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Optimal Stopping under G-expectation

Hanwu Li*

Abstract

We develop a theory of optimal stopping problems under G-expectation framework. We first
define a new kind of random times, called G-stopping times, which is suitable for this problem. For
the discrete time case with finite horizon, the value function is defined backwardly and we show
that it is the smallest G-supermartingale dominating the payoff process and the optimal stopping
time exists. Then we extend this result both to the infinite horizon and to the continuous time
case. We also establish the relation between the value function and solution of reflected BSDE
driven by G-Brownian motion.
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1 Introduction

Consider a filtered probability space (2, F, P,F = {F;}icjo,7]), the objective of optimal stopping
problem is try to find a stopping time 7* in order to maximize the expectation of X, over all stopping
times. Here X is a given progressively measurable and integrable process, called the payoff process.
In financial market, X can be regarded as the gain of an option. An agent has the right to stop
this option at any time ¢ and then get the reward X;, or to wait in the hope that he would obtain a
bigger reward if he stops in the future. This problem has wide applications in finance and economics,
such as pricing for American contingent claims and the decision of a firm to enter a new market.
Note that there is an implicit hypothesis in the above examples that the agent knows the probability
distribution of the payoff process. This assumption is too restrictive that excludes the case where the
agent faces Knightian uncertainty. In this paper, we will investigate the optimal stopping problem
under Knightian uncertainty, especially volatility uncertainty.

The optimal stopping under Knightian uncertainty attracks a great deal of attention due to its
importance both in theory and in applications. We may refer to the papers [1I, [2], [3], [4], [12], [16].
Roughly speaking, Cheng and Riedel [3], Riedel [16] considered the optimal stopping problem in a
multiple priors framework, which makes the linear expectation be a nonlinear one. Bayraktar and Yao
[1, 2] studied this problem under what they called the filtration consistent nonlinear expectations. In
these papers, they put assumptions either on the multiple priors P or on the nonlinear expectation &£
to make sure that the associated conditional expectation is time consistent and the optional sampling
theorem still hold true. Similar with the classical case, the value function is an £-supermartingale
dominating the payoff process X. Besides, its first hitting time 7* of X is optimal and it is an &-
martingale up to time 7*. However, in the above papers, all probability measures in P are equivalent
to a reference measure P thus these models can only represent drift uncertainty. The ambiguity
of volatility uncertainty requires that P is a family of non-dominated probability measures which
makes this situation much more complicated. Ekren, Touzi and Zhang [4] and Nutz and Zhang [12]
investigated the optimal stopping problem under non-dominated family of probability measures. In
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fact, [4] studied the problem sup. supp ET[X,] which can be seen as a control problem while [12]
considered the problem inf, supp EF[X,] which can be regarded as a game problem. It is worth
pointing out that in their papers, the value function is defined pathwise. They also obtained the
optimality of the first hitting time 7% and the nonlinear martingale property of the value function
stopped at 7*.

According to the papers listed above, it is obvious that we need some nonlinear expectations
to study the optimal stopping problem under Knightian uncertainty. Recently, Peng systematically
established a time consistent nonlinear expectation theory, called G-expectation theory (see [13| [14]).
As the counterpart of the classical linear expectation case, the notions of G-Brownian motion, G-
martingale and G-It&’s integral were also introduced. A basic mathematical tool for the analysis is
backward stochastic differential equations driven by G-Brownian motion (G-BSDE) studied by Hu,
Ji, Peng and Song. In [0 [7], they proved the existence and uniqueness of solutions to G-BSDE and
established the comparison theorem, Girsanov transformation and Feynman-Kac formula. The G-
expectation theory is convincing as a useful tool for developing a theory of financial markets under
volatility uncertainty. Therefore, the objective of this paper is to study the optimal stopping problem
under the G-expectation framework.

In the classical case, the value function is usually defined by the essential supremum over a set
of random variables. However, in the G-framework, the essential supremum should be defined in the
quasi-surely sense and thus may not exist. Besides, the random variables in G-framework require
some continuity and monotonicity properties. For a random time 7 and a process X, X, may not
belong to a suitable space where the conditional G-expectation is well defined. Due to the difficulties
lie in this problem, the optimal stopping under G-expectation is far from being understood.

In this paper, we first deal with optimal stopping problems under G-expectation in discrete time
case, both in finite and infinite time horizon. We first restrict ourselves to a new kind of random
time, called G-stopping time. The advantage is that the definition of conditional G-expectation can
be extended to the random variable X stopped at a G-stopping time 7. Besides, on this large space,
many important properties, such as time consistency, still hold. For finite time case, we define the
value function V' backwardly. It is not difficult to check that the value function is the minimal G-
supermartingale dominating the payoff process X. Although we can only deal with a special kind
of stopping times, we do not loose to much information since the first hitting time is an optimal
G-stopping time. Then we extend the theory to infinite horizon case, where the backward induction
cannot be applied directly. The value function is defined by the limit of the one in the finite time case.
We show that it is still the minimal G-supermartingale which is greater than the payoff process and
satisfies the recursive equations similar with the finite time case. Recall that Li et al. [11] studied the
reflected BSDE driven by G-Brownian motion, which means the solution is required to be above an
obstacle process. In fact, the solution of reflected G-BSDE is the minimal nonlinear supermartingale
dominating the obstacle process. We show that it coincides with the value function of the optimal
stopping problem in continuous time case when the payoff process X equals to the obstacle process.

From the mathematical point of view, the optimal stopping problem introduced in [4] is the closest
to ours. Compared with their results, the advantage of considering this problem under G-expectation
lies in the following aspects. First, we do not need to assume the boundedness of the payoff process
and we can study this problem when the time horizon is infinite. For the continuous time case, it
can be shown that the value function is the limit of the ones of the discrete time case, which becomes
useful to get numerical approximations. Besides, similar with the result in [3], we can establish the
relation between the value function defined by the Snell envelope and the solution of reflected BSDE
driven by G-Brownian motion. At last, the case that the payoff process is Markovian can be involved
and similar results as the classical case still hold.

This paper is organized as follows. In Section 2, we first introduce the G-stopping times and
the essential supremum in the quasi-surely sense. Section 3 is devoted to study optimal stopping



problems under G-expectation, both in finite and infinite time case. Then we extend the results to
the continuous time case and we show that the value function of optimal stopping problem corresponds
to the solution of reflected G-BSDE in Section 4. In Section 5, we presents some results of optimal
stopping when the payoff process is Markovian.

2 (G-stopping times and essential supremum in the quasi-surely
sense

In this section, we introduce the essential supremum in the quasi-surely sense and a new kind of random
time, called G-stopping time, appropriate for the study of optimal stopping under G-expectation.
Then we investigate some properties of extended (conditional) G-expectation. Some basic notions
and results of G-expectation can be found in the Appendix.

Let (9, LE(9), I@) be the G-expectation space and P be the weakly compact set that represents K.
The following notations will be frequently used in this paper.

L°(Q) := {X : Q — [~00,00] and X is B(Q2)-measurable},
L(Q) :={X € L°(Q) : EP[X] exists for each P € P},
LP(Q) :={X € L°(Q) : E[|X|?] < oo} for p > 1,
LY (Q) :={X e L}(Q) : I{X,} € LL(Q) such that X, | X,q¢.s.},
LE(Q):={X -Y: :X,Y € L5 (Q)},
LE(Q) == {X e LY(Q) : }{X,.} C LY (Q) such that X, 1 X, ¢.5.},
L& (Q) == {X e LY(Q) : 3{X,.} € L’ () such that B[|X,, — X|[] - 0}.

Remark 2.1 It is easy to check that L () C L (Q) C Lg Q) c f/g (). Furthermore, it is
important to note that Ly (), Llc* (Q), Elc* () are not linear spaces and L (Q) is a linear space.

Set Q; = {w.a s w € Q} for t > 0. Similarly, we can define L°(Q;), £(€;), LP(Q), Lg (), Lg ()

and I_/g () respectively. We now give the definition of stopping times under the G-expectation
framework.

Definition 2.2 A random time 7 : Q — [0,00) is called a G-stopping time if I{r<4 € Lg () for
each t > 0.

Let H C L(Q) be a set of random variables. We give the definition of essential supremum of H in
the quasi-surely sense. Roughly speaking, we only need to replace the “almost-surely” in the classical
definition by “quasi-surely”.

Definition 2.3 The esssential supremum of H, denoted by esssup &, is a random variable in L°(£2)
EeH
such that:

(i) For any £ € H, esssup £ > &, ¢.s.
EEH
(ii) If there exists another random wvariable ' € L(Q) such that ' > &, q.s. for any & € H, then
esssup £ <1’ ¢.s.
EeM

Remark 2.4 It remains open to prove the existence of the essential supremum in the quasi-surely
sense for the general case. However, if it does exist, it must be unique.



Remark 2.5 Consider a probability space (Q, F, P) and a set of random variables ®. Set

C' := sup{sup EP[¢] : ® is a countable subset of ®}.
PED

There exists a countable set ®* := {¢,,n € N} contained in ®, such that

C = lim EF[¢,).

n—oo

Then 1 := sup,cn @n 5 the essential supremum of ® under P. However, this construction does not
hold in the quasi-surely sense if we only replace the expectation ET by the G-expectation E. We may
consider the following example.

Let 1 = g% < 5% = 2. Consider H = {fo((B)1),a € [1,2]}, where fo(x) = (x — 1)* + 1. We can
calculate that, for any o, A

Blfal(B))] = sup fal(z) = 2.
z€(1,2]
Then choose a countable subset H* := {fo((B)1),a € QN [3,2]}. It is easy to check that
sup  E[fa((B)1)] = sup{sup K[¢] : H is a countable subset of H}.
fa((B)1)EH™ ceH

However, supy_((py,)en- fa((B)1) = f2 ((B)1) < f1((B)1) is not the essential supremum of H.

Remark 2.6 In the classical case, the essential supremum can be constucted by countable many ran-
dom wvariables while this does not hold true for the one in the quasi-surely sense. We may consider
the following example. Let 1 = o® < 62 = 2. Consider H = {I{(py,—z}, ¢ € [1,2]}. If there exists
H= {I{<B>1:wn},xn S [1,2},11 S N}, such that

esssup £ = sup I{(B>1:wn}'
EEH neN

Then there exists a constant xg € [1,2] such that ¢ # x,, for any n € N. We have

C(SIGIII\)]I{(Bh:wn} < I{<B>1:JJ0}) = C(<B>1 = xo) =1,

which is a contradiction.
We now list some typcial situations under which the essential supremum exists.

Proposition 2.7 If there are only countable many random variables in H, then the essential supre-
mum exists.

Proof. Without loss of generality, we may assume H = {&,,n € N}. We then define

1(w) := sup & (w).
neN

We claim that n is the essential supremum of H. It is easy to check (i). We now show (ii) holds true.
If o' is a random variable in £(€Q) such that n’ > &,, q.s. for any n € N, then we have c(n’ <&,) =0,
for any n € N. Note that

c(n’ <n) =c({w : In such that ' < &,}) < Zc(ﬂ/ <&n) =0,

n=1

which completes the proof. m



Definition 2.8 A set H is said to be dense in H, if for any £ € H, there exists a sequence {&,,n €
N} € H such that E[|€, — &|] = 0 as n — oco.

Proposition 2.9 If H has a countable dense subset, then the essential supremum of H exists.

Proof. Without loss of generality, set H := {&m,m € N} is the countable dense subset of H. Denote

n(w) = sup &m(w).
meN

We claim that 7 is the essential supremum of H. It is sufficent to prove for any £ € H, n > &, q.s.
For any £ € H, there exists a sequence {&,,n € N} C H such that E[|§, —£|] — 0 as n — oco. By
Proposition 1.17 of Chapter VI in [I5], there exists a subsequence {&,, }32, such that,

¢ = lim énw q.s.
k—o0
Since for any k, én,c <n, we have £ <7, q.s. m

Remark 2.10 Consider the example in Remark , Set H := {fo((B)1), € [1,2] N Q}. It is easy
to check that H is a countable dense subset of H. Then n := sup.cz & = f1({B)1) is the essential
supremum of H.

Proposition 2.11 Assume that H C Lg (Q) is upwards directed and

sup E[¢] = sup —E[—£].
EeH EEH

Then the essential supremum of H exists.

Proof. Since the family H is upwards directed, there exist two increasing sequences {£/,n € N} C H,
i =1, 2, such that
lim E[6)] = sup E[¢], lim —E[-£7] = sup —E[-¢]. (2.1)
n—o00 cEH n— oo =
We claim that n := sup,, 7, is the essential supremum of H, where n,, = £} V&2, Obviously, the second
statement in Definition holds true. We now prove the first statement. It is easy to check that

5251@[«5] > Eln,) > E[el],
sup —E[—¢] > —E[—n,] > —E[-€2].
EeEH

Letting n — oo, it follows that

supE[¢] = lim E[p,] = lim —E[—n,] = sup —E[—¢].

567‘[ n—oo n—oo 56?—[

Applying Proposition 28 (7) in [§], we have

El) = lim B[], —E[-n] = lim —E[-n,],
n—oo n—oo
which implies that n has no mean uncertainty. For any ¢ € H, using the monotone convergence
theorem, we get that

Elpv e = lim En, V€ < sup E[¢].
n—o00 EEH



Then we conclude that R . X
0<E[EVn—n =E]gVn -El<0,
which indicates that £ V n —n =0, q.s. The proof is complete. =
In the following, we list some properties of the extended (conditional) G-expectation. It is natural
to extend the definition of G-expectation [ to the space L(), still denoted by . For each X € L(Q),
the extended G-expectation has the following representation.

E[X] = sup EF[X].
PcP
Lemma 2.12 Let {X,,,n € N} C L£(2). Suppose that there exists a random variable Y € L(2) with
—E[-Y] > —oco such that, for anyn > 1, X,, >Y q.s. Then liminf, . X, € L(Q) and
E[lim inf X,,] < lim inf E[X,,].
n—oo n— oo
Proof. By the classical monotone convergence theorem and Fatou’s Lemma, we have for each P € P,
EP[liminf, . X,] exists and
EPliminf X,;] < liminf E¥[X,,] < lim inf B[X,,].

n—oo n—oo n—oo

Taking supremum over all P € P, we get the desired result. m

Remark 2.13 It is worth pointing out that the Fatou Lemma of the“limsup” type does not hold
under G-expectation. For example, set 0 < g% < 3% = 1. Consider the sequence {X,,n € N}, where
X, = I{<B>1€(1*71L’1)}' It is easy to check that X,, — 0 and E[X,,] = 1 for any n € N. Therefore, we
have . .

0 = E[limsup X,,] < limsupE[X,,] = 1.

n— oo n—oo

In fact, for any given X € Eg (), the supremum of expectation over all probability P € P is
attained.

Proposition 2.14 For any X € Eg (Q), there exists some P € P, such that
E[X] = EF[X].
Proof. We first claim that for any X € Lg‘ (Q), if P, — P weakly, then we have
limsup B [X] < EP[X]. (2.2)

n—oo
We first prove Equation (2.2]) for any X € Lg (). Note that there exists a sequence of random
variables {X,,} C LL(Q) such that X,,, | X, q.s. Then for any m € N, we have B/ [X] < B [X,].
Applying Lemma 1.29 of Chapter VI in [15], it follows that

limsup EF7[X] < limsup EF*[X,,] = BY[X,,].

n—roo n—roo

Letting m — oo, by the monotone convergence theorem, Equation (2.2)) holds. For any X € Lg (Q),
there exists some {X,,} C Lg (), such that X,, T X, q.s. By monotone convergence theorem, it is
easy to check that

lim sup EF[X] = lim sup lim inf B [X,,] < lim inf lim sup B [X,,]

n—00 n—oo M—00 m—00  no0o

< liminf EP[X,,] = EP[X].

m— o0



Now for any X € Eg (), there exists a sequence of random variables {X,,} € Lg’: (Q) such that

lim sup E7|X,, — X|= lim E[X,, — X[]=0.
m—r o0

m—0o0 PepP

Then for any € > 0, there exists some M independent of P, such that, for any m > M, EF[X] <
EF[X,,] + . By the definition of extended G-expectation, we can choose a sequence of probability
measures {P,}, such that

E[X] = lim EP[X].

Noting that P is weakly compact, without loss of generality, we may assume that P,, converges to P
weakly. We can calculate that
E[X] = lim EP[X] <limsup EF[X,,] +¢ < EP[X,] + ¢ — EF[X] +¢, as m — .
n—0o0 n—00
Since € can be arbitrarily small, we get the desired result. m

Now we extend the definition of conditional G-expectation. For this purpose, we need the following
lemma, which generalizes Lemma 2.4 in [6].

Lemma 2.15 For each £,1 € LE () and A € B(Q), if €14 > nla q.5., then By[€]14 > Ey[n]Ia g¢.s.

Proof. Otherwise, we may choose a compact set K C A with ¢(K) > 0 such that (E[¢] —E.[n])~ > 0
on K. Noting that K is compact, there exists a sequence of nonnegative functions {(,}52; C Cp(£2:)
such that ¢, | I, which implies that I € L} (Q). Since &,1 € L (Q), there exist &,n; € L ()
and {7172, {01521 € Lg(Q), i = 1,2 such that & L €, 5" |7 and

§=6&—&, n=m—n.

Set X,, = &0+, Yy, = &+ 7. Then {X,, 152, {V,}52, C LE(Q) and they are decreasing in n. We
denote by X,Y the limit of {X,,}22,,{V,,}22, respectively. It is easy to check that X,V € L} (Q)
and £ —np = X — Y. For each fixed I, m,n € N, we have

E[G( Xy — Yi) 7] L E[I(Xp — Yi) 7], as 1 — o0,

and
E[GE (X, — Vi) 7)) L BIKE[(X, — Y;n)7]], as 1 — oo,

Noting that . o
E[Cl(Xn - Ym)_] = E[ClEt[(Xn - Ym)_Ha

it follows that

E[IK(Xn _Ym)_] E[IKEt[(Xn _Ym)_”-

For each fixed m,n € N, we have Ix(X, — Y,,)~ € L& (). First letting m — oo, we obtain
Ie(Xy — Y)™ 4 Ix(X, = Y)™ and Ix(X, — V)™ € L5 (Q). Then letting n — oo, we obtain
I (X, —Y)™ 1+ Ig(X —Y)~ and Ix(X — V)~ € L5 (). Therefore, we can calculate that

lim lim B[l (X, —Yn) | =BIg(X —Y) | =E[Ix(€ —n)"] = 0.

n—o0 mMm—o0

By a similar analysis, we have

lim lim BIxE[(X, — Yn)7]] = BIKE](X — Y)7]] = E[IxE[(€ — n)~]].

n—o0 m—o0



By Proposition 34 (4) and (8) in [§], we can check that

(Eele] = Eun]) ™ < Bel(€—m)7),

which yields E[(¢ —7)~] > 0 on K. Recall that ¢(K) > 0 which implies that E[IxE,[(& —n)~]] > 0.
This is a contradiction and the proof is complete. m
Lemma allows us to extend the definition of conditional G-expectation. For each t > 0, set

LN Q) = {€ = mila, : {A;}}-, is a partition of B(Q),n; € L (Q),n € N},
i=1
Definition 2.16 For each & € L*Gl’o’t(Q) with representation & = Y . n;la,, we define the condi-
tional expectation, still denoted by Ky, by setting

n

ZES [m:]14,, fors>t. (2.3)
i=1

Es{ﬂ :

Remark 2.17 If furthermore, § € I_/l*(Q) NL:: Ot(Q) then the extended conditional G-expectation

(2.3) coincides with the one as in Proposition . In fact, for any £ € L’kl 0, t(Q) with representation
E=Y 1 nila, and s > t, we can calculate that

> Elnilla, —ZIA esssup "E9[n|F.] = esssup P (> E9mi| Flla,)
— — ' Qep(s,P) QeP(s,P) =

= esssup T EY| ZmIA |F] = esssup PE[¢|F.], P-a.s.,
QEP(s,P) i—1 QEP(s,P)

for any P € P.

3 Optimal stopping in discrete-time case

In this section, we study the optimal stopping problem under G-expectation for the discrete time case,
i.e. the G-stopping time 7 takes values in some discrete set. We first investigate the finite time case
by applying the method of backward induction and then extend the results to the infinite time case.
3.1 Finite time horizon case

In this subsection, we need to assume the payoff process X satisfies the following condition.

Assumption 3.1 {X,,n = 0,1,--- N} is a sequence of random wvariables such that for any n,
X, € LE(Q,).

Theorem 3.2 Let Assumption hold true. We define the following sequence {V,,,n =0,1,--- N}
by backward induction: Let Vy = Xy and

Vo = max{X,,E,[Voi1]}, n <N —1.
Then we have the following conclusion.

(1) {Va,n=0,1,--- N} is the smallest G-supermartingale dominating {X,,n=0,1,--- | N};



(2) Denote by T; n the set of all G-stopping time taking values in {j,--- ,N}. Set 7; = inf{l > j :
Vi = Xi}. Then 7; is a G-stopping time and Viar, € L (Qy), for any j < N and n < N.
Furthermore, {Vanr;,m =0,1,--- N} is a G-martingale and for any j < N,

V; = Ej[XTj] = esssup E;[X,].
T€T; N

Proof. (1) It is easy to check that for any n =0,1,--- | N,
Vn Z Xna and Vn Z IA['En[‘/n-ﬁ—lL

which implies {V,,,n = 0,1,--- , N} is a G-supermartingale dominating {X,,,n = 0,1,--- ,N}. If
{Un,n=0,1,--- , N} is another G-supmartingale dominating {X,,n =0,1,--- , N}, we have Uy >
Xy =Vy and . .

Un-1 2 En_1[Un] > Exn_a[VN], Un—1 > XN

It follows that Uy_1 > Vy_1. By induction, we can prove that for alln =0,1,--- , N, V,, < U,.
(2) For any n = j,--- , N, we can check that
{Tj < TL} = UZ:j{Tk = k} = UZ:j{Vk = Xk}

and

Hry<ny = WAX Iy xi=0)-

By Remark Iy, —x,—0} € Lg (), for any j < k < n. It follows that I{, <.} € Lg ().
It is easy to check that, for any j <n < N,

n—1
Vane, = > (Vi = Vir ) I <y + Vi
k=j
n—1 n—1 (31)
= Z(Vk — Vk+1)+I{7—j§k} — Z(Vk — Vk+1)_I{7—j§k} + V.
k=j k=j
We conclude that Vyar, € Lg (Q,). Note that
Vv(nJrl)/\T_,» - VnnAT; = I{‘ernJrl} (VnJrl - Vn) = I{'rjgn}c (VnJrl - IAEn[VVn+1]) (32)
Since {r; < n} € B(f,), applying Lemma and equation (2.3)), we have
En[I{Tan}C (Vn—H - IE:n [Vn+1])] = I{rjgn}cfEn[(Vn—H - En[vn+1])] =0. (3-3)
Combining (3.2)) and (3.3)), we can get
0= IAEn [‘/(n+1)/\7'j - n/\‘rj] = IAEn[Vv(n+1)/\Tj} - Vn/\‘rja
which shows that {Vi,ar,,n =j,j +1,---, N} is a G-martingale. Consequently, we have
Vi = Ej[VTj] = Ej[X‘fj]~
We claim that, for any 7 € T; v,
v > By[X,]. (3.4)



First, similar with (3.1)), we obtain X, € L (Qy). We then calculate that

N-1
Env_1[X,] <Ena[Vi] =Enoa[ Y (Vi — Vir 1) I gr<iy + V]
k=j
N—2 A
=Y (Vk = Vg r<py + Vno1lr<n—1} FEn 1 [VNI{r=ny]
k=j
N—2 A
= > Vi = Vi) <y + Vnoilfran—1} F En 1 [VN]T(=my
=y
N2
< (Vi = Viri) z<iy + V-1 = Vin—1)ars
k=)

where we use Equation (2.3) again in the last equality. Repeat this procedure, we get that ((3.4)) holds.
The proof is complete. =

Remark 3.3 If {V,,}_, is defined by
Vv = Xn, V,=min{X,,E,[V,i1]}, n <N —1.
By a similar analysis, we have the following conclusion.
(1) {V,,n=0,1,--- N} is the largest G-submartingale dominated by {X,,n=0,1,--- | N};

(2) Sett; =inf{l > j:Vi = X;}. Then 7; is a G-stopping time and Vynr; € L (Qy), for any j < N
and n < N. Furthermore, {Vonr;,n=0,1,--- , N} is a G-martingale and for any j < N,

V= Ej[XTj] = essinf E;[X,].

TET; N
By Proposition [2.1]], there exists some P € P such that
Vo= inf sup EP[X,]=E"[X,].
7€To.N PeP

3.2 Infinite time horizon case

Now we study the infinite time case. The conditions on the payoff process are more restrictive
compared with the finite time case mainly due to the fact that the order of the right-hand side of
Doob’s inequality under G-expectation is strictly larger than the one of the left-hand side.

Assumption 3.4 {X,,n € N} is a sequence of random variables bounded from below and for any
neN, X, € Lg(ﬂn), where > 1. Furthermore,

E[sup |X,|%] < co.
neN

For each fixed N € N, we define the following sequence {VnN ,n =0,1,---,N} by backward
induction: Let V¥ = X and

VY = max{X,,E,[VN,]}, n <N — 1. (3.5)
It is easy to check that for any n < N < M, VN < VM. We may define
Ve = lim VN (3.6)

N>n,N—oco
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Proposition 3.5 The sequence {V,°,n € N} defined by (3.6) is the smallest G-supermartingale dom-
inating the process {Xy,,n € N}.

Proof. By monotone convergence theorem, letting N — oo in (3.5]), we have

n

VOO — maX{Xn, En[ Nnoj»l]}7

which implies that {V.®° n € N} is a G-supermartingale dominating the process {X,,n € N}. Let
{Un,n € N} be a G-supermartingale dominating the process {X,,,n € N}. By Theorem {VN n=
0,1,--- ,N} is the smallest G-supermartingale dominating {X,,n = 0,1,--- ,N}. Then for each
n e Nand N > n, we have V.V < U,. It follows that

. ‘N <
U, > lim VN =V,

which yields that {V>°,n = 0,1,---,N} is the smallest G-supermartingale dominating {X,,n =
0,1,---,N}. m

For each j € N, denote by 7; the collection of all G-stopping times taking values in {j,j +1,---}
such that

lim ¢(r > N) =0. (3.7
N—o0
Set ) R
Vo = sup E[X‘r]

7€To

Remark 3.6 If a G-stopping time T satisfies condition (3.7)), noting that {7 = oo} C {7 > N} for
any N € N, we obtain that
0<ec(r=00) < lim e(r > N) =0,
N—o00

which implies that T is finite quasi-surely. Howewver, the inverse does not hold true. Consider the
following example. Let 0 < 0% < 5% = 1. Set

1L if (B =0,
TTAN, i Bhe- g 1- L N2
0

It is easy to check that T is a G-stopping time and ¢(17 = o00) =
have

o(r > N) = ((B)y > 1_%) Y

Proposition 3.7 Under the above assumptions, we have
Vo = V5~

Proof. By Theorem it is obvious that Vj > VON , for any N € N, which implies that Vj > ‘7000.
We then prove the inverse inequality. For any 7 € 7y and € > 0, there exists some N such that
¢(t > N) < e. By Assumption 3.4 and the Holder inequality, we can calculate that

B—1

~ ~ ~ 1 A B=1 B=1
R X, — X;an]] < E[2 sup X, Iirsny] < C(Elsup | X, )P (B[l rsny)) 7 <Ce 7. (3.8)
ne

neN

It follows that A . st P -
E[X;] SE[X; ] +Ce <V +Ce? <V +Ce 7.

Letting € — o0, since 7 is arbitrarily chosen, we finally get the desired result. m
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Proposition 3.8 Assume that ~
7, =inf{l > j: V> = X;}

satisfies condition (3.7). Then we have

(i) 7, €T, and Voo EL};:

NAT;

(Q,), for each n € N;
(ii) {Vn"/‘iﬁ,n =4,7+1,---} is a G-martingale;

(iii) For any j € N,

f/joo = [X+,] = esssup E,[X.].
TET;
Proof. (i) Noting that for any k € N and N > k, VkN > X and VkN T Vkoo as N — oo, then we have
{Vi® = Xi} = N5, {V,Y = X4}, which implies

inf I

I{Vkoc:Xk} = N>k {VkN:Xk}.

By the proof of Theorem we have [ (VN=x,) € Lg (Qr). Applying Proposition we can check

that Ip_x,; € Lg (). Since

Hry<ny = 02X Ligee_x,ys

it follows that I, <, € Lg (Q,). Without loss of generality, we may assume X,, > 0 for any n € N.
It is easy to check that

n—1
Virr, = Z(Vkoo = Vit i <ey + Vi
k=3

Since I{,,<x} € L& (), there exists a bounded sequence {25152, C LY, () such that &5 | I{, <.
Note that
VN, EF | V2 ek as N — oo,
V&8 1 =Vt Ir, <ky, as n — oo,
VNER LV <k, as n— oo,
Vil I, <y T Vi Iin <ky, as N — oo,

It follows that —Vi$, I(, <k} € L¢3 (1) and VPI(, <xy € L (Q). Hence, Vs, € L ().
(ii) Note that

‘7(?10—0—1)/\7'_7 - Vno/.irj = I{TJ'ZTL-l-l}(VnOil - Vnoo) = I{ij’n}c (Vnoil - En[ ~nojil])' (39)
Since {r; < n} € B(Q,) and V2, —En[~,fi1] € LE (Qy41), applying Lemma and ([2.3]), we have

EH[I{TjSTL}”(VnOil - ]E’ﬂ [VnOJOrl])] = I{T7§n}°En[Vnoi1 - En[ ~n°il” = 0 (310)
By a similar analysis as Step (i), we can get that —Vno,‘iTj € Lg (©,). The above two equalities implies
that
0=E, [V(C:v,o+1)/\7'j - Vno/.i'rj] =E, [‘/(ff-i—l)/\fj} - Vno/.i'rja

which shows that {Vn‘",iTj ,n=7,7+1,---}is a G-martingale.
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(iii) First, we claim that there exists some 1 < p < ( such that
Efsup [V >°[?] < co.
neN
By Theorem we have f/jN =E; [XTJ ~], where Tj =inf{l > j: V;N = X;}. It is easy to check that
[VN] < Ejlsup,,en [Xa|] and

IE[ sup |VN\p] I@[ sup ]Ej[sup|Xn\p]].
1<j<N 1<j<N ° neN

Since E[sup,,cy | Xn|?] < 00, by Theorem 3.4 in [I7], there exists a constant C' independent of N such
that E[sup, ;< [V;V[’] < C. By monotone convergence theorem, we have

[bup|V°°|p} = hm E[ sup |VN|p} <C
=00 I<<N

‘We then show that

Ve = B[] = By (X,
Indeed, by Step (ii), we have for any n > j

Ve =RV ] (3.11)

J nAT;

For any € > 0, there exists some N > 0 such that, for any n > N, ¢(7; > n) <e. It is easy to check
that

B[, [VX,] - By VRl < BIVR,, — Vol < [QSHPIV iz >my] < C(E [Slelglvnmlp])l/pel/q,

where % + % = 1. First, letting n — oo, since ¢ is arbitrarily small, (3.11) yields that V> = E; [VT‘jO]

In the following, we show that for any 7 € 7}, ‘7j°° > I@j [X-]. For any 7 € T; and € > 0, there exists
some N such that ¢(7 > N) <e. We can calculate that

E[| X, — X;an]] < [28up|Xn|I{T>N}]<C€T.

It follows that .
E;[X;] = hm E[XAn].

N —o0

By a similar analysis as the proof of Theorem ﬁ, we have for each N > j, f/j‘x’ > I@j [X;an]. Letting
N — o0, we deduce that Vj"o > [&;[X,]. This completes the proof. m

Remark 3.9 For each fited N € N, we may define the sequence {K;V,n =0,1,---, N} recursively:
Let VN = Xy and
VYN = min{X,,E, VY ]}, n<N -1

We can check that for anyn < N < M, zﬁf < KnM, It is natural to define

Ve = lim VY.

N>n,N—oco
Then silimar results still hold for the sequence {V.°°,n € N}. More precisely, set
7 =inf{l > j:V° = X;}.

Assume that 7; is finite quasi-surely (i.e. ¢(1; > N) — 0, as N — 00). Then we have
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(i) 7 €T; and V5., € LEH(Qy,), for each n € N;

—NnN\T;
(ii) {Kff/\” ,n=7,7+1,---} is a G-martingale;

(iii) For any j € N,

VF =EjlXr,] = essinf E;[X-],

(iv) The sequence {V°,n € N} is the largest G-submartingale dominated by the process {X,,n € N}.

4 Optimal stopping in continuous time

4.1 Finite time horizon case

In this subsection, we provide the relation between the valuc function of the optimal stopping problem
and the solution of reflected G-BSDE. For simplicity, assume the time horizon is [0, 1]. We need to
consider the following payoff process {X;}icjo,1]-

Assumption 4.1 The payoff process {Xi}iecjo,1) € Sg(O, 1) (for the definition, we may refer to Ap-
pendiz B), where § > 1.

Denote by 7.7 the collection of all G-stopping times 7 such that s < 7 < ¢ and by 77 the
collection of all G-stopping times taking values in Z,, such that s < 7 < ¢, where 0 < s < t and
I, ={k/2", k=0,1,--- ,2"}. Set

Vo= sup E[X,]. (4.1)
7'67—0?‘1
For each n € N, we define the following sequence {V%,k =0,1,---,2"} backwardly: Let V" = X,

and .
‘/t% = maX(th,Etg [‘/’t%Jrl])’ k= 0,1,--- 72” —1,

where t} = k/2". By Theorem forany n € Nand £ =0,1,--- ,2™, we have

Vi = esssup Et;}[XT]-
k 7676"17T2t2

It is easy to check that for any n € N and £k =0,1,---,2", Vt% < VtZLH. Then we may define
o = li Vi 4.2
th mznl,gll—)oo bk ( )

Proposition 4.2 Let T = U,Z,. For each t € I, we have V> € L} (Q4). Morevoer, the sequence
{Ve°,t € I} is the smallest G-supermartingale dominating the process {Xy,t € I}.

Proof. Let 7, € 7 and t; < t;", where m,n € N. It is easy to check that

B [ViS] = B[ lim VY] =By lim VM)
L E*M>m,M—oco 1 E*M>(mvn),M—oco !
= lim Em VM) < lim VM =vge.
M>(mvn),M—occ * " M>(mvVn),M—oco 'k k

Now let {U;,t € T} be a G-supermartingale dominating {X;,t € Z}. By Theorem we know that
{V",t € Z,,} is the smallest G-supermartingale dominating {X;,¢t € Z}. Therefore, for any m > n,
we have Upn > Vt? Letting m — oo, we get that Upn > Vtzﬂ which completes the proof. m
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Proposition 4.3 Assume that the payoff process { Xi}ie(o,1) satisfies Assumption . Then we have
Vo = V.

Proof. Note that for each n, R
Vot = sup E[X,].
TETH
Consequently, we have V5 > V%, n € N. Letting n tends to infinity, we get Vo > V,2>°. Now we prove
the inverse inequality. For each 7 € 71 and n € N, set
27L
1 k

T = QTI{OSTS%} + Z 271{%<TS2% :

k=2

It is easy to check that 7" € 75" and |7 — 7| < 1/2". Applying the continuity property of X (see

Lemma [B.2)), we have
lim E[|X, — X,»

n—oo

] =0.

It follows that

E[X,] = lim E[X ] < lim VJ® = V5©.

n—oo n—oo

Since 7 is arbitrarily choosen, we deduce that Vo < V5°. m

According to [3], we know that the value function of the optimal stopping problem defined by
g-expectation coincides with the solution of reflected BSDE with a lower obstacle. It is natural to
conjecture that our value function defined by G-expectation corresponds to the solution of reflected
BSDE driven by G-Brownian motion. The solution of reflected G-BSDE is a triple of processes
(Y, Z, L) such that the first component Y lies above the obstacle process X and the last component can
be regarded as the force to push Y upwards which behaves in a minimal way satisfying the martingale
condition instead of the Skorohod condition. For more details, we may refer to the Appendix B.

Theorem 4.4 Let (Y, Z, L) be the solution of reflected G-BSDE with terminal value X1, generator 0
and obstacle process X. Then we have Yy = V.

Proof. By Proposition 3.16 in [9], Y is a G-supermartingale dominating the process X. By Theorem
2] for all n € N, we have Yy > V{*. Applying Proposition [£.3] it follows that Yy > lim, o Vg" = Vo.
We then show the inverse inequality. For each fixed n € N and ¢ > 0, set

T =inf{t € L,,t > 0: A <e},

where A; = Y; — X;. It is easy to check that 7' is a G-stopping time and it is decreasing in n and e.
Furthermore
Te=lim 70 =inf{t € Z,t > 0: A; < e}.

n—oo

Let
7 =1inf{t > 0: A; = 0}.

By Proposition 7.7 in [11], we have Yy = E[X,]. We claim that

lim lim 7' =lim 7. = 7. (4.3)
e—=+0n—o0 e—0

We prove (4.3)) in two case. Suppose that 7(w) =t € Z. Then there exists some n € N such that
t € Z,. For any k > n and ¢ > 0, we have 7%(w) < t. For each fixed m € N, Note that A;(w) is
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continuous in ¢. Denote by &, the minimum of A;(w) on the interval [0,¢—1/m]. For any € < ¢, and
n € N, we have 77 (w) >t — 1/m and 7.(w) >t — 1/m. We conclude that for any & > n and € < &,
1
t—— <7Hw) <t
< rhw) <

First letting & — oo and e — 0 and then letting m — oo, we show that (4.3)) holds true when 7(w) € Z.
If 7(w) =t ¢ I, there exists a sequence {t;} C Z such that t; | t. For any € < &,,, there exists a
constant K,, such that, for any k£ > K,,,

Apy (W) = [Ag (w) — Ar(w)| <e.

It follows that 7.(w) < tx. We deduce that for any € < &,,, and k > K,
1
t— — <7 (w) <t
m

First letting k — oo, then letting ¢ — 0 and finally letting m — oo, the above inequality yields that
(4.3) holds true. By the continuity property of X (see Lemma [B.2)), we have
Yy = E[X,] = lim lim E[X,.] < lim lim VQ* = Vj.
e—=0n—o0 € e—=+0n—o0

Remark 4.5 By a similar proof of Proposition 7.7 in [11)], for any t € [0,1], we have Y; = E,[X,],
where (Y, Z, L) is the solution of reflected G-BSDE with data (X1,0,X) and

7 =inf{s > t:Y; — X, =0}.
Modified the proof of Theorem [{.4 slightly, we obtain that Y; = V,>°, for any t € L.
With the help of the relation between value function of optimal stopping problem and the solution

of reflected BSDE driven by G-Brownian motion, we may get the following representation theorem
similar with the discrete time case.

Theorem 4.6 For each t € T, we have

V> = esssup B[ X;].
7'67-{'?(1)

Proof. Since t € 7, we assume that ¢ = 2% for some n € N. Then for any 7 € 7, and m > n, set

om _ogm-—np

m

2mT e+ 1
T :7+ I

2
ooy Y T amoniiny __amemi
2m {Fr <T< 2oty 2m A <rS )
=2

We can check that 7 € T;"} and |7 — 7™| < 1/2™. By the continuity property of X, it follows that

E X, = lim B [X,m] < lim V™ = V>,

m—00 m—00
We now claim that if n > E;[X,], for any 7 € T:%, then n > V>, For each fixed n € N and € > 0, set
7 =inf{s €L,,s >t: A; <e},

where {A} is the process defined in Theorem 4.4, By a similar analysis, we have 7,"° € 7", and

lim lim 7, = 7.
e—0n—o0

Applying Lemma and Remark [£5] yields that
Vi = EoXr] = lim lim By [Xone] < 7).

The proof is complete. =
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4.2 Infinite time horizon case

In this subsection, we investigate the infinite time horizon case. The payoff process X satisfies the
following assumption.

Assumption 4.7 {X;,t > 0} is bounded from below and for any n € N, X € Sg(O,n), where > 1.
Furthermore, Elsup,q | X¢|’] < co.

Set t} = % and Z2° = {t} : k= 0,1,--- }. For each fixed n, N € N, define the following sequence

{VZ’N :k=0,1,--- , N} backwardly:

n,N __ n,N
VN =Xy,

)
n
k

= max{ X, B [Vtgﬁ]}, E<N-—1.
It is easy to see that for any k < N < M, VZ,’N < VtZM We define

. N
o= lim V.
ko N>kN—oo 'k

Then Vit € L Q). I n < m, the for any N € N, we can easily check that

Vit < VN k< N,

kam—n

which yields that Vi < Vi = Vii'. We define
k2m—mn

k m>n,m—00  k2m-7 m>n,m—oo 'k

Then V;% € LZ}(Qt;;) and V satisfies the following property.

Proposition 4.8 The sequence {V;,t € I} is the smallest G-supermartingale dominating { X, t €
I}, where I = U2 I>°. Besides, we have

Vo = sup E[X,], (4.4)
TETS®

where T, is the collection of all G-stopping time taking values in [t,00) and satisfying equation (3.7)).

Proof. By Proposition and W’ we derive that {Vt’é, k € N} is the smallest G-supermartingale
dominating { Xy, k € N} and

Ve = sup E[X.],
TETS

where 7, is the collection of all G-stopping time taking values in Z°°, greater or equal to ¢ and
satisfying equation (3.7)). It is easy to check that for any ¢},t]” € Z° with ¢} < ¢[*, we have

Ep[Vip] =Ep[ lim VM ]= lim En[VM 1< lim VM =V,
k ! E*M>m,M—oco ‘12M—m M>(mvn),M—oco " 12M—m M>(mVn),M—oco “k2M-n k

which yields that {V;,t € Z*°} is a G-supermartingale. If {U;,t € Z°°} is another G-supermartingale
dominating {X;,t € Z°}, then for t = ¢} € Z° and m > n, it is easy to check that U > V’%? =
Vi . Tt follows that '

kQTﬂle
Upn > lim Vi =V
tk sl tk tka

m>n,m—oo
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which implies that {V;,t € Z°°} is the smallest G-supermartingale dominating {X;,t € Z*}. To
prove equation (4.4)), first note that Vo = lim,—, o V' < SUP, 700 E[X,]. On the other hand, for any
T € Ty°, there exists 7" € T* such that 7* — 7. Noting that X is continuous and applying Lemma

212 we get

E[X,] = E[lim inf X,»] < lim inf B[X ] < liminf V* = Vp.

n—oo n—oo n—oo

Since 7 is chosen arbitrarily, the proof is complete.

Remark 4.9 In fact, {V;,t € >} can be defined by the following procedure. By equation and
Proposition we can construct a sequence {VtOO’N,t € I°,t < N} such that it is the smallest
G-supermartingale dominating the process {X¢,t € It < N}. Besides, by Theorem for any
t € I with t < N, we have

VN = esssup By [X).
TET, TN

It is easy to check that for t <N < M, V>N <v2M . For each t = ty € I°°, We may define

. N
Vi = lim V7.
N>t,N—o0

We claim that Vi = V; for any t € I°. It suffices to prove that {f/t,t € I} is the smallest G-
supermartingale dominating {X;,t € Z°}. For any s,t € I with s < t, we have

EoVi] =E,[ lim V>N = lim  EJ[VV < lim VRN =V,
N>t,N—00 N>t,N—oc0 N>t,N—oc0

Now suppose that {U;,t € I} is the a G-supermartingale dominating {X;,t € I}, then we have
U; > Vtoo’N for any t < N. Letting N — oo yields that Uy > V.

By a similar analysis as the proof of Proposition|3.8, we derive that for any 7 € T° and t € T

. = . oo, N
= < ’ — .
Bl = s Blean] = i T =

On the other hand, if there exists some n € L(), such that n > By[X,] for any T € T,° with some
t € I, thenn > VtOO’N for any N > t, which implies that n > V,. By the definition of essential
supremum, the above analysis shows that

Vi = esssup (X, .
TETS

for each t € T°°.

5 Markovian case

In this section, we will present basic result of optimal stopping under G-expectation when the payoff
process is Markovian. More precisely, consider the payoff process {X € } generated by the following
G-SDE:

X =¢ +/ b(XEE)dr +/ h(X5%)d(B), +/ o(X%)dB,, (5.1)
t t t
where £ € LL(), p>2and b, h, 0 : R — R are deterministic functions satisfying the following:

(H1) There exists a constant L > 0, such that for any x,y € R

[b(x) = b(y)| + |h(z) = h(y)| + [o(z) — o(y)| < L]z —y.
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Then we have the following estimates, which can be found in [IT] [15].

Proposition 5.1 Let £,& € LE() and p > 2. Then we have, for each 6 € [0,T —t],

E sup |X0¢— XIS < Cle-¢P,

SE[t,t+0]
E | X705 < C(1L+[€P),
B, sup |X5¢ —¢P] < C(1+[¢P)or/?,
SE[t,t+0]

where the constant C' depends on L,G,p and T.
For simplicity, set X% := X%, By Lemma 4.1 in [5], we have the following Markovian property.

Lemma 5.2 For each given ¢ € Cy 1ip(R) and s,t > 0, we have

Ee[o(X7 )] = Elp(XY)]y—xp
5.1 Discrete time case

In this subsection, we first investigate the discrete time case. For a given function f € Cj 1;,(R) and
z € R, consider the following optimal stopping problem

FN(@) = sup BIF(XD)) (5.2)

T€T0,N
Lemma 5.3 For each N € N, the function F defined by equation (5.2)) is bounded and Lipschitz.
Proof. Since f € Cy 1ip(R), FV is bounded. Besides, by Proposition we have

[FN(z) = FN(y)| < sup E[f(X?) — f(XY)|) < CE[ sup |X7 — X!|] < Cla —y.
T€To,N te[0,N]

n
Set X* = f(X¥). It is easy to check that {X* n € N} satisfy Assumption Similar with
Section 3, we define the following sequence {V,N,n =0,1,--- , N} backwardly. Let V3 (z) = X% and

VN(z) = max{X,f,fEn[Vnﬁl(x)]L n<N-—1.
It is important to note that V{" (x) = FN(x). Moreover, we have the following identity
VN(z) = FN="(X?), for 0 <n < N. (5.3)

This will be shown in the proof of the next theorem. Now we set

Co={zeR: FN""() > f(x)},

Dy ={z e R: FN™"(z) = f()},
for any n =0,1,--- ,N. Then we define

" =inf{0 <n < N:X®eD,)}.

Since both FN~" and f are Lipschitz continuous, then D,, is a closed set which implies that I {XzeD,} €

LE (Qy,). Therefore, we may conclude that Tg’z

define the following transition operator 7"

Tf(z) = E[f(XT)].

is a G-stopping time. Finally, for any f € Cy rip(R),
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Theorem 5.4 Consider the optimal stopping time problem (5.2). Then for anyn =1,2,--- N, the
value function F™ satisfies the Wald-Bellman equations

F(a) = max{f(z), TF"" ! (z)}, (5.4)
where FO(x) = f(x). Furthermore, we have
(i) Tg’x is a G-stopping time and optimal in equation (5.2));

(i) The sequence {FN="(XZ),n = 0,1,--- , N} is the smallest G-supermartingale which dominates
{f(XE),n=0,1,--- | N} for each x € R;

(iii) The stopped process {FN’”/\TD (x=

n/\‘rD

.),n=0,1,--- N} is a G-martingale for each x € R.

Proof. We claim that {V{'} satisfies the Wald-Bellman equations. Indeed, it is easy to check that
V(x) = X = f(z) and

Vg (@) = max{ X3, E[V}! (2)]} = max{f(z), E[f (X])]} = max{f(x), TV{ («)}.
We assume that for any n < k, Vg*(z) = max{f(z), E[V;" "' (X¥)]}. We then calculate that

Vi (@) = max{ f(X7), Ex[f (X))} = max{f(X7), BIf(X)]y=x; } = V&' (X7),
and
Vit (@) = max{ £ (XF_1), Bix—a [VEH ()]} = max{ f(X{_), BVY (X))}
= max{f(Xj_,), [V&(Xi’)}y:xg,l} = Vi (Xi_y).
By the above procedure, we have
Vi (@) = max{f(X7), 1[Vk+1(:v)]} = max{f(XT), E[Vg" " (X3)]}
= max{ f(X7), E[Vy ™ (XD)]y=xz } = V&' (XT),
which yields that
Vot (@) = max{ f(«), B[V ()]} = max{f (z), B[V"(X{)]}.

Note that the above analysis also establishes that for any 0 < j < n < N, V'(z) = Von_j (X7).
Recall that F"(x) = VJ*(x), n = 0,1,--- , N, which implies that (5.3) holds and F™ satisfies the
Wald-Bellman equation. Applying Theorem the conclusions (i)-(iii) hold. m

For the infinite time case, the value function is defined by

F(z) = sup E[f(X2)], (5.5)

where f € Cp 1ip(R). Let V,°(x) = limy 00 V,¥ (x). By Proposition we have

F(z) =V(z) = lim FN(z),

which implies that F' is a bounded lower semicontinuous function. Then letting N — oo in equation

(5.3)), it follows that
Vit (z) = F(Xy), forn eN.

n
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Set

C={reR:F(z)> f(x)},
D={zeR:F(z)=f(x)}

Since F' is lower semicontinuous, D is a closed subset of R. Then we define
tH =inf{n > 0: X} € D}.
Similar with the finite time case, 77, is a G-stopping time.
Definition 5.5 A measurable function F : R — R is said to be superharmonic, if for all x € R,
TF(x) < F(x).

Remark 5.6 We should point out that there is an implicit assumption in the above definition that
F(XY}) € LY(Q) for each z € R.

Lemma 5.7 Suppose that F is lower semicontinuous and bounded from below (resp. upper semi-
continuous and bounded from above). Then F is superharmonic if and only if {F(XZ),n € N} is a
G-supermartingale for any v € R.

Proof. Since F is lower semicontinuous and bounded from below, there exists a sequence {F"™, m €
N} € G 1ip(R), such that F™ 1 F. For the “if” part, suppose that F is superharmonic. Note that
F™(XZ) e LE(Qy,) and F™(XZ) 1 F(XE) for any m,n € N and € R. We can calculate that

P(XE) > TR(X3) = EP (X)), = lm EF™(X})],ox;
L . (5.6)
= lim_ B [F7(X7,)] = EF(OX),
for all n € N and = € R, which implies {F/(X?),n € N} is a G-supermartingale. For the “only if” part,
note that F(X*) > E, [F(X7,1)] holds for any n € N. Letting n = 0 yields that F' is superharmonic.
[

Theorem 5.8 Consider the optimal stopping time problem (5.5)). Then the value function F satisfies
the Wald-Bellman equations
F(x) = max{f(z), TF(x)}, (5.7)

Furthermore, assume that for any x € R, 7F, satifies . Then we have

(1) 73 is a G-stopping time and optimal in equation ;

(ii) The value function F is the smallest superharmonic function which dominates f on R;
(iii) The stopped process {F(X.=),n=0,1,--- N} is a G-martingale for each x € R.

It is easy to check that for any n = 1,2,--- |, N, there exists a unique solution to the Wald-Bellman
equation . However, when the time horizon is infinite, there may be many solutions to the Wald-
Bellman equation (5.7). For example, if f(z) = c, the any F(z) = C > ¢ solves this equation. In the
following, we give a sufficient condition under which the solution to equation is unique.
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Theorem 5.9 Suppose that G : R — R is lower semicontinuous and bounded from below satisfying
the Wald-Bellman equation
G(z) = max{f(z),TG(x)},

for x € R. Furthermore, we assume that, for some p > 1,

Efsup [G(X;)[] < oo,
neN

for any x € R. If the following “boundary condition at infinity” holds,

limsup G(X,7) = limsup F(X,7), gq.s. (5.8)

n—oo n—oo
for any x € R, then G equals to the value function F.

Proof. Without loss of generality, we assume that G > 0. Since G satisfy the Wald-Bellman equation,
it is superharmonic and G > f. By Theorem we have G > F. In the following, we show the
converse inequality. Define the random time

2 =inf{n >0: G(X}) < f(XZ)+e}=inf{n>0: X? € D.},
where € > 0 and
D.={zeR:G(x) < f(x)+¢}.

It is a closed subset of R due to the lower semicontinuity of G. Therefore, 72 is a G-stopping time for
any € > 0 and x € R. Besides, by (5.8), 72 satisfy condition (3.7). We claim that {G(XZ:,,,),n € N}
is a G-martingale for all z € R. By a similar analysis in the proof of Theorem we have G(X% »,,) €
Lg (Q,), for each n € N. Note that Iiecn1y € Lg (Qp—1). Tt follows that Iiresny € Lg‘ (Qp—1) and

G(Xfm(n—n)l{fsgn—l} € Lg (Q,—1). We can calculate that, for each n > 1 and z € R,

En1[G(XFe nn)] = Bnc1 [G(X0) 72 5my] + G(XFa (ot {2 <n1)
= Enfl[G(erL)]I{ran} + G(X;Cg)f{fggn—l}
TG(Xy 1) reony + G(XT) (7o <n—13
Xzfl)I{Tan} + G(ng)f{fggn—l}
fg/\(n—l))a
where in the third equality we use equation . Therefore, we have
E[G(X 7 pn)] = G(2),
for all n > 0 and « € R. A similar analysis as shows that

EG(X%)] = lim BG(XE )] = Gla),
for all z € R. Recalling (5.5)) and the definition of 7%, we derive that
Fl) > B[f(X%,)] > B[G(X5)] - ¢ = G(a) — <.

Since € can be arbitrarily small, we get F' > G, which completes the proof. m
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5.2 Continuous time case

In this section, we investigate the optimal stopping problem in the continuous time case when the
payoff process is Markovian satisfying equation (5.1]). Similar with Definition a basic concept is
the following:

Definition 5.10 A measurable function f:R — R is called excessive (w.r.t X;), if
flx) > E[f(XT)] for all t >0,z € R.
Definition 5.11 A measurable function f: R — R is called superharmonic (w.r.t Xy), if
f(@) > B (X2)]
for all G-stopping time T satisfying equation and all x € R.

Remark 5.12 [t is importiant to note that in the above definitions, there is an implicite assumption
that f(XZ) € LY(Q) for each G-stopping time T and z € R.

It is easy to check that a superharmonic function is excessive. The following proposition shows
that the converse is true for some typical f.

Proposition 5.13 Suppose that f is bounded and lower semicontinuous. If f is excessive, then it is
also superharmonic.

Proof. We first prove this result for f € Cy 1;,(R). Without loss of generality, we assume that f > 0.
Step 1. Suppose that 7 is a discrete G-stopping time of the following form:

T = Ztil{T:ti}'
=0

By a similar analysis as the proof of Theorem we have f(X%) e L (Q,) and

n

E[f(X2)] =B (X5 [rmty]

=0

n—1

=B FXI) ety + By [F (X ) ri,y]]
=0
n—1

:E[Z f(Xtm,L )I{T:tz} + I,Etnfl [f(thn )}I{T:tn}}
i=0

n—1
=E[Y | FXE) =ty + B o Dly=xz, Tir=t,3]
=0

n—2

SE[Z f(XtI,L)I{T:tL} + f(Xtmn,l)I{TZt”fl}] <. < f(x)v
1=0

where we use the Markov property in the forth equality.

Step 2. If 7 is bounded and continuous, there exists a sequence of discrete G-stopping time {77}52 ,
such that |7 — 7| < 1/2™. Applying the continuity of f(X?*), similar with the proof of Proposition
we have R )

E[f(X7)] = lim E[f(X7.)] < f(x).

n—oo
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Step 3. If 7 satisfy equation ([3.7]), by a similar analysis as the proof of Proposition it follows
that

E[f(X9)] = lim B[f(X7,n)] < f(2).

Now we show the result still hold for f which is bounded and lower semicontinuous. We can
choose a sequence {f,}52; C Cp 1ip(R) such that f, 1 f. By the proof of Theorem [2.15| we derive

that f(X7) € Lé* (€,,) for each discrete G-stopping time 7 with the form in Step 1. Besides, since
fu(XF) 1 f(XT) for any t > 0 and x € R, we have

B (X)) = lim Bl fu(XEL)] = lim BLfa(X)]ymxz = BLF (XY= (5.9)

Then the proof of Step 1 can be extended to the case where f is lower semicontinuous and bounded
from below. If 7 is continuous and bounded and 7" is choosen as Step 2, noting that f is lower
semicontinuous and applying Fatou’s Lemma, it is easy to check that

E[f(X7)] < Elliminf f(X2.)] < lim inf B[f(XZ)] < f(x).

n—oo n—oo

Repeating the proof of Step 3, we finally get the desired result. =

Proposition 5.14 Suppose that f is bounded and lower semicontinuous. Then f is excessive if and
only if {f(X¥)} is a supermartingale for any x € R.

Proof. If {f(XF)} is a supermartingale, it follows that

E[f(X)] < F(XE) = f(x),

which implies that f is excessive. The other direction can be shown easily by using equation .
The proof is complete. =

For any given bounded and Lipschitz continuous function g, by the following iterative procedure,
we may construct the smallest superharmonic function dominating g.

Proposition 5.15 Let g be bounded and Lipschitz continuous and define the following sequence:
go(z) = g(),

gn(I) = Ssup E[gn—l(Xt:E)]7 n= 1727 R}
teS,

where S, = {k-27" :0 < k < 4"}. Then g, T g and g is the smallest superharmonic function
dominating g.

Proof. It is obvious that {g,} is bounded and increasing. Furthermore, by Proposition we have

l92(2) = 91(w)] < sup E[lg(X7) — g(X})]] < C sup E[|X? — X}|] < Clz —yl.
€51 €51

By induction, we derive that g, is continuous. Define g(z) = lim, o gn(z). Then g is bounded and
lower semicontinuous. We claim that g is excessive. Indeed, we can show that

G(z) > gn(x) = E[gn_1(X7)], for any t € S,,n > 1.
Letting n — oo, it follows that

g > E[g(X?)], for any t € S = U, S,,.

24



If t ¢ S, there exists {t,}52; C S such that ¢, — ¢. By Fatou’s Lemma and noting that g is lower
semicontinuous, we have
Efg(X?)] < Efliminf g(X7)] < liminf B[g(X} )] < g(z).
n— oo " n— 0o "
The above two inequalities imply g is excessive. By Proposition [5.13] g is superharmonic. If f is a

superharmonic function and f > g, by induction, it is easy to check that f > g, forany n=1,2,---.
Letting n tend to infinity, we finally get the desired result. m

Theorem 5.16 Let g be a bounded and Lipschitz function. Define

V(z) = sup E[g(X2)],
T€T

where T is the collection of all G-stopping times satisfying equation (3.7). Then V is the smallest
superharmonic function dominating g.

Proof. Set Z>° = {0, 2%, cee 2%, -+« } for any n > 1 and denote by 7,>° the set of all G-stopping times

taking values in Z2° and satisfying equation (3.7)). Consider the following optimal stopping problem:

V(@)= sup Elg(X7))-

It is easy to see that V' > V" for any n > 1. On the other hand, for any 7 € T, there exists a sequence
of G-stopping time {7} such that 7" € 7,°° and 7" — 7. Applying Fatou’s Lemma, we have

Elg(X?)] = E[hnl inf (X)) < lim inf B[g(X%,)] < lim inf V" (2),
which implies that V" 1 V and V is bounded and lower semicontinuous. By Lemma [5.7] and Theorem
we know that {V"(X[),t € I>°} is a G-supermartingale for each z € R. If t € T = U2, T,

n

without loss of generality, we assume that ¢ = QL, By simple calculation, we have
EV(X®)= lim EV*X®]< lim  Vz)=V(2).
n—oo,n>m n—oo,n>m

If t ¢ 7%, there exists {t,} C Z° such that ¢, — t. Noting that V is lower semicontinuous, it follows
that
E[V(X?)] < Elliminf V(X7)] < liminf B[V (X7 )] < V().

n—oo n—oo

We derive that V' is an excessive function. Applying Proposition V' is also superharmonic. For
any superharmonic function f > g, it is easy to check that

V(z) = sup E[g(X?)] < sup B[f(X7)] < f(x),
TET TET

which yields that V is the smallest superharmonic function dominating g. m

Conclusion

In this paper, we use the G-stochastic analysis to study optimal stopping problem under Knightian
uncertainty for both the discrete time case and the continuous time case and the time horizon can be
finite or infinite. In order to solve this problem, we first introduce a new kind of random times, called
G-stopping times, such that the conditional G-expectation is well defined for each payoff process X
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stopped at some G-stopping time 7. Besides, since the multiple priors P represented the G-expectation
is non-dominated, we need to define the essential supremum in the P-quasi-surely sense.

For the discrete time case, when the time horizon is finite, we apply the method of backward induc-
tion to define value function V and then to show that V is the Snell envelope of X and the first hitting
time is an optimal stopping time. By taking the time horizon N goes to infinity, we get similar results
with the finite time case. By the refinement of the time interval, we can study the continuous time
case and then establish the relation between the value function and the solution of reflected G-BSDE.
Therefore, it helps to get numerical approximation for the value function as well as the solution of
reflected G-BSDE. In a Markovian setting, for the discrete time case, we show that the value function
is the solution to the Wald-Bellman equation. For the continuous time case, similar with the classical
result, the value function coincides with the smallest superharmonic function dominating the payoff
function.
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Appendix A

We now introduce some basic notations and results of G-expectation. As is shown in [§], we can
extend the conditional G-expectation to space Eg* (Q) and it satisfies the following property.

Proposition A.1 ([8]) For each X € Eg(Q), we have, for each P € P,

Ei[X] = esssup PEC[X|F], P-a.s.,
QeP(t,P)

where P(t, P) = {Q € P: Eg[X]| = Ep[X],VX € L;,(%)}.

The extended conditional G-expectation shares many properties with the classical conditional
expectation except the linearity. More precisely, we have the following proposition.

Proposition A.2 ([8]) We have

(1) X,Y € L5 (Q), X < V=E,[X] <E[Y];

(2) X €L (), YV € Ly (=R (X +Y] = X + B, [Y];
(3) X,Y € L (=R, [X + V] < By [X] + B [Y];

(4) X € L () is bounded, X > 0, Y € LG (Q), Y > 0, limy o0 B[Y Iysny] = 0B [XY] =
XE,[Y];

(5) X € Lg (=B B[ X])] = Egn[X];
(6) {Xu}o21 © LE(QILG(Q), Xo | X(X, 1 X) gs= X € LE QLG (Q) and B[X] =
Now we give some examples of random variables belong to the above spaces.

Proposition A.3 ([8]) We have

26



(1) Let X be a bounded upper (resp. lower) semicontinuous function on Q. Then X € L& () (resp.
X € Lg(Q);

(2) Let X € LE (U, R™) and let f be a bounded upper (resp. lower) semicontinuous function on R™.
Then f(X) € L (Q) (resp. f(X) € LE(Q));

Remark A.4 Let X € LL(Q), a € R. Then by the above proposition, we have Iix<ay, I{x>a};
I{X:a} S Lg (Q)

Appendix B

In this section, we recalled some basic results about reflected BSDE driven by G-Brownian motion.
More details can be found in [10} 13}, 14} [15].

Definition B.1 (i) Let M2(0,T) be the collection of processes in the following form: for a given
partition {tg,- - -, tn} = wr of [0,T],

N—

ne(w) = Z §i (W) i, 0,00 (1),

—

[

<

where & € Lip(Q,), @ = 0,1,2,-- N — 1. For each p > 1 and n € Mg(0,T), let ||nllgr, :=
{E(fy Ins2ds)P 2P Alnllags, = (B[ ns[Pds])/? and denote by HE(0,T), ME(0,T) the comple-
tion of Mg(0,T) under the norm || - || gz, || - | arz,, respectively.

(ii) Let SE(0,T) = {h(t, Biyats---s Bioat) 1 t1, ..oyt € [0,T],h € Cprip(R"™)}. Forp > 1 and
n € 8%(0,T), set [nllsz, = {IAE[supte[O’T] Ine|P]}1/P.  Denote by S%(0,T) the completion of S%(0,T)
under the norm | - || sz, .

We have the following continuity property for any Y € S%(0,T) with p > 1.
Lemma B.2 ([10]) ForY € S%(0,T) with p > 1, we have, by setting Yy := Yy for s > T,

F(Y) :=limsup(E[ sup sup |V;— YS|P])% =0.
e—0 t€[0,T] s€(t,t+e]

The parameters of reflected G-BSDE consist of the following three parts: the generator f, the
obstacle process { X }.c[o,r) and the terminal value £, where f is the map

flt,w,y,2): [0,T] x Qr x R? = R.
We will make the following assumptions: There exists some 8 > 2 such that
(H1) for any y, 2, (-, y,2) € MG(0,T);
(H2) |f(t,w,y,2) = f(t,w,y,2")| < L(ly — /| + |z — 2'|) for some L > 0;
(H3) ¢ e Lg(QT) and £ > St, ¢.s.;
(H4) There exists a constant ¢ such that {X}.cp0,7) € Sg(O,T) and X; < ¢, for each t € [0,T7;
(H4’) {X¢}iepo,r) has the following form

X:=Xo+ /ot b(s)ds + /Ot I(s)d(B)s + /Ot o(s)dBs,

where {b(t)}.cp0,17, {{(t)}iepo, ) belong to Mg(O,T) and {o(t)}scjo,7) belongs to Hg(O,T).
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Let us now introduce the reflected G-BSDE with a lower obstacle. A triple of processes (Y, Z, L)
is called a solution of reflected G-BSDE with a lower obstacle if for some 1 < a < 8 the following
properties hold:

(a) (Y,Z,L) e S&(0,T)and Y, > X, 0 <t < T;
(b) Vi =&+ [ f(5,Ys, Zs)ds — [ ZodBy + (L — Ly);

(c) {- fg (Ys — X )dLs}icjo,) is a nonincreasing G-martingale.

Here, we denote by S& (0, T') the collection of processes (Y, Z, L) such that Y € S(0,T), Z € H&(0,T),
L is a continuous nondecreasing process with Ly = 0 and L € S&(0,T).

Theorem B.3 Suppose that &, [ satisfy (H1)—(H3) and X satisfies (H4) or (H4’). Then, the
reflected G-BSDE with data (&, f, X) has a unique solution (Y,Z,L). Moreover, for any 2 < a < 8
we have Y € S&(0,T), Z € H&(0,T) and L € S&(0,T).

References

[1] Bayraktar, E. and Yao, S. (2011) Optimal stopping for nonlinear expectations-part I. Stochastic
Processes and their Applications, 121, 185-211.

[2] Bayraktar, E. and Yao, S. (2011) Optimal stopping for nonlinear expectations-part II. Stochastic
Processes and their Applications, 121, 212-264.

[3] Cheng, X. and Riedel, F. (2013) Optimal stopping under ambiguity in continuous time. Math.
Finan. Econ., 7, 29-68.

[4] Ekren, I., Touzi, N. and Zhang, J. (2014) Optimal stopping under nonlinear expectation. Stochas-
tic Processes and their Applications, 124, 3277-3311.

[5] Hu, M., Ji, X. and Liu, G. (2017) On the strong Markov property for stochastic differential
equations driven by G-Brownian motion, arXiv: 1708.02186v2.

[6] Hu, M., Ji, S., Peng, S. and Song, Y. (2014) Backward stochastic differential equations driven by
G-Brownian motion. Stochastic Processes and their Applications, 124, 759-784.

[7] Hu, M., Ji, S., Peng, S. and Song, Y. (2014) Comparison theorem, Feynman-Kac formula and
Girsanov transformation for BSDEs driven by G-Brownian motion. Stochastic Processes and their
Applications, 124, 1170-1195.

[8] Hu, M. and Peng, S. (2013) Extended conditional G-expectations and related stopping times,
arXiv: 1309.3829v1.

[9] Li, H. (2018) Reflected Backward Stochastic Differential Equations under Nonlinear Expectations
and Their Applications, Ph.D. thesis, Shandong University, Chinese version.

[10] Li, H., Peng, S. and Song, Y. (2018) Supermartingale decomposition theorem under G-
expectation. Electron. J. Probab., 23, 1-20.

[11] Li, H., Peng, S. and Soumana Hima, A. (2018) Reflected solutions of backward stochastic differ-
ential equations driven by G-Brownian motion. Sci China Math, 61, 1-26.

[12] Nutz, M. and Zhang, J. (2015) Optimal stopping under adverse nonlinear expectation and related
games. The Annals of Applied Probability, 25(5), 2503-2534.

28



Peng, S. (2007) G-expectation, G-Brownian Motion and Related Stochastic Calculus of Ito type.
Stochastic analysis and applications, 541-567, Abel Symp., 2, Springer, Berlin.

Peng, S. (2008) Multi-dimensional G-Brownian motion and related stochastic calculus under
G-expectation. Stochastic Processes and their Applications, 118(12), 2223-2253.

Peng, S. (2010) Nonlinear expectations and stochastic calculus under uncertainty, arX-
iv:1002.4546v1.

Riedel, F. (2009) Optimal stopping with multiple priors. Econometrica, 77, 857-908.

Song, Y. (2011) Some properties on G-evaluation and its applications to G-martingale decompo-
sition. Science China Mathematics, 54, 287-300

29



	deckbl606
	text606
	Introduction
	G-stopping times and essential supremum in the quasi-surely sense
	Optimal stopping in discrete-time case
	Finite time horizon case
	Infinite time horizon case

	Optimal stopping in continuous time
	Finite time horizon case
	Infinite time horizon case

	Markovian case
	Discrete time case
	Continuous time case

	 
	 


