is the unique strong solution to (2.3) when £ =5 =0
and therefore ¢ = 0.

Having a debt level X; at time ¢t > 0 the government incurs an instantaneous cost h(X;). This
may be interpreted as an opportunity cost resulting from private investments’ crowding out, less
room for financing public investments, and from a tendency to suffer low subsequent growth (see
[9], [29], [33], among others, for empirical studies).

We make the following standing assumption on the running cost function h : R — R,.

Assumption 2.3.
(i) = — h(x) is strictly convex, continuously differentiable and increasing on [0,00), and it is
such that h(x) =0 for any = < 0;
(i) the derivative h' of h satisfies h'(0) = 0 and lim, o W' () = +00;
(iii) there exists m > 1, K1 >0, Ko > 0 and K3 > 0 such that

h(z) < Ki(L+[z[™) and |W(2)| < Ka(1+[2[™7"), z€R,
and .
[0 (z) = B (y)| < Kalz = y|(L+[|"27),  (z,y) € R
(iv) h has finite Legendre transform on (0,00); that is, for all p > 0 we have sup,cp, (pz —
h(z)) < oo.

Remark 2.4. It is worth noticing that a cost function of the form h(x) = %xz for any x > 0 and
h(z) =0 for any x < 0 satisfies Assumption 2.5. Moreover, the assumption h(0) = 0 is without loss
of generality, since if h(0) = h, > 0 then one can always set E(x) := h(z) — hy and write h(zx) =
E(:c) + ho, so that the optimisation problem (cf. (2.7) below) remains unchanged up to an additive
constant. Notice that such a requirement, together with h'(0) = 0, implies that any infinitesimal
amount of debt does not generate holding costs for the country; indeed, h(e) ~ h'(0)e = 0.

Whenever the government decides to reduce the level of debt ratio, it incurs an intervention
cost that is proportional to the amount of debt reduction (see also [6] and [7]). This might be
seen as a measure of the social and financial consequences deriving from a debt-reduction policy,
and the associated constant marginal cost ¢; > 0 allows to express it in monetary terms. On the
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other hand, the government can increase the current level of debt ratio (e.g. through investments
in infrastructure, healthcare, education and research, etc.), and we assume that this has a positive
social and financial effect, thus overall reduces the total expected “costs” of the government. The
marginal benefit of increasing debt ratio is a strictly positive constant co > 0.

Assuming that the government discounts at a rate p > 0, the total expected cost functional, net
of investment benefits, is

(2.5) Tuilp) = EW)[ / e h(XE)dt + 1 / P, — ¢ / e-ptd&],
0 0 0

where, for any (z,7) € O := Ry x M, E(, ;) denotes the expectation under the measure P, ; () :=
P(-|X§ = x,Yp = i). In the following we will equivalently write E[f(X""?)] = E(,[f(X[)], for
any t > 0 and Borel-measurable function f : R — R such that the previous expectation is finite.
Hereafter, we use the notation fg( dds = f[(),t)< )dVs, for ¥ € {£,n} and any t € [0, o0].

For any given initial value of the debt ratio z > 0 and of the state of the economy i € M,
we assume that the government will not use a debt ratio management policy leading to infinite
cost/benefit of interventions, and given that the debt ratio level is always a positive number, the
government picks its debt ratio management policy ¢ in the set

(2.6) A(z,i) = {gp eV: E[/ e P (dn + d&) | < oo and XP >0 P@dt— a.e.}.
0

The government’s aim is therefore to solve

(2.7) V(z,i):= inf Tpi(p), (x,1) € O.
pEA(,i)
We will refer to V' as the value function, and any debt ratio management policy belonging to .4 will
be called admissible.
The following assumption on the model’s parameters will hold true in the rest of this paper.

Assumption 2.5. The model’s parameters satisfy
G p-rtg- AN
Co p—r+g— /\1 '

Since Ay < A1, Assumption 2.5 in particular implies the condition ¢; > ¢o. This is typically assumed
in the literature on bounded-variation stochastic control problems in order to ensure well-posedness
of the optimisation problem (see, e.g., [10], [I&] and [17]) and to avoid arbitrage opportunities. As-
sumption 2.5 will play a central role in the proof of existence of an optimal debt ratio management
policy for problem (2.7) (see the proof of Lemma 3.3 below). It is also worth noticing that Assump-
tion 2.5 will have important implications on the geometry of the state space (see Proposition 4.4
below).

3. ON THE EXISTENCE OF THE OPTIMAL DEBT RATIO MANAGEMENT PoOLICY

In this section we prove some preliminary properties of the value function, the existence and
uniqueness of an optimal debt ratio management policy for problem (2.7), and its relation to a
zero-sum game of optimal stopping (Dynkin game).

We start with the following standard result.

Proposition 3.1. The value function V' of (2.7) is such that x — V(x,1) is convex on Ry for any
i € M. Moreover, V(x,i) < crx for all (z,i) € O.

Proof. See Appendix A. O

To take care of the infinite time-horizon of our problem we need the following assumption, which
will also hold throughout the rest of this paper.
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Assumption 3.2. Recall m from Assumption 2.3. The model’s parameters satisfy
o? +
p> ((r—g—i—)\l)\/ (m(r—g—l—)\l)%—?m(m— 1)))

Assumption 3.2 may be justified by noting that the government, which runs only for a limited
amount of years, is more concerned about the present than the future, and therefore discounts
future costs and benefits at a sufficiently large rate. Moreover, a combination of the condition
p>(m(r—g+ M)+ ";m(m —1))" with Assumption 2.3-(iii), ensures that the trivial admissible
policy “do not intervene at all on the debt ratio” yields a finite expected cost, even if it is not
necessarily the minimal one.

Notice that setting

= ¢ d{s _ t d?]s - _
(3.1) & = 0 XL and My = W §o = 0="1p,
and @ := £ — 7, the solution to (2.4) rewrites as
(32) DD [+ & — ), t>0.

The quantities d¢, and dn, are the sizes of interventions made at time ¢ > 0, per unit of debt ratio
in absence of any intervention.
Then, by defining A, for any (z,i) € O, as

Az, i) == {@ SV E[/O e*thtl’i’O(dﬁt —i—d{t)] <occandz+& -7, >0 P®dt— a.e.},

it is easy to see that the mapping A(x,i) > ¢ — % € A(x,14) is one-to-one and onto, and one can
also write

V(z,i)= inf E[ / e P (X [z + € — 7] )dt + / e P X0 dn,
PEA(x,1) 0 0

(3.3) — e /0 e‘thtl’i’Odgt}, (z,i) € O.

The definitions of £ and 7 in (3.1) will be used in the proof of the next result.

Lemma 3.3. Let (z,i) € O be arbitrary but fized, and let (¢™)nen := (£, 0" )nen be a minimising
sequence for problem (2.7) (equivalently, (3.3)). Then

(3.4) sup E(m’)[/ e_ptdnf—l—/ e_ptd&f"} < 00.
neN 0 0

Proof. See Appendix A. O
In view of Lemma 3.3, we can now prove the main result of this section.

Theorem 3.4. Let (z,i) € O be given and fized. There exists a unique (up to undistinguishability)
optimal debt ratio management policy p* = & —n* for the problem (2.7).

Proof. See Appendix A. d

The previous theorem ensures existence and uniqueness of an optimal debt ratio management
policy, but it does not directly provide its structure. To determine the form of the optimal debt
ratio management policy, we now exploit the result of Theorem 3.4 and we relate the optimal debt
management problem to a two person zero-sum game of optimal stopping with regime switching.
This game might be interpreted as a game played between the two components of the government;
namely, player 1 represents the will to adopt a restrictive debt policy and player 2 represents the
desire to increase spending.
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The proof of the next proposition follows by suitably applying results in Theorems 3.1 and 3.2
of [22]. Tt is important to remark that in [22] the set of admissible controls does not require that
the controlled process remains positive. However, the proof of Theorem 3.2 therein is based on the
construction of suitable perturbations of the optimal control and one may easily verify that such
perturbations of the optimal control preserve positivity of the process provided that the optimal
control does.

In the rest of the paper, we set g,(z,i) := %(w,i) for any function g : O — R, and we now
provide a probabilistic representation of V..

Proposition 3.5. For any (x,i) € O set
TN . . ) .
(3.5) Uu(r,0):=E { /0 e X)W (2 X0V dt + coe T X0 gy + c1e P X gy |

for a couple of F-stopping times (1,6). Then,
(3.6) Ve(x,1) = v(z,1), (x,1) € O,
where v is the value function of the zero-sum Dynkin game with regime switching

. ) = inf W, ;(7,0) = inf U,i(7,0), 0 :
(3.7) v(x, 1) ig%érzlo i(7,0) 61?203;% i(r0), (x,i)e0

Proof. See Appendix A. O

4. THE ASSOCIATED OPTIMAL STOPPING GAME

In this section we will study the Dynkin game with regime switching with value (3.7). In partic-
ular, we will characterise the saddle point of the game as a couple of hitting times of two regime-
dependent boundaries, and we will prove global C!-regularity of v(-,i) for any i € M. This study
will be crucial for the identification of the optimal control of problem (2.7), completely characterising
the optimal debt management policy of the government, developed in Section 5.

For the subsequent analysis, we define the process

t

(4.1) Pt = (p—r—i—g)t—/ Av.ds, t>0,
0

and let P be the measure on (©, F) such that

dp

dP 7,

and denote by E(x,i) the expectation under P conditioned on Xo =z and Yy = i, for (z,7) € O.
Notice that for any t > 0, we can rewrite X% from (2.2) as

, t
(4.3) X0 = exp {(7“ —g)t+ / Ayi ds} My = exp {pt - f)t} M;.
0

1
(4.2) =M, fort>0, with M; = exp{ — 50275 + aWt},

In view of the change of measure in (4.2), we have by Girsanov’s theorem that /Wt =W, —otisa

~

standard F-Brownian motion under P, and we introduce the process (cf. (2.2))

(44) Xg,',%() _ xe(r_9+%02)t+f()t )\YS,L'dS+O'Wt’ t Z 0
Moreover, we can rewrite (cf. (3.7))

4. /) = sup inf U, ;(7,6) = inf sup ¥y ; /

(4.5) v(z,1) sup Inf 2,i(7,0) jufsup 2i(7,0), (2,i) €O,

where for every couple of F-stopping times (7, 0) we have set

. TNO R . ~ R
(4.6) Wy i(7,0) = E@ ) [/0 e Pt/ (X?)dt +coe” P10y +cre” P lg |-
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with p. given by (4.1).

It is easy to see that since p > r — g + A1 by Assumption 3.2, then limq, e Pt =0, P-as..
Therefore, in the rest of this section, for any F-stopping time ¢ we will adopt the convention

e P =0 on {¢=+o0}.

From (4.5)—(4.6) it is readily seen that co < v(x,i) < ¢;. Using the general theory of optimal

stopping for Markov processes (see, e.g., Chapter 2 of [27]) define the continuation region
C:={(z,i) € O: ca <wv(zx,i) <1},
and the stopping regions
S :=A{(z,i) € O: v(z,i) > 1}, and S i =A{(z,i1) € O: v(z,i) < c2}.

Here C is the region in which no player has an incentive to stop the evolution of the process
(X9)Y), whereas S;, j = 1,2, is the region in which it is optimal for player j to stop.

~

Since x — )’th,z',o is P-a.s. increasing (cf. (4.4)), it follows from (4.5) that = — v(x, ) is increasing
for any i € M due to the convexity of h. Hence we can introduce the free boundaries

(4.7) a(i) :=inf{x > 0:v(x,i) > ca} and (i) :==sup{z > 0:v(z,i) < c1},

(with the usual convention sup® = 0 and inf ) = +00), and we have that O = R} x M is split into
continuation and stopping regions completely determined by a and b; that is,

C={(z,i) € O: ali) <z <b(i)},
and
(4.8) S1={(x,i)) € O: z>b(i)} and Sy ={(z,i) € O: x<a(i)}.

The Markov process ()? 97Y) has cadlag paths and it is of Feller type by [35] (see Lemma 3.6
and Theorem 3.10 therein). Hence its paths are right-continuous and quasi-left-continuous (i.e. left-
continuous over predictable stopping times), and by Theorem 2.1 of [13] we know that P(z,i)-a.s.,
for any (z,4) € O, the two stopping times
(4.9) 0* :=inf{t >0: (X°,Y;) €S} and 75 :=inf{t>0: (X2 € S},

form a saddle point for the game (4.5) (here the usual convention inf () = +oo applies). Moreover,
by easily adapting the results of Theorem 2.1 in [28] to our case with running cost h', we also
have the following probabilistic characterisation of v. Such a result is usually referred to as the
semi-harmonic characterisation of v.

Proposition 4.1. For any (x,i) € O, we have under ﬁ(:v,i) that
. AT S S

(1) ( 0/\7’ e psh/(Xg)dS-i-e PtnT U(X?/\T*7§/t/\7—*))t20

(ii) ( g/\e* e Psp ()?g)ds + e_ﬁf/\@*v()?fw*,}/}/\g*))po is a right-continuous F-supermartingale;

(iii) ( g/\Q*AT* e Psh/ ()?2) ds+ePerorner U(X?/\e*/\r* Yinoenre))

s a right-continuous F-submartingale;

>0 18 a right-continuous F-martingale;

The following proposition rules out the possibility that the stopping regions are empty, thus the
boundaries a(i) and b(i) from (4.7) exist and are finite under any regime i € M, and the optimal
stopping times in (4.9), forming the Nash-equilibrium, are well-defined.

Proposition 4.2. The following hold true:

(i) 51 75 (Z) and 82 75 @;
(ii) there exist constants 0 < a1 < by < +o00 and 0 < ay < by < 400, with a1 < ay and
b1 < by, such that for all i € M we have a1 < a(i) < ay and by < b(i) < by.

Proof. See Appendix A. O
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For any ¢ € M introduce the i-sections for C, S and S; as
C':={x>0: (z,i)eC} and sz: ={x>0: (z,i) € S;}, for j=1,2.
The next result proves regularity of z — v(z,) for any i € M.

Theorem 4.3. For any i€ M,
(i) v(-,9) € C*((C"USTUS) \ {ali), b(i)});
(i) v(- i) € CH(Ry).
Proof. See Appendix A. O

Denote by £ the infinitesimal generator of the Markov process ()? V'Y) as the second-order dif-
ferential operator, acting for any i € M on functions u(-,i) € C?(R), given by

. 1 . . .
Lu(z,1) = 202:U2um(x i)+ (r— g+ N+ 0%)zug(2,i) + Z gij[u(z, j) — u(z,i)].
J#
Then, from standard arguments based on the strong Markov property, and from Proposition 4.1,

Proposition 4.2 and Theorem 4.3, it follows that for any ¢ € M, the triplet (v(-, ), a(7), b(i)) satisfies
the following free-boundary problem

(4.10) (L= (p—(r—g+X)))v(z,i) = -k (2), a(i) < x < b(3),
(4.11) (L—=(p—(r—g+N)))v(z,i) < —h(z), x < b(i),
(4.12) (L= (p—(r—g+X)))v(z,i) > -k (2), x > a(i),
(4.13) v(z,i) = ca, x < a(7),
(4.14) v(z,i) = ¢, x > b(7).

Moreover, v(-,i) € C'(R4) for any i € M and v, (-,1) € LS (R4 for any i € M.
The next proposition determines the geometry of the state space, and in particular the ordering
of the boundaries a and b across the different states of the economy.

Proposition 4.4. The following hold true:

(i) a(N)>a(N—=1)>--->a(l) and b(1) < b(2) < --- < b(N);

(ii) a(N) < b(1).
Proof. See Appendix A. O
Remark 4.5. Proposition 4.4 has the important consequence of characterising the geometry of
continuation and stopping regions. This fact, combined with Theorem 4.3, provides an operative
method to determine the free boundaries a(i) and b(i), i € M. Indeed, since for any i € M we have
that v(-,i) € C1(Ry), then the value function must be necessarily continuously differentiable at the
free boundaries a(j) and b(j) for all j € M. This yields the following system of nonlinear equations
for the 2N -dimensional vector (a(1),b(1),...,a(N),b(N)):
(4.15)  w(a(i)+,i) =ca and wvy(a(i)+,i) =0, VieM
(4.16) v(b(i)—,i) =c1 and wvi(b(i)—,i) =0,, VieM
(4.17) (a(j)—1) = v(a(j)+.9) and ve(a(j)—, i) = ve(a(j)+9), ¥ (i,5) € M*: j >,
(4.18)  w(b(j)—1) =v(b(G)+,1) and vs(b(j)—,7) = ve(b(i)+.4), ¥ (i.5) € M1 G <.

<

We will see how to explicitly write the system of equations for the boundaries in the last section
of this paper, where we study the specific case in which the Markov chain'Y has N = 2 states.
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5. THE OPTIMAL DEBT MANAGEMENT RULE

Combining Theorem 4.3 with Proposition 3.5 we immediately have for any ¢ € M, that V(-,i) €
C%(R.). Hence by the Dynamic Programming Principle (see, e.g., [15], Chapter VIIL5; see also [3],
in particular Remarks 3.10 and 3.11, for a proof in a very general setting)

V(z,i) = ;1612 Eeziy|e V(XY Y7) +/0 €_pth(Xf)dt+/0 e P (crdn; — cad&y) |,

for any F-stopping time 7, V identifies with a classical solution to the Hamilton-Jacobi-Bellman
(HJB) equation

(5.1) min { (G — p)V (z,) + h(z), —ca + Va(w, i), c1 — Va(z,i)} =0, (x,i) € O.

Here G is the infinitesimal generator of (X°,Y’), which acts on functions f : O — R with f(-,i) €
C?(R) for any given and fixed i € M as

(52) gf(.l‘, Z) = %Uz-foxx(x, Z) + (T —g+t )"L)xfw(xvz) - ,Of(ZL',Z) + Zqij [f(xm?) - f($,l)] :

J#
It is worth noting that, due to (5.2), equation (5.1) is actually a system of variational inequalities,
coupled through the transition rates g;;.

In what follows, we will use the optimal boundaries a(-) and b(-) of (4.7), which define the value
function of the associated optimal stopping game in (3.7) (equivalently, (4.5)), in order to construct
the optimal debt ratio management policy for the original problem (2.7).

To that end, recall the boundaries a(-) and b(-) of (4.7) and let = € [a(i),b(i)], i € M. Then,
consider the two-sided Skorokhod reflection problem SP(a, b; z,7) defined as:

X?W € [a(Y}),b(Y1)], P-as. for a.e. t >0,

T
(SP(a,b;x,i)) Find (§,m) €U x U s.t. /0 ]I{Xf»i,w>am)}dft =0, P-a.s. for any T' > 0,

T
\ /0 ]].{Xf,i,gp<b(Y%)}dT]t =0, P-a.s. for any T > 0,

where we have set ¢ := £ —n. Such a problem admits a unique solution ({A, 7n) (see, e.g., Corollary 2.4
and Theorem 2.6 in [1]), and we denote ¢ := £—7. This solution is such that supp{dé;}ﬂsupp{d?]t} =
(), since a(i) < b(i) for any i € M (see Propositions 4.2 and 4.4).

Then, for any (z,7) € O define the control (here and in the rest of the paper, (-)" denotes the
positive part)

(5.3) @* =& —n* suchthat &5 =0=mn; P—as., whereforanyt >0,
' &e=(a(@) —2)"+& and  nf = (2 —0()T + 7

The remaining of this section is dedicated to proving the optimality of the control (5.3) for the
original debt ratio management problem (2.7).

Before doing so, it is worth noticing that the debt ratio management policy prescribed by the
controls in (5.3) involves two types of actions by the government:

(a) Small-scale actions employed when the debt ratio X; approaches, at any time t > 0, either

boundary a(Y;) from above or boundary b(Y;) from below. The purpose of these measures is to
make sure (with a minimal effort) that the debt ratio level X} is kept inside the interval [a(Y;), b(Y?)].

Mathematically, these are the actions caused by the continuous parts Ecom and 7°™ of the controls
¢ and 7, respectively (Skorokhod reflection-type policies);

(b) Large-scale actions employed when the debt ratio Xy, at any time ¢ > 0, is either below the
boundary a(Y;) or above the boundary b(Y;). The purpose of these measures is to bring immediately
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the debt ratio level X; back inside the interval [a(Y;), b(Y};)]. Mathematically, these are the actions
caused at time ¢ = 0, by the initial jumps (a(i) — z)" and (z — b(i ))T, or at any time ¢ > 0, by the
jump parts A& = £t+ {t and An; := 0y — 1 of the controls { and 7, respectively (Lump-sum-type
policies).

Remark 5.1. Note that, the large-scale actions mentioned in (b) above, caused by the jump parts
Aa and A of the controls for t > 0, will only be needed at times of jumps of the macroeconomic
regime-switching process Y;. These are the only times when the debt ratio level Xy may exit the
interval [a(Yy),b(Y;)]. This is an interesting feature, coming from the inclusion of regime-switching
macroeconomic factors in the model, not usually observed in bounded-variation stochastic control
problems without regime-switching, where a lump-sum action may be required only at time t = 0
(see, e.q., [17] and [23], among others).

In order to illustrate the argument in Remark 5.1, consider the following example. Suppose
that time 7' is a jump time from the initial economic regime Y7 = i to a “worse” one Yp = j.
Suppose also that, immediately before the jump, the debt ratio was inside the required bounds (i.e.
a(i) < Xp— < b(i)), but after the jump it ends up above the new upper bound under the new
regime j (i.e. a(j) < b(j) < Xr). In this case, the optimal debt ratio management policy of the
government, which was before the regime change “just observing” (no-action), will now require a
lump-sum type Q\f austerity policy, e.g. with a large-scale spending cut, that can decrease the debt
ratio level by A&r = Xp — b(j).

We now proceed with the next lemma showing the admissibility of the control ¢* in (5.3).
Lemma 5.2. For any (z,i) € O, we have p* € A(z,1).
Proof. See Appendix A. O
Thanks to the admissibility of ¢* we can now prove its optimality.
Theorem 5.3. The admissible o* = £ —n* of (5.3) is optimal for the problem (2.7).

Proof. Tt suffices to show that J(, ;) (¢*) = V(,1) for any (r,i) € O. In order to simplify notation
from now on we write X* = X", P(z,i)-a-s.

Fix (z,i) € O, and take arbitrary 7' > 0. Let 0 < T7 < T < ... < Th < T be the random times
of jumps of Y in the interval [0,7) (clearly, the number M of those jumps is random as well). By
the regularity of V we can apply Ito-Meyer’s formula to the process (e ”'V (X}, Y:))i>0 (see also
proof of Lemma 5.2), and taking expectations we get

T
(54) V(H?, Z) = E(CE,Z) I:e_pTV(Xf?v YT) - /0 e—ps(g - p)V(X.; Y:9>d5:|

T
| [ PRz (dge = )| B | e (Vv - vixz ) .
0

0<s<T

where we used the facts that the expectation of the stochastic integral vanishes since X} € [a(1), b(N)]
(cf. Proposition 4.4) and V,(+,) is continuous.

Recall now that V solves (5.1) and V, = v by (3.6), with v as in (3.7). Hence, since X} €
[a(Y5),b(Y5)], Pa)-a.s. for a.e. s > 0, we have that (G — p)V (X7, Ys) = —h(X]) P -a.s. for ae.
s > 0. Furthermore, notice that (£*,7*) solve the Skorokhod reflection problem, and therefore
{t: dgf(w) >0} C {t: XF(w) < a(Yi(w))} and {t: dnj(w) >0} € {t: Xj(w) = b(Yi(w))} for any
w € Q. Then, because V(z,7) = cg for x < a(i) and V;(z,7) = ¢; for x > b(7), we obtain from (5.4)
(see also (A- 25)) that

T T
(5.5)  V(x,i) =B [e*pTV(X}, YT)} + E(z,) [/ e PPh(X})ds + / e P (crdny — codg}) |.
0 0
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Since X} € [a(1),b(N)] (cf. Proposition 4.4) and V(-,7) is continuous, applying the dominated
convergence theorem gives

i o\ [e=PT * =
’Il“lTrélo E(mﬂ) [6 V(XT, YT)] 0.

Hence, taking limits as T — oo in the second expectation on the right-hand side of (5.5), and
invoking the monotone convergence theorem, together with Lemma 5.2 and (2.6), we find

oo o0
V(z,i) =E(; [/ e Ph(X})ds —l—/ e P8 (cldn; — czdfg) = Ty (¢7).
0 0
The latter shows optimality of ¢* = £€* — n* and thus completes the proof. O

Remark 5.4. Notice that the unique optimal debt ratio management policy ¢* from (5.3) is also
optimal in the larger class of admissible controls {go eV: E[foOO e Pt (dm + d&)] < oo}, when
we allow for X to become negative. In this paper we have however formulated the optimal debt
management problem over the more economically relevant class A.

6. EXPLICIT SOLUTION IN A CASE STUDY WITH TwO REGIMES

In this section, we consider the simplest possible regime-switching model of debt ratio manage-
ment. In particular, the continuous-time Markov chain Y, modelling the macroeconomic conditions
affecting the interest rate on debt, has only N = 2 states; namely, ¥; € M := {1,2}. In view of
Assumption 2.1, we have A\; > Ao. Therefore, the states 1 and 2 represent the “bad” and “good”
scenarios for the government, under which the interest on debt is “high” and “low”, respectively.
We further assume a quadratic running cost function h(z) = x2?/2 for all x > 0, which satisfies
Assumption 2.3-(i)—(iv); e.g. set m = 2 and K1 = Ko = K3 = 1 in Assumption 2.3-(iii).

Thanks to 3.5, the government which originally aims at solving (2.7), given by

oo 1 oo oo

V(x,i) := inf E, ;) [/ e_ptf(Xf)th + 01/ e Ptdn, — 02/ e_ptdft], (x,7) € Ry x {1,2},
peAd 0 o 2 0 0

can first find the value v(z, ) of the optimal stopping game (3.7) with (3.5) and O = Ry x {1,2}.

In view of (4.5)—(4.6), v(x,7) can be rewritten as

TG
v(x,4) = sup inf E, ; [/ e PrXDdt + coe” "Ly + Cle_p"]l{9<ﬂl
r>00>0 0

\
— = —pt 0 —pr —Peo
(6.1) érzlf(; ig% Eez,i) [/0 e P Xy dt + coe” gy + 1€ 1{9«}} ,
for all (z,7) € O and p. given by (4.1). Then, the original value V' will follow from the equation
(3.6) and the optimal debt ratio management policy given by (5.3) will involve the boundaries
a(1) < a(2) < b(1) < b(2) (cf. Proposition 4.4) that we obtain by solving (6.1).

6.1. Derivation of the Explicit Solution. In the following we write ¢1 := ¢i2 = —q11 and
g2 = @21 = —q22. Equation (4.10), used to obtain the value function v(z, ) of the optimal stopping
game, consists of the following couple of ordinary differential equations

1
5021‘2113”(95, D4 (r—g+ M +o0Davg(x,1) = (p—r+9g—A)v(z, 1)+ ¢ (v(a:, 2) — v(x, 1)) =z

1
5023:%”(33, 2)+ (r—g+ X+ 0%)av,(2,2) — (p—r+g— A)v(z,2) + g2 (v(z, 1) —v(z,2)) = —x
for all a(l) < z < b(1) and a(2) < x < b(2), respectively, while the value function should also

satisfy the four conditions in (4.15)—(4.18) at the boundaries a(i) and b(i), for i = 1,2 (see also
Remark 4.5 for more details).
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Solving the system of ordinary differential equations we get that

o , if z <a(1),
A3 + Apz® + p+q1—2(7"—lg+>\1)—02x + p+fl1—c(27’q—19+/\1) ifa(l) <z < af2),
v(z, 1) = B1x? 4 ByaP? + ByaP + Byah
p+qit+ae—2(r—g+Az)—o> z , ifa(2) <z <b(1),
(p+a1—20—g+A1)—02) (p+a2-2(r—g+X2)~0?) ~q102
Lo , if 2 > b(1)
and
e , if z < a(2)
D R -y - L ‘I’li(f?’)igxﬁi j)q“;f”mx@*
_ i p+qitge—2(r—g+A1)—0o z -, if a(2) <z <b(1),
v(z,2) (p+a1—2(r—g+A1)—02) (p+a2—2(r—g+X2)—02) —q142 ) =
: :
Cra” + G2 + g —20—gtha)—oZ L T p+q2—c(qu—29+/\2) 1Eb(1) <@ < b(2),
o , if > 0(2),

\

where the constants as < 0 < a; (under Assumption 3.2 we have «a; > 1) are given by

1 r—9+A1i\/<1+r—g+A1)2+2(P+q1—(r—g+>\1))

alo =

2 o2 2 02 o2 ’

the constants v2 < 0 < 77 (under Assumptions 2.1 and 3.2 we have v; > 1) are given by

1 r—g+)\2:t\/(1+r—g+)\2>2+2(p+q2—(7’—g+>\2))

n2=g + o2 2 o2 o2 ’

and the constants 54 < 03 < 0 < 3 < 1 are the solutions of the characteristic equation
1(8) P2(B8) = q1 g2
with ) .
Q,(8) = 50252 + (r—g—i—)\i—i— 502)6— (p+ai—(r—g+XN)), fori=12.

Then, applying the conditions in (4.15) and (4.16) at the boundaries a(i) and b(z), for i = 1,2,
we obtain the following expressions

1 . (*1)i+1a*0ﬁ(1) ag_; — 1 B a3_;Co (p - (’r — g+ /\1))

(6.2)  A; = A;(a(l)) = P {qu_w_g“l)_a? a(1) P ety ]
o (LD () vy —1 e = (r—g+ )

(63)  Ci=Cib(2) = — —— [p+q2_2<r_g+)\2>_02b(2) P }

for i = 1,2, as well as
(6.4) B; = B;(a(2),b(1))

. N, o Bj+Br | o B
Zj’lki,efl}ié}:(_l)k_J+ﬂ{l>i} (B; — Br) [%(ﬁ,;?(ﬂk)fm (b(l)) (%) + %ﬁ,g (a(2)) (%) }
_ j

I

o ) N B1+B; a Br+B1

bi(1) Zj,kigz}iél}:(*l)wrl(ﬂl = B;)(Br — Bi) {W (%) + %M(b%) }
JFR<IF]

forieZ:={1,2,3,4} and

(I=Bm)(p+ @+ a2 —2(r—g+Ars_p) — 0?)
prar—20r—g+ ) =) (p+a—20r—g+X)—02) —qge
for m € 7 and n = 1,2. Notice that under Assumption 3.2 all the denominators in the formulas
above are nonzero.

T+ Bmcn

fm,n(z) = (



DEBT RATIO CONTROL WITH REGIME SWITCHING 15

We then apply (4.17)—(4.18) and we obtain
v(a(2)+,1) =v(a(2)—,1) & vy(a(2)+,1) =vy(a(2)—,1),
v(b(1)+,2) =v(b(1)—,2) & vx(b(1)+,2) = vz (b(1)—,2).

Using the above conditions for the expressions of v(z,4) for i = 1,2 with A4;, C; for i = 1,2 and
B; for i = 1,2,3,4 given by (6.2)—(6.4), we obtain the boundaries a(i) and b(i) for i = 1,2 as the
solution of the following system of four arithmetic equations:

q1(f1,2(a(2)) — Bica)
(I=B)p+a —2(r—g+ ) —0?)

2 4
6.5) Y Ai(a(1))a®(2) = Bi(a(2),b(1)) a”(2) +
=1 =1

_ qi1¢2
p+aq—(r—g+X)

2

4
;A\ a® = B (a a:@i 0 (f172 (a(Q)) - ﬂlCQ)
(6.0 2 oufki{al)a™ @) =3 il (al2),b1) ™ Q)+ T30 0 o= g Ay o)

2

) Vi _ ®1(8) (a B; q2(f1,1(b(1))_5101)
67) > Ci(b(2))b (1)-21 L Bi(a2), )V () + g e

_ g2¢1
p+aqz—(r—g+A)

@1;/3”& (a(2), B())H* (1) +

1=1 i=

2

(6.8) Y _ %Ci(b(2))b (1) = Zﬂi

=1

g2(f1,1(b(1)) — Brca)
(1=B1)(p+g2—2(r—g+A2) —0?)

Finally, for any ¢ = 1,2, combining (4.11) with (4.13), and (4.12) with (4.14), we find that the
boundaries a(1), a(2),b(1),b(2) must necessarily be such that

(6.9) z—(p+a—(r—g+XN))e+qu(z,j) <0, forj#iandz < a(i),
and
(6.10) z—(p+q—(r—g+X\))a+qv(z,j) >0, forj##iandz > b(i).

The above conditions have the practical use of providing bounds on a(1),a(2),b(1),b(2) that one
has to check on a case by case basis when trying to solve numerically (6.5)—(6.8).

It is worth stressing that one advantage of our direct probabilistic method - compared to the
traditional analytic guess-and-verify one - is that existence of a solution to (6.5)—(6.8) satisfying
(6.9)—(6.10) does not have to be proved, since it follows directly from the general theory developed
in Section 4, in particular Theorem 4.3 and Proposition 4.4. Moreover, we also have uniqueness of
such a solution. Indeed, if there were another quadruple (6(1),6(2),/19\(1),3(2)) solving (6.5)—(6.8)
and satisfying (6.9)—(6.10), by a standard verification argument one could prove that the bounded
variation control that keeps the process (X, Y;) in the region {(z,i) € O : a(i) < z < g(z)}
for almost every ¢ > 0 (i.e. solving SP(EE,Z;:U,Z’)) is optimal. However, this would contradict the
uniqueness of the optimal control proved in Theorem 3.4.

Remark 6.1. Here we comment on the structure of the value function in the general case of N > 2
TEgiMmes.

In the above case study with N = 2 regimes, there are 4 boundaries a(i),b(i),7 = 1,2, solving
uniquely the system of 4 algebraic equations with constraints in (6.5)—(6.10), and the value function
involves in total 8 boundary-dependent-coefficients given by (6.2)—(6.4).

When solving the problem with N regimes, the expression of the value function in each of the
subintervals of the i-section of the continuation region C' = {x > 0 : a(i) < x < b(i)}, for
any i € M, will again have two components. The first component is the particular solution to
the coupled system of N ordinary differential equations (cf. (4.10)), and it will always be a linear
function with coefficients depending only on the parameters of the problem. The second component
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1s the gemeral solution to the coupled system of N ordinary differential equations, and it will be a
polynomial with coefficients (in total the value function will involve 2N? such coefficients) depending
on the 2N boundaries (in total) of the continuation region. The latter boundaries will uniquely solve
a system of 2N algebraic equations with constraints.

6.2. Comparative Statics Analysis. In this section we show how the optimal control boundaries
a(1),a(2),b(1),b(2), which define the government’s debt ratio management policy, depend on the
relevant model’s parameters, and we provide interpretations of the results. In what follows, whenever
we need to stress the dependence of the boundaries and value function on a given parameter x, we
will write a(7; x) and b(i; x), as well as v(z,i;x), © > 0 and i = 1, 2.

Our analysis begins with a theoretical proof of the monotonicity of the control boundaries with
respect to r — g, and a numerical illustration in Figure 1. We then continue with a numerical study
of the sensitivity with respect to ¢ and ¢a — ¢1. Due to the complexity of our problem, proving
analytically the monotonicity of a(i) and b(i), i = 1,2, with respect to o and g2 — ¢q; is far from
trivial. However, the explicit nature of our results (cf. the system of equations (6.5)—(6.8)) allows
for an easy numerical implementation resulting in Figure 2 and Figure 3.

Comparative Statics with respect to r — g. We start with the following result.

Proposition 6.2. For any i € {1,2} we have that (r — g) — a(i;r — g) and (r — g) — b(i;r — g)
are decreasing.

Proof. Let i € {1,2} be given and fixed. Remember that from (4.7) we can write
alisr = g) = nf{z > 0: v(e,izr — g) > cal,
b(izr —g) = sup{z > 0 v(x,i;7 —g) < e1}.

From (6.1) it is easily seen that (r — ¢g) — v(x,i;7 — g) is increasing. Hence, (4.7) imply that
(r—g)—a(i;r —g) and (r — g) — b(i;r — g) are decreasing, and the claim thus follows. O

Remark 6.3. It is worth noticing that the proof of the previous result does not use the fact that
the continuous-time Markov chain Y has only two states. Therefore, Proposition 6.2 does hold in
the more general setting of N > 2.

It is clear from (2.1) that the higher the real interest rate on debt (net of the GDP growth rate),
the more the country’s debt ratio increases in expectations. In such a case, the result of Proposition
6.2 implies that the government should adopt a more restrictive policy for the management of public
debt, in order to dam the resulting expected costs. In other words, as r — g increases, the critical
level, below which the government aims at keeping the debt ratio, decreases, so that the government
should (optimally) intervene sooner to reduce the debt ratio, through austerity policies in the form
of spending cuts. On the other hand, the trigger level at which the government starts increasing the
debt ratio decreases as well, meaning that the government should be willing to postpone its public
investment intervention which increases the debt ratio. (see Figure 1).

We can also observe from Figure 1 that when the interest rate on debt r is sufficiently higher
that the GDP growth rate g, then the debt ratio ceiling values b(1) and b(2) seem to come closer,
thus implying that the debt reduction policy is not strongly affected by the state of the economy.
Similarly, the trigger values a(1) and a(2) seem to converge to each other when the GDP grows at a
much higher rate than the interest on debt. Hence under such a high GDP growth, the government
can adopt, independently of the macroeconomic regime, a similar policy for public investments,
aiming at increasing the debt ratio. On the contrary, the trigger levels a(1) and a(2) (resp. b(1) and
b(2)) take significantly different values when g is sufficiently lower than r (resp. r is sufficiently lower
than g), so that in this case the debt policy seems to strongly react to the state of the economy.

Furthermore, under the choice of parameters of Figure 1, the levels b(7), i = 1,2, that trigger the
debt reduction policies are on average equal to 60%, a value in line with the Maastricht Treaty’s
reference value of 1992.
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Comparative Statics with respect to . We now move on to the study of the sensitivity of the
control boundaries with respect to the debt ratio’s volatility . We can observe from Figure 2 that,
in both regimes 7 = 1 and ¢ = 2, the amplitude of continuation region b(i) — a(i) increases with o.
This result is well known in the literature on real options (see [12] and [21], among others). In our
setting of the debt ratio management, this means that the more volatile the debt ratio, the more
cautious the government is, hence the longer it should wait before intervening on the debt ratio.

Comparative Statics with respect to qo — q1. It is seen in Figure 3 that, in both regimes ¢ = 1
and i = 2, the amplitude of the continuation region b(i) — a(i) decreases when ga — ¢ increases. In
particular, this can be viewed in two ways: On one hand, when the economy is in the “bad” state
1 = 1, a decreasing rate ¢; of moving to the “good” regime ¢ = 2, suggests that the government
should become more proactive, adopt a more restrictive policy and be willing to intervene more
frequently on the debt ratio. This will counterbalance the fact that it is expected to remain under
the “bad” regime for a longer time. On the other hand, when the economy is in the “good” state
1 = 2, an increasing rate ¢o of moving to the “bad” regime ¢ = 1, suggests that the government should
again become more proactive by adopting a more restrictive policy, so that it is more prepared to
deal with the worse economic scenario.

6.3. Comparison with the no-regime-switching case. In this section, we first present the
solution to the no-regime-switching case, namely, the problem with only one regime N = 1. Then,
we compare the resulting optimal government policy with the regime-switching optimal policy from
Section 6.2 (where N = 2) and we comment on the results.

Observe that, under no regime-switching, the dynamics of the governmentally managed debt-to-
GDP ratio become one-dimensional and read as (compare with (2.3))

dj(;t: (T’—g))?tdt—i‘O')?tth—i-dft—d??t, t >0, Xo:x'ER_H

where we assume there is no additional macroeconomic risk process Y, in the form of a continuous-
time Markov chain, and the (constant) interest rate on debt is simply given by the parameter r.
In this case, the debt ratio management problem (2.5)—(2.7) becomes one-dimensional as well, i.e.
V(z,i) = V(x). Moreover, the boundaries involved in the two-sided Skorokhod reflection problem
SP(a,b;z,i) = SP(a,b;x), defining the optimal controls in (5.3) and consequently the optimal
policy of the government, are also constants denoted by a and b.

It follows from standard theory on singular stochastic control problems (see Chapter VIII in [15];
compare also with related problems in [17] and [23], among others) that the value function V' of
(2.7) with h(x) = 22/2 in (2.5), satisfies the following ordinary differential equation with boundary
conditions:

1

50’
Vela+) =co and V. (b—) = ¢y,
Vaez(a+) =0 and Vg (b—) =0.

Solving the above free-boundary problem, and imposing continuity of V at x = a and = = b, we
get that

1
20 Ve () + (r — g)zVe(z) — pV(z) = —§x2 for a < x <0,

V(a) —co (a —x) , if z <a,
V(z) = § Dia™ + Dya® + gl ma® | ifa < <b,
V() +ci(x—0b) , itz >0,
with
Dy = Difa.b) = (a—calp—2(r—g) =) (1)~ = (b—ei(p—2(r —g) — 0?)) (2) |

(—1)iH18; (p— 2(r — g) — 02) ad%—1 [(2)61 B (2)62}
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where the constants d2 < 0 < 1 < 1 are given by

1 r—g 1 r—g 2 2p
0o == — —— =+ - iy
279 g2 \/<2 o2 > T
and the optimal boundaries a < ca(p — 7+ g) < c1(p —r + g) < b are given by the unique solution
to the system of arithmetic equations

JLQ(CL) == J171(b) and JQQ(CL) == JQJ(b)

where

Sy = G D= o2 —g) o)

23— i—1

In order to compare the governmental optimal policy when there is no regime-switching with
the case study with N = 2 regimes, we numerically calculate the values of the boundaries a and b
and compare with the values of a(1),a(2),b(1) and b(2). Recall that, the no-regime-switching case
assumes a constant interest rate . Thus, in order to facilitate the comparison, we assume that
under the “good” macroeconomic regime ¢ = 2 in the two-regime case, we set Ao = 0, so that it also
corresponds to an interest rate on debt equal to . Then, under the “bad” macroeconomic regime
1 = 1, the interest rate on debt becomes r + A1 > r; see Table 1.

If there is a possibility for the government to experience different macroeconomic regimes, it is
seen from Table 1 that the government should become more proactive, by adopting a more restrictive
debt reduction policy. Even under the “good” macroeconomic regime ¢ = 2, the government should
(optimally) intervene sooner through austerity policies to reduce the debt ratio (at 58.23%), as
opposed to the consistently “good” economy under no regime-switching, where the government
is willing to intervene at a later stage (at 60.34%). This occurs irrespective of the fact that all
parameters take exactly the same values. Clearly, the possibility of a future turn of events, leading
to worse macroeconomic conditions, is what makes the government more cautious about the future
and willing to intervene more frequently so that it is more prepared to deal with the worse economic
scenario if and when it comes. This also results in the slight postponing of public investments under
the possibility of such change from i = 2 to the worse macroeconomic regime i = 1 (at a safer level
24.76%) compared to the slightly higher trigger level, when the economy is consistently at a “good”
state (at 24.85%).

APPENDIX A. PROOFS
Proof of Proposition 3.1. To prove convexity of V with respect to z, fix ¢ € M, take x; > 0,
23 > 0 and controls o), (2 € A. Then, for a fixed w € [0,1], set z := wz; + (1 — @)z, and
¢ = wp) 4+ (1 — @)@, Because (2.3) is linear, we have X% = wal’i’w(l) +(1- w)Xt‘m’i’“o(Z)
for any ¢ > 0 and it is easy to see from (2.5) that

T=i(9) € @ T i) + (1= ) T i(?),
by convexity of h. Since p € A
V(wz + (1 - @)as) < Toi(9) < @ T i(0) + (1= @) T i(0?),

which yields convexity of V(-,4) by arbitrariness of (1) and (.

To show that V(z,1) < ¢y for all (z,7) € O, it suffices to notice that, given any (z,7) € O, the
a-priori suboptimal admissible control @ associated to the policy “bring immediately the debt ratio
to zero and do nothing more” is such that J,;)($) < c12. In fact, we have for any ¢ > 0 that

X552 =0 and h(0) = 0. O
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Proof of Lemma 3.3. Let (z,i) € O be given and fixed, and let (¢")nen = (£",17")nen be a
minimising sequence for problem (2.7) (equivalently, (3.3)). Without loss of generality, we can take
(¢")nen such that

1 + V(:c,z) 2 jxﬂ(gpn), fOI' any n,
and then recalling that V(x,i) < ¢z due to Proposition 3.1, it follows from (2.5) and (3.2) that

o0 . —n
L+ ez >1+ V(i) > Toi(¢") =Eua [/0 e P (X [+ & — 7] )dt}

(A-1) + E(x,i) |:61 / e*Pth? — 02/ eptd§?:| .
0 0

By Assumption 2.3-(iv), for any € > 0 there exists k. > 0 such that h(z) > ex — k. for any z € R,.
Taking this into account together with the monotonicity of h in Assumption 2.3-(i), (2.2) and the
positivity of X0 we can therefore continue from (A-1) by writing

1+ cz
(A-2) > —% +5E[ / e PtX (g — ng)dt} + E) [cl / e Ptdnl — ¢y / e—Ptdgp].
0 0 0

-=n

Notice now that due to (3.1) we have for either (9", 9") = (¢",€") or (9",9") = (9", 7") that

o%e] 14,01 o0 140 t d19n
E[ / e Pt X0 dt} - E[ / ePtx 1 ( / lf())dt]
0 0 0o X5

> 1 L0 n
(A-3) —E / it / ePtx 1 dt‘}'s o |,
0 s s

where Tonelli’s theorem and Theorem 57 in Chapter VI of [11] imply the last equality.

We now want to find a lower bound for E[;* e Pt X0 at| F) /X0, To accomplish that we
notice that (2.2), the fact that Ay, > Ay, P-a.s. for all £ > 0, and a change of variable of integration
give

87 K s O

o0
(A-4) = e_ps/ e~ (P Hg= AN u gy — e "By,
0
where we have set 32 := (p — 7+ g — Ay) "} < oo by Assumption 3.2. In (A-4) the independence
of Brownian increments, the stationarity of their distribution, and the formula for the Laplace

transform of a Gaussian random variable have been employed in the penultimate step. Analogously,
but using now that Ay; < Ay, P-a.s. for all £ > 0, we find

1 o0 . 0o
mE[/ e*thtlﬂ,o dt)fs] < eps/ e~ (p—rtg=X1)u g, e 5By,
XS’ ) s 0

with 81 := (p — 7+ g — A1)~ < co by Assumption 3.2.
Recalling (A-3) and using (A-4) and (A-5) we then find from (A-2) that

(A—6) 1+ cz+ % > (852 — CQ)E(QM-) [/ 6ptd§?:| + (61 — Eﬁl)E(mﬂ-) |:/ eptdn?:| .
0 0

(A-5)

The previous estimate holds for any € > 0. Hence setting O.(x) := 1 + c;z + %, we can take
€ = cy/P2 in (A-6) and obtain

520 (x) > (160 — 281 Equ [ / N e—Ptdnﬂ .
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On the other hand, by taking € = ¢1//; in (A-6) we have

o
51@%(35) > (e12 — 21)E s [/ fptdf?}

1 0
Noticing that ¢ 82 — co81 > 0 by Assumption 2.5, the last two inequalities then give

o P20z (z) + 5101 (2)

E</epd"+d”}§ 2 L
(=) [ 0 (45" -+ dn’) c1B2 — 21

which clearly implies (3.4) since the right-hand side of the latter is independent of n. O

Proof of Theorem 3.4. The proof is organised in two steps. We first prove existence of an optimal
control for problem (2.7), and then the uniqueness claim. In the rest of this proof (z,47) € O is given
and fixed.

Step 1. Let (¢")nen = (£, 0" )nen be a minimising sequence for problem (2.7). By (3.4) in
Lemma 3.3 we deduce that
sup E(, 5 [/ pe " (nf +€f)dt} < 005
neN 0
that is, (¢™)nen is bounded in L' (2 xR, P(dw)® pe~Ptdt). Komlds’ theorem thus implies that there

exists a subsequence (still denoted by (¢™),en for simplicity of notation) and a pair of measurable
processes £ and n* such that the Cesaro sequences

1o~ 1o~
M=oy g g d  qr==> 1 P —Pldt — ae.
n'_é 3 an n pa =0, ® pe a.e

Hence, setting @™ 5" — 70" and ¢* = £ — n*, we get P — ¢*, P ® pe Pldt-a.e. Arguing as
in Lemmata 4.5-4. 7 of [20] (notice indeed that our a.e. convergence implies the weak convergence
employed in that paper) one can show that £* and n* admit modifications — that we still denote by
&* and n* — that are nondecreasing, left-continuous and F-adapted; that is, * € V, and X}’ 2T >,
P ® dt-a.e.

Moreover, it follows from Portmanteau theorem (see, e.g., Theorem 2.1 in [!]) that P-a.s.

i [ g8 = / fodg; and hm/ o = / fodn,

0
for any bounded functlon f : Ry — Ry that is continuous d{*-a.e. (resp., dn*-a.e.) on Ry. The

latter convergence in particular yields
oo ~ [e.e] o0 [e.e]
(A-7) lim e Pdel = / e P%d¢s and lim e Pdny = / e Pdny,
which by Fatou’s lemma and (3.4) gives E(, ;[ [~ e ""dn; + [~ e P'déf] < oo, and therefore p* € A.
Furthermore, we have P-a.s. for a.e. ¢ > 0 that

. o dén [e.e] dé‘* =
(A-8) tim Lo (8) 310 = /0 Lo () i = &
. o0 d,,’,;’n o0 d,r/* -
A- 1 1 —= = 1 — =
(A-9) i [ o)t = [ Do)t =

upon recalling (3.1) to have the last two equalities in (A-8) and (A-9).
If we can now apply Fatou’s lemma to 7, ;($") from (2.5) in view of the limits (A-7)-(A-9) and
the expressions (2.4) and (3.2) of X%%% we obtain that

(A-10) Tzi(¢%) < lin%inf Tzi(@") =V (x,1),
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where we have used that ($"),y is also a minimising sequence due to the convexity of 7, ;(-) on V.
Hence, ¢* is optimal.

Therefore, in order to complete the proof of this part, we show in the remaining that Fatou’s
lemma can be indeed applied. Using the change of measure from (4.2) on the expression of 7, ;(-)
involved in (3.3), we can write (see (4.1) as well)

Toi(e™) —E[/ efptih(X“o[ergt —n?])dt] +E(m)[/

0 M 0

=8| [T G o & a4 B | [0 (- g ) (et - )t
0 0

o0

e Pt (01 dmy — @df?)]

where an integration by parts for the integrals with respect to dny and dal and (3.4) have been
used to obtain the last equality. Thus, by defining the random variable

oo 1 S - —n
o, = / e_ptﬁh(Xl’z’o[ T+ Et ])dt + / e (,0 —(r—g+ )\Y;)) (Clﬁ? — c2&; )dt
0 t 0

we will prove that Fatou’s lemma can be apphed in (A-10), if we find an integrable random variable
A, independent of n, such that &, > A, P-a.s. To this end, using that Ay < )\Yl < A1, P-a. s., and
that for any ¢ > 0 there exists k. > 0 such that h(zx) > ez — k. for any = € R+ (cf. Assumptlon
2.3-(iv)) together with (4.3), we can write P-a.s. that

K e’ + +le—clp—r+ (&
n = € Art r )\N 2 g N t

+(cl(pr+g)\1)5)/ e P,
0

Therefore, by taking € = ¢1(p — 4+ g — A1) in the above expression, we obtain

1 p—r+9g— XM
o, > — P gt L —— =
n 2> KE/O e M, +p—7’+g—)\N01x
(o)
+(cl(p—r+g—>\1)—cQ(p—r+g—/\N))/ e PENdt
0
o 1 p—r—i—g—)\l
>—K e P —dt+ ——— 7L "~ cix=:A,
6/0 M T p—rtg—An

where the last inequality is due to Assumption 2.5. The fact that A is clearly an integrable random
variable, independent of n, completes the proof.

Step 2. We now prove that the optimal policy constructed in Step 1 is actually the unique (up
to undistinguishability) optimal control in A(x,4). Let ¢*! and g0*2 be two optimal strategies in
A(z,i) and define the admissible debt ratio management policy ¢ := 2<p s lcp* 2, We then have

~ . I 1
0 < Toi(®) = V(i) = Tui(®) — *jw,i(SO*’l) - 5\730,1'((,0*’2)
& ; 1 i o
= E[/ e—ﬂt(h(XfW) - fh( XEhety ih(Xf’“" 2))dt] <0
0
where the last inequality follows by the convexity of A(-) (cf. Assumption 2.3-(i)) and the linearity
of ¢ — X*»?. Thus the inequalities above must be equalities and again by the convexity of h(-),

we necessarily have

o) 1 s %, 1
hX{%) = §h(Xf’z’<P )+ h( XEhe ), P—as. for a.e. t>0.
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Hence gpf’l = gofz, P-a.s. for a.e. ¢ > 0, by strict convexity of h on [0,00). Therefore, by left-
continuity of ¢**, i = 1,2, we conclude that ¢*' and ¢*! are indistinguishable. 0

Proof of Proposition 3.5. For any (z,i) € O, t > 0 and w € Q, recall (2.2) and set
(A-11)  H(w,t,2) = e PRz X 0w)), m(w) = e X0 0w), yw) = —ese " X0(w),

and notice that

oo
(A-12) (7) E[sup|%| +sup|1/t|} < 00, (44) E[/ e_Pt]Hw(w,t,:rﬂdt] < 0.
>0 >0 0
Indeed, claim (i) follows by using the fact that A\y. < A1, P-a.s., to get
(A-13) E[sup ]'yt]} < CQE|:.'L' sup e_pt+(r_9_%"2+’\1)t+(’wt} = coxE [e“E},
>0 >0
where E := sup;so(W; — pt) with g := 2 — L(r — g+ A1) + 1o, By Exercise 3.5.9 in [21] and

Assumption 3.2, we know that = is an exponentially distributed random variable with parameter
24, thus (A-13) yields

o0 oo 2
E[sup ”)’t’} < czx/ eTFTMEG, = czx/ e~ o Prte= M)z, oo,
>0 0 0
Analogous arguments also show that E[suptzo |Vt|] < 00.
To prove claim (i7) of (A-12), we employ the growth condition of Assumption 2.3-(iii) to write

[e.9] oo ) .
E[ / e P! Hy(w,t, x)\dt} = E[ / e‘thtl’Z’Oh’(m-th”’o)dt}
0 0
[e%] . oo .
< KzE[ / e"’tth’Z’Odt} +K2E[ / e (X)) Mdt| < oo,
0 0

where the last inequality is again due to Assumption 3.2 by using (2.2) and standard estimates.

We thus have that the integrability conditions required in equation (2.4) of [22] are satisfied, and
we can therefore apply Theorems 3.1 and 3.2 of [22] together with our Theorem 3.4 in order to
conclude. In fact, going through the proofs of Theorems 3.1 and 3.2 of [22], one should notice that
the required nonnegativity of the process v is not necessary. The arguments of those proofs still
work in the case (as in the present paper) in which v is negative (cf. (A-11)) and E[sup,>q ||| < oc.
O

Proof of Proposition 4.2. We prove the two claims separately.

Proof of (i). We argue by contradiction and we suppose that S; = (). This implies that §* = 400
P(2,i)-a.s. for any (x,7) € O and therefore

T T
c1 > v(x,i) = 81;13 E(x,i) [/ e_ﬁth'()?to)dt + cze_ﬁf] > E[/ e Pep/ (z- )?tl’z’o)dt + cpe T,
T2 0 0
for T > 0 deterministic. By letting x 1 oo, and recalling that h'(z) 1 oo by Assumption 2.3, we
obtain by the monotone convergence theorem that the last expected value diverges to +oo, thus
leading to a contradiction. R R
Given that we allow the process X to start from x = 0 at time ¢ = 0, in which case X = 0
for all ¢ > 0, P-a.s., and h'(0) = 0 by Assumption 2.3-(ii), we clearly have that v(0,i) = c2 for
any ¢ € M. That is, the minimiser chooses §* = +o0o and the maximiser 7 = 0 in (4.9). Thus,
(0,7) € S for any i € M, which yields that the stopping set Sy # ().
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Proof of (ii). Since Ay, € [An, A1] P-a.s. for all £ > 0 (see Assumption 2.1), it is straightforward
to see that vy(z) < v(x,i) <wv ( ), for all z > 0, ¢ € M. The bounds vg(x), for k € {1, N}, are
defined by

) _ =(k) =(k)
(A-14) v(x) = = sup inf =.7(r,0) = g;giglg (7,0),

with

[11

R TNO
4)(r,0) = E { [ I (2%t 4 g T gy 4 b N
0

for Zt(k)’ = zexp{(r — g+ 302 + X\p)t + O’Wt} for all t > 0. By defining the free boundaries of
the one-dimensional (Wlthout regime-switching) zero-sum optimal stopping games (A-14), for any
ke{1,N}, by

ap == inf{z > 0:vx(z) > 2} and by :=sup{z >0:vx(x) < c1},

we apply standard means to prove that these constants exist and are such that 0 < ap < by < +o0
(compare also with our analysis of Section 6.3). Moreover, a; < ay and by < by. Thus, using the
fact that vy (z) < v(z,i) < vi(z), it is easy to see that a; < a(i) < ay and by < b(i) < by, which
completes the proof. O

Proof of Theorem 4.3. We prove the two parts separately.

Proof of (i). Clearly, for any i € M, v(-,i) € C*(Si USS) \ {a(i),b(i)} since v = ¢; in St \ {b(i)}
and v = cp in S\ {a(i)}. Thus, what remains to be proved is that v(-,i) € C?(C’), which is
presented below.

Let i € M be given and fixed, and let o < 3 such that [a, 8] C C' = {z > 0: a(i) < z < b(i)}.
Then, setting f(z,1) == b’ (2)+>_,4; ¢ijv(z, j), for any x € (o, B), consider a function w(-,7) : Ry
R that solves the ordinary differential equation

(A-15) %a%zwm(aj, D)+ (r—g+ X+ 02 zwg(z,i) — (p— (r— g+ N) — qii)w(z, i) = —f(2,1),

with boundary conditions w(a,i) = v(a, 1) and w(B,i) = v(B,4). Since z > a > a(i) > 0, the
differential operator in (A-15) is uniformly elliptic and the solution w of the above Dirichlet problem
is unique and is such that w(-,i) € C?((a, 3)). Then, using this function w and recalling that i € M
is given and fixed, define the function w : (a, 8) x M — R as follows:

o Jw(z,d) if j =1
(A-16) 0, 5) = {v(x,j) if § i,

In addition, for x € («, 3), let 74, := inf{t > 0: X540 ¢ (o, B)}, 71 :=inf{t > 0: Y # i}, and set
¢ = Tqp8 A T1. Given that Y; =i for all ¢ < ¢, Dynkin’s formula yields that
~ S ¢
(A-17) w(w,i) = w(z,i) = By [e_p%(Xg,YC) —I—/O e_pth/(XtO)dt}7
due to (A-16), which implies that W(XP, ;) = v(X2,Y;), and (A-15), which implies that

3021:2111:6:5(1: D)+ (r—g+ N+ 0)awe(x,i) — (p— (r— g+ \))w(x,i)
+ 5 g [@(e,9) — B, i) + (@)
J#
L 5 o

=0T W (2,7) + (r — g + N + 0%)zw,(z,1) — (p —(r—g+X\)— qii)w(a:,i) + f(z,i) = 0.
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However, since [a, 3] C C?, we have ¢ < 7% A #*, hence it follows from Proposition 4.1-(iii), that
the right-hand side of (A-17) is equal to v(x, 7). Therefore, w = v in («, ) x M by the arbitrariness
of i. Also, by the arbitrariness of («, 3), we conclude that w = v in C, hence v(-,i) € C?(C?) for any
i € M.

Proof of (ii). We first prove that v(-,i) € C°(R,) for any i € M. Since x + v(z, 1) is increasing,
we get for any arbitrary € € (0,1) and (z,7) € O that

0 <v(x+e,i)—v(zr,i) < supsup \/I\'x+€’i(7',9) - (I\’x’i(T, 9)‘
>0 6>0

(A-18) < E{ / P (x4 &) - K0 — W (- K14 |at] .
0

Since |1/ ((x +¢) - X}™0) — W/ (z - X} < 20/((x + 1) - X}**0), P-a.s. and

~

E[/ e Ph ((z+1) - )A(tl’i’o)dt] < oo
0

due to Assumptions 2.3-(iii) and 3.2, we can take limits as € | 0 and invoke the dominated conver-
gence theorem in (A-18) to obtain the claimed continuity of v(-,4) for any i € M.

In view of the result in part (i) and of the continuity of v proved above, it suffices to show that
vz (+,7) is continuous across the free boundaries a(i) and b(7), for any i € M. We provide details
only for the continuity of v, (x,4) at x = a(7). Similar arguments apply to show also the continuity
of vy(x,7) at = = b(i).

Take again an arbitrary (z,i) € C, set 0* := 0*(x,i) = inf{t > 0 : X"** > p(¥{)} and for a
sufficiently small & > 0, set 7% := 7%(z 4 &,4) = inf{t > 0 : X7 T**? < q(V{")}. Then, recalling that
x +— v(x,1) is increasing, we can write by Assumption 2.3-(iii)

N . N TENO* R
Ogv(x—l-e,l) v(x,1) SlE[/ o
9 3 0

ho((@ 4+ 2) - X290) — by (2 - K140) ’dt]

m)

TENOT N . o)+
<] [T PRI (R )
0
Letting ¢ | 0, noticing that 77 — 77, /Is—a.s., and invoking the dominated convergence theorem
thanks to Assumption 3.2 yields

~ T NO* P + ~q - ( 72)+
0 < vy(z,i) < K3E [ / e P X1 4 a2 (X)) ]dt].
0

Then by taking limits as = | a(i) in the latter expression we obtain v, (a(i)+,7) = 0. Given that
v(x,1) = ¢ for all z < a(i) we conclude that v,(+,7) is continuous at = = a(7). O

Proof of Proposition 4.4. We prove the two parts separately.

Proof of (i). From (4.5) it is easily seen that v(xz,1) > v(x,2) > -+ > v(x, N) since A\; > Ay >
-+ > An. This in particular implies that {x > 0: v(z,N) > co} C--- C{z >0 :v(x,2) > 3} C
{z > 0:v(x,1) > c2} and therefore, in view of (4.7), we know that a(N) > a(N —1) > --- > a(1).

Analogous arguments show that b(1) < b(2) < --- < b(N).

Proof of (ii). We argue by contradiction and we suppose that (1) < a(N).
On one hand, any = € (b(1),a(N)) is such that x > b(1) > a(1) and v(x,1) = ¢ (cf. (4.7)).
Therefore (4.12) and (4.14) yield

(A-19) —(p—m)a + Z q10(2, §) + quicr + b (x) >0,
i#1
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where we used the equality Z#l q1j = —qi1 and set puy :=r+ A — g.
On the other hand, we also have that, any = € (b(1),a(N)) is such that < a(N) < b(IN) and
v(x,N) = ca (cf. (4.7)). Hence, (4.11) and (4.13) give

(A-20) — (p—pn)e2+ Y anjo(e, §) + aunes + B () <0,
JAN

where we used the equality E#N qnj = —qnN and set puy =71+ Ay —g.

In all, it follows from (A-19)—(A-20) that, for any x € (b(1), a(N)),

Fy(x) = —(p— pn)e2 + Z anjv(z, §) + annes + h (x)
iEN
(A-21) <0< —(p - M1)C1 + qujv(m,j) +quicr + W (x) = Gi(2).
j#1

Notice now that, by taking into account the inequalities co < v(z,j) < ¢; for any (z,7) € O,

together with Assumption 2.5, we obtain for any x € (b(1),a(N)) that

Gi(z) < —(p—m)er + W (x) < —(p—pn)e2 + h'(x) < Fy(z),

which in view of (A-21) leads to a contradiction. g

Proof of Lemma 5.2. Clearly ¢* € V. Also, for any (z,i) € O, we have th’i’@* > 0, P-a.s. for all
t > 0 since b(i) > a(i) > 0. It thus remains only to show that

(A—22) E(x,z) [/ e_”t (df: + dn:):| < Q.
0
Notice that (5.3) yields
E(z.i) {/0 e Pt (dgf + dm*)} = (a(@) — )" + (. = b(i))" + E(2.0)) {/{H e Pt (dé + dify) |,

where z(x,i) =z if x € (a(i),b(7)), z(x,i) = a(i) if x < a(i) and 2z(z,i) = b(7) if z > b(i). Hence, to
have (A-22) it suffices to prove that

E(zﬂ-) |:/ e Pt (dgt + dﬁt)] < 00,
0

for any z € [a(i),b(7)]. In the following we only prove that

o0
(A-23) oo | | ] < oo (i) € lati b M.
0
since analogous arguments can be employed to show that E, ; [ fooo e Ptdm] < oo.
To prove (A-23) we adapt arguments from [30]. Let X := X% and g : Rx M — R be any solution
to

(G —p)g(x,i) =0.
Then, take a fixed T" > 0 and let 0 < T7 < Ty < ... < Ty < T be the random times of jumps of
Y in the interval [0,7") (clearly, the number M of those jumps is random as well). Notice that the
times T, for n = 1,..., M, of regime changes are the only possible jump times of @, as discussed
in Remark 5.1.
By the regularity of g we can apply It6-Meyer’s formula for semimartingales ([25], pp. 278-301) to
the process (e Plg(X,, Y:))t>0 on each of the intervals [0,T1), (11,1%),...,(Ta, T). Piecing together
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all the terms as in the proof of Lemma 3 at p. 104 of [31], we obtain
T

(A-24)  E(p) [6_” TQ(XT7YT)} —9(20) = Bz [ / (Xt,Yt)dﬁcom]
0

T
—E(2) [/ (Xt,Yt)dAcom] + E(z,i)[ Yo ( (X1,4,Yr,) — (XTMYTn))}
0 0<Tn<T

Observe that, the latter expectation in (A-24) can be written as

E(z,z‘)[ Z e (Q(XTn+7YTn) - Q(XTH,YTn))]
0<T, <T

(A-25) = E(z,i)|: Y, e (]l{Angw} +]l{Ar7Tn>0}> (Q(XTnJrvYTn) —Q(XTMYTn)”
0<T,<T

Ang ~ A’;]\Tn —~
=E(. [ Z e Ps (/ 9z( X1, +u, Y, )du — / 92(X1, — u, YTn)duﬂ .
0<T,<T 0 0

Impose now that g,(a(i),7) = —1 and g,(b(7),7) = 0, and extend the function g on (—oo,a(i)) U
(b(i),00) so that g,(x,i) = —1 for any = < a(i) and g,(z,i) = 0 for any « > b(i) (for example, set
g9(@,1) == a(i) — x + g(a(i), i) for x < a(i) and g(z,i) = g(b(:),7) for z > b(i)). Then, since ¢ is flat
off {t >0: X, <a(V;)} and 7. is flat off {t > 0: X; > b(Y;)} (cf. Problem SP(a, b; z,1)), we get

(A26) g (X2, Vi) = —dgg and  gs(X,, Y)dig" = 0,
AgT" 9o(Xr, +u, Y, )du = —A&r,  and [ go(X, — u, Yr,)du = 0.
Therefore, by substituting (A-26) in (A-25) and then (A-24), we get that

T
(A-27) = [e_pTg(X%YT)} —9(2,%) = —E) [/ €_ptd§t]~
0

Finally, given that g()A(T, Yr) < maxie M SUPge(o(1),b(w)] 9(Z: %), Pa,iy-a.s. (cf. Proposition 4.4), we
can let T' 1 oo, and apply the dominated convergence theorem on the left-hand side of (A-27) and
the monotone convergence theorem on its right-hand side, to obtain

9(z,i) = E(.) [ / eptdét].
0

The finiteness of the function g constructed above, yields (A-23). O
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Number of . Optimal boundaries (in %)
. Regime
Regimes a b
N =2 1=1 22.5871 56.3248
o 1=2 24.7630 58.2346
N=1 24.8539 60.3393

TABLE 1. For this table we have used the following parameter values: r = 0.012,
g = 0.015, 0 = 0.15, p = 0.25, ¢; = 2, co = 1.25; and, for the N = 2 case, the
additional parameter’s values: A\ = 0.1, Ay =0, ¢q; = 0.02, g5 = 0.02.

-0.025 -0.015 -0.005 0.005 0.015 0.025
r-g

a(1)

a(2) b(1) ——b(2)

FIGURE 1. Monotonicity of the control boundaries for ¢ = 1,2 with respect to r — g.
For this plot we have used the following parameters’ values: ¢ = 0.02, g2 = 0.02,
A1 =01, A=0,0=0.15, p=0.25, c; = 2, cg = 1.25.

033
031
0.29
0.27
0.25

0.23

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16

sigma

——b(1)a(l) ——b(2)-a(2)

FIGURE 2. Monotonicity of the continuation (no-action) region’s size b(i) — a(7),
1 = 1,2, with respect to o. For this plot we have used the following parameters’
values: g1 = 0.02, g0 = 0.02, »r = 0.04, g = 0.015, A\; = 0.1, Ay =0, p =0.25, ¢; = 2,
co = 1.25.



DEBT RATIO CONTROL WITH REGIME SWITCHING 29

0.32
0.315
0.31

0.305
0.3
0:295
0.29
0.285

U.Z&

0275
-0.01 -0.005 0 0.005 0.01

d4z2-9;

—b(1)-a(1) ——b(2)-a(2)

FiGURrE 3. Monotonicity of the continuation region’s size, under both regimes, with
respect to go — ¢q1. For this plot we have used the following parameters’ values:
r=0.04, g = 0.015, Ay = 0.1, A2 =0, 0 = 0.15, p = 0.25, ¢c; = 2, cg = 1.25.
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