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Abstract
A considerable amount of research has shown that a carbon tax combined with research subsidies may be 
regarded as optimal policy for encouraging the spread of low-carbon technologies for the benefit of society. 
The paper exploits the macroeconomic approach of endogenous growth models with technological change 
in order to make a comparative assessment of the impact of such policy measures on economic growth in 
the US and Japan in the medium and long term. Our estimates reveal several important differences between 
Japanese and US energy firms: lower elasticity of the innovation production function in R&D expenditure, 
lower probability of radical innovation, and predominance of dirty technologies in Japan. This may explain our 
quantitative findings of stronger reliance on carbon tax in Japan as opposed to research subsidies in the US.
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1 Introduction

Endogenous growth models with technological change assume that competitive firms con-

duct R&D to raise profits through improving their technology (Klette and Kortum, 2004).

Stemming from the Schumpeterian concept of creative destruction and the Arrow and De-

breu (1954) general equilibrium framework, the models account for the actions of the main

economic agents on the market and the actions of government as a social planner. Not

only are the models rich in the explanations they offer of numerous regularities in company

growth (Lentz and Mortensen, 2008; Acemoglu et al., 2013), but they also make it possible

to incorporate various economic externalities.

A few recent models focus on environmental impact of technological change: for instance,

the economic and social effect of pollution in terms of carbon emissions (Popp et al., 2010;

Jaffe et al., 2003). In particular, the approach by Golosov et al. (2014) offers an extension

of the Romer (1986) endogenous growth model, where producers have carbon-emitting or

carbon-neutral technologies and innovate to change their technologies. A related framework

in the paper by Acemoglu et al. (2016) incorporates competition by clean and dirty firms

along the lines of the Klette and Kortum (2004) model. An attractive feature of the Acemoglu

et al. (2016) approach is its interrelation with microdata: elasticity of the R&D production

function, quality differences between carbon-emitting and carbon-neutral technologies, and

various parameters on firm dynamics are taken from real world data on companies and their

patents.

Estimating the models with company-level data for a given country enables a quanti-

tative evaluation of regulatory policies, targeted at correction of market failures pertaining

to environmental issues. However, empirical evidence on the macro-level impact of environ-

mental pollution and the actions of the social planner in models with technological change is

generally limited to the US economy (Acemoglu et al., 2016; Golosov et al., 2014; Dasgupta

and Mäler, 2000). It is generally believed that the changeover to carbon-neutral technologies

in one industry leads to increased application of clean technology in other industries. This

can be determined, for instance, on the basis of patent citations, see Popp and Newell (2012).

The diffusion of clean technologies across industries enhances social welfare by mitigating

pollution and climate change (reduction of fossil fuel emissions limits temperature increase,

see (Acemoglu et al., 2016; Golosov et al., 2014). But the effect on overall economic growth

may vary depending on time horizons.

Confronting pollution has long been on the agenda in many developed countries, notably

in the EU and Japan (International Energy Agency, 2016). In particular, Japan might be

viewed as a pioneering country, since it has a long history of environmental taxes, govern-
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ment subsidies and company initiatives for environmentally friendly technologies. Since 2003,

Japan has been implementing a strategic energy policy, which addresses various technology

issues related to energy efficiency as well as concerns about emissions and the environment

(Ministry of Economy, Trade and Industry, 2014). In 2012, the country introduced a carbon

tax on consumers as a part of the concept for “greening the Japanese tax system” within the

forth energy plan (Ministry of the Environment, 2017). The tax is intended to encourage the

use of green technologies by households and firms. Revenues from the carbon tax and other

energy taxes are used to provide subsidies to develop environmentally-friendly technologies

(Ministry of Finance, 2010, 2015; Wakiyama and Zusman, 2016).

The purpose of the present paper is to provide a quantitative estimate of the effects of

carbon emissions and regulatory energy policy on economic growth in Japan. Our empirical

analysis goes beyond traditional assessment of macroeconomic policy in the Japanese energy

sector, as the methodology of the Acemoglu et al. (2016) model, which we use, uniquely allows

for technological changes within the clean and dirty sectors. We exploit large datasets on

Japanese manufacturing corporations and national data on their patents in clean and dirty

technologies over the last quarter century to numerically evaluate the size of the clean and

dirty sectors. Next, we follow the endogenous growth model by Acemoglu et al. (2016) and

empirically estimate the optimal values of carbon tax and research subsidies, and the impact

of these policy instruments on innovation rates and economic output in the carbon-emitting

and carbon-neutral sectors. We model the carbon cycle following Acemoglu et al. (2016)

and Golosov et al. (2014), and compare the estimates for the US and Japan.

The results of our micro analysis reveal several important differences between Japanese

and US firms: lower elasticity of innovation production function in Japan, lower probability

of radical innovation and higher labor productivity of production with dirty technology in

comparison with clean production. This may explain our quantitative finding of stronger

reliance on carbon tax than on research subsidies in Japan in comparison with the US.

2 Related literature

Studies in the microeconomic context show a behavioral response of firms and consumers to

both market mechanisms and regulatory actions in the field of energy economics (De Groot

et al., 2001; Tanikawa, 2004). A few analyses suggest that the choice of environmentally

friendly technologies are linked to energy prices and a history of firm’s innovative activity

(Aghion et al., 2016; Popp and Newell, 2012; Popp, 2006). As for policy instruments, carbon

tax combined with research subsidies may be regarded as an optimal policy for minimizing

carbon emissions and/or maximizing social welfare (Fischer and Newell, 2008; Popp, 2006;
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Gerlagh and Van der Zwaan, 2006).

The findings of macroeconomic analyses show that regulations aimed at reducing car-

bon emissions lead to a decline of gross domestic product and/or its growth rate in many

countries (Metz et al., 2007, Table 3.12; Jorgenson and Wilcoxen, 1990). Using revenues

obtained from carbon taxes for the development of carbon-neutral technologies may miti-

gate the problem of GDP decrease. Accordingly, the link between clean/dirty technologies

and economic output is studied within endogenous growth models with technological change.

The models assume that competitive firms conduct R&D to raise profits by improving the

quality of their technology (Klette and Kortum, 2004).

The firms choose whether to develop carbon-emitting or carbon-neutral technologies, and

the decision is based the current quality gap between technologies, the size of carbon taxes

and the size of research subsidies (Acemoglu et al., 2016). The results of a few analyses show

that the optimal regulatory policies foster production in the carbon-neutral sector and lead

to overall economic growth in the medium (Golosov et al., 2014) or long term (Acemoglu

et al., 2016).

Recent applications to the US economy, reported in the literature, include research that

focuses on the choice of optimal carbon taxes and research subsidies to foster development of

clean technologies and positively affect output and economic growth (Acemoglu et al., 2016;

Golosov et al., 2014). The analysis in Dasgupta and Mäler (2000) examines the optimality

of carbon taxes in view of total factor productivity.

Reviews of the literature on links between economic growth, carbon emissions and govern-

ment policies can be found in Xepapadeas (2005) and Jorgenson et al. (1993). Microeconomic

evidence on the impact of policy instruments on innovation in the energy sector as well as

meta-review of research focused at carbon emissions and technological change in the energy

sector are given in Popp et al. (2010).

Some approaches for studying the effect of carbon taxes in Japan through computable

equilibrium models with aggregate-level regression analysis are mentioned in Ministry of the

Environment (2017).

3 The Acemoglu et al. model

3.1 Theoretical framework

The model proposed by Acemoglu et al. (2016) accounts for competition between carbon-

emitting and carbon-neutral technology in economic production and R&D. It builds on the

key concepts of endogenous growth models with technological change: the firm offering the

6



best quality owns the market for the relevant product line (Romer, 1990; Grossman and

Helpman, 1990); firms innovate to maximize profits by adding new products/improving the

quality of existing products (Klette and Kortum, 2004; Lentz and Mortensen, 2008). The key

environmental actions of the agents in the Acemoglu et al. (2016) model may be summarized

as follows.

Firstly, profit-maximizing firms produce intermediate goods, choosing between carbon-

emitting or carbon-neutral technology based on the gap in labor productivity (quality) be-

tween the technologies and the size of carbon tax. Firms make a decision on R&D, and the

decision is influenced by the R&D subsidy. Secondly, the producer of the aggregate final

good uses intermediate goods (e.g. energy) as inputs. Carbon-emissions cause economic

damage, decreasing productivity of the final good. Finally, the government collects carbon

taxes, imposes taxes on consumers to balance its budget and provides R&D subsidies.

The Acemoglu et al. (2016) model looks at a stock of an exhaustible resource, which

is used for carbon-emitting technology. The carbon emissions occur during the production

process and cause an increase in the atmospheric carbon concentration. The rise in CO2 has

a negative effect on both social welfare and the amount of the final good.

Below we provide a formal description of the carbon cycle, according to the models of

Acemoglu et al. (2016) and Golosov et al. (2014), as well as the link between carbon emissions

and production, and the analytical description of social welfare from Acemoglu et al. (2016).1

Atmospheric carbon concentration St if t = T is the date when emission began:

St =

∫ t−T

0

(1− dl)Kt−ldt, (1)

where carbon emission Kt is proportionate to output of the dirty sector Y d
t :

Kt = κY d
t , (2)

1− dl is the share of a unit of carbon, emitted l years ago and left in the atmosphere:

dl = (1− φp)(1− φ0e
−φl), (3)

φp is the fraction of emissions permanently remaining in the atmosphere;

φ is the rate of decay of carbon concentration over time.

1The explicit formula for social welfare is reconstructed according to the code, which supplements the
Acemoglu et al. (2016) paper.

7



Carbon emission and production:

lnYt = −γ(St − S̄) +

∫ 1

0

ln yi,tdi, (4)

where Yt is aggregate output in the economy, S̄ is pre-industrial level of carbon concentration,

yi,t is the quantity of intermediate good, γ = 5.3 · 10−5GtC−1.

Social welfare:

W =

∫ T

0

lnYte
−ρtdt+ e−ρT

[
lnY base

T︸ ︷︷ ︸
Production less Distortions

+
gT
ρ︸︷︷︸

Growth Potential

− γ

ρ

(
Sperm
T + Strans

T

ρ

ρ+ φ
− S̄

)
︸ ︷︷ ︸

Emission Damage

]
, (5)

where lnY base
T =

∫ 1

0
ln yiTdi is the output under absence of emissions, ρ is the discount

rate (equal to 0.1), Sperm
T =

∫ T

0
φpKtdt is carbon permanently remaining in the atmosphere,

Strans
T is the transitory part of carbon in the atmosphere: Ṡtrans

t = −φStrans
t + φ0Kt.

3.2 Research question, empirical strategy and key findings

The Acemoglu et al. (2016) model is used as a theoretical tool to find the optimal values

for a combination of two policy instruments: subsidies for research into carbon-neutral tech-

nologies and tax on carbon emissions. The model studies the evolution of a non-steady

state equilibrium, focusing on the time profiles of economic variables across optimal policies

and laissez-faire (null policy). The variables of primary interest are output by firms us-

ing carbon-neutral and carbon-emitting technologies, innovative activity by clean and dirty

firms, and overall growth of the economy. The model assumes that all innovations are

patented.

The empirical strategy at the first stage involves fitting the carbon cycle with the national

data on carbon emissions. The fitted values of carbon concentration are then used in the

endogenous growth model. A number of the model’s parameters on innovation come from

the micro data: the firm’s products, equivalent to the sic3 or sic4 codes in the US industrial

classification; division of the economy into clean and dirty sectors, based on patent classes;

the probability of radical innovation and the technology gap between clean and dirty sec-

tors, according to patent citations; the elasticity of innovation production function, where

innovation is either R&D expenditure or patent counts per product of the firm. Finally, the

model is calibrated with the simulated method of moments: theoretical moments for the

four variables must be close to the empirical counterparts (share of skilled labor, entry and
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exit rates of firms, sales growth per worker), and the remaining variables are estimated from

the model (e.g., number of researchers in old and new firms, relative productivity of dirty

compared with clean technology).

At the second stage, the optimal values of the policy instruments are estimated using the

calibrated model. The objective function for the social planner is welfare which is the sum

of production and quality increase less distortions and emission damage. The time profiles

of the main economic and climate variables are then contrasted between the laissez-faire

and the optimal policies.

The findings using data for the US energy sector in 1975–2004 reveal that a non-trivial

combination of the two policy measures is optimal for maximizing social welfare and has

the following economic effects: an increase in innovation and quality (labor productivity)

in the carbon-neutral sector; a redirection of production to carbon-neutral sector; and long-

term economic growth, but decrease of growth in the short term. The decrease of growth in

the short (and possibly medium) term is explained by the superiority of the existing dirty

technologies, which can be seen from the micro data on quality in the carbon-neutral and

carbon-emitting sectors.

4 Data

We use several blocks of data on the Japanese economy for our quantification. Firstly, we use

meteorological data from two sources. National carbon emissions per capita come from the

World Bank, which collects estimates from the Carbon Dioxide Information Analysis Center,

Environmental Sciences Division, Oak Ridge National Laboratory (Tennessee, US). We use

data of the Japan Meteorological Agency on atmospheric carbon concentrations, which are

measured at three stations: Ryori (120 km from Sendai on the Pacific coast of Honshu island,

in the Tohoku area), Minamitorishima (an island 1848 km southeast of Tokyo in the North

Pacific Ocean) and Yonagunijima (an island in the East China Sea in the Pacific Ocean, 108

km from Taiwan). The values of carbon concentration demonstrate similar seasonality and

are generally close across the stations. However, the history of observations is the longest at

the Ryori station, which explains our choice of data from this station in the analysis.

Secondly, we exploit several databases on Japan’s companies. The Nikkei NEEDS contain

the financial and administrative data for 6,500 companies. Most of the companies are large

corporations, and they account for 50-80 percent of production in corresponding Japanese

industries. The Nikkei NEEDS data are manually matched2 to a non-anonymous company

data from the Japan National Innovation Survey (2015). The survey focuses on innovative

2See details on matching algorithms in Besstremyannaya et al. (2018).
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firms and contains a crosswalk to patent database.

Thirdly, the patent statistics are calculated using the Institute of Intellectual Property

Patent Database (2015). This is a recently created NBER-like database (Goto and Moto-

hashi, 2007), which contains Japan’s domestic patent applications submitted since 1964.

Finally, we use aggregate data on R&D labor from the Japanese Science and Technology

Indicators 2016 by the National Institute of Science and Technology Policy, Tokyo.

5 Quantification for Japan

5.1 Carbon cycle

We fit the Acemoglu et al. (2016) and Golosov et al. (2014) exponential (geometric) equation

for the carbon cycle (6), using the carbon concentration data from the Ryori meteorological

station, the World Bank data on carbon emissions by Japan and the value of the share of

emissions, permanently remaining in the atmosphere, from the Intergovernmental Panel on

Climate Change (2007).

Atmospheric carbon concentration

St︸︷︷︸
Carbon concentration

=

∫ t−T

0

(1− dl) Kt−l︸︷︷︸
Carbon emissions

dt, (6)

where t = T is the start of emissions, 1− dl is the amount of carbon emitted l years ago and

left in the atmosphere, and:

dl = (1− φp)(1− φ0e
−φl)

The description of the carbon cycle draws on the approach used by Archer (2005) on the

existence of a transitory carbon component in the atmosphere. So the parameters of interest

are the rate of decay of carbon concentration φ and the share of the transitory component

of carbon at period zero φ0.

We fit the equation using Japan’s data for 1986–2008, so that the final time period was

comparable to the US estimates (Figure 1).

We find that φ̂ = 0.0202 and φ̂0 = 0.4173. The values of the rate of decay are close to

parameter estimates for the US economy during a similar time period: 0.0313 as reported

in Acemoglu et al. (2016) and 0.0228 in Golosov et al. (2014). The share of the transitory

component is close to the estimate in Golosov et al. (2014), but differs from the value in

Acemoglu et al. (2016). See Table 1 for a detailed comparison.
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Figure 1: Estimating the carbon cycle in Japan based on meteorological data of
Ryori station

Table 1: Contrasting parameters of the carbon cycle in Japan and the US

Parameter Definition US US Japan
Acemoglu Golosov

2016 2014

φp share of emissions permanently remaining: In-
tergovernmental Panel on Climate Change
(World Meteorological Organization and the
UN)

0.2 0.2 0.2

φ rate of decay of carbon concentration 0.0313 0.0228 0.0202
φ0 (1 − φp)φ0 share of transitory component in

period 0
0.7661 0.3930 0.4173

5.2 Carbon-neutral and carbon-emitting technology

Our definitions of carbon-neutral technologies combine the approaches of the three sources.

Firstly, we exploit the OECD (2009) methodology on use of patent classes for environmen-

tally friendly technologies, as described in the patent search strategy for the identification

of selected “environmental” technologies, developed as part of the OECD project on “En-

vironmental Policy and Technological Innovation”. Secondly, we supplement the above list

of patent classes using the International Patent Classification (IPC) Green inventory of the

World International Property Organization (WIPO, 2017). Finally, we add the patent classes

for energy sector from the corresponding appendix to Popp and Newell (2012).

The groups of patent classes used in our analysis for the definition of carbon-neutral

technologies can be summarized as follows (Table 2).
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Table 2: Carbon-neutral technologies, according to the International Patent Clas-
sification

Clean/green technologies Source

Air, water and waste related technologies OECD/WIPO/Popp and
Newell (2012)

Alternative energy production WIPO/Popp and Newell
(2012)

Transportation WIPO
Energy conservation WIPO
Agriculture/forestry (e.g. alternative irrigation tech-
niques; soil improvement: organic fertilizers derived from
waste)

WIPO

Nuclear power generation WIPO
Administrative, regulatory or design aspects (e.g.
carbon-emissions trade)

WIPO

5.3 Energy sector

We use the UN International Industrial Classification codes to define energy sector firms

following the approach of the United Nations Industrial Development Organization (Upad-

hyaya, 2010). Our analysis also considers the manufacture of motor vehicles and of general-

purpose machinery, following Acemoglu et al. (2016). The full list of energy sector codes is

given in Table 3.

We focus on the time period after 1989 in order to include the years after the revision of

the Japan Patent Law. The revision allowed multiple claims and may have influenced the

strength of Japanese patents, especially in their applicability across industrial fields.

Our sample, which is an overlap between the Nikkei NEEDS and the Japan National

Innovation Survey, contains 1178–2565 manufacturing firms in 1989–2013. There are 303–

589 energy firms each year, according to our definition. The share of energy firms is stable

at 23–25% of all firms.

Following Acemoglu et al. (2016), we define a clean firm as a firm, whose share of clean

patents in all its patents exceeds a certain threshold. However, instead of using the Acemoglu

et al. (2016) threshold of 25% (which gives 11% of clean firms with the US data), we choose

a lower value of 5% for our sample. Indeed, the empirical distribution for the share of clean

patents differs between American and Japanese firms. In Japan there is only a negligible

number of firms with over a quarter of clean patents. If we wanted to establish the size of

the clean sector as 10–11% of producers (to make the Japan’s economy comparable to the

US), it would require an extremely loose definition, by which just 1% of clean patents would

12



Table 3: Energy sector, according to the UN International Industrial Classifica-
tion

Industry name/code Source

Mining of coal and lignite; extraction of peat (05) UNIDO, Upadhyaya (2010)
Extraction of crude petroleum and natural gas (06) UNIDO, Upadhyaya (2010)
Mining of uranium and thorium ores (07) UNIDO, Upadhyaya (2010)
Manufacture of coke, refined petroleum products and nuclear
fuel (19)

UNIDO, Upadhyaya (2010)

Electricity, gas, steam and air conditioning supply (35) UNIDO, Upadhyaya (2010)
Manufacture of motor vehicles (29) Acemoglu et al. (2016)
Manufacture of general purpose machinery (28) Acemoglu et al. (2016)

suffice to make a company clean. As a compromise, we choose a threshold of 5% of clean

patents for a firm to be regarded as environmentally friendly. The value is supported by

micro evidence on the relative weight of environmentally friendly initiatives in the behavior

of Japanese firms, which are attentive to their social responsibility regarding the environment

(Tanikawa, 2004). The threshold of 5% implies that the share of clean firms in Japan is on

average 3% of all firms (varying from 1 to 5% in different years).

5.4 Technology gaps

According to the model of Acemoglu et al. (2016), technology change is reflected in labor

productivity. Next, the gap between dirty and clean technologies for each product is defined

as the difference in the number of innovation steps. Formally, this is given by

gapi,t = nd
i,t − nc

i,t, (7)

where nd
i,t and nc

i,t are innovation steps of dirty and clean technology for product i by time

t.

Following the empirical strategy in Acemoglu et al. (2016), we compute the cumulative

number of patents for clean and dirty Japanese incumbent firms at the sic3 level. Then this

innovation flow of patents of clean and dirty technologies is normalized by the mean patent

flow (i.e., the annual number of patents per product by all firms). The resulting distribution

of the technology gap from equation (7) is given on Figure 2. As shown by the distribution,

dirty technology is one to four steps ahead for most products, although dirty technology

leads 10 to 120 steps for few products. The shape of the distribution is generally close to

that in the US. However, clean technology is up to 10 steps ahead of dirty for a few products

in the US according to Acemoglu et al. (2016), but we found no similar pattern for Japan.
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Figure 2: Technology gap between carbon-emitting and carbon-neutral sectors
across products

5.5 Parameters for Japan’s economy and the energy sector

The parameters, related to technological change in the energy sector, are listed in Table (4)

and may be divided into several groups.

One group is linked to quality changes through innovation. As innovations are quantified

through patents, the quality evaluations are based on patent citations. To compute the

probability of radical innovation Acemoglu et al. (2016) compare citations for patents within

three years after patenting to citations within ten years. Patents are defined as ‘major

entrants’ if their citations in the 3 years exceed the 90-th percentile (i.e. a reasonable

threshold value) of the citations for patents as old as 10 years. The share of major entrants,

which equals 0.076 for the US energy sector, is regarded as an empirical estimate of the

probability of radical innovation. Our use of the patent data for Japan’s economy with a

similar approach produces a slightly lower estimate of 0.024.

Another variable on innovation outcomes is mean patent flow, which is defined in Ace-

moglu et al. (2016) as the annual number of citation-weighted patents per product. While

the US estimate is 43 patents for the energy sector, our calculations give a value of 39 patents

for Japan (preliminary analysis for the whole manufacturing sector).

The second group of parameters relates to the R&D production function. The Acemoglu

et al. (2016) strategy follows the microeconomic approach to proxy R&D output by patents

and takes R&D expenditure as an input. The regression analysis exploits pooled data with

firm-level clustered standard errors and adds annual dummies to the right-hand side of the

equation. The resulting value for R&D elasticity is 0.5 for the US data: it is the mean estimate

across the models in levels and in the first differences and across the two specifications

(normalization of input and output by product counts or by domestic sales). Our calculations

with the data for Japan’s energy sector give a range of elasticity [0.082, 0.563], so the mean

14



estimate is 0.3. This value is lower than in the US.

The share of R&D labor in the unskilled labor is 0.055 in the US, as estimated in Acemoglu

et al. (2016) using micro data. We use the estimate of 0.014, which is reported for Japan in

the survey by Kanda et al. (2016). It may be noted that the share of R&D labor turns out

to be several times lower in Japan then in the US.

The third group of parameters are moment targets - the mean values of the four key

variables, which are used in model calibration through a simulated method of moments.

The variables relate to microdata on company history and financials: entry rate and

exit rate of firms (comparable across energy sectors in the US and Japan); mean R&D

expenditure per domestic sales (0.066 in Acemoglu et al. (2013), but only 0.037 for Japan on

our data); and growth of domestic sales per worker (4 times higher in Japan than in the US).

Table 4: Contrasting parameters for the energy sector in Japan and the US

U.S. Japan

Patents
Probability of radical innovation 0.04 0.024a

Patents per product (citation weighted) 43 39b

R&D
Share of R&D labor 0.055 0.014
Elasticity of innovation output in R&D expenses 0.5 0.3
Production (moments for calibration)
Entry rate of firms 0.013 0.008
Exit rate of firms 0.018 0.013
Growth of domestic sales per worker 0.012 0.048
Share of R&D expenditure in sales 0.066 0.037

awhole economy
bmanufacturing

Notes: The U.S. data for the energy sector in 1975–2004 come from Acemoglu et al. (2016).
Japanese estimates for the energy sector (unless otherwise stated) are based on our data
for 1989–2012. Regarding entry rate of firms, Acemoglu et al. (2016) use the labor share of
entrants, while we use the number of firms with the Japanese data.

The US-Japan differences in the gaps between dirty and clean technologies, lower elas-

ticity of innovation output in R&D expenses, and lower probability of radical innovation in

Japan may imply reliance on carbon tax rather than on research subsidies in the context of

the Acemoglu et al. (2016) and Golosov et al. (2014) models.
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6 Results

Our computations use Python codes from Acemoglu et al. (2016).3 While Acemoglu et al.

(2016) analyze various ways to parametrize the time profiles for policy instruments, we focus

on the two policy instruments, which are most realistic to implement. Constant policies

imply fixed values of research subsidies and carbon tax over the whole period of time, while

three-step policies (often analyzed in the Japanese context) allow for step-wise changes in

the course of adapting policy instruments (Ministry of the Environment, 2017).

The results with the model calibrated with Japanese data can be compared with the US

estimates by Acemoglu et al. (2016) for the three step policy. The value of research subsidy

is close to 0.8 in the US during the first period of time, while it is below 0.8 in Japan.4.

However, carbon tax is negligible during the first period in the US, while it is as high as 0.1

in Japan. Similarly, there is higher reliance on carbon tax and lower reliance on research

subsidies in Japan relative to the US in the second period.

The combination of carbon tax with research subsidies switches innovation in Japan

from the carbon-emitting to the carbon-neutral sector (Figure 4). Innovation in the carbon-

emitting sector vanishes after 50 years of policy implementation. Similarly, there is a redirec-

tion of production from the dirty to the clean sector: the output of the dirty sector steadily

declines, while production in the clean sector gradually increases (Figures 5–6). The re-

sults reveal that the carbon-neutral sector would disappear in the medium-run under the

laissez-faire. However, the optimal policy instruments not only sustain the growth of clean

production, but lead to overall economic growth in the long term (Figure 7). The number of

years, during which aggregate output in Japan declines as incentives to use clean technologies

are applied, is comparable to the 20 years estimated by Golosov et al. (2014) for reaching

the laissez-faire level of production in the US with the application of similar incentives.

The length of the period is longer in Japan, which may be explained by more distortions due

to relatively slower advance of clean technologies.

The environmental effects of policy instruments are similar to those in Acemoglu et al.

(2016): decrease of national carbon emissions and limited contribution by the country to

temperature increases.

3The codes are available as a supplementary material to the Acemoglu et al. (2016) paper on the Journal
of Political Economy website: https://www.journals.uchicago.edu/doi/suppl/10.1086/684511. Firstly, we
load our data into load data.py. Then, we enter parameters for Japan’s carbon cycle, energy sector and
R&D into infinite weave.py. This way we can use estimation weave.py to calibrate the remaining parameters
for Japanese economy. Next, we compare impact of different policy measures, using generate policy.py. Our
optimization technique is based on the Nelder–Mead algorithm.

4See Figure 3, right panel and Figure 10 in Acemoglu et al. (2016).
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Figure 3: Tax rate and research subsidies under optimal policies
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Figure 4: Innovation rates under the laissez-faire and optimal constant policies
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Figure 5: Output in carbon-emitting sector under the laissez-faire and optimal
constant policies
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constant policies
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Figure 7: Ratio of economic output under optimal constant policies to output
under the laissez-faire

7 Discussion and Conclusion

Decline of economic output associated with the development of carbon-neutral technologies

can be explained by technology costs. For example, empirical microeconomic analyses show

that technology costs negatively affect individual decisions to use thermal insulation tech-

nologies, and the scope of the effect is several times larger than the effect of energy prices

(Hassett and Metcalf, 1995; Jaffe and Stavins, 1995).

Inadequate access to financing may be an impediment to introducing clean technologies

at small firms (Jaffe et al., 2003). But financial impediments may be of secondary importance

in comparison with alternative investment choices, capital depreciation and energy price.5

The incentives of Japanese firms in their voluntary adoption of environmental technologies

are analyzed in similar qualitative research by Tanikawa (2004).

It may be noted that market mechanisms, such as increase of energy prices, can also be

viewed as an economic incentive for firms and households to employ carbon-neutral tech-

nologies (Jaffe et al., 2003; Sanstad et al., 1995). For instance, research supports the premise

regarding impact of energy prices on R&D intensity of a firm, namely, R&D relative to the

firm’s size, as is shown in Aghion et al. (2016).

However, market forces alone cause only slow propagation of carbon-neutral technologies

and diminish the potential for reducing emissions (Popp et al., 2010). In fact, there is a

certain ‘habit-formation’ in decision by firm regarding technology development. For instance,

5See the socio-economic analysis for the Dutch firms in Nijkamp et al. (2001).
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econometric estimates show that R&D can be viewed as a function of a firm’s past history

in terms of its clean/dirty innovation (Aghion et al., 2016).

Accordingly, there is a need for governmental policies that stimulate the diffusion of

currently existing green technologies. Judged from a macroeconomic perspective, the costs

of clean technologies (borne by the government through research subsidies) can be offset

against economic gains. The gains can be measured in terms of economic growth or increase

of social welfare thanks to the prevention of carbon emissions.
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