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Abstract

This paper generalizes the concept of Sequential Equilibrium to allow for ambigu-
ous incomplete information about types or states. We characterize conditions that
ensure existence of Sequential Equilibria under ambiguous incomplete information.
Under these conditions players form subjective prior belief sets that satisfy a rectan-
gularity condition which leads to dynamically consistent behavior. Furthermore, we
give an example which shows that ambiguity can introduce new Sequential Equilibria.

Key words and phrases: sequential equilibrium, ambiguity, dynamic consistency, multiple

priors, imprecise information
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1 Introduction

Starting with Ellsberg (1961) it has been shown that agents behave differently if they face
ambiguity instead of risk i.e. situations where the probability distributions of outcomes
is not known. Since then, ambiguity has been introduced into many decision and game
theoretic models and has been supported by experimental and empirical evidence.1 Fur-
thermore, ambiguity has been used in many applications e.g. in mechanism design (e.g
Bose, Ozdenoren, and Pape (2006)) and asset pricing (e.g. Ju and Miao (2012)). However,
it has rarely been used in dynamic games.2

The formation of beliefs plays an important role in games with incomplete information
and motivated the definition of different equilibrium concepts as e.g. Bayesian Perfect Nash

∗I would like to thank Frank Riedel and Peter Klibanoff for their comments and suggestions. Financial
support from BiGSEM, BGTS and DAAD is gratefully acknowledged.
†Bielefeld University, Center for Mathematical Economics, 33615 Bielefeld, Germany

marieke.pahlke@uni-bielefeld.de
1See Section 6 in Etner, Jeleva, and Tallon (2012) for a recent review of experimental literature with

ambiguity.
2A few notable exceptions are discussed in Section 1.1.
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Equilibrium or Sequential Equilibrium. One essential assumption for these equilibrium
concepts are rational players that use (whenever possible) Bayes’ rule to update their
beliefs after observing new information. In incomplete information games with ambiguity
players are faced with a set of ex-ante beliefs instead of one belief. Therefore, before
generalizing the concept of Sequential Equilibrium to games with incomplete ambiguous
information we have to specify how players update their set of ex-ante beliefs. Different
updating rules are defined in the literature but almost all of them can lead to dynamically
inconsistent behavior in combination with maxmin expected preferences as introduced by
Gilboa and Schmeidler (1989). Roughly speaking new information can lead to a change
in the worst case belief which induces a change in the optimal strategy and therefore
dynamically inconsistent behavior. This makes it impossible to use the standard concepts
of Sequential and Bayesian Perfect Nash Equilibria and complicates the analysis of dynamic
games with ambiguity.

To our knowledge this is the first paper that characterizes conditions that ensure dy-
namically consistent behavior in games with incomplete information and multiple priors.
Using our setting in applications as e.g. mechanism design would allow to explore optimal
dynamically consistent decisions or strategies in dynamic games with ambiguous incom-
plete information. Hence, the effect of ambiguity aversion and dynamically inconsistent
behavior could be analyzed separately.

We assume prior by prior Bayesian updating, i.e. players update their set of beliefs by
updating each belief in the ex ante belief set using Bayes’ rule. We characterize conditions
on the belief sets that lead to dynamically consistent behavior and therefore ensure the
existence of Sequential Equilibria. These conditions are closely related to rectangularity as
used in decision theoretic settings (e.g. Epstein and Schneider (2003)).3 Intuitively rect-
angularity captures the idea that players take their future worst case belief into account,
when constructing their prior belief set. To be more specific, in our model ambiguity is
represented by imprecise probabilistic information i.e., a common set of probability dis-
tributions over states or types. New information arises when a player observes an action
played by his opponent. Observing an action played by an opponent does not only reveal
information about his type but also about the strategy played by the opponent. Therefore,
future information can be heterogeneous across players. We assume that players use their
knowledge about the structure of the game (action sets, information sets, etc.) to antici-
pate which information they could get in the future. We will show that considering this
knowledge and given the heterogeneous information structure and the common imprecise
probabilistic information each player construct a prior belief set. These prior belief sets
are heterogeneous across agents and satisfy a rectangularity condition for each agent.

Ellis (2018) and Aryal and Stauber (2014) argue that in games with multiple prior a
common prior belief set can only be rectangular if there is no ambiguity. But they do not
consider the differences in information structure of games and decision theoretic settings

3Rectangularity or sometimes called stability under pasting is a condition used in decision theory to
ensure dynamic consistency in multiple prior settings. However, there are important differences between
the information structure in games and decision theory.
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that lead to heterogeneous information and therefore heterogeneous beliefs sets, described
above. We will show, that in our setting, despite the common imprecise probabilistic
information, rectangular prior beliefs sets will differ across the players because of their
different future information. Therefore, the critique of Ellis (2018) and Aryal and Stauber
(2014) does not apply to our setting.

Furthermore, we show that due to rectangularity the interim worst case belief is the
Bayesian update of the ex-ante worst case belief. Therefore, a completely mixed ex-ante
equilibrium with rectangular beliefs implies an interim equilibrium with rectangular beliefs.
As in games without ambiguity, deviations from an ex-ante equilibrium only occur in out-
of-equilibrium information sets. This relation between ex-ante and interim equilibria and
beliefs illustrates dynamically consistent behavior under rectangular belief sets.

Finally we define Sequential Equilibria with rectangular beliefs analogously to Kreps
and Wilson (1982). We prove existence and provide an example which shows that ambi-
guity induces new Sequential Equilibria that cannot occur without ambiguity.

The structure of this paper is as follows. In Section 1.1 we summarize related literature.
In Section 2 we formulate the extensive-form game with ambiguity and define belief sets
which satisfy rectangularity. Section 3 shows the existence and the relation of ex-ante and
interim equilibria. In Section 4 we prove existence of Sequential Equilibria with rectangular
beliefs. Furthermore, we give an example which shows that ambiguity might induce new
Sequential Equilibria. Finally, Section 5 concludes.

1.1 Literature

There is a huge literature on ambiguity in games and decision theory.4 But only few work
has been done on ambiguity in general dynamic games.5

Lo (1999) explores extensive form games with MEU. Instead of imposing conditions to
ensure dynamic consistency he introduces an equilibrium concept which explicitly requires
each player to know that strategies chosen in equilibrium are interim optimal. Kajii and Ui
(2005) also formulate an incomplete information game with multiple prior. In their setting
new information arises due to signals which are independent of the strategies. Therefore,
the information setting is very close to decision theoretic settings and does not capture
the strategic aspects that e.g. occur in signaling games. Liu and Xiong (2016) formulate
a similar model as Kajii and Ui (2005) and show that rectangularity leads to dynamically
consistent behavior. But as already mentioned the information structure is very similar to
decision theory. In our model we extend the information structure such that information
arises due to observed actions played by the opponents.

4For recent surveys of literature on ambiguity and axiomatic foundation see Gilboa (2009) and Gilboa
and Marinacci (2016).

5There are some papers considering ambiguity in mechanism design, e.g. Bose and Renou (2014)
and Tillio, Kos, and Messner (2016). Both show how ambiguity aversion can be exploited in mechanism
design. Furthermore, Bose and Daripa (2009) use a dynamic auction mechanism and exploit dynamically
inconsistent behavior.
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Muraviev, Riedel, and Sass (2017) explore extensive form games where players can use
Ellsberg strategies, introduced by Riedel and Sass (2014). Ellsberg strategies extend mixed
strategies to ambiguous strategies, i.e. instead of playing a probability distribution over the
pure strategies a player chooses a set of probability distributions. They show that a rect-
angularity condition ensures outcome-equivalence between mixed and behavioral strategies
but they do not formulate a general equilibrium concept for such games. However, similar
to our paper, Muraviev, Riedel, and Sass (2017) have to construct a sequence of filtration
to define rectangularity. The difference between our model and the model of Muraviev,
Riedel, and Sass (2017) is the source of ambiguity. In Ellsberg games ambiguity arise
due to ambiguous strategies. In our setting ambiguity arise due to incomplete ambiguous
information about states or types.

The paper which is closest to our work is Hanany, Klibanoff, and Mukerji (2018). They
also explore a finite extensive form multi-stage game with incomplete information, but use
smooth ambiguity aversion instead of multiple piors. They show that updating beliefs with
the so called smooth rule leads to dynamically consistent behavior which implies existence
of Sequential Equilibria. This result is strongly correlated with the fact that smooth rule
updating ensures dynamically consistent behavior in decision theoretic settings as shown
by Hanany and Klibanoff (2009).

Sarin and Wakker (1998) and Epstein and Schneider (2003) define rectangularity for
different decision theoretic settings.6 They show that rectangularity implies dynamically
consistent behavior in their setting. Furthermore, Riedel, Tallon, and Vergopoulos (2017)
explore a dynamic decision theoretic setting where given imprecise probabilistic informa-
tion an agent chooses an act and a prior belief set. Roughly speaking, they show that an
ambiguity averse agent which behaves dynamically consistently chooses a rectangular sub-
jective prior set and evaluates acts according to the worst case belief given his subjective
prior belief set.

Another way to rule out dynamically inconsistent behavior of MEU are updating rules
proposed by Hanany and Klibanoff (2007). These rules only update a subset of the prior
belief set using Bayes’ rule, where roughly speaking the subset depends on the optimal ex
ante choice. However, they show that some of their ambiguity-maximizing updating rules
coincide with fully Bayesian updating, if the prior belief set is rectangular. We discuss the
differences between these updating rules and our approach in Section 5.

2 Model

In this section we present a finite extensive-form multistage game with incomplete infor-
mation, multiple priors and perfect recall. The definition is similar to Hanany, Klibanoff,
and Mukerji (2018), but instead of smooth ambiguity aversion players are faced with im-
precise probabilistic information and maxmin preferences. We will show later that given
this imprecise probabilistic information and the information structure of the game each

6Sarin and Wakker (1998) do not use the term rectangularity. Instead they use the term reduced family
of probability measures for the rectangular hull as defined in Epstein and Schneider (2003).
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player construct a subjective set of prior beliefs. Given this beliefs each player evaluate a
strategy by using maxmin expected utility (MEU).

Definition 1 A finite extensive-form multistage game with incomplete infor-
mation, perfect recall and multiple priors, Γ, is a tuple (N,H, (Ii)i∈N , (ui)i∈N ,P)
where

• N is a finite set of players

• H is a finite set of histories with elements h = (h−1, (h0,i)i∈N , . . . , (hT,i)i∈N). For
0 ≤ t ≤ T + 1 let H t := {ht := (h−1, (h0,i)i∈N , . . . , (ht−1,i)i∈N)|h ∈ H} be the set of
partial histories up to but not including t. H := {∅} ∪

⋃
0≤t≤T+1 H

t is the set of all
partial histories. Given a partial history η ∈ H and −1 ≤ t ≤ |η| − 1, ηt denotes the
element of η at stage t and ηt,i player i’s component of ηt.

For each i ∈ N , 0 ≤ t ≤ T + 1 and ht ∈ H t, Ai(h
t) := {ĥt,i|ĥ ∈ H, ĥt = ht} is the

set of actions available to player i at ht. The set of types is H0.

• Ii :=
⋃

0≤t≤T Iti are the information sets for player i, where each Iti is a partition
of H t such that for all ηt, η̂t ∈ H t, η̂t ∈ Ii(ηt) implies Ai(η

t) = Ai(η̂
t), where Ii(η

t)
is the unique element of Iti such that ηt ∈ Ii(η

t). For 0 ≤ t ≤ T and ηt ∈ N ,
Ri(η

t) := ((Ii(η
s), ηts,i)0≤s<t, Ii(η

t)) is the ordered list of information sets i encounters
and the action i takes under partial history ηt. The game satisfies perfect recall in that
for each player i, 0 ≤ t ≤ T and ηt, η̂t ∈ H t, Ii(η

t) = Ii(η̂
t) implies Ri(η

t) = Ri(η̂
t).

• ui : H → R is the utility of player i given a history.

• P ⊂ ∆H0 is the set of imprecise probabilistic information and homogeneous across
all players. We assume that P is compact and all π ∈ P have full support, i.e.
π(h0) > 0 for all h0 ∈ H0 and all π ∈ P.

The definition above allows for imperfectly observed actions as well as for private informa-
tion about types or states. The multistage structure assumes that each player chooses an
action at each stage. Since Ai(h

t) can be singleton, this assumption is not restrictive and
sequential play can be modeled as well.

The only difference compared to the standard setting without ambiguity is the last bul-
let point. Players do not have an exact distribution over types. This imprecise information
is covered by a set of possible distributions P . If P is singleton there is no ambiguity and the
game reduce to the standard version without ambiguity. The compactness assumption on
P ensures the existence of a worst case belief. Full support ensures that out-of-equilibrium
path only occurs because of non-completely mixed strategies. Therefore, for completely
mixed strategies Bayes’ rule is always well defined.

At each stage conditional on their information set I ti players choose a distribution over
their actions which are available at I ti . A strategy profile denotes these distributions for
each player and information set.
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Definition 2 A (behavioural) strategy for player i in a game Γ is a function σi such
that σi(I

t
i ) ∈ ∆(Ai(I

t
i )) for each I ti ∈ Iti , where ∆(Ai(I

t
i )) denotes the set of all probability

vectors over Ai(I
t
i ).

Furthermore, let Σi denote the set of all strategies for player i, σ := (σi)i∈N a strategy
profile and σ−i := (σj)j 6=i the strategies of all opponents of i.

A strategy profile induces a transition probability with which a particular (partial) history
occurs. For a given strategy profile σ, a history h and 0 ≤ r ≤ t ≤ T + 1 the probability of
reaching ht starting from hr is pσ(ht|hr) :=

∏
j∈N

∏
r≤s<t σj(Ij(h

s))(hs,j). It will be useful
to split pσ(ht|hr) in one part that only depends on the agent himself and another part that
represents the actions of all opponents. We define pσi(h

t|hr) :=
∏

r≤s<t σi(Ii(h
s))(hs,i) and

pσ−i(h
t|hr) :=

∏
j 6=i
∏

r≤s<t σj(Ij(h
s))(hs,j). Hence, pσi(h

t|hr)pσ−i(ht|hr) = pσ(ht|hr).

2.1 Dynamic Inconsistency

Multiple priors can lead to dynamically inconsistent behavior. To illustrate dynamic in-
consistency we repeat the 3 player example from Aryal and Stauber (2014).7 We will use
this example as a running example in the next sections to illustrate notation and results.

Running Example The game, depicted in Figure 1, shows that ambiguity and multiple
prior can lead to dynamically inconsistent behavior. There are two players, player 1 and

nature

RL

M

0, y

N

101, y

M

101, y

N

S

100, x

T

100, x

O

S

−1, x

T

−1, x

1

2

Figure 1: Aryal and Stauber 3 player game

player 2. Before they play an action nature chooses the state L, R or O. Let l, r and
o be the probability of L, R and O, respectively. The imprecise probabilistic information
is given by an ε-contamination of the distribution that assigns probability 1 to R, i.e.

7To fit our definition of multi-stage games one would had to include constant actions for player 2 at the
information set of player 1 and a constant action for player 1 at the information set of player 2. Since this
does not change the results of the example we skip these constant actions due to notational convenience.
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(l, r, o) = (0, 1, 0). This represents a setting where the probability, that R is chosen is very
high. However, there is a small probability ε ∈ [0, 1] that any distribution could be true
as well. Let ∆ be the set of all probability distributions over {L,R,O}. The imprecise
probabilistic information is given by the set 8

P = {(1− ε)(0, 1, 0) + ε(l, r, o) s.t. (l, r, o) ∈ ∆}.

To illustrate the problem of dynamic consistency assume that P represent the beliefs of
player 1.

After the choice of nature player 1 can observe if the state is O or not. If the state
is not O player 1 can choose between N and M . If the state is O or R and player 1
played N , player 2 can choose an action without knowing which of the two cases is true.
The information sets of both players are depicted by dashed lines. For the moment let us
concentrate on player 1. His payoffs are independent of the strategy of player 2. He gets
his lowest payoff, -1, if the state is O, no matter if player 2 plays S or T . Therefore,
his ex-ante worst case belief gives the highest probability to O, i.e. the ex-ante worst case
belief given P is (0, 1− ε, ε). Since the probability of L is 0 he gets 101 if he plays M and
100 if he plays N (independent of the strategy of player 2). Therefore, ex-ante his optimal
strategy is playing M with probability 1.

Now we check if player 1 has an incentive to deviate from his optimal ex-ante strategy
after observing that the state is not O. Updating P prior by prior using Bayes’ rule and
conditioning on the event {L,R} leads to the following set of updated beliefs

Bay
(
P|{L,R}

)
= {(l, r) = (1− r, r) s.t. r ∈ [1− ε, 1]}.

His interim worst case belief depends on his own strategy. Playing M with probability 1
would leads to a payoff of 0 if the state is L and a payoff of 101 if the state is R. Given this
strategy his worst case belief would be (ε, 1−ε). Given this belief playing M with probability
1 is not longer optimal. On the other hand playing N with probability 1 leads to a payoff
of 101 or 100 if the state is L or R, respectively. Hence, the worst case belief if he plays
N with probability 1 is (0, 1). But for this belief playing M with probability 1 is optimal.
One can show that for ε > 1

102
the optimal interim strategy of player 1 is a mixed strategy

with probability 1
102

< 1 for M .

8P does not satisfy the full support assumption stated in Definition 1. Formally the full support
assumption is needed to guaranty that the probability of reaching an information set is 0 if and only if all
partial histories leading to this information set have probability 0 because of the played strategy profile.
Hence, if the probability of reaching an information set is 0 for some prior belief π ∈ P then it is 0 for
all prior beliefs. Due to the ε-contamination structure of P the probability of R is at least 1 − ε for all
prior beliefs. Therefore the information set of player 1 has always positive probability. If player 1 plays
N with probability 0 the information set of player 2 will not be reached if O has probability 0. Hence,
in this case it depends on the prior belief if the probability of reaching the information set of player 2 is
strictly positive. Assuming a prior belief set P satisfying the full support assumption would lead to the
same results as long as the minimum probability of L is small enough (i.e. smaller then 1

102 ). Since the
payoff of player 2 is independent of his own actions and since the payoff of player 1 is constant w.r.t. to
the action chosen by player 2 we skip the full support assumption due to notational convenience.
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Hence, player 1 is dynamically inconsistently and plays a different strategy after ob-
serving that the state is not O. For detailed calculations see Aryal and Stauber (2014) or
Section B.1.1 in the Appendix.

The example above shows that new information can change beliefs in such a way that the
optimal strategy given the beliefs changes as well. This leads to dynamically inconsistent
behavior. In decision theoretic settings an important property of set of distributions or
beliefs to ensure dynamic consistency is rectangularity, or sometimes called stability under
pasting introduced by Epstein and Schneider (2003) and Sarin and Wakker (1998).

Rectangularity can be interpreted as a generalization of the law of iterated expecta-
tion. It captures the idea of decomposing any probability measure into its conditionals
and marginals. Therefore, agents take their worst case beliefs at some interim stage into
account when they choose their ex-ante worst case belief. Since the structure of the game,
as described in Definition 1, is known to each player, each player knows the possible infor-
mation sets for each stage. Therefore, for each information sets each player can calculate
his set of updated beliefs. Knowing these possible sets of updated beliefs he construct his
set of prior beliefs in a rational way that is crucial for dynamic consistency. This is given
by constructing a set of prior beliefs such that the belief system is stable under pasting (or
rectangular).

To define rectangularity we have to consider that the information that each player
receives are actions played by the opponents. Furthermore, usually each player is faced
with different information sets and knows the actions chosen by himself. This implies
that in a game each player receives different information than his opponents. The idea
of rectangularity is to take possible future information into account, when choosing the
ex-ante beliefs. Together with heterogeneous information this leads to a heterogeneous
prior belief set for each agent and is the main difference between rectangularity in decision
theoretic settings and games.

In the next section we formulate the definition of beliefs in our setting and give a formal
definition of rectangularity.

2.2 Beliefs

In the game theoretic setting the information is represented by the information sets I. A
probability distribution or belief at one of these information set is a probability distribution
over the partial histories leading to this information set. During the game players observe
actions played by their opponents. These observations lead to new information about the
types but also about strategies of the opponents. Hence, in the standard game theoretic
setting the set over which a player forms his beliefs changes in each period t. To define a
belief system which is rectangular, we need a sequence of partitions which represents the
information flow of the game and is based on the same set at each period.

Given the game defined in Definition 1 we can define a sequence of partitions which
represents the information flow of the game.

8



Definition 3 Given the set of histories H and the information sets I let (F ti )t=0,...,T+1

denote the sequence of information partitions of player i, where

F0
i = H

F ti =
{{
h ∈ H s.t ht ∈ I ti

}
Iti∈Iti

}
.

Since there is a one-to-one relation between the elements F t
i of F ti and the information sets

I ti ∈ Iti , we sometimes call F t
i an information set.

Furthermore, new information is influenced by strategic aspects in game theoretic set-
tings. In decision theory new information occurs usually as a exogeneously given signal. In
games the signals are observable actions of the opponents. Therefore, the strategy of the
opponents influence the information that a player observes. This motivates the following
definition of beliefs. For additional motivation see Example 3 in the Appendix.

Fix a player i and a strategy profile σ−i. First we construct the set of prior beliefs
induced by the partition (F ti )t=0,...,T+1, the imprecise probabilistic information P and σ−i.

Definition 4 Given (F ti )t=0,...,T+1, P and a strategy profile σ−i let Φ0
σ−i

denote the prior
belief set of player i with

Φ0
σ−i

= {φ ∈ [0, 1]H s.t. φ(h) = pσ−i(h|h0)π(h0) with π ∈ P}.

Note that Φ0
σ−i
6⊆ ∆H since φ ∈ Φ0

σ−i
is in general not normalized to 1. One can easily

normalize φ by dividing through the constant Cσ−i,π =
∑

h∈H pσ−i(h|h0)π(h0).However,
since normalization is not important for the further considerations (see Remark 3) we skip
the normalization due to notational convenience.

As in standard game theory settings we define a system of beliefs as a tuple that defines
a belief for each information set of each player.

Definition 5 A belief system Ψ = (Ψt
i)i∈N,t=0,...,T+1 consists of a set of belief Ψt

i(F
t
i ) ⊆ ∆H

for each information set F t
i at stages t > 0 and Ψ0

i = Φ0
σ−i

for each player i.

To illustrate the definitions above we come back to our running example

Running Example (cont.) We denote with LM the history where nature chooses type L
and player 1 plays M . All histories are denoted in a similar way. Furthermore, denote the
probability with which player 1 plays N with n and similarly all probabilities of a certain
action with the corresponding lower case. The set of all histories H is then given by

H = {LM,LN,RM,RNS,RNT,OS,OT}.

At the ex-ante stage player 1 and 2 have no information about the states. Therefore, their
information partition at the ex-ante stage consist only of one element, the set of all histories
H.

F0
i = H.

9



At the interim stage player 1 can observe if the state is O or not. His information set
consists of three elements. The first set contains all histories starting at L or R. The
second and third set represent the case where player 1 learns that the state is O.

F1
1 = {F 1

1,1, F
1
1,2, F

1
1,3} =

{
{LM,LN,RM,RNS,RNT}, {OS}, {OT}

}
.

Similarly player 2’s interim information partition consists of the set that contains all his-
tories starting from O and histories where the state is R and player 1 plays N and the sets
where he learns the exact history.

F1
2 = {F 1

2,1, F
1
2,2, F

1
2,3, F

1
2,4} =

{
{RNS,RNT,OS,OT}, {LM}, {LN}, {RM}

}
.

A strategy σ−1 = (s, t) of player 2 induces a transition probability pσ−1(·|·) for each history
h ∈ H which is independent of his own strategy. Multiplying the imprecise probabilistic
information with the transition probability, pσ−1(·|·), induced by σ−1 = (s, t) leads to the
following set of ex-ante beliefs for player 1

Φ0
(s,t) = {(l, l, r, rs, rt, os, ot) s.t. (l, r, o) ∈ P}.

Similarly, the ex-ante belief set of player 2 given strategy σσ−2 = (m,n) of player 1 is

Φ0
(m,n) =

{
(lm, ln, rm, rn, rn, o, o) s.t. (l, r, o) ∈ P

}
.

2.2.1 Rectangularity

Given the above notation and definitions, we formulate the formal definition of stability
under pasting. As already mentioned stability under pasting is a generalization of the law
of iterative expectation.

Let us first look at the case without ambiguity, i.e. there exist only one prior belief φ,
and assume that Bayes’ rule is always well defined. For each information set F 1

i in the next
stage Bayesian updating leads to an updated belief φ̃F 1

i
. Roughly speaking, Bayes’ rule

is defined such that the denominator of Bayes’ rule equals the marginal belief of reaching
the information set on which we update the prior belief. Hence, multiplying (or pasting)
the updated belief given an information set F 1

i with the marginal belief of reaching this
information set leads to the prior belief restricted to F 1

i . This holds for any information
set and therefore summation over all information sets leads to the prior belief on H, i.e.

φ(h) =
∑
F 1
i ∈F1

i

φ(F 1
i )φ̃F 1

i
(h).

Now, we generalize this property to an ambiguous setting. With ambiguity players have
a set of prior beliefs. Stability under pasting states that we can take any updated and
marginal belief (even if they are not derived from the same prior belief) and the pasting is
still an element of the prior belief set.

10



Definition 6 For beliefs φ ∈ Ψt−1
i (F t−1

i ) and φ̃ = (φ̃F ti )F ti ∈Fti with φ̃F ti ∈ Ψt
i(F

t
i ) the pasting

of marginal and updated belief, φ ◦ φ̃, is defined as

φ ◦ φ̃(·) =
∑
F ti ∈Fti

φ(F t
i )φ̃F ti (·).

The pasting of Ψt−1
i (F t−1

i ) and (Ψt
i(F

t
i ))F ti ∈Fti is defined as the set consisting of pasting each

element of Ψt−1
i (F t−1

i ) with each element of (Ψt
i(F

t
i ))F ti ∈Fti , i.e.

Ψt−1
i (F t−1

i ) ◦
(
Ψt
i(F

t
i )
)
F ti ∈Fti

= {φ ◦ φ̃ with φ ∈ Ψt−1
i (F t−1

i ) and φ̃F ti ∈ Ψt
i(F

t
i )}.

A set of beliefs Ψt−1
i (F t−1

i ) is called rectangular (stable under pasting) if

Ψt−1
i (F t−1

i ) ◦
(
Ψt
i(F

t
i )
)
F ti ∈Fti

= Ψt−1
i (F t−1

i ).

A belief system Ψ is called stable under pasting (rectangular) if Ψt−1
i (F t−1

i ) is stable under
pasting for all F t

i ∈ F ti , i ∈ N and t = 1, . . . T + 1.

By the intuition given above, without ambiguity, rectangularity should follow from Bayesian
updating. The following remark shows that this is indeed true.

Remark 1 Let Ψ0
i be singleton and φ(F t

i ) > 0 for all F t
i . Then Bayes’ rule is always

well defined and stability under pasting is equivalent to Bayes’ rule. To see this take into
account that since Ψ0

i is singleton, Ψt
i(F

t
i ) are singleton as well. Denote by F̄ t

i the element
of the partition F ti which contains h. First we show that Bayes’ rule implies stability under
pasting.

φ ◦ φ̃(h) =
∑
F ti ∈Fti

φ(F t
i )φ̃F ti (h)

= φ(F̄ t
i )φ̃F̄ ti (h)

= φ(F̄ t
i )
φ(h)

φ(F̄ t
i )

= φ(h).

The other direction follows by similar calculations since φ(F̄ t
i ) > 0.

φ(h) = φ ◦ φ̃(h)

= φ(F̄ t
i )φ̃F̄ ti (h)

⇔ φ̃F̄ ti (h) =
φ(h)

φ(F̄ t
i )

Furthermore, rectangularity preserve some nice properties. Remark 2 shows that the
Bayesian update of φ ◦ φ̃ equals φ̃ and the marginal probability of a pasting φ ◦ φ̃ equals

11



the marginal probability of φ. We will see that these properties are very useful when we
explain the construction of a belief system which is stable under pasting.

Remark 2 Let Ψt−1
i (F t−1

i ) be stable under pasting. Then for any φ ∈ Ψt−1
i (F t−1

i ) there
exist some φ′ ∈ Ψt−1

i (F t−1
i ) and φ̃ = (φ̃F ti )F ti ∈Fti ∈ (Ψt

i(F
t
i ))F ti ∈Fti such that

φ(h̄) = φ′ ◦ φ̃(h̄) =
∑
F ti ∈Fti

φ′(F t
i )φ̃F ti (h̄).

Let F̄ t
i denote the element of the partition which contains h̄. Then φ(h̄) = φ′(F̄ t

i )φ̃F̄ ti (h̄).

• The Bayesian update of φ given F̄ t
i is

Bay(φ|F̄ t
i )(h̄) =

φ(h̄)∑
h∈F̄ ti

φ(h)

=

∑
F ti
φ′(F t

i )φ̃F ti (h̄)∑
h∈F̄ ti

∑
F ti
φ′(F t

i )φ̃F ti (h)

=
φ′(F̄ t

i )φ̃F̄ ti (h̄)∑
h∈F̄ ti

φ′(F̄ t
i )φ̃F̄ ti (h)

=
φ′(F̄ t

i )φ̃F̄ ti (h̄)

φ′(F̄ t
i )
∑

h∈F̄ ti
φ̃F̄ ti (h)

=
φ̃F̄ ti (h̄)∑
h∈F̄ ti

φ̃F̄ ti (h)

=φ̃F̄ ti (h̄)

where the last equality follows since
∑

h∈F̄ ti
φ̃F̄ ti (h) = 1 for all t > 0.9

• The marginal distribution is∑
h∈F̄ ti

φ(h) =
∑
h∈F̄ ti

∑
F ti

φ′(F t
i )φ̃F ti (h)

=
∑
h∈F̄ ti

φ′(F̄ t
i )φ̃F̄ ti (h)

= φ′(F̄ t
i )
∑
h∈F̄ ti

φ̃F̄ ti (h)

︸ ︷︷ ︸
=1

= φ′(F̄ t
i ).

9Note that Bayes’ rule implies that φ̃F̄ t
i

is normalized to 1 for all t > 0.
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Hence, marginal and updated distribution of a distribution of a belief set which is stable
under pasting, coincide with the marginal and updated distribution from which it is con-
structed.

The decision theoretic papers using rectangularity and cited above, show that a rectangular
belief system can always be constructed in the following way. First, given the prior belief set
and the information structure one can calculate the prior by prior Bayesian updates for all
information sets. Then, one proceeds by backward induction and constructs a rectangular
belief set by pasting marginal and updated beliefs. The belief sets constructed like this
are the smallest rectangular sets which contain the original belief sets. Therefore, they are
called the rectangular hulls of the original belief sets. The same method can be used here
to get a belief system which is stable under pasting for completely mixed σ−i. When σ−i is
completely mixed, Bayes’ rule is always well defined and we can derive the prior by prior
Bayesian update of Φ0

σ−i
for each stage and each information set. Denote with Φt−1

σ−i
(F t−1

i )

the Bayesian update of Φ0
σ−i

at t − 1 given the information set F t−1
i and similarly with

Φt
σ−i

(F t
i ) the Bayesian update at t given F t

i .
10 The rectangular hull, rect(Φt−1

σ−i
(F t−1

i )), is

given by the pasting of Φt−1
σ−i

(F t−1
i ) and Φt

σ−i
, i.e.

rect(Φt−1
σ−i

) = {φ ◦ φ̃ with φ ∈ Φt−1
σ−i

(F t−1
i ) and φ̃F ti ∈ Φt

σ−i
(F t

i ) ∀F t
i ∈ F ti }.

Remark 2 shows that the set of Bayesian updates of rect(Φt−1
σ−i

) coincide with the set of

Bayesian updates of Φt−1
σ−i

. Therefore, rect(Φt−1
σ−i

) is stable under pasting by construction.
This method holds for any arbitrary t. Hence, starting with the last two periods, T − 1
and T , and proceeding by backward induction we can always close a prior set Φ0

σ−i
under

pasting and rect(Φ0
σ−i

) is the smallest set containing Φ0
σ−i

that is stable under pasting.

Furthermore, the construction induces that the Bayesian updates of rect(Φ0
σ−i

) are stable
under pasting for any information set.

If σ−i is not completely mixed, there can exists information sets such that the marginal
probability of reaching this information sets is 0. Let F̄ t

i be an information set such that
there exists φ ∈ Φ0

σ−i
with φ(F̄ t

i ) = 0. The full support assumption of P implies that

φ′(F̄ t
i ) = 0 for all φ′ ∈ Φ0

σ−i
. Let F̄ t−1

i be information set that precedes F̄ t
i , i.e. F̄ t

i ⊆ F̄ t−1
i

and without loss of generality let φ(F̄ t−1
i ) > 0.11 Furthermore, perfect recall implies that

all information sets that are reachable from F̄ t
i have probability 0 as well. For information

sets with probability 0 Bayes’ rule is not well defined. The construction of the rectangular
hull described above can be generalized as follows. For all information sets with positive
probability the set of updated beliefs are derived by Bayes’ rule. For information sets with
probability 0 players can choose an arbitrary compact set of updated beliefs. Then, the

10We assume that the Bayesian update is a probability distribution over the whole set of full histories
H such that histories which are not an element of the observed information set have probability 0.

11If φ(F̄ t−1
i ) = 0 we can replace F̄ ti by F̄ t−1

i and check if the probability of the information set preceding
F̄ t−1
i has positive probability. Repeating this leads to an information set with probability 0 such that the

preceding information set has strictly positive probability.
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rectangular hull is constructed by backward induction as described above. The construction
may change the set of beliefs at information sets with 0 probability. But the construction
of the rectangular hull of the belief set at F̄ t−1

i is not influenced by the belief set at F̄ t
i , since

the marginal probability of F̄ t
i is 0. Therefore, the arbitrary choice of updated belief sets at

information sets with probability 0 does not influence the construction of the rectangular
hull and we use the notation rect(Φt

σ−i
) for any strategy σ−i ∈ Σ−i.

We mentioned above that in general ex ante beliefs φ ∈ Φ0
σ−i

are not normalized to 1.
The following remark shows why this does not influence the construction of the rectangular
hull.

Remark 3 First consider the fact that each belief φ̃ ∈ Bay(Φ0
σ−i
|·) is normalized to 1

by the structure of Bayesian updating. Hence, the non-normalization of Φ0
σi

could only

influence the rectangular hull of Φ0
σi

. Lets compare the pasting of updated belief φ̃ with a

non-normalized prior φ and the pasting of φ̃ with a normalized prior φ′ = 1
Cσ−i,π

φ.

φ′ ◦ φ̃(·) =
∑
F 1
i ∈F1

i

1

Cσ−i,π
φ(F 1

i )φ̃(·).

Since Cσ−i,π is constant across all h ∈ F 1
i it follows

φ′ ◦ φ̃(·) =
1

Cσ−i,π

(
φ ◦ φ̃(·)

)
.

Therefore, normalizing Φ0
σ−i

would lead to a normalization of rect(Φ0
σ−i

) but would not

change the structure of rect(Φ0
σ−i

).

To illustrate the construction of an rectangular prior set we come back to our running
example.

Running Example (cont.) We have already shown that

H = {LM,LN,RM,RNS,RNT,OS,OT},
F0
i = H,

F1
1 = {F 1

1,1, F
1
1,2, F

1
1,3} =

{
{LM,LN,RM,RNS,RNT}, {OS}, {OT}

}
,

F1
2 = {F 1

2,1, F
1
2,2, F

1
2,3, F

1
2,4} =

{
{RNS,RNT,OS,OT}, {LM}, {LN}, {RM}

}
,

Φ0
(s,t) = {(l, l, r, rs, rt, os, ot) s.t. (l, r, o) ∈ P},

Φ0
(m,n) =

{
(lm, ln, rm, rn, rn, o, o) s.t. (l, r, o) ∈ P

}
.

To construct the rectangular hull of Φ0
(s,t) we need the marginal and updated beliefs of player

1. The marginal beliefs for an arbitrary φ ∈ Φ0
(s,t) of the information sets of player 1 are

φ(F 1
1,1) = 2l + r + rs+ rt = 2l + 2r,
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φ(F 1
1,2) = os,

φ(F 1
1,3) = ot.

We assume that the Bayesian update given an information set is a probability distribution
over H which gives probability 0 to all histories which are not an element of the information
set. For an arbitrary prior belief φ = (l, l, r, rs, rt, os, ot) ∈ Φ0

(s,t) the Bayesian update given

F 1
1,1 is

Bay(φ|F 1
1,1) =

( l

2l + 2r
,

l

2l + 2r
,

r

2l + 2r
,

rs

2l + 2r
,

rt

2l + 2r
, 0, 0

)
.

Hence, the prior by prior Bayesian updates of Φ0
(s,t) given the information sets F 1

1,1, F 1
1,2

and F 1
1,3 are

Bay(Φ0
(s,t)|F 1

1,1) =
{( l

2l + 2r
,

l

2l + 2r
,

r

2l + 2r
,

rs

2l + 2r
,

rt

2l + 2r
, 0, 0

)
s.t. (l, r, o) ∈ P

}
,

=
{(
l̃, l̃, r̃, r̃s, r̃t, 0, 0

)
s.t. l̃ ∈ [0,

ε

2
], r̃ ∈ [

1− ε
2

,
1

2
], 2l̃ + r̃ + sr̃ + tr̃ = 1

}
,

=
{(
l̃, l̃, r̃, r̃s, r̃t, 0, 0

)
s.t. l̃ ∈ [0,

ε

2
], r̃ ∈ [

1− ε
2

,
1

2
], l̃ + r̃ =

1

2

}
,

Bay(Φ0
(s,t)|F 1

1,2) =
{(

0, 0, 0, 0, 0, 1, 0
)}
,

Bay(Φ0
(s,t)|F 1

1,3) =
{(

0, 0, 0, 0, 0, 0, 1
)}
.

The rectangular hull rect(Φ0
(s,t)) consist of all possible combination of marginal and updated

beliefs. For the histories of the information sets F 1
1,2 and F 1

1,3 the updated belief is either 0
or 1 and since they consist only of one history, the prior probability of this history equals
the marginal probability of reaching the information set. Multiplied with updated probability
which is 1 is still the prior belief. Therefore, we focus on the information set F 1

1,1. Since l̃,
r̃, l and r are elements of closed intervals we can focus on the all possible combination of
the lowest and highest possible values for l̃, r̃, l and r. Then the convex hull of the pasting
of these distributions forms the rectangular hull.

Let φ be such that r = 1 and l = 0. Given this prior belief the marginal probability
of reaching F 1

1,1 is φ(F 1
1,1) = 2. Let φ′ denote the pasting of the marginal φ(F 1

1,1) and the

update φ̃. Considering lowest and highest values for r̃ and l̃ there are two updated beliefs
φ̃ that can be pasted with this marginal belief:

• φ̃ such that l̃ = 0 = 1
2
− r̃

The pasting is then given by

φ′ = φ ◦ φ̃ =
(
φ(F 1

1,1)l̃, φ(F 1
1,1)l̃, φ(F 1

1,1)r̃, φ(F 1
1,1)r̃s, φ(F 1

1,1)r̃t, 0, 0
)

= (2 · 0, 2 · 0, 2 · 1

2
, 2 · 1

2
s, 2 · 1

2
t, 0, 0)
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= (0, 0, 1, s, t, 0, 0).

• φ̃ such that l̃ = ε
2

= 1
2
− r̃

The pasting is then given by

φ′ = φ ◦ φ̃ =
(
φ(F 1

1,1)l̃, φ(F 1
1,1)l̃, φ(F 1

1,1)r̃, φ(F 1
1,1)r̃s, φ(F 1

1,1)r̃t, 0, 0
)

= (2 · ε
2
, 2 · ε

2
, 2 · (1

2
− ε

2
), 2 · (1

2
− ε

2
)s, 2 · (1

2
− ε

2
)t, 0, 0)

= (ε, ε, 1− ε, (1− ε)s, (1− ε)t, 0, 0).

Combining any possible combination of (l, r, o) and (l̃, r̃) in such a way leads to the pastings
given in Table 1. The probability of OS and OT follows from the pasting with the updated

marginal update pasting

r = 1, l = 0 l̃ = 0 = 1
2
− r̃ (0, 0, 1, s, t, 0, 0)

r = 1, l = 0 l̃ = ε
2

= 1
2
− r̃ (ε, ε, 1− ε, (1− ε)s, (1− ε)t, 0, 0)

r = 1− ε, l = ε l̃ = 0 = 1
2
− r̃ (0, 0, 1, s, t, 0, 0)

r = 1− ε, l = ε l̃ = ε
2

= 1
2
− r̃ (ε, ε, 1− ε, (1− ε)s, (1− ε)t, 0, 0)

r = 1− ε, l = 0 l̃ = 0 = 1
2
− r̃ (0, 0, 1− ε, (1− ε)s, (1− ε)t, εs, εt)

r = 1− ε, l = 0 l̃ = ε
2

= 1
2
− r̃

(
(1− ε)ε, (1− ε)ε, (1− ε)2, (1− ε)2s, (1− ε)2t, εs, εt

)
Table 1: pasting for rectangular hull of player 1

belief given the information sets F 1
1,2 and F 1

1,3. For the first 4 rows the marginal probability
of reaching F 1

1,2 or F 1
1,3 is 0 since o = 1−r−l = 0. For the last two rows l = 0 and r = 1−ε

implies o = ε. Since the prior by prior Bayesian update given F 1
1,2 or F 1

1,3 consist of just
one belief, which gives probability 1 to OS or OT , respectively, the pasting of marginal and
update for OS and OT equals the values given above.
The rectangular hull rect(Φ0

(s,t)) of player 1 is then given by the convex hull of the pastings
given in Table 1

rect(Φ0
(s,t)) = conv

{(
0, 0, 1− ε, (1− ε)s, (1− ε)r, εs, εr

)
,
(
ε, ε, 1− ε, (1− ε)s, (1− ε)r, 0, 0

)
,(

0, 0, 1, s, t, 0, 0
)
,
(
(1− ε)ε, (1− ε)ε, (1− ε)2, (1− ε)2s, (1− ε)2t, εs, εt

)}
.

To see the difference between the rectangular hull and Φ0
(s,t), remember that Φ0

(s,t) is given
by

Φ0
(s,t) = {(l, l, r, rs, rt, os, ot) s.t. (l, r, o) ∈ P}

= conv
{(

0, 0, 1− ε, (1− ε)s, (1− ε)r, εs, εr
)
,
(
ε, ε, 1− ε, (1− ε)s, (1− ε)r, 0, 0

)
,(

0, 0, 1, s, t, 0, 0
)}
.
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Since the belief
(
(1 − ε)ε, (1 − ε)ε, (1 − ε)2, (1 − ε)2s, (1 − ε)2t, εs, εt

)
is not an element of

Φ0
(s,t) it follows that Φ0

(s,t) ( rect(Φ0
(s,t)). The last row in Table 1 shows that this belief

is constructed by pasting the marginal probability of the prior worst case belief with the
interim worst case belief. We will see later, that this belief change the ex ante optimal
behavior such that player 1 plays dynamically consistently.

Similar calculations as above show that the Bayesian update of Φ0
(m,n) given F 1

2,1 and

the rectangular hull rect(Φ0
(m,n)) of player 2 are given by

Bay(Φ0
(m,n)|F 1

2,1)) =
{

(0, 0, 0, r̃n, r̃n, õ, õ) with r̃n ∈
[

(1− ε)n
2(1− ε)n+ 2ε

,
1

2

]
,

õ ∈
[
0,

ε

2n(1− ε) + 2ε

]
, õ+ r̃n =

1

2

}
and

rect(Φ0
(m,n)) = conv

{
(0, 0, (1− ε)m, (1− ε)n+ ε, (1− ε)n+ ε, 0, 0) ,(

0, 0,m,
(1− ε)n2

(1− ε)n+ ε
,

(1− ε)n2

(1− ε)n+ ε
,

εn

(1− ε)n+ ε
,

εn

(1− ε)n+ ε

)
,

(0, 0, (1− ε)m, (1− ε)n, (1− ε)n, ε, ε) , (0, 0,m, n, n, 0, 0) ,

(εm, εn, (1− ε)m, (1− ε)n, (1− ε)n, 0, 0) ,(
εm, εn, (1− ε)m, (1− ε)2n2

(1− ε)n+ ε
,

(1− ε)2n2

(1− ε)n+ ε
,

(1− ε)εn
(1− ε)n+ ε

,
(1− ε)εn

(1− ε)n+ ε

)}
.

The rectangular belief set of player 1 shows the main differences of Φσ−i and rect(Φσ−i).
The rectangular hull contains the belief which is the pasting of the prior and interim worst
case belief. We will see later that due to rectangularity the prior worst case belief given the
rectangular hull will be the pasting of the marginal belief derived from the prior worst case
belief and the interim worst case belief. Therefore, updating leads to the interim worst
case belief and dynamically inconsistent behavior cannot occur.

Given the complex structure of beliefs described in the last section one might wonder
why we are not proceeding by constructing rectangular prior belief sets over the set of
types H0 and updating these sets prior by prior using Bayes’ rule. As Aryal and Stauber
(2014) and Ellis (2018) show, defining common belief sets over the set of types H0 that
are rectangular for all players is not possible for general games. For our analysis it is
essential that the information structure of the game is given by a sequence of partitions
of a fixed set. Updating beliefs on H0 given an information set I ti leads to updated beliefs
as probability distributions over the partial histories up to stage t, i.e. the set of which
information sets form the partition is changing every period. Furthermore, there can exist
paths that are starting from the same type or state but are leading to different information
sets depending on the action of the opponent. In our running example the histories RM ,
RNS and RNT lead to different information sets of player 2. First, this shows that it is
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not possible to define a partition of {L,R,O} that captures the information player 2 gets
at his information set at the interim stage. Furthermore, which information set is reached
depends on the action of player 1. When constructing rectangular beliefs for all players,
we have to consider this dependence of information sets and actions of opponents.12 The
rectangular hull of player 2 shows this dependence. The beliefs depend on the strategy of
the opponent in such a way, that an arbitrary belief φ ∈ rect(Φ0

σ−i
) cannot be represented by

multiplying the transition probability pσ−i(h|h0) with imprecise probabilistic information
π ∈ P . Furthermore, in Example 3 in the Appendix we show that rect(Φσ−i) for different
σ−i not only differs because of different transition probabilities pσ−i(·|·). Therefore, we
cannot construct rectangular prior belief sets over H0.

3 Ex-Ante and Interim Equilibria

In this section we define ex-ante and interim expected utility and equilibria. We assume
that given the ex-ante or interim set of beliefs players evaluate a strategy profile by choosing
the worst case belief and calculating the expected payoff for this belief.

Definition 7 The ex-ante expected utility for agent i of a strategy profile σ = (σi, σ−i)
is given by

U e((σi, σ−i)) = min
φ∈Ψ0

i

∑
h∈H

ui(h)pσi(h|h0)φ(h).

Similarly the interim expected utility at F t
i ∈ F ti at stage t = 0, . . . , T given a belief set

Ψt
i(F

t
i ) is

U i
i (σ,Ψ

t
i(F

t
i )) = min

φ∈Ψti(F
t
i )

∑
h∈H

ui(h)pσi(h|ht)φ(h).

Given the ex-ante and interim expected utility of the agents the definitions of an ex-ante and
interim equilibrium are straightforward and follow the standard idea of Nash Equilibrium.

Definition 8 A strategy profile σ∗ is an ex-ante equilibrium with rectangular beliefs
if and only if Ψ0

i = rect(Φ0
σ∗−i

) and

U e
i (σ∗) ≥ U e(σ′i, σ

∗
−i)

for all σ′i ∈ Σi and i ∈ N .

12Aryal and Stauber (2014) construct a rectangular belief sets of beliefs over {L,R,O} of player 1 in our
running example. Then they transfer this belief set to a state space that consider the difference between
the partial histories RN and RM and shows that this transferred belief set is not rectangular for player 2.
We are proceeding the other way around. We first transfer the set of imprecise probabilistic information
to heterogeneous beliefs sets on H and then construct the rectangular hull for each player.
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Definition 9 A tuple (σ∗,Ψt) consisting of a strategy profile σ∗ and system of beliefs Ψt

at t is an interim equilibrium with rectangular beliefs at stage t if and only if
Ψt
i(F

t
i ) = rect(Φt

σ∗−i
(F t

i )) for all F t
i ∈ F ti and

U i
i (σ
∗,Ψt

i(F
t
i )) ≥ U i

i ((σ
′
i, σ
∗
−i),Ψ

t
i(F

t
i ))

for all σ′i ∈ Σi, F
t
i ∈ F ti and all i ∈ N .

Without assuming rectangularity existence of an ex-ante equilibrium follows from standard
arguments using that φ(h) = pσ−i(h|h0)π(h0) for all φ ∈ Φ0

σ−i
. With rectangularity this

simple characterization of the beliefs does not hold in general. Therefore, we focus on the
proof of existence of equilibria with rectangular beliefs.

Theorem 1 (Existence ex-ante equilibrium with rectangular beliefs) There exists
an ex-ante equilibrium with rectangular beliefs.

The proof of Theorem 1 follows the usual idea using Kakutani’s fixed point theorem and
can be found in the Appendix. To use Kakutani’s fixed point theorem it is essentially that
U e
i ((σi, σ−i)) is jointly continuous in (σi, σ−i). Due to our definition of beliefs, the strategy

of the opponents influence the set of beliefs over which a player minimize. Therefore the
continuity is not trivial and we need the following Lemma for the proof of Theorem 1.

Lemma 1 U e
i ((σi, σ−i)) with Ψ0

i = rect(Φ0
σ−i

) is jointly continuous in (σi, σ−i).

To prove continuity we use that any belief in rect(Φ0
σ−i

) can be represented by the pasting
of marginal and updated belief. Due to Remark 2 marginal and updated beliefs can be
represented by multiplying pσ−i(h|·) and π ∈ P . This leads to the following representation
of an arbitrary element φ ∈ rect(Φ0

σ−i
).

φ(h) =
∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pσ−i(h|h0)π(h0)
) pσ−i(h|h0)π′

F 1
i
(h0)∑

h∈F 1
i
pσ−i(h|h0)π′

F 1
i
(h0)

.

Using this representation we transform U e
i ((σi, σ−i)) to a minimization problem over the

set (π, (π′)F 1
i
) ∈ P × P |F1

i | which is independent of σ−i. Then, jointly continuity of the
transformed problem follows by standard methods.

Theorem 2 (Existence interim equilibrium with rectangular beliefs) There exists
an interim equilibrium with rectangular beliefs at stage t.

Proof. The compactness of P implies compactness of Bay(P|F t
i ) for any F t

i . Hence,
replacing rect(Φ0

σ−i
) in Lemma 1 by rect(Φt

σ−i
(F t

i )) shows jointly continuity of U i
i . Then

the proof follows the same line as the proof of Theorem 1.
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3.1 Relation of Ex-Ante and Interim Equilibrium

Now we come back to the problem of dynamic consistency and show that stability under
pasting induce dynamically consistent behavior.

Our next theorem shows that under stability under pasting a completely mixed ex-
ante equilibrium implies an interim equilibrium with rectangular beliefs. Therefore, as in
games without ambiguity a player would deviate from an ex-ante optimal strategy only at
out-of-equilibrium information sets.

Theorem 3 (ex-ante implies interim) Let σ∗ be a completely mixed ex-ante equilib-
rium with rectangular beliefs. Then (σ∗,Ψt

i) with Ψt
i(F

t
i ) = rect(Φt

σ∗−i
(F t

i )) is an interim

equilibrium with rectangular beliefs at stage t.

We will prove this theorem by showing that due to stability under pasting a completely
mixed interim equilibrium at t − 1 implies an completely mixed equilibrium at t. This
holds for any arbitrary t = 0, . . . T + 1 and Theorem 3 follows by iteration. The following
Corollary follows immediately from the recursive structure of the proof

Corollary 1 Let (σ∗,Ψt−1
i ) be a completely mixed interim equilibrium at t−1 with rectan-

gular beliefs, i.e. Ψt−1
i (F t−1

i ) = rect(Φt−1
σ∗−i

(F t−1
i )). Then (σ∗,Ψt

i) with Ψt
i(F

t
i ) = rect(Φt

σ∗−i
(F t

i ))

is an interim equilibrium with rectangular beliefs at stage t.

The formal proof of Theorem 3 may be found in the Appendix. To give an intuition for
the result we need the following Lemma. It shows the relation between the worst case
expected utility at different stages and is essential for the relation between interim and ex
ante equilibrium.

Lemma 2 Let φ∗ ∈ argminφ∈rect(Φt−1
σ−i (F

t−1
i ))

∑
h∈H ui(h)pσi(h|ht−1)φ(h). Then∑

h∈F t−1
i

ui(h)pσi(h|ht−1)φ∗(h)

=
∑
F ti ∈Fti

φ∗(F t
i )pσi(h

t|ht−1) min
φ̃∈rect(Φtσ−i (F

t
i ))

∑
h∈H

ui(h)pσi(h|ht)φ̃(h). (1)

We give a sketch of the proof since it helps to understand the role of rectangularity. The
proof consists of two steps. First, Bayesian updating implies that the left hand side of
Equation 1 is greater or equal than the right hand side. The other direction follows from
rectangularity. Due to rectangularity there exist a φ′ ∈ Φt−1

σ−i
(F t−1

i ) such that

φ′(h) =
∑
F ti ∈Fti

φ∗(F t
i )φ̃
∗
F ti

(h) (2)

where φ̃∗
F ti

and φ∗ are the worst case beliefs at F t
i or F t−1

i , respectively, i.e. φ′ is the pasting

of the worst case beliefs at t and t− 1. We still do not know if φ′ is the worst case belief
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at t− 1. Therefore, the left hand side of Equation 1 can be smaller or equal than the left
hand side evaluated with the belief φ′ instead of φ∗. Then, using that φ′ is the pasting
of the worst case beliefs φ∗ and φ̃∗

F ti
we can prove that the left hand side of Equation 1

evaluated with φ′ equals the right hand side of Equation 1.
As the next remark shows, Lemma 2 implies that the worst case belief at F t−1

i is
the pasting of the worst case belief at F t−1

i and the worst case beliefs at t. Therefore,
the Bayesian update of the worst case belief at F t−1

i leads to the worst case belief at all
subsequent information sets at t.

Remark 4 From the proof of Lemma 2 we know that there exist a φ′ ∈ Φt−1
σ−i

(F t−1
i ) which

satisfies Equation 2, i.e.

φ′(h) =
∑
F ti ∈Fti

φ∗(F t
i )φ̃
∗
F ti

(h)

where φ∗ and φ̃∗
F ti

are the worst case beliefs at F t−1
i and F t

i , respectively. Furthermore, the

proof states∑
h∈F t−1

i

ui(h)pσi(h|ht−1)φ∗(h) ≤
∑

h∈F t−1
i

ui(h)pσi(h|ht−1)φ′(h)

=
∑
F ti ∈Fti

φ∗(F t
i )pσi(h

t|ht−1) min
φ̃∈Φtσ−i (F

t
i )

∑
h∈F ti

ui(h)pσi(h|ht)φ̃(h).

But by Lemma 2 we know that the inequality is an equality. Therefore, φ′ is a worst case
belief at F t−1

i and Remark 2 implies that the worst case belief at an information set at stage
t is the Bayesian update of the worst case belief of the previous information set at stage
t− 1.

Remark 4 and Lemma 2 show how rectangularity leads to dynamically consistent behavior
which is necessary for the proof of Theorem 3.

The proof of Theorem 3 follows the usual idea of contraposition. If there would exist a
profitable deviation at t this deviation would be profitable at t− 1 as well. Therefore, an
equilibrium at t− 1 implies an equilibrium at t. Then the theorem follows from iteration.
However, one has to consider the worst case beliefs. The belief set only depends on the
strategy of the opponents. Therefore, fixing the strategy of the opponents leads to fixed
belief sets. But the worst case belief of player i may change if he deviates from the
equilibrium strategy. To prove Theorem 3 we have to define the pasting of the worst case
belief at t given the equilibrium strategy with the worst case belief at t − 1 given the
deviation strategy. Due to rectangulatrity this pasting is an element of the belief set at
t− 1. Then, we use Lemma 2 to show that a profitable deviation at t implies a profitable
deviation at t− 1.

Theorem 3 shows the relation between equilibria at different stages. Roughly speaking,
due to stability under pasting players update their beliefs such that their worst case belief
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at t is the Bayesian update of the worst case belief at t − 1. This implies dynamically
consistent behavior and leads to the relation between ex-ante and interim equilibria stated
in Theorem 3.

Now we come back to our running example and show that dynamic inconsistency is
ruled out due to stability under pasting.

Running Example (cont.) Remember the results from above. Without stability under
pasting, player 1 behaves dynamically inconsistently. His optimal ex-ante strategy is to play
M with probability 1. After learning that the state is not O his optimal interim strategy
is to play M with probability 1

102
if ε > 1

102
. Now we will show that beliefs which are

stable under pasting lead to dynamically consistent behavior. Since player 2 is indifferent
between S and T we still focus on player 1. We already know the information partitions
and rectangular beliefs of player 1.

H = {LM,LN,RM,RNS,RNT,OS,OT}
F0
i = H

F1
1 = {F 1

1,1, F
1
1,2} =

{
{LM,LN,RM,RNS,RNT}, {OS,OT}

}
Ψ0

1 = rect(Φ0
(s,t)) = conv

{(
0, 0, 1− ε, (1− ε)s, (1− ε)r, εs, εr

)
,
(
0, 0, 1, s, t, 0, 0

)
,(

ε, ε, 1− ε, (1− ε)s, (1− ε)r, 0, 0
)
,(

(1− ε)ε, (1− ε)ε, (1− ε)2, (1− ε)2s, (1− ε)2t, εs, εt
)}
.

From Remark 2 we know that the update of rect(Φ0
(s,t)) is the same as the update of Φ0

(s,t).
Therefore, the optimal interim strategy with rectangular beliefs is the same as without
stability under pasting, i.e. m∗ = 1

102
if ε > 1

102
. For the optimal ex-ante strategy with

rectangular beliefs we solve the following problem

max
(1−m,m)

U e
1 ((1−m,m)) = max

(1−m,m)
min

φ∈rect(Φ0
(s,t)

)
101(1−m)φ(LN) + 101mφ(RM)

+ 100(1−m)φ(RNT ) + 100(1−m)φ(RNS)− φ(OS)− φ(OT )

= max
(1−m,m)

min
(l,l,r,rs,rt,os,ot)
∈rect(Φ0

(s,t)
)

101(1−m)l + 101mr + 100(1−m)rs+ 100(1−m)r(1− s)− o

= max
(1−m,m)

min
(l,l,r,rs,rt,os,ot)
∈rect(Φ0

(s,t)
)

101(1−m)l + 101mr + 100(1−m)r − (1− r − l)

= max
(1−m,m)

min
(l,l,r,rs,rt,os,ot)
∈rect(Φ0

(s,t)
)

l(101(1−m)− 1) + r(100 +m− 1) + 1.

The worst case belief depends on m. If 101(1−m) > 100+m the worst case belief gives the
lowest possible value to l, the highest value to o and r = 1− l− o. If 101(1−m) ≤ 100 +m
the worst case belief gives the highest value to o, the lowest value to r and l = 1 − o − r.
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Hence, the worst case belief is

φ∗ =

{
(0, 0, 1− ε, (1− ε)s, (1− ε)t, εs, εt) if m < 1

102

(ε(1− ε), ε(1− ε), (1− ε)2, (1− ε)2s, (1− ε)2t, εs, εt) if m ≥ 1
102
.

The worst case ex-ante utility is

U e
1 ((1−m,m)) =

{
(1− ε)(100 +m− 1) + 1 if m < 1

102

(1− ε)ε(101(1−m)− 1) + (1− ε)2(100 +m− 1) + 1 if m ≥ 1
102

=

{
(1− ε)(99 +m) + 1 if m < 1

102

m(1− ε)(1− 102ε) + (1− ε)(99 + ε) + 1 if m ≥ 1
102
.

Hence, the optimal ex-ante strategy is m∗ = 1
102

if ε > 1
102

which proves dynamic consis-
tency.

The example shows that players chooses their ex-ante belief in such a way that the belief
set includes prior beliefs that allow for dynamically consistent behavior. The structure of
the game and possible future information are additional information that influences the
behavior of the agents. A rational agent take this information into account, when he forms
his prior beliefs. Therefore, his prior beliefs not only depend on the imprecise probabilistic
information P but also on the knowledge that player have about the structure of the game.

Given the relation between ex-ante and interim equilibria discussed in this section we
can now define and prove the existence of Sequential Equilibria.

4 Sequential Equilibrium

Kreps and Wilson (1982) define a Sequential Eequilibrium in a game without ambiguity as
a tuple of a strategy profile and a belief system such that the strategy profile is sequential
rational and the belief system consistent with respect to the strategy profile. Consistent
with respect to to a strategy profile σ means that there exist a sequence of completely
mixed strategy profiles that converges to σ such that the sequence of beliefs constructed
by Bayesian updating given the completely mixed strategy profiles converges to the equi-
librium belief. We use a similar notion of consistent that includes stability under pasting.

Fix a sequence εk = (εkI )I∈∪i∈NIi of strictly positive vectors converging in the sup-norm
to 0 and such that εkIi ≤

1
|Ai(Ii)| for all player i and information sets Ii. For any k let Γk

denote the restriction of Γ such that the set of feasible strategies is the set of all completely
mixed σk satisfying σki (Ii)(ai) ≥ εkIi for all players, information sets and actions ai ∈ Ai(Ii).
Let Σk denote the set of strategy profiles satisfying this constrain. For every strategy profile
in Σk Bayes’ rule is always well defined. Let (σk)k converge to σ ∈ Σ such that σk ∈ Σk.
For each player i and each σk−i we can construct a prior belief set rect(Φ0

σk−i
) which is stable

under pasting. Now we construct a prior belief system given σ which is stable under pasting
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and consistent with σk−i. First note that

lim
k→∞

pσk−i(h
s|ht) = pσ−i(h

s|ht) ∀s, t = 0 . . . T, s ≥ t.

Take an arbitrary tuple (π, (π′
F 1
i
)F 1

i ∈F1
i
) ∈ P × P |F1

i |. Then there exist a sequence of

φk ∈ rect(Φ0
σk−i

) such that

φk(h) =
∑
F 1
i ∈F1

i

φk(F 1
i )φ̄kF 1

i
(h)

=
∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pσk−i(h|h
0)π(h0)

) pσk−i(h|h
0)π′

F 1
i
(h0)∑

h∈F 1
i
pσk−i(h|h

0)π′
F 1
i
(h0)

.

Then

lim
k→∞

φk(h) =
∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pσ−i(h|h0)π(h0)
)

lim
k→∞

pσk−i(h|h
0)π′

F 1
i
(h0)∑

h∈F 1
i
pσk−i(h|h

0)π′
F 1
i
(h0)

.

Please note that
p
σk−i

(h|h0)π′
F1
i

(h0)∑
h∈F1

i
p
σk−i

(h|h0)π′
F1
i

(h0)
is an element of the Bayesian update of P given F 1

i

and σk for each k and therefore an element of ∆H1, the set of probability distributions
over partial histories at stage 1. Furthermore, taking the limit of φk only influence the path
probability induced by the strategy of the opponents, i.e. π and π′

F 1
i

are fixed. Then, the

compactness of ∆H1 implies that every sequence of
p
σk−i

(h|h0)π′
F1
i

(h0)∑
h∈F1

i
p
σk−i

(h|h0)π′
F1
i

(h0)
has a convergent

subsequence.

The limit of rect(Φσk−i
) is then defined as

lim
k→∞

rect(Φ0
σk−i

) :=
{
φ ∈ [0, 1]H such that ∃(φk)k=1,2,... ∈

(
rect(Φ0

σk−i
)
)
k=1,2,...

with

φ(h) = lim
k→∞

φk(h)
}
.

Similarly one can define the limit of rectangular interim belief sets at stages t > 0.

By construction limk rect(Φt−1
σk−i

(F t−1
i )) is stable under pasting as the following calcula-

tions show. Let φ ∈ limk rect(Φt−1
σk−i

(F t−1
i )) and (φF ti )F ti ∈

(
Bay

(
limk rect(Φt−1

σk−i
(F t−1

i ))|F t
i

))
F ti

.

We have to show that the pasting of φ and (φF ti )F ti is an element of limk rect(Φt−1
σk−i

(F t−1
i )).

φ ◦ (φF ti )F ti (·) =
∑
F ti ∈Fti

lim
k
φk(F t

i ) lim
k
φF ti (·)

24



= lim
k

∑
F ti ∈Fti

φk(F t
i )φF ti (·)︸ ︷︷ ︸

:=φ̄k∈rect(Φt−1

σk−i
)

= lim
k
φ̄k(·) ∈ lim

k
rect(Φt−1

σk−i
(F t−1

i )).

This shows that rectangularity is maintained under the limit. Now we can define consistent
with respect to a strategy profile σ and sequential rationality for rectangular beliefs.

Definition 10 We say a belief system Ψ is consistent w.r.t. σ if there exist a sequence
(σk)k=1,... such that

• σk ∈ Σk for all k,

• σ = limk σ
k,

• Ψt
i(F

t
i ) = {φ : φ(h) = limk φ

k(h) where φk ∈ Bay(rect(Φ0
σk−i
|F t
i ))} for all F t

i ∈ F ti for

all t > 0.

The definition of consistent and the discussion above show that a belief system which is
consistent w.r.t. σ and stable under pasting for σk is stable under pasting for σ.

The second property of Sequential Equilibria is sequential rationality. Roughly speak-
ing, sequential rationality captures the idea that a strategy is optimal at each stage and
each information set. Therefore, a strategy is sequential rational if it is an equilibrium at
each stage.

Definition 11 A tupel (σ,Ψ), consisting of a strategy profile and a belief system, is se-
quential rational if

• σ is an ex-ante equilibrium with rectangular beliefs Ψ0
i and

• for all t > 0 the tupel (σ,Ψt) is an interim equilibrium with rectangular beliefs at
stage t.

Now we can define Sequential Equilibrium.

Definition 12 The tupel (σ∗,Ψ) consisting of a strategy profile and a belief system with
Ψ0
i = rect(Φ0

σ∗−i
) is a Sequential Equilibrium with rectangular beliefs if

• (σ∗,Ψ) is sequential rational and

• Ψ is consistent w.r.t. σ.

Theorem 4 There exists a Sequential Equilibrium with rectangular beliefs.
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Proof. Let εk, Γk and σk as above. For each Γk we can construct a belief system Ψk

that is stable under pasting, i.e. Ψt,k
i (F t

i ) = rect(Φt
σk−i

(F t
i )). Furthermore, by Theorem 1

there exists an ex-ante equilibrium σ̂k with rectangular beliefs Ψ0,k for each Γk. Theorem 3
shows that (σ̂k,Ψt,k) is an interim equilibrium with rectangular beliefs at stage t. By the
compactness of the set of strategy profiles there exists a sub-sequence of σk which con-
verges to σ̂. For this sub-sequence we can construct a system of rectangular beliefs Ψ such
that, Ψt

i(F
t
i ) = limk Ψt,k

i (F t
i ). Then by construction Ψ is stable under pasting and satisfies

consistency w.r.t to σ̂.
By Lemma 1 U e

i (σ) and U i
i (σ,Φ

t) are jointly continuous in σ. Then, since Σ is the closure
of ∪kΣk the strategy profile σ̂ satisfies sequential rationality.

It is already known that ambiguity can generate new equilibria. The following example
shows that under stability under pasting ambiguity can generate new Sequential Equilibria.

Example 1 This examples follows the idea of Greenberg (2000). There are three countries,
country A, B and C. Country A and B have to decide whether or not to reach a peace
agreement. Country C prefers a peace agreement and punishes country A or B if the peace
negotiation fails. It cannot observe which of the two countries breakup the negotiation and
has to decide which of the both countries would be punished without knowing who did not
agree on the peace agreement. Country A and B choose to accept the peace agreement or
not, without knowing which of them will be punished. In our setting nature takes the role
of country C and chooses the state of the world, ”punish A” or ”punish B”. The game is
depicted in Figure 2.

First we show that without ambiguity there is no ex-ante equilibrium and therefore no
Sequential Equilibrium in which the peace agreement take place. Let µ, µ̃A and µ̃B represent
the prior beliefs and the updated beliefs of country A and B respectively, in a game without
ambiguity. Due to Bayes’ rule and since neither country A nor country B learns the state
it follows that µ = µ̃A = µ̃B. Let α and β denote the probability with which country A and
B chooses war, respectively. Then the best responses are

β∗ =


1 if 9µ > 4

[0, 1] if 9µ = 4

0 if 9µ < 4

and

α∗ =


0 if 5− 2β + 3µ(β − 3) < 0

[0, 1] if 5− 2β + 3µ(β − 3) = 0

1 if 5− 2β + 3µ(β − 3) > 0.

In Section B.2 in the Appendix we calculate all ex-ante equilibria of this game without
ambiguity and show that in all of them at least one of the countries A or B plays war with
probability 1. To give country A an incentive to play peace it has to belief that it will be

26



nature=C

punish A [µ]

[µ̃A]

war

(0, 9)

peace

[µ̃B]

war

(3, 9)

peace

(4, 4)

punish B[1− µ]

war

(9, 0)

peace

war

(6, 0)

peace

(4, 4)

A

B

Figure 2: Example Peace Negotiation

punished with probability greater 5
9
, i.e. µ > 5

9
. On the other hand to give country B an

incentive to play peace it has expect, that it will be punished with probability greater 5
9
, i.e.

µ < 4
9
. These two conditions contradict. Since there is no ex-ante equilibrium in which

peace is played by both countries, there cannot exist a Sequential Equilibrium in which both
countries choose peace.

With multiple priors, ambiguity induces a new equilibrium in which the peace agree-
ment does not fail. Instead of one prior belief µ the players are faced with the imprecise
probabilistic information P = [µ

¯
, µ̄]. In Section B.2 we construct the prior belief sets of

country A and B for H = {Aw,Apw,App,Bpp,Bpw,Bw} where Apw denote the history
where A will be punished, country A plays peace and country B war. The belief sets are
then given by

Φ0
σ−A

=
{

(µ, µβ, µ(1− β), (1− µ)(1− β), (1− µ)β, (1− µ)) s.t. µ ∈ [µ
¯
, µ̄]
}

Φ0
σ−B

=
{(
µα, µ(1− α), µ(1− α), (1− µ)(1− α), (1− µ)(1− α), (1− µ)α

)
s.t. µ ∈ [µ

¯
, µ̄]
}
.

In the Appendix we show that Φ0
σ−A

and Φ0
σ−B

are stable under pasting. With ambiguity

such that µ
¯
< 4

9
and µ̄ > 5

9
there exists a sequential equilibrium in which both countries

choose peace with probability 1. Now, let εki be a sequence for each player that converges
to 0 for k → ∞ such that εki <

1
2

for i = A,B and all k. Furthermore, let Σk
i the set of

strategies of country i such that

Σk
A = {(α, 1− α) s.t. α ∈ [εkA, 1− εkA]},

Σk
B = {(β, 1− β) s.t. β ∈ [εkB, 1− εkB]}.

In Section B.2 in the Appendix we show that given the restricted game with the set of
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strategies Σk
i the optimal strategy of country A and B is to play αk = εkA and βk = εkB. The

worst case belief of country A is µ̄ > 5
9

for all strategies of country A and B. Similarly µ
¯
< 4

9

is the worst case belief of country B for all strategies of country A and B. Therefore, both
countries play war with the lowest possible probability. Since the strategy set is restricted
to Σk

i this probability is given by εki . These considerations hold for any arbitrary k. For
k → ∞ the strategies of country A and B converge to the strategy playing peace with
probability 1. Furthermore, Bayes’ rule is always well defined for both players if α < 1,
which is the case for α = εkA or α = 0. This implies consistency w.r.t (α = 0, β = 0)
and proves the existence of a sequential equilibrium in which both countries play peace with
probability 1.

5 Conclusion and Discussion

In this paper we introduce rectangularity to finite multi-stage extensive form games with
ambiguous incomplete information. Players are faced with imprecise probabilistic infor-
mation about states or types of the opponents. Furthermore, they know the information
structure of the game. Given the imprecise probabilistic information and the knowledge
about the information structure each player constructs a prior belief set which is rectan-
gular. We show that rectangularity ensures dynamically consistent behavior in dynamic
games and therefore existence of Sequential Equilibria. Furthermore, we show that in dy-
namic games with rectangular beliefs, ambiguity can create new Sequential Equilibria that
do not exist in games without ambiguity.

5.1 Discussion

Singleton Subjective Beliefs: One could argue that our results could be obtained by
choosing a single subjective prior belief for each player that equals the worst case ex-ante
belief. Due to stability under pasting the worst case beliefs at the interim stages are the
Bayesian updates of the worst case prior belief. Therefore, updating this single subjective
prior belief would lead to the same beliefs at the interim stages as in the setting with a
subjective set of beliefs. But the setting with single subjective beliefs would lack in an
explanation how players derive their subjective beliefs. In our setting the subjective set of
prior beliefs is endogenously derived from the common imprecise probabilistic information
and the knowledge about the information structure of the game by assuming that players
behave dynamically consistently, i.e. following stability under pasting. The choice of the
worst case beliefs arise due to ambiguity aversion and MEU.

Hanany and Klibanoff (2007): Another way to rule out dynamic inconsistency in
decision theoretic settings with multiple prior are the updating rules proposed by Hanany
and Klibanoff (2007). They propose updating rules that update only a subset of the prior
belief set using Bayes’ rule. Which subset is updated depends on the optimal ex ante
choice. Then, updating this subset of beliefs leads to an interim belief set that supports
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the ex ante optimal choice. This ensures dynamic consistency. However, comparing this
approach to our model shows that the updating rules of Hanany and Klibanoff (2007) give
a higher weight to the ex ante optimal choice. In our setting, players forecast their interim
worst case belief and take them into account when construction their ex ante beliefs. Hence
compared to the approach of Hanany and Klibanoff (2007), they are giving more weight
to the interim optimal choice. We show in Section B.1.2 that the different approaches lead
to a different dynamically consistent equilibrium in our running example.

An important assumption to use rectangularity is, that all players know the information
structure. To use the updating rules of Hanany and Klibanoff (2007) agents only have to
know the information that they are getting. But in games it is often assumed that the
game tree and therefore the information structure is known by the players. If the players
know which information they could get in the future it seems intuitive that they take this
information into account when construction their ex ante belief sets. Hence, when defining
models in a dynamically consistent MEU setting one has to decide which approach is better
suited depending on the assumed information structure.

Ellsberg Games: As mentioned in the introduction Ellsberg games introduce am-
biguous strategies, i.e. instead of playing a probability distribution over the pure strategies
players can choose a set of probability distributions. In extensive form games with Ells-
berg strategies, ambiguity is introduced due to the strategy of the players. In our setting
ambiguity arises due to ambiguous information about types or states. This facilitate the
definition of Sequential Equilibria since strategies are not ambiguous. In the conclusion of
Muraviev, Riedel, and Sass (2017) an example illustrates the implications of their results
for equilibrium concept in extensive form games with Ellsberg strategies. They show the
existence of a dynamically consistent Ellsberg equilibrium for this example. However, a
general formulation of equilibrium concepts for extensive form games with Ellsberg strate-
gies and existency results are left for future research. Our results support their conjecture
that rectangularity implies existence of dynamically consistent Ellsberg equilibria.

Games with two types: All examples that show the issue of dynamic inconsistency
under MEU in games have at least three possible states or types. The reason for this
is that dynamically inconsistent behavior cannot occur in games with only two types or
states, i.e. |H0| = 2. With two types there are only two cases that can occur at an interim
stage. Either the player learns the true type or not. In signaling games the first case
correspond to a separating equilibria and the second to pooling equilibria. In Appendix C
we explore both cases formally. If the player learns the true type updated beliefs are either
0 or 1. It is easy to show that then rectangularity is always satisfied. If the player does
not learn the type Bayes’ rule is always well defined. Furthermore, since there are only two
types, the Bayesian update is monotone in the prior probability. This monotonicity implies
dynamically consistent behavior for the second case. But as Example 1 shows, ambiguity
also induces new Sequential Equilibria in dynamic games with 2 states or types. Hence,
new equilibria may arise even if there is no dynamically inconsistent behavior. Therefore,
there are two effects in games with dynamically inconsistent behavior. First ambiguity
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may change the set of equilibria, second dynamically inconsistent behavior may change the
set of equilibria as well.
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A Proofs

A.1 Proofs: Existence of Ex-Ante Equilibria

Proof of Lemma 1. First consider the case where σ−i is completely mixed and Bayes’
rule always well defined. Then any φ ∈ rect(Φ0

σ−i
) has the following form

φ(h) =
∑
F 1
i ∈F1

i

φ′(F 1
i )φ̃F 1

i
(h).
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By Remark 2 we can assume without loss of generality, that φ′ ∈ Φ0
σ−i

and φ̃F 1
i
∈ Φ1

σ−i
(F 1

i ).
Furthermore, Bayes’ rule is always well defined. Therefore, there exist π ∈ P and π′

F 1
i
∈ P

for each F 1
i such that

φ(h) =
∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pσ−i(h|h0)π(h0)
) pσ−i(h|h0)π′

F 1
i
(h0)∑

h∈F 1
i
pσ−i(h|h0)π′

F 1
i
(h0)

.

With this formulation of φ and since pσ−i(·|·) is completely characterized by σ−i we can
now write U e

i as follows

U e
i (σ) = min

φ∈rect(Φ0
σ−i )

∑
h∈H

ui(h)pσi(h|h0)φ(h)

= min
(π,(π′)

F1
i

)

∈P×P|F
1
i |

∑
h∈H

ui(h)pσi(h|h0)

( ∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pσ−i(h|h0)π(h0)
) pσ−i(h|h0)π′

F 1
i
(h0)∑

h∈F 1
i
pσ−i(h|h0)π′

F 1
i
(h0)

)

=: Û e
i ((σi, σ−i))

Now we show that Û e
i ((σi, σ−i)) is jointly continuous in (σi, σ−i) and therefore U e

i ((σi, σ−i))
as well. First note, that

∑
h∈H

ui(h)pσi(h|h0)
( ∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pσ−i(h|h0)π(h0)
) pσ−i(h|h0)π′

F 1
i
(h0)∑

h∈F 1
i
pσ−i(h|h0)π′

F 1
i
(h0)

)
(3)

is continuous in (σi, σ−i). This implies that

∀ε >0∃δ > 0 s.t. |a− b| < δ ⇒∣∣∣∑
h∈H

ui(h)pai(h|h0)
( ∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pa−i(h|h0)π(h0)
) pa−i(h|h0)π′

F 1
i
(h0)∑

h∈F 1
i
pa−i(h|h0)π′

F 1
i
(h0)

)

−
∑
h∈H

ui(h)pbi(h|h0)
( ∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pb−i(h|h0)π(h0)
) pb−i(h|h0)π′

F 1
i
(h0)∑

h∈F 1
i
pb−i(h|h0)π′

F 1
i
(h0)

)∣∣∣ < ε.

By the compactness of P there exist (πa, (π′,a
F 1
i
)F 1

i
) and (πb, (π′,b

F 1
i
)F 1

i
) in P ×P |F1

i | such that

Û e
i (a) =

∑
h∈H

ui(h)pai(h|h0)
( ∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pa−i(h|h0)πa(h0)
) pa−i(h|h0)π′,a

F 1
i
(h0)∑

h∈F 1
i
pa−i(h|h0)π′,a

F 1
i
(h0)

)

32



and

Û e
i (b) =

∑
h∈H

ui(h)pbi(h|h0)
( ∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pb−i(h|h0)πb(h0)
) pb−i(h|h0)π′,b

F 1
i
(h0)∑

h∈F 1
i
pb−i(h|h0)π′,b

F 1
i
(h0)

)
.

Without loss of generality assume that Û e
i (a) ≥ Û e

i (b). Then ∀ε > 0∃δ > 0 such that
|a− b| < δ it follows

|Û e
i (a)− Û e

i (b)|

≤
∣∣∣∑
h∈H

ui(h)pai(h|h0)
( ∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pa−i(h|h0)πb(h0)
) pa−i(h|h0)π′,b

F 1
i
(h0)∑

h∈F 1
i
pa−i(h|h0)π′,b

F 1
i
(h0)

)
− Û e

i (b)
∣∣∣

< ε.

The first inequality holds since (πb, π′,b) is in general not a worst case belief given a. The
second inequality follows by the continuity of Equation 3 in (σi, σ−i).
Hence, Û e

i (σ) is jointly continuous in σ = (σi, σ−i) for completely mixed σ−i.
If σ−i is not completely mixed and Bayes’ rule not well defined for some F 1

i , then the
denominator

∑
h∈F 1

i
φ′
F 1
i
(h) = 0. But this is equivalent to φ(F 1

i ) = 0.13 Therefore,

Û e
i ((σi, σ−i))

= min
(π,(π′)

F1
i

)

∈P×P|F
1
i |

∑
h∈H

ui(h)pσi(h|h0)
( ∑

F 1
i ∈F1

i

s.t. φ(F 1
i ) 6=0

( ∑
h∈F 1

i

pσ−i(h|h0)π(h0)
) pσ−i(h|h0)π′

F 1
i
(h0)∑

h∈F 1
i
pσ−i(h|h0)π′

F 1
i
(h0)

)
.

and we can ignore F 1
i where Bayes’ rule is not well defined.

Now we can prove Theorem 1.
Proof of Theorem 1. First remember that the set of histories H, the set of information
sets I, the set of actions for each player at each information set Ai(I

t
i ) and the set of players

N are finite. A behaviour strategy of player i was defined such that σi(I
t
i ) ∈ ∆(AI(I

t
i )).

The set of strategies of agent i is then Σi =×Iti∈Ii
∆(Ai(I

t
i )) and the set of strategy profiles

Σ =×i∈N Σi. We define the best response of player i given the strategy of the opponents
σ−i as the correspondence Bi : Σ−i → Σi with

Bi(σ−i) = {σi ∈ Σi : σi ∈ argmaxσi∈Σi
U e
i (σi, σ−i)}.

13This equivalence follows from the full support assumption of P. Since π(h0) > 0 for all h0 and all
π ∈ P an information set has only probability 0 if the transition probability of all histories contained in
this information set are 0. This implies that pσ−i

(h|h0)π(h0) = 0 for all π ∈ P.
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Then the correspondence B : Σ→ Σ with

B(σ) =×
i∈N

Bi(σ−i)

defines the best response.
We will use Kakutani’s fixed point theorem to show that B has a fixed point and therefore
the existence of an ex-ante equilibrium. To apply Kakutani’s fixed point theorem we need
the following conditions:

i) Σ is non-empty, convex and compact

ii) B : Σ → Σ is a upper-hemicontinuous correspondence and B(σ) is non-empty and
closed ∀σ ∈ Σ

iii) B(σ) is convex ∀σ ∈ Σ

We will show this conditions step by step:

i) Since Ii and Ai(I
t
i ) are finite for all information sets I ti and all player i, ∆(Ai(I

t
i )) is

non-empty, compact and convex. Therefore, Σi and Σ are non-empty, compact and
convex as well.

ii) To show the second point we use Berge’s maximum theorem.
Let C : Σ−i → Σi be a correspondence such that C(σ−i) = Σi for all σ−i. Then C
is upper and lower hemicontinuous as the following explanation shows and therefore
continuous.
The definition of lower hemicontinuity says: C is lower hemicontinuous at a if for all
open sets V intersecting C(a) exists a neighbourhood U of a such that C(x) intersects
V for all x ∈ U . Since C(a) = Σi = C(x) for all x ∈ Σ−i the definition is satisfied for
each a, U and V .
For upper hemicontinuity we use the graph theoretic characterization: Let Gr(C) :=
{(a, b) ∈ Σ−i×Σi such that b ∈ C(a)}. If Σi is compact and Gr(C) closed, C : Σ−i →
Σi is a upper hemicontinuous correspondence with closed domain and closed values.
By the definition of C it follows that Gr(C) = Σ−i × Σi. Σi and Σ−i are compact by
i) and therefore closed. Hence, C is upper hemicontinuous.
Now we can apply Berge’s maximum theorem: With our notation

U e
i : Σi × Σ−i → R,

C : Σ−i → Σi s.t C(σ−i) = Σ,

C∗(σ−i) := argmax{U e
i (σi, σ−i) such that σi ∈ C(σ−i) = Σi} = Bi(σ−i).

Berge’s maximum theorem states that if U e
i is jointly continuous in both arguments and

C is continuous in σ−i then C∗ is non-empty, convex valued and upper hemicontinuous
in σ−i. Hence, by Lemma 1 Bi is a upper-hemicontinuous correspondence and Bi(σ−i)
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is non-empty and closed ∀σ−i ∈ Σ−i. Since B(σ) =×i∈N Bi(σ−i) the same holds for
B.

iii) To show the convexity of B(σ) we first show that U e
i is concave in σi. Let σ̄i and

σ̃i ∈ Σi and α ∈ [0, 1].

U e
i (ασ̄i + (1− α)σ̃, σ−i) = min

φ∈rect(Φ0
σ−i )

∑
h∈H

ui(h)pασ̄i+(1−α)σ̃(h|h0)φ(h)

= min
φ∈rect(Φ0

σ−i )

∑
h∈H

ui(h)
T∏
t=0

(
α σ̄i(Ii(h

t))(ht,i)︸ ︷︷ ︸
≥0

+(1− α) σ̃i(Ii(h
t))(ht,i)︸ ︷︷ ︸
≥0

)
φ(h)

≥ min
φ∈rect(Φ0

σ−i )

∑
h∈H

ui(h)
( T∏
t=0

ασ̄i(Ii(h
t))(ht,i) +

T∏
t=0

(1− α)σ̃i(Ii(h
t))(ht,i)

)
φ(h)

= min
φ∈rect(Φ0

σ−i )

(
α
∑
h∈H

ui(h)pσ̄i(h|h0)φ(h) + (1− α)
∑
h∈H

ui(h)pσ̃i(h|h0)φ(h)
)

≥α min
φ∈rect(Φ0

σ−i )

∑
h∈H

ui(h)pσ̄i(h|h0)φ(h) + (1− α) min
φ∈rect(Φ0

σ−i )

∑
h∈H

ui(h)pσ̃i(h|h0)φ(h)

=αU e
i (σ̄i, σ−i) + (1− α)U e

i (σ̃i, σ−i).

With the concavity of U e
i we can prove that Bi(σ−i) is convex for all σ−i. Fix some

arbitrary σ−i and let σ̄i, σ̃i ∈ Bi(σ−i) and α ∈ [0, 1]. We have to show, that ασ̄i + (1−
α)σ̃i ∈ Bi(σ−i) = argmaxσi∈Σi

U e
i (σi, σ−i). Since σ̄i, σ̃i ∈ Bi(σ−i) it follows that

U e
i (σ̄i, σ−i) = U e

i (σ̃i, σ−i) = max
σi∈Σi

U e
i (σi, σ−i)

≥ U e
i (ασ̄i + (1− α)σ̃i, σ−i)

≥ αU e
i (σ̄i, σ−i) + (1− α)U e

i (σ̃i, σ−i)

= max
σi∈Σi

U e
i (σi, σ−i)

where the last inequality follows from the concavity of U e
i . Then

U e
i (ασ̄i + (1− α)σ̃i, σ−i) = max

σi∈Σi
U e
i (σi, σ−i)

⇒ ασ̄i + (1− α)σ̃i ∈ argmaxσi∈Σi
U e
i (σi, σ−i) = Bi(σ−i).

Hence, Bi(σ−i) is convex valued for all σ−i ∈ Σ−i. Since this is true for all i ∈ N it
follows that B(σ) is convex valued for all σ ∈ Σ.

Now we can apply Kakutanis fixed point theorem which shows that the best response corre-
spondence B has a fixed point and therefore proves the existence of an ex-ante equilibrium
with rectangular beliefs.
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A.2 Proofs: Relation of Ex-Ante and Interim Equilibria

Proof of Lemma 2. The proof consist of two steps:

i) First we show that∑
h∈F t−1

i

ui(h)pσi(h|ht−1)φ∗(h)

≥
∑
F ti ∈Fti

φ∗(F t
i )pσi(h

t|ht−1) min
φ̃∈rect(Φtσ−i (F

t
i ))

∑
h∈H

ui(h)pσi(h|ht)φ̃(h)

which follows directly from Bayesian updating. Take into account, that φ∗(F t
i ) = 0 is

equivalent to φ∗(h) = 0 ∀h ∈ F t
i .∑

h∈F t−1
i

ui(h)pσi(h|ht−1)φ∗(h) =
∑
F ti ∈Fti

∑
h∈F ti

ui(h)pσi(h|ht−1)φ∗(h)

=
∑
F ti ∈Fti

s.t. φ∗(F ti )>0

φ∗(F t
i )

φ∗(F t
i )

∑
h∈F ti

ui(h)pσi(h|ht−1)φ∗(h)

=
∑
F ti ∈Fti

φ∗(F t
i )
∑
h∈F ti

ui(h)pσi(h|ht−1)
φ∗(h)

φ∗(F t
i )︸ ︷︷ ︸

∈rect(Φtσ−i (F
t
i ))

≥
∑
F ti ∈Fti

φ∗(F t
i ) min

φ̃∈rect(Φ1
σ−i (F

t
i ))

∑
h∈F ti

ui(h)pσi(h|ht−1)φ̃(h)

=
∑
F ti ∈Fti

φ∗(F t
i )pσi(h

t|ht−1) min
φ̃∈rect(Φtσ−i (F

t
i ))

∑
h∈F ti

ui(h)pσi(h|ht)φ̃(h)

where the last equality follows since pσi(h
t|ht−1) = pσi(h̄

t|h̄t−1) for all h, h̄ in F t
i .

ii) For the other direction∑
h∈F t−1

i

ui(h)pσi(h|ht−1)φ∗(h)

≤
∑
F ti ∈Fti

φ∗(F t
i )pσi(h

t|ht−1) min
φ̃∈rect(Φtσ−i (F

t
i ))

∑
h∈F ti

ui(h)pσi(h|ht)φ̃(h)

let φ̃∗
F ti
∈ argminφ̃∈rect(Φtσ−i (F

t
i ))

∑
h∈H ui(h)pσi(h|ht)φ̃(h) for all F t

i and φ∗ as above.

Stability under pasting implies that there exist a φ′ ∈ Φt−1
σ−i

(F t−1
i ) such that

φ′(h) =
∑
F ti ∈Fti

φ∗(F t
i )φ̃
∗
F ti

(h)
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which in general is not a worst case belief. Then∑
h∈F t−1

i

ui(h)pσi(h|ht−1)φ∗(h) ≤
∑

h∈F t−1
i

ui(h)pσi(h|ht−1)φ′(h)

=
∑

h∈F t−1
i

ui(h)pσi(h|ht−1)
∑
F ti ∈Fti

φ∗(F t
i )φ̃
∗(h)

=
∑
F ti ∈Fti

φ∗(F t
i )
∑
h∈F ti

ui(h)pσi(h|ht−1)φ̃∗(h)

=
∑
F ti ∈Fti

φ∗(F t
i )pσi(h

t|ht−1) min
φ̃∈Φtσ−i (F

t
i )

∑
h∈F ti

ui(h)pσi(h|ht)φ̃(h).

Combining step i) and ii) proves Lemma 2

Proof of Theorem 3 (ex-ante implies interim).
We show that for an arbitrary t a completely mixed interim equilibrium with rectangular
beliefs at t − 1 implies an interim equilibrium with rectangular beliefs at t. Then the
theorem follows from iteration.

Let (σ∗,Ψt−1) be a completely mixed interim equilibrium with rectangular beliefs at
t−1 and assume that (σ∗, rect(Φt

σ−i
)) is not an interim equilibrium at t. Hence, there exist

a player i, an information set F t
i and a strategy profile (σ′i, σ

∗
−i) where player i deviates

from σ∗. Let F t−1
i be the information set that precedes F t

i and φ∗ the worst case belief at
F t−1
i given σ∗−i, i.e.

φ∗ ∈ argminφ∈rect(Φt−1
σ∗−i

(F t−1
i ))

∑
h∈F t−1

i

ui(h)pσ∗i (h|h
t−1)φ(h).

Similarly, let φ∗,t denote the worst case belief at F t
i given σ∗i and φ̄ denote the worst case

at F t−1
i belief given the strategy σi which equals σ′i for s ≥ t and equals σ∗i for s < t.

Furthermore, let φ′ be the pasting of φ̄ and φ∗,t. Then φ′ is in general not a worst case
belief and similar to step ii) of the proof of Lemma 2 it follows

U i
i (σ
∗,Ψt−1(F t−1

i )) ≤
∑
h∈H

ui(h)pσ∗i (h|h
t−1)φ′(h)

=
∑
F ti ∈Fti

φ̄(F t
i )pσ∗i (h

t|ht−1)U i
i (σ
∗, rect(Φt

σ∗−i
(F t

i ))) (4)

By our assumption (σ∗, rect(Φt
σ∗−i

)) is not an interim equilibrium at t, i.e. there exist F t
i

and σ′i such that

U i
i (σ
∗, rect(Φt

σ∗−i
(F t

i ))) < U i
i ((σ

′
i, σ
∗
−i), rect(Φ

t
σ∗−i

(F t
i ))) (5)
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Furthermore, since σ∗ is completely mixed and P has full support it follows that

φ̄(F t
i )pσ∗i (h

t|ht−1) > 0 ∀F t
i (6)

Combining Equation 4, Equation 5 and Equation 6 leads to

U i
i (σ
∗,Ψt−1(F t−1

i )) <
∑
F ti ∈Fti

φ̄(F t
i )pσ∗i (h

t|ht−1)U i
i ((σ

′
i, σ
∗
−i), rect(Φ

t
σ∗−i

(F t
i )))

= min
φ∈rect(Φt−1

σ∗−i
)

∑
h∈H

ui(h)pσ∗i (h
t|ht−1)pσ′i(h|h

t)φ(h) (7)

For the equality in Equation 7 consider, that by construction and Remark 4 the pasting
of φ̄ and the interim worst case belief at t given σ′i, is the worst case belief at t − 1 given
the strategy σi which equals σ′i for s ≥ t and equals σ∗i for s < t. Then Equation 7 follows
from Lemma 2.
The calculation above form a contradiction since (σ∗,Ψt−1) is an interim equilibrium with
rectangular beliefs at stage t − 1. Hence, (σ∗, rect(Φt

σ∗−i
)) is an interim equilibrium with

rectangular beliefs at stage t.

B Examples

B.1 Running Example

B.1.1 Dynamically Inconsistent Behavior without Stability under Pasting

Example 2 Aryal and Stauber (2014) show that in the example, depicted in Figure 3,
stability under pasting is a necessary condition for dynamically consistent behavior. We
use this example as a running example during the paper. Here we will show that without

nature

RL
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0, y

N

101, y

M

101, y

N

S

100, x

T

100, x

O

S

−1, x

T

−1, x

1

2

Figure 3: Aryal and Stauber 3 player game
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ambiguity player 1 behaves dynamically inconsistently.

The imprecise probabilistic information is given by

P = {(1− ε)(0, 1, 0) + ε(l, r, o) : (l, r, o) ∈ ∆}

where l, r and o denote the probabilities of the types L, R and O respectively. Furthermore,
let (n,m) denote a strategy of player 1 where n = 1−m and m denotes the probability of
playing M . Similarly (s, t) is the strategy of player 2.

At the end of Section 2.2 we show how to construct the set of histories, the information
partition and the prior belief sets. Remember that this leads to the following results.

H = {LM,LN,RM,RNS,RNT,OS,OT},
F0
i = H,

F1
1 = {F 1

1,1, F
1
1,2, F

1
1,3} =

{
{LM,LN,RM,RNS,RNT}, {OS}, {OT}

}
,

F1
2 = {F 1

2,1, F
1
2,2, F

1
2,3, F

1
2,4} =

{
{RNS,RNT,OS,OT}, {LM}, {LN}, {RM}

}
,

Φ0
(s,t) = {(l, l, r, rs, rt, os, ot) s.t. (l, r, o) ∈ P},

Φ0
(m,n) =

{
(lm, ln, rm, rn, rn, o, o) s.t. (l, r, o) ∈ P}.

We now show that dynamic consistency is violated without stability under pasting

The ex-ante optimal choice of player 1 is:

max
(1−m,m)

U e((1−m,m)) = max
(1−m,m)

min
φ∈Φ0

101(1−m)φ(LN) + 101mφ(RM) + 100(1−m)φ(RNS)

+ 100(1−m)φ(RNT )− φ(OS)− φ(OT )

= max
(1−m,m)

min
(l,r,o)∈P

101(1−m)l + 101mr + 100(1−m)r(s+ t)− (1− r − l)(s+ t)

= max
(1−m,m)

min
(l,r,o)∈P

101(1−m)l + 101mr + 100(1−m)r − (1− r − l)

= max
(1−m,m)

min
(l,r,o)∈P

l (100− 101m)︸ ︷︷ ︸
>0

+r (101 +m)︸ ︷︷ ︸
>0

−1

⇒the ex-ante worst case belief is (l, r, o) = (0, 1− ε, ε)
⇒ max

(1−m,m)
U e((1−m,m)) = max

(1−m,m)
(1− ε)(101 +m)− 1

⇒m∗ = 1.

Now we show that m∗ = 1 is not an interim equilibrium given Bay(Φ0). The prior by prior
Bayesian update of Φ0 is

Bay(Φ0
(s,t)|F 1

1,1) =
{( l

2l + 2r
,

l

2l + 2r
,

r

2l + 2r
,

rs

2l + 2r
,

rt

2l + 2r
, 0, 0

)
s.t. (l, r, o) ∈ P

}
=
{(
l̃, l̃, r̃, r̃s, r̃t, 0, 0

)
s.t. l̃ ∈ [0,

ε

2
], r̃ ∈ [

1− ε
2

,
1

2
], 2l̃ + r̃ + sr̃ + tr̃ = 1

}
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=
{(
l̃, l̃, r̃, r̃s, r̃t, 0, 0

)
s.t. l̃ ∈ [0,

ε

2
], r̃ ∈ [

1− ε
2

,
1

2
], l̃ + r̃ =

1

2

}
,

Bay(Φ0
(s,t)|F 1

1,2) =
{(

0, 0, 0, 0, 0, 1, 0
)}
,

Bay(Φ0
(s,t)|F 1

1,3) =
{(

0, 0, 0, 0, 0, 0, 1
)}
.

The interim utility at F 1
1 is

U i((1−m,m)) = min
(l̃,r̃)

101l̃(1−m) + 101r̃m+ 100r̃(1−m)(s+ t)

= min
(l̃,r̃)

l̃ 101(1−m)︸ ︷︷ ︸
>0

+r̃ (100 +m)︸ ︷︷ ︸
>0

.

The worst case belief depends on m. If 101(1−m) > 100 +m the worst case belief is such
that l̃ = 0 and r̃ = 1

2
. If 101(1−m) ≤ 100 +m the worst case belief is l̃ = ε

2
and r̃ = 1−ε

2
.

Since 101(1−m) > 100 +m⇔ m < 1
102

, player 1 maximize the following interim utility

U i((1−m,m)) =

{
1
2
(100 +m) if m < 1

102

101(1−m) ε
2

+ 1−ε
2

(100 +m) if m ≥ 1
102

=

{
1
2
(100 +m) if m < 1

102

m1−102ε
2

+ 101ε+100(1−ε)
2

if m ≥ 1
102
.

This shows, as long as ε > 1
102

the optimal strategy at the interim stage is m∗ = 1
102

< 1.
Hence, player 1 changes his optimal strategy when he observes the information set F 1

1 . This
proves dynamically inconsistent behavior.

B.1.2 Dynamic Consistency with updating rule of Hanany and Klibanoff (2007)

Here we show that the updating rules characterized in Hanany and Klibanoff (2007) lead
to a different dynamically consistent equilibrium as stability under pasting. To rule out
the case without inconsistency we assume that ε > 1

102
. We focus on player 1 and show

that the ambiguity maximizing updating rule as defined in Hanany and Klibanoff (2007)
implies that the optimal interim strategy of player 1 is playing m with probability 1.

Following the notation of Hanany and Klibanoff (2007), the updated event is E =
{L,R} and the optimal ex ante choice is m = 1. Then the set of measures supporting the
conditional optimality of m = 1 are14

QE,m=1,Σ1 =
{

(l, r, o) ∈ P s.t. l <
1

102

}
.

14l < 1
102 follows from similar calculation as the interim maximization. If l > 1

102 the ex ante worst case
belief would give a positive probability to l that is high enough to change the optimal strategy of player 1
and playing m∗ < 1 would be optimal. With l < 1

102 playing m∗ = 1 is always optimal.
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We will show that updating only QE,m=1,Σ1 implies that m = 1 is optimal at the interim
stage. The Bayesian update given E of QE,m=1,Σ1 is

QE,m=1,Σ1

E =
{

(l̃, r̃, 0) s.t. l̃ =
l

l + r
= 1− r̃, (l, r, o) ∈ QE,m=1,Σ1

}
=

{
(l̃, r̃, 0) s.t. l̃ = 1− r̃, l̃ ∈

[
0,

1

102

)
, r̃ ∈ [1− ε, 1]

}

Maximizing the interim worst case expected utility given QE,m=1,Σ1

E yields

max
m∈[0,1]

min
(l̃,r̃)∈QE,m=1,Σ1

E

l̃(1−m)101 + (1− l̃)101 + (1− l̃)(1−m)100

= max
m∈[0,1]

min
l̃∈[0, 1

102)
l̃(1− 102m) + 100 +m

⇒ worst case belief l̃∗ =

{
0 if m < 1

102
1

102
− δ if m ≥ 1

102

where δ > 0.15 Then player 1 maximize

max
m∈[0,1]

{
100 +m if m < 1

102
1

102
+ 100 +

(
1− 102( 1

102
− δ)

)
m if m ≥ 1

102

.

Since
(
1− 102( 1

102
− δ)

)
is strictly greater 0 player 1 chooses m∗ = 1 at the interim stage.

Hence, using the updating rules of Hanany and Klibanoff (2007) leads to a dynamically
consistent equilibrium in which player 1 chooses m∗ = 1 at the interim and ex-ante stage.

This shows the difference between the approach of Hanany and Klibanoff (2007) and
stability under pasting. The updating rules of Hanany and Klibanoff (2007) give an higher
weight to the ex-ante optimal choice. Therefore the dynamically consistent strategy equals
the ex-ante optimal strategy. In our setting players adjust their ex-ante beliefs. Therefore,
using our approach leads to an equilibrium in which player 1 chooses the interim optimal
strategy at the ex-ante stage.

B.2 Greenbergs Peace Negotiation Example

Denote the history that country A will be punished, country A plays peace and country B
war by Apw. The other histories are denoted similarly.
First we construct the belief sets Φ0

σ−i
and show that they are stable under pasting. Then

we show that for the game with restricted strategy set Σk there exist an interim, an ex-ante
and sequential equilibrium such that no player chooses war. Remember that Σk restrict
the strategy of country A and B such that α ∈ [εkA, 1− εkA] and β ∈ [εkB, 1− εkB] with εki <

1
2

15Since l̃ ∈
[
0, 1

102

)
it has to strictly smaller than 1

102 .
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and εki →∞ if k →∞.

• Belief sets and stability under pasting:

The information filtration F ti and the prior beliefs Φ0
σ−i

are given by

F0
i = {Aw,Apw,App,Bpp,Bpw,Bw} = H,

F1
A = F0

i ,

F1
B =

{
{Aw,Bw}, {Apw,App,Bpp,Bpw}

}
and

Φ0
σ−A

=
{

(µ, µβ, µ(1− β), (1− µ)(1− β), (1− µ)β, (1− µ)) s.t. µ ∈ [µ
¯
, µ̄]
}
,

Φ0
σ−B

=
{

(µα, µ(1− α), µ(1− α), (1− µ)(1− α), (1− µ)(1− α), (1− µ)α)

s.t. µ ∈ [µ
¯
, µ̄]
}
.

We denote with F 2
B,1 and F 2

B,2 the first and second element of F1
B. It is easy to verify

that Φ0
σ−i

is stable under pasting:

The marginal belief of player 1 is φ(F 1
A) = 2. Updating Φ0

σ−A
prior by prior leads to

Φ1
σ−A

=

{(
µ

2
,
µβ

2
,
µ(1− β)

2
,
(1− µ)(1− β)

2
,
(1− µ)β

2
,
1− µ

2

)
s.t. µ ∈ [µ

¯
, µ̄]

}
.

Then the pasting of marginal an updated beliefs shows rect(Φ0
σ−A

) = Φ0
σ−A

.

For player B we have to differ between the two information sets F 1
B,1 and F 1

B,2.
Marginals and updated beliefs are

φ(F 1
B,1) = α,

φ(F 1
B,2) = 2(1− α),

Φ1
σ−B

(F 1
B,1) =

{
(µ, 0, 0, 0, 0, 1− µ) s.t. µ ∈ [[

¯
µ], µ̄]

}
,

Φ1
σ−B

(F 2
B,2) =

{(
0,
µ

2
,
µ

2
,
(1− µ)

2
,
(1− µ)

2
, 0

)
s.t. µ ∈ [µ

¯
, µ̄]

}
.

The pasting of marginal and updated beliefs leads to

rect(Φ0
σ−B

)

=
{(
µα, µ(1− α), µ(1− α), (1− µ)(1− α), (1− µ)(1− α), (1− µ)α

)
s.t. µ ∈ [µ

¯
, µ̄]
}

= Φ0
σ−B

.
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Hence, Φ0
σ−A

and Φ0
σ−B

are stable under pasting.

• interim equilibrium

We first calculate the best response of country B at the interim stage.

max
β∈[εkB ,1−ε

k
B ]

min
φ∈Φ1

σk−B
(F 1
B,2)

9βφ(Apw) + 4(1− β)φ(App) + 4(1− β)φ(Bpp) + 0βφ(Bpw)

= max
β∈[εkB ,1−ε

k
B ]

min
µ∈[µ

¯
,µ̄]

9β
µ

2
+ 4(1− β)

µ

2
+ 4(1− β)

1− µ
2

= max
β∈[εkB ,1−ε

k
B ]

min
µ∈[µ

¯
,µ̄]

9

2
βµ+ 2(1− β)

= max
β∈[εkB ,1−ε

k
B ]

9

2
µ
¯
β + 2(1− β)

⇒ β∗ =


1− εkB if 9µ

¯
> 4

[εkB, 1− εkB] if 9µ
¯

= 4

εkB if 9µ
¯
< 4.

Country A solve the following maximization problem at the interim stage

max
α∈[εkA,1−ε

k
A]

min
φ∈Φ1

σk−A

0αφ(Aw) + (1− α)3φ(Apw) + 4(1− α)φ(App) + 4(1− α)φ(Bpp)

+ 6(1− α)φ(Bpw) + 9αφ(Bw)

= max
α∈[εkA,1−ε

k
A]

min
µ∈[µ

¯
,µ̄]

(1− α)3β
µ

2
+ 4(1− α)(1− β)

(µ+ (1− µ))

2
+ 6(1− α)β

(1− µ)

2

+ 9α
(1− µ)

2

=
1

2
max

α∈[εkA,1−ε
k
A]

min
µ∈[µ

¯
,µ̄]

3(1− α)β(µ+ (1− µ) + 4(1− α)(1− β) + 3(1− α)β(1− µ)

+ 9α(1− µ)

=
1

2
max

α∈[εkA,1−ε
k
A]

min
µ∈[µ

¯
,µ̄]

3(1− α)β + 4(1− α)(1− β) + (1− µ) (3(1− α)β + 9α)︸ ︷︷ ︸
>0

=
1

2
max

α∈[εkA,1−ε
k
A]

3(1− α)β + 4(1− α)(1− β) + (1− µ̄)(3(1− α)β + 9α)

=
1

2
max

α∈[εkA,1−ε
k
A]

3(1− α) + (1− α)(1− β) + 3(1− α)β(1− µ̄) + 9α(1− µ̄)
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=
1

2
max

α∈[εkA,1−ε
k
A]
α
(
− 3− (1− β)− 3β(1− µ̄) + 9(1− µ̄)

)
+ 3 + (1− β) + 3(1− µ̄)β

=
1

2
max

α∈[εkA,1−ε
k
A]
α
(
5− 2β + 3µ̄(β − 3)

)
+ 3 + (1− β) + 3(1− µ̄)β

⇒ α∗ =


εkA if 5− 2β + 3µ̄(β − 3) < 0

[εkA, 1− εkA] if 5− 2β + 3µ̄(β − 3) = 0

1− εkA if 5− 2β + 3µ̄(β − 3) > 0.

Now we show that α∗ = εkA, β∗ = εkB and Ψ1 = (Φ1
σ−A

,Φ1
σ−B

) form an equilibrium.

β∗ = εkB ⇔ µ
¯
<

4

9

⇒ 5− 2β + 3µ̄(β − 3) = 5− 9µ̄ < 0⇔ µ̄ >
5

9
⇒ α∗ = εkA.

This is satisfied since
[
µ
¯
, µ̄
]
⊃
[

4
9
, 5

9

]
. Hence, there exist an equilibrium in which

both players play peace with probability 1.

• ex-ante equilibrium:
We show that α∗ = εkA, β∗ = εkB are an ex-ante equilibrium as well:
Let us start with player A. We show that given β = εkB and Φ0

σ−A
the optimal strategy

of player A is α∗ = εkA.

Φ0
σ−A

= {(µ, µεkB, µ(1− εkB), (1− µ)(1− εkB), (1− µ)εkB, (1− µ)) s.t. µ ∈ [µ
¯
, µ̄]}

and

max
α∈[εkA,1−ε

k
A]

min
φ∈Φ0

σ−A

φ(Aw)α0 + 3φ(Apw)(1− α) + 4φ(App)(1− α) + 4φ(Bpp)(1− α)

+ 6φ(Bpw)(1− α) + 9φ(Bw)α

= max
α

min
µ∈[µ

¯
,µ̄]

3µ(1− α)εkB + 4µ(1− α)(1− εkB) + 4(1− µ)(1− α)(2− εkB)

+ 6(1− α)(1− µ)εkB + 9(1− µ)α

= max
α

min
µ

3µ(1− α)εkB + 4(1− α)(1− εkB) + 6(1− α)(1− µ)εkB + 9(1− µ)α

= max
α

min
µ
µ(3(1− α)εkB − 6(1− α)εkB − 9α) + 4(1− α)(1− εkB) + 6(1− α)εkB + 9α

= max
α

min
µ
µ (−3(1− α)εkB − 9α)︸ ︷︷ ︸

<0 ∀α,εkB

+4(1− α)(1− εkB) + 6(1− α)εkB + 9α
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= max
α

µ̄(−3(1− α)εkB − 9α) + 4(1− α)(1− εkB) + 6(1− α)εkB + 9α

= max
α

α(−9µ̄+ 3εkBµ̄− 4(1− εkB)− 6εkB + 9)− 3εkBµ̄+ 4(1− εkB) + 6εkB.

This implies that

α∗ = εkA ⇔ −9µ̄+ 3εkBµ̄− 4(1− εkB)− 6εkB + 9 < 0

⇔ µ̄(3εkB − 9) < 2εkB − 5

⇔ µ̄ >
5− 2εkB
9− 3εkB

.

which is satisfied for all εkB since µ̄ > 5
9
>

5−2εkB
9−3εkB

for all εkB > 0. Hence, α∗ = εkA is

optimal.
The ex-ante belief of player B given α = εkA is

Φ0
σ−B

=
{(
µεkA, µ(1− εkA), µ(1− εkA), (1− µ)(1− εkA),(1− µ)(1− εkA), (1− µ)εkA

)
s.t. µ ∈ [µ

¯
, µ̄]
}

and

max
β∈[εkB ,1−ε

k
B ]

min
φ∈Φ0

σ−B

9φ(Aw) + 9βφ(Apw) + 4(1− β)φ(App) + 4(1− β)φ(Bpp) + 0 + 0

= max
β

min
µ∈[µ

¯
,µ̄]

9µεkA + 9βµ(1− εkA) + 4(1− β)µ+ 4(1− β)(1− εkA)

= max
β

min
µ
µ (9εkA + 9β(1− εkA))︸ ︷︷ ︸

>0 ∀β,εkA

+4(1− εkA)(1− β)

= max
β

µ
¯
(9εkA + 9β(1− εkA)) + 4(1− εkA)(1− β)

= max
β

β(9µ
¯
(1− εkA)− 4(1− εkA)) + 4(1− εkA) + 9εkAµ

¯
= max

β
β((1− εkA)︸ ︷︷ ︸

>0

(9µ
¯
− 4)) + 4(1− εkA) + 9εkAµ

¯

⇒β∗ = εkB ⇔ µ
¯
<

4

9

which is satisfied by the assumptions on P . Hence, β∗ = εkB is optimal and (α∗, β∗) =
(εkA, ε

k
B) is an ex-ante equilibrium with rectangular beliefs for the game with restricted

strategy set Γk.

• sequential equilibrium:
(α∗, β∗) = (εkA, ε

k
B) converge to (α∗, β∗) = (0, 0) for k → ∞ and (α∗, β∗) = (εkA, ε

k
B)

together with the belief specified above form an ex-ante and interim equilibrium
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with rectangular belief. Therefore, (α∗, β∗) = (0, 0) satisfies sequential rationality.
Furthermore, Φ0

β=εkB
and Φ0

α=εkA
converge to Φ0

β=0 and Φ0
α=0 for k →∞, respectively.

Thus the belief system specified above is consistent w.r.t. (α∗, β∗) = (0, 0). This

proves that
(

(α∗, β∗) = (0, 0), (Φ0
β=0,Φ

0
α=0)

)
forms a sequential equilibrium.

Equilibria without ambiguity

In this part we show that without ambiguity there exist no equilibrium in which coun-
try A and B play peace.

case 1: β∗ = 0

⇒ µ <
4

9

⇒ 5− 2β + 3¯̃µA(β − 3) = 5− 9µ > 5− 9 · 4

9
= 1 > 0

⇒ α∗ = 1

Eq1: β∗ = 0, α∗ = 1, µ < 4
9
⇒ war

case 2: β = 1

⇒ µ >
4

9

⇒ 5− 2β + 3¯̃µA(β − 3) = 3− 6µ < 0⇔ µ >
1

2

Eq2: β∗ = 1, α∗ = 0, µ > 1
2
⇒ war

Eq3: β∗ = 1, α∗ = 1, µ < 1
2
⇒ war

Eq4: β∗ = 1, α∗ ∈ [0, 1], µ = 1
2
⇒ war

case 3: β∗ ∈ [0, 1]

⇒ µ =
4

9

⇒ 5− 2β + 3¯̃µA(β − 3) = 1− 2

3
β > 0

⇒ α∗ = 1

Eq5: β∗ ∈ [0, 1], α∗ = 1, µ = 4
9
⇒ war

The calculations above show that there is no equilibrium in which both players play peace.
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B.3 Example: Rectangular Belief Sets Depend on Strategies of
Opponents

Example 3 The following example shows that the rectangular hull of a prior belief set de-
pends on the strategy of the opponents. We focus on player 2 and show that his rectangular
prior belief set differs if player 1 plays A or B. The game is depicted in Figure 4. Nature
chooses the state L, R or O. Player 1 moves first. He cannot observe the state and can
choose between A and B. If the state is L and he plays B the game ends. If the state is O
and he plays A the game ends as well. Player 2 observes the action played by player 1 and
whether the game continue or not. Since we focus on player 2, we only specify the payoffs
of player 2. The imprecise probabilistic information is the same as in our running example

P = {(1− ε)(0, 1, 0) + ε(l, r, o) : (l, r, o) ∈ ∆}

where l, r, and o denote the probability of L, R and O, respectively, and ε > 0 is some
fixed constant. Furthermore, let a and b denote the probabilities that player 1 plays A or

nature

R

A

M

101

N

100

B

O

0

P

101

L

A

M

0

N

101

B

-1

O

B

P

100

O

101

A

-1

1 1

2 2

Figure 4: Example 3

B, respectively, and similar m and n the probabilities that player 2 plays M or N .
The set of histories H, the information partition F1

2 and the prior belief set Φ0
σ−2

of
player 2 are

H = {LAN,LAM,LB,RAN,RAM,RBO,RBP,OA,OBO,OBP},
F1

2 =
{
LAN,LAM,RAN,RAM}, {RBO,RBP,OBO,OBP}, {LB} {OA}

}
,

Φ0
σ−2

=
{

(la, la, lb, ra, ra, rb, rb, oa, ob, ob) with (l, r, o) ∈ P
}
.

Moreover, let F 1
2,k with k = 1, 2, 3, 4 denote the elements of the partition F1

2 in the same
order as they are denoted above. We first look at the case where player 1 plays A with
probability 1. Then we compare it with the case where player 1 plays B with probability 1.
Please notice that if the probability of A is 1 or 0 the game is very similar to our running
example.
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• player 1 plays A
The prior belief set and marginal beliefs are given by

Φ0
A = {(l, l, 0, r, r, 0, 0, o, 0, 0) s.t. (l, r, o) ∈ P}

φ(F 1
2,1) = 2l + 2r

φ(F 1
2,2) = 0

φ(F 1
2,3) = 0

φ(F 1
2,4) = o = 1− l − r.

For information sets with positive marginal probability Bayes’ rule is well defined and
the Bayesian updates are given by

Bay(Φ0
A|F 1

2,1) =

{( l

2(l + r)
,

l

2(l + r)
, 0,

r

2(l + r)
,

r

2(l + r)
, 0, 0, 0, 0, 0

)
s.t. l ∈ [0, ε], r ∈ [1− ε, 1]

}
=
{(
l̃, l̃, 0, r̃, r̃, 0, 0, 0, 0, 0

)
s.t. l̃ ∈

[
0,
ε

2

]
, r̃ =

1

2
− l̃
}
,

Bay(Φ0
A|F 1

2,4) = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0).

The rectangular hull rect(Φ0
A) giving player 1 play A is

rect(Φ0
A) = conv

{(
ε, ε, 0, (1− ε), (1− ε), 0, 0, 0, 0, 0

)
,
(
0, 0, 0, (1− ε), (1− ε), 0, 0, ε, 0, 0

)
,(

0, 0, 0, 1, 1, 0, 0, 0, 0, 0
)
,
(
ε(1− ε), ε(1− ε), 0, (1− ε)2, (1− ε)2, 0, 0, ε, 0, 0

)}
.

• player 1 plays B
The prior belief set and the marginal beliefs are given by

Φ0
B = {(0, 0, l, 0, 0, r, r, 0, o, o) s.t. (l, r, o) ∈ P},

φ(F 1
2,1) = 0,

φ(F 1
2,2) = 2o+ 2r,

φ(F 1
2,3) = l,

φ(F 1
2,4) = 0.

The Bayesian updates for information sets with positive marginal probability are

Bay(Φ0
B|F 1

2,2) =
{(

0, 0, 0, 0, 0,
r

2(o+ r)
,

r

2(o+ r)
, 0,

o

2(o+ r)
,

o

2(o+ r)

)
s.t. o ∈ [0, ε], r ∈ [1− ε, 1]

}
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=
{(

0, 0, 0, 0, 0, r̃, r̃, 0, õ, õ
)

s.t. õ ∈
[
0,
ε

2

]
, r̃ = 1− l̃

}
,

Bay(Φ0
A|F 1

2,3) = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0).

The rectangular hull rect(Φ0
B) giving player 1 plays B is

rect(Φ0
B) = conv

{(
0, 0, 0, 0, 0, 1− ε, 1− ε, 0, ε, ε

)
,
(
0, 0, ε, 0, 0, (1− ε), (1− ε), 0, 0, 0

)
,(

0, 0, 0, 0, 0, 1, 1, 0, 0, 0
)
,
(
0, 0, ε, 0, 0, (1− ε)2, (1− ε)2, 0, ε(1− ε), ε(1− ε)

)}
.

The above calculations show that rect(Φ0
A) and rect(Φ0

B) not only differ in the histories
with zero probability but also in the possible values for l and o. For rect(Φ0

A) the probability
l takes values in the interval [0, (1 − ε)ε], for rect(Φ0

B) the probability l takes only values
in the interval [0, ε] and vice versa for o. Therefore, the strategy of player 1 essentially
influence the rectangular hull of the prior belief set.

C Dynamic Consistency with 2 types or states

In games with only two possible types or states, i.e. |H0| = 2, ambiguity has no influence
on dynamic consistency. Let us assume that |H0| = 2. Then the imprecise probabilistic
information has the following form

P = {(π, 1− π) s.t. π ∈ [π
¯
, π̄]}.

There are only two cases that can occur at an interim stage. Either a player learns which
type is the true type or he does not learn the true type. In signaling games the first case
corresponds to separating equilibria and the second to pooling equilibria. Let us look at
both cases separately.

• First assume that a player learns the true type at the interim stage. This implies,
that the updated probability of a type is either 0 or 1. Remember the definition of
beliefs in our setting, φ(h) = pσ−i(h|h0)π(h0) and let F t

i be the information set in
which the player learns that the true type is h̄. Since player i learns the true type,
it follows that for all h ∈ F t

i

h0 = h̄0.

This implies that π(h0) = π(h̄0) for all h ∈ F t
i with φ(h) > 0. Then the marginal

belief can be written as

φ(F t
i ) =

∑
h∈F ti

pσ−i(h|h0)π(h0) = π(h̄0)
∑
h∈F ti

pσ−i(h|h0).
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Furthermore, the updated belief is

φ̃(h) =


π(h̄0)pσ−i (h|h

0)

π(h̄0)
∑
h∈Ft

i
pσ−i (h|h0)

if h ∈ F t
i

0 otherwise

=


pσ−i (h|h

0)∑
h∈Ft

i
pσ−i (h|h0)

if h ∈ F t
i

0 otherwise.

Now the updated belief is independent of π. Therefore, pasting any marginal belief
with an updated belief would lead to the same prior belief as used for the marginal
belief. This means that any belief set Φ0

σ−i
is stable under pasting.

• Player i does not learn the true type if the strategy of the opponents σ−i is completely
mixed. If this is the case, Bayes’ rule is always well defined. Since there are only
2 types P has the form noted above. Let π denote the probability of type h̄0. The
updated belief of a history containing type h̄0 is then

φ̃(h) =
pσ−i(h|h̄0)π∑

h∈h
s.t.h0=h̄0

pσ−i(h|h̄0)π +
∑

h∈h
s.t.h0 6=h̄0

pσ−i(h|h0)(1− π)
.

The derivative of the updated belief w.r.t. π is

∂φ̃

∂π
=

pσ−i(h|h̄0)
∑

h∈h
s.t.h0 6=h̄0

pσ−i(h|h0)(∑
h∈h

s.t.h0=h̄0
pσ−i(h|h̄0)π +

∑
h∈h

s.t.h0 6=h̄0
pσ−i(h|h0)(1− π)

)2 > 0.

The updated belief is monotone in π. Therefore, the worst case ex-ante and worst
case interim belief would arise from the same π. This implies dynamic consistency

Both cases lead to dynamically consistent behavior. Hence, in a game with only two states
or types dynamic inconsistency never occur.

D Further Results

Additional to Theorem 3 we can show that an equilibrium at stage t implies an equilibrium
at stage t− 1 if a no-profitable one stage deviation property is satisfied.

Definition 13 A tuple (σ∗,Ψ) of an strategy profile and an belief system satisfies the no-
profitable one stage deviation property at stage t if for all F t

i

U i
i (σ
∗,Ψt(F t

i )) ≥ U i
i ((σ

′
i, σ
∗
−i),Ψ

t(F t
i ))

for all σ′i such that σ′i equals σ∗i everywhere except at F t
i .
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Theorem 5 (interim implies ex-ante equilibria) Assume that Ψ is a belief system
which is stable under pasting and that (σ∗,Ψs) satisfies the no-profitable one stage de-
viation property for all s < t. If (σ∗,Ψt) is an interim equilibrium with rectangular beliefs
at stage t, then σ∗ is an ex-ante equilibrium with rectangular beliefs.

Similarly to Theorem 3 we prove Theorem 5 by showing that due to stability under pasting
an interim equilibrium at stage t implies an interim equilibrium at stage t − 1. Then the
recursive structure implies the following Corollary.

Corollary 2 Assume that Ψ is a belief system which is stable under pasting and that
(σ∗,Ψs) satisfies the no-profitable one stage deviation property for all s < t. If (σ∗,Ψt)
is an interim equilibrium with rectangular beliefs at stage t, then (σ∗,Ψt−1) is an interim
equilibrium with rectangular beliefs at stage t− 1.

Furthermore Theorem 5 shows that rectangularity and the no-profitable one stage deviation
property for all stages implies sequential rationality.

Corollary 3 Let Ψ is a belief system which is stable under pasting and assume that (σ∗,Ψt)
satisfies the no-profitable one stage deviation property for all t ≥ 0. Then (σ∗,Ψ) is
sequential rational.

Proof. The result follows immediately from Theorem 5. The no-profitable one stage devi-
ation property of (σ∗,ΨT ) at the last stage and stability under pasting imply that (σ∗,ΨT )
is an interim equilibrium with rectangular beliefs at the last stage. Then Theorem 5 implies
that (σ∗,Ψt) is an interim equilibrium with rectangular beliefs at all stages t and σ∗ is an
ex-ante equilibrium with rectangular beliefs.

As in the proof of Theorem 3 the relation of interim and ex ante worst case belief and
therefore Lemma 2 and Remark 4 are essentially to prove Theorem 5.

Proof of Theorem 5 (interim implies ex-ante).
We will prove that an interim equilibrium with rectangular beliefs at stage t implies an
interim equilibrium with rectangular beliefs at stage t− 1. Since this holds for arbitrary t,
iteration proves the theorem.

Assume that (σ∗,Ψt) is an interim equilibrium with rectangular beliefs at stage t.
We prove that an arbitrary player i has no incentive to deviate from σ∗ at an arbitrary
information set F t−1

i if all other players j 6= i play σ∗j .

Fix some arbitrary F t
i such that the probability of reaching F t

i from F t−1
i given σ∗−i is

positive.16 Let φ∗,t denote the worst case belief at F t
i given σ∗i . Furthermore, let σ̄i denote

a strategy which is equal to σ∗i at all stages s ≥ t and equal to σ′i at stage t− 1. The worst
case belief at F t−1

i given σ̄i is denoted by φ̄t−1. The worst case belief at F t−1
i given σ′i is

16For information sets with zero probability it follows by the full support assumption on P that φt−1(h) =
0 for all h ∈ F ti for any φt−1 ∈ Φt−1

i (F t−1
i ). Hence, the histories h ∈ F ti does not influence the expected

utility at F t−1
i .
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denoted by φ′,t−1.
Since σ∗−i is fixed the belief sets of player i are fixed as well. Furthermore, the worst case
belief at F t

i depends only on the part of the strategy of player i which is chosen at stages
s ≥ t. Hence, the worst case beliefs at F t

i given σ∗i and σ̄i are the same by the definition
of σ̄i. By Remark 4 we know that the Bayesian update of the worst case belief at t− 1 is
the worst case belief at t. This implies

Bay(φ̄t−1) = φ∗,t. (8)

The optimality of σ∗i at F t
i implies∑

h∈F ti

ui(h)pσ∗i (h|h
t)φ∗,t ≥

∑
h∈F ti

ui(h)pσ′i(h|h
t)φ∗,t. (9)

Combining Equation 8 and Equation 9 implies∑
h∈F ti

ui(h)pσ∗i (h|h
t)

φ̄t−1(h)∑
h∈F ti

φ̄t−1(h)
≥
∑
h∈F ti

ui(h)pσ′i(h|h
t)

φ̄t−1(h)∑
h∈F ti

φ̄t−1(h)
.

Now we can cancel the normalization terms of Bayes’ rule on both sides and multiply each
side with pσ′i(h

t|ht−1). Then, replacing φ̄t−1 with the worst case belief at t − 1 given σ′i
leads to∑

h∈F ti

ui(h)pσ∗i (h|h
t)pσ′i(h

t|ht−1)φ̄t−1(h) ≥
∑
h∈F ti

ui(h)pσ′i(h|h
t)pσ′i(h

t|ht−1)φ̄t−1(h)

≥
∑
h∈F ti

ui(h)pσ′i(h|h
t)pσ′i(h

t|ht−1)φ′,t−1(h).

This holds for any F t
i which is reachable from F t−1

i . Hence, summation over all this F t
i

leads to∑
h∈F t−1

i

ui(h)pσ∗i (h|h
t)pσ′i(h

t|ht−1)φ̄t−1(h) ≥
∑

h∈F t−1
i

ui(h)pσ′i(h|h
t)pσ′i(h

t|ht−1)φ′,t−1(h). (10)

Furthermore, by the no-profitable one stage deviation property it follows that∑
h∈F t−1

i

ui(h)pσ∗i (h|h
t−1)φ∗,t−1(h) ≥

∑
h∈F t−1

i

ui(h)pσ∗i (h|h
t)pσ′i(h

t|ht−1)φ̄t−1(h). (11)

Combining Equation 10 and Equation 11 leads to∑
h∈F t−1

i

ui(h)pσ∗i (h|h
t−1)φ∗,t−1 ≥

∑
h∈F t−1

i

ui(h)pσ′i(h|h
t)pσ′i(h

t|ht−1)φ′,t−1(h)
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which proves the optimality of σ∗i at F t−1
i . This holds for any arbitrary F t−1

i and for any
arbitrary player i. Hence, (σ∗,Ψt−1) is an interim equilibrium with rectangular beliefs at
t− 1.
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