The Rebound Effect and its representation in Climate and Energy models
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Abstract

In this paper, we review the state-of-the-art and common practice of energy and climate modeling vis-
a-vis the rebound literature, in particular regarding how macroeconomic energy and climate models
quantify and include energy and greenhouse gas rebound effects. First, we focus on rebound effects
in models of costless energy efficiency improvement that hold other attributes constant (zero-cost
breakthrough), and an energy efficiency policy that may be bundled with other product changes
that affect energy use (policy-induced efficiency improvement) (Gillingham et al. 2015). Second,
we examine macroeconomic studies focusing on energy efficiency both in industry and in private
households. Third, we go through a general theoretical revision from micro- to macroeconomic levels
(the aggregation level) to include a review of the so-called meso-level studies (focused on the analysis
of the production side). From 118 recent studies along the aggregation level, out of which 25 compute
rebound calculations, we find that the average energy rebound effect is 58% with a standard deviation
of 58%, and when we include green house gas rebound calculations, the magnitude is of the order of
43% with a standard deviation of 55%. Finally, we argue that the rebound effect is a phenomenon that
requires a sound understanding of the complex interactions from different dimensions (e.g. aggregation
level, heterogeneity, climate, energy conservation and economic growth), and we provide some ideas
and motivations for future research.

JEL Classification

E13, Q410, Q430, Q48, Q540, R13

Keywords

Rebound effect, Macroeconomic models, Energy efficiency, Energy policy;

Andreas Loschel acknowledges support from the 111 Project [grant number B18014] by the Chinese
Ministry of Education and the State Administration of Foreign Experts Affairs. Gloria Colmenares
acknowledges support from the Katholischer Akademischer Auslédnder-Dienst (KAAD).

The authors declare no conflict of interest.

This CAWM Discussion Paper has also been published as FCN Working Paper No. 16/2018.

*Email: colmenar@uni-muenster.de
tEmail: loeschel@uni-muenster.de
fEmail: rmadlener@eonerc.rwth-aachen.de


mail: xx xx
mail: xx xx
mailto: xx xx

1 Introduction

Under the umbrella of the 17 Sustainable Development Goals of the United Nations [UN, 2015], goals
such as sustainable economic growth, responsible production and consumption, affordable clean energy
and climate action, etc., have promoted the implementation of a cluster of energy and climate policies
as part of the global agenda. Some examples include the promotion of energy efficiency standards,
energy conservation, sufficiency strategies, greenhouse gas (GHG) emission reductions or renewable
energy targets. In particular, due to the existence of the energy efficiency gap as a result of mar-
ket failures [Jaffe and Stavins, 1994], [Gillingham and Palmer, 2014], energy efficiency policies are
often being implemented worldwide as seemingly win-win cost-effective policies. However, the goals of
these policies imply a complex web of nonlinear interactions that are not yet well understood [Jenkins
et al., 2011]. Borenstein [2013] and Schmitz and Madlener [2017] argue that a reduction in energy
consumption is not the end goal, but reducing fossil fuel and GHG emissions is, while Freire-Gonzalez
[2017b] proposes that either one or both, might be ultimate goals. Van den Bergh [2011] concludes
that energy efficiency improvement should not be a stand-alone policy, and Azevedo [2014] and Pollitt
[2017] introduce a multi-objective trade-off perspective between goals.

Much of the controversy has focused around what level of efficiency is feasible to obtain with energy
efficiency policies, given the existence of rebound effects, as illustrated in [Gillingham et al., 2016],
“buy a more fuel-efficient car, drive more”. The possibility of backfire at the microeconomic level
[Saunders, 1992], [Saunders, 2017], and more recently at the macroeconomic level [Brockway et al.,
2017], [Rausch and Schwerin, 2016], has motivated a plethora of studies. Nonetheless, Borenstein
[2013] finds backfire is unlikely at the microeconomic level. Furthermore, Gillingham et al. [2013]
states that the rebound effect has been overplayed because even at the macroeconomic level, it is
highly probable that energy efficiency policies will not backfire; therefore, efforts should be placed on
carbon-pricing policies, or as proposed by [Belaid et al., 2018] and [Landis et al., 2018] on carbon taxes.
Looking specifically on energy efficiency and energy rebound effects, Gillingham et al. [2016] find that
rebound effects should actually be promoted due to highly probable potential welfare gains overall of
both energy efficiency and rebound. Moreover, Bjelle et al. [2018] claim that ignoring the rebound
effect would compromise economic activity, because that would be equivalent to assuming decreased
total expenditure. Pollitt [2017] indicates that rebound effects are one of the key factors to take into
account for policy implications, since they may be beneficial for economic and social outcomes but
might lead to detrimental environmental outcomes. Finally, Chitnis and Sorrell [2015] show that al-
though all rebound effects contribute to GHG emissions, different studies estimate rebound effects in
energy, carbon and GHG emissions, but no study has yet examined all three together.

In response to the observed micro- to macro-economic level gaps in the literature, as stated in Madlener
and Turner [2016] and resumed by Santarius [2016] as: “The volatility of rebound effects increases with
the level of economic action and aggregation”, we conduct a systematic review to describe how re-
bound effects are treated in economic simulations at each level of aggregation: the microeconomic,
meso-economic (energy systems), and macroeconomic (economy-wide) levels. We present findings for
how energy and climate models at each level of aggregation and degree of heterogeneity (i.e. energy
services, goods, attributes, economic actors) deal with the rebound effect, and we discuss possible
directions to extend the understanding of the energy and GHG rebound effect phenomenon. To this
end, we report on three important trade-offs between possible benefits/costs associated with energy
efficiency improvements: Energy savings, GHG emission reductions and welfare. Other types of col-
lateral impacts, such as energy security, health, labour, and other social impacts [Pollitt, 2017], are
outside the scope of this review. A main take-away is that the aforementioned trifecta of interactions
show that it is important to include environmental welfare considerations when studying the energy
rebound effect, because when these rebound effects are reported as a stand-alone percentage, it is not
sufficiently informative for policy considerations. Finally, in the case of policy-induced improvements,
it is important to both perform a cost-benefit analysis and understand the effectiveness of legislations
in a comprehensive manner.



The article follows this structure. First, we summarize mathematical forms used to calculate the
rebound effect. Then, to guide the understanding and comparison of empirical studies, we develop
a taxonomy of rebound effects along each level of aggregation. Using these concepts, we proceed to
explain the underlying mechanics and methodologies used in empirical studies at each level of aggre-
gation and summarize common results. We conclude with a discussion on energy/climate modeling,
future research directions and perceived needs.

2 Energy efficiency improvement (EEI) and rebound effect (RE)
representations

Modeling energy efficiency improvement (¢ or in some studies referred as 7) on the producer or
consumer side is at the core of the energy rebound effect representation. The energy efficiency im-
provement is defined as the ratio! of useful energy outputs to energy inputs of an energy system, or as
units of the energy service (ES) produced per unit of the energy source (E) used [Hunt et al., 2014]:

Ae = ES/E > 0; (1)

Energy efficiency improvement depends on the choice made by the consumer or producer (represented
by the utility or production function chosen) and the RE formulation.

The main drivers of energy efficiency improvement are technical change and preference. The technical
change driver is divided in zero-cost breakthrough (ZCB) and policy-induced (PI) interventions, where
PI interventions can adopt the form of price-induced market based instruments (MBIs), command-and-
control (CaC) instruments [Landis et al., 2018]), and program-based energy efficiency improvement
[Gillingham et al., 2016]. The second driver, preference, is represented through consumption patterns
[Azevedo, 2014].

2.1 Energy efficiency improvement as technical change

Technological progress encompasses not only more efficient technical choices for the use of inputs (e.g.
automation for industries, or more efficient devices, such as, heating systems for households), but also
structural changes in the economy caused by outputs (e.g. sectoral growth, economic growth) [Bibas
et al., 2015].

Following [Loschel, 2002], energy efficiency improvement would be situated inside the process of tech-
nological change:

Figure 1: Process of technological change

Invention Innovation Diffusion Saturation
|_T._J
Delayed response StUdy of EEls
of actor

In general terms, technical change can be modeled as neutral (equal reduction of all inputs), or bi-
ased (some inputs are reduced more than others) [Broadstock et al., 2007], where energy efficiency
improvement is given at a specific point in time, or as factor augmenting (assuming a rate of growth of
EEI over time). [Otto et al., 2007], [Otto et al., 2008] and [Loschel and Otto, 2009] develop and apply

'Energy efficiency improvements could also be measured as a difference [Ang et al., 2010]; however, the reviewed
studies have not taken this form.



an endogenous model of energy biased technical change with knowledge capital stocks and technology
externalities in innovation and production. In Frieling and Madlener [2016], Frieling and Madlener
[2017a], and Frieling and Madlener [2017b] technical change is represented as an exogenous constant
or linear time trend, while Schmitz and Madlener [2017] explores a quadratic trend. Technical change
can be represented using a latent variable approach (policy induced or zero-cost breakthrough), which
could depend on past energy prices [Hunt et al., 2014], reflected as energy source price terms, relative
prices, real prices, growth rates, or reduction of discount rates. Another representation is as price di-
minishing, which is a reduction in the costs of technologies [Loschel, 2002] (e.g. labeling and perceived
costs). Furthermore, in the case of asymmetric price responses or energy efficiency improvement in-
dexes [Ang et al., 2010], EEI could be represented as a past maximum price followed by price recoveries
and decreases (using price decomposition methods). Other types of technical change representations
found in our review are shown in Fig. 2.

Energy efficiency improvement as zero-cost breakthrough
In this context, a costless energy efficiency improvement with zero-cost breakthrough is introduced in
models to study its direct impacts, holding other attributes constant [Gillingham et al., 2016].

Energy efficiency improvement as heterogeneous policy-induced improvement (Het-PT)
Following the concept of policy-induced improvements as introduced by Gillingham et al. [2016], we
now expand the definition of policy-induced improvements to include (1) price-induced instruments
and (2) Command and control instruments as part of energy efficiency improvement policy interven-
tions; together we call this (3) Heterogeneous policy-induced improvements.

e Price-induced instruments. It is defined as market based instruments such as taxes or sub-
sidies for households or/and industries. Taxes imposed on the production side include emissions
taxes, whereas on the consumption side, they include taxes on energy-intensive goods e.g. private
transport fuels. Subsidies for the production side could come in the form of R&D investment
to foster low-emission technologies, utility-sponsored rebate programs, etc., while for the con-
sumption side these might include subsidies for adoption of low-pollutant emission devices, e.g.
rooftop solar technologies, light bulbs, electric cars.

e Command and Control instruments. For the production side, Command and Control
instruments might include technology mandates (i.e. fixed input-output ratios restricting pro-
duction flexibility) [Landis et al., 2018], and performance standards on both the producer and
consumer side, (e.g. minimum energy efficiency standards, caps on residential energy use or
residential energy intensity [Bye et al., 2018]).

e Policy-induced improvement. For the consumer side, this is the policy-induced improvement
as explained in [Gillingham et al., 2016]. In this context, an energy efficiency policy that, when
introduced, also changes a device’s attributes. To the best of our knowledge, these have not
been implemented yet in models on the production side.

The attribute parameter

In some cases, the service a unit of energy provides is not only a function of useful work derived from
a more efficient device but is also a function of its attributes (e.g size, comfort, reliability, speed,
acceleration) Sorrell and Dimitropoulos [2008]. Examining a household vehicle portfolio, Archsmith
et al. [2017] found that complementarity and substitution effects between energy and non-energy
inputs are not the only causes of lost energy savings; they found that bundles of attributes may also
interact in a way that reduces energy savings, eroding as much as 60% of fuel savings from an increase
in fuel efficiency, thus compromising the cost-effectiveness of energy efficiency policies. In another



study, Galvin [2017] examined how average increases in the vehicle-speed attribute (acceleration) can
be incorporated into calculations of rebound effects, showing that the relationship between energy
services and energy consumption levels might be nonlinear. The main insight was that it is possible to
completely expunge energy efficiency increases by interactions between both speed and acceleration.
Studies in computing services, such as in Galvin and Gubernat [2016], also reveal the importance of
representing attribute parameters in models.

2.2 Energy efficiency improvement as preference: change in consumer patterns

Lifestyle and consumer change of preferences in time, or reprogramming of preference orderings to
change a determined habitual behavior (i.e. shift to public transport, healthier diets, use of energy-
efficient appliances) could also play a complementary role in meeting energy reduction and climate
change targets. A change in consumer patterns might arise from self- or externally (i.e. commonly
attained by policies) imposed rules. In this scenario, change in preferences is not seen as a potential
source of undesirable outcomes [Elster, 2000], but is consciously placed in order to achieve desired
better outcomes and consistency in time.

Using a computable general equilibrium (CGE) model, Duarte et al. [2016] found that promoting
public transport was a successful economic and environmental policy for Spain. Moreover, [Bjelle et al.,
2018] examined a set of 34 possible behavioral actions to be undertaken in Norwegian households; they
found that people could potentially reduce their carbon footprint by 58%. In Sweden, Grabs [2015]
calculated that switching to a vegetarian diet can save 16% of energy use and lower greenhouse gas
emissions by 20% related to their dietary consumption, with corresponding energy RE of 96% and
GHG rebounds of 49%. However, this study only focused on income effects. Finally, Chitnis and
Sorrell [2015] recommend including a lagged variable in studies to capture inertia in energy prices
(habit formation), which can help to mitigate correlation problems and at the same time better reflect
behavioral change/consumer behavior.

2.3 Rebound effect formulation

Physical or economic channels and aggregation (or indicators) [Broadstock et al., 2007] to represent
energy to parse the rebound effect include:

1. Energy as the explicit thermodynamic representation of energy efficiency improvement, where
heat content is represented by a physical indicator as the numerator (e.g. vehicle kilometers
per liter of fuel), or by energy efficiency units (i.e energy services), exergy as effective end-use
consumption energy [Brockway et al., 2017].

2. Energy as an explicit representation of an economic indicator, where an economic output is the
numerator (e.g. from energy commodity or energy service prices, adding to value added/GWh
or GDP /Total energy consumption).

3. Implicit energy efficiency, using the own-price elasticity of energy as a proxy for the rebound
effect.

In the short term, rebound effect models include changes in energy service demands while holding cap-
ital or investments constant; in the long term, they can incorporate laws of motion for capital costs,
savings, scrappage, crowding effects, and/or increasing market saturation of appliances [Thomas and
Azevedo, 2013b] in order to capture consumer responses to price changes [Gillingham et al., 2016].

According to Hunt et al. [2014], energy efficiency improvement should be explicitly modelled to avoid
bias, but Frondel and Vance [2018] find similar results (though with high standard errors) when com-
paring an explicit representation of energy efficiency improvement with an implicit representation in
their own study. Although upper-bound studies are also important, induced or endogenous RE might
produce a more accurate representation of overall RE [Loschel, 2002], [Witajewski-Baltvilks et al.,
2017]. The distinction between total technical progress and energy-resource technical progress should



also reduce bias in estimations [Du and Lin, 2015].

It is important to note that, GHG rebound effects and drivers have been less studied. Used models
typically assume that there is a linear relationship between energy consumption and GHG emissions.
We specifically address this difference when possible.

2.4 Mathematical rebound effect representations

There exist many different representations of energy and GHG rebound effects depending on the mod-
eling approach, from microeconomic to macroeconomic level. Therefore, we classify mathematical
rebound representations first.

The most common representations of the direct energy rebound effect (DRE) include [Berkhout et al.,
2000):

DRE = n(ES); (2)

where 1 (FES) is the efficiency elasticity of energy services;

or as own-price elasticities:

DRE =1+ n(E); (3)
where 7. (F) is the efficiency elasticity of energy demand;

alternatively as:

DRE = —np,(E); (4)

where np, (E) is the own-price elasticity of energy demand (of energy commodities). This holds when
the price of energy (in physical units) remains constant, so that any change in energy efficiency reflects
in the effective price of energy [Guerra and Sancho, 2010] (meaning that efficiency is not influenced by
changes in energy prices), and when the reaction to a price decrease equals the reaction to an energy
efficiency improvement [Madlener and Hauertmann, 2011]. Rebound effects can arise from marginal
and non-marginal pricing [Borenstein, 2013]; and:

DRE = —np,(ES); (5)

where np,s(ES) is the own-price elasticity of the energy service. However, this formulation is also
subject to bias unless an explicit formulation of efficiency improvement is introduced in the defini-
tion of the energy service, in demand or supply functions (or choices), since this approximation also
assumes that one source of energy is exclusively used in the production of one energy service [Hunt
et al., 2014]. For a more complete representation of DREs see [Sorrell and Dimitropoulos, 2008].

Indirect rebound effects (IREs) can be computed using cross-price elasticities, income elasticities,
and expenditure elasticities between energy and other goods or energy inputs or non-energy inputs
(NPpe.nBe OF MPgrypr» Tespectively). IREs can also arise from behavioral changes, not just energy
efficiency improvements [Druckman et al., 2010].

The total microeconomic energy rebound effects and macroeconomic energy rebound effects, are usu-
ally defined as:
RE =1+ n:(E); (6)

where 7, (E) is the efficiency elasticity of fuel (energy)[Saunders, 2008], [Wei, 2010];
or;
AES
R PES (7)
where AFES is actual energy savings and PES is potential or expected energy savings in the absence

of rebound effects [Berkhout et al., 2000]. In the case of a macroeconomic rebound calculation, a



household productivity shock is usually applied to the model to calculate the difference between AES
and PES corresponding to general equilibrium measures [Guerra and Sancho, 2010]. Notice that for
economic growth models, it is also a common practice to obtain two scenarios, one assuming engineer-
ing savings, and the other represented with a law of motion of capital, to quantify the rebound effect,
as in [Turner et al., 2009]:

E
RE = [1 + —].100; (8)
ary

where 7 is the efficiency elasticity of energy, represented as an autonomous energy efficiency improve-
ment, and a=1 for economy-wide rebound, or takes the value of « = E;/E, modeled for the production
or consumption side (sector) of country i, and F is the value of energy in physical or economic units
(value share);

The total microeconomic GHG rebound effect is similarly defined as:
AQ
AH ) ( )

where AQ is the net change in GHG emissions and AH is the change in emissions without behavioral
response .

R=1

At the economy-wide level when using a theoretical welfare maximization CGE model, as in Wei
[2010], the rebound effect can be expressed as:

1+1/0°
RP=— " 10
1/05—1//cd’ (10)
where R? is global rebound in the short term, and
1+1/0°
I _ :
= 1/o5 — 0 —6’ (11)

where R! is global rebound in the long term. o is the price elasticity of energy supply, o¢ is the energy
own elasticity of marginal product with respect to energy input in the welfare function, ¢ is the price
elasticity of demand, and 6 is the own-price elasticity of capital supply and demand, as cross-price
elasticity of marginal product with respect to capital and energy inputs in the production of welfare.

We use the mathematical representations described above, to summarize and classify the existing
rebound effect types in the literature, according to its magnitude. This is important in order to
quantify the rebound effect within the aggregation level and time. Table 1 shows 5 types of rebound
effects and their respective elasticity domains.

Table 1: Rebound cases from micro to macro, adapted.

Super Engineering Partial Full Backfire
efficiency rebound rebound rebound
R<0 R=0 0<R<1 R=1 R>1
Micro
Short-term  np,(E) < —1¢ npy(E)=—-1 —1<np,(E)<0 np,(E)=0 npg(E) >0
Macro
Short-term - oé — —00 ol < -1 ol =-1 -1<oi <0
or o — 0 or -1 <o?<0 or —-1<o?=-1 orot<—1
and 0° — 0
Long-term 1/0° -0 <0¢<0 0f< -0 o< —-1-10 of=-1-10 -1-0 < o¢ <
and/or 6 — oo min{0,1/0° — 0}

* Although in zero-cost breakthrough studies it is impossible for this condition to happen in the case of partial
equilibrium [Lemoine, 2017], it is theoretically possible for it to occur when large externalities are corrected
(e.g. in policy induced studies). Moreover, depending on the functional form of the production function, this
can cause a “Disinvestment effect” [Turner et al., 2009].



2.5 Rebound effect theory: Taxonomy and Typology

Due to the complexity of the rebound effect phenomena, and to better understand its mechanisms
and possible causes, it is useful to systematically de-construct it into known effects available in the
literature. Further motivations to parse the RE, involve linking the theoretical point of view to em-
pirical calculations, and exploring causality effects.

Hence, Tables 2 to 5 combine the typology and taxonomy of the rebound effect, from two consumers’
perspectives: that of (1) a producer of energy services, and (2) an end-use consumer; and similarly
from producer’s perspectives, along the aggregation level. This table has been elaborated with the
contributions in the literature about the underpinnings of the rebound effect, traditionally from [Khaz-
zoom, 1980], [Saunders, 1992], [Greening et al., 2000], [Berkhout et al., 2000], and [Birol and Keppler,
2000] to more recent contributions from [Van den Bergh, 2011], [Saunders, 2013] [Borenstein, 2013],
[Azevedo, 2014], [Gillingham et al., 2016] [Madlener and Turner, 2016], and [Santarius, 2016].

Table 2: Rebound typology representation along the level of aggregation, as partial equil. (PE), part I

Rebound Decomposition Taxonomy Other names
Typology! Channel
PE Consumer (1) Direct 1.1 Substitution ef- Own/price elasticity of demand, Price effect
side rebound effect? fect (+) substitution to consume more of

good 0 due to price reduction.
1.2 Income effect3 Free income used to consume

(+) more of good 0 due to price re-
duction.
(2) Compensating Fixed income Expenditure on good 0 takes
cross-elasticies? (-) away expenditure on other goods
with energy content.
(3) Indirect 3.1. Substitution ef- Cross-price elasticity of demand Analogous to the vari-
rebound fect (-) of other goods, substitution to ation of energy inten-
effect consume less of other goods due sity in the economy as

to more consumption of good 0. a whole.
3.2 Income effect?  Consuming more of other goods Re-spending effect

(+) due to savings on good 0.

3.3 Embodied energy Energy or emissions associated

(+) with the life cycle of an energy
service.

3.4 Behavioral effect Indirect rebounds not caused by

(+) EE improvement, but by changes

in consumption behaviors.

! There also exists the less studied “transformational” rebound effects [Greening et al., 2000], “motivational psycho-
logical” rebound effects [Santarius, 2016], and “time” rebound effects [Binswanger, 2001].

2 Terms (1) and (2) are called the “net direct rebound effect” [Borenstein, 2013].

3 Both income effects (1.2 and 3.2) can be grouped into the “income effect rebound” [Borenstein, 2013].



Table 3: Rebound typology representation along the level of aggregation, as partial equil. (PE), part II

Rebound Decomposition Taxonomy Other names
Typology® Channel
Producer (4) Direct 4.1 Factor substitu- Substitution to use more energy Analogous to the sub-
side and rebound effect tion input 0 due to cost reduction stitution effect on the
Meso-level (+) (e.g. automatization). consumer side.
(sectoral)

(5) Indirect
rebound
effect

(6) Complementary
rebound effect

4.2 Output effect
(+)

5.1 Factor substitu-
tion

)

5.2 Output effect
(+)

5.3 Embodied energy
effect (+)

Redesign effect
(+)

Free expenditure (savings) to use Analogous to the in-
more energy input 0 due to cost come effect on the con-
reduction resulting in increased sumer side.
production.

Substitution to use less of other

inputs due to cost reduction.

Free expenditure (savings) to use Re-investment effect
more of other inputs due to cost

reduction resulting in increased

production.

Investments in energy efficiency Grey energy
technologies increase demand for

energy.

Ex-ante expected cost savings for

consumers lead producers to in-

vest in redesigning of the original

product.




Table 4: Rebound typology representation along the level of aggregation, as general equil. (GE), part I

Rebound Decomposition Taxonomy Other

typology Channel names
GE Producer (7) Interactive rebound 7.1 Market price ef- Increased aggregate energy de-
and effect fect mand due to reduction in the
Consumer (+) market price of energy services,
interaction leading to a decrease in the de-

mand for a particular fuel. Rein-
forcing effect from market price
on the consumer side income ef-
fect.  Interplay from a firm,
sector or numerous individual
households up to the level of a
sector or market.

7.2 Disinvestment ef- Direct and derived demands are

fect not sufficiently elastic to pre-

-) vent falling market prices of en-
ergy, leading to decline in rev-
enue, profitability and return on
capital in domestic energy sup-
ply sectors.

7.3 Composition ef- Reduction in market price favors

fect energy-intensive sectors of the

(+) economy, reducing the price of
energy-intensive goods and ser-
vices causing the increase of their
demand, altering the composi-
tion of the economy’s portfolio of

goods.
7.4 Effect of Income and market effects caus-
economies ing increase in demand for en-
scale ergy services or goods, leading
(+) to firm expansion that reinforces

falling prices, whose impact re-
duces along the level of produc-

tion.
7.5 Rising labor Firms using additional income
income effect from energy efficiency of pro-
(+) duction process to raise worker’s
wages.
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Table 5: Rebound typology representation along the level of aggregation, as general equil. (GE), part II

Rebound Decomposition Taxonomy Other
typology Channel names
GE (8) Macro-economic 8.1 Price effect The adjustment of consumers Economy-wide.
rebound and producers following a shift Analogous to
to the left of the market demand consumer  price
curve. effect.

8.2 Growth effect: =~ Change in efficiency of energy in- Equal to the com-

Sectoral allocation puts in an energy-intensive sec- position effect but
tor may lead to this sector’s grow causing economic
relative to others. growth.

8.3 Growth effect: ~ Spillover effects of an energy

Induced innovation improvement in one sector, at-
tributable to improvement in an-

other one.
8.4 Growth effect: ~ Freed money previously spent on Multiplier effect.
Fiscal multiplier energy used in new economic ac-

tivity that utilizes previously idle
resources. Long-term debt asso-
ciated with fiscal stimulus.

8.5 Labor supply Consumers adjust their labor

()t supply to the extent that EE has
an impact on real wages. It de-
pends on the elasticity of substi-
tution between leisure and con-
sumption.

1 At the macro-economic level, rebound effects are more ambiguous than at the micro-economic level. However,
Bohringer and Rivers [2018] found that the elasticity of substitution between leisure and consumption is directly
related to the labor supply elasticity, which is low across the economy as a whole, thus it is likely that the RE due
to this channel is (-). It is closely related to the rising labor income effect (7.5) in table 4.

Additionally, Van den Bergh [2011] identifies the following mechanisms:
1. Time savings (time rebound effect);
2. Technological innovation and diffusion effects; and

3. Purchase of larger (heavier) units or units with more functions/services and consequently using
more energy (e.g., cars with air-conditioning).

Further, Saunders [2013] includes a so-called “frontier effects”, enabling new product applications or
services.

3 Modeling the rebound effect

In similar vein as in Varian [2016], in sections 1 and 2 we identified some essential pieces necessary to
build a rebound effect model. From primitive possible characteristics of energy efficiency (technology
improvements or consumer patterns), to its existing RE mathematical formulations, and economic
effect components, we now turn in this section to describe common methodologies found in the liter-
ature, used to model the rebound effect.

In general, modelers seek to get a closer look at how energy is being consumed in real settings by
collecting data to use in models, and/or studying treatment effects (i.e. of energy efficiency poli-
cies). They decide on (1) the representation of energy efficiency improvement, (2) a mathematical
representation of the rebound effect, and in most cases, (3) the economic theory, assuming a choice
faced by a representative consumer (utility maximization), by a producer (profit maximization), or a
consumer-producer (“prosumer”, household-factory) that integrates production and consumption (a

11



household produces energy services minimizing costs in order to maximize utility derived from those
energy services) [Becker, 1965] [Scott, 1980], and (4) to include a degree of heterogeneity (for energy
or energy services) of a representative consumer and firms.

Our review has grouped energy and macroeconomic studies under the following categories: Structural
models, Econometric studies, Simulation studies and Integrated Assessment models. We present
general assumptions for each type of model, and report on the EEI and RE representation and results
in recent studies. 2

3.1 Structural models of neoclassical economic growth

Structural models have been the most common means to calculate direct rebound effects as repre-
sented in equations (1) to (3). They include preferences and technology, using observed past behavior
(characteristic of ex-post, often econometric studies) to calculate fundamental parameters.

3.1.1 Energy system structural models

The approach with these types of models is to adopt an industrial (or household) production func-
tional form of first- or second-order of approximation or, alternatively, a derived cost function, such
as, Leontief, generalized Leontief, Cobb-Douglas, CES (Solow), nested CES (Solow), generalized Bar-
nett, generalized Mcfadden, Gallant, Fourier function [Saunders, 2008], [Saunders et al., 2015], the
Rotterdam model, or the translog function [Saunders, 2013], [Mishra, 2007], [Frieling and Madlener,
2016], [Frieling and Madlener, 2017a|, and [Frieling and Madlener, 2017b]. To identify the substitution
(output) effect and the income effect for consumption (production), it is common to use decomposition
methods, such as the implicit function theorem, for calculating elasticities.

Other sets of structural models represent household demand consumption, and allow to compute di-
rect and indirect rebound effects. Some examples include, almost ideal demands (AIDs) [Deaton and
Muellbauer, 1980] or linearized AIDs with multi-stage budgets [Thomas and Azevedo, 2013a], [Schmitz
and Madlener, 2017], linear expenditure systems (LES) [Lin and Liu, 2015], direct addilog (DA), in-
direct addilog (IA) [Thomas, 2012], double-log (DL) system [Freire-Gonzalez, 2017a], etc. Parameters
are obtained using linear or non-linear econometric methodologies (i.e. ordinary least squares, dy-
namic ordinary least squares, feasible generalized least squares, nonlinear least squares, etc.). Usual
inputs are energy (or energy commodities, services), capital, labor, and materials.

Recent studies have focused on the meso-economic rebound effect to study production-side sectoral,
and interactive rebound effects (e.g. market effects) [Santarius, 2016].

Table 6 and 7 show a review of selected structural models from the production and consumption sides,
and their respective RE magnitudes as percentage (%):

2There might be some overlap between structural models and econometric studies, however, our criteria, for catego-
rization is based on the degree of flexibility allowed with each type.
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3.1.2 Economy-wide structural models

Aggregated production functions (APFs) using Solow’s residual can also be used to approximate total
energy and GHG rebound effects at national levels, as represented in eqs. (4) to (5). These mod-
els assume that parameters remain unchanged, to predict the responses to possible economic system
changes, including those that have never happened before. Therefore, they can conveniently be used
to conduct welfare calculations [Nevo and Whinston, 2010]. Nonetheless, the major concern is that
the use of an “elaborate superstructure” will provide results driven by the model rather than the data
[Angrist and Pischke, 2010].

Table 8 shows a review of selected structural models.

3.2 Econometric studies

To avoid restrictions imposed by ex-post structural forms as in section 3.1, empirical modelers usually
turn to reduced-form statistical ex-post estimations. Additionally, Nevo and Whinston [2010] argue
that welfare calculations using this methodology would be less credible, due to the variety of economic
environmental change estimations that could be possible to estimate.

Econometric studies represent the rebound effect in two broad categories, which vary according to the
aggregation level of study. The first category includes energy systems that compute the direct rebound
effect, whereas the second category contains economy-wide contexts to calculate a total national or
sectoral rebound effect. However, Acemoglu [2010] and Lemoine [2017] argue that reduced-form models
should not be used as stand-alone tools to evaluate the development of policies.

3.2.1 Energy system econometric estimations

Models in this section, are categorized as ex-post estimations and calculated using regression analysis,
(e.g. at the less-studied meso-economic level; [Wang et al., 2016], e.g. uses a double logarithmic model
to study factors affecting electricity consumption), generalized linear models, ARIMA, vector autore-
gression, and cointegration. Data used to solve these models include time-series data, cross-section
analysis, panel data, and stochastic frontier functions. Less common are panel instrumental variable
(IV) estimators, difference-in-difference estimators, and field quasi-experimental methods. More re-
cently, machine learning (artificial intelligence algorithms) is being used in econometric estimations.

The advantage of these types of studies is that they can take into account causality effects and derive
more robust results, but exogenous variables should be carefully controlled. Reducing the scope of the
model to focus on a specific energy service could provide significant insights [Jacobsen and Van Ben-
them, 2015]. Quasi-experimental ex-post studies could provide more realistic insights about specific
energy efficiency program performance and effectiveness.
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3.2.2 Macro-econometric models

Despite the difficulties in attaining a good degree of identification with reality, these post-Keynesian
ex-ante models might perform useful forecasting and policy analysis (when an effective existing rule
prevails) [Sims, 1980].

After Barker et al. [2009], macro-econometric and non-equilibrium models, such as the global dynamic
E3ME (or E3MG variant) and NEMESIS, have been used to asses co-benefits and trade-offs of policy
scenarios in European economies using multiple sets of computable econometric equations. In the
E3ME model, the rebound effect is modeled in two parts: the direct rebound effect (eq. (2) in section
2.1) is taken from the PRIMES bottom-up model (an energy system model), and this is then used
to calculate the endogenous indirect rebound effect and the economy-wide rebound effect using eq.
(4), derived from the input-output structure of the model [Pollitt, 2017]. Inputs of the model are
shared with other models such as the PROMETHEUS (fossil fuels and import prices) and GEM-E3
(macroeconomic and sectoral projections) [E3MLab and ITASA, 2016]. The main assumption with
regard to energy efficiency is that rising fuel prices will stimulate technological innovation and boost
growth of the world economy, thus the endogenous representation of technological change also has
implications for the calculation of the rebound effect. The model allows varying returns of scale and
nonlinear substitution, and it avoids the representative agent assumption. Nonetheless, it does not
allow substitution between cheaper energy services and other inputs within production and embodied
energy representation.

Following our description in section 2.5, the E3ME has focused to represent, from the macro-economic
point of view, the price and growth effect (sectoral allocation channel). Overall, taking into account
partial and general effects, the RE has been computed as follows [Barker et al., 2009], [Pollitt, 2017]:

1. Macroeconomic RE = ‘indirect rebound effect’ + ‘economy-wide rebound effect 3’
2. Total rebound effect = ‘macroeconomic rebound effect’” + ‘direct rebound effect’

3. Gross energy savings from IEA energy efficiency policies = ‘net energy savings (taken as exoge-
nous in E3MG)’ + ‘direct rebound energy use’

4. Change in macroeconomic energy use from energy efficiency policies from E3MG = ‘energy use
simulated from E3MG after the imposed exogenous net energy savings’ - ‘energy use simulated
from ESMG before the imposed exogenous net energy savings’

5. Total rebound effect as % = 100 times the ‘change in macroeconomic energy use from energy
efficiency policies from E3MG’/‘gross energy savings from IEA energy-efficiency policies’

6. Direct rebound effect as % = 100 times ‘direct rebound energy use/gross energy savings from
IEA energy efficiency policies’

7. Macroeconomic rebound effect as % = ‘total rebound effect as %’ - ‘direct rebound effect as %’

Main results highlight the importance of capital formation modeling to account for crowding out ef-
fects [Pollitt, 2016].

3 Although, Sorrell et al. [2007] defines the economy-wide rebound effect as the sum of the direct and indirect rebound
effect components.
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3.3 Simulation models
3.3.1 Energy system simulation models

Input-output (I0) models and environmentally-extended input-output models (EEIO)

The most comprehensive studies using this methodology, use estimates of direct rebound effects as
inputs. These ex-post static models allow the calculation of indirect rebound effects as cross-price
elasticities for n goods (or n services). Following this estimation, total rebound effects are computed
as represented in eq. (4). Most studies have focused on studying indirect rebound effects on the con-
sumption side. These models assume that constant returns of scale, sectors producing homogeneous
goods and services, and outputs are created with constant and fixed proportions of inputs (linear
representation) [Miller and Blair, 2009]. Moreover, cross-price elasticities of other goods can be mod-
eled as constant or variable, and re-spending is usually assumed to be proportional in each good and
service. Widely used data inputs include Consumer Expenditure Surveys, Eora data, EXIOBASE,
the Global Trade and Analysis Project (GTAP), and the World Input-Output Database (WIOD).

Modeling RE with an EEIO model, Thomas and Azevedo [2013b] found that IREs are inversely
proportional to DREs and are bounded by consumers, budget constraints. Freire-Gonzélez [2017b]

developed risk and vulnerability indicators for rebound effects.

Table 11 shows a review on selected consumption-side studies.
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3.3.2 Macroeconomic simulation models

Computable general equilibrium models (CGE)

[Bohringer and Loschel, 2006], [Allan et al., 2007] and [Turner and Figus, 2016] provide comprenhen-
sive reviews on these ex-ante “what-if” neo-classical models and their applicability to model energy-
economy-environment inter-dependencies for exploring trade-offs and co-benefits. Known models used
to parse the RE include GTAP-E, WARM, SCREEN, MSG-6, ENVI-UK, ORANI-G, REMES, SNOW-
NO, CEPE, WIOD-CGE, and climate models such as GRACE which could potentially be used for
rebound studies [Aaheim et al., 2018]. Energy efficiency improvements in this review are modeled as
exogenous autonomous energy efficiency improvement and energy-augmenting, or endogenous tech-
nical change as latent variable approach of policy-induced type (taxes or subsidies on production or
consumption). However, induced technical change as in Witajewski-Baltvilks et al. [2017], Lemoine
[2017] and diffusion effects remain to be further studied. RE is calculated using egs. (7) and (8).
Advances in the analysis of RE tractability have also been applied, namely the decomposition of en-
ergy and GHG rebound effects from partial to general equilibrium, as described in section 2.5. To
parse the rebound effect in direct and indirect partial equilibrium components, as described in tables
2 to 5 (i.e. substitution and income effects), modelers set all prices fixed except for the energy sector
or service in analysis. To calculate the general equilibrium component, common used channels are:
price, growth: sectoral allocation, labor supply [Bohringer and Rivers, 2018] [Chang et al., 2018], and
growth: fiscal stimulus [Figus et al., 2017a]. Finally the total rebound effect is obtained summing the
partial equilibrium components and general equilibrium component (or the economy-wide component,
as discussed in section 3.2.2). Sensitivity analyses are more common, thus providing robust estima-
tions mainly on the upper bound of the spectrum. Moreover, studies have investigated the influence
of RE on macroeconomic parameters such as GDP, employment, etc. [Madlener and Turner, 2016]
and on welfare [Gillingham et al., 2016].

Following Turner and Figus [2016], we checked the adaptation and tailoring of models for relevant
interactions that might potentially impact on calculations of energy and GHG rebounds: (1) balance
of trade (imports/exports), (2) technological change vs. economic expansion, (3) imperfect competi-
tion, (4) unemployment (labor market representation), (5) capital formation, (6) dynamic adjustment
of long-time frames, (7) detailed treatment of energy supply and (8) energy consumption. For each
aspect, we find that (1) Armington’s CES imperfect substitution was able to include an energy ef-
ficiency improvement representation. (2) Most models do not integrate adjustment of capital/labor
growth (or decline) with regard to energy efficiency improvement. (3) Revised models assumed perfect
competition, except Figus et al. [2017b], Figus et al. [2018]. For (4) and (5), mobile representation
of capital between national sectors, investments, and labor increase gradually. (6) Recent models are
not only dynamic, such that they capture consumer’s responsiveness [Figus et al., 2017b],[Figus et al.,
2018] [Chang et al., 2018], [Bye et al., 2018], [Duarte et al., 2018], including consumer response to price
changes in time, but are also regional-specific (or spatial CGE models) [Helgesen et al., 2018]. (7) To
represent energy and non-energy goods, CES/Cobb douglas functions are commonly used and inputs
in the energy sector are usually modeled as Leontief composites, with no possibility of substitution,
in RE studies assessed in this overview. (8) While energy efficiency improvement in total factor pro-
ductivity has not commonly been modeled, it is has been included from one consumer aggregate with
no possibility of substitution or CES/Klein-Rubin utility preferences, to bottom-up representations
that capture consumer heterogeneity and distributional impacts [Bye et al., 2018], [Landis et al., 2018].

Tables 12-16 show recent studies for production and consumption.
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3.4 Integrated assessment models

There are two main types of ex-ante Integrated Assessment Models (IAMs), detailed process (DP)
IAMs and benefit-cost (BC) TAMs. The main difference is the way they model climate change im-
pacts, DP IAMs are more disaggregated models that use economic valuation or physical projections to
provide forecasts of climate change impacts at detailed sectoral or regional levels. On the other hand,
BC TAMs represent sectoral (or regional) aggregation functions and climate change mitigation costs
into a single economic metric, whose main goal is to analyse potentially optimal climate policies. For
a detailed overview of IAMs and their applications, see [Weyant, 2017]. Widely used models include
DICE, RICE, FUND, PAGE, IWG (which has focused on energy efficiency), MESSAGEix-GLOBIOM,
IMACLIM-R, IMAGE, AIM, GCAM4, REMIND-MAgPIE, WITCH, etc. Allowing flexibility about
the achievement of GHG emission reductions results in lower mitigation costs across all economic
assumptions; however, too much flexibility can also be detrimental to models [Pindyck, 2017]. More-
over, delays in implementing mitigation policies would result in increases in total discounted costs
of meeting particular global GHG concentrations. DP TAMs identify and directly measure impacts
on sectors, regions and ecosystems in more detail, providing insights of trade-offs between mitigation
and adaptation strategies on global scales, which useful for international negotiators, and national
and/or regional decision makers. BC TAMs are helpful to highlight critical issues in the understand-
ing of the cost-effectiveness of climate change policies (i.e. including discount rates, risks, damages,
social cost curve calculations), while incorporating new scientific findings into projections [Weyant,
2017]. Controversy around the use of physical or economic units is also found in these types of studies.

Pindyck [2017] contrasted the current state of IAM models, which add much noise, are at an early
stage, and would require sensitivity analysis on key parameters. With the time pressure exerted
by climate change, he concluded that simple models to calculate upper bounds would also be use-
ful. In particular, Martin and Pindyck [2017] assessed the likelihood of catastrophes in a model of
catastrophe avoidance, making a distinction between the ones that cause destruction (or reduction
in the consumption stream), and more severe ones that cause death. Their model identify death as
a welfare-equivalent reduction in consumption, in order to find a formulation for the willingness to
pay to avert it, using as proxy, the “value of a statistical life”. They found that simple benefit-cost
analysis break down, decisions to avert major catastrophes are interdependent, and provided guide on
how to determine which catastrophes to avert. Moreover, Riahi et al. [2015] and Rogelj et al. [2018]
suggest that the proportion of successful IAM scenarios could be used as an indicator of infeasibility
risk.

Models included in this overview, have included zero-cost breakthrough or policy-induced energy

efficiency improvements, as exogenous or endogenous shocks. However, energy or GHE rebound effect
magnitudes are not yet commonly explicitly calculated or presented, as shown in tables 17 and 18.
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4 Synthesis and motivation for future research

As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality. (A. Einstein)

4.1 Model identification: a trade-off between theory and reality

Overall, the diverse nature of empirical models reviewed in this study contribute to the understanding
of the rebound effect from the production and consumption side. We highlight the equal importance
and complementarity of ex-ante and ex-post studies given the observed symmetry between models
and computation of rebound effects, which requires the calculation of expected and realized energy
savings. Moreover, given the tension between theory and reality, to reach a ‘reasonable’ level of iden-
tification, we consider it good practice to have a clear picture about the motivation behind modeling,
similar to what Blanchard [2018] presented, considering single models or combined models that cover
theory without much emphasis on reality, policy (or zero-cost breakthrough) with emphasis in reality,
toy models to add pedagogical insights, and forecasting models with emphasis on advanced statistical
tools to reduce errors in projections. Other good practices include reporting standard deviations and
robustness of results and performing sensitivity analyses on key parameters.

Ex-post studies

Both on energy systems and economy-wide levels, we find that structural functions are the most often
used methodology on the production side. Although there are clearly several limitations imposed
by structural forms and assumptions [Gillingham et al., 2016], and these types of models have been
criticized for ignoring heterogenous capital at aggregate levels [Burmeister, 2000], Saunders [2008]
recommends the use of Gallant (Fourier) or the generalized Leontief/Symmetric generalized Barnett
cost functions due to their flexibility to model rebound effects. Moreover, on the consumption side,
Schmitz and Madlener [2017] similarly found that the magnitude of the rebound effect is sensitive
to model specification, and they recommend modeling energy services as an alternative to energy
commodity models. The distinction between consumption and production direct rebound effects is
relevant, as the latter captures two thirds of total energy consumption [Santarius, 2016].

While recent econometric models on energy systems (section 3.2.1) have evolved to include data from
field experiments, use randomized controlled trials, and study causality effects on the consumption
side, there have been fewer studies on the production side (i.e. exploring technology choices and R&D
investment) using these up-to-date methodologies. Although the aforementioned studies are computa-
tionally expensive, and their results are difficult to scale up due to their specific nature, they provide
valuable insights on the effectiveness of energy efficiency policies and on the rebound effect. Wang et al.
[2016] recommends studying final energy consumption habits across a plethora of household appliances.

Thus, we find that ex-post studies that put emphasis on reality depiction (policy and/or zero-cost
breakthrough) are of high importance in providing empirical evidence that could serve as an input for
ex-ante studies, in order to feed accurate parameters to ex-ante studies.

Figure 2 shows that ex-post studies in our review estimate either energy RE or GHG RE effect sep-
arately, while welfare effects are not computed. From 26 RE calculations performed in studies shown
in previous tables, the magnitudes of the energy RE have an average of 66% and a standard deviation
of 79%, with a maximum of 334% and minimum of -22%. GHG rebound effects have an average of
-38% and a standard deviation of about 83%, with a maximum of 78% and minimum of -161%.
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Figure 2: Results on ex-post studies
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Ex-ante studies

Similar to ex-post studies, ex-ante studies also rely on structural forms or econometric estimates for
the representation of consumer or producer choices. On the production side, Koesler et al. [2016] and
Brockway et al. [2017] propose to revise the adequacy of CES functions to represent the nested produc-
tion function, and to better match the energy-augmenting technical progress paradigm . With regard
to the elasticity parameter, studies show that a low elasticity of substitution between energy and non-
energy inputs, would result in a larger general equilibrium RE component [Wei, 2010]. In contrast,
other studies have found that low elasticity of inter-fuel substitution would reduce the magnitude of
the energy rebound effect [Lu et al., 2017], and Lemoine [2017] concludes that this parameter is not a
reliable guide to the likelihood of backfire. Nonetheless, there is need for ex-post empirical evidence on
fossil fuel supply elasticities [Bohringer and Rivers, 2018]. Moreover, Bohringer and Rivers [2018] also
find that a more elastic elasticity of substitution between capital and labor would reduce the energy
rebound effect magnitude. With regard to the intensity of the energy of sector, rebound effects may
be larger if energy efficiency improvements are found or implemented in these sectors [Broberg et al.,
2015], [Lemoine, 2017], [Zhou et al., 2018]. In addition, the larger size of the other sectors not affected
by energy efficiency improvements could also increase the rebound effect magnitude [Bohringer and
Rivers, 2018], and the substitution effect would govern [Zhou et al., 2018]. Another topic to examine
more closely is the impact of energy efficiency improvements on primary energy, which could benefit
expansion of energy services (intermediate energy) [Lu et al., 2017]. With regard to growth expansion,
Ryan et al. [2017] recommend examining trade-offs between economic expansion and energy efficiency
improvement. Finally, investigating rebound effect behavior in time is of importance, as it is theo-
retically possible that long-run elasticities are lower than short-run elasticities [Wei, 2010], while on
empirical grounds, Lu et al. [2017] finds that the long-run energy rebound effect diminishes.

On the consumption side, studies find that a more elastic elasticity of substitution between energy and

non-energy goods determines a larger partial equilibrium component [Gillingham et al., 2016] which
dominates the general equilibrium component [Bohringer and Rivers, 2018]. On the other hand, if
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the aforementioned parameter tends to have a low elasticity of substitution, it would result in low
magnitudes of energy rebound effect due to consumer price unresponsiveness. More recently, het-
erogeneity has played an important role in studies, disaggregating specific energy-intensive and less
energy-intensive energy services (e.g. public vs. private transport or fossil fuel- vs. renewable-sourced
heating), and including the representation of durable goods/investments within energy service sectors
could provide more precise policy advice [Ryan et al., 2017], [Figus et al., 2018].

Figure 3 shows RE magnitudes obtained in ex-ante studies examined in this review. Joint estimations
of energy RE and welfare effects have been carried out, while GHG RE has not been computed. From
19 RE calculations performed in studies shown in previous tables, the magnitudes of the energy RE
have an average of 49% and a standard deviation of 22%, with a maximum of 98% and minimum of
-0.1%. Welfare effects have an average of 0.4% of GDP and a standard deviation of about 0.7%, with
a maximum of 2.25% and minimum of -1%. Jointly, there can be high energy RE associated with high
welfare effects (2.25%) but also low (0.05%). In our overview, RE from ex-ante studies show lower
average magnitudes than ex-post studies.

Figure 3: Results on ex-ante studies
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Combined insights

Taking both sides into account, studies validating elasticities with historical data and the use of more
sophisticated methods (i.e. causality identification) and sensitivity analyses would improve the reli-
ability of studies [Saunders, 2013], [Wei and Liu, 2017], [Saunders, 2017]. Explicit and endogenous
representations of energy efficiency improvements could also reduce bias in estimates [Hunt et al.,
2014], [Witajewski-Baltvilks et al., 2017]. Looking at the general equilibrium component, supply and
demand effects should be considered [Wei, 2010], as should the interaction of energy efficiency im-
provements on both sides. For example, some studies found that a inelastic supply combined with an
elastic demand may induce a higher energy rebound effect [Gillingham et al., 2016], [Ghoddusi and
Roy, 2017]. The status quo of the data (year) should be checked against assumptions of the year when
technical energy efficiency improvement is introduced, to take into account not only innovation phases
but also diffusion and approximation to saturation. If policies are already in place, this should be
modeled because high initial levels of energy efficiency improvements in place could result in higher
GHG rebounds. Furthermore, the dynamics of the incorporating of energy efficiency improvements in
primary and/or secondary energy would provide further insights [Zhou et al., 2018]. Another branch
of the RE study includes externalities (e.g. pollution effects). Chang et al. [2018] found that ignoring
these impacts could result in underestimation of the energy rebound effect magnitude.

In general, models could include locational aspects (e.g. multi-area), temporal aspects (i.e. different
consumption or production patterns in summer and winter; Wang et al. [2016]), and group targeting
(low/high income households, owners/tenants [Madlener and Hauertmann, 2011], high/light energy
intensive and/or high/low GHG emission industries) (Madlener and Turner [2016], Wang et al. [2016])
to check distributional effects when price is endogenous [Ghoddusi and Roy, 2017]. Furthermore, we
consider that the analysis of cyclical fluctuations in the energy industry for specific energy services or
resources could improve the understanding of energy efficiency improvement adoption and rebound
effect in time, both using ex-post and ex-ante studies. Overall, the potential effect of energy efficiency
improvements and rebound effects on the economy would be higher on industry than households;
however, we find mixed results. Finally, ex-ante studies can also be used to monitor rebound effects in
the economy, not just for forecasting (e.g. using now-casting or back-casting methods in CGE models).

After carrying out an extensive review of 118 recent studies on the rebound effect along the aggregation
level, out of which 25 computed and reported energy or GHG rebound effect magnitudes in from table
6 to 18, figure 4 shows that the overall average rebound effect under different methodologies and
rationale is of the order of 58% with a median of 49%, considering only energy rebound effects. When
we also take into account GHG rebound calculations we find an average magnitude of around 43%,
with a median of 47%. Our results are similar to the total expected rebound effect of 60%, as in
Gillingham et al. [2016]. However, these estimates remain a very rough approximation, considering
that we find a very high standard deviation of approximately 58% and 55%, respectively, with a
maximum per source, sectoral, or national rebound of 334% (there are also higher magnitudes for
specific provinces within developing countries, e.g. China), and a minimum of -161%. Combining
previous, recent, and future studies on rebound effect magnitudes could provide more data to increase
the analytic power of rebound effect estimates, through a future meta-analysis study of the rebound
effect or crowdsourcing data analysis strategies as in Silberzahn et al. [2018].
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Figure 4: Results on all revised studies

Figure 5 shows RE magnitudes obtained on developed country studies examined in this review. Joint
estimations of energy RE and welfare effects have been carried out, or GHG RE has been computed.
From 22 RE calculations performed along the level of aggregation, shown in previous tables, the
magnitudes of the energy RE have an average of 50% and a standard deviation of 23%, with a
maximum of 78% and minimum of -22%. Welfare effects have an average of 0.27% of GDP and a
standard deviation of about 0.8%, with a maximum of 2.25% and minimum of -1%. Jointly, there can
be high energy RE associated with high welfare effects (2.25%) but also moderate (0.32%).
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Figure 5: Results on developed countries

Figure 6 shows RE magnitudes obtained on developing country studies examined in this review. Joint
estimations of energy RE and welfare effects have been carried out, while GHG RE has not been com-
puted. From 16 RE calculations performed along the level of aggregation, shown in previous tables,
the magnitudes of the energy RE have an average of 67% and a standard deviation of 85%, with a
maximum of 334% and minimum of -0.1%. Welfare effects have an average of 0.4% of GDP and a
standard deviation of about 0.2%, with a maximum of 0.5% and minimum of 0.05%. Jointly, there
can be high energy RE associated with moderate welfare effects (0.5%) but also low (0.05%). In our
overview, RE from developed studies show lower average magnitudes and standard deviation than
developing studies. Welfare effects from developed studies show lower average magnitudes and higher
standard deviation than developing studies.

Finally, all figures imply that welfare is a function that depends on GHG reductions and energy savings.
Furthermore, given that the calculation of rebound effects has two components one expected (or-ex-
ante), and another real (or ex-post), we suggest that GHG reductions and energy savings would be
better indicators for policy assessment, due to the possible high variability of the expected component.
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Figure 6: Results on developing countries
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4.2 Motivations and scope for future research

Energy efficiency improvements on consumption and production. Studies included in this
review have shed light on the inclusion of EEIs as technical change and preferences on energy systems
more often than on economy-wide models. Few IAM studies have been found to consider energy ef-
ficiency improvements simultaneously on both sides, and in particular that involve rebound effect as
described in section 2.5, complementary RE (6), composition rebound effects (7.3), effect of economies
scales (7.4), and transformational rebound effects have not yet been found.

Heterogeneity. On the production side, and considering the GHG emissions reduction goal, Lemoine
[2017] indicates that energy efficiency improvement policies should target energy-efficient sectors with
low elasticity of substitution between energy and non-energy inputs; however, this study does not
include the representation of inter-fuel substitution, long-run effects or impacts of heterogeneity on
the consumption side. Likewise, in Norway, Helgesen et al. [2018] found that a 50% reduction on GHG
emissions through technology investments are achievable by 2030 but at a cost of 6.3% reduction of
GDP; however, this study assumes that energy intensity remains constant. Moreover, in developing
countries such as China, policies on the supply side should encourage resource-specific technological
progress in energy-intensive sectors (e.g. industry and manufacturing) [Zhang et al., 2017b].

On the consumption side, similar to on the production side, Ryan et al. [2017] suggests that the
policy focus should expand to consider not only improvements in energy efficiency in energy-intensive
sectors, but also how these improvements interact with less energy-intensive sectors, and in China,
Wang et al. [2016] found that in residential electricity consumption, investment should be promoted in
energy-saving technologies. Moreover, while it is common to consider heterogeneity in energy services,
attributes, etc. In energy system approaches, Bye et al. [2018] found that modeling energy efficiency
improvement on a specific sector (i.e. the electricity sector), instead of considering energy efficiency
improvements on all energy uses in an economy, could result in economic distortions that may lead
to welfare loss, though the electricity sector in Norway is mainly produced from renewable sources.
Thus, the question here would be to what degree and for what cases is heterogeneity relevant for
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policy analysis.

Long run vs short run. A clearer distinction of estimates in ex-post and ex-ante studies between
the results obtained in the short and long run would improve the insights of the models. For example,
Brockway et al. [2017] concluded for China that the deployment of renewable energy sources should
occur more rapidly than planned. However, Herring and Roy [2007] state that this would make little
difference in the long term in order to reduce carbon emissions. Pui and Othman [2017] found that a
double dividend in GHG emission reductions and welfare maximization is gained in the short run with
autonomous energy efficiency improvements, but EEI policies should be accompanied by taxes to con-
trol and level-up price reductions. On the other hand, Lu et al. [2017] found that policies should target
the efficiency of energy efficiency improvement policies in the long run, where REs diminish. In that
vein, Frieling and Madlener [2017b] concluded from a comparison of production factor-augmenting
structural partial equilibrium models for Germany, USA and UK, that energy consumption is rela-
tively immutable in the short run. It remains to be further analyzed how the rebound effect affects
the emissions, peak time-frame.

Uncertainty due to expectations and the counterfactual. Engineering estimates on energy
savings found in actual energy efficiency policy programs are reported to be much higher than ac-
tual savings. Thus improving modeling on both sides, using ex-post and ex-ante studies (e.g. using
machine learning to compute counterfactual scenarios), could help to reduce uncertainty in calcula-
tions. Furthermore, Frondel and Vance [2018] conclude that including causality could produce higher
upper-bound RE estimates than assuming a linear relationship of efficiency between energy and en-
ergy services. Ghoddusi and Roy [2017] found that modeling stochastic demand and supply could also
increase control for uncertainty in energy rebound effect estimates.

Energy efficiency up-front costs. More poliy-induced studies such as [Burlig et al., 2017], [Fowlie
et al., 2018], and [Bye et al., 2018], which include energy efficiency investment costs, give a more
complete picture regarding the cost-effectiveness of energy efficiency policies.

Imperfect markets, externalities and imperfect regulations. For the production side in China,
Yang and Li [2017] arrive at the conclusion that in power generation, ad valorem taxation on energy
input prices (i.e. fossil fuels) could help reflect fossil fuel scarcity and environmental costs. Fur-
thermore, they recommend a parallel lift of feed-in tariffs to promote clean energy. Meanwhile, in
developed countries like Switzerland, Landis et al. [2018] found that the economic costs of energy
efficiency CaC policies (Promotion) are five times more expensive than the use of taxes (Steering)
combined with per capita rebates. Moreover, there exist trade-offs between cost-effectiveness and dis-
tributional impacts of policies. However, this study did not take into account environmental benefits
or externalities (which could reduce the gap between both instruments) resulting in an upper-bound
estimate. On the consumption side, Bye et al. [2018] found that the economic costs of EEI policies
for dwellings (i.e. a cap on residential use and energy intensity) are highly costly even including COq
taxes; therefore, these policies would be inefficient to abate COy emissions. Whereas Pollitt [2017]
found that EEIs for buildings in Europe would yield all 3 co-benefits: GHG reductions, welfare in-
crease and energy savings on climate change models, Van den Bergh [2017] found cap-and-trade to
be the best approach to manage global and international energy and more importantly GHG rebound
effect. Furthermore, energy conservation policies are usually modeled in integrated assessment models,
as the common strategy in mitigation scenarios, but transition pathways that can meet such targets
are less commonly studied. From 6 IAMs and 5 shared socio-economic pathways (SSPs), Rogelj et al.
[2018] found that scenarios characterized by a rapid shift away from fossil fuels toward large-scale
low-carbon energy supplies, reduced energy use and carbon removal successfully reached the target
of temperature rise below +1.5°C by 2100; while scenarios with scattered short term climate policy,
strong inequalities in SSPs, and high baseline fossil fuel use, did not. Gidden et al. [2018] analysed
13 scenarios with open-access and reproducible higher gridding spatial resolution (aneris), compar-
ing SSPs to representative concentration pathways (RCPs), and recommended that the assessment
of the role of uncertainty is carried not only between scenarios, but also between model results for
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a certain scenario, such as F-gas trajectories. Additionally, as carbon dioxide and methane gasses
are well-mixed climate forcers nature that have higher impact from a political rather than physical
perspective, adding spatial detail would provide more meaningful insights for policy analysis.

Targeting and distributional concerns. For the case of the transport sector, studying the inter-
action between carbon taxes, equity effects and investments in infrastructure (i.e. public transport)
could shed light on fuel efficiency policies. IAMs find mitigation efforts on the transportation, industry
and buildings sectors of particular importance [Méjean et al., 2018], [Rogelj et al., 2018]. Taking into
account heterogeneity of attributes is also relevant for policies targeting the transport sector, as de-
scribed in Galvin [2017], the interaction between speed and acceleration becomes crucial to investigate
the efficiency of electric vehicles.

Understanding consumer preferences and changes. Another branch of research to inform pol-
icy development includes changes in behavior and lifestyle [Herring and Roy, 2007], as well as field
experiments and surveys to better approximate in a more realistic manner, end-user discount rates and
preferences. Understanding how to move from bad habits to good habits, in accordance to consumer’s
preferences, could contribute to reduce energy consumption in the short or medium run.

Interactions between energy consumption, GHG emissions reductions and welfare. Chang
et al. [2018] found for the production side that pollution-minimizing policies are less costly than welfare-
maximizing increases in energy efficiency improvements on green technologies, describing a U-shaped
environmental Kuznets curve. In general terms, to reduce global emissions and energy use in the long
term, EEI policies on both, the demand and supply side, could help illustrate existing trade-offs/co-
benefits between economic growth, social welfare, reduction of GHG emissions, and total energy use
[Wei and Liu, 2017]. Brockway et al. [2017] conclude that because energy efficiency and rebound
may act as engines of economic growth [Ayres, 2010], there might be a potential trade-off between
climate-based policies and economic growth (e.g. carbon taxes to reduce rebound, restricting economic
growth). Thus, interactions between energy consumption, energy conservation, GHG emissions and
economic growth would require further analyses on macroeconomic levels in order to find adequate
policy strategies.

To move beyond, and given the historical time we live in, future large shifts in policy will require
answers and solutions to many open questions regarding complex interactions, to understand how
energy efficiency and conservation interacts with low-carbon economies, sustainability, socio-technical
[Geels et al., 2018] and psychological aspects. Moreover, better knowledge of social transitions is
required [van Vuuren et al., 2018], [Rogelj et al., 2018]. Although policy strategies must be targeted
differently between actors, sectoral, regional, and national levels, they should find common ground at
global level. Studies on spillover effects and strategic alliances between regions could also shed light
on feasible futures. A proper understanding and consideration of the RE from both theoretical and
empirical grounds, in contrast to national or sectoral policy objectives, is required to better guide
policy decisions in the future.
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