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Abstract

Fluid-saturated porous media are well-known for their manifold attenuation mechanisms
caused by wave-induced fluid flow between microscopic or mesoscopic heterogeneities. If
elastic waves propagate through such a medium, the pore space is heterogeneously com-
pacted resulting in local pressure gradients. These pressure gradients are equilibrated by
a redistribution of the viscous pore fluid (water, gas, oil, etc.), which causes pore pressure
diffusion. Hereby, part of the wave energy is lost, and the wave is attenuated. In this
contribution, we concentrate on the upscaling behavior of fluid-saturated rocks featuring
double porosity, patchy saturation or networks of fluid conduits. Based on Biot’s quasi-
static equations of consolidation and an appropriate hybrid-dimensional description of
the fracture networks, we establish a computational homogenization framework. To this
end, we assume the pressure diffusion to occur within mesoscopic volume elements much
smaller than the macroscopic wave length. Hence, diffusion takes place on a length scale
much smaller than the observer scale and is considered, from the macroscopic viewpoint,
as a local process. The heterogeneous poroelastic medium, therefore, is substituted by
a homogeneous macroscopic Cauchy medium with apparent viscoelastic properties. The
material properties of the substitute model are derived making use of a novel order reduc-
tion technique allowing for a numerically efficient treatment of the scale-transition. The
macroscopic internal variables representing the overall viscoelasticity are interpreted as
parameters controlling the activity of mesoscopic pressure modes identified by the Proper
Orthogonal Decomposition (POD) technique. We show that the resulting decoupled sys-
tem of evolution equations is equivalent to that of a generalized Maxwell-Zener model.
In the second part of this contribution we weaken the locality constraint and allow for
macroscopically observable seepage of the pore fluid. Hence, the character of the ho-
mogenization problem changes and the macroscopic substitute medium is considered as a
poroviscoelastic material. We derive a consistent computational homogenization scheme
and enrich the proposed order reduction concept by the required additional features. The
contribution is completed by numerous numerical investigations including validation tests
and extensive discussions of our findings.





Kurzfassung

Im Mittelpunkt dieser Arbeit steht die numerische Simulation und Homogenisierung von
Dämpfungseigenschaften fluid-gesättigter poröser Medien, die heterogene Substrukturen
auf der Mikro- oder der Mesoskala aufweisen. Läuft eine elastische Welle durch ein solches
Material, wird auf Grund der Heterogenitäten der Porenraum ungleichmäßig komprim-
iert, und es treten lokale Porendruckgradienten auf. Eine Umverteilung des enthaltenen
Porenfluids (Wasser, Gas, Öl, etc.) gleicht diese Ungleichgewichte in Form von Druckdiffu-
sionsprozessen wieder aus. Dabei wird ein Teil der Wellenenergie dissipiert, und die Welle
wird gedämpft. Die vorliegende Arbeit beschäftigt sich mit der effektiven makroskopis-
chen Beschreibung dieser kleinskaligen Diffusionsprozesse und berücksichtigt dabei Struk-
turen mit “double porosity” und “patchy saturation” sowie mit fluid-gesättigten Rissnetz-
werken. Diese Materialien werden mit Biots quasistatischen Konsolidationsgleichungen
modelliert, die Beschreibung der Risse erfolgt mittels einer eigens entwickelten hybrid-
dimensionalen Formulierung. In allen Fällen nehmen wir an, dass sich die Porendruck-
diffusion auf endliche mesoskopische Volumenelemente beschränkt, die deutlich kleiner
als die makroskopischen Wellenlängen sind. Das bedeutet im Umkehrschluss, dass die
Porendruckdiffusion auf einer Längenskala stattfindet, die viel kleiner ist als die der
makroskopischen Beobachterin. Aus dessen Sicht stellt die Porendruckdiffusion einen
lokalen Prozess dar. Zur Beschreibung dieses Skalenübergangs entwickeln wir daher
eine numerische Homogenisierungsstrategie, die dieses heterogene poroelastische Mate-
rial durch ein makroskopisches klassisches Cauchy-Material mit scheinbar viskoelastis-
chen Eigenschaften ersetzt. Die Materialeigenschaften dieses Ersatzmodells leiten wir mit
Hilfe eines neuartigen Ordnungsreduktionsverfahrens unmittelbar aus Simulationen auf
Mesostrukturebene ab. Hierbei können die viskoelastischen internen Variablen des Makro-
modells als skalare Parameter interpretiert werden, die die Aktivität von mesoskaligen
Druckmoden kontrollieren. Diese Druckmoden werden mit Hilfe der “Proper Orthogo-
nal Decomposition” Technik ermittelt und dienen als reduzierte Basis für alle möglichen
Druckzustände im Kontrollvolumen. Wir können nachweisen, dass das resultierende Sys-
tem gewöhnlicher Differentialgleichungen als ein verallgemeinertes Maxwell-Zener-Modell
interpretiert werden kann. Im zweiten Teil der Arbeit weichen wir die Beschänkung auf
lokale Druckdiffusionsprozesse auf und berücksichtigen zusätzlich makroskopische Sicker-
bewegungen des Porenfluids relativ zum Festkörperskelett. Das makroskopische Ersatz-
material kann jetzt als ein poroviskoelastisches Material interpretiert werden. Wir ent-
wickeln ein an diesen Fall angepasstes numerisches Homogenisierungsverfahren und rei-
chern das zuvor vorgestellte Ordnungsreduktionsverfahren mit zusätzlichen Eigenschaften
an. Über diese methodischen Entwicklungen hinaus enthält die Arbeit zahlreiche nu-
merische Studien. Dabei werden die eingeführten Verfahren validiert und die gewonnenen
Erkenntnisse bewertet.
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1
Introduction

Attenuation of elastic waves in partially saturated porous rocks is of enormous scientific
and economic interest for hydrocarbon as well as for geothermal energy production. In
the past decades it has been observed that, in particular at low seismic frequencies,
oil and gas reservoirs exhibit a significant frequency-dependency of P-wave velocities,
see [24, 52, 69] and references therein. It is, therefore, the aim of numerous ongoing
research projects to gain a better understanding of the underlying physical processes. It
arises the question if the observed attenuation can be used for the interpretation or even
inversion of seismic data and for inferring knowledge about the pore fluid saturation or
the quality of the reservoir rock. However, it has to be taken into account that seismic
attenuation may be caused by manifold physical processes, which are hidden for the
external observer. Possible sources for attenuation and dispersion are, for example, the
wave-induced fluid flow in heterogeneously saturated porous media containing inclusions
or layers with diverging properties [2, 18, 74, 100, 140]. Moreover, attenuation may be
related to fluid-saturated fracture networks in rocks [84, 97, 134]. Hereby, the effective
hydraulic conductivity of the rock is dictated by the connectivity of fractures and joints
in the rock [101, 108]. Since the hydraulic conductivity decides about the possibility
to release pore fluid from or to pump fluids through the porous and/or fractured rock,
knowledge about fracture connectivity is of high importance for many applications in
geothermal energy and hydrocarbon production from shale reservoirs. However, only few
analytical solutions for calculating the attenuation behavior of simple fracture networks
are available in literature [23, 53].

– 1 –



2 1. Introduction

Seismic attenuation: The physical phenomenon

Propagation and attenuation of elastic waves in fluid-saturated rocks can be understood
as a true multi-scale problem. Altogether, one may distinguish between three relevant
spatial length scales being called macro-, meso- and micro-scale, see Fig. 1.1. Hereby,
the macro-scale represents the observable length scale, where the wave propagation takes
place. The macro-scale is characterized by rather smooth heterogeneities with a large
wave-length. Typically, the macro-level is associated to a length scale of the order of
magnitude L > 100m. The small end of the length scale is defined by the heterogeneous
micro-level being defined as the scale of discrete grains and pore channels at λ ∼ 1mm.
A third length scale has to be taken into account if there exist additional heterogeneities
at an intermediate length scale significantly larger than the pore scale but smaller than
the wave-length of the macroscopic mechanical stimulation (λ ≪ l ≪ L). Typically, the
characteristic length of the meso-level is of the order of magnitude l ∼ 1m.
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Figure 1.1: The fluid-saturated porous medium in a multi-scale representation.

In literature, attenuation of elastic waves observed in such fluid-saturated rocks is ex-
plained by the viscous redistribution of pore fluid taking place at different length scales.
Mavko and Nur [86] proposed the squirt flow model, see also [36, 85]. Here, the elastic
waves propagating through the fluid-saturated rock are considered to induce pressure gra-
dients in the pore space and, therefore, to squeeze out pore fluid from micro-cracks into
neighboring pores or cracks. Due to the viscous properties of this fluid transport process,
part of the wave energy is lost, and the mechanical wave is attenuated. Since mass ex-
change occurs only between cracks or pores and their direct neighbors, the corresponding
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fluid transport processes exhibit a rather short (microscopic) range and, consequently,
squirt flow phenomena are active at relatively high frequencies (f > 1000Hz).

Further relevant attenuation mechanisms are active at seismic frequencies (0 < f <
100Hz), where wave-induced fluid flow is caused by fluid pressure gradients between
mesoscopic heterogeneities. Hereby, the heterogeneities may be represented by spatially
varying properties of the rock matrix as well as of the saturating pore fluid. We, there-
fore, distinguish between the double porosity model proposed by Pride and Berryman
[99] and the patchy saturation model first introduced by White [139, 140]. In the case
of double porosity, the solid rock skeleton is supposed to consist of several spatially dis-
tributed porous phases and, at the same time, to be saturated by one single pore fluid.
The different solid phases may result from heterogeneously consolidated layers building
the rock. Alternatively, mesoscopic fractures and joints might coexist with a homoge-
neous porous rock. By contrast, the patchy saturation defines a rock with homogeneous
material properties of the solid skeleton, which is heterogeneously saturated by several
pore fluids. In both cases, mechanical waves propagating through such a heterogeneous
medium lead to a reduced pore space depending on the solid frame stiffness or the fluid
compressibility and induce mesoscopic pressure gradients between regions with varying
material properties. The pressure gradients are equilibrated by a redistribution of the
viscous pore fluid and cause pore pressure diffusion. Hereby, part of the wave energy is
lost and the wave is attenuated at seismic frequencies. This causal relationship between
mesoscopic heterogeneities, pore pressure diffusion and seismic attenuation has been re-
cently verified by analytical, numerical and experimental investigations, see, for example,
[74, 93, 96, 100, 126]. Hereby, it has been shown that the heterogeneous meso-scale can
be successfully modeled by poroelastic formulations based on the work of Biot [7, 8].

From the observer’s viewpoint, only the effective attenuation of the propagating waves is
detectable. All the underlying processes, however, are completely hidden and take place
on a scale much smaller than the macro-scale. Consequently, the fluid flow or, respec-
tively, the pore pressure diffusion is considered as a local phenomenon. In other words,
the mesoscopic diffusion length is much smaller than the macroscopic wave-length. Under
these circumstances, the overall medium can be understood as a homogeneous single-
phasic (Cauchy) continuum accounting for appropriate viscoelastic dissipation mecha-
nisms. However, the identification of the particular material properties of the macroscopic
substitute medium is not a trivial task. This becomes clear if we consider White’s model
for a 1D layered medium with patchy pore fluid saturation, see Fig. 1.2 a). Applying
macroscopic strains or stresses on such a medium in terms of a step function results in a
time-dependent material response featuring a stress-relaxation or, respectively, a creep-
ing behavior. In frequency domain, the attenuation of the effective stiffness coefficient
leads to the well-known properties depicted in Fig. 1.2 b). Hereby, the attenuation is
quantified using the inverse quality factor 1

Q
, which is equivalent to the tangent of the

phase angle. The White model yields an attenuation proportional to the frequency f in
the low-frequency limit and proportional to 1√

f
in the high-frequency limit. Hereby, the

transition point is defined by the critical Biot frequency ωc = 2 π fc = b0
ρf α∞

with the

viscous damping parameter b0, the partial fluid density ρf and the Biot parameter α∞ for
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f → ∞, see [73] for more information. However, comparing this result to the attenuation
predicted by a (linear) three-parameter Maxwell-Zener substitute, we find that the atten-
uation of White’s model can, a priori, not be described by this simple viscoelastic model.
Thus, more sophisticated substitute models are required even for this 1D case, which
could be derived from mesostructural numerical simulations. To this end, Dutta and Odé
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Figure 1.2: a) Schematic plot of the viscoelastic 3-parameter (3P) model and White’s model
for patchy saturated layered media, see [139]. b) Frequency dependence of the loss factor 1/Q
for the 3P and White’s model. For frequencies larger than transition frequency fc the plotted
curves are proportional to 1

f
(3P) and 1√

f
(White).

[33, 34] proposed to use the dynamic Biot equations [9] with spatially varying material
parameters to model poroelastic problems with patchy saturation. However, Carcione et
al. [21, 19, 20] showed that the fully resolved simulation of wave propagation at low seis-
mic frequencies is numerically inefficient due to the multiple temporal and spatial scales
and is, therefore, restricted to artificially small control volumina. By contrast, several
authors [81, 109] proposed to solve poroelastic initial value problems. They compute the
effective material properties of the viscoelastic substitutes from volume averages of the
mesoscopic quantities. Numerical efforts undergo additional reductions if Biot’s equation
of (linear) consolidation neglecting inertia effects [6] are used for the description of the
mesoscopic poroelasticity model [101, 102, 103, 138]. The presumption that inertia effects
can be ignored is justified by the fact that, at low seismic frequencies, the inertia forces
observed in fluid-saturated porous rocks during numerical simulation are much smaller
than the forces associated with the elastic properties of the rock matrix and the viscous
drag forces due to the fluid redistribution. As a consequence, it is possible to numerically
investigate the attenuation properties of porous rocks solving transient boundary value
problems such as stress relaxation (consolidation) or creeping experiments.
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Identifying macroscopic substitute models

by computational homogenization

The increasing need for a deeper understanding of microstructural processes and for the
development of micro-tailored materials, in particular in the field of materials science, has
stimulated a vivid evolution of scale-bridging techniques during the past decades. Some-
thing, they all have in common, is that homogenization techniques seek to derive the
macroscopic material response based on simulations of the small-scale properties within
a control volume with microstructural resolution. Hereby, the control volume has to be
chosen large enough for being representative for the entire structure. One well-established
homogenization technique being able to involve spatially distributed meso- or microscopic
properties is the rigorous mathematical homogenization method, which represents a pow-
erful tool to find coarse-grained solutions for idealized periodic structures. The idea of
mathematical homogenization is based on the perturbation and asymptotic theory of
partial differential equations and is, therefore, restricted to a geometrically as well as
materially linear material behavior, see [1, 3, 5, 113]. We are, however, interested in the
numerical modeling of seismic attenuation, which is caused by diffusive fluid transport and
redistribution processes between mesoscopic heterogeneities in the poroelastic medium.
Moreover, the aimed effective substitute model exhibits apparent viscoelastic properties.
Hence, it is essential for the related upscaling problem to include at least material nonlin-
earities of the mesoscopic mixture and the macroscopic substitute medium. We, therefore,
focus on the so-called computational homogenization procedure to accomplish the desired
scale transition.

The concept of (classical) computational homogenization is well-established in literature,
and numerous contributions deal with various applications, see, for example, Düster and
Rank [59, 117, 32], Fish [42], Geers and Kouznetsova [51, 70, 71, 72], Huet [62], Jänicke,
Diebels, Steeb and coworkers [63, 65, 66, 116, 127], Larsson and Runesson [77, 75, 76],
Michel [87], Miehe [90, 91], Schröder, Balzani and coworkers [4, 115], Steinmann and
Mergheim [41, 67], Wriggers and Temizer [123, 124], to name only a few. A comprehen-
sive methodological overview including numerical aspects can be found in [78, 95, 144].
Hereby, Feyel and Chaboche [40] have coined the name FE2 for the numerical solution
concept. The idea behind this concept is that kinematic or stress quantities observed at
the macroscopic material/integration point are projected to the boundary of a mesoscopic
control volume. The resulting boundary value problem can be solved numerically and the
stress or, respectively, strain response is homogenized and transferred back to the macro-
level, where it can be used to compute the (tangent) stiffness or, respectively, compliance
of the macroscopic substitute medium. This procedure requires the nested solution of one
macroscopic and numerous fully-resolved mesoscopic boundary value problems in each in-
dividual iteration step. The solution of the mesoscopic boundary value problem replaces,
therefore, the unknown macroscopic constitutive relation. However, even using rather
small SVE sizes, leads, in particular in materially nonlinear 3D applications, to very high
computational costs.
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This unsatisfactory situation provoked the development of several reduced order modeling
techniques. The transformation field analysis (TFA) [35] and the closely related nonuni-
form transformation field analysis (NTFA) [88, 89, 107], dedicated to the homogenization
of plastic and viscoplastic composites, approximate the inelastic strain fields on the small
scale by a finite number of spatial inelastic modes. The variables controlling the evolution
of these inelastic modes are considered as the internal variables of the macroscopic model.
Fritzen and Böhlke [46, 48, 49] extended the NTFA concept by an energetically consis-
tent derivation of the related evolution equations and opened the method to the class
of generalized standard materials (GSM). With the hyper reduction technique [111, 112]
and the proper generalized decomposition [25], further order-reduction methods are well-
established in literature. All these approaches make use of the fact that, for numerous
applications, the superposition principle can be applied. This is in particular valid for
the GSM with material nonlinearities in a geometrically linear setup. Hereby, the super-
position principle allows for an additive decomposition of the involved physical fields into
elastic and, if necessary, numerous inelastic contributions. The main idea of order reduc-
tion is to precompute the material response on the small scale depending on the process
and on the internal variables separately in the form of offline precomputations and to su-
perimpose the accordingly weighted responses. Hence, the method yields a semi-analytic
effective constitutive relations and the online computation on the large scale is restricted
to solve the macroscopic boundary value problem under usage of the precomputed results.
Compared to the nested FE2 computation technique this leads to significant numerical
savings and makes it possible to address relevant technical applications.

In this contribution, we aim to merge the introduced modeling techniques and to extend
them towards a numerically efficient computational homogenization method for fluid-
saturated porous media. In particular it is our interest to identify the appropriate vis-
coelastic substitute models for pressure diffusion in poroelastic and fractured media. To
this end, the classical scale-bridging concepts as well as the order reduction concepts
available in literature need significant generalization. We, therefore, divide this contri-
bution into several thematic sub-problems and start our considerations in Chap. 2 by a
review over the foundations and basic concepts of the Theory of Porous Media and their
specifications in the case of a biphasic mixture consisting of a porous solid skeleton and a
saturating (effective) pore fluid. Hereby, special regard is paid to the quasi-static formula-
tion of poroelasticity. Subsequently, the fundamental concepts of classical computational
homogenization are recalled.

Chap. 3 is dedicated to the exploration of macroscopic viscoelastic substitute models for
poroelastic media with spatially varying material properties on the meso-level. Hereby,
we include cases with double porosity, patchy saturation as well as combinations of both.
The particular difficulty of this upscaling problem lies in the fact that not all mesoscopic
field quantities own an one-by-one representation in the viscoelastic substitute model.
The homogenization is, therefore, called selective. To this end, we introduce in Sec. 3.1
a proper volume averaging concept based on an accordingly extended version of Hill’s
principle of macro-homogeneity. This allows us to derive a set of consistent boundary
conditions for the participating field quantities. The consequences of choosing different
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boundary conditions are investigated in a first numerical study in Sec. 3.2. After having
established the computational homogenization framework, Sec. 3.3 seeks to derive the
material properties of the macroscopic substitute medium by a novel order reduction
concept for the poro-to-viscoelastic upscaling problem. To this end, it is demonstrated
how to derive the viscoelastic internal variables required for the solution of the large
scale problem from a finite-dimensional set of pressure modes. The relation to standard
viscoelastic rheologies is discussed. After all, the resulting new homogenization method is
implemented and applied for numerical studies featuring the 1D White model in Sec. 3.4
and a 2D patchy saturation example in Sec. 3.5. Hereby, we find excellent agreements of
the reduced order models with reference computations under various loading scenarios and
requiring a reasonably low number of internal variables for the macro-scale formulation.
The chapter is completed by the preliminary conclusions given in Sec. 3.6.

Chap. 4 aims to sharpen our understanding for attenuation caused by waved-induced
fluid flow and, consequently, pore pressure diffusion in mesoscopic fractures and joints.
We, therefore, modify our modeling approach in Sec. 4.1 and consider spatially dis-
tributed mixtures of elastic and poroelastic constituents on the meso-level. Hereby, the
elastic volume fractions are the model representations for crystalline and, therewith, im-
permeable rocks. The poroelastic inclusions exhibit passably high aspect ratios, high hy-
draulic permeability and low elastic (solid) stiffness and stand for hydraulically open and
mechanically partly closed fractures. After having established the appropriately modified
order reduction concept, we numerically investigate the resulting homogenization con-
cept in Sec. 4.2 for a simple fracture network and validate it successfully in comparison
to reference computations with full mesoscopic resolution. However, we can show that
the poroelastic modeling of the fracture space suffers from several deficiencies. First,
the choice of the poroelastic material parameters is not obvious and seems to be rather
heuristic. Thus, this model allows for qualitative investigations, only. Second, the numer-
ical efforts to mesh the fracture tips and to solve the resulting equation system restricts
the applicable aspect ratios to unacceptably law values. Consequently, we seek for a
more efficient modeling approach for the diffusion processes being active in the fractures.
To this end, we derive in Sec. 4.3 a dimensionally reduced formulation for the fracture
diffusion. Hereby, the individual fractures are considered as planar topologies in a 3D con-
trol volume. We allow for pressure diffusion in the individual fractures, mass exchange
between the fractures, mass exchange between the fractures and the surrounding rock ma-
trix (leak-off) and, last but not least, pore pressure diffusion in the fluid-saturated porous
rock matrix. An adapted version of the order reduction formalism is developed and, in-
terestingly, does not change the structure of the evolution laws in the macro-model. The
hybrid-dimensional homogenization concept is successfully validated in Sec. 4.4, whereas
Sec. 4.5 recapitulates the key findings and physical interpretations of the observed phe-
nomena.

Chap. 5 is dedicated to a rather fundamental extension of the physical processes under
investigation. Whereas, so far, the diffusion processes causing the effective viscosity have
been restricted to proceed inside the control volume, we now include explicit macroscopic
stimulations of the mesoscopic diffusion problem in our concept. In other words, we allow
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for macroscopic fluid transport processes. We call the resulting substitute material a poro-
viscoelastic medium. Hereby, we introduce a volume averaging concept based on an affine
macroscopic stimulation of the mesoscopic pore pressure field in Sec. 5.1. Again, an ap-
propriately extended version of Hill’s principle of macro-homogeneity is the center point
of our derivations. In Sec. 5.2, the computational homogenization concept is completed
by a novel poroviscoelastic version of the reduced order modeling concept. Sec. 5.3 raises
some drawbacks of the proposed method. In particular, it can be shown that the derived
set of mesoscopic boundary conditions is closely related to the Voigt limit in classical
computational homogenization. This motivates us to propose an alternative poro-to-
poroviscoelastic upscaling approach based on a flux control of the meso-scale problem in
Sec. 5.4. We modify the averaging concept accordingly and derive the corresponding
order reduction formalism in Sec. 5.5. We show that the structure of the equations con-
trolling the temporal evolution of the macroscopic internal variables remains unchanged
compared to the poro-to-viscoelastic problem. However, additional stimulations of the
internal variables are provided in terms of the additional macroscopic process variables.
We show, moreover, that the derived boundary conditions correspond to the Reuss limit
in classical homogenization. The fascinating properties of the different loading scenarios
are under investigation in Sec. 5.6. Hereby, we focus on the interesting case of a control
volume incorporating a diffusion barrier. We study in detail the activated physical pro-
cesses and discuss physical interpretations for our observations. The chapter is summed
up in the preliminary conclusions given in Sec. 5.7. The present work closes with an over-
arching recapitulation and discussion of the investigated phenomena and the key finding
in Chap. 6. It includes an outlook on future challenges and opening research fields.

For the sake of an efficient numerical implementation the algorithmic tangent operators
for the proposed viscoelastic constitutive relations are derived in the Appendix of this
contribution.

Notation

Throughout this work we use a tensor notation closely related to the system proposed by
de Boer [12]. Generally, vectors and tensors are written as bold characters. Hereby, we
restrict our considerations to the orthonormal vector basis E = {e1, e2, . . . , en} in the
n-dimensional Euclidean vector space En defining the Cartesian coordinates. Accordingly,
second and higher rank tensors are written as A2 = Aij ei⊗ej , A

3 = Aijk ei⊗ej⊗ek, etc.
Hereby, Einstein’s sum convention is considered for indices appearing twice within one
product. We use for the inner vector and tensor products the contractions A·b = Aij bj ei,
A : B = Aij Bij , etc. The second rank identity tensor is defined as I = δij ei ⊗ ej with
the Kronecker symbol δij .

Particular regard has to be paid on the notation for the multi-scale problems. Hereby, the
quantity ⋄̄ represents the macroscopic counterpart of the mesoscopic quantity ⋄ with the
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identical physical interpretation and the same dimensions. The notation related to the
multi-phase aspects of this work is introduced at appropriate points within the subsequent
chapters. For the sake of a clear presentation, we do not display coordinate systems
throughout all numerical studies and plots. We assume, once for all, Cartesian coordinates
with the positive x1-direction pointing to the right and the positive x2-directions pointing
upwards.





2
Theoretical foundations

After having introduced the general framework and the goals of this work, the following
section is dedicated to recall the fundamental modeling and upscaling techniques used for
the multi-phase and multi-scale problems under investigation. As we have seen above,
we distinguish between three relevant length scales, see Fig. 1.1. Hence, we need to
accomplish two upscaling steps, first, the micro-to-meso transition and, second, the meso-
to-macro transition. However, both upscaling steps require an individual treatment. This
is a consequence of the different physical processes being active at the different length
scales. In particular, the amount of structural information that needs to be transported
from the particular small to the next larger scale deviates drastically. This issue has to be
discussed in more detail. Therefore, it is important to recall that, throughout this work,
we are interested in rather slow processes. The wave length of the macroscopic mechanical
loading processes is significantly larger than the typical length scale of the meso-level, and
it is much larger than the typical length scale of the micro-level. Moreover, the pressure
diffusion mechanisms, which are in the focus of this contribution, take place on mesoscopic
length scales much larger than the microscopic ones. The mesoscopic material points
are, therefore, associated with microscopic Representative Volume Elements (RVE) with
a quasi-homogeneous, smeared-out structure. The morphology of the micro-level (for
example the spatial distribution of the constituents existing on the microscopic length
scale) is hidden for the diffusion processes under investigation. The mesoscopic material
behaviour is dictated by the volume fractions of the participating constituent phases
(solids, fluids), only. We, therefore, use the Theory of Porous Media (TPM) to derive the
mesoscopic material model in terms of effective mesoscopic material parameters taking
into account the micro-structural properties in an averaged manner.

On the meso-level, the prevalent heterogeneities induce pressure diffusion processes lead-

– 11 –
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ing to a redistribution of the pore fluid inside a mesoscopic RVE. Hereby, the spatial
distribution of the heterogeneities (varying saturating fluids or rock matrix properties)
plays an important role, and the mesoscopic volume fraction of the involved materials is
insufficient for a precise macroscopic substitute model. We, therefore, develop an adopted
computational homogenization technique to describe the meso-to-macro transition. In the
sequel, we recall the theoretical foundations and relevant techniques for both upscaling
approaches.

Theory of Porous Media

We start our theoretical considerations by a recapitulation of the Theory of Porous Me-
dia (TPM). The TPM can be understood as a straight-forward extension of the classical
Mixture Theory (MT), see [16, 128, 129]. This well-established theory assumes heteroge-
neously composed continua consisting of an arbitrary number of miscible and interacting
constituents. In contrast to a microscopic description of such multi-phase media, the
various interactions between the constituents are resolved on an effective, in our case
mesoscopic, length scale rather than on a microstrucutral level. Hence, the microscopic
or even intermolecular interaction processes are not explicitly considered but enter a phe-
nomenological description on a larger length scale. It is important to remark that the MT,
therefore, does not involve any microscopic information. Moreover, it supposes perfectly
miscible mixtures. Investigating the effective properties of a fluid-saturated porous mate-
rial consisting of, at least, one solid and one fluid constituent, the miscibility is, obviously,
not satisfied [17, 141]. The MT has, therefore, been enriched by the volume fractions of
the participating phases, resulting in the TPM, see, for example, [13, 14, 29, 37, 38] and
citations therein. In the sequel, we follow the argumentation and derivations of the TPM
as presented by Diebels [29], Ehlers [38] and Steeb [120]. Further information concerning
the operations in analogy to standard continuum mechanics can be found, for example,
in [56, 80].

The concept of volume fractions

We consider a mixture ϕ consisting of k constituents ϕα, α = 1, 2, . . . , k. The TPM
bases on the fundamental assumption that all constituents of a mixture are statistically
distributed within the control volume under consideration. The mixture itself behaves like
a usual single phase material whose material properties are computed as the superposition
of the interacting continua ϕα. We write

ϕ =

k⋃

α=1

ϕα. (2.1)
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In other words, all constituents ϕα exist simultaneously at all material points of the
superimposed continuum included in the (mesoscopic) homogenized control volume V ,
see Fig. 2.1. Hereby, the total volume V occupied by the mixture computes as

V =

∫

V

dv =
k∑

α=1

V α, with V α =

∫

V

dvα =:

∫

V

nα dv. (2.2)

The V α are called the partial volumes of the constituent ϕα, α = 1, 2, . . . , k. The concept
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Figure 2.1: Homogenization of a discrete micro-scale model towards a smeared-out, homoge-
nized meso-scale model using the TPM. Here, the example of a biphasic medium is shown with
one solid phase ϕs and one fluid phase ϕf .

of volume fractions states that no information about the micro-morphology besides the
volume fractions of the particular constituents is considered. In particular, the spatial
distribution of the constituents is completely ignored. The concept of volume fractions,
therefore, represents a simplified “microstructure” model, see Fig. 2.1. Hereby, the volume
fraction of the constituent ϕα is computed as the ratio of the partial volume element dvα

and the total volume element dv,

nα =
dvα

dv
. (2.3)

In accordance with Eq. (2.2)1, the saturation condition can be introduced as

k∑

α=1

nα = 1. (2.4)

In an analogous manner, we can define the total mass M of the mixture as the sum of
the partial masses Mα of the constituents ϕα. We write

M =

∫

V

dm =

k∑

α=1

Mα, with Mα =

∫

V

dmα. (2.5)
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The above relations allow for the introduction of two different definitions for the density.
In the TPM, one distinguishes between the effective (true) density ραR and the partial
density ρα, α = 1, 2, . . . , k, given as

ραR =
dmα

dvα
, ρα :=

dmα

dv
. (2.6)

The partial mass elements dmα compute, accordingly, as

dmα = ραR dvα = ρα dv. (2.7)

Hence, we can derive the relation between the density functions

ρα = nα ραR. (2.8)

In the case of a liquid phase ϕl representing a mixture of several constituents ϕβ, β =
2, 3 . . . , k, where ϕl =

⋃k

β=2 ϕ
β and ϕ = ϕs∪ϕl, the volume fractions may be substituted

by the saturation functions sβ of the k − 1 miscible pore fluids ϕβ,

sβ :=
nβ

nl
, with nl =

k∑

β=2

nβ . (2.9)

Hereby, it holds that sβ ∈ [0; 1] under the constraint

k∑

β=2

sβ = 1. (2.10)

From a physical point of view, nβ quantifies the volume fraction of the phase ϕβ related
to the control volume V , sβ the volume fraction of phase ϕβ related to the total pore
space V l. It is, therefore, convenient, to rename the volume fraction of the pore space as
the porosity φ computed as

φ := nl =

k∑

β=2

nβ . (2.11)

Kinematics in the Theory of Porous Media

The TPM describes mixtures as superimposed continua. Considering a material point P in
the current configuration at the time t > t0, the material point is simultaneously occupied
by all constituents ϕα, α = 1, 2, . . . , k. However, each constituent follows its individual
motion function χα, see Fig. 2.2. In other words, the reference positions of the material
particles Pα occupying P in the current configuration are not necessarily identical. In
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general, the different phases proceed from individual reference points. Analogously, their
future positions will be, in general, individual for each phase ϕα. The motion function of
phase ϕα is, therefore, defined as

x = χα(Xα, t), α = 1, 2, . . . , k. (2.12)

The motion function χα maps the position vector Xα uniquely onto the current position
vector x. The motion function is invertible and, therefore, each material point in the
current position can only be occupied by exactly one single material particle Pα of each
constituent ϕα. The invertibility requires a non-singular Jacobian determinant Jα of phase
ϕα with

Jα = det
∂χα

∂Xα

6= 0. (2.13)

The inverse motion function follows as

Xα = χ−1
α (x, t). (2.14)

Hereby, Eq. (2.12) represents, in analogy to standard continuum mechanics, the La-
grangean (material) description of the motion, whereas Eq. (2.14) refers to the Eulerian
(spatial) description.

Since all constituents follow their own unique motion function, the constituents have
individual velocity and acceleration fields, too. In the material description, we can write

vα := ẋα =
∂χα(Xα, t)

∂t
and aα := ẍα =

∂2χα(Xα, t)

∂t2
. (2.15)

Hereby, the dot symbol is used for the partial time derivative ⋄̇ = ∂⋄
∂t
. In the spatial
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description, it follows with the usual argumentation

x′
α = x′

α(x, t) and x′′
α = x′′

α(x, t), (2.16)

with the material time derivative (⋄)′α referring to the motion of ϕα defined as

(⋄)′α = ⋄̇+ (⋄ ⊗∇x) · vα, (2.17)

which holds for any sufficiently regular and differentiable function ⋄(x, t). Here, we use the
gradient operator ∇x with respect to the current position x, which is defined as ∇x = ∂

∂x
.

Analogously, the (barycentric) velocity v of the mixture can be defined introduced as

v := x′ =
1

ρ

k∑

α=1

ρα vα, (2.18)

with the definition of the mixture density ρ =
k∑

α=1

ρα. The material time derivative of the

mixture is given by

⋄′ = ⋄̇+ (⋄ ⊗∇x) · v. (2.19)

Hence, the two material time derivatives (⋄)′α and ⋄′ differ in the velocity associated to
the particular convective contribution.

Finally, we introduce the solid displacement

us = x−Xs (2.20)

and the seepage velocities of the individual fluid phases ϕβ, for β = 2, 3, . . . , k,

wβ = x′
β − x′

s. (2.21)

In other words, a Lagrangean description is used for the motion of the solid matrix ϕs,
the motion of the fluid constituent ϕβ is formulated in a modified Euelerian (spatial)
description.

If one computes the derivation of the motion function χα with respect to the reference
position vector Xα of the phase ϕα, one obtains the partial deformation gradient

Fα =
∂χα(Xα, t)

∂Xα

:= χα ⊗∇Xα
= x⊗∇Xα

. (2.22)

Hereby, the material gradient operator ∇Xα
represents the derivative with respect to

the reference position Xα, α = 1, 2, . . . , k. The inverse deformation gradient F−1
α is

computed as the derivative of the inverse motion function of the phase ϕα with respect
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to the position vector of the current configuration

F−1
α =

∂χ−1
α (x, t)

∂x
= χ−1

α ⊗∇x = Xα ⊗∇x. (2.23)

From Eqs. (2.22) and (2.23) it becomes clear that the deformation gradient Fα refers
to the material description, whereas the inverse deformation gradient F−1

α is used for
the spatial description. In the undeformed state, the deformation gradients satisfy the
condition Fα = F−1

α = I. The invertibility of the deformation gradient requires a strictly
positive Jacobian determinant, for α = 1, 2, . . . , k,

detFα = Jα > 0 (2.24)

The deformation gradients can be related to the material and spatial displacement gradi-
ents by

Fα = I+ uα ⊗∇Xα
and F−1

α = I− uα ⊗∇x. (2.25)

From a physical point of view, the deformation gradient Fα transports line elements dXα

of the reference configuration onto line elements dx of the current configuration by the
linear mapping

dx = Fα · dXα. (2.26)

Vice versa, the inverse mapping reads

dXα = F−1
α · dx. (2.27)

Both mapping procedures contain stretch and rotation contributions. Indeed, the defor-
mation gradient may undergo an unique polar decomposition into a proper orthogonal
rotation tensor Rα and a symmetric and positive definite stretch tensor Uα or, respec-
tively, Vα. We write

Fα = Rα ·Uα = Vα ·Rα. (2.28)

Further deformation tensors can be derived analyzing the transport properties of squares
of line elements. Hence, the relation

ds2 = dx · dx = dXα · FT
α · Fα · dXα = dXα ·Cα · dXα (2.29)

leads to the definition of the partial right Cauchy-Green deformation tensor

Cα = FT
α · Fα (2.30)

of the phase ϕα, α = 1, 2, . . . , k. Vice versa, the relation

dS2
α = dXα · dXα = dx · F−T

α · F−1
α · dx = dx ·B−1

α · dx (2.31)
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defines the partial left Cauchy-Green deformation tensor

Bα = Fα · FT
α (2.32)

of the phase ϕα, α = 1, 2, . . . , k.

Whereas the Cauchy-Green deformation tensors result in the identity tensor I in the unde-
formed state, we can derive the partial strain tensors with the value 0 for the undeformed
state by computing the differences of line elements square as

ds2 − dS2
α = dx · dx− dXα · dXα = dXα · (Cα − I) · dXα (2.33)

= dx · (I−B−1
α ) · dx. (2.34)

The tensors

Eα =
1

2
(Cα − I) and A =

1

2
(I−B−1

α ) (2.35)

are called the partial Green-Lagrange and, respectively, the partial Euler-Almansi strain
tensor of the phase ϕα, α = 1, 2, . . . , k. In the geometrically linear case, the Green-
Lagrange strain tensor Eα reduces to the well-known engineering strain εα by

εα = Elin
α =

1

2
(uα ⊗∇+∇⊗ uα). (2.36)

In the geometrically linear case, we suppose the material and the spatial gradients to
coincide and we use, therefore, the unified derivation symbol ∇⋄ = ∂⋄

∂x
.

Finally, we would like to measure strain rates in terms of the partial strain rate tensor Lα

defined as

Lα := vα ⊗∇x = F′
α · F−1

α . (2.37)

By convenience, the strain rate tensor is additively split into its symmetric and its skew-
symmetric part by

Lα = Dα +Wα with

{

Dα = 1
2
(Lα + LT

α),

Wα = 1
2
(Lα − LT

α).
(2.38)

Balance relations

The quantities introduced so far describe the motions and the deformations of the mixture
as well as of its single constituents in a kinematic and, therefore, geometrical fashion. We
now seek for the formulation of conservation laws which are, as it is the case for classical
single-phase materials, motivated in an axiomatic manner. In the TPM, the analogon to
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the classical conservation laws are the balance relations for the entire mixture. Moreover,
the TPM introduces conservation laws for the various constituents ϕα and follows therein
the axiomatic statements known as Truesdell’s metaphysical principles, see [128]. Thus,
the balance relations for the mixture ϕ as well as those of the single constituents ϕα

are supposed to show the structure of the balance relations of the classical single-phase
material. The partial conservation laws for the single constituents are completed by
appropriate interaction terms representing the various exchange mechanisms between the
different phases. In the sequel, we discuss the different conservation laws in detail.

Mass balance

The conservation of mass for the phase ϕα requires that the change of mass in time of
this constituent equals the mass exchange with other phases. Hence, we can write

(Mα)′α = M̂α. (2.39)

The mass Mα and the mass production M̂α are defined as

Mα =

∫

V

ρα dv and M̂α =

∫

V

ρ̂α dv. (2.40)

Since the global mass balance, computed as the sum over the partial mass balances,
requires the total mass content of the control volume V to be constant in time, it follows
directly the constraint for the mass production

k∑

α=1

M̂α = 0. (2.41)

Localization of this global mass balance expression leads to

(ρα)′α + ρα∇x · vα = ρ̂α (2.42)

⇔ ρ̇α +∇x · (ρα vα) = ρ̂α, (2.43)

where the material time derivative has been evaluated. Moreover, we may substitute the
partial mass density by ρα = nα ραR and the partial mass production by ρ̂α = n̂α ραR

resulting in

(nα ραR)• +∇x · (nα ραR vα) = n̂α ραR. (2.44)

The total mass balance of the mixture computes as the sum of the partial balance relations
with the constraint that the mixture’s mass production vanishes. Hence,

M ′ = 0. (2.45)
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Localization of the balance law results in the form known for single-phase continua

ρ′ + ρ∇x · v = 0 ⇔ ρ̇+∇x · (ρv) = 0. (2.46)

The constraint for the mixture’s vanishing mass production is written as

ρ̂ =

k∑

α=1

ρ̂α = 0. (2.47)

Momentum balance

The momentum balance states that the momentum L of a body changes by action of
the external forces F. Following Truesdell’s axioms, the same relation must hold for the
constituent ϕα including an appropriate momentum exchange term. Hence, we write the
global form of the momentum balance of the phase ϕα, α = 1, 2, . . . , k, as

(Lα)′α = Fα + Ŝα, (2.48)

with the momentum production Ŝα. The partial momentum Lα, the partial force vector
Fα and the momentum production Ŝα are given by

Lα =

∫

V

ραvα, Fα =

∫

∂V

tα da+

∫

V

ρα bα dv, Ŝα =

∫

V

ŝα dv, (2.49)

with the constraint

k∑

α=1

Ŝα = 0. (2.50)

In other words, the momentum production of the mixture vanishes. Hereby, the vector ŝα

is called the total momentum production of phase ϕα. As usual, the external forces are
split into surface tractions tα and body forces ρα bα. The localization of Eq. (2.48) yields

ρα aα = Tα ·∇x + ρα bα + p̂α. (2.51)

Hereby, Reynold’s transport theorem, see [56], the Cauchy theorem tα = Tα · n with
the partial Cauchy stress tensor Tα and the outwards surface normal vector n as well as
the partial balance of mass Eq. (2.43) have been used. Moreover, the direct momentum
exchange p̂α has been defined as

p̂α = ŝα − ρ̂α vα. (2.52)
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The sum over the total momentum productions of all phases ϕα, α = 1, 2, . . . , k, must
vanish and it holds

k∑

α=1

ŝα = 0. (2.53)

Hence, the momentum balance of the mixture can we written in local form as

ρ a = T ·∇x + ρb. (2.54)

Balance of momentum moments

Besides the momentum the momentum moments have to satisfy a conservation law: The
rate of momentum moments Hα is balanced by the moment of the surface and body forces
Mα acting on V . In the case of the partial balance law for the constituent ϕα, a production
term Ĥα, representing the momentum moment exchange between the particular phases,
has to be introduced. We, therefore, write

(Hα)′α = Mα + Ĥα. (2.55)

Here, the definitions

Hα =

∫

V

(x− x0)× ρα vα dv, (2.56)

Mα =

∫

∂V

(x− x0)× tα da+

∫

V

(x− x0)× ρα bα dv, (2.57)

Ĥα =

∫

V

ĥα dv (2.58)

are used. The position vector x0 describes an arbitrary but fixed reference point to
compute the force moments. The momentum moment production of the mixture must
vanish and, therefore, the constraint

k∑

α=1

Ĥα = 0 (2.59)

has to be satisfied. Localization of the global conservation law Eq. (2.55) under usage of
Reynold’s transport theorem and the mass balance Eq. (2.43) yields

I×Tα = −m̂α. (2.60)
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Hence, the partial Cauchy stresses Tα are only symmetric if the direct momentum ex-
change m̂α vanishes. The direct momentum exchange mα and the total momentum
exchange ĥα are related by

m̂α = ĥα − (x− x0)× (p̂α + ρ̂α vα). (2.61)

The momentum moment production of the mixture must vanish and, therefore, the con-
straint

k∑

α=1

ĥα = 0 (2.62)

has to be satisfied. The mixture’s balance of momentum moments, therefore, results in
the symmetry condition of the total Cauchy stress tensor T,

I×T = 0 ⇔ T = TT . (2.63)

Energy balance

The conservation of energy states that the rate of the partial internal energy Eα and the
kinetic energy Kα of the constituent ϕα stored in the control volume V are balanced by
the power of the partial external forces P α

ext, the partial thermal power Qα and the partial
energy production Êα. We write

(Eα +Kα)′α = P α
ext +Qα + Êα (2.64)

with

Eα =

∫

V

ραǫα dv, (2.65)

Kα =
1

2

∫

V

ραvα · vα dv, (2.66)

P α
ext =

∫

∂V

tα · vα da+

∫

V

ρα bα · vα dv, (2.67)

Qα =

∫

∂V

qα da +

∫

V

ρα rα dv, (2.68)

Êα =

∫

V

êα dv. (2.69)
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Hereby, we have introduced the partial specific internal energy ǫα, the partial heat flux
over the surface qα, the partial radiation rα and the total energy production êα.

As we have done for the conservation laws above, we execute the localization under usage
of Reynold’s transport theorem and the lower balance relations. Moreover, we split the
local energy balance into the balance of internal energy

ρα(ǫα)′α = Tα : Lα −∇x · qα + ρα rα + ǫ̂α + ρ̂α ǫα (2.70)

and the balance of kinetic energy

1

2
ρα (vα · vα)

′
α = (vα ·Tα) ·∇x −Tα : Lα + ρα bα · vα

+p̂α · vα + ρ̂α
(
1

2
vα · vα

)

. (2.71)

It is important to remark that, in absence of a momentum moment production m̂α,
the partial Cauchy stress Tα becomes symmetric and that the strain rate Lα can be
substituted by its symmetric contribution Dα in Eqs. (2.70) and (2.71). The direct energy
production is computed as the difference of the total energy production and the lower
production terms via

ǫ̂α = êα − p̂α · vα − ρ̂α
(

ǫα +
1

2
vα · vα

)

. (2.72)

The total energy production must vanish. Hence, the constraint

k∑

α=1

êα = 0 (2.73)

has to be satisfied. The internal and kinetic energy balances of the mixture, therefore,
read

ρ ǫ′ = T : D− q ·∇x + ρ r, (2.74)

1

2
ρ (v · v)′ = (v ·T) ·∇x −T : D+ ρb · v. (2.75)

Entropy balance

The set of balance relations is completed by the balance of entropy. The rate of the partial
entropy Ŝα of the constituent ϕα is balanced by the entropy efflux and supply Rα and the
entropy exchange in terms of the entropy production Ŝα. We write,

(Sα)′α = Rα + Ŝα, (2.76)
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where we use the definitions

Sα =

∫

V

ρα ηα, dv, Rα =

∫

∂V

φα
η · n da+

∫

V

σα
η dv, (2.77)

Ŝα =

∫

V

η̂α dv. (2.78)

Hereby, σα
η , φ

α
η and η̂α represent, respectively, the entropy supply, the entropy efflux and

the total energy production. Localization of the global entropy balance yields

ρα (ηα)′α −∇x · φα
η − σα

η = ζ̂α, (2.79)

with the direct entropy production ζ̂α. The total and the direct energy production are
related via

ζ̂α = η̂α − ρ̂α ηα. (2.80)

The constraint on the total entropy production reads

k∑

α=1

η̂α ≥ 0. (2.81)

The partial entropy outflux φα
η as well as the partial entropy supply σα

η can be specified
as

φα
η = − 1

θα
qα and σα

η =
1

θα
ρα rα. (2.82)

Further discussions concerning the entropy principle can be found in [38].

The mixture’s local balance of entropy is given as

ρ η′ +

(
1

θ
q

)

·∇x − ρ
1

θ
r ≥ 0. (2.83)

Master balance relations

Master balances of the mixture

The conservation laws discussed above can be included in the system of Master balances
in order to give a better overview over the various relations. In analogy to standard single-
phasic materials in classical continuum mechanics, the Master balance of the mixture ϕ
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in the global form is given as

d

dt

∫

V

Ψdv =

∫

∂V

φ · n da+

∫

V

σ dv +

∫

V

Ψ̂ dv, (2.84)

d

dt

∫

V

Ψ dv =

∫

∂V

Φ · n da+

∫

V

σ dv +

∫

V

Ψ̂dv. (2.85)

Hereby, the scalar- or vector-valued functions Ψ or, respectively, Ψ describe the volume-
specific densities of the physical quantities to be balanced in V . The flux quantities acting
on the surface ∂V are called φ · n and Φ · n. The supply terms are represented by σ and
σ, and, finally, we use the production terms Ψ̂ and Ψ̂. However, the production terms of
the mixture are, usually, ignored. In other words, it is supposed that the interaction of
the mixture with its environment takes place in terms of the surface fluxes or the volume
supply.

Localization of the global Master balances results in the local forms

Ψ′ +Ψ∇x · v = ∇x · φ + σ + Ψ̂, (2.86)

Ψ′ +Ψ∇x · v = Φ ·∇x + σ + Ψ̂. (2.87)

The resulting balance laws can be found in compact form in Tab. 2.1.

Ψ, Ψ φ, Φ σ, σ Ψ̂, Ψ̂

mass ρ 0 0 0

momentum ρv T ρb 0

momentum moment (x− x0)× (ρv) (x− x0)×T (x− x0)× ρb 0

internal energy ρ ǫ −q ρ r +T : (v ⊗∇x) 0

kinetic energy 1
2
ρv · v v ·T ρb · v −T : (v ⊗∇x) 0

entropy ρ η φη ση η̂

Table 2.1: The mixture’s balance relations.

The partial Master balance

The Master balances for the individual components ϕα of the mixture are introduced in
an analogous manner. Hereby, the material time derivative is substituted by its partial
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counterpart evaluated in the direction of the partial velocity vα. Hence, we define

dα

dt

∫

V

Ψα dv =

∫

∂V

ϕα · n da +

∫

V

σα dv +

∫

V

Ψ̂α dv, (2.88)

dα

dt

∫

V

Ψα dv =

∫

∂V

Φα · n da+

∫

V

σα dv +

∫

V

Ψ̂
α
dv. (2.89)

Localization of these global equations yields the local Master balances

(Ψα)′α +Ψα
∇x · vα = ∇x · φα + σα + Ψ̂α, (2.90)

(Ψα)′α +Ψα
∇x · vα = Φα ·∇x + σα + Ψ̂

α
. (2.91)

The resulting partial balance laws can be found in Tab. 2.2.

Ψα, Ψα φα, Φα σα, σα Ψ̂α, Ψ̂
α

mass ρα 0 0 ρ̂α

momentum ρα vα Tα ρα bα ŝα

mom. moments (x− x0)× (ρα vα) (x− x0)×Tα (x− x0)× ρα bα ĥα

internal energy ρα ǫα −qα ρα rα êαi

+Tα : (vα ⊗∇x)

kinetic energy 1
2
ρα vα · vα vα ·Tα ρα bα · vα êαk

−Tα : (vα ⊗∇x)

entropy ρα ηα φα
η σα

η η̂α

Table 2.2: The partial balance relations of the single constituents ϕα, α = 1, 2, . . . , k. Hereby,
êα = êαi + êαk , with êαi = ǫ̂α + ρ̂α ǫα and êαk = p̂α · vα + ρ̂α 1

2 vα · vα.

Hereby, the total production terms are computed as the sum of the direct production and
contributions due to lower order productions. We can summarize as follows:

ŝα = p̂α + ρ̂α vα, (2.92)

ĥα = m̂α + (x− x0)× (p̂α + ρ̂α vα), (2.93)

êα = ε̂α + p̂α · vα + ρ̂α
(

εα +
1

2
vα · vα

)

, (2.94)

η̂α = ζ̂α + ρ̂α ηα, (2.95)
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with the saturation conditions

k∑

α=1

ρ̂α = 0, (2.96)

k∑

α=1

ŝα = 0, (2.97)

k∑

α=1

ĥα = 0, (2.98)

k∑

α=1

êα = 0, (2.99)

k∑

α=1

η̂α ≥ 0. (2.100)

The resulting system of partial differential equations has to be closed by the derivation
of appropriate constitutive relations. Throughout this contribution, however, we restrict
our considerations on a geometrically linear setting. Whereas we take into account ma-
terially nonlinear properties of the mixture, the mixture’s non-linearity results from the
interaction of constituents with linear properties. The partial constitutive relations can
be derived from standard quadratic potentials. For the sake of brevity, we, therefore, skip
the further investigation of the constitutive modeling in the framework of the entropy
principle. The interested reader is, for example, referred to [38].

Biphasic mixtures

Many applications in science and engineering deal with fluid-saturated porous media which
consist of one solid constituent ϕs, representing the solid grains and the rock skeleton,
and one fluid constituent ϕf , representing the pore fluid. Hereby, the pore fluid might be
again a mixture of several miscible constituents. Throughout this work, we will restrict
on these biphasic media. We, therefore, simplify the TPM settings as follows. First, the
volume fraction occupied by the fluid phase can be computed as

nf =
dvf

dv
=: φ (2.101)

and defines the porosity of th rock matrix φ(t), t > t0, in the current configuration. If the
effective pore fluid consists of two fluids, for example water and gas (α ∈ {w, g}), the
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fluid saturation, second, is given as

sα =
dvα

dvf
. (2.102)

The material parameters of the effective fluid can be, for example, computed using the
averaging rules introduced by Wood [142] and Teja and Rice [122].

Biot’s equations of linear consolidation

In the sequel, we seek to rewrite the relevant balance equations and constitutive relations
for the biphasic case. For the intended application to attenuation phenomena in the
seismic frequency range, we restrict ourselves to the quasi-static case neglecting inertia
forces and, moreover, body forces. Thus, the partial momentum balance Eq. (2.51) takes
the form

Tα ·∇x + p̂α = 0, α ∈ {s, f}. (2.103)

Neglecting mass production, that is ρ̂α = 0, the saturation condition for the momentum
production ŝα Eq. (2.53) can be simplified as

ŝs + ŝf = p̂s + p̂f = 0. (2.104)

In other words, we exclude any phase transitions between solid and fluid phase.

The balance equation for the mixture reduces to

T ·∇x = 0 (2.105)

with the total Cauchy stress of the mixture

T = Ts +Tf . (2.106)

In the geometrically linear case, the material and the spatial gradient operator coincide
and, therefore, the gradient operator used in Eqs. (2.103) and (2.105) can be simplified
according to ∇x → ∇. Moreover, we replace the Cauchy stress tensors T, Tα by their
counterparts σ, σα. Hence, we rewrite Eq. (2.105) as

σ ·∇ = 0 with σ = σs + σf . (2.107)

In the sequel, Eq. (2.107) serves as the first Biot equation. We, therefore, introduce
constitutive relations for the partial stresses σs and σf and follow the concept of effective
stresses, first proposed by Terzaghi [125], and extensively discussed, for example, in [11,
15, 114, 119, 130]. Supposing linear elasticity, the partial solid and fluid stresses compute
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as

σs = C : εs − α (1− φ) p I, (2.108)

σf = − α φ p I, (2.109)

σ = σs + σf = C : εs
︸ ︷︷ ︸

=:σeff (εs(us))

−α p I
︸ ︷︷ ︸

=:σp(p)

. (2.110)

Hereby, the effective stress σeff is the part of the total stress that describes the stress
response due to the deformation of the dry solid frame. We use the fourth rank elastic
stiffness tensor C and the Biot parameter α to be specified in the sequel. In the case of an
isotropic solid skeleton, the effective stress can be computed by means of the volumetric-
deviatoric split of the solid strain tensor εs = εsphs + εvols as

σeff = 2G εdevs + 3K εsphs , (2.111)

with the effective shear modulus G and the effective bulk modulus K of the dry skeleton.
In addition to the effective stress, the total stress includes the contribution σp due to the
pore fluid pressure p. It is important to remark that, first, the pressure p is acting on
the fluid phase ϕf as well as on the solid phase ϕs, see Eqs. (2.108) and (2.109), both
weighted by their volume fraction φ or, respectively, (1− φ). Second, the fluid pressure p
can not be computed directly as a function of the solid phase displacement field us, but
it represents an independent variable. We, therefore, have to consider a second equation
coupled to the effective balance of momentum. In the sequel, this missing relation is
derived, for numerical purposes, in the sense of a us-p formulation, see [143]. Hence, the
pore pressure field p is treated as a second primary variable besides the solid displacement
us.

To this end, we investigate the partial balances of mass in order to describe the fluid
motion relative to the skeleton. Any mass production ρ̂α, α ∈ {s, f} is neglected, that
is, phase transitions of the constituents are excluded and the partial masses of the two
components contained in the control volume V are conserved. We write

dα

dt

∫

V

nα ραR dv = 0, α ∈ {s, f}. (2.112)

Taking into account dv = J dV , the time differentiation can be executed as

∫

V

[
(nα ραR)′α + nα ραR

∇x · vα

]
J dV = 0 (2.113)

⇔
∫

V

[
(nα ραR)• +∇x (n

α ραR) · vα + nα ραR
∇x · vα

]
dv = 0, (2.114)

where the material time derivative with respect to the motion of the phase ϕα has been
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evaluated. In localized form we find

ṅα ραR + nα ρ̇αR +∇x (n
α ραR) · vα

︸ ︷︷ ︸

convection

+nα ραR
∇x · vα = 0. (2.115)

Our restriction to the geometrically linear case allows us to neglect the convection term
in Eq. (2.115). Moreover, we use again the small strain representations ∇x = ∇ and
Dα = ε̇α = 1

2
(vα ⊗∇+∇⊗ vα) for the partial deformation rate tensor.

The fluid compressibility βf := 1/Kf as well as the compressibility of the solid grains
1/Ks are defined by the constitutive relations

ρ̇fR =
∂ρfR

∂p
ṗ =

1

Kf
ρfR ṗ and (2.116)

ρ̇sR =
1

Ks

ρsR

1− φ
(−σ̇ − φ ṗ), (2.117)

see, for example, Detournay and Cheng [28], Renner and Steeb [104], Verruijt [130, 131]
or Wang [136]. Hereby, the volumetric part σ̇ of the total stress rate σ̇ is defined as

σ̇ =
1

n
tr σ̇ = K∇ · u̇s − α ṗ. (2.118)

Here, n represents the dimension of the problem. Taking into account nf = φ and
ns = 1− φ, the partial balances of mass can be rewritten as

φ̇+
φ

Kf
ṗ + φ∇ · vf = 0, (α = f), (2.119)

−φ̇− 1

Ks
σ̇ − φ

Ks
ṗ+ (1− φ)∇ · u̇s = 0, (α = s). (2.120)

Finally, we combine Eqs. (2.119) and (2.120) and we find

(

1− K

Ks

)

︸ ︷︷ ︸

=: α

∇ · u̇s + φ∇ ·wf +

(
φ

Kf
+

α− φ

Ks

)

︸ ︷︷ ︸

=:
1

M

ṗ = 0. (2.121)

This result allows us to define the Biot-Willis [10] parameters as

α = 1− K

Ks
and

1

M
=

φ

Kf
+

α− φ

Ks
, (2.122)

see also [50]. Thus, we can simplify and write the continuity equation in its final version
as

∇ · (φwf) + Φ̇ = 0. (2.123)
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Hereby, we have introduced the storage function Φ representing the volume of fluid accu-
mulated within an unit of bulk volume,

Φ = φ+ α∇ · us +
1

M
p. (2.124)

In the geometrically linear case, the changes φ̇ in porosity during the time-dependent
process are considered to be negligible and, therefore, the porosity is treated as a material
parameter with φ(t > t0) = φ(t = 0) =: φ0.

In order to close the equation system we finally introduce a constitutive relation between
the pore pressure gradient ∇ p and the filter velocity φwf . Already in 1856, Henry
Darcy found out by experimental evidence that the discharge of pore fluid through a fluid-
saturated porous medium can be approximated by a linear dependency on the applied
head loss [27]. In his honor, the resulting well-known relation is called Darcy equation
and writes

φwf = − ks

ηfR
∇p. (2.125)

Hereby, we use the effective dynamic viscosity ηfR of the effective pore fluid and the in-
trinsic permeability ks of the rock matrix. The intrinsic permeability can be assumed as a
function of the pore space’s geometry, in particular of the porosity φ. For example, Car-
man and Kozeny [22] estimate the intrinsic permeability in a power law format depending
on the porosity φ,

ks ∼ φ3

(1− φ)2
. (2.126)

By contrast, the intrinsic permeabilities used in the numerical experiments throughout
this study originate from physical experiments available in literature for the materials
under investigation.

It is important to remark that the continuity equation (2.123) in combination with Darcy’s
law Eq. (2.125) represents Biot’s second quasi-static equation of a (linear) consolidation
process [6, 106]. From a physical viewpoint, this equation measures the amount of pore
fluid expelled from a volume element due to an elastic compression of the rock matrix,
the solid grains as well as the pore fluid itself. Moreover, it is important to notice that,
depending on the material parameters and particularly depending on the intrinsic per-
meability ks, the pore pressure gradients may reach very high values even in the context
of a linear consolidation process, whereas very low velocities for the relative motion of
the pore fluid with respect to the solid matrix are observed. In other words, large pore
pressure gradients result in the expulsion of a rather small mass of pore fluid. Hence, it is
the phenomenon of pore pressure diffusion rather than the pore fluid transport that will
be discussed in the sequel.

Finally, we summarize the resulting coupled equation system for the quasi-static case
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of linear consolidation in strong format, with respect to the primary variables us and p
which will be the basis for the studies on poroelasticity discussed in the following chapters.
Thus, it holds

σ(εs(us), p) ·∇ = 0, ∀ x ∈ V, (2.127)

∇ · (φwf(p)) + Φ̇(us, p) = 0, ∀ x ∈ V, (2.128)

with Dirichlet and Neumann boundary conditions

us = u∗
s ∀ x ∈ ∂u

DV, σ · n = t∗ ∀ x ∈ ∂u
NV, (2.129)

p = p∗ ∀ x ∈ ∂p
DV, φwf · n = q∗ ∀ x ∈ ∂p

NV, (2.130)

with the outwards surface normal vector n, the mass outflux q = φwf ·n and the surface
traction t = σ · n related to the total stress tensor σ. The constitutive relations are
summarized as

σ = C : εs
︸ ︷︷ ︸

=:σeff (εs)

−α p I
︸ ︷︷ ︸

=:σp(p)

, (2.131)

φwf = − ks

ηfR
∇ p, (2.132)

Φ = φ+ α∇ · us +
p

M
. (2.133)

All material parameters are specified in Table 2.3.

ks intrinsic permeability
φ porosity (φ = φ0)
G, K elastic moduli of dry frame (shear, bulk)
Ks, Kf bulk modulus (solid grains, effective pore fluid)
Kw, Kg bulk modulus (water, gas)
sw, sg ∈ [0, 1] saturation (water, gas)
ηfR effective dynamic viscosity (effective pore fluid)
ηwR, ηgR effective dynamic viscosity (water, gas)
λ = K − 2G/3

α = 1−K/Ks

M = Kf Ks/(φKs − (α− φ)Kf)

Kf = (Kg Kw)/(sg Kw + sw Kg)

ηfR = ηgR (ηwR/ηgR)s
w

sg = 1− sw

Table 2.3: Poroelastic material parameters and definitions. The effective fluid parameters Kf

and ηfR are computed following the averaging rules in [142, 122], respectively.
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Numerical solution

The numerical simulations throughout the following chapters are performed in the FE
system COMSOL Multiphysics. To this end, the coupled equation system Eqs. (2.127)
– (2.133) are transformed into their week format. The solid displacement us and the
pore pressure p are treated as primary variables in a us-p formulation. Neglecting inertia
forces, the remaining hydro-mechanically coupled diffusion problem is carried out in time
domain. For more information, see, for example, [102]. The weak formats of the diffusion
problems under discussion in this thesis will be introduced in the particular chapters.

Alternatively, the poroelastic equation system can be evaluated in frequency domain.
More details can be found in the original contributions of Biot [7, 8] or, for example, in
[109].

Computational homogenization

As indicated above, it is insufficient for the second upscaling step from the meso- to
the macro-scale model to restrict the homogenized structural information to the volume
fractions of the coefficients. In fact, the spatial distribution of the heterogeneous prop-
erties plays a central role for the effective material properties on the large scale. We,
therefore, apply an extended version of the computational homogenization procedure to
accomplish the desired scale transition. We aim to recall the classical first-order computa-
tional homogenization technique for applications in single-phasic solid mechanics within
this section. The standard approach will be, afterwards, extended towards the various
upscaling problems under discussion in the following chapters. Throughout this work, the
computational homogenization deals with the meso-to-macro transition. It is, neverthe-
less, important to remark that, in literature, the participating length scales are commonly
called micro- and macro-scale. The homogenization rules are applied accordingly.

The concept of computational homogenization supposes the perfect separation of the
involved scales, in our case the macro- and the meso-scale. For practical applications,
the condition of scale separation requires the characteristic macroscopic length scale L
or, respectively, the wave length of the macroscopic loading to be (at least) much larger
than the mesoscopic control volume and its characteristic length l, that is L ≫ l. It is
the central idea of computational homogenization that macroscopic quantities ⋄̄ can be
understood as their mesoscopic counterparts ⋄ averaged over the RVE volume V✷. Hence,
we introduce the volume averaging operator 〈⋄〉

✷
as

⋄̄ := 〈⋄〉
✷

:=
1

V✷

∫

V✷

⋄ dv. (2.134)

From a physical viewpoint, the above relation assigns the macroscopic material point to
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be the effective substitute of the mesoscopic RVE. In the sequel, we will derive appropriate
homogenization rules in order to exchange information between the two scales.

The mesoscopic boundary value problem

If we are interested in a true two-scale simulation of a meso-heterogeneous material with
the so-called FE2-technique [40], we have to project kinematic or stress quantities com-
puted at the macroscopic material/integration point to the boundary of the mesoscopic
RVE occupying the volume V✷, see Fig. 2.3. The resulting boundary value problem has
to be solved numerically and the stress or, respectively, strain response is homogenized
and transferred back on the macro-level, where it can be used to compute the (tangent)
stiffness or, respectively, compliance of the macroscopic substitute medium. The particu-
lar projection and homogenization rules are based on appropriate model assumptions for
the scale transition properties of selected quantities.
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Figure 2.3: Meso-to-macro transition in the framework of computational homogenization.

Restricting ourselves to the kinematically linear case, the volume averaging concept is
applied on the strain end stress fields in terms of

ε̄ = 〈ε〉
✷

=
1

V✷

∫

∂V✷

(u⊗ n)sym da (2.135)
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and

σ̄ = 〈σ〉
✷

= 〈(x⊗∇) · σ〉
✷

=
1

V✷

∫

∂V✷

(x⊗ t)sym da. (2.136)

For the transformation from volume into surface integrals we use the Gauss integration
rule. Moreover, the momentum balance of a single-phasic medium neglecting body and
inertia forces, that is σ·∇ = 0, is inserted into Eq. (2.136). The execution of the averaging
rules given above in terms of surface expressions is the key for the definition of consistent
boundary conditions for the mesoscopic RVE problem. However, one further essential
ingredient is required to formulate the mesoscopic boundary value problem, namely the
equivalence of the macroscopic and the mesoscopic stress power. We write

σ̄ : ˙̄ε = 〈σ〉
✷
: 〈ε̇〉

✷
:= 〈σ : ε̇〉

✷
. (2.137)

This relation is known as Hill’s principle of macro-homogeneity, see Hill [60, 61] and, for
example, [54, 57, 83, 121]. For the derivation of the mesoscopic boundary value problem
it is necessary to transform Eq. (2.137) into a surface expression and we find

σ̄ : ˙̄ε =
1

V✷

∫

V✷

u̇ · t da. (2.138)

Here, we use again the Gauss integration rule and the momentum balance of the single-
phasic and inertia-free Cauchy medium. The surface traction vector t = σ · n is defined
in the usual way involving the outwards surface normal vector n.

With this knowledge, we may derive different loading scenarios for the heterogeneous
meso-scale model. First, evaluation of the macro-homogeneity condition Eq. (2.137) under
the volume constraint Eq. (2.136)1 results in the uniform loading condition

u = ε̄ · x ∀ x ∈ V✷. (2.139)

Hence, this condition prescribes a uniform mesoscopic strain for all material points in V✷.
In elasticity, it follows immediately that the overall macroscopic stiffness tensor C̄ can be
computed as

C̄ = 〈C〉
✷
. (2.140)

This averaging property has been initially proposed by Voigt [135]. However, this condi-
tion is rather restrictive and, indeed, one can show that it leads to an upper bound for
the effective stiffness C̄, see [95]. Similarly, combining Eq. (2.137) and Eq. (2.135)1 yields
the condition

σ = σ̄ ∀ x ∈ V✷. (2.141)

Thus, this second condition predicts an uniform stress distribution and can be reformu-
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lated as

S̄ = 〈S〉
✷
. (2.142)

Hence, the effective compliance S̄ is computed as the volume average of its mesoscopic
counterpart. This finding is equivalent to the prediction introduced by Reuss [105]. Be-
sides the fact that, again, this condition is very restrictive, it leads to incompatible de-
formations in heterogeneous media. However, it can be used as an upper bound for the
effective compliance and, vice versa, as a lower bound for the effective stiffness.

The strict conditions Eqs. (2.139) and (2.141) can be relaxed if the strain and stress fields
are prescribed on the surface ∂V✷, only. To this end we now use the surface versions of the
stress and strain averaging rules. Thus, combining Eq. (2.138) with Eq. (2.136)2 results
in the so-called Kinematic Uniform Boundary Condition (KUBC)

u = ε̄ · x ∀ x ∈ ∂V✷. (2.143)

Analogously, the evaluation of Eq. (2.138) together with Eq. (2.135)2 yields the Stress
Uniform Boundary Conditions (SUBC)

t = σ̄ · n ∀ x ∈ ∂V✷. (2.144)

After the numerical solution of the resulting mesoscopic boundary value problems, the
stress and strain averaging rules Eqs. (2.135)1 and (2.136)1 can be used again to homog-
enize the particular mesoscopic response required on the macro-level.

We have supposed, so far, that the mesoscopic control volume V✷ represents a RVE.
Hereby, the word “representative” means that the control volume is large enough to involve
all relevant physical processes induced by the mesoscopic heterogeneities. In practical
applications, however, the size of the mesoscopic volume element is limited by the available
numerical power and, therefore, is generally smaller than the “true” RVE size. Following
the terminology established in [98] the practically considered volume elements are called
Statistical Volume Elements (SVE). The predicted overall properties are called apparent
(SVE-based) instead of effective (RVE-based). However, the usage of SVE bears the
problem that, due to their restricted size, the choice of the boundary conditions strongly
influences the apparent properties of the substitute medium. Under these circumstances,
the KUBC and the SUBC only allow for the definition of upper and lower bounds for the
“true” effective properties.1 These over- and underestimations of the effective stiffness C̄
can be interpreted as the consequence of stiff and, respectively, soft boundary layer effects
due to the KUBC and the SUBC. Whereas the surface effects vanish for a true RVE with
V✷ → ∞, significant fractions of a SVE volume are part of the boundary layer due to the
external loading, see [58, 68]. Hence, further relaxation methods are required in order

1However, the bounding properties are, obviously, more strict and, therefore, more useful as the Voigt
and Reuss bounds. Further bounds have been defined, for example, by Hashin and Shtrikman [54, 55].
For more information, the interested reader is referred to [95].
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to make the computational homogenization concept applicable for practical purposes.
Throughout the following chapters, we make use of the well-established periodic boundary
conditions, where the affine displacement field on the surface ∂V✷ prescribed by Eq. (2.143)
is superimposed by a periodic fluctuation. Here, we follow the notation presented in [75].
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Figure 2.4: RVE in 2D under meso-periodicity conditions with image boundary ∂V +
✷
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mirror boundary ∂V −

✷
.

To this end, we split the boundary ∂V✷ into the image boundary ∂V +
✷

and the mirror
boundary ∂V −

✷
, see Fig. 2.4. Introducing the “jump operator”

J✸K✷(x) := ✸(x+)−✸(x−) ∀x ∈ ∂V +
✷

(2.145)

allows than to define the kinematically driven periodic boundary conditions as

JuK✷(x) = ε̄ · JxK✷, (2.146)

t+ + t− = 0. (2.147)

The above relations Eqs. (2.146) and (2.147) define the Periodic Boundary Conditions
(PBC) involving periodic fluctuations and anti-periodic surface tractions. It is easy to
prove that Eqs. (2.146) and (2.147) satisfy the macro-homogeneity condition Eq. (2.138).
Prescribing the effective strain ε̄, the homogenization loop is closed by means of the stress
averaging rule σ̄ = 〈σ〉

✷
. Finally, we are able to sum up the relevant KUBC, SUBC and

PBC in Tab. 2.4.

localization homogenization
KUBC u = ε̄ · x ∀ x ∈ ∂V✷ σ̄ = 〈σ〉

✷

PBC JuK✷ = ε̄ · JxK✷ ∀ x ∈ ∂V +
✷

σ̄ = 〈σ〉
✷

t+ + t− = 0

SUBC t = σ̄ · n ∀ x ∈ ∂V✷ ε̄ = 〈ε〉
✷

Table 2.4: Consistent boundary conditions for the standard first-order computational homog-
enization approach.
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We can now rewrite the mesoscopic boundary value problem in the standard variational
format, see [110, 75]. Without loss of generality, we restrict the documentation of the
homogenization problem in weak format to the case of PBC. Hence, we seek solutions in
the trial space U✷ of admissible displacements that are sufficiently regular in V✷. We,
furthermore, introduce the corresponding trial space of self-equilibrated fluxes T✷ that
are sufficiently regular on ∂V +

✷
. We write the equations for finding u, t ∈ U✷ × T✷ as

a
u(u, δu)− c

u(t, δu) = 0, (2.148)

−c
u(δt, u) = −c

u(δt, ε̄ · x), (2.149)

which hold for any admissible test functions δu, δt ∈ U✷ × T✷. We define

a
u(u, δu) = 〈σ(ε(u)) : (δu⊗∇)〉

✷
, (2.150)

c
u(t, u) =

1

V✷

∫

∂V +
✷

t · JuK✷ da, (2.151)

c
u(t, ε̄ · x) =






1

V✷

∫

∂V +
✷

t⊗ JxK✷ da




 : ε̄. (2.152)

Altogether, the computational homogenization approach introduced above is closed, if one
1) applies a set of boundary conditions on the small scale (KUBC, PBC or FUBC), if one
2) solves the resulting boundary value problem, and if one 3) computes the volume average
of the particular dual quantity (σ̄, ε̄). Consequently, this procedure requires the nested
solution of one macroscopic and np mesoscopic boundary value problems in each iteration
step. Here, np represents the number of macroscopic integration points. The solution
of the mesoscopic boundary value problem replaces, therefore, the, a priori unknown,
macroscopic constitutive relation. However, even using rather small SVE sizes, leads,
in particular in materially nonlinear 3D applications, to very high computational costs.
Extending the standard computational homogenization concept towards the addressed
cases in poroelasticity, we, therefore, take into account further simplifications and develop
an appropriate order reduction method in order to circumvent the nested solution scheme.



3
A viscoelastic substitute model for

heterogeneous poroelastic media

After having recalled Biot’s quasi-static equations of consolidation and the modeling con-
cept of linear poroelasticity in Section 2.2, we are now able to solve initial value problems
on the poroelastic meso-level. Hereby, the meso-scale is assumed as a strongly heteroge-
neous poroelastic medium with spatially varying material properties. If an equilibrated
poroelastic medium is exposed to a mechanical loading, the resulting elastic deforma-
tions induce pore pressure gradients due to these heterogeneities and, consequently, pore
pressure diffusion becomes active. The diffusion processes stop as soon as a new equi-
librium state is reached. It is important to remark that, within the following study, we
restrict ourselves to the case of local pore pressure diffusion. Thus, the characteristic
length of pressure diffusion is much smaller than the macroscopic length scale (l ≪ L),
see Fig. 1.1. In other words, the pore fluid is trapped in the mesoscopic control volume,
any mass exchange with the surrounding environment is suppressed. Hence, we discuss
a diffusive pressure redistribution process inside the control volume, where part of the
imposed elastic energy is lost. The corresponding attenuation is the only evidence for the
internal dissipation mechanism from a macroscopic viewpoint. Hence, the heterogeneous
poroelastic medium on the meso-scale has to be replaced by a homogeneous viscoelastic
substitute medium on the macro-scale where the hidden diffusion processes are described
in terms of viscoelastic internal variables.

In this chapter, we propose a computational homogenization scheme for this poro-to-
viscoelastic scale-transition based on the concept of volume averaging and under the
presumption of local pressure diffusion. Since not all poroelastic variables, for example the
pore pressure p, are related to one-by-one counterparts in the viscoelastic overall model,

– 39 –
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the upscaling procedure is called a selective homogenization scheme. In the following
sections, we will first derive an appropriate volume averaging framework allowing for
various sets of consistent boundary conditions on the volume elements being investigated.
Solving the boundary value problems on the meso- and the macro-scale numerically in a
staggered scheme, this procedure allows to compute overall viscoelastic material responses
in a FE2-sense. In the second part of this chapter, the homogenization context is amended
by an innovative order reduction scheme. Thereby, the viscoelastic material model can be
identified in terms of a homogenized evolution equation for internal variables representing
the internal/local diffusion processes.

Bridging the scales

It is the main goal of the volume averaging framework introduced in the sequel to pro-
vide appropriate and consistent sets of boundary conditions solving mesoscopic boundary
value problems under transient loading scenarios. In literature exist several contribu-
tions concerned with the poro-to-viscoelastic upscaling problem, see [102, 109, 138, 140].
Without naming this affinity explicitly, these approaches are closely related to first-order
computational homogenization. The authors impose KUBC for the solid velocity us and
undrained boundary conditions (UBC) for the pore pressure field without taking into
account any fluctuations such as periodic ones. In classical first-order homogenization
it is, however, well-known that KUBC overestimate the effective stiffness response with
a strong dependency on the size of the underlying SVE. The KUBC choice can even be
understood as an upper bound for the effective stiffness, see [95]. Moreover, the UBC,
that is mass exchange between SVE and its environment is completely suppressed, can
be considered as a possibly to restrictive choice and might severely influence the viscous
properties of the overall medium, see [103]. In this section, we would like to remedy these
severe deficiencies. Therefore, we introduce an energetically consistent homogenization
scheme based on an adopted generalized form of Hill’s principle of macro-homogeneity.
The derivations and discussions in the sections 3.1 and 3.2 have been identically published
before in [64].

Extended macro-homogeneity criterion

From a physical point of view, it is a natural and rather obvious presupposition for any
multi-scale approach that conservation of energy must be satisfied on all involved scales.
In particular, it has to be ensured that any change of the free energy stored inside the
SVE has a one-by-one counterpart in the nested material point on the overall scale. Thus,
it is our first task to specify the Hill principle of macro-homogeneity for the given case.
We, therefore, make use of the mesoscopic partial balances of internal energy given in
Eq. (2.70). Averaged over the entire SVE, the mesoscopic stress power must equal the
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stress power in the corresponding material point P̄(x̄, t) on the macro-level. We write

σ̄ : ˙̄ε =
〈
σs : ε̇s − p̂s · vs + σf : ε̇f − p̂f · vf

〉

✷

=
〈
σs : ε̇s + σf : ε̇f − p̂f ·wf

〉

✷
, (3.1)

taking into account the saturation condition p̂s+p̂f = 0. As already mentioned above, the
Hill principle has to be satisfied at any time during the process and for any macroscopic
material point. Hereby, the stress power of the viscoelastic substitute medium in the point
P̄(x̄, p) is represented by the left hand side of Eq. (3.1). In the given form of Eq. (3.1),
the dissipation of the viscoelastic substitute model is hidden in the constitutive relation
for σ̄. In this section, overall stresses σ̄ and, implicitly, the viscous contributions compute
as volume averages of meso-scale quantities. By contrast, the poroelastic stress power on
the right hand side of Eq. (3.1) exhibits an explicit dissipation contribution. Hereby, the
expression p̂f ·wf represents the power of the viscous drag forces induced by the relative
fluid motion.

Since we are interested in imposing boundary conditions on the SVE, the volume integral
formulation of the Hill principle Eq. (3.1) is transferred into a surface integral formulation.
We, therefore, redistribute the partial stresses and write

σ̄ : ˙̄ε =
〈
(σs + σf) : ε̇s + σf : (ε̇f − ε̇s)− p̂f ·wf

〉

✷
. (3.2)

We now make use of the pore fluid’s momentum balance −p̂f = σf · ∇ and insert the
constitutive relations for the fluid stress σf = −α φ p I and rewrite, assuming piecewise
constant material parameters,

σ̄ : ˙̄ε = 〈σ : ε̇s − (α p)∇ · (φwf)−∇(α p) · (φwf)〉✷ . (3.3)

Applying the Gauss integral rule, we finally find

σ̄ : ˙̄ε =
1

V✷

∫

∂V✷

u̇s · t da−
1

V✷

∫

∂V✷

α p q da. (3.4)

Thus, the power of the poroelastic internal forces is balanced by the power of the corre-
sponding external forces depending on the surface traction vector t = σ · n and by the
outflux q = φwf · n. It is noteworthy that the outflux q represents the filter velocity in
normal direction and, therewith, the mass outflux of the pore fluid. Already at this stage
it becomes obvious that undrained boundary conditions (q = 0 on ∂V✷) in combination
with KUBC for the solid velocity trivially satisfies the Hill principle in Eq. (3.4).



42 3. A viscoelastic substitute model for heterogeneous poroelastic media

Averaging rules and consistent boundary conditions

In addition to the generalized Hill principle of macro-homogeneity we need to make addi-
tional assumptions on kinematic and/or stress-like quantities. In particular, the local flow
condition has to be considered in an appropriate way. Moreover, it has to be pointed out
that boundary conditions on the balance of momentum and on the continuity equation
might be chosen independently from each other. In other words, it is possible to prescribe
a Dirichlet-type boundary condition for the displacement field us and, at the same time,
a Neumann-type boundary condition for the flux q = φwf · n. Hence, we may suppose

1. the average strain rate of the solid skeleton to equal the overall strain rate,

˙̄ε = 〈ε̇s〉✷ =
1

V✷

∫

∂V✷

(u̇s ⊗ n)sym da, (3.5)

2. the average total stress to equal the overall stress,

σ̄ = 〈σ〉
✷

=
〈
(x⊗∇) · σT

〉

✷

=
1

V✷

∫

∂V✷

(t⊗ x)sym da, (3.6)

where integration by parts and the identity σ ·∇ = 0 have been used.

Variation of Hill’s principle Eq. (3.3) with regard to Eqs. (3.5) and (3.6) results in the
SUBC and KUBC, both well-known from first-order homogenization,

t = σ̄ · n ∀ x ∈ ∂u
NV✷ (SUBC), (3.7)

u̇s = ˙̄ε · x ∀ x ∈ ∂u
DV✷ (KUBC). (3.8)

As already discussed earlier, we may introduce appropriate relaxation techniques for the
boundary conditions. For the sake of simplicity, we focus on the well-established case
of a periodic RVE/SVE. To this end, we subdivide the SVE surface ∂V✷ into the image
boundary ∂V +

✷
and the mirror boundary ∂V −

✷
, see Fig. 2.4, apply the jump operator and

write

Ju̇sK✷ = ˙̄ε · JxK✷ and t+ + t− = 0 (PBC). (3.9)

Hence, the first integral of Hill’s principle of macro-homogeneity Eq. (3.4) cancels out and
it remains to satisfy the reduced condition

1

V✷

∫

∂V✷

α p q da = 0. (3.10)
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In contrast to the averaging rules for the solid phase strain rate and the total stress,
the locality condition of the pressure diffusion deserves a deeper investigation due to the
selectivity of the proposed homogenization concept and due to the missing macroscopic
counterpart of the pore pressure. We, therefore, need to evaluate a conservation law for
the fluid content stored in the RVE. In particular, pumping of pore fluid in or out the
volume element must be suppressed. In this case, the RVE’s balance of fluid mass can be
written as

˙̄Φ =
〈

Φ̇
〉

✷

= −〈∇ · (φwf)〉✷ = − 1

V✷

∫

∂V✷

q da = 0. (3.11)

However, this necessary condition is not sufficient yet, since we might imagine, moreover,
situations where the fluid is pumped through the RVE without changing the fluid mass
stored in the volume element. Hence, we have to ensure that there is no flux of pore fluid
through the RVE in the absence of macroscopic pressure gradients. More precisely, it
is required the effective Darcy velocity φwf , representing the total and macroscopically
observable mass flux through the control volume, to vanish. We write

φwf = 〈φwf〉✷ + 〈x ∇ · (φwf)
︸ ︷︷ ︸

=−Φ̇

〉✷ =
1

V✷

∫

∂V✷

x q da = 0. (3.12)

Hereby, the total mass flux 〈φwf〉✷ comprises the mass flux through the RVE as well
as the shift of the fluid’s mass centroid due to the local fluid redistribution during pres-
sure diffusion. Thus, the total mass flux has to be corrected by the relative mass flux
〈x∇ · (φwf)〉✷ as executed in Eq. (3.12).

Seeking now for appropriate boundary conditions for p and the corresponding flux q on
the RVE surface we easily find that the undrained boundary conditions q = 0 (UBC)
trivially satisfy Eqs. (3.10) - (3.12). However, periodic boundary conditions (PBC) for
the pore pressure field do so, too,

q = 0 ∀x ∈ ∂p
NV✷ (UBC), (3.13)

Jα pK✷ = 0 and q+ + q− = 0 ∀ x ∈ ∂V +
✷

(PBC). (3.14)

Assuming a periodic RVE including periodic material parameters, Eq. (3.14) can be sim-
plified towards JpK = 0.

It is important to remark that, in contrast to the KUBC velocity field, the pressure field is
not stimulated by any macroscopic pressure gradient. This is in accordance to the locality
assumption for the pressure diffusion which supposes a vanishing overall pressure diffusion
and, therewith, a vanishing overall pressure gradient. Additionally, it is remarkable that
it is not trivially possible to impose pure Dirichlet-type boundary conditions on the pore
pressure p. This fact is a consequence of the selective homogenization scheme: The
macroscopic counterpart of the mesoscopic pore pressure is a priori unknown.
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us p
Dirichlet us = ε̄ · x not applicable

KUBC

Periodic JusK✷ = ε̄ · JxK✷ JpK✷ = 0
t+ + t− = 0 q+ + q− = 0

PBC PBC

Neumann t = σ̄ · n q = 0

SUBC UBC

Table 3.1: Consistent boundary conditions for the poro-to-viscoelastic scale transition under
transient loading conditions.

The set of boundary conditions is completed and we give a summarized overview in
Tab. 3.1. In Tab. 3.2, we introduce abbreviations for the various combinations of boundary
conditions for the upcoming numerical study.

p

UBC PBC

us

KUBC KU KP
PBC PU PP
SUBC SU SP

Table 3.2: Abbreviations for the six combinations of boundary conditions for solid frame
displacement us and pore pressure p or, respectively, their fluxes.

At this stage, we are able to compute the overall viscoelastic material response of hetero-
geneous poroelastic media in the sense of a FE2 analysis. From standard computational
homogenization approaches it is a well-known fact that the choice of applied boundary
conditions strongly influences the apparent mechanical properties. This is in particular
the case, if we investigate, as necessary for practical applications, a SVE considerably
smaller than a true RVE. The homogenization approach proposed in this section extends
the boundary conditions for the first-order homogenization problem by a set of bound-
ary conditions for the coupled pressure field. It has to be expected that, similar to the
standard KUBC and SUBC, also these additional boundary conditions strongly influence
the overall behaviour. Thus, the next section is dedicated to the various sets of mixed
boundary conditions for the mesoscopic us-p-problem and there interaction with the SVE
size.
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Study: Boundary conditions and their influence

on the apparent attenuation properties of a

2D patchy saturated poroelastic RVE

As we have found out so far, the poro-to-viscoelastic homogenization approach can be
implemented making use of the six sets of boundary conditions given in Tab. 3.2. Hereby,
we distinguish between strain control (KU, KP, PU, PP) and stress control (SU, SP). As
the overall material properties are expected to be viscoelastic, and, therefore, depend on
the deformation rate, we execute numerical stress-relaxation tests in the first and creeping
tests in the latter case. In any case, the mesoscopic experiments are carried out for one
macroscopic material point, only. In other words, the macroscopic problem is assumed to
be homogeneous and homogeneously deformed. The results and discussions presented in
this section can be found in published form in Jänicke et al. [64].

Executing transient stress relaxation and creeping experiments results in a time-dependent
description of the effective RVE properties. In the upcoming study, these time-signals are
transformed into the frequency domain making use of the Fast Fourier Transform (FFT).
For this purpose, the components of the total stress rate tensor ˙̄σ and of the overall strain
rate tensor ˙̄ε are computed at each time step during the simulation and undergo a FFT,
see [102] for more details. Thus, the frequency-dependent components of the effective
stiffness tensor can be evaluated in terms of

˙̄σ(f) = C̄4(f) : ˙̄ε(f), (3.15)

with the frequency f = 1
2 pi

ω and the angular frequency ω. We compute the storage

modulus as the real part Re(C̄ij) of the particular component of the stiffness tensor.
The apparently viscous attenuation is evaluated in terms of the inverse quality factor
Q−1(Cij) = −Im(C̄ij)/Re(C̄ij) representing the negative ratio of imaginary and real part
of the stiffness component. The inverse quality factor can be identically represented by
the loss factor, tanϕ = 1/Q, with the phase angle ϕ. The fourth rank stiffness tensor C̄4

is given in Voigt notation and, therefore, the stress and strain rates are related via











˙̄σ11

˙̄σ22

˙̄σ33

˙̄σ23

˙̄σ13

˙̄σ12











=











C̄11 C̄12 C̄13 C̄14 C̄15 C̄16

C̄22 C̄23 C̄24 C̄25 C̄26

C̄33 C̄34 C̄35 C̄36

C̄44 C̄45 C̄46

sym C̄55 C̄56

C̄66





















˙̄ε11
˙̄ε22
˙̄ε33

2 ˙̄ε23
2 ˙̄ε13
2 ˙̄ε12











. (3.16)

For our investigations on the impact of boundary conditions on the apparent viscoelastic
properties we introduce a 2D (plain strain) poroelastic volume element with short and
long range heterogeneities randomly distributed in the SVE, see Fig. 3.1. To this end,
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Figure 3.1: Study on boundary conditions for the poro-to-viscoelastic homogenization scheme.
a) Geometry of the 2D volume element with circular patch (l1 = 7.5m, l2 = 2.5m, l = l1 + l2 =
10m, r = 2m). b) Randomly distributed water saturation in the unit cell. The circular patch
is gas-saturated (sw = 0). The properties of the effective pore fluid, consisting of water and gas,
are computed via the mixture rules given in Tab. 2.3.

rock matrix surrounding rock patch
ks [mD] 100 1000
φ [–] 0.1 0.2
G [GPa] 15.8 8.8
K [GPa] 16.2 9.6
Ks [GPa] 36.0 36.0

pore fluids water (α = w) gas (α = g)
Kα [GPa] 2.3 0.022
ηαR [mPa s] 3 0.01

Table 3.3: Poroelastic material parameters for the patchy saturated medium in the two-
dimensional study cf. Fig. 3.1, 1mD≈1e-15m2.

we first assume a rock matrix saturated by an effective pore fluid consisting of water and
gas with sw + sg = 1. Due to the high compressibility of gas (Kg ≪ Kw), the effective
compressibility of the mixture deviates significantly from the fluid compressibility even
for rather small volume fractions of gas (sw ∈ [0.9, 1]). The mixture rule for the effective
fluid properties is given in Tab. 2.3. Second, we introduce a circular, gas-saturated patch
(sw = 0, r = 2m). The circular patch as well as the heterogeneous water saturation in
the background medium are randomly distributed. The influence of the SVE-size and
the position of the patch in interaction with the different boundary conditions will be
addressed below. All material parameters used for this study are given in Tab. 3.3. The
effective fluid properties are to be computed following the mixture rule in Tab. 2.3. For
the rock skeleton, we use typical material data for a porous reservoir rock. Hereby, the
solid properties differ slightly between the solid matrix and patch material. Pressure
gradients are, therefore, induced by the heterogeneous distribution of the effective fluid
as well as by the heterogeneous solid properties. Hence, even the deformed equilibrium
state at t → ∞ (p∞(x) =const) is inhomogeneous due to the heterogeneity of the dry
solid frame.
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In the following, attenuation is studied under uniform compression in e1-direction. The
loading conditions are applied as a smoothed Heaviside function. More precisely, the final
overall strain vector ε̄ = [−0.01, 0, 0, 0, 0, 0]T is applied for strain control. Under stress
control, the overall stress vector σ̄ = [−350, 0, 0, 0, 0, 0]T MPa is used.
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Figure 3.2: Pore pressure field p(x) under uni axial loading ε1 = −0.01 at different time steps
for KU and PP boundary conditions. Starting at t = 1 s, the undrained situation KU evolves an
isolated low-pressure regime close to the top right corner of the SVE. By contrast, the pressure
fields related to the periodic boundary conditions PP are, by definition, perfectly periodic.

Before we investigate the overall viscoelastic properties of this type of SVE, we first would
like to understand the processes being active on the meso-level. To this end, we depict
the pore pressure fields p(x) at different time steps under KU and in comparison under
PP loading conditions, see Fig. 3.2. Doing so, we first observe a pressure equilibration in
the background matrix at times t < 1 s. At t > 1 s, the pressure diffusion process between
background matrix and the gas-saturated patch becomes predominant. It is important
to remark that in particular this slow diffusion process differs strongly for KU and PP
loading conditions. This becomes obviously having a closer look to the upper right corner
of the SVE at t = 10 s, where KU conditions induce an isolated low-pressure zone which
is, due to the periodicity, not present under PP conditions. This can be observed in an
even more pronounced fashion studying the amount of the seepage velocity |wf |, as it
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Figure 3.3: Amount of seepage velocity |wf | = ks/ηfR |∇p| under uniaxial loading ε̄1 = −0.01
at different times and for different boundary conditions. Under KU conditions, the dominating
diffusion process follows the main diagonal of the SVE t = 10 s. Under PP regime, the domi-
nating diffusion process at t = 10 s takes place between four symmetry points. The maximum
diffusion length is indicated by dashed lines.

is shown in Fig. 3.3. The (fast) equilibration of the pressure gradients in the matrix at
t < 1 s seems, again, to be rather independent on the chosen set of boundary conditions.
This observation can be explained by the fact the length scale of the heterogeneity, that
is the varying fluid property stored in the background matrix, is small compared to the
length l representing the SVE size. In other words, from the viewpoint of the background
heterogeneity, the SVE presented in Fig. 3.1 seems to be at least close to a true RVE.
However, this is not the case at t > 1 s. Focusing again on the upper right SVE corner
the diffusion is inactive in the KU case at t = 10 s. By contrast, the periodic boundary
conditions in the PP setting allow for a periodic transport of pore fluid or, respectively,
a periodic pore pressure diffusion over the boundary. Consequently, we can conclude
that, due to periodicity the PP situation restricts the maximum diffusion length to one
half of the SVE diagonal, dKU

max =
√
2 l, whereas the maximum diffusion length under KU

conditions is represented by the full SVE diagonal, dPPmax =
√
2/2 l.
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We now study the six sets of boundary conditions for the poro-to-viscoelastic homoge-
nization scheme as defined in Tabs. 3.1 and 3.2 applied on the SVE shown in Fig. 3.1.
Hereby, we focus on the apparent stiffness component C̄11. We, therefore, run the six
homogeneous compression tests in e1-direction with the time-dependent loading signals
defined above. Computing the time derivatives related to the particular stress relaxation
and creeping tests and evaluating the FFT of these signals, we compute the frequency-
dependent stiffness component as

C̄11(f) =
˙̄σ1(f)
˙̄ε1(f)

. (3.17)
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Figure 3.4: a) Real part and b) inverse quality factor of the apparent stiffness component
C̄11(f) under different boundary conditions. The critical frequencies are fC1 = 1.079e-2 s−1

(KU) and fC2 = 3.116e-2 s−1 (PP).

The results for C̄11(f) under the six different sets of boundary conditions are depicted in
Fig. 3.4 a) in terms of the real part Re(C̄11), representing the storage modulus, and b) in

terms of the inverse quality factor 1
Q
(C̄11(f)) = −Im(C̄11(f))

Re(C̄11(f))
, quantifying the attenuation

in the SVE in the frequency range f ∈ [1e-5, 1e+2] 1
s
. The storage modulus describes

the transition from the softer low-frequency to the stiffer high-frequency regime. Two
pronounced diffusion processes are active, see Fig. 3.4 b). For the faster process, maxi-
mum attenuation at about f ≈ 5 s−1 refers to the diffusion induced by the short-range
fluctuation of fluid properties in the rock matrix. As expected the fast diffusion process
does not depend on the chosen boundary conditions. The slower process, representing
the long-range diffusion between background medium and gas-saturated patch, shows a
pronounced peak at f ≈ 1e-2 s−1. The impact of the various boundary conditions on us

and p can be classified as follows:

• Boundary conditions on the solid frame displacement us and stress vector t (KUBC
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and SUBC), respectively, control the overall level of stiffness response, which is
visible for the storage modulus and which cancels out for the quality factor due
to its computation as a quotient of imaginary and real part of C̄11. In analogy to
the bounds in classical homogenization we observe an increasing stiffness coefficient
C̄11(f) from SU via PU towards KU and, similarly, from SP via PP towards KP.
The difference between undrained and periodic conditions concerning p is limited
to the transition zone in frequency domain.

• By contrast, the critical frequency for the transition from low- to high-frequency
regime is found to be dominated by the boundary conditions on the pore pressure
field p. In particular the undrained boundary condition results in a significantly
lower transition frequency than its periodic counterpart. More precisely, the ap-
parent critical frequency for the slow diffusion process predicted by the undrained
boundary condition is approximately a factor three lower than the transition fre-
quency under periodic boundary conditions. By contrast, the attenuation behaviour
of the fast diffusion process due to the short-range background fluctuations is found
to be rather insensitive for the chosen set of boundary conditions. This is in ac-
cordance to the above discussed observations for the pressure and seepage velocity
fields for t ≈ 1e-1 s, see Fig. 3.2 and 3.3. The dependency of the transition frequency
on the us-t boundary conditions is minor.
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Figure 3.5: a) Real part of the apparent pore pressure 〈p〉
✷
(f), normalized with respect to the

effective spherical stress
〈
σ̄sph

〉

✷
(f), and b) inverse quality factor of the apparent pore pressure

under different boundary conditions. The critical frequencies are identified as fp1 = 4.794e-3 s−1

(KU) and fp2 = 1.318e-2 s−1 (PP).

Similar observations can be made examining the frequency-dependency of the averaged
pressure 〈p〉

✷
(f). In Fig. 3.5 a) the real part of 〈p〉

✷
(f), normalized by the apparent

spherical stress σ̄sph = 1/3 (σ̄1+σ̄2+σ̄3), is evaluated. The inverse quality factor of 〈p〉
✷
(f)

is shown in b). Again, we find the boundary conditions on solid frame displacement us to
dominate the level of the real part. At low frequencies, the apparent pore pressure 〈p〉

✷
(f)
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is much lower than the hydrostatic apparent scale stress σ̄sph (〈p〉
✷
(f)/σ̄sph ≈ 1%). It

becomes significant at high frequencies (〈p〉
✷
/σ̄sph ≈ 9%). Again, mainly the boundary

conditions on the pore pressure p influence the transition frequency. In analogy to the
evaluation of the stiffness coefficient C̄11 we find a frequency shift by a factor 2.7 (KU
fp1 ≈ 4.8e-3 s−1, PP fp2 ≈ 1.3e-2 s−1). We would like to emphasize, however, that the
transition frequencies of C̄11 and 〈p〉

✷
are not identical. This can be explained by the fact

that C̄11 involves the information in e1-direction, only. By contrast 〈p〉
✷
and, similarly,

σ̄sph comprise the full volumetric information. In the chosen plain-strain setup it can be
concluded that, obviously, the critical frequencies for diffusion processes active in e1 and
e2 processes are not identical. Hence, the attenuation in the SVE under investigation is
anisotropic.

1x1

5x5

3x3

10 m

10 m

20 m
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50 m
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0.9

1
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[–

]

Figure 3.6: Increasing SVE sizes with randomly distributed patches (white) and uniformly
distributed water saturation sw. The volume fractions of gas saturated patches (sw = 0) and
water saturated background medium (0.9 ≤ sw ≤ 1) are kept constant for all SVE sizes.

So far, our study was restricted to a very small SVE far away from being representative.
In the following, we would like to increase the SVE size from l = 10m (1x1) to l = 30m
(3x3) and l = 50m (5x5), see Fig. 3.6. Keeping the volume fractions of gas-saturated
patches and background medium constant the patches are randomly distributed in the
SVE but do not touch or intersect each other. For the SVE sizes l = 30m and l = 50m,
ensembles of five SVE, each, with randomly distributed patches have been considered.
Consequently the apparent properties for 3x3 and 5x5 have been computed as ensemble
averages over the particular SVE properties. In Fig. 3.7 a) real part and b) inverse quality
factor of C̄11 are plotted for increasing SVE sizes. Regarding the storage modulus, we
find that the uniform displacement control KU approaches the PP results. Similarly,
the apparent properties due to uniform tractions SU increase. As expected, the storage
modulus Re(C̄11) only shows a very small sensitivity for the SVE size if periodic boundary
conditions are applied. For the largest SVE size 5x5, KU and PP are almost identical.
Considering the attenuation depicted in b) we observe a similar situation. Again, the
largest SVE size 5x5 leads to almost identical predictions for the apparent transition
frequency with respect to KU and PP (Attenuation for SU behaves almost identical as
for KU and is, therefore, not shown here). That is, the critical frequency for KU increases
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Figure 3.7: a) Real part and b) inverse quality factor of the apparent stiffness component
C̄11(f) for different boundary conditions and increasing SVE size. The critical frequencies take
the values fC1=1.079e-2 s−1 (KU 1x1), fC2=3.116e-2 s−1 (PP 1x1), fC3=1.810e-2 s−1 (PP 5x5)
and fC4 =1.774e-2 s−1 (KU 5x5, not depicted).

with increasing SVE size, whereas the critical frequency for PP decreases.

Preliminary Conclusions

Based on the above presented findings for an exemplary mesostructure, we dare to in-
terpret our observations as general properties of the poro-to-viscoelastic homogenization
problem. Similar as standard first-order homogenization approaches, the choice of the
SVE size is crucial for the coupled homogenization problem for two reasons: First, KUBC
tend to overestimate the apparent storage modulus of the stiffness component under
consideration. Contrariwise, SUBC result, again in accordance to standard first-order ho-
mogenization, in an underestimated storage modulus. Moreover, it can be expected that
KUBC and SUBC results represent upper and lower bounds for the apparent properties
computed by relaxed boundary conditions such as PBC. Second, boundary conditions
on the pore pressure influence the apparent transition frequency from the low- to the
high-frequency regime. In the study presented in this section the discrepancies between
the various boundary conditions vanish, as expected, for increasing SVE sizes. Thus, the
SVE size has, reversely, to satisfy the following requirements:

• The SVE has to be chosen large enough for being stochastically representative for
the heterogeneity of the particular meso-structure.

• Due to the assumption of locality, only diffusion processes inside the SVE are in-
cluded. Thus, the SVE size has to be chosen (significantly) larger than the maximum
diffusion length of the underlying physical problem.
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With this knowledge, it is possible to solve apparent viscoelastic boundary value problems
on the macro-scale including attenuation due to mesoscopic pressure diffusion processes.
However, this extended FE2-scheme requires the nested solution of mesoscopic boundary
value problems at each macroscopic integration point in each time step. This induces high
numerical costs and is, therefore, restricted to artificially small mesoscopic problems. In
the upcoming section we aim to take advantage of the fact that the physical quantities used
in the linear Biot model can be additively split. Reversely, the superposition principle can
be applied. One the one hand side we seek to find a numerically more efficient upscaling
strategy. On the other hand, we want, for practical applications in Geoscience, to identify
the material model of the substitute medium on the large scale. Hence, we propose an
innovative model order reduction procedure in the following.

Model order reduction

Biot’s equations of linear consolidations are, as discussed in Section 2.1, based on the
concept of the effective stress. Thus, the total stress of the underlying biphasic mixture
is additively decomposed into the effective stress, representing the contribution of the dry
skeleton, and the stress depending on the pore pressure in the fluid-saturated medium.
We now aim to exploit this ability allowing us to derive the approximate viscoelastic
material properties with a reasonably low numerical effort, and we establish in the sequel
a reduced order modeling approach for the poro-to-viscoelastic upscaling problem. With
our knowledge on boundary conditions presented in the preceding section, we assume the
mesoscopic fields to be perfectly periodic in both primary variables, us and p, throughout
the upcoming considerations. The discussions and results throughout the sections 3.3 and
3.4 have been identically published in Jänicke et al. [110].

Variational form of the homogenization problem

Restricting ourselves to periodic fields, we write the strong form of the kinematically
driven poroelastic periodic boundary value problem as

JusK✷(x, t) = ε̄(t) · JxK✷, t+ + t− = 0, (3.18)

JpK✷(x, t) = 0, q+ + q− = 0, (3.19)

where we use the jump operator J⋄K✷(x) := ⋄(x+)− ⋄(x−) for all x ∈ ∂V +
✷
. The macro-

scopic stress response computes as

σ̄ = 〈σ〉
✷
. (3.20)

We now reformulate Eqs. (2.127) and (2.128) in their weak forms making use of the
variational format presented in [75]. Hence, we seek solutions in the trial spaces U✷ and
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P✷ of admissible displacements and pore pressure fields that are sufficiently regular in
V✷. We furthermore introduce the corresponding trial spaces of self-equilibrated fluxes
T✷ and W✷ that are sufficiently regular on ∂V +

✷
. We write the equations for finding

us, p, t, q ∈ U✷ × P✷ × T✷ ×W✷ as

a
u(us, δu) + b

u(p, δu)− c
u(t, δu) = 0, (3.21)

−a
p(p, δp) + b

p(u̇s, δp) +m
p(ṗ, δp) + c

p(q, δp) = 0, (3.22)

−c
u(δt, us) = −c

u(δt, ε̄ · x), (3.23)

c
p(δq, p) = 0, (3.24)

which hold for any admissible test functions δu, δp, δt, δq ∈ U✷ × P✷ × T✷ ×W✷. Here,
we used for the momentum balance

a
u(us, δu) =

〈

(C : εs(us))
︸ ︷︷ ︸

=σ
eff (εs(us))

: (δu⊗∇)

〉

✷

, (3.25)

b
u(p, δu) =

〈

−α p I
︸ ︷︷ ︸

=σ
p(p)

: (δu⊗∇)

〉

✷

= −b
p(δu, p), (3.26)

c
u(t, us) =

1

V✷

∫

∂V +
✷

t · JusK✷ da, (3.27)

c
u(t, ε̄ · x) =






1

V✷

∫

∂V +
✷

t⊗ JxK✷ da




 : ε̄, (3.28)

and for the continuity equation

a
p(p, δp) = 〈φwf(∇p) ·∇δp〉

✷
, (3.29)

b
p(u̇s, δp) = 〈α∇ · u̇s δp〉✷ = −b

u(δp, u̇s), (3.30)

m
p(ṗ, δp) =

〈
1

M
ṗ δp

〉

✷

, (3.31)

c
p(q, α p) =

1

V✷

∫

∂V +
✷

q Jα pK✷ da. (3.32)
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If we now combine the weak forms Eqs. (3.21) and (3.22), we find the expression

〈σ : δu⊗∇〉
✷
− 〈φwf ·∇δp〉

✷
+

〈

α∇ · u̇s δp+
1

M
ṗ δp

〉

✷
︸ ︷︷ ︸

=−∇·(φwf )

=
1

V✷

∫

∂V +
✷

t · JδuK✷ da− 1

V✷

∫

∂V +
✷

q JδpK✷ da. (3.33)

This relation coincides with the Hill-Mandel principle of macro-homogeneity Eq. (3.3), if
we make the particular choice δp → α p and δu → u̇.

Approximation of mesoscopic field quantities

In order to identify the effective viscoelastic model emerging from the poroelastic meso-
scale we now expand the pore pressure field p(x, t) and split the variables in spatial
pressure modes pa(x) and time-dependent mode activity parameters ξa(t). Similar ap-
proaches can be found in literature for the upscaling of elasto-viscoplastic and viscoelastic
compounds, see [47, 107, 112], to name only a few. We assume, for practical applications,
the sum to be reduced to a finite number N of elements. We write

p(x, t) ≈
N∑

a=1

ξa(t) pa(x), (3.34)

whereby the identity
∑N

a=1 ξa pa = 0 is satisfied only by the trivial solution ξa = 0,
a = 1, 2, . . . , N . In other words, the pressure modes form a linearly independent basis
of the space P✷ of scalar functions comprising all possible pressure distributions inside
V✷. For the subsequent derivations we suppose the pressure modes pa to be known. The
identification of these modes will be addressed later. The mode activity parameters ξa(t)
control the temporal evolution of the pore pressure state in the poroelastic medium. It
is important to remark that the variables ξa(t), in the absence of any dependency on the
local position x, can be understood as macroscopic quantities representing the internal
variables of the macroscopic viscoelastic substitute medium. Thus, the current state of
the poroelastic medium depends on the overall strain ε̄ as well as on the internal variables
ξa.

We now may expand further mesoscopic field quantities accordingly, namely εs(x) and
σ(x). To this end, we make use of the linearity of the underlying poroelastic medium and
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apply the superposition principle. We write

εs(x, ε̄, ξ) = E0(x) : ε̄(t) +

N∑

a=1

ξa(t) εa(x) and (3.35)

σ(x, ε̄, ξ) = C(x) : E0(x) : ε̄(t) +

N∑

a=1

ξa(t)σa(x), (3.36)

where we used the 4th rank strain localization tensor E0 as well as the mode-dependent
fields εa and σa = C : εa. The resulting fields depend linearly on the driving variables
ε̄ and ξa. Hereby, the quantities associated with the localization tensor represent the
instantaneous response of the dry linear-elastic solid skeleton under kinematic loading at
zero mode activity (ξa = 0, a = 1, 2, . . . , N , that is p(x) = 0, ∀x ∈ V✷). To compute
the particular strain and stress fields, we solve for ui and ti, i = 1, 2, . . . , 6, from

a
u(ui, δu)− c

u(ti, δu) = 0, (3.37)

−c
u(δt, ui) = −c

u(δt, Bi · x). (3.38)

The Bi represent the six members of the irreducible orthonormal basis of the symmetric
strain tensor ε̄ (orthotropic case). The localization tensor is computed as

E0(x) =
6∑

i=1

εi(x)⊗Bi, (3.39)

where εi =
1
2
(ui ⊗∇)sym. For more information concerning the derivation of the local-

ization quantities see, for example, [45].

The strain fields εa, representing the mode basis for Eq. (3.35), can now be computed
by solving N linear-elastic eigenstress problems corresponding to the unit loading ξa = 1,
a = 1, 2, . . . , N , with ξb = 0, b = 1, 2, . . . , a− 1, a + 1 . . . N , and 〈εa〉✷ = 0. Thus, for
known pa, we solve for ua and ta, a = 1, 2, . . . , N , from

a
u(ua, δu)− c

u(ta, δu) = −b
u(pa, δu), (3.40)

c
u(δt, ua) = 0. (3.41)

Finally, the total stress response of the RVE can be calculated as the volume average of
the superimposed local stress field by means of Eqs. (3.20) and (3.36).
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Evolution of internal variables

The decompositions Eqs. (3.34)–(3.36) can now be used to evaluate the continuity equa-
tion (3.22). To this end, we execute integration by parts and rewrite

−a
p(p, δp) = −〈φwf ·∇ δp〉

✷
= − 1

V✷

∫

∂V +
✷

q JδpK✷ da+ 〈δp∇ · (φwf)〉✷ . (3.42)

Hence, we may expand Eq. (3.22) as

a
p

(
N∑

b=1

ξb pb,
N∑

a=1

δξa pa

)

+ b
p

(

U0 : ˙̄ε+
N∑

b=1

ξ̇b ∇ · ub,
N∑

a=1

δξa pa

)

+m
p

(
N∑

b=1

ξ̇b pb,
N∑

a=1

δξa pa

)

= 0, (3.43)

with the second rank tensor U0 = I : E0. Taking into account that ξa represent macro-
scopic internal variables, we continue writing

N∑

a, b=1

δξa

[

a
p (pb, pa) ξb + [bp (ub, pa) +m

p (pb, pa)] ξ̇b

]

= −
N∑

a=1

δξa b
p
(
U0 : ˙̄ε, pa

)
, (3.44)

for all admissible test functions δξa, a = 1, 2, . . . , N . Substituting the test function δu
by ub in Eq. (3.26) and making use of Eq. (3.40) results in the identity

b
p(ub, pa) = 〈α pa ∇ · ub〉✷ = 〈α pa I : εb〉✷

= −〈σp
a : εb〉✷ = −b

u(pa, ub) = a
u(ua, ub), (3.45)

which is crucial in order to prove the symmetry of the final system of ODE’s for ξa, as
discussed below. More compact, we may introduce the vector ξ̂ = [ξ1, ξ2, . . . , ξN ]

T and
write Eq. (3.44) in matrix-vector form

δξ̂T
[

Â ξ̂ + M̂ ˙̂
ξ
]

= δξ̂T B̂ ˙̄̂ε, (3.46)

whereby the matrix entries are, for a, b = 1, 2, . . . , N , and, for i = 1, 2 . . . , 6,

Aab := −a
p(pa, pb) =

〈
ks

ηfR
∇pa ·∇pb

〉

✷

, (3.47)

Bai := −b
p(Û0

i , pa) = −
〈

α pa Û
0
i

〉

✷

, (3.48)
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and

Mab := b
p(ub, pa) +m

p(pb, pa)

= a
u(ua, ub) +m

p(pb, pa) =

〈

εb : C : εa +
1

M
pa pb

〉

✷

, (3.49)

where Eq. (3.45) has been used. The quantities ˙̄̂εi and Û0
i are the vector representations

of the second order tensors ˙̄ε and U0. Since the test functions δξa are arbitrary, we derive
from Eq. (3.46) the evolution equation for the mode activity coefficients as

M̂ ˙̂
ξ + Â ξ̂ = B̂ ˙̄̂ε, ξ̂(t = 0) = 0. (3.50)

Thus, the evolution of the pressure modes depends linearly on the mode activity and
the average strain rate. However, the internal variables ξa, a = 1, 2, . . . , N , in the
evolution relation Eq. (3.50) are strongly coupled. Thus, we aim to find a decoupled
format by solving the generalized eigenvalue problem for Â and M̂, both symmetric and
positive definite. Solving the generalized eigenvalue problem for Â and M̂, we compute
their spectral representations Â∗ = R̂T Â R̂ and M̂∗ = R̂T M̂ R̂ with the matrix R̂
of right eigenvectors. This allows us to shift the basis for the mode activity variables
{ξ̂} → {χ̂ := R̂−1 ξ̂} and the resulting evolution equation reads

˙̂χ+ Ĉ χ̂ = D̂ ˙̄̂ε, χ̂(t = 0) = 0, (3.51)

with Ĉ := (M̂∗)−1 Â∗ and D̂ := (M̂∗)−1 R̂T B̂. It is important to remark that Ĉ represents
a diagonal matrix. Its entries are of the dimension [Caa] = 1

s
, a = 1, 2, . . . , N , and can,

therefore, be understood as the inverse relaxation times related to the particular internal
variables χa. Hence, the resulting evolution law Eq. (3.51) represents a decoupled system
of N independent evolution equations for the internal variables χa, a = 1, 2, . . . , N . By
contrast, the matrix entries Dai, a = 1, 2, . . . , N , i = 1, 2, . . . , 6, are dimensionless,
[Dai] = 1. They can be interpreted as the sensitivity of the internal variable χa on the
macroscopic strain loading ˙̄εi.

Moreover, we observe that the evolution law given in Eq. (3.51) exhibits the structure of
the evolution equation of a generalized Maxwell-Zener model, see Fig. 3.8. If the latter
model is expressed in terms of the elastic strain εae = ε− εav of the ath Maxwell chain, the
pertinent evolution equation becomes

ε̇ae +
Ea

ηa
εae = ε̇, (3.52)

where Ea and ηa represent the stiffness and the viscosity parameter, respectively, of the
particular Maxwell chain. Obviously, this is the special case of Eq. (3.51) that is obtained
if we consider the 1D case and set Caa = Ea

ηa
and Da1 = 1.
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Figure 3.8: Generalized Maxwell-Zener model as the rheological representation of the evolution
equation (3.52).

Mode identification

It remains to specify the pressure modes pa(x) introduced in Eq. (3.34). We apply the
Karhunen-Loève decomposition, also known in the literature as Proper Orthogonal De-
composition (POD), see [79, 107], for example. The procedure is as follows: Execut-
ing transient training computations on the RVE level following certain specific loading
paths, we generate a finite number of S snapshots p̂k(x) of the local pressure field,
k = 1, 2, . . . , S. Considering a cubic RVE in a 3D setting, these loading paths could
be 6 time-dependent numerical experiments undergoing ε̄i(t) = γ(t)Bi, i = 1, 2, . . . , 6.
The scalar stimulation function γ(t) may, for example, prescribe a stress-relaxation test
or a frequency sweep. In any case it has to be ensured that the loading function includes
all relevant frequency contributions or relaxation times, respectively. It is, consequently,
required that the loading phase in the stress relaxation case is sufficiently fast. Moreover,
it must be ensured that all the pressure states at all relevant frequencies or, respectively,
relaxation times are represented by the chosen snapshots. The snapshots are then used
to generate the correlation matrix

gkl = 〈p̂k(x) p̂l(x)〉✷ , k, l = 1, 2, . . . , S. (3.53)

We solve the eigenvalue problem (gkl − λ δkl) vl = 0 and arrange the resulting eigenvalues
λk in decreasing order. It can be observed that the eigenvalues become small very fast,
see the exemplary situation for the White model in Fig. 3.9. It turns out that reducing
the basis to the N members, for which λa > 1e-6λ1, a = 1, 2, . . . , N , leads to a highly
accurate prediction of the apparent properties with a reasonable small number N < S.
Thus, the remaining N basis modes are to be computed as

pa(x) =
S∑

k=1

vak p̂k(x), a = 1, 2, . . . , N. (3.54)

Due to the orthonormality of the eigenvectors vak , the pressure modes are orthogonal as
well, and it holds

〈pa(x) pb(x)〉✷ =

{
λa, if a = b,
0, otherwise.

(3.55)
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Study: Apparent viscoelastic properties

of a 1D layered poroelastic medium

We now want to numerically validate the homogenization and order reduction approach in-
troduced in the preceding section. The results and discussions presented in the upcoming
section have been published in Jänicke et al. [110]. Without restricting the generality of
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Figure 3.10: White’s model of a 1d layered medium.

the method, we study the apparent viscoelastic properties of the White model, which is a
specially designed 1D poroelastic medium, and which is used as a standard representation
for layered, fluid-saturated media in Geoscience, see for example [18, 102, 140]. The poroe-
lastic unit cell consists of a water-saturated layer surrounded by symmetrically arranged
gas-saturated layers, see Fig. 3.10. KUBC together with UBC are used and coincide in
this case with periodic boundary conditions for symmetry reasons. The chosen material
parameters are given in Tab. 3.4. For a kinematically controlled transient consolida-
tion experiment, we observe a pronounced pressure gradient between the water-saturated
(low compressibility, high pressure) and the gas-saturated layer (high compressibility, low
pressure), see Fig. 3.11 a). From this computation with full resolution, we generate 50
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rock matrix water-saturated gas-saturated
ks [mD] 100 1000
φ [–] 0.1 0.2
G [GPa] 15.8 8.8
K [GPa] 16.2 9.6
Ks [GPa] 36.0 36.0
Kf [GPa] 2.3 0.022
ηfR [mPa s] 3 0.01

Table 3.4: Poroelastic material parameters for water and gas saturation (1mD≈ 1e-15m2).

snapshots representing the pore pressure distribution at different time steps during the
transient consolidation test. The POD is now used to identify the pressure modes forming
the reduced basis of the problem. For this purpose, we only consider the largest eigen-
values λa satisfying the condition f λ1 < λa < λ1 and ignore the remaining eigenvalues
λk ≤ f λ1. For the given example, choosing the prefactor f = 1e-06 results in 5 pertinent
eigenvalues λa and the corresponding pressure modes pa, a = 2, 3, . . . , 6. We include
an additional pressure mode p1(x) = const in order to match precisely the equilibrium
pressure distribution (∇p = 0, if t → ∞). The corresponding linear-elastic eigenstress
problems due to the N = 5 + 1 = 6 pressure modes as well as the stress response due to
external loading ε̄i = Bi, i = 1, 2, . . . , 6, under zero mode activity are solved in order to
compute the reduced system matrices in Eqs. (3.47) – (3.49). After having solved, for this
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Figure 3.11: Selection of snapshots p̂k(x) of the pressure field p(x) during the fully-resolved
computation of a stress relaxation test of the layered unit cell, l = 2m, d = 0.5m, see Fig. 3.10.
b) Pressure modes computed by the POD (a =2, . . . , 6) out of 50 snapshots of the stress relax-
ation problem. The decrease of the corresponding eigenvalues is given in Fig. 3.9. The constant
pressure mode a = 1 is included and represents the equilibrium state ∇p(x) = 0 for t → ∞.

1D case, 1 transient stress relaxation test, 1 + N = 7 linear-elastic boundary value and
eigenstress problems, respectively, as well as 1 low-dimensional eigenvalue problem, we
now have all ingredients at hand to establish the evolution law Eq. (3.51). The computed
parameters Caa and Ba1 for the 1D White model are evaluated as depicted in Tab. 3.5.
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N 6 4 2 1

f 1e-06 1e-03 1e-01 1

C11 0 0 0 0

C22 4.334e04 1
s 1.925e04 1

s 6.485e02 1
s

C33 1.025e03 1
s 3.775e02 1

s

C44 4.159e01 1
s 4.421e01 1

s

C55 4.024e02 1
s

C66 3.072e02 1
s

N 6 4 2 1

f 1e-06 1e-03 1e-01 1

B11 -1.040e00 -1.040e00 -1.040e00 1.040e00

B22 1.407e05 1.970e04 -2.043e01

B33 4.646e04 9.657e03

B44 -4.877e04 -1.996e03

B55 1.969e05

B66 -1.955e05

Table 3.5: Parameters Caa and Ba1 for the 1D layered medium for different numbers N of
modes including the manually chosen constant pressure mode p1(x) = 100MPa.

Hereby, the constant pressure mode p1(x) = 100MPa has been used. It is important
to remark that the evolution of this constant pressure mode is not rate dependent. In
other words, C11 = 0. This holds in general, since the entries in the first line as well as
the first column of the correlation matrix Â vanish due to the absent pressure gradient
∇p1(x) = 0, see Eq. (3.47), and we may write

χ1 = B1i ε̄i under χ1(t0) = 0. (3.56)

Thus, the apparent viscoelastic substitute model is successfully identified, and we can
now validate our reduced order model. Hereby, time-dependent initial value problems on
the mesoscopic level with full resolution serve as reference computations. We start our
considerations by validation of the consolidation test in Fig. 3.12 a), where the effective
stress σ̄ is displayed. The strain loading condition is given as ε̄(t) = t, 0 ≤ t ≤ 0.02 s, and
is kept constant for t > 0.02 s. In other words, the step function commonly used for stress
relaxation experiments is, for numerical reasons, substituted by a linear ramp. We find an
excellent agreement between the reduced order solutions and the reference computations
if 4 or 6 pressure modes are considered. By contrast, the effective model is not able to
map the relaxation character of the experiment if only the constant pressure mode (a = 1)
is used. This is an expected observation taking into account that the constant pressure
mode does not evolve, see Eq. (3.56). Nevertheless, including this trivial mode is crucial
for an exact prediction of the equilibrated state at t → ∞.

As a second loading scenario we investigate a kinematic activation by the second derivative
of the Gaussian function as the transient analogon of a wavelet stimulation, see Fig. 3.12
b). More precisely, the macroscopic strain is defined as ε̄(t) = 0.01 (1− (t− t0)

2) e−(t−t0)2

with t0 = 4 s. The kinematic input signal is perfectly symmetric in time with respect
to t0. Due to the dispersive properties of the poroelastic SVE, this symmetry is lost
for the effective stress response σ̄ of the reference solution. In Fig. 3.12 b), only the
stress contribution σ̄p := 〈σp〉

✷
is displayed for the sake of a clear visualization. Again,

we observe a very good agreement between the reduced order model and the reference
solution if 6 pressure modes are taken into account. By contrast, use of the constant
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Figure 3.12: Evaluation of the stress response predicted by the order reduction method as
compared to the fully resolved simulation of a) a stress relaxation test and b) an excitation by
the second derivative of the Gaussian function.

pressure mode (N = 1), only, results in a dispersion-free and, therefore, symmetric stress
response. Similar numerical experiments can be evaluated for various loading conditions.
In all investigated cases the viscoelastic model accounting for 6 modes is in excellent
agreement with the reference computations as long as the contributing frequencies of the
loading signal are included in the chosen set of snapshots.
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Finally, we would like to discuss the seismic attenuation observed in the chosen unit cell
in the frequency domain. For this purpose, the inverse quality factor 1

Q
of the apparent

stiffness observed for the given unit cell is displayed in Fig. 3.13. The reduced model that
exclusively uses the constant pressure mode (N = 1) is dispersion-free (no attenuation)
and is, therefore, ignored. Again, we find that the reduced order model including 6
internal variables matches the attenuation behaviour of the layered model with a very
high accuracy, whereas the model including only 2 internal variables fails in the high-
frequency range.
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rock matrix water-saturated gas-saturated
ks [mD] 600 600
φ [–] 0.2 0.2
G [GPa] 4.2 4.2
K [GPa] 7.0 7.0
Ks [GPa] 36.0 36.0
Kf [GPa] 2.3 0.02
ηfR [mPa s] 1 0.01

Table 3.6: Poroelastic material parameters for water and gas saturation (1mD≈ 1e-15m2) in
the 2D patchy saturated SVE, see Fig. 3.14.

Study: Apparent viscoelastic properties

of a 2D poroelastic media with patchy saturation

We would like to finalize our considerations on the poro-to-viscoelastic computational
homogenization scheme by increasing the dimensionality of the heterogeneous meso-scale.
We, therefore, study in this section the effective modeling of the attenuation in the 2D
periodic SVE shown in Fig. 3.14, which has been considered as a benchmark experiment in
literature, see, for example, [33, 34, 100, 140]. The mesostructure represents the case of a
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Figure 3.14: Geometry used as 2D SVE for a patchy saturated porous rock with l = 10m and
r = 4.5m.

true patchy saturation with a homogeneous background rock saturated by two immiscible
pore fluids. Hereby, the circular patch is water-saturated, the surrounding medium is
gas-saturated. All material parameters can be found in Tab. 3.6.

It has to be pointed out that, due to the homogeneity of the solid skeleton, volumetric de-
formations of the solid skeleton are neither active under the pure shear modes ε̄12 = f(t)
nor ε̄11 = −ε̄22 = f(t). Here, f(t) represents any admissible function in time control-
ling the temporal evolution of the mesoscopic boundary value problem. Hence, only
the volumetric contribution of the prescribed deformation may cause pore pressure diffu-
sion processes. Before we study the upscaling behavior we first want to understand the
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processes being active on the small scale. For this purpose, the representative pressure
fields observed during a stress relaxation test (ε̄11(t → ∞) = −0.01, ε̄12 = ε̄22 = 0 ⇒
ε̄vol = −0.005) are displayed in Fig. 3.15. We observe, due to the low compressibility of
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Figure 3.15: Pore pressure field p(x) under uni-axial loading ε1 = −0.01 at different time
steps.

water, a strong pressure gradient between the water-saturated patch and the surrounding
material. With increasing time, pressure diffusion leads to an equilibration of the gra-
dients. As we have already mentioned in the preceding sections, the dominant process
causing seismic attenuation is the diffusion of the pore pressure rather than the transport
of the pore fluid. This comes to the fore having regard to Fig. 3.16, where the Darcy
velocity at different time steps during the stress relaxation experiment is documented. It
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can be clearly seen that the maximum amount of the Darcy velocity |φwf | ranges in the
order of magnitude of 1 cm

s
. Taking into account the SVE length l = 10m and a total re-

laxation time of approximately T = 10 s, the distance covered by the pore fluid accounts
for a few centimeters and is, consequently, very small compared to the SVE size. By
contrast, the pressure diffusion process involves the entire SVE volume. In other words,
even short range relocations of a (rather incompressible) pore fluid lead to a significant
increase of the pore pressure and, therefore, cause a pronounced pressure diffusion.
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ij =

〈

σp
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✷

computed via the order reduction method in comparison to the reference solution.

We now execute the reduced order modeling procedure. Doing so, we compute the solu-
tions of numerical stress-relaxation experiments in e1- and e2-direction using PBC for the
solid displacement as well as the pore pressure resulting in 100 snapshots of the pressure
field. The POD is used to generate the reduced basis required for the approximation of the
mesoscopic quantities. Assuming a factor f = 1e-06 for the eigenvalues to be ignored, the
POD prescribes a set of 8 orthogonal basis distributions pa(x), a = 2, 3, . . . , 9. As dis-
cussed in the preceding section, we add manually a constant pressure mode p1(x) = const
in order to cover the equilibrium state. The decrease of eigenvalues computed by the
POD and normalized by the largest eigenvalue λ1 is plotted in Fig. 3.17 a). It remains to
compute the system matrices Ĉ and D̂, see Eq. (3.51), and, thereby, the matrices M̂, Â
and B̂, see Eqs. (3.47) – (3.49). Hence, this 2D case requires the solution of 3 linear-elastic
boundary value problems for the stress response of the dry skeleton and the solution of
N = 9 linear-elastic eigenstress problems representing the stress response of the N = 9
pressure modes. The resulting parameters Caa and Bai, a = 1, 2, . . . , 9, i = 1, 2, 3, can
be found in Tab. 3.7. It can be observed that the inverse relaxation times Caa range from
1 1

s
up to approximately 4600 1

s
. Hereby, the participating decades in frequency domain

are represented by two internal variables, each. From the values Bai we can learn that,
as expected, pure shear loading does not activate the evolution of the internal variables.
Moreover, the perfect symmetry of the SVE is reflected in the fact that Ba1 = Ba3. Re-
computing the training experiments, that is solving the stress relaxation now with the
reduced order model, and comparing the apparent stress response to the reference data
leads to an excellent agreement, see Fig. 3.17 b).

For a better understanding of the physical meaning of the reduced basis modes, we display
the decoupled pressure modes controlled by χ̂ = R̂ ξ̂ in Fig. 3.18. Hereby, the constant
pressure mode a = 1 is skipped. We observe that particularly the lower pressure modes
a = 2, . . . 4 are active at the interface between the fluid-saturated patch and the gas-
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f 1e-06 ε̄22

i 1 2 3

C11 0 1
s

D1i 1.107 0 1.107

C22 4664 1
s

D2i -225.7 0 -225.7

C33 1747 1
s

D3i -321.9 0 -321.9

C44 400.4 1
s

D4i -410.2 0 -410.2

C55 129.5 1
s

D5i 492.9 0 492.9

C66 45.75 1
s

D6i 398.0 0 398.0

C77 16.10 1
s

D7i -352.2 0 -352.2

C88 5.913 1
s

D8i -173.7 0 -173.7

C99 1.154 1
s

D9i 35.05 0 35.05

Table 3.7: Parameters Caa and Bai for the 2D patchy saturated medium for N = 9 including
the manually chosen constant pressure mode p1(x) = 1MPa. Hereby, ˆ̄ε = [ε̄11, ε̄12, ε̄22]
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Figure 3.18: Qualitative 2D plot of the decoupled pressure modes related to the internal
variables χa.

saturated background medium. These strong gradients are smeared out for the higher
pressure modes a ≥ 5. Having in mind the decreasing inverse relaxation times Caa, see
Tab. 3.7, the first modes are, therefore, related to the fast processes, whereas the higher
modes describe slow processes. However, only mode a = 9 looks similar to a real pressure
state which we may observe during the stress relaxation test, see Fig. 3.15.
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Figure 3.19: Temporal evolution of the internal variables a) ξa(t) and b) χa(t) during the
stress relaxation experiment.

At this point, it is important to recall that the total true pressure fields are interpreted
to represent superpositions of the underlying basis modes pa(x, t) =

∑9
a=1 ξa(t) pa(x).

In the full-field simulation depicted in Fig. 3.15, therefore, only the superimposed field
can be detected whereas the decomposition remains somehow unintuitive. Fortunately,
the temporal evolution of the internal variables ξa(t), a = 1, 2, . . . , N , grants us access
to a physical interpretation of the pressure modes. To this end, we study the evolution
of the coupled variables ξa and the decoupled variables χa during the stress-relaxation
test. The results are shown in Fig. 3.19. We observe in a very distinct manner the mode
decoupling in terms of the basis shift {ξa} → {χa}. Whereas the coupling variables
ξa describe a extremely complex evolution with strong interactions between the different
modes, the decoupled variables χa decrease exponentially during the stress-relaxation test
with the particular relaxation time. This is in accordance to the rheological interpretation
in Eqs. (3.51) and (3.52).

Finally, we would like to demonstrate that it is not only possible to validate the training
experiment but also further loading situations. For this purpose, we apply transient
wavelet type loadings at two different temporal length scales, see Fig. 3.20. In both cases,
the reduced order model involving N = 9 internal variables is able to predict the apparent
structural response with a very high accuracy. For comparison, we have added the stress
response of the dry solid frame.

Conclusions

In this chapter, we have extensively discussed various aspects of computational homog-
enization of seismic attenuation in heterogeneous poroelastic media. Based on a volume
averaging approach we have introduced an innovative upscaling procedure replacing a het-
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Figure 3.20: Validation of the reduced order model under a wavelet-type loading at different
velocities. As comparison, the volume average of the effective stress is given representing the
stress response of the dry skeleton.

erogeneous mesoscopic volume element by a homogeneous, viscoelastic substitute medium.
Hereby, not all mesoscopic quantities own a macroscopic counterpart. In particular, all
quantities related to the pore pressure are hidden on the large scale and exist only in
an intrinsic fashion. The homogenization approach is, therefore, called selective. The
lack of appropriate counterparts for the pore pressure and the related quantities moreover
involves the necessity of introducing additional constraints on the continuity equation to
be solved for on the meso-level. To this end, we have imposed the mesoscopic boundary
value problem to satisfy the balance of mass in a strict manner. Thus, any net outflux
of pore fluid is suppressed. Consequently, the fluid motion or, respectively, the pore
pressure diffusion are, from a macroscopic view point, local processes and, therefore, re-
stricted to proceed inside the RVE. Thus, the redistribution of the pore fluid is treated
as an internal process on the macroscopic material point level. Additionally imposing an
extended form of Hill’s principle of macro-homogeneity we were able to derive a consis-
tent set of boundary conditions for the solid velocity and the pore pressure. We found
that the choice of boundary conditions not only influences the magnitude of the apparent
frequency-dependent elastic moduli but also the transition properties from the low- to the
high-frequency regime. This has to be taken into account in particular if, for practical
purposes, a SVE rather than a RVE is used for the computation of the overall mechanical
properties.

The upscaling setup has been subsequently enhanced by a reduced order modeling ap-
proach. To this end, it has been exploited that the superposition principle can be applied
on the poroelastic meso-level. Thus, the viscoelastic stress response is split additively into
contributions depending on the overall (and prescribed) strain or, respectively, strain rate
and contributions depending on a finite set of internal variables. It turned out that these
internal variables can be computed by solving a set of decoupled ordinary differential
equations similar to a generalized Maxwell-Zener model. From a physical point of view,
these internal variables represent the dissipation mechanisms due to the macroscopically
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hidden redistribution of pore fluid inside the attached RVE. Hence, the fluid is trapped in
the pore space of the RVE volume and is, therefore, treated as the viscous contribution to
the macroscopic solid substitute. It is important to remark that these hidden processes
would also be active if an additional macroscopic pressure gradient would be applied to
the RVE. For example, this would be the case if we would allow for pressure diffusion
on the large scale, too (local + global pressure diffusion). Thus, it has to be expected
that the total attenuation observed macroscopically splits up into a global part due to the
pumping of pore fluid through the RVE and into a local part due to fluid redistribution
inside the RVE. The latter part of the pore fluid undergoes, from a macroscopic point of
view, a phase transition and belongs, after redistribution, to the (apparently) viscoelastic
solid. However, this point will be addressed later in more detail.

Finally, we have validated the presented order reduction homogenization scheme numer-
ically and found an excellent agreement with reference computations. In the upcoming
chapters we would like to extend our investigations towards diffusion processes in fracture
networks. In difference to problems with patchy saturation and double porosity, where in
particular the exchange of pore fluid across interfaces is important, fracture networks al-
low for long-range diffusion processes in the fractures themselves. The following chapters
will, therefore, discuss several strategies how to deal with these issues.



4
Viscoelastic substitute models for

fluid-saturated fractured media

The preceding chapter was attended to poroelastic heterogeneous media with patchy sat-
uration and/or double porosity mesostructures. The upcoming investigations focus, by
contrast, on seismic attenuation due to pressure diffusion in fractured poroelastic media.
To this end, we modify our homogenization approach proposed in the preceding chapter
and replace the rather compact patchy inclusions by fluid-saturated fractures with high
aspect ratios. The fractures as well as the surrounding rock matrix are supposed to be
saturated by the same pore fluid. Hence, the fractured poroelastic media can be under-
stood as an extremal case of a double-porosity material. From a physical point of view,
this simple modification in the structural morphology changes the properties of the ob-
served diffusion processes significantly. The diffusion processes in patchy saturated porous
media are mainly driven by the contrast in fluid compressibility. In this case, mechan-
ical compression leads to pronounced pressure gradients between regions with low fluid
compressibility and regions with high fluid compressibility. Thus, the pressure diffusion
takes place, mainly, crossing the interface between the different saturation regimes, see
Fig. 4.1. In comparison, the diffusion processes inside the patches as well as inside the
background medium are of minor importance. By contrast, the diffusion processes active
in fluid-saturated fractured media are triggered by the compressibility contrast between
the solid matrix skeleton and the fracture. In the extremal case of mechanically open
fractures (no contact between the fracture surfaces) the stiffness of the fracture space
solely results from the bulk stiffness of the fluid constituent. Thus, compaction of the
fractured medium leads to high fluid pressures in the fractures.

Depending on the fracture geometry, we observe three dominant redistribution mecha-

– 71 –
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Figure 4.1: Dominant diffusion mechanisms in patchy saturated and saturated fractured poroe-
lastic media.

nisms: First, pressure gradients in the fracture network cause pressure diffusion inside
the reduced-dimensional fracture space [97]. Since fractures exhibit a high hydraulic con-
ductivity, these fracture diffusion processes lead to a significant overall attenuation in the
seismic frequency range even if the volume fraction of the fracture space in the control
volume is very small. Second, we can expect, depending on the permeability of the sur-
rounding rock matrix, a mass exchange between the fracture and the rock matrix. This
leak-off of pore fluid is comparable to the diffusion in patchy saturated media crossing
interfaces between neighbouring regions. However, the reason for the stimulated pressure
gradients in patchy saturated and fractured media differs (heterogeneous fluid compress-
ibility versus heterogeneous compressibility of the solid skeleton). Finally, a third diffusion
mechanism has to be considered in terms of the redistribution process being active in the
background medium due to local pressure gradients.

In the sections below we pay particular attention to the diffusion processes in fractures as
well as in fracture networks. To this end, we investigate two different modeling approaches.
First, we modify the homogenization approach introduced in Sec. 3.1 by ignoring leak-
off as well as the background diffusion. We suppose the rock matrix to be impermeable
and use an one-phasic linear-elastic description for the matrix material. By contrast,
we suppose the fractures as poroelastic media with a very low solid stiffness. Hence,
the fractures are assumed to be mechanically (almost) open and the contact problem
of the fracture surfaces is, in view of the tiny local displacements due to seismic waves,
ignored. This first modeling approach requires, for the numerical implementation, the
fracture volume to be meshed. However, this necessity becomes a strong restriction for
the numerical implementation. In particular for 3D applications with complex fracture
networks, the meshing of the fracture tips is a non-trivial task. Moreover, the resulting
implementation requires the solution for a huge amount of degrees of freedom. Hence,
it is essential to cure this deficiency. This is achieved in the second fracture model by
adopting the hybrid-dimensional formulation introduced in [132, 133, 134]. The fractures
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are treated as topologies one order lower than the matrix material. Thus, they represent
2D interfaces in a 3D RVE. The 3D meshing problem of the fracture space is avoided. In
order to derive the properties of the viscoelastic substitute medium on the large scale, the
hybrid-dimensional approach is included in an accordingly extended version of the order
reduction concept proposed in Sec. 3.3.

Poroelastic fractures in an impermeable

background rock

We start our considerations by supposing the control volume V✷ to consist of a volume VB

occupied by an impermeable elastic solid and a volume VF occupied by a fluid-saturated
poroelastic medium representing the fractures in the rock matrix. It is important to re-
mark that the poroelastic fracture model represents, obviously, a first approximation to
a more realistic description of fluid-saturated fractures. The stiffness of the solid skeleton
in the fracture space is assumed very low. Contrariwise, the hydraulic permeability of the
poroelastic medium in the fractures is considered to be very high. An exemplary configu-
ration for such a mixed linear- and poroelastic RVE is shown if Fig. 4.2. The RVE volume
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Figure 4.2: A simplified RVE model for a fluid-saturated fractured rock. The background rock
matrix occupying the volume VB is assumed to be impermeable and is modeled as a (linear-
elastic) Cauchy medium. The fractures occupying the volume VF are modeled as a poroelastic
medium with a very low solid stiffness and a high permeability of the solid skeleton.

computes as V✷ = VB ∪ VF under the condition VB ∩ VF = ∅. We distinguish between the
external surface ∂V e

✷
and the interface ∂V i. Hereby, both volume parts, background and

fractures, may contribute to the external surface. We, therefore, introduce the identities

〈✸〉
✷

= 〈✸〉B + 〈✸〉F ⇔ 1

V✷

∫

V✷

✸ dv =
1

V✷

∫

VB

✸ dv +
1

V✷

∫

VF

✸ dv (4.1)
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and

1

V✷

∫

V e
✷

✸ da =
1

V✷

∫

V e
B

✸ da +
1

V✷

∫

V e
F

✸ da. (4.2)

The strong form of the equation system to be solved is split into the background model for
the rock matrix and the poroelastic fracture model. The background medium is described
via the balance of momentum

σ ·∇ = 0 ∀ x ∈ VB, (4.3)

including boundary conditions at the external and the internal surface for the primary
variable us as

us =

{

u∗
s ∀ x ∈ ∂DV

e
B,

uB
s ∀ x ∈ ∂V i,

σ · n =

{

t∗ ∀ x ∈ ∂NV
e
B,

tB ∀ x ∈ ∂NV
i.

(4.4)

Hereby, the quantities with ✸
∗ represent external Dirichlet and Neumann boundary condi-

tions. The interface displacement uB
s and the interface surface traction tB are used below

to ensure mechanical compatibility between the fractures and the background medium.
We use single-phasic Hooke’s law as constitutive relation valid in the background matrix
and compute the stress as

σ = 2G εdevs + 3K εsphs (4.5)

with the solid strain εs = 1
2
(us ⊗ ∇ + ∇ ⊗ us). For simplicity reasons, we use the

abbreviation σ = C · εs in the following. The poroelastic medium in the fractures is
described by Biot’s quasi-static equations for linear consolidation as introduced in Section
2.2. We write

σ ·∇ = 0 ∀ x ∈ VF , (4.6)

∇ · (φwf) + Φ̇ = 0 ∀ x ∈ VF . (4.7)

The boundary conditions for the primary variables us and p are expressed as

us =

{

u∗
s ∀ x ∈ ∂DV

e
F ,

uF
s ∀ x ∈ ∂V i,

σ · n =

{

t∗ ∀ x ∈ ∂NV
e
F ,

tF ∀ x ∈ ∂DV
i,

(4.8)

p = p∗ ∀ x ∈ ∂DV
e
F , φwf · n =

{

q∗ ∀ x ∈ ∂NV
e
F ,

0 ∀ x ∈ ∂NV
i.

(4.9)

The solid displacement us at the interface ∂V
i between the fractures and the background

is required to be compatible. Thus, we can formulate the compatibility conditions

uB
s = uF

s and tB + tF = 0. (4.10)
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Moreover, the exchange of fluid between the fracture and the background space is sup-
pressed (q = 0 on ∂V i). In analogy to section 2.2 we use, in the fracture space, the
constitutive relations

σ = 2G εdevs + 3K εsphs
︸ ︷︷ ︸

=:σeff (εs)

−α p I
︸ ︷︷ ︸

=:σp(p)

, (4.11)

φwf = − ks

ηfR
∇p, (4.12)

Φ̇ = α∇u̇s +
ṗ

M
, (4.13)

∀ x ∈ VF . Again, we use the abbreviation σeff = C : εs in the sequel.

Computational homogenization

We now establish the consistent computational homogenization setup for this modified
poro-to-viscoelastic upscaling problem. We, therefore, introduce periodic boundary con-
ditions for the fields of the primary variables. Thereby, we have to distinguish between the
fracture’s contribution to the external boundary and the contribution of the background
medium. Hence, we write

JusK✷(x) = ε̄ · JxK✷, t+ + t− = 0 ∀ x ∈ ∂V e,+
✷

, (4.14)

JpK✷(x) = 0, q+ + q− = 0 ∀ x ∈ ∂V e,+
F . (4.15)

Hereby, we use the split into image and mirror part of the external boundary as well as
the jump operator J✸K✷ as introduced in section 2.3. After solution for us and p the
overall stress response is computed as

σ̄ = 〈σ〉
✷

=: 〈σ〉B + 〈σ〉F

=
1

V✷

∫

VB

σ dv +
1

V✷

∫

VF

(σeff + σp) dv. (4.16)

We rewrite now Eqs. (4.3), (4.6) and (4.7) in their weak formats. Hence, we seek solutions
in the trial spaces UB, UF and PF of admissible pore displacement and pore pressure fields
which are sufficiently regular in VB and, respectively, VF . We furthermore introduce the
corresponding trial spaces of self-equilibrated fluxes TB, TF and WF that are sufficiently
regular on ∂V e,+

B and, respectively, ∂V e,+
F . We write the equations for finding us, t ∈
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UB × TB and us, p, t, q ∈ UF × PF × TF ×WF as

a
u,B(us, δu)− c

u,B(t, δu)− d
u,B(tB, δu) = 0, (4.17)

a
u,F (us, δu) + b

u,F (p, δu)− c
u,F (t, δu)− d

u,F (tF , δu) = 0, (4.18)

−a
p(p, δp) + b

p(u̇s, δp) +m
p(ṗ, δp) + c

p(q, δp) = 0, (4.19)

−c
u,B(δt, us) = −c

u,B(δt, ε̄ · x), (4.20)

−c
u,F (δt, us) = −c

u,F (δt, ε̄ · x), (4.21)
c
p(δq, p) = 0, (4.22)

which holds for any admissible test functions δu, δt ∈ UB × TB and δu, δp, δt, δq ∈
UF × PF × TF × WF . Here, we used for the momentum balance in the background
medium occupying VB

a
u,B(us, δu) = 〈(C : εs(us)) : (δu⊗∇)〉B , (4.23)

c
u,B(t, us) =

1

V✷

∫

∂V
e,+
B

t · JusK✷ da, (4.24)

c
u,B(t, ε̄ · x) =






1

V✷

∫

∂V
e,+
B

t⊗ JxK✷ da




 : ε̄, (4.25)

d
u,B(tB, δu) =

1

V✷

∫

∂V i

tB · δu da. (4.26)

Hereby, the Cauchy theorem tB = σ ·n on ∂V i refers to the outwards normal vector from
the viewpoint of VB. Thus, n is pointing from ∂V i into VF in this case. Similarly, we use,
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for the momentum balance in the fracture space VF ,

a
u,F (us, δu) =

〈

(C : εs(us))
︸ ︷︷ ︸

=σ
eff (εs(us))

: (δu⊗∇)

〉

F

, (4.27)

b
u,F (p, δu) =

〈

−α p I
︸ ︷︷ ︸

=σ
p(p)

〉

F

= −b
p(δu, p), (4.28)

c
u,F (t, us) =

1

V✷

∫

∂V
e,+
F

t · JusK✷ da, (4.29)

c
u,F (t, ε̄ · x) =






1

V✷

∫

∂V
e,+
F

t⊗ JxK✷ da




 : ε̄, (4.30)

d
u,F (tF , δu) =

1

V✷

∫

∂V i

tF · δu da. (4.31)

The compatibility of the fracture and the background volume requires

tB + tF = 0 ∀ x ∈ ∂V i ⇒ d
u,B(tB, δu) + d

u,F (tF , δu) = 0. (4.32)

Finally, we use the abbreviations for the continuity equation in Eq. (4.19)

a
p(p, δp) = 〈φwf(∇p) ·∇ δp〉

F
, (4.33)

b
p(u̇s, δp) = 〈α∇ · u̇s〉F = −b

u,F (δp, u̇s), (4.34)

m
p(ṗ, δp) =

〈
1

M
ṗ δp

〉

F

, (4.35)

c
p(q, α p) =

1

V✷

∫

∂V
e,+
F

q Jα pK✷ da (4.36)

Combination of Eqs. (4.17), (4.18) and (4.19) results in the appropriate version of Hill’s
principle of macro-homogeneity

σ̄ : ˙̄ε = 〈σ : ε̇s〉✷ − 〈φwf ·∇(α p)〉
F
+

〈

α p

=Φ̇=−∇·(φwf )
︷ ︸︸ ︷

(α∇ · u̇s +
1

M
ṗ)

〉

F

=
1

V✷

∫

∂V
e,+
✷

t · Ju̇sK✷ da− 1

V✷

∫

∂V
e,+
F

Jα pK✷ q da. (4.37)
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Hereby, we have chosen δu = u̇s and δp = α p.

Model order reduction

With this knowledge, a FE2-type two-scale computation resulting could be accomplished
in order to investigate the apparent viscoelastic properties. However, the numerical effort
required therefore would restrict the method to artificially small SVE sizes. Hence, we
make use of the problem’s linearity, apply the superposition principle and modify the order
reduction procedure proposed in Section 3.3. To this end, we decompose the pore pressure
field into spatial pressure modes pa(x) and time-dependent mode activity parameters ξa(t).
The latter are, again, interpreted as the viscoelastic internal variables of the resulting
overall model. Thus, we write

p(x, t) ≈
N∑

a=1

ξa(t) pa(x) ∀ x ∈ VF . (4.38)

Hereby, we assume the sum to be reduced to a finite number of N elements. Moreover it
is assumed that the pressure modes pa(x), a = 1, 2, . . . , N , form a linearly independent
basis of the space PF of scalar functions comprising all possible pressure fields in VF . The
pressure modes are to be computed, for example, making use of the POD as presented in
Section 3.3. Hereby, the integration domain is restricted to the volume VF occupied by
the fractures. Thus, Eq. (3.53) is slightly modified and rewritten as

gkl = 〈p̂k(x) p̂l(x)〉F , k, l = 1, 2, . . . , S, (4.39)

with the snapshots p̂k, k = 1, 2, . . . , S, of the pressure field observed during appropriate
numerical precomputations. The pressure modes are computed using Eq. (3.54).

It is now assumed that all mesoscopic quantities, the solid strain and the total stress in
particular, depend linearly on the internal variables ξa(t), a = 1, 2, . . . , N , representing
the temporal evolution of viscoelastic substitute model, and on the macroscopic strain
ε̄(t). We make use of the superposition principle and, therefore, decompose, according to
Eq. (4.38), the mesoscopic solid strain as well as the total mesoscopic stress field. Hence,
we write

εs(x, ε̄, ξ) = E0(x) : ε̄(t) +

N∑

a=1

ξa(t) εa(x) ∀ x ∈ V✷, (4.40)

σ(x, ε̄, ξ) = C(x) : E0(x) : ε̄(t) +

N∑

a=1

ξa(t)σa(x) ∀ x ∈ V✷, (4.41)

where we used the 4th rank strain localization tensor E0 =
∑6

i=1 ε
i ⊗ Bi with the six

membersBi, i = 1, 2, . . . , 6, of the orthonormal basis of symmetric tensors, see Eq. (3.39).
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The strain localization tensor represents the instantaneous strain response of the dry
linear-elastic skeleton in VF and the linear-elastic response in VV under kinematic loading
at zero mode activity (ξa = 0, a = 1, 2, . . . , N ⇔ p(x) = 0 ∀x ∈ VF ). We, therefore,
seek for solutions ui and ti, i = 1, 2, . . . , 6, from

a
u,B(ui, δu) + a

u,F (ui, δu)− c
u,B(ti, δu)− c

u,F (ti, δu) = 0, (4.42)

c
u,B(δt, ui) = c

u,B(δt, Bi · x), (4.43)

c
u,F (δt, ui) = c

u,F (δt, Bi · x). (4.44)

Moreover, the mode-dependent strain and stress fields εa and σa, a = 1, 2, . . . , N , need
to be precomputed in order to evaluate Eqs. (4.40) and (4.41). We, therefore, solve
N linear-elastic eigenstress problems corresponding to the unit loading cases ξa = 1,
a = 1, 2, . . . , N , with ξb = 0, b = 1, 2, . . . , a − 1, a + 1 . . . N , and 〈εa〉 = 0. Thus, for
known pa, we solve for ua and ta, a = 1, 2, . . . , N , from

a
u,B(ua, δu) + a

u,F (ua, δu)− c
u,B(ta, δu)− c

u,F (ta, δu) = −b
u,F (pa, δu), (4.45)

c
u,B(δt, ua) = 0, (4.46)

c
u,F (δt, ua) = 0. (4.47)

The mode-dependent stress field σa(x) is computed according to

σa(x) =

{

C(x) : εa(x) ∀ x ∈ VB,

C(x) : εa(x)− α pa(x) I ∀ x ∈ VF .
(4.48)

With the choice δu = ub we can derive from Eqs. (4.45) and (4.19)

b
p(ub, pa) = −b

u,F (pa, ub) = a
u,B(ua, ub) + a

u,F (ua, ub). (4.49)

Evolution of the internal variables

It remains to specify the evolution rule for the internal variables ξa(t), a = 1, 2, . . . , N .
We insert the decomposed fields given in Eqs. (4.38) and (4.40) into the weak form of
the continuity equation Eq. (4.19) in analogy to Section 3.3. This procedure yields, for
arbitrary testing functions δξa, the evolution law

Â ξ̂ + M̂ ˙̂
ξ = B̂ ˙̄̂ε. (4.50)
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In comparison to Section 3.3, the matrix entries are slightly modified and read now, for
a, b = 1, 2, . . . , N , and, for i = 1, 2 . . . , 6,

Aab := −a
p(pb, pa) =

〈
ks

ηfR
∇pa ·∇pb

〉

F

, (4.51)

Bai := −b
p(Û0

i , pa) = −
〈

α pa Û
0
i

〉

F
, (4.52)

Mab := b
p(ub, pa) +m

p(pb, pa) = a
u,B(ua, ub) + a

u,F (ua, ub) +m
p(pb, pa)

= 〈εb : C : εa〉✷ +

〈
1

M
pa pb

〉

F

, (4.53)

where we used Eq. (4.49). Finally, we execute the basis shift {ξ̂} → {χ̂ := R̂−1 ξ̂}, whereby
R̂ represents the matrix of right eigenvectors of the generalized eigenvalue problem for Â
and M̂ with their spectral counterparts Â∗ = R̂T Â R̂ and M̂∗ = R̂T M̂ R̂. Thus, we find
the decoupled ODE system of evolution equations for the overall viscoelastic substitute
model as

˙̂χ+ Ĉ χ̂ = D̂ ˙̄̂ε, χ̂(t = 0) = 0, (4.54)

with, first, the diagonal matrix Ĉ := (M̂∗)−1 Â∗, representing the inverse relaxation
times of the particular viscous variable, and, second, the matrix D̂ := (M̂∗)−1 R̂T B̂,
representing the sensitivity of mode χa for a macroscopic loading ˙̄εi, a = 1, 2, . . . , N ,
i = 1, 2, . . . , N .

Finally, the overall macroscopic stress response can be evaluated as

σ̄ =
〈
C : E0

〉

✷
: ε̄+

N∑

a,b=1

Rab χb
︸ ︷︷ ︸

=ξa

〈σa〉✷ . (4.55)

with the aid of the volume averaging rule given in Eq. (4.16)1.

Study: Viscoelastic substitute model for a simple poroe-

lastic fracture network

After having discussed the modified computational homogenization and order reduction
approach in the preceding section, we would like to apply our findings to compute the ap-
parent viscoelastic attenuation of the very simple 2D fracture networks shown in Fig. 4.3.
The SVE include two elliptic fractures, each, with a rather low aspect ratio a1

a2
= 50. As

indicated earlier, the fractures are approximated by a poroelastic medium with low elastic
stiffness and high permeability. The material parameters are given in Tab. 4.1. In Fig. 4.4,
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Figure 4.3: Simple periodic SVE (l = 10m, a1 = 8m, a2 = 0.16m) for a fracture network
consisting of two fractures (aspect ratio 50) oriented under 45◦, a) connected state and b)
unconnected state.

rock matrix background fractures
ks [mD] – 1e4
φ [–] – 0.5
G [GPa] 34.0 0.020
K [GPa] 32.0 0.025
Ks [GPa] – 40.0
Kf [GPa] – 2.4
ηfR [mPa s] – 1

Table 4.1: Linear-elastic material parameters for the background rock and poroelastic material
parameters for the water-saturated fractures (1mD≈ 1e-15m2), see Fig. 4.3.

the applied FE mesh is shown. It comes to the fore that, in particular for the much more
complicated morphologies in 3D and the much higher aspect ratios of realistic fractures
(a1
a2

∼ 1e5), the meshing of the fracture tip becomes crucial. In the present study, our

a) b)

Figure 4.4: FE mesh for the connected configuration, a) full SVE, b) detail at fracture tip.
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special interest lies on the interaction of the fractures. In the connected case Fig. 4.3 a),
mass exchange or, respectively, pressure diffusion between the fractures is possible. In the
unconnected scenario b), the fractures are hydraulically isolated and, therefore, only an
indirect interaction via the elasticity of the impermeable matrix rock is possible.

Before identifying the constitutive relations for the viscoelastic substitute model let us
study the frequency-dependency of the macroscopic elastic moduli, first. In other words,
we compute numerical stress-relaxation tests on the SVE level and extract, after FFT of
the time-dependent stress response, the apparent elastic moduli. Hereby, it turns out that
only a deviatoric loading induces pressure diffusion and, therewith, attenuation. Hence,
the frequency-dependency of the apparent bulk modulus K̄ can be ignored for the given
mesostructures. It is important to remark that this outcome represents a fundamental dif-
ference to the results in Section 3.5, where pressure diffusion is observed under volumetric
loading, only. The frequency-dependency of the apparent shear modulus Ḡ is shown in
Fig. 4.5. We find that both configurations result in an identical apparent storage modu-
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Figure 4.5: Apparent shear modulus Ḡ for the SVE given in Fig. 4.3, a) real part (storage
modulus) and b) inverse quality factor.

lus in the high-frequency limit. However, the difference between high- and low-frequency
limit is significantly larger for the SVE containing the connected fractures. Analogously,
the apparent attenuation in the unconnected configuration is almost two orders of mag-
nitude smaller than that one in the connected configuration. In order to gain a deeper
understanding of the underlying diffusion processes, we first compute a stress relaxation
test driven by the macroscopic loading ε̄22 = −0.01, ε̄11 = ε̄12 = 0. The evolution of the
pore pressure distribution under both scenarios is depicted in Fig. 4.6. Due to its reduced
stiffness compared to the matrix material the horizontal fracture 2, being oriented per-
pendicular to the external axial loading, is compressed. In the connected case, we observe
a pronounced pressure gradient between the horizontal fracture and the second fracture
under 45◦. The direction of the seepage is highlighted in Fig. 4.6 by the red arrows. In the
unconnected case, this process is suppressed because the fractures are hydraulically iso-
lated. However, the horizontal fracture, oriented perpendicular to the external loading, is
inhomogeneously compacted due to the elastic response (low stiffness) of fracture 1. We,
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therefore, observe a minor diffusion process in the horizontal fracture 2, see Fig. 4.6 b).
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Figure 4.6: Evolution of the pressure fields in the connected and the unconnected configuration
observed at different time steps under the external loading ε̄22 = −0.01, ε̄11 = ε̄12 = 0. The
direction of the diffusion process is indicated. It is clearly visible that the unconnected fractures
are hydraulically isolated and, therefore, exhibit different equilibrium pressures for t → ∞.

A second straightforward observation is crucial for the application of the reduced order
modeling of the homogenization problem: In the equilibrium state (t → ∞) the hy-
draulically isolated fractures exhibit different equilibrium pore pressures. In the previous
sections we have found out that an appropriate prediction of this equilibrium state within
the reduced order model requires to add a constant pressure mode manually to the output
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f 1e-06 i 1 2 3

C11 0 1
s

D1i 2.471e04 -1.549e04 3.965e04

C22 192.9 1
s

D2i -9.075e03 -1.078e06 2.882e05

C33 105.6 1
s

D3i -3.955e04 3.169e05 1.001e06

C44 72.02 1
s

D4i 2.366e05 -4.917e05 5.265e05

C55 19.71 1
s

D5i -6.701e04 1.105e06 2.088e05

C66 18.06 1
s

D6i -3.829e05 -5.074e05 4.712e05

C77 1.465 1
s

D7i -2.292e05 5.204e05 2.358e05

Table 4.2: Parameters Caa and Bai for the 2D poroelastic medium with two connected fractures
for N = 7 including the manually chosen constant pressure mode p1(x) = 1MPa. Hereby,
ˆ̄ε = [ε̄11, ε̄12, ε̄22]

T .

found by the POD. This is sufficient for the purely poroelastic and permeable formulation
on the meso level, where all heterogeneities are a priori hydraulically connected. Consid-
ering poroelastic inclusions in a elastic and impermeable matrix material, this procedure
has to be modified. We found out that, for the two configurations under investigation,
the execution of one unified POD for the pressure distribution in both fractures at once
results in a sufficiently accurate reduced basis. However, we have to add manually two
individual equilibrium modes of the form

p1(x) =

{

1MPa in fracture 1,

0 in fracture 2,
p2(x) =

{

0 in fracture 1,

1MPa in fracture 2.
(4.56)

For more complex fracture networks, it might be reasonable to modify even the POD in a
way that a modal basis is identified for each hydraulically isolated part of the mesostruc-
ture.

We now have all the information at hand to execute the order reduction and to identify
the coefficient matrices Ĉ and D̂ defining the evolution of the internal variables χa in
accordance to Eq. (4.54). The results are given in Tab. 4.2 for the connected case and
in Tab. 4.3 for the SVE with the unconnected fractures. As to be expected, the pressure
diffusion in the connected scenario turns out to be much more complicated than in the
unconnected case. More precisely, the first scenario requires 6 (a = 2, . . . , 7) diffusive
modes in comparison to 2 (a = 3, 4) for the latter one. Hereby, we have to take into
account the non-diffusive modes related to the manually added constant pressure modes
with Caa = 0 for, connected case, a = 1, and, unconnected case, a = 1, 2. Moreover,
the redistribution processes in the connected case are spread over 2 decades of inverse
relaxation times (Caa ∼ [1, 200] 1

s
). In the unconnected case the fracture diffusion is

active at very low frequencies (Caa ∼ 2.5 1
s
).
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f 1e-06 i 1 2 3

C11 0 1
s

D1i 8.104e03 -1.871e04 -7.923e03

C22 0 1
s

D2i 2.486e04 -1.611e04 4.023e04

C33 2.295 1
s

D3i 2.301e04 -2.298e05 -5.518e04

C44 2.554 1
s

D4i -3.271e05 -1.375e05 4.226e05

Table 4.3: Parameters Caa and Bai for the 2D poroelastic medium with two unconnected
fractures for N = 4 including two manually chosen constant pressure modes p1(x) and p2(x)
defined according to Eq. (4.56). Hereby, ˆ̄ε = [ε̄11, ε̄12, ε̄22]

T .

Executing macroscopic numerical stress-relaxation experiments under axial (ε̄11 = 0.01,
ε̄12 = ε̄22 = 0) and, respectively, shear loading (ε̄12 = 0.01, ε̄11 = ε̄22 = 0), we observe the
temporal evolution of the internal variables as shown in Figs. 4.7 and 4.8 for the connected
case and in Fig. 4.9 for the unconnected case. As seen in Section 3.5 we find a strongly
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Figure 4.7: Connected fractures: Temporal evolution of the internal variables ξa(t) during the
stress relaxation experiment under the macroscopic loading a) ε̄11 = 0.01, ε̄12 = ε̄22 = 0, b)
ε̄12 = 0.01, ε̄11 = ε̄22 = 0. For visualization reasons the mode a = 1 is skipped.

coupled evolution of the pressure modes controlled by ξa(t). By contrast, the internal
variables χa(t) evolve in a completely decoupled fashion. One additional straightforward
finding is that, for both SVE under investigation, the sensitivity of the particular internal
variables to the kind of external loading is significant. For example, modes a = 2, 5
(green and blue curves in Fig. 4.8) are active in particular under shear deformation, see
also Tab. 4.2. However, we do not observe an exclusive activity of any pressure mode
under axial or shear deformation, only. Thus, it is not possible to clearly assign the
internal variables, for example, to an apparent volumetric or deviatoric viscosity.

After having discussed the modal basis of the SVE under investigation we now validate
the reduced order model in comparison to fully resolved SVE investigations. We, there-
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Figure 4.8: Connected fractures: Temporal evolution of the internal variables χa(t) during
the stress relaxation experiment under the macroscopic loading a) ε̄11 = 0.01, ε̄12 = ε̄22 = 0, b)
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Figure 4.9: Unconnected fractures: Temporal evolution of the internal variables χa(t) during
the stress relaxation experiment under the macroscopic loading a) ε̄11 = 0.01, ε̄12 = ε̄22 = 0, b)
ε̄12 = 0.01, ε̄11 = ε̄22 = 0.

fore, use the data for the macroscopic stress-relaxation experiments introduced above
(ε̄11 = 0.01, ε̄12 = ε̄22 = 0 and ε̄12 = 0.01, ε̄11 = ε̄22 = 0). The homogenized stress
response is given in Figs. 4.10 and 4.11. Hereby, the stress contribution of the dry solid
frame is ignored resulting in σ̄p

ij(t) =
∑N

a=1 ξa(t) 〈σa〉✷ ij. Even for these very simple SVE,
particularly for the connected case, we observe a very complex relaxation behaviour with
apparent viscous contributions to all components of the macroscopic stress tensor. We
find that the stress relaxation properties of the unconnected case are very small compared
to the connected case. In both cases, the reduced order model and the identified viscous
parameters given in Tabs. 4.2 and 4.3 predict the validation experiments with high accu-
racy. We expected that, if necessary, the small deviations at high frequencies in Fig. 4.10
b) could be eliminated by a further extension of the modal basis.
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Figure 4.10: Connected fractures: Temporal evolution of the stresses σ̄p
ij(t) =

∑N
a=1 〈σa〉✷ ij

during the stress relaxation experiment under the macroscopic loading a) ε̄11 = 0.01, ε̄12 =
ε̄22 = 0, b) ε̄12 = 0.01, ε̄11 = ε̄22 = 0.
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Figure 4.11: Unconnected fractures: Temporal evolution of the stresses σ̄p
✷ ij(t) =

∑N
a=1 〈σa〉ij

during the stress relaxation experiment under the macroscopic loading a) ε̄11 = 0.01, ε̄12 =
ε̄22 = 0, b) ε̄12 = 0.01, ε̄11 = ε̄22 = 0.

A hybrid-dimensional approach

As we have already discussed above, the modeling approach presented in Section 4.1
bears a severe deficiency: The computer simulation of complex fracture networks with
high aspect ratios requires considerable numerical efforts and is, therefore, restricted to
rather artificially small SVE. In the upcoming section we shall overcome this deficiency
by considering the fractures to be open in a mechanical as well as in a hydraulic meaning.
Hence, the fractures are understood as fluid-saturated conduits (φ = 1) without any
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solid-phase momentum exchange between the fracture surfaces. Moreover, we assume the
fractures to exhibit large aspect ratios and, therefore, we reduce the spacial dimension of
the fracture as proposed by Vinci et al. [132, 133, 134]. Depending on the properties of
the rock matrix material (permeable, impermeable) several diffusion mechanisms are to
be taken into account, see Fig. 4.1: First, pressure diffusion along the fractures. Second,
mass exchange between intersecting fractures. Third, pressure diffusion in the background
medium. Fourth, leak-off of pore fluid from the fractures into the background matrix. The
latter mechanisms are to be ignored in the case of an impermeable rock matrix. In the
sequel we recall the hybrid-dimensional formulation on the meso-level before establishing
the reduced order computational homogenization framework for this case. Hereby, the
homogenization concept may be applied for the staggered solution scheme proposed by
Vinci et al. [132] as well as for the XFEM technique proposed by Watanabe et al. [137]
as long as all averaging rules are executed properly.

Meso-scale modeling

The mesoscopic RVE (volume V✷) is supposed to consist of a, possibly heterogeneous,
poroelastic background medium occupying the volume VB and a set of one or several
fractures occupying the volume VF , see Fig. 4.12. That is,

V✷ = VB ∪ VF under VB ∩ VF = ∅. (4.57)

The (external) surface of the SVE is described by

∂V✷ = ∂V e
B ∪ ∂V e

F under ∂V e
B ∩ ∂V e

F = ∅. (4.58)

In other words, the fractures may cross the RVE surface ∂V✷. The interface between the
background medium and the fractures is represented by ∂V i

B or ∂V i
F , respectively. It is

important to remark that the normal vector associated to ∂V i
B and, respectively, ∂V i

F has
to be understood as the particular outwards normal vector. Thus, the normal vector on
∂V i

B points from VB into VF and vice versa.

As mentioned above, the fractures are understood as fluid conduits with high aspect
ratios a ∼ 105. They are modeled in a reduced-dimensional format allowing for an efficient
description of the diffusion processes in the conduit. Hereby, any fluid motion in thickness
direction of the fractures is neglected. To this end, the fracture volume VF is reduced
to a plain interface ∂F and the fracture’s contribution to the external surface ∂V e

F is
substituted by the line ∂∂F . Consequently, this approach is called hybrid-dimensional.
We rewrite the volume averaging operator as

〈⋄〉
✷

= 〈⋄〉B + 〈⋄〉F :=
1

V✷

∫

VB

⋄ dv + 1

V✷

∫

∂F

⋄ τ da. (4.59)

It is important to remark that VF may comprise more than one single fracture. In par-
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Figure 4.12: Sketch of an exemplary periodic SVE including one fracture with long axis d < l
2

and fracture aperture τ(x, t) ≪ d in a) the standard representation and in b) the hybrid-
dimensional representation.

ticular, VF could describe a network of intersecting fractures. For simplicity reasons, we
introduce additionally the averaging operator

〈⋄〉∂F :=
1

V✷

∫

∂F

⋄ da. (4.60)

Poroelastic background medium

In the most general case, the background medium can be assumed to be fluid-saturated
and permeable. Thus, we apply Biot’s quasi-static equations for linear consolidation, see
Eqs. (2.127) and (2.128) with the constitutive relations given in Eqs. (2.131) – (2.133).
The boundary conditions for this coupled problem take the form

us = u∗
s ∀ x ∈ ∂u

DV
e
B, σ · n =

{

t∗ ∀ x ∈ ∂u
NV

e
B,

−pF n ∀ x ∈ ∂u
NV

i
B,

(4.61)

p =

{

p∗ ∀ x ∈ ∂p
DV

e
B,

pF ∀ x ∈ ∂p
DV

i
B,

φwf · n =

{

q∗ ∀ x ∈ ∂p
NV

e
B,

−qF ∀ x ∈ ∂V i
B.

(4.62)

Hereby, the pressure pF describes the fluid pressure in the fracture space acting on the rock
matrix via the fracture surface. The mass exchange between the matrix and the fracture
space contributing to the leak-off mechanism is considered in terms of the fracture outflux
qF which represents, therefore, an influx from the rock matrix’ view point. It is important
to remark that Eq. (4.62)1, namely pB = pF , implies continuity of the pore pressure p(x, t)
in V✷. Thus, the pore pressure in the poroelastic matrix VB as well as the fluid pressure
in the fractures VF is simply called p throughout the upcoming considerations. The fluid
pressure in the fracture space acts as a Dirichlet-type loading on the poroelastic continuity
equation (2.128) and, at the same time, as a surface normal stress (Neumann BC) on the
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balance of momentum Eq. (2.127). Vice versa, the displacement of the fracture surface
defines the change in the fracture’s aperture. The change in fluid content of the fracture
space is controlled by the outflux of pore fluid −qF from the background medium into
the fracture. Consequently, these dual quantities trigger the diffusion problem in the
fractures.

Fracture diffusion

In contrast to the biphasic background medium, the fractures are now treated as mono-
phasic fluid conduits exhibiting a high aspect ratio. We, therefore, balance the fluid
content in the fracture space VF stating that its rate must equal the mass exchange over
the internal and the external surface. We write

d

dt

∫

VF

ρfR dv = −
∫

∂V i
F

ρfR q da−
∫

∂V e
F

ρfR q da (4.63)

with the mass outflux q = wF · n over the internal surface ∂V i
F from the fractures VF

into the matrix VB or, respectively, the outflux over the external surface ∂V e
F . The frac-

ture seepage wF is defined below. Assuming meso-periodicity of the RVE, the latter
contribution related to the external boundary vanishes, more details will be given in the
sequel. In the absence of solid constituents, the effective conductivity of the fractures is
mainly driven by their aperture τ(x, t). It is important to remark that, as discussed in
[133], the aperture is assumed to be a rather smooth function representing the effective
hydraulic aperture smearing out the local surface roughness. Due to their high aspect
ratio, fractures are understood as planar 2D topologies in a 3D RVE (hybrid-dimensional
approach). The fracture plane is identified by the particular fracture normal vector nF ,
see Fig. 4.12. The fluid motion is assumed to take place in the fracture plane and, there-
fore, perpendicular to nF . Hereby, the fracture seepage velocity wF is, in the absence
of a solid phase, equal to the fluid velocity in the conduit relative to the velocity of the
fracture surfaces. Hence, we can write wF · nF = 0 ∀ x ∈ VF . For the in-plane seepage
we assume a quadratic velocity profile and compute wF according to the Poiseuille flow
assumptions, see [94],

wF = −τ 2(x, t)

12 ηfR
∇p. (4.64)

We now execute the dimensional reduction of the fracture topology. To this end, the
volume integral in Eq. (4.63) is transformed into a surface integral according to VF → ∂F
and dv = τ(x, t) da. Rewriting Eq. (4.63) we find

n∑

k=1

d

dt

∫

∂Fk

ρfR τ da = −
n∑

k=1

∫

∂Fk

ρfR (qL − q̂k) da. (4.65)
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If one considers more than one fracture, the dimension-reduced approach makes it nec-
essary to detach the fractures into a set of, possibly, intersecting fractures ∂Fk, k =
1, 2, . . . , n. We, therefore, define the mass supply ρfR q̂k to fracture k, k = 1, 2, . . . , n,
in order to represent the mass exchange between intersecting fractures within the reduced-
dimensional system. The supply is defined as

q̂k =

{

−q̂l, at intersections of fractures k and l,

0, elsewhere,
(4.66)

k = 1, 2, . . . , n, l = 1, 2, . . . , k − 1, k + 1, . . . , n. The mass supply must satisfy the
saturation condition

n∑

k=1

∫

∂Fk

ρfR q̂k da = 0. (4.67)

Moreover, we introduce the total leak-off of fracture k into the surrounding poroelastic
matrix as

qL := JφwfKF · nF (4.68)

with the fracture jump operator J⋄KF (x) := ⋄(x+) − ⋄(x−) for all x ∈ ∂F , x+ ∈ ∂V i,+
F

and x− ∈ ∂V i,−
F , see Fig. 4.13. The mass exchange (leak-off) between the fracture and
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F .

the surrounding medium is given by the Darcy velocity φwf in positive nF -direction in
the surrounding matrix. The fracture jump operator is also used to define the fracture
aperture in the deformed configuration as

τ(x, t) = τ0(x) + JusKF (x, t) · nF . (4.69)

A visualization of the coupling mechanisms between the fracture and the surrounding
matrix is given in Fig. 4.14.

We now transform the global version of the mass balance for fracture k into its local
representation. For this purpose, we have to exchange the order of differentiation and
integration on the left-hand side of Eq. (4.65). Hence, we transport the surface element



92 4. Viscoelastic substitute models for fluid-saturated fractured media

PSfrag repla
ements

nF

ττ0

qLus

�uid 
onduit

ba
kground ro
k

initial fra
ture surfa
e t = 0


urrent fra
ture surfa
e t > 0

Figure 4.14: Interactions of the fracture with its environment.

da described in the current configuration into the reference configuration by

da = n · n da
︸︷︷︸

=da

= J n · FT−1
︸ ︷︷ ︸

:=n0

· dA = J dA (4.70)

with the deformation gradient F, the Jacobian J = detF as well as the transformation of
the surface normal vector n = F · n0. Thus, the left-hand side of Eq. (4.65) is rewritten
for fracture k as

d

dt

∫

∂Fk

ρfR τ da =

∫

∂Fk

d

dt
(ρfR τ J) dA

=

∫

∂Fk

[
d

dt
(ρfR τ) J + ρfR τ (J ∇x ·wF )

︸ ︷︷ ︸

:= d
dt

J

]

dA

=

∫

∂Fk

[
d

dt
(ρfR τ) + ρfR τ ∇x ·wF

]

da. (4.71)

Localization of Eq. (4.65) using Eq. (4.71) and the material time derivative results in

n∑

k=1

[
(ρfR τ)• +∇x(ρ

fR τ) ·wF + ρfR τ ∇x ·wF

]
= −

n∑

k=1

ρfR (qL − q̂k). (4.72)

Comparing this result to the general form of a partial balance of mass in the context of
the Mixture Theory, the right-hand side can be interpreted as a mass production term

ρ̂F = −1

τ

n∑

k=1

ρfR (qL − q̂k). (4.73)
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Making use of the identity

ρ̇fR =
∂ρfR

∂p
ṗ := ρfR

1

Kf
ṗ, (4.74)

inserting Poiseuille flow Eq. (4.64), assuming vf = wF and factoring out ρfR τ we find
for fracture ∂Fk, k = 1, 2, . . . , n,

∇x ·wF − τ

12 ηfR
∇xτ ·∇xp

︸ ︷︷ ︸

convection

− τ 2

12Kf ηfR
∇xp ·∇xp

︸ ︷︷ ︸

nonlinear

+
ṗ

KF
= − τ̇

τ
− 1

τ
(qL − q̂k)

︸ ︷︷ ︸

coupling

(4.75)

∀ x ∈ ∂Fk. Since the considered diffusion processes are investigated in view of wave
propagation applications, a geometrically linear setting is chosen. Consequently, the con-
vection contribution in Eq. (4.75) is ignored. Moreover, it has been shown by Vinci et
al. [133] that the contribution depending on (∇xp)

2 is negligible for fractures with a high
aspect ratio, that is for apertures τ(x) describing long and flat fractures. Thus, we find
the condensed linear diffusion equation for fracture k as

∇ ·wF + Φ̇F = 0, k = 1, 2, . . . , n, ∀x ∈ ∂Fk, (4.76)

with the rate of the storage function Φ̇F describing the change in the fluid content of the
fracture

Φ̇F =
ṗ

Kf
+

τ̇

τ0
+

1

τ0
(qL − q̂k), (4.77)

and with the initial aperture τ0 := τ(t = 0). The leak-off at the fracture tips is suppressed.
Thus, the boundary conditions read

wF · n =

{

q∗, ∀x ∈ ∂∂F,

0, ∀x at fracture tips.
(4.78)

Eq. (4.76) together with Biot equations for the matrix material Eqs. (2.127) and (2.128)
represent the system of coupled PDE to be solved on the fracture interfaces or, respec-
tively, in the matrix volume. For our numerical implementation, we use the staggered
scheme proposed by Vinci et al. [132, 133] for an alternating incremental solution of the
matrix and the interface problem. Alternatively, we would like to refer again to the XFEM
technique proposed by Watanabe et al. [137].

Computational homogenization

As in the sections above it is our goal to substitute the heterogeneous hybrid-dimensional
RVE by a viscoelastic substitute. That is, we assume locality of pressure diffusion, and
the fluid content of the RVE may be redistributed but remains constant. Moreover, we
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assume the RVE to be periodic and, therefore, allow for periodic fluctuations of the solid-
phase displacement field us as well as the pore pressure field p. Thus, the strong form of
the homogenization problem is established as

JusK✷ = ε̄ · JxK✷, t+ + t− = 0

JpK✷ = 0, q+ + q− = 0

}

∀ x ∈ ∂V e
B, (4.79)

JpK✷ = 0, q+ + q− = 0 ∀ x ∈ ∂∂Fk , (4.80)

k = 1, 2, . . . , n. Altogether, the system undergoes a kinematic loading that depends lin-
early on the macroscopic strain ε̄. Before we derive Hill’s principle of macro-homogeneity,
we first have to prove that the boundary conditions Eqs. (4.79) and (4.80) are kinemati-
cally admissible for the hybrid-dimensional case. We, therefore, insert the periodic pres-
sure conditions Eqs. (4.79)2 and (4.80) into the principle of local redistribution processes.
In other words, we have to prove that the boundary conditions satisfy the conservation of
fluid content within the mesoscopic RVE. We compute the net outflux of pore fluid over
the surface ∂V✷ under periodic boundary conditions as

〈∇ · (φwf)〉B + 〈∇ ·wF 〉F =
1

V✷






∫

∂V e
B

φwf · n da +

∫

∂V i
B

φwf · n da

+

n∑

k=1

∫

∂Fk

qL da+

n∑

k=1

∫

∂∂Fk

wF · n τ ds





=
1

V✷






∫

∂V
e,+
B

(q+ + q−) da+

n∑

k=1

∫

∂∂F+
k

(q+ + q−) da






= 0. (4.81)

Thus, we have proven periodic boundary conditions to satisfy the conservation of fluid
mass in the given hybrid-dimensional formulation.

It is important to remark that the averaging rule for the macroscopic strain has to take
into account the cavity strain in the, from the viewpoint of the solid phase, ”empty”
fracture, see [95]. The overall strain ε̄ is, therefore, related to

ε̄ =
1

V✷

∫

∂V
e,+
B

(JusK✷ ⊗ n)sym da. (4.82)
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Hence, we apply the Gauss integration rule and compute

ε̄ = 〈εs〉B +
1

V✷

∫

∂F

(JusKF ⊗ nF )
sym da

︸ ︷︷ ︸

:=ε̄
c
s

(4.83)

with the cavity strain ε̄cs.

Finally, the macroscopic stress response computes as

σ̄ = 〈σ〉B − 〈p τ0〉∂F I. (4.84)

Hereby, the macroscopic stress σ̄ is computed as the average of the mesoscopic total stress
including the fluid pressure in the poroelastic matrix as well as in the fracture space.

With this knowledge, we are able to compute numerical simulations on the RVE-level.
The complex interactions within the coupled poroelastic-hybrid-dimensional meso-scale
model are summarized in a flow-chart, see Fig. 4.15.

solve for us, p
solve for p

σ ·∇ = 0

∇ · (φwf ) + Φ̇ = 0

under

under

Ju̇sK✷ = ˙̄ε · JxK✷

JpK✷ = 0

t
+ + t

− = 0

q+ + q− = 0

∇ ·wF +
τ̇

τ0
+

ṗ

Kf

+
1

τ0
(qL − q̂k) = 0

JpK✷ = 0

q+ + q− = 0

boundary condition

˙̄ε(t)

coupling

coupling

σ · n = −pF n,

p = pF

τ = τ0 + JusKF · nF

qL = Jφwf KF · nF

initial condition

us(t0), p(t0)

Figure 4.15: Staggered solution scheme for the hybrid-dimensional model.

In analogy to the previous sections, we bring the balances Eqs. (2.127) and (2.128) and
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(4.76) into their weak form using the variational format presented in [75]. Hence, we
seek solutions in the trial spaces UB, PB and P∂F of admissible displacements and pore
pressure fields that are sufficiently regular in VB and ∂F , respectively. We furthermore
introduce the corresponding trial spaces of self-equilibrated fluxes TB, WB and W∂F that
are sufficiently regular on ∂V e,+

B and ∂∂F+, respectively. We write the equations for
finding us, p, t, q ∈ UB × (PB × P∂F )× TB × (WB ×W∂F ) as

a
u(us, δu) + b

u(p, δu)− c
u(t, δu)− d

u(p, δu) = 0, (4.85)

−a
p,B(p, δp) + b

p,B(u̇s, δp) +m
p,B(ṗ, δp) + c

p,B(q, δp)

+d
p,B(p, δp) = 0, (4.86)

−a
p,F (p, δp) + b

p,F (u̇s, δp) +m
p,F (ṗ, δp) + c

p,F (q, δp)

+d
p,F (p, δp) + e

p,F (q̂k, δp) = 0, (4.87)

k = 1, 2, . . . , n under

−c
u(δt, us) = −c

u(δt, ε̄ · x), (4.88)

c
p,B(δq, p) = 0, (4.89)

c
p,F (δq, p) = 0, (4.90)

which hold for any admissible test functions δu, δp, δt, δq ∈ UB × (PB × P∂F ) × TB ×
(WB ×W∂F ). Here, we used the abbreviations

a
u(us, δu) =

〈
σeff(εs(us)) : (δu⊗∇)

〉

B
, (4.91)

b
u(p, δu) = 〈σp(p) : (δu⊗∇)〉B , (4.92)

c
u(t, us) =

1

V✷

∫

∂V
e,+
B

t · JusK✷ da, (4.93)

c
u(t, ε̄ · x) =

1

V✷

∫

∂V
e,+
B

t⊗ JxK✷ da : ε̄, (4.94)

d
u(p, δu) = −

n∑

k=1

1

V✷

∫

∂Fk

p JδuKF · nF da, (4.95)
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and

a
p,B(p, δp) = 〈φwf(∇p) ·∇δp〉

B
, a

p,F (p, δp) =

n∑

k=1

〈τ0wF (∇p) ·∇δp〉∂Fk
, (4.96)

b
p,B(u̇s, δp) = 〈α∇ · u̇s δp〉B , b

p,F (u̇s, δp) =

n∑

k=1

〈Ju̇sKF · nF δp〉∂Fk
, (4.97)

m
p,B(ṗ, δp) =

〈
1

M
ṗ δp

〉

B

, m
p,F (ṗ, δp) =

n∑

k=1

〈

τ0
ṗ

Kf
δp

〉

∂Fk

(4.98)

c
p,B(q, p) =

1

V✷

∫

∂V
e,+
B

q JpK✷ da, c
p,F (q, p) =

n∑

k=1

1

V✷

∫

∂∂F+
k

q JpK✷ τ0 ds, (4.99)

d
p,B(p, δp) = −

n∑

k=1

1

V✷

〈qL(p) δp〉∂Fk
, d

p,F (p, δp) =
n∑

k=1

〈qL(p) δp〉∂Fk
, (4.100)

e
p,F (q̂k, δp) = −

n∑

k=1

〈q̂k δp〉∂Fk
(4.101)

with d
p,B + d

p,F = 0 and
∑n

k=1 e
p,F (q̂k, δp) = 0. Due to the continuity of p(x, t), we may

combine the diffusion Eq. (4.86) and the k = 1, 2, . . . , n Eqs. (4.87), and we write

−a
p(p, δp) + b

p(u̇s, δp) +m
p(ṗ, δp) + c

p(q, δp) = 0, (4.102)

c
p(δq, p) = 0, (4.103)

with

a
p(p, δp) = a

p,B(p, δp) + a
p,F (p, δp), (4.104)

b
p(u̇s, δp) = b

p,B(u̇s, δp) + b
p,F (u̇s, δp), (4.105)

m
p(ṗ, δp) = m

p,B(ṗ, δp) +m
p,F (ṗ, δp), (4.106)

c
p(q, p) = c

p,B(q, p) + c
p,F (q, p), (4.107)

which holds for any admissible test functions δp, δq ∈ (PB × PF )× (WB ×WF ).

Finally, we derive Hill’s principle of macro-homogeneity. Therefore, we combine the right-
hand sides of Eqs. (4.85) and (4.102) with the admissible choice δu = u̇s and δp = α p,
∀ x ∈ VB, as well as δp = p, ∀ x ∈ ∂F . Hence, we can write

σ̄ : ˙̄ε =
1

V✷

∫

∂V
e,+
B

t · Ju̇sK✷ da− 1

V✷

∫

∂V
e,+
B

Jα pK✷ q da−
n∑

k=1

1

V✷

∫

∂∂F+
k

JpK✷ q τ0 ds. (4.108)
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In the above stated case of periodic boundary conditions, the macro-homogeneity condi-
tion degenerates and we find

σ̄ : ˙̄ε =
1

V✷

∫

∂V
e,+
B

(t⊗ JxK✷)
sym da : ˙̄ε. (4.109)

Obviously, the overall medium is, as desired, again identified as a Cauchy-type material.

Alternatively, Hill’s principle may also be derived from the energy balance of the hybrid-
dimensional model. We, therefore, write

σ̄ : ˙̄ε =
〈
σs : ε̇s + σf : ε̇f − p̂f ·wf

〉

B
+

n∑

k=1

〈[
σF : ε̇F − p̂F ·wF

]
τ0
〉

∂Fk

=
〈
(σs + σf) : ε̇s + σf : (ε̇f − ε̇s)− p̂f ·wf

〉

B

+
n∑

k=1

〈[
σF : ε̇F − p̂F ·wF

]
τ0
〉

∂Fk
(4.110)

Here, we use the momentum supply p̂F . It represents, without further specification, the
viscous interaction forces between the fluid and the fracture surfaces. Energy exchange
terms are cancelling out and, therefore, neglected. Taking into account the fracture’s
in-plane momentum balance

σF ·∇ = −p̂F , (4.111)

and inserting the relations σf = −α p I as well as σF = −p I we find again

σ̄ : ˙̄ε = 〈σ : ε̇s − φwf ·∇(α p)− α p∇ · (φwf)〉B

−
n∑

k=1

〈[p∇ ·wF +∇p ·wF ] τ0〉∂Fk
(4.112)

=
1

V✷

∫

∂V
e,+
B

t · Ju̇sK✷ da− 1

V✷

∫

∂V
e,+
B

JαpK✷ q da−
n∑

k=1

1

V✷

∫

∂∂Fk

JpK✷ q τ0 ds. (4.113)

Hence, Eqs. (4.108) and (4.113) are identical.

We are now able to compute the overall apparent material properties based on mesoscopic
simulations in a FE2-sense. In the following, we will extend the reduced order modeling
approach, as presented in the previous sections, in order to identify the apparent consti-
tutive properties during a reasonable amount of offline precomputations.
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Approximation of the mesoscopic field quantities

In the sequel, the diffusion Eq. (4.102) serves as the starting point for the reduced order
identification of the overall viscoelastic substitute model. To this end, we introduce a
series expansion of the pressure field p(x, t) in the domains VB and VF using the spa-
tial pressure modes pa(x) and the time-dependent mode activity parameters ξa(t). For
practical applications, we assume the modal basis to be reduced to a finite number of N
elements and write

p(x, t) ≈
N∑

a=1

ξa(t) pa(x) ∀ x ∈ V✷. (4.114)

Hereby, the pressure modes pa are assumed to form a linearly independent, reduced basis
of the space PB × PF of scalar functions comprising all possible pressure distributions
in V✷. Hence, the identity

∑N

a=1 ξa pa = 0 is satisfied by the trivial solutions ξa = 0,
a = 1, 2, . . . , N , only. The pressure modes are generated using the Proper Orthogonal
Decomposition technique (POD). In the hybrid-dimensional approach, the POD is exe-
cuted separately for the different topologies included in the model (background medium,
reduced-dimensional fractures). Thus, the N basis modes consist of NB modes describing
the background state and NF modes describing the fracture state with NB + NF = N .
The pressure modes are, therefore, generated in a way that it holds

pa =

{

pa ∀ x ∈ VB

0 ∀ x ∈ VF

}

, a = 1, 2, . . . , NB, (4.115)

pa =

{

0 ∀ x ∈ VB

pa ∀ x ∈ VF

}

, a = NB + 1, NB + 2, . . . , N. (4.116)

The mode activity parameters ξa represent the macroscopic internal variables of the vis-
coelastic substitute medium. Thus, the current state of the poroelastic medium on the
meso-level at the time t is controlled by the overall strain ε̄(t) and by the internal variables
ξa(t), a = 1, 2, . . . , N .

We now decompose further mesoscopic fields accordingly and write

εs(x, ε̄(t), ξ(t)) = E0(x) : ε̄(t) +
N∑

a=1

ξa(t) εa(x), (4.117)

us(x, ε̄(t), ξ(t)) = U0(x) : ε̄(t) +

N∑

a=1

ξa(t)ua(x), (4.118)

σ(x, ε̄(t), ξ(t)) = C(x) : E0(x) : ε̄(t) +

N∑

a=1

ξa(t)σa(x), (4.119)
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which hold ∀ x ∈ VB, with the 4th rank strain and the 3rd rank displacement localization
tensor

E0(x) =
6∑

i=1

εi(x)⊗Bi, U0(x) =
6∑

i=1

ui(x)⊗Bi, (4.120)

respectively, and the stiffness tensor C(x) of the dry frame. Hereby, the tensors Bi,
i = 1, 2, . . . , 6, represent the irreducible orthonormal basis of the symmetric strain tensor
ε̄ with εi = (ui ⊗∇)sym. Moreover, we have used the mode-dependent fields εa, ua and
σa = C : εa−α pa I. All resulting fields on the meso-level depend linearly on the prescribed
overall strain ε̄ and the particular mode activity coefficients ξa, a = 1, 2, . . . , N .

The contributions associated with the localization tensors represent the instantaneous
response of the dry linear-elastic solid skeleton under kinematic loading and zero mode
activity, that is ξa = 0, a = 1, 2, . . . , N . We, therefore, solve for ui and ti, i = 1, 2, . . . , 6,
from

a
u(ui, δu)− c

u(ti, δu) = 0, (4.121)

−c
u(δt, ui) = −c

u(δt, Bi · x), (4.122)

for all admissible test functions δu, δt ∈ UB × TB.

The missing fields εa, ua can now be computed by solving N linear-elastic eigenstress
problems corresponding to the unit loading cases

ξa = 1 ∧ ξb = 0 ∀
{

a = 1, 2, . . . , N,

b = 1, 2, . . . , a− 1, a+ 1, . . . , N,
(4.123)

whilst ε̄ = 0. Therefore, pa is known and we solve

a
u(ua, δu)− c

u(ta, δu) = −b
u(pa, δu)− d

u(pa, δu), (4.124)

c
u(δt, ua) = 0 (4.125)

for ua and ta with the test functions δu, δt ∈ UB × TB.

It is important to remark that the mesoscopic fields defined in Eqs. (4.117) – (4.119) can
be evaluated in VB, only. Equivalently, the weak forms Eqs. (4.121) and (4.124) are solved
in VB. However, the macroscopic stress σ̄ comprises the continuous pressure field p(x, t),
x ∈ V✷ = VB ∪ VF , and has to be computed according to Eq. (4.84) as

σ̄ =
〈
C : E0

〉

B
: ε̄ +

N∑

a=1

ξa

[

〈σa〉B −
n∑

k=1

〈pa τ0〉∂Fk
I

]

. (4.126)
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Evolution of the internal variables

The procedure proposed in section 3.3 is now enriched by the fracture diffusion. We, there-
fore, insert the decompositions Eqs. (4.114)–(4.119) into the weak form of the diffusion
Eq. (4.102) and find

N∑

a, b=1

δξa

[

−a
p (pb, pa) ξb + [bp (ub, pa) +m

p (pb, pa)] ξ̇b

]

= −
N∑

a=1

δξa b
p
(
U0 : ˙̄ε, pa

)
. (4.127)

For a more compact notation, we introduce, as usual, the two vector representations
ξ̂T = [ξ1, ξ2, . . . , ξN ]

T and ˆ̄εT = [ε̄11, ε̄22, ε̄33, ε̄23, ε̄13, ε̄12]
T and write

δξ̂T
[

Â ξ̂ + M̂ ˙̂
ξ
]

= δξ̂T B̂ ˙̄̂ε. (4.128)

Hereby, the matrix components for a, b = 1, 2, . . . , N and for i = 1, 2, . . . , 6 read

Aab := −a
p(pb, pa), (4.129)

Bai := −b
p(ui, pa), (4.130)

Mab := b
p(ub, pa) +m

p(pb, pa). (4.131)

From Eqs. (4.85) and (4.86) we know

b
p,B(ub, pa) = −b

u(pa, ub). (4.132)

From Eq. (4.124) we can, moreover, derive

−b
u(pa, ub) = a

u(ua, ub) + d
u(pa, ub) (4.133)

⇔ b
p,B(ub, pa) + b

p,F (ub, pa) = a
u(ua, ub) + d

u(pa, ub) + b
p,F (ub, pa)

︸ ︷︷ ︸

=0

. (4.134)

Thus, it holds

b
p(ub, pa) = a

u(ub, ua) (4.135)

and we write for the matrix components, for a, b = 1, 2, . . . , N , and, for i = 1, 2, . . . , 6,

Aab =

〈
ks

ηfR
∇pa ·∇pb

〉

B

+

n∑

k=1

〈
τ 30

12 ηfR
∇pa ·∇pb

〉

∂Fk

, (4.136)
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Bai = −
〈
αE0

i pa
〉

B
−

n∑

k=1

〈
T 0
i pa

〉

∂Fk
, (4.137)

Mab = 〈εb : C : εa〉B +

〈
1

M
pa pb

〉

B

+

n∑

k=1

〈 τ0
Kf

pa pb

〉

∂Fk

. (4.138)

Hereby, Ê0 is the vector representation of the left trace I : E0 of the strain localization
tensor. Similarly, T̂ 0 describes the vector representation of the 2nd rank tensor nF · JU0KF
and is, therefore, related to the fracture aperture under the external loading case ε̄ = Bi,
i = 1, 2, . . . , 6. Since the test functions δξ̂ are arbitrary, the evolution equation for the
mode activity coefficients can be derived from Eq. (4.128) as

M̂ ˙̂
ξ + Â ξ̂ = B̂ ˙̂ε, ξ̂(t = 0) = 0. (4.139)

Finally, we execute the basis shift {ξ̂} → {χ̂ = R̂−1 ξ̂}, whereby R̂ represents the matrix of
right eigenvectors of the generalized eigenvalue problem for Â and M̂ with their spectral
counterparts Â∗ = R̂T Â R̂ and M̂∗ = R̂T M̂ R̂. This leads to the decoupled ODE
system of evolution equations for the overall viscoelastic substitute medium written as

˙̂χ+ Ĉ χ̂ = D̂ ˙̄̂ε, χ̂(t = 0) = 0. (4.140)

The diagonal matrix Ĉ := (M̂∗)−1 Â∗ contains the inverse relaxation times of the par-
ticular viscous variables. The matrix D̂ := (M̂∗)−1 R̂T B̂ represents the sensitivity of

particular viscous modes for the macroscopic loading ˙̄̂ε. Hence, the structure of the effec-
tive evolution law remains completely unchanged.

Study: Viscoelastic substitute model for a simple hybrid-

dimensional fracture network

In the upcoming section, we would like to validate our reduced order modeling approach
for the hybrid-dimensional case. As discussed above, the full formulation includes diffusion
processes in the fracture space as well as in the background medium. Moreover, fractures
and rock matrix may exchange pore fluid in terms of the leak-off mechanism. For the sake
of simplicity, we restrict our study to the case of a impermeable, crystalline rock matrix
with water-saturated fractures. Hence, the background diffusion as well as the leak-
off are ignored. Consequently, the computational homogenization and order reduction
formulations can be simplified accordingly. More precisely, the coefficient matrices in
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Eqs. (4.136) and (4.138) can be rewritten as

Aab =
n∑

k=1

〈
τ 30

12 ηfR
∇pa ·∇pb

〉

∂Fk

, (4.141)

Bai = −
n∑

k=1

〈
T 0
i pa

〉

∂Fk
, (4.142)

Mab = 〈εb : C : εa〉B +

n∑

k=1

〈 τ0
Kf

pa pb

〉

∂Fk

. (4.143)

The evolution laws given in Eqs. (4.139) and (4.140) hold accordingly and the macroscopic
stress response computes as

σ̄ =
〈
C : E0

〉

B
: ε̄ +

N∑

a=1

ξa

[

〈σa〉B −
n∑

k=1

〈pa τ0〉∂Fk
I

]

. (4.144)

Here, σa represents, as usual, the elastic stress of the dry skeleton without any pressure
contribution.

In analogy to Section 4.2 we now intend to investigate a 2D SVE consisting of two water-
saturated intersecting fractures. The chosen material parameters are given in Tab. 4.4,
the SVE under investigation is shown in Fig. 4.16. Since the particular models for the

rock matrix background fractures
G [GPa] 34.0 –
K [GPa] 32.0 –
Kf [GPa] – 2.4
ηfR [mPa s] – 1

Table 4.4: Linear-elastic material parameters for the rock matrix and water-saturated conduit,
see Fig. 4.16.

fracture diffusion (poroelastic versus hybrid-dimensional) are fundamentally different, we
restrict ourselves to a qualitative comparison of the results. In the hybrid-dimensional
case, we choose an aspect ratio a = a1

a2
= 1e+05 for both fractures. The fracture geometry,

that is the initial fracture aperture τ0(x), is varied, and different rhombic, rectangular and
elliptic shapes are investigated, see Fig. 4.16 b).

It is important to remark that the fracture aperture τ0 is used as a material constant in the
diffusion relation Eq. (4.76) and, respectively, its weak form Eq. (4.87). It is not included
as a geometrical feature in the Finite Element mesh for solving the elastic problem of the
rock matrix. In fact, the FE nodes on opposite fracture surfaces take identical positions,
but they are not connected. Due to the high aspect ratio of the fractures this detail is
not visible in Fig. 4.17. As mentioned above, the contact problem is ignored in view of
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Figure 4.16: a) SVE with two intersecting fractures, l = 10m, a1 = 8m. b) Rhombic,
rectangular and elliptic fracture geometries with aspect ratio a = a1

a2
= 1e+05.

the application of the approach for the measurement of seismic attenuation. Generally,
it can be stated that the influence of the fracture geometry on the stress response of
the dry solid frame in the background medium at such high aspect ratios as a = 1e+05
can be ignored. This allows for a simplified mesh construction and bears the immense
advantage of a resulting FE mesh at low numerical cost, in particular at the fracture
tips, see Fig. 4.17. This reduces the numerical efforts significantly in comparison to the
meshing of, for example, true ellipses at such a high aspect ratio. In contrast to the
aperture insensitivity of the rock matrix, the fracture diffusion strongly depends on the
initial aperture τ0 according to the definition of the Poiseuille flow given in Eq. (4.64).

a) b)

Figure 4.17: a) Full FE mesh for the rock matrix, b) detail of the triangular FE mesh at a
fracture tip. The fracture lines are highlighted with red color. The hybrid dimensional approach
does not require any mesh refinement at the fracture tip.

We now investigate the apparent viscoelastic properties of the simple hybrid-dimensional
fracture network shown in Fig. 4.16 a). The viscous part of the overall stress response
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is driven by the diffusion processes in the fractures and by the mass exchange between
the fractures. For a better understanding of theses processes we have plotted in Fig. 4.17
the pressure gradient observed in Fracture 2 at different times during a strain-controlled
consolidation test with the external loading ˆ̄ε = [0;−0.01]T . Hereby, Fig. 4.17 a) refers
to the poroelastic representation of the fracture, Fig. 4.17 b) to the hybrid-dimensional
formulation. In both cases, we observe as a first process a redistribution of the pore
fluid in the fracture itself. This process is driven by the instantaneous change of the
fracture’s aperture due to the external loading and results in a significant change of the
pressure profile close to the fracture tips during the effective relaxation process. This
effect is even more pronounced in the hybrid-dimensional case, see the development from
the red over the green towards the blue curve in Fig. 4.17 b). In the second phase of
the experiment, the redistribution of pore fluid takes place between the fractures. This
process leads to a more or less self-similar decay of the pressure gradients over the time t
until the system reaches the equilibrated state (∇p = 0). It is important to remark that
the mass exchange q̂k is directly related to the jump observed in the pressure gradient in
the hybrid-dimensional case.
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Figure 4.18: Temporal evolution of the pressure gradient. We plot here the component p,1 in
fracture direction in the horizontal Fracture 2 (elliptic aperture), see Fig. 4.16. a) Poroelastic
case, b) hybrid-dimensional case.

Executing the order reduction algorithm we are able to identify the properties of the
viscoelastic substitute medium. The matrix entries for the evolution of the internal vari-
ables χa are given in Tab. 4.5 for the different fracture apertures (rhombic, rectangular,
elliptic). In comparison to the poroelastic representation of the fracture space discussed
in Section 4.4 and the related relaxation times given in Tab. 4.2 (connected case), we
find significant differences: First, relaxation times in the hybrid-dimensional example are
much larger than in the poroelastic case. This is due to the fact that, obviously, the
effective permeabilities of the fractures in these two cases are not comparable. Second,
and more eminent, we observe that the relaxation times in the poroelastic case are spread
over 2 orders of magnitude. By contrast, the relaxation times range within 1 order of
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a)

f 1e-06 i 1 2 3

C11 0 1
s

D1i -3.309e02 2.103e02 -5.340e02

C22 2.288e-02 1
s

D2i 1.567e05 -4.109e05 -1.368e05

C33 1.101e-03 1
s

D3i 7.393e04 -1.989e05 -8.315e04

C44 9.251e-03 1
s

D4i 1.645e05 -3.331e05 -1.577e05

b)

f 1e-06 i 1 2 3

C11 0 1
s

D1i 3.309e02 -2.103e02 5.340e02

C22 2.749e-01 1
s

D2i 3.584e05 -3.543e05 -3.554e05

C33 2.292e-02 1
s

D3i 2.283e05 -5.146e05 -2.282e05

c)

f 1e-06 i 1 2 3

C11 0 1
s

D1i 3.309e02 -2.103e02 5.340e02

C22 7.212e-02 1
s

D2i -2.069e05 1.124e04 1.992e05

C33 4.998e-03 1
s

D3i -4.911e04 1.131e05 4.913e04

Table 4.5: Parameters Caa and Bai for the 2D hybrid-dimensional medium with two connected
fractures for a) the rhombic aperture, b) the rectangular aperture and c) the elliptic aperture.
Hereby, ˆ̄ε = [ε̄11, ε̄12, ε̄22]

T .

magnitude in the hybrid-dimensional approach, see Tab. 4.5. This observation does not
depend on the fracture geometry. Consequently, the viscoelastic substitute model requires
7 internal variables in the poroelastic case, but only 3 to 4 internal variables are included
in the hybrid-dimensional case. We explain this discrepancy by the fact that the mass
transport in both models follows different presumptions. In the hybrid-dimensional ap-
proach, the seepage velocity is computed as an average over a quadratic velocity profile
in the conduit resulting in the Poiseuille rule for the averaged seepage velocity given in
Eq. (4.64). Hereby, no-slip boundary conditions are satisfied, see the schematic plot in
Fig. 4.19 b). Altogether, the Poiseuille velocity depends quadratically on the aperture
τ0(x). If the fracture is modeled as a poroelastic medium, the seepage properties change
completely. Whereas the velocity profile in the individual pore channels of the poroelastic
medium may be quadratic, the observed Darcy velocity in the average over all pore chan-
nels, hence, the mesoscopically observable seepage wf , is controlled by the mesoscopic
pressure gradient ∇p, only. The fracture aperture is not explicitly entering Darcy’s law.
In our meso-scale computations for the poroelastic fracture model we observe that the
pressure gradient and, therewith, the seepage wf and the Darcy velocity φwf in fracture
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Figure 4.19: Darcy velocity in the fluid-saturated fracture. a) Poroelastic fracture: We ob-
serve a Darcy velocity which is constant in thickness direction (leak-off ignored). b) Hybrid-
dimensional model: The Poiseuille flow assumes a quadratic velocity profile in thickness direction
including no-slip boundary conditions.

direction do not vary in thickness direction, see Fig. 4.19 a). Hence, the interaction be-
tween the initial aperture and the seepage velocity induces different diffusion processes
with a diverging band-with of the relaxation times in these two cases.

We now have a closer look how the fracture geometry influences the diffusive behaviour
in the hybrid-dimensional case. In Tab. 4.5 it can be seen that in particular the ellip-
tic aperture leads to rather long relaxation times compared to the rectangular aperture.
Moreover, we observe that the mode sensitivity D1i of the constant pressure mode is
identical for all investigated apertures. It is no surprise that the sensitivity for the axial
loadings D11 and D13 in e1- and e2-direction, respectively, exceeds the sensitivity for the
shear deformation. This can be explained by the fact that the volume change of the frac-
ture space and, therewith, the pressure increase is, in the given configuration, significantly
larger under axial loadings than under macroscopic shear deformation. However, we can
also find modes being active in particular under shear deformation, see for example D2i

and D4i for the rhombic aperture or D3i for the rectangular and the elliptic aperture.
Moreover, the diffusion processes of these modes are correlated to the largest relaxation
times.

We can use this data set to validate the reduced order model in comparison to the meso-
scopically resolved computations. We, therefore, execute stress relaxation experiments
under different loading cases for the different aperture assumptions (rhombic, rectangu-
lar, elliptic), see Figs. 4.20, 4.21 and 4.22. Throughout these computations, we achieve
a very good agreement between the reduced order prediction and the reference computa-
tions. As we have already discussed with regard to the particular relaxation times given
in Tab. 4.5, in particular the elliptic aperture geometry leads to relaxation times signifi-
cantly higher than for the rhombic or rectangular aperture geometry. However, the limit
values for the macroscopic stress response depending on the pore pressure field under
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Figure 4.20: Rhombic fracture aperture: Temporal evolution of the stresses σ̄p
ij(t) =

∑N
a=1[〈(σa)ij〉B −∑n

k=1 〈pa τ0〉∂Fk
I] during the stress relaxation experiment under the macro-

scopic loading a) ε̄11 = 0.01, ε̄12 = ε̄22 = 0, b) ε̄12 = 0.01, ε̄11 = ε̄22 = 0.
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Figure 4.21: Rectangular fracture aperture: Temporal evolution of the stresses σ̄p
ij(t) =

∑N
a=1[〈(σa)ij〉B −∑n

k=1 〈pa τ0〉∂Fk
I] during the stress relaxation experiment under the macro-

scopic loading a) ε̄11 = 0.01, ε̄12 = ε̄22 = 0, b) ε̄12 = 0.01, ε̄11 = ε̄22 = 0.

t → 0 and t → ∞ are identical. Since we do already now that the aperture geometry
does not influence the stress response of the dry solid skeleton at high aspect ratios, it
is clear that also the homogenized total stress does not depend on aperture geometry in
these limit cases.

In order to evaluate the apparent attenuation of the SVE under investigation we shift
the time domain results of the reduced order model into frequency domain. Without loss
of generality, we restrict our study to the attenuation observed for the effective elastic
parameter C̄11, see Fig. 4.23. Hereby, the generalized Voigt notation is used, see Eq. (3.16).
We find that the total amount of attenuation, expressed in terms of the inverse quality
factor 1

Q
is almost identical for the three different aperture geometries, see Fig. 4.23. This

finding can be understood as a consequence of the identical low- and high-frequency limits
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Figure 4.22: Elliptic fracture aperture: Temporal evolution of the stresses σ̄p
ij(t) =

∑N
a=1[〈(σa)ij〉B −∑n

k=1 〈pa τ0〉∂Fk
I] during the stress relaxation experiment under the macro-

scopic loading a) ε̄11 = 0.01, ε̄12 = ε̄22 = 0, b) ε̄12 = 0.01, ε̄11 = ε̄22 = 0.

in the observed stresses, see Figs. 4.20, 4.21 and 4.22 and, therewith, for the particular
storage moduli. We are, finally, able to quantify the deviations in the transition frequency
ωc (rhombic: ωc = 1.059e-2 1

s
, rectangular: ωc = 2.363e-2 1

s
, elliptic: ωc = 4.746e-3 1

s
).

This finding corresponds nicely to the identified inverse relaxation times of the effective
viscoelastic model given in Tab. 4.5.
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Figure 4.23: Apparent attenuation due to pressure diffusion in the hybrid-dimensional frac-
tures. The transition frequency depends on the chosen initial aperture.

Conclusions

Within this section, we have proposed two novel computational homogenization schemes
for pressure diffusion mechanisms in fractured poroelastic media. It is remarkable that, in
a broader sense, the consistent homogenization of the hybrid-dimensional model reduces
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the problem’s complexity in two ways: First, the fluid-saturated fractures are geometri-
cally reduced towards plain 2D topologies in a 3D environment. The approach is, there-
fore, called hybrid-dimensional. Only in-plane fluid motions and, respectively, pressure
diffusion, are taken into account. Rich interaction and coupling processes between the
fractures and the poroelastic matrix are established. The second reduction is that we
have successfully extended the order reduction method presented in Section 3.3 to this
highly complex meso-scale model. It is, however, important to remark that the type of
the overall viscoelastic substitute medium does not change and is still closely related to
the generalized Maxwell-Zener model. In other words, augmenting the poroelastic diffu-
sion problem with the additional diffusion mechanisms in the fracture space leads to the
identical type of viscoelastic evolution equation. This is an obvious consequence of the
identical structure of the diffusion equations Eqs. (4.86) and (4.87) used as the basis for
the reduced-order formulation in the hybrid-dimensional formulation. Thus, only a small
part of the physical information about the mesoscopic diffusion process is transported to
the effective scale, for example in terms of the relaxation times and the mode sensitivities.
Reversely, the predominant part of the mesoscopic information is lost and the macroscopic
observer is, therefore, blind for the processes occurring on the sub-scale. The pore pressure
diffusion represents a truly hidden, that is non-observable, process. However, even if the
inverse interpretation of macroscopically observed attenuation data is a priori excluded
in a homogenization approach, it is the eminent benefit of the proposed order reduction
that we are now able to derive the macroscopic internal variables in forward direction.



5
Poroviscoelasticity: Identification by

homogenization

So far, we have imposed locality of the fluid transport and the pressure diffusion, respec-
tively. Forcing conservation of fluid mass in the RVE allowed us to study the redistribution
processes on the meso-level and their impact on the overall material response. Hereby,
any macroscopic fluid flow or pressure diffusion has been a priori prohibited and the ob-
servable material on the large scale has been considered as a viscoelastic solid. The pore
fluid trapped in the RVE belongs, from a macroscopic viewpoint, to the effective solid
phase and redistribution is only active locally. In other words, the trapped pore fluid
may move inside the macroscopic material point, represented by the mesoscopic RVE.
In the following, we will introduce a further extension of the homogenization approach
and remove this restriction to local processes. Thus, we allow the macroscopic substitute
medium itself to be represented by a biphasic mixture. From a general viewpoint, this
extension requires two additional macroscopic processes. First, we have to introduce a
macroscopic pore pressure which allows us to pump pore fluid into or release pore fluid
from the RVE. With the above argumentation this means that the additional pore fluid
is demobilized and trapped in the RVE. It, therefore, becomes part of the effective solid
phase or is released and re-mobilized. Second, we introduce a macroscopic pressure gra-
dient which induces a macroscopic seepage. Hence, the fluid content in the RVE remains
constant, but the pore fluid may be pumped through the RVE. In any case, we have
to expect that redistribution processes of the pore fluid inside the RVE are stimulated.
As we have learned in the preceding sections, the viscous redistribution directly leads to
viscous contribution to the overall stress response. Hence, it is a priori obvious that a
poroelastic modeling of the overall substitute medium is insufficient and inappropriate. In
fact, the macroscopic model has to be enriched by a solid phase viscoelasticity. We call, in

– 111 –
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the sense of Coussy [26], the resulting medium an effective poroviscoelastic material and
aim to identify its effective material properties by computational homogenization. In the
upcoming sections, we restrict our considerations to heterogeneous poroelastic media on
the meso-level. In other words, the formulations chosen for the meso-scale are permeable,
and the hybrid-dimensional approach is, so far, not taken into account. However, im-
permeable zones and/or the hybrid-dimensional fracture diffusion could be incorporated
easily according to the propositions in the previous sections.

For the formulation of the poroelastic meso-level problem, we use Biot’s quasi-static equa-
tions of linear consolidation as derived in Section 2.2. Hence, the strong format of the
coupled PDE system, formulated with respect to the mesoscopic primary variables us and
p, reads

σ(εs(us), p) ·∇ = 0, ∀ x ∈ V✷, (5.1)

∇ · (φwf(p)) + Φ̇(us, p) = 0, ∀ x ∈ V✷. (5.2)

As before, the linear constitutive relations

σ = C : εs
︸ ︷︷ ︸

=:σeff (εs)

−α p I
︸ ︷︷ ︸

=:σp(p)

, (5.3)

φwf = − ks

ηfR
∇ p, (5.4)

Φ = φ+ α∇ · us +
p

M
, (5.5)

are used. All material parameters are defined in Table 2.3. In Section 3.1, we have,
for the poro-to-viscoelastic homogenization approach, proposed different choices for the
boundary loading by macroscopic quantities resulting in KUBC, SUBC and PBC for the
solid phase displacement field us and to UBC and PBC for the mesoscopic pore pressure
field p. However, any macroscopic pressure gradient is excluded in the case of a viscoelastic
substitute medium and the macroscopic pressure is, a priori, unknown.

By definition, a poroviscoelastic substitute medium involves macroscopic pressure gra-
dients, and the macroscopic pressure itself represents one of the macroscopic primary
variables. Hence, we have to redefine the mesoscopic boundary conditions for the hetero-
geneous poroelastic medium in the following. For now, we write the general formulation

us = u∗
s ∀ x ∈ ∂u

DV, σ · n = t∗ ∀ x ∈ ∂u
NV, (5.6)

p = p∗ ∀ x ∈ ∂p
DV, φwf · n = q∗ ∀ x ∈ ∂p

NV, (5.7)

with the outwards surface normal vector n, the mass outflux q = φwf ·n and the surface
traction t = σ ·n referring to the tensor of total stresses σ. In the sequel, the definitions
of the boundary conditions used for the poro-to-poroviscoelastic computational homoge-
nization scheme will be derived from an appropriately extended form of Hill’s principle of
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macro-homogeneity. We, therefore, adopt the formulation for the volume averaged stress
power of the biphasic meso-scale from Section 3.1 and write

〈
ρs ε̇s + ρf ε̇f

〉

✷
= 〈σ : ε̇s − (α p)∇ · (φwf)−∇(α p) · (φwf)〉✷ (5.8)

=
1

V✷

∫

∂V✷

u̇s · t da−
1

V✷

∫

∂V✷

αφ p q da, (5.9)

representing the right-hand side of the macro-homogeneity condition we are seeking for.

Vice versa, we now introduce the corresponding macro-field formulation. We, therefore,
define the macroscopic body Ω occupied by the effective poroviscoelastic medium. In
comparison to the poroelastic medium, the solid constituent of the poroviscoelastic model
exhibits viscoelastic properties. Neglecting inertia forces, the power of the generalized in-
ternal forces must be equilibrated by the power of the generalized external forces. Hereby,
we suppose the generalized internal forces on the macro-level to include, first, the stress

tensor σ̄, second, the rate of fluid content ˙̄Φ stored in the macroscopic material point x̄
and, third, the macroscopic Darcy velocity φwf . We write, in variational form, the power
of the internal forces as the sum of the three linear forms,

δP̄i = −
∫

Ω

σ̄ : δ ˙̄εs dv −
∫

Ω

δp̄ ˙̄Φ dv +

∫

Ω

δ∇p · φw dv (5.10)

with the macroscopic solid velocity ˙̄us and the strain rate tensor ˙̄εs = ( ˙̄us ⊗ ∇̄)sym of
the macroscopic solid phase as well as the macroscopic pressure p̄. The operator ∇̄x̄ is
defined as the directional derivative with respect to the macroscopic position vector x̄ in
the current configuration. Remaining in the context of a geometrically linear setting, we
simplify the notation as usual and write ∇̄x̄ = ∇̄. The testing functions δ ˙̄us and δp̄ are
admissible displacements/velocities and pore pressure fields that are sufficiently regular in
Ω. The power of the generalized external forces acting on the surface of the macroscopic
problem is defined as

δP̄e =

∫

∂Ω

δ ˙̄us · t̄ da−
∫

∂Ω

δp̄ q̄ da. (5.11)

Here, t̄ and q̄ represent the flux quantities corresponding to ūs and p̄. The power of the
internal and the external forces is balanced and it holds

δP̄i + δP̄e = 0. (5.12)

After integration by parts and supposing arbitrary but admissible testing functions δūs

and δp̄, we receive the strong form of the macroscopic boundary value problem as

σ̄ · ∇̄ = 0, (5.13)

∇̄ · φwf +
˙̄Φ = 0, (5.14)
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which is valid ∀ x ∈ Ω. Moreover, Dirichlet and Neumann boundary conditions are given
as

ūs = ū∗
s ∀ x ∈ ∂u

DΩ, σ̄ · n = t̄∗ ∀x ∈ ∂u
NΩ, (5.15)

p̄ = p̄∗ ∀ x ∈ ∂p
DΩ, φwf · n = q̄∗ ∀x ∈ ∂p

NΩ. (5.16)

The resulting coupled PDE system has now to be closed by defining appropriate constitu-
tive laws. This will be achieved in the upcoming sections by executing the computational
homogenization procedure. It is important to remark that, in contrast to poroelastic-
ity, the resulting generalized stresses will depend on the process variables including the
internal variables ξa, a = 1, 2, . . . , N , the latter resulting from internal redistribution
processes. In the most general case, we are, consequently, seeking for the relations

σ̄ = σ̄(ūs, p̄, ξa), (5.17)

φwf = φwf ( ˙̄us, p̄, ξa), (5.18)

˙̄Φ = ˙̄Φ( ˙̄us, p̄, ξa), (5.19)

for a = 1, 2, . . . , N . Finally, we can derive the balance of internal energy for the macro-
scale poroviscoelastic model in accordance to its mesoscopic counterpart in local form
as

ρ̄s ˙̄εs + ρ̄f ˙̄εf = σ̄ : ˙̄εs + p̄ ˙̄Φ− ∇̄p̄ · φwf . (5.20)

Here, the macroscopic densities ρ̄α, α ∈ {s, f}, will not be used in the sequel, and their
upscaling properties undergo, therefore, no further specification.

Computational homogenization using pressure BC

The formulation of the meso-to-macro scale-transition requires the definition of appropri-
ate averaging rules. We, therefore, presume in analogy to Section 3.1 that it holds

σ̄ := 〈σ〉
✷

=
1

V✷

∫

∂V✷

(x⊗ t)sym da, (5.21)

˙̄Φ :=
〈

Φ̇
〉

✷

= −〈∇ · (φwf)〉✷ = − 1

V✷

∫

∂V✷

q da, (5.22)

φwf := 〈φwf〉✷ + 〈x∇ · (φwf)〉✷
︸ ︷︷ ︸

=−〈x Φ̇〉
✷

=
1

V✷

∫

∂V✷

x q da. (5.23)
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Whereas the homogenization rules in Eqs. (5.21) and (5.22) are self-evident, it is important
to recall the physical interpretation of the homogenization rule Eq. (5.23), see Section 3.1.
The true or effective Darcy velocity φwf is computed as the difference of the total mass
flux 〈φwf〉✷ (absolute relative motion of the pore fluid including internal redistribution)

minus the relative mass flux 〈x∇ · (φwf)〉✷ = −
〈

x Φ̇
〉

✷

(first moment of the storativity

rate). In other words, the total motion of the pore fluid is corrected by the change
in its center of mass due to the internal and, from a macroscopic viewpoint, hidden
redistribution. Hence, the effective Darcy velocity is the observable quantity on the overall
level comparing the in- and outflux of pore fluid on opposite boundaries of the RVE.

With this information at hand we can use Eqs. (5.9) and (5.20) to extend the Hill principle
of macro-homogeneity accordingly. We write

σ̄ : ˙̄εs + p̄ ˙̄Φ−∇p · φwf =
1

V✷

∫

∂V✷

u̇s · t da−
1

V✷

∫

∂V✷

α φ p q da. (5.24)

We introduce now the trial spaces for the generalized self-equilibrated fluxes T✷ and W✷

and rewrite Eq. (5.24) using the testing functions δt, δq ∈ T✷ ×W✷ as

δσ̄ : ˙̄εs + p̄ δ ˙̄Φ− ∇̄ p̄ · δφwf =
1

V✷

∫

∂V✷

δt · u̇s da−
1

V✷

∫

∂V✷

δq α p da. (5.25)

Inserting the averaging rules Eqs. (5.21) – (5.23) we transform Eq. (5.25) towards

1

V✷

∫

∂V✷

δt ·
[
u̇s − ˙̄εs · x

]
da− 1

V✷

∫

∂V✷

δq
[
α p− p̄−∇p · x

]
da = 0. (5.26)

Supposing arbitrary but admissible testing functions δt and δq we, finally, identify the
boundary conditions for the poro-to-poroviscoelastic homogenization problem as

us = ūs + ε̄s · x, ∀ x ∈ ∂V✷, (5.27)

α p = p̄+∇p · x, ∀ x ∈ ∂V✷. (5.28)

In the absence of inertia and body forces the rigid body displacement ūs can be ignored
and Eq. (5.27) represents the well-known kinematic uniform boundary condition (KUBC).
Accordingly, Eq. (5.28) is called the Pressure Uniform Boundary Condition (PUBC). One
can easily show that periodic boundary conditions (PBC) for the solid phase displacement
field us are admissible and lead to

JusK✷ = ε̄ · JxK✷, t+ + t− = 0, ∀ x ∈ ∂V +
✷
, (5.29)

see Section 3.3. However, the definition of periodic boundary conditions for the pressure
field p fails: In contrast to the affine mapping of the displacement field due to KUBC, the
constant pressure contribution p̄ included in the PUBC makes it impossible to superimpose
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a periodic pressure field on the surface ∂V✷. Hence, the formulation of relaxed boundary
conditions for this case remains an open question.

Altogether, we seek mesoscopic solutions in the trial spaces U✷ and P✷ of admissible
displacements and pore pressure fields that are sufficiently regular in V✷. We furthermore
introduce the corresponding trial spaces of self-equilibrated fluxes T✷ and W✷ that are
sufficiently regular on ∂V +

✷
and ∂V✷. We write the equations for finding us, p, t, q ∈

U✷ × P✷ × T✷ ×W✷ as

a
u(us, δu) + b

u(p, δu)− c
u(t, δu) = 0, (5.30)

−a
p(p, δp) + b

p(u̇s, δp) +m
p(ṗ, δp) + c

p(q, δp) = 0, (5.31)

−c
u(δt, us) = −c

u(δt, ε̄s · x), (5.32)

c
p(δq, p) = c

p(δq, p̄+ ∇̄p̄ · x), (5.33)

which hold for any admissible test functions δu, δp, δt, δq ∈ U✷ × P✷ × T✷ ×W✷. Here,
we used for the momentum balance

a
u(us, δu) =

〈

(C : εs(us))
︸ ︷︷ ︸

=σ
eff (εs(us))

: (δu⊗∇)

〉

✷

, (5.34)

b
u(p, δu) =

〈

−α p I
︸ ︷︷ ︸

=σ
p(p)

: (δu⊗∇)

〉

✷

= −b
p(δu, p), (5.35)

c
u(t, us) =

1

V✷

∫

∂V +
✷

t · JusK✷ da, (5.36)

c
u(t, ε̄s · x) =






1

V✷

∫

∂V +
✷

t⊗ JxK✷ da




 : ε̄, (5.37)
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and for the continuity equation

a
p(p, δp) = 〈φwf(∇p) ·∇δp〉

✷
, (5.38)

b
p(u̇s, δp) = 〈α∇ · u̇s δp〉✷ = −b

u(δp, u̇s), (5.39)

m
p(ṗ, δp) =

〈
1

M
ṗ δp

〉

✷

, (5.40)

c
p(q, α p) =

1

V✷

∫

∂V✷

α p q da, (5.41)

c
p(q, p̄+∇p · x) =




1

V✷

∫

∂V✷

q da



 p̄+




1

V✷

∫

∂V✷

q x da



 ·∇p. (5.42)

Combination of Eqs. (5.30) and (5.31) leads again to the principle of macro-homogeneity,
see Eq. (5.24), with the admissible choices δu = u̇s and δp = α p.

Model order reduction using pressure BC

With our findings from the previous section it is now possible to run FE2-type nested meso-
macro computations. After increasing the complexity of the macro-scale formulation, the
underlying upscaling problem remains, nevertheless, linear. We, therefore, aim to take
advantage again of the superposition principle and expand the mesoscopic pore pressure
into macroscopic contributions and mesoscopic fluctuations as

p(p̄, ∇p, x, t) ≈ 1

α
p̄(t) +

1

α
∇p(t)x+

N∑

a=1

ξa(t) pa(x) ∀ x ∈ V✷. (5.43)

The fluctuation itself is split, according to the procedure demonstrated in Section 3.3, into
spatial pressure modes pa(x) and time-dependent mode activity parameters ξa(t). The
ξa, representing the internal variables of the macroscopic substitute model, are, possibly,
stimulated by the macroscopic strain ε̄s, the macroscopic pressure p̄, its gradient ∇p or,
respectively, by the corresponding rates. For practical applications, the sum in Eq. (5.43)
is supposed to be reduced to a finite number of N elements. The pressure modes pa
form a linearly independent basis of the space of pressure fluctuations Pξ ⊆ P✷, where
P✷ includes additionally the prescribed constant and linear pressure modes p = p̄ and
p = ∇p · x. Hence, the identity

∑N

a=1 ξa pa = 0 is satisfied only by the trivial solution
ξa = 0, a = 1, 2, . . . , N . It is important to remark that, according to the definition of the
PUBC Eq. (5.28), the pressure fluctuation and, thereby, the pressure modes must vanish
on the RVE surface, and we write

pa(x) = 0 ∀ x ∈ ∂V✷. (5.44)
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The unknown pressure modes pa(x) may, for example, be identified making use of the
POD methods as proposed in Section 3.3. The training computations, however, must
accommodate that the temporal evolution of the pressure field may be triggered by the
macroscopic pressure and pressure gradient rates in addition to the macroscopic strain
rate.

We now expand further mesoscopic fields accordingly,

εs(x, ε̄s, ∇p, p̄, ξ) = E0(x) : ε̄s(t) + E1(x) ·∇p(t)

+E2(x) p̄(t) +

N∑

a=1

ξa(t) εa(x), (5.45)

σ(x, ε̄s, ∇p, p̄, ξ) = C : E0(x) : ε̄s(t) +C : E1(x) ·∇p(t)

+C : E2(x) p̄(t) +
N∑

a=1

ξa(t)σa(x). (5.46)

Here, we used the elastic stiffness tensor C of the dry frame. The strain localization
tensors due to ε̄s, ∇p and p̄ are defined as

E0 =

6∑

i=1

εi ⊗Bi, (5.47)

E1 =

3∑

j=1

εj ⊗ bj , (5.48)

E0 = εb b, (5.49)

with the orthonormal basis of symmetric tensors Bi, i = 1, 2, . . . , 6, the vector basis
bj = 1e+06 m

Pa
ej , j = 1, 2, 3, and the scalar b = 1e+06 1

Pa
. Hereby, the loading 1e+06

is chosen by convention in order to ensure a sufficient numerical precision computing the
corresponding strain fields.

The contributions related to the strain localization tensor E0 represent the instanta-
neous response of the dry linear-elastic solid skeleton at zero mode activity (ξa = 0, a =
1, 2, . . . , N) and zero macroscopic pressure p̄ as well as pressure gradient ∇p. In other
words, p(x) = 0. To compute the particular strain and stress fields under the loading
(ε̄s)i, we solve for ui and ti, i = 1, 2, . . . , 6, from

a
u(ui, δu)− c

u(ti, δu) = 0, (5.50)

−c
u(δt, ui) = −c

u(δt, Bi · x). (5.51)

Similarly, the contributions related to ∇p, p̄ and the modal basis pa, a = 1, 2, . . . , N , can
now be computed by solving 3 + 1 +N linear-elastic eigenstress problems corresponding
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to the following cases:

First, we compute the strain fields εj = (uj⊗∇)sym, j = 1, 2, 3, by solving 3 linear-elastic
eigenstress problems under the unit loading (∇p)j = bj , (∇p)j = 0, j 6= k. Hereby, it
holds ε̄s = 0, p̄ = 0 and ξa = 0, a = 1, 2, . . . , N . We solve for uj and tj from

a
u(uj, δu)− c

u(tj, δu) = −b
u(bj · x, δu), (5.52)

c
u(δt, uj) = 0. (5.53)

Second, we compute the strain field εb by solving one linear-elastic eigenstress problem
under the unit loading p̄ = b under ε̄s = 0, ∇p = 0 and ξa = 0, a = 1, 2, . . . , N . We
solve for ub and tb from

a
u(ub, δu)− c

u(tb, δu) = −b
u(b, δu), (5.54)

c
u(δt, ub) = 0. (5.55)

Third, we compute the strain field εa, a = 1, 2, . . . , N , by solving N linear-elastic eigen-
stress problems corresponding to the unit loading ξa = 1, ξb = 0, a 6= b, a, b = 1, 2, . . . , N ,
under ε̄a = 0, ∇p = 0 and p̄ = 0. We solve for ua and ta from

a
u(ua, δu)− c

u(ta, δu) = −b
u(pa, δu), (5.56)

c
u(δt, ua) = 0. (5.57)

Finally, the macroscopic generalized stress response of the RVE can be calculated as the
volume average of the superimposed local fields by means of Eqs. (5.21) – (5.23) as well
as (5.45) – (5.46). Thus, all relevant material properties can be identified by the off-line
execution of linear-elastic BVP and eigenstress problems.

We now derive the evolution laws for the internal variables ξa by inserting the additive
decompositions into the weak form of the continuity equation (5.31). For a comprehensive
presentation of the following operations, we avoid the short form and write extensively

−〈φwf · δ∇p〉
✷
+
〈

Φ̇ δp
〉

✷

= − 1

V✷

∫

∂V✷

q δp da

= −




1

V✷

∫

∂V✷

q da



 δp̄−




1

V✷

∫

∂V✷

q x da



 · δ∇p

=
〈

Φ̇
〉

✷

δp̄−
[

〈φwf〉✷ −
〈

x Φ̇
〉

✷

]

· δ∇p. (5.58)

Here, we used the definition of the PUBC, see Eq. (5.28), substituting δp = α p, as well
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as the averaging rules Eqs. (5.22) and (5.23). We simplify towards

−
〈
φwf · (∇δp− δ∇p)

〉

✷
+
〈

Φ̇ (δp− δp̄)
〉

✷

−
〈

x Φ̇ · δ∇p
〉

✷

= 0. (5.59)

Inserting the pressure decomposition Eq. (5.43), we finally receive

N∑

a=1

δξa

[〈
ks

ηfR
∇p ·∇pa

〉

✷

+
〈

Φ̇ pa

〉

✷

]

= 0. (5.60)

If we furthermore insert

∇p =
1

α
∇p+

N∑

b=1

ξb∇pb (5.61)

and

Φ̇ = αU0 : ˙̄εs + αU1 · ∇̄ ˙̄p + αU2 ˙̄p+

N∑

b=1

ξ̇b α∇ · ub

+
1

M
˙̄p+

1

M
x · ∇̄ ˙̄p+

N∑

b=1

ξ̇b
1

M
pb, (5.62)

with U0 = I : E0, U1 = I : E1, U2 = I : E2, we can write in short form

δξ̂T
[

Â ξ̂ + M̂ ˙̂
ξ
]

= δξ̂T
[

B̂ ˙̄̂ε+ Ĉ ˙̂
∇p+ D̂ ˙̄p+ Ê ∇̂p

]

, (5.63)

whereby the matrix entries are, for a, b = 1, 2, . . . , N ,

Aab := −a
p(pa, pb) =

〈
ks

ηfR
∇pa ·∇pb

〉

✷

, (5.64)

Mab := b
p(ub, pa) +m

p(pb, pa)

= a
u(ua, ub) +m

p(pb, pa) =

〈

εb : C : εa +
1

M
pa pb

〉

✷

, (5.65)
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and, for i = 1, 2 . . . , 6, j = 1, 2, 3,

Bai := −b
p(Û0

i , pa) = −
〈

α pa Û
0
i

〉

✷

, (5.66)

Caj := −b
p(Û1

j , pa) = −
〈

α pa Û
1
j

〉

✷

, (5.67)

Da := −b
p(Û2, pa) = −

〈
α pa U

2
〉

✷
, (5.68)

Eaj := −a
p(∇̂p, pa) = −

〈
ks

α ηfR
∇̂jpa

〉

✷

. (5.69)

Hereby, we have used the identity

b
p(ub, pa) = 〈α pa∇ · ub〉 = 〈α pa I : εb〉

= −〈σp
a : εb〉 = −b

u(pa, ub) = a
u(ua, ub), (5.70)

resulting from Eqs. (5.30), (5.31) and (5.56). The quantities ⋄̂ are the vector representa-
tions of their tensor counterparts.

We know from the definition of PUBC Eq. (5.28) that the fluctuation field pa vanishes at
the surface ∂V✷. Assuming piece-wise constant material parameters we may transfer the
definition for Ê , given in Eq. (5.69), into a surface integral, which, consequently, vanishes
due to pa = 0 ∀ x ∈ ∂V✷, and it holds Eaj = 0, a = 1, 2, . . . , N , j = 1, 2, 3.

Since the test functions δξa are arbitrary, we derive from Eq. (5.63) the evolution equation
for the mode activity coefficients as

M̂ ˙̂
ξ + Â ξ̂ = B̂ ˙̄̂ε+ Ĉ ˙̂

∇p+ D̂ ˙̄p, ξ̂(t = 0) = 0. (5.71)

Hence, we gain, in accordance to the results in the previous sections, an extended evolution
equation depending linearly on the rates of the macroscopic strain, pressure and pressure
gradient fields. The viscous redistribution processes of the fluid content are, consequently,
stimulated by all of these macroscopic loading mechanisms. Moreover, it is important to
remark that the system matrices Â and M̂ remain unchanged in comparison to the
poro-to-viscoelastic homogenization procedure. From a physical point of view, this is a
meaningful result, since the mesoscopic diffusion process might be activated by different
quantities, but, in both cases, it is controlled by the identical mesoscopic equation system.

We, finally, execute the basis shift {ξ̂} → {χ̂ := R̂−1 ξ̂}, as it has been proposed in Section
3.3. We, therefore, solve the generalized eigenvalue problem for Â and M̂ and compute
their spectral counterparts Â∗ = R̂T ÂR̂ and M̂∗ = R̂TM̂R̂ with the matrix R̂ of right
eigenvectors. The resulting evolution equation reads

˙̂χ+ F̂ χ̂ = Ĝ ˙̄̂ε+ Ĥ ˙̂
∇p+ Î ˙̄p, χ̂(t = 0) = 0, (5.72)
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with the viscoelastic sensitivity matrices defined as F̂ = (M̂∗)−1 Â∗, Ĝ = (M̂∗)−1 R̂ B̂,
Ĥ = (M̂∗)−1 R̂ Ĉ and Î = (M̂∗)−1 R̂ D̂.

It remains to close the homogenization problem by formulating the averaged generalized
stress response of the RVE. The effective total stress computes as

σ̄ =
〈
C : E0

〉

✷
: ε̄s +

〈
C : E1

〉

✷
·∇p+

〈
C : E2

〉

✷
p̄+

N∑

a=1

〈σa〉✷ ξa. (5.73)

The effective Darcy velocity can be identified as

φwf = −
〈

ks

ηfR

〉

✷

∇p−
N∑

a=1

〈
ks

ηfR
∇pa

〉

✷

ξa

−
〈
αU0

〉

✷
: ˙̄εs −

[
〈
α x⊗U1

〉

✷
+

〈
1

M
x⊗ x

〉

✷

]

· ∇̇p

−
[
〈
αxU2

〉

✷
+

〈
1

M
x

〉

✷

]

˙̄p−
N∑

a=1

[

〈αx∇ · ua〉✷ +

〈
1

M
x pa

〉

✷

]

ξ̇a. (5.74)

And, finally, the effective storativity rate reads

˙̄Φ =
〈
αU0

〉

✷
: ˙̄εs +

[
〈
αU1

〉

✷
+

〈
1

M
x

〉

✷

]

· ∇̇p

+

[
〈
αU2

〉

✷
+

〈
1

M

〉

✷

]

˙̄p+

N∑

a=1

[

〈α∇ · ua〉✷ +

〈
1

M
pa

〉

✷

]

ξ̇a. (5.75)

Physical interpretation

Eqs. (5.73) – (5.75) represent the set of constitutive relations for the effective porovis-
coelastic model based on the reduced order computational homogenization algorithm. A
comparison with the constitutive relations in the linear Biot model, see Eqs. (2.131) –
(2.133), is particularly remarkable. Besides the viscoelastic contributions depending on
ξ̂ we observe several strong couplings between the generalized stresses, which are not
provided in Biot’s theory. For a better visualization, we write the effective constitutive
relations in matrix-vector format as

Σ̂ = Γ̂ Ξ̂. (5.76)

To this end, we define the generalized stresses as Σ̂ = [ˆ̄σ, ˆφwf , Φ̇]T and the generalized

strains as Ξ̂ = [ˆ̄ε, ∇̂p, ˆ̄p, ξ̂, ˙̄̂ε,
˙̂

∇p, ˙̄̂p]T . In the poroviscoelastic case, the generalized
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stiffness matrix Γ̂ takes the form

Γ̂porovisco =







Ŝ1 Ŝ2 Ŝ3 Ŝ4 0 0 0

0 Ŵ2 0 Ŵ4 Ŵ5 Ŵ6 Ŵ7

0 0 0 P̂4 P̂5 P̂6 P̂7






. (5.77)

In the case of a standard poroelastic formulation, we find the rather condensed correlation
matrix

Γ̂Biot =







Ŝ1 0 Ŝ3 0 0 0 0

0 Ŵ2 0 0 0 0 0

0 0 0 0 P̂5 0 P̂7






. (5.78)

In our following discussion, we now focus on the constitutive relation for the effective
Darcy velocity φwf . In Biot’s poroelasticity, this relation is defined by Darcy’s law. In
the homogenized model, Darcy’s law can be re-identified if all macroscopic rates vanish

( ˙̄εs = 0, ∇̇p = 0 and ˙̄p = 0) and all internal redistribution processes are inactive (ξa = 0,
a = 1, 2, . . . , N). Under these circumstances, the homogenized model leads to an effective
version of Darcy’s law reading

φwf =

〈
ks

ηfR

〉

✷

∇p, (5.79)

with the limit permeability Ŵ2 =
〈

ks

ηfR

〉

✷

. Hereby, the fact that all ξa = 0 is, according

to Eq. (5.43), equivalent to a constant pressure gradient in V✷. This is a very interesting
finding since it corresponds to the Voigt hypothesis for elastic solids, where it is assumed
that C̄ = 〈C〉

✷
, see [95, 135]. Whereas this estimate serves, without formal proof, as an

upper bound for the effective permeability, it results in an inappropriate approximation
in particular in the presence of strong permeability contrasts in the RVE. For example
the RVE could contain a thin diffusion barrier with vanishing volume fraction normal to
the macroscopic pressure gradient. In this extreme case the “true” overall permeability
of such a material would be dictated by the diffusion barrier. However, this barrier would

be underrepresented in the volume average
〈

ks

ηfR

〉

✷

. This example will be addressed later

in more detail. But it motivates us to review the homogenization approach proposed in
the previous sections. We, therefore, investigate the alternative case of flux boundary
conditions instead of pressure boundary conditions.

Computational homogenization using flux BC

In the upcoming section, we are seeking for the appropriate boundary conditions required
for a flux control of the mesoscopic diffusion process. We, therefore, suggest averag-
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ing rules for the macroscopic pressure as well as for the macroscopic pressure gradient.
Assuming the RVE to interact with its environment via its surface ∂V✷, only, we choose

σ̄ := 〈σ〉
✷

=
1

V✷

∫

∂V✷

(x⊗ t)sym da, (5.80)

∇p :=
1

V✷

∫

∂V✷

α pn da, (5.81)

p̄ :=
1

A✷

∫

∂V✷

α p da. (5.82)

Supposing meso-to-macro interaction through the surface ∂V✷, the somewhat inconvenient
surface average Eq. (5.82) represents the RVE fluid pressure which is ”visible” for the
macroscopic observer. The macroscopic pressure is interpreted as the averaged pressure
that is detected at the RVE surface. Here, A✷ describes the content of the external surface
enclosing the RVE. In the case of a cubic RVE of the volume V✷ = l3 we can easily compute
1
A✷

= 1
V✷

l
6
. The deviations of 〈α p〉

✷
from 1

A✷

∫

∂V✷

α p da belong, from the observer’s
viewpoint, to ”internal” processes and are, therefore, part of the effective solid stress and
are equilibrated in terms of the total stress average Eq. (5.80). Eq. (5.82), therefore,
can be understood as the pressure analogon to the effective Darcy flow interpretation in
Eq. (5.23).

We introduce now the trial space of the self-equilibrated forces T✷ and the trial space
of admissible pore pressure distributions P✷ and rewrite the Hill principle of macro-
homogeneity, see Eq. (5.24), using the testing functions δt, δp ∈ T✷ × P✷, as

δσ̄ : ˙̄εs − δp̄ ∇̄ · φwf − δ∇̄ p̄ · φwf =
1

V✷

∫

∂V✷

δt · u̇s da−
1

V✷

∫

∂V✷

δp q da. (5.83)

Inserting the averaging rules Eqs. (5.80) – (5.82), we transform Eq. (5.83) towards

1

V✷

∫

∂V✷

δt ·
[
u̇s − ˙̄εs · x

]
da− 1

V✷

∫

∂V✷

δp

[

q +
V✷

A✷

˙̄Φ− φwf · n
]

da = 0. (5.84)

Supposing arbitrary but admissible testing functions δt and δp we, finally, identify the
poro-to-poroviscoelastic homogenization problem as

us = ūs + ε̄s · x, (5.85)

q = −γ̄ ˙̄Φ + φwf · n, (5.86)

with γ̄ := V✷

A✷

. In the absence of inertia and body forces the rigid body displacement ūs

can be ignored and Eq. (5.85) represents, as before, the well-known KUBC. Eq. (5.86) is
called the Flux Uniform Boundary Condition (FUBC).
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By these mixed KU- and FUBC we have now defined the mesoscopic boundary value
problem. Hence, we are seeking for solutions in the trial spaces U✷ and P✷ of admissible
displacements and pore pressure fields that are sufficiently regular in V✷. We furthermore
introduce the corresponding trial spaces of self-equilibrated fluxes T✷ and W✷ that are
sufficiently regular on ∂V +

✷
and ∂V✷. We write the equations for finding us, p, t, q ∈

U✷ × P✷ × T✷ ×W✷ as

a
u(us, δu) + b

u(p, δu)− c
u(t, δu) = 0, (5.87)

−a
p(p, δp) + b

p(u̇s, δp) +m
p(ṗ, δp) + c

p(q, δp) = 0, (5.88)

−c
u(δt, us) = −c

u(δt, ε̄s · x), (5.89)

c
p(q, δp) = c

p(φwf · n− γ̄ ˙̄Φ, δp), (5.90)

which hold for any admissible test functions δu, δp, δt, δq ∈ U✷ × P✷ × T✷ ×W✷. Here,
we used for the momentum balance

a
u(us, δu) =

〈

(C : εs(us))
︸ ︷︷ ︸

=σ
eff (εs(us))

: (δu⊗∇)

〉

✷

, (5.91)

b
u(p, δu) =

〈

−α p I
︸ ︷︷ ︸

=σ
p(p)

: (δu⊗∇)

〉

✷

= −b
p(δu, p), (5.92)

c
u(t, us) =

1

V✷

∫

∂V +
✷

t · JusK✷ da, (5.93)

c
u(t, ε̄s · x) =






1

V✷

∫

∂V +
✷

t⊗ JxK✷ da




 : ε̄, (5.94)

and for the continuity equation

a
p(p, δp) = 〈φwf(∇p) ·∇δp〉

✷
, (5.95)

b
p(u̇s, δp) = 〈α∇ · u̇s δp〉✷ = −b

u(δp, u̇s), (5.96)

m
p(ṗ, δp) =

〈
1

M
ṗ δp

〉

✷

, (5.97)

c
p(q, α p) =

1

V✷

∫

∂V✷

α p q da, (5.98)

c
p(φwf · n− γ̄ ˙̄Φ, α p) = −




1

V✷

∫

∂V✷

α p da



 γ̄ ˙̄Φ +




1

V✷

∫

∂V✷

α pn da



 · φwf . (5.99)
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Combination of Eqs. (5.87) and (5.88) leads again to the Hill principle of macro-
homogeneity, see Eq. (5.83), with the admissible choices δu → u̇s and δp → α p.

Model order reduction using flux BC

Being able to run FE2 computations with the previous findings, we now aim to derive, as
for all upscaling scenarios before, a reduced order modeling approach for the flux-based
computational homogenization of the poro-to-poroviscoelastic upscaling problem. We,
therefore, expand the pore pressure field into

p(x, t) ≈
N∑

a=1

ξa(t) pa(x). (5.100)

As discussed extensively in Section 3.3, the pressure field is split into spatial pressure
modes pa(x) and time-dependent mode activity parameters ξa(t). The ξa represent the in-
ternal variables of the macroscopic substitute model. In contrast to Eq. (5.43) we suppose
that the mesoscopic pressure field does not depend explicitly on the macroscopic variables

ε̄s,
˙̄Φ and φwf . The pore pressure diffusion processes are stimulated implicitly by the

coupling properties of the poroelastic equation system, compare also the split in Section
3.3. This is in difference to Eq. (5.43), where the pressure field had to be constructed in
the prescribed manner to guarantee compatibility with the boundary conditions.

For practical applications, the sum in Eq. (5.100) is supposed to be reduced to a finite
number of N elements. The pressure modes pa form a linearly independent basis of the
space of pressure distributions. Hence, the identity

∑N
a=1 ξa pa = 0 is satisfied only by

the trivial solution ξa = 0, a = 1, 2, . . . , N . The unknown pressure modes pa(x) may be
identified applying the POD as proposed in Section 3.3 involving training computations
for the diffusion processes active under the KUBC for the displacement field us as well as
the FUBC for the pressure field p.

We now expand further mesoscopic fields, as it has been executed in Section 3.3,

εs(x, ε̄s, ξ̂) = E0(x) : ε̄s(t) +

N∑

a=1

ξa(t) εa(x), (5.101)

σ(x, ε̄s, ξ̂) = C : E0(x) : ε̄s(t) +

N∑

a=1

ξa(t)σa(x), (5.102)

with the abbreviations introduced in the previous sections. Computing the instantaneous
response of the dry solid frame under kinematic loading at zero mode activity (ξa = 0,
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a = 1, 2, . . . , N), we solve for ui and ti, i = 1, 2, . . . , N , from the linear-elastic problem

a
u(ui, δu)− c

u(ti, δu) = 0, (5.103)

−c
u(δt, ui) = −c

u(δt, Bi · x), (5.104)

see Section 3.3. The mesoscopic response to the pressure mode activity ξa, a = 1, 2 . . . , N ,
is computed by solving N linear-elastic eigenstress problems for the loading cases ξa = 1,
a = 1, 2, . . . , N under ξb = 0, b = 1, 2, . . . , a − 1, a + 1, . . . , N and 〈εa〉✷ = 0. For
known pa, we have to solve for ua and ta, a = 1, 2, . . . , N , from

a
u(ua, δu)− c

u(ta, δu) = −b
u(pa, δu), (5.105)

c
u(δt, ua) = 0. (5.106)

We now develop the evolution law for the vector of internal variables ξ̂. To this end, we
expand the continuity law Eq. (5.88) by writing

M∑

a,b=1

δξa

[

a
p(pb, pa) ξb + [bp(ub, pa) +m

p(pb, pa)] ξ̇b

]

= −
N∑

a=1

δξa

[

b
p(U0 : ˙̄ε, pa)− c

p(φwf · n− γ̄ ˙̄Φ, pa)
]

. (5.107)

In matrix-vector form, this expression reads

δξ̂T
[

Â ξ̂ + M̂ ˙̂
ξ
]

= δξ̂T
[

B̂ ˙̂ε+ Ĉ ˆφwf + D̂ ˙̄̂
Φ

]

, (5.108)

whereby the matrix entries are, for a, b = 1, 2, . . . , N ,

Aab := −a
p(pa, pb) =

〈
ks

ηfR
∇pa ·∇pb

〉

✷

, (5.109)

Mab := b
p(ub, pa) +m

p(pb, pa)

= a
u(ua, ub) +m

p(pb, pa) =

〈

εb : C : εa +
1

M
pa pb

〉

✷

, (5.110)
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and, for i = 1, 2 . . . , 6, j = 1, 2, 3,

Bai := −b
p(Û0

i , pa) = −
〈

α pa Û
0
i

〉

✷

, (5.111)

Caj := −c
p(( ˆφwf)j, pa) = − 1

V✷

∫

∂V✷

pa nj da, (5.112)

Da := c
p(
˙̄̂
Φ, pa) =

1

A✷

∫

∂V✷

pa da. (5.113)

For arbitrary test functions δξa, the evolution law for the mode activity parameters follows
as

M̂ ˙̂
ξ + Â ξ̂ = B̂ ˙̄̂ε+ Ĉ ˆφwf + D̂ ˙̄̂

Φ, ξ̂(t = 0) = 0. (5.114)

We observe that the temporal evolution of the internal variables is stimulated by the three

macroscopic process variables ˙̄ε, φwf and ˙̄Φ. The external stimulation becomes active in
terms of the boundary expressions given in Eqs. (5.111) – (5.113). Thus, all macroscopic
process variables may induce pressure diffusion processes on the small scale.

We execute the basis shift {ξ̂} → {χ̂ := R̂−1 ξ̂} in the usual manner. We, therefore, solve
the generalized eigenvalue problem for Â and M̂ and compute their spectral counterparts
Â∗ = R̂T ÂR̂ and M̂∗ = R̂TM̂R̂ with the matrix R̂ of right eigenvectors. The resulting
evolution equation reads

˙̂χ+ F̂ χ̂ = Ĝ ˙̄̂ε+ Ĥ ˆφwf + Î ˙̄̂
Φ, χ̂(t = 0) = 0, (5.115)

with the viscoelastic sensitivity matrices defined as F̂ = (M̂∗)−1 Â∗, Ĝ = (M̂∗)−1 R̂ B̂,
Ĥ = (M̂∗)−1 R̂ Ĉ and Î = (M̂∗)−1 R̂ D̂.

Finally, the homogenization procedure is closed by computing the averaged quantities

σ̄ = 〈σ〉
✷

=
〈
C : E0

〉

✷
: ε̄s +

N∑

a=1

〈σa〉✷ ξa, (5.116)

∇p =
1

V✷

∫

∂V✷

α pn da =
N∑

a=1

ξa
1

V✷

∫

∂V✷

α pa n da, (5.117)

p̄ =
1

A✷

∫

∂V✷

α p da =
N∑

a=1

ξa
1

A✷

∫

∂V✷

α pa da. (5.118)

It is important to remark that, from the viewpoint of an efficient numerical implemen-
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tation, for example using an algorithmic tangent, the flux control makes in necessary to
reformulate the macroscopic poroviscoelastic problem and to take into account, instead of
the ūs-p̄-formulation, an alternative formulation based, for example, on the Darcy velocity
φwf .

Study: Comparison of PUBC and FUBC

We now want to analyze the homogenized solutions predicted by PUBC and FUBC for
the diffusion problem through a 2D SVE. The SVE consists of a water-saturated back-

background diffusion barrier
ks [mD] 1000 100
φ [–] 0.2 0.1
G [GPa] 8.8 15.8
K [GPa] 9.6 16.2
Ks [GPa] 36.0 36.0
Kf [GPa] 2.2 2.2
ηfR [mPa s] 1 1

Table 5.1: Poroelastic material parameters for the water-saturated SVE shown in Fig. 5.1
(1mD≈ 1e-15m2).

ground rock matrix and includes a diffusion barrier perpendicular to the overall diffusion
direction and being water-saturated, too. Hereby, the word diffusion barrier means that
the mesoscopic permeability within the barrier is reduced by a factor 10 compared to the
surrounding rock matrix. The SVE geometry is given in Fig. 5.1, and all material param-
eters used are to be found in Tab. 5.1. By this study, we aim to deepen insight to how the
different choices of boundary conditions interact with the mesoscopic diffusion processes.
Similar to our findings in Section 3.2 we expect significant boundary layer effects due to
flux and pressure control. We, therefore, pay special regard to the stationary solution at
t → ∞. Focusing on the diffusion problem through the SVE preserving the balance of
fluid mass stored in the SVE, we choose the boundary condition (∇p),1 = 1 MPa

m
, whereas

ε̄s = 0, ˙̄p = 0 and (∇p),2 = 0. For the FUBC scenario, we choose (φwf)1 = −0.01 m
s
,

ε̄s = 0, ˙̄Φ = 0 and (φw)2 = 0. In both cases, we use a step function to apply the loading.
Altogether, we impose diffusion processes in negative x1-direction.

The resulting pressure fields observed at different time steps under PUBC and FUBC
are depicted in Fig. 5.2. For PUBC as well as for FUBC we observe that at t = 1 s the
diffusion process does not reach the diffusion barrier, yet (vanishing pressure gradient
at x1 = 0). At t ≥ 10 s, we observe a decay of the pressure gradients in the rock
matrix. By contrast, the diffusion barrier shows now a significant pressure gradient much
higher than in the rock matrix. At t → ∞, the FUBC lead to a piece-wise linear pore
pressure diffusion corresponding to piece-wise constant pressure gradients. Computing
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Figure 5.1: 2D SVE consisting of a water-saturated background matrix and a water-saturated
diffusion barrier at low permeability. The material parameters for the poroelastic model are
given in Tab. 5.1. The SVE size is chosen l = 10m. The quantities observed at the dashed
horizontal line are used for the line evaluations shown in Figs. 5.2 and 5.3.

the mesoscopic Darcy velocity, we can see that this piece-wise constant pressure gradient
is equivalent to a constant mass flow, see Fig. 5.3 b). Vice versa, we do not find a linear
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Figure 5.2: Temporal evolution of the pressure field observed at the dashed line shown in
Fig. 5.1 for a) PUBC and b) FUBC.

pressure distribution at t → ∞ in the PUBC case, see Fig. 5.2 a). Accordingly, we find
an inhomogeneous Darcy velocity on the meso-level under PUBC in the stationary limit
case t → ∞, see Fig. 5.3 a). This behavior is rather contra-intuitive. For an explanation,
we need a full 2D picture of the diffusion problem. We, therefore, have highlighted the
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Darcy velocity in terms of streamlines in Fig. 5.4. We find that the pressure diffusion
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Figure 5.3: Temporal evolution of the mesoscopic Darcy velocity (φwf )1 in horizontal direction
observed at the dashed line shown in Fig. 5.1 for a) PUBC and b) FUBC.

in the PUBC case is two-dimensional. Due to the affine pressure distribution at the
boundary, part of the pore fluid circumvents the barrier leaving the SVE on the right-
hand side of the barrier and re-entering on its left-hand side. Doing so, the amount
of pore fluid stored in the SVE remains constant and the balance of fluid mass in the
SVE is preserved. Under FUBC, however, outflux of pore fluid over the lateral surfaces
is prohibited and we observe a quasi-1D diffusion pattern. As discussed above, this is
equivalent to a homogeneous Darcy velocity and coincides, at least in this case, with a
poroelastic version of the Reuss estimate, see [95, 105].

a) b)

Figure 5.4: Darcy velocity observed at t → ∞ for a) PUBC and b) FUBC. The background
color shows the pressure distribution (bright=low pressure, dark=high pressure) in a qualitative
manner.
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Finally, the apparent permeability of the SVE needs to be investigated. Whereas we re-
strict our study on the diffusion in x1-direction, it is important to remark that the apparent
permeability for the given SVE is, for obvious reasons, strongly anisotropic. In Fig. 5.5,
the apparent permeability of the given SVE in x1-direction is evaluated over the angular
frequency ω. For both boundary settings, PUBC and FUBC, we observe the stationary
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Figure 5.5: Apparent permeability Re( ks

ηfR
) over the angular frequency ω predicted by the

PUBC and the FUBC. For the stationary diffusion problem (ω → 0), we observe for PUBC

Re( ks

ηfR
)t→∞ = 8.810e-10 m2

Pa s , for FUBC Re( ks

ηfR
)t→∞ = 7.084e-10 m2

Pa s . The volume average

computes as
〈

ks

ηfR

〉

✷

= 8.982e-10 m2

Pa s .

diffusion as the low-frequency limit. At higher frequencies, the apparent permeability
increases by orders of magnitude. However, this apparent permeability is a consequence
of local redistribution processes. In other words, the fluid exchange between the SVE
and its environment at higher frequencies is restricted to boundary layers inside the SVE,
and we do not measure the true hydraulic conductivity. Hence, these contributions to the
apparent permeability are a consequence of the viscous properties and do not describe a
true fluid transport through the macroscopic material point. However, these phenomena
are hidden for the macroscopic observer. In the low-frequency limit, the apparent per-

meability predicted by PUBC and FUBC takes the values Re( ks

ηfR
)t→∞ = 8.810e-10 m2

Pa s

and, respectively, Re( ks

ηfR
)t→∞ = 7.084e-10 m2

Pa s
. Hence, the PUBC solution is very close to

the pure volume average (Voigt-limit) with
〈

ks

ηfR

〉

✷

= 8.982e-10 m2

Pa s
. However, the Voigt

assumption (uniform pore pressure) leads to incompatible Darcy velocities. The PUBC
solution of the mesoscopic problem requires continuity and, therefore, superimposes the
Voigt contribution (constant pressure gradient throughout the SVE) by a stationary dif-
fusion process leading to the circumvention of the barrier described above. It is, however,
clear that in the limit case ks → 0 for the diffusion barrier, the distance between the
upper and the lower bounds increases drastically.
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Conclusions

In the previous sections we have established a computational homogenization algorithm
substituting a heterogeneous poroelastic medium by a homogeneous poroviscoelastic
medium on the large scale. To this end, we have interpreted the macroscopic state to
be driven by the macroscopic solid strain, the pressure and the pressure gradient or, re-
spectively, by their dual counterparts or rates. Additionally, we allow for viscoelastic
processes described by internal variables. These variables represent the activity of the
underlying pressure modes on the mesoscopic level. Hereby, part of the pressure modes
is kinematically necessary to satisfy the boundary conditions. And part of the pressure
modes represents, according to the phenomena described for the poro-to-viscoelastic up-
scaling procedure, the diffusive redistribution of pore fluid. It is important to remark that
the redistribution is a local phenomenon not directly observable on the large scale. In
particular, there is no effective storativity or permeability associated with these processes.
From a macroscopic viewpoint, the viscous fluid redistribution contributes to the overall
stress response of the solid phase.

For the upscaling procedure, we have proposed two conjugated sets of boundary condi-
tions, which we called Pressure and Flux Uniform Boundary Conditions (PUBC, FUBC).
For both versions, we were able to derive reduced order formulations for a numerically
efficient determination of the constitutive behaviour of the substitute material. Without
proof, we can expect that the properties predicted by PUBC and FUBC computations
may serve as upper and lower bounds for the “true” effective material properties. However,
no relaxation methods for the boundary conditions, such as periodic boundary conditions,
have been introduced so far. The reason is the structure of the pressure boundary con-
ditions. They consist, first, of an affine contribution, depending on the overall pressure
gradient, and, second, of a constant contribution, depending on the overall pressure. The
latter term is incompatible with the application of periodic boundary conditions. One
could circumvent this conflict if, first, the SVE storativity is supposed to be constant
during the macroscopic loading process. Second, the pressure stimulation could be un-
derstood, comparable to a rigid body motion, to act instantaneously on the entire SVE.
Doing so, the viscous redistribution of pore fluid due to the pressure stimulus on the SVE
surface would be ignored. However, the investigation of periodic boundary conditions un-
der these circumstances or the investigation of alternative relaxation techniques remains
an open issue for future research activities.

Altogether, it is important to recall that the presumption for such a homogenization proce-
dure is the proper separation of the participating scales. For the poro-to-poroviscoelastic
upscaling problem this restrictions means that we allow for diffusion processes at two
completely separated length scales L and l with L ≫ l, see Fig. 1.1. In other words, the
method is blind for diffusion processes on an intermediate length scale d with l < d < L.
To remedy this deficiency, it would be, for example, possible to introduce a non-local de-
scription for the diffusion process in the sense of a “kinematic” enrichment of the pressure
field. Such extended continuum formulations (second gradient, micromorphic) are well
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established in solid mechanics, see [39, 82, 92]. They have been subject to computational
homogenization approaches, see, for example, [43, 44, 63, 65, 66, 72, 127], to name only
a few. Similarly, the Theory of Porous Media has been enriched by additional rotational
degrees of freedom, see [29, 30, 31]. However, these Cosserat type rotations might be
inadequate for a non-local description of diffusivity. Therefore, an appropriate extended
continuum formulation remains an unsolved problem.



6
Résumé and Outlook

In this contribution, we have successfully established an unified numerical laboratory for
the efficient computational homogenization of fluid-saturated porous media. To this end,
we have derived a novel order reduction technique allowing for a straightforward upscaling
of mesoscopic diffusion processes towards macroscopic viscoelastic properties. The main
advantage of the proposed technique is that, in difference to standard computational ho-
mogenization approaches, the macroscopic substitute model is derived explicitly. In other
words, we are able to identify the constitutive relations in a numerically efficient manner
by linear-elastic precomputations only to be executed once in advance. The numerical
laboratory comprises, on the meso level, heterogeneous poroelastic media, mixtures of
impermeable elastic and poroelastic media as well as dimension-reduced formulations for
the pore pressure diffusion in fluid-saturated conduits. On the large scale, we are able
to identify the effective properties of a viscoelastic substitute medium, if the pressure
diffusion is assumed to be restricted to the mesoscopic RVE. Moreover, the macroscopic
model can be enriched towards a poroviscoelastic formulation if macroscopic seepage is
taken into account. We have shown that the resulting evolution laws of the viscoelastic
internal variables correspond to the ordinary differential equation system of a generalized
Maxwell-Zener rheology.
It is important to point out, first, that this finding is not the consequence of a heuristic
model assumptions, but is a natural consequence of the mesoscopic diffusion equations
under investigation. Second, the structure of the evolution equation does not depend
on the underlying process. Thus, the macroscopic observer is not able to infer from the
material response if the detected attenuation is caused by pressure diffusion in a system
featuring double-porosity, patchy saturation, fracture networks or further mechanisms not
included in our considerations. In this sense, the computational homogenization mimics
the situation in real field experiments, where the underlying processes are a priori hidden

– 135 –
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for the observer. However, the computational approach can help to gain a better under-
standing of the individual processes and their impact on the observable material behavior
and helps to avoid field experiments at high costs and possibly involving environmental
hazards.
In the case of the poro-to-viscoelastic homogenization it remains an open task to apply
the method to more complex mesostructures. Hereby, alternative methods could be used
to generate the data basis for the POD. In particular, it would be promising to solve the
poroelastic meso-scale problem in frequency domain. This would allow to simulate dis-
crete frequencies and to use the results as the input snapshots for the mode identification
algorithm. Compared to the solution in time domain, the computations at the individ-
ual frequencies are linear-elastic and completely independent from each other. Moreover,
assembling of the linear equation system could be executed once for all, since only the
frequency-dependent stiffness parameters vary from computation to computation. Thus,
the solution in frequency domain could be easily parallelized without any communica-
tion between the different processes. In time domain, a successive solution of linearized
problems at the chosen time steps with an appropriate update of the history variables is
required. In view of large 3D computations, it, therefore, seems to be beneficial to use
the frequency domain for the full-field computations. In any case, the full mesoscopic
resolution of the poroelastic problem is only required for the training computations to be
executed only once as precomputations.
Besides the poroelastic meso-scale formulations we have applied the order reduction tech-
nique to the hybrid-dimensional approach of the pore pressure diffusion problem. Whilst
we have used a staggered numerical solution scheme for the examples included in this
contribution, future applications should consider the mentioned XFEM implementation,
particularly for an easier numerical treatment of complex fracture networks.
Concerning, the poro-to-poroviscoelastic scale-transition, we would like to give two con-
cluding remarks. First, it is important to be aware that, as soon as a the meso-level
includes any kind of heterogeneity, a poroelastic substitute on the large scale will be in-
sufficient. The viscoelastic contribution of the effective model is unconditionally necessary
for the macroscopic representation of any kind of mesoscopic redistribution by pressure
diffusion. Second, and this is a direct consequence of the first point, the dissipation on
the large scale is caused by, first, macroscopic viscous drag forces, as it is the case on
the meso-level, and, second, by the mesoscopic pressure diffusion. Hence, two dissipation
mechanisms are active. However, the poro-to-poroviscoelastic homogenization concept
suffers from the strict separation of the participating scales, where pore pressure diffusion
is possible at mesoscopic as well as at macroscopic length scales. Evaluated in frequency
domain, this would correspond to strictly separated frequency bands. However, intermedi-
ate frequencies are excluded by definition and could not be incorporated in the modeling
concept. We, therefore, aim to soften the locality condition and to allow, instead, for
non-local diffusion processes.
Finally, it remains to mention that, obviously, the method is not restricted to diffusion
problems in poroelasticity. We, therefore, aim to include in future further diffusion mech-
anisms in coupled media. Possible applications could be identified in thermo- or chemo-
mechanically coupled problems including processes being active on internal or external
surfaces.



A
Algorithmic tangent stiffness operator

The numerical implementation of the viscoelastic substitute model requires a time-discrete
version of the identified constitutive relations at the macroscopic integration points. We,
therefore, derive the algorithmic tangent stiffness operator for the poro-to-viscoelastic
model introduced in Section 3.3 on the time interval [tn, tn+1] with tn+1 = tn + ∆t and

the discrete time step ∆t in analogy to [118]. The macroscopic strain rate ˙̄̂ε is supposed
to remain constant throughout the time interval ∆t. From the stress averaging rule

σ̄ =
〈
C : E0

〉

✷
︸ ︷︷ ︸

=:C̄ε

: ε̄+
N∑

a,b=1

〈σa〉✷Rab χb
︸ ︷︷ ︸

=:ξa

(A.1)

we derive the macroscopic stress update as

σ̄(tn+1) = σ̄(tn) + C̄ε : ∆ε̄+
N∑

a,b=1

〈σa〉✷ Rab ∆χb. (A.2)

The algorithmic tangent operator follows from

d∆σ̄ = d(σ̄(tn+1)− σ̄(tn))

= C̄ε : d∆ε̄ +

N∑

a,b=1

[

〈σa〉✷ Rab ⊗
∂∆χb

∂∆ε̄

]

︸ ︷︷ ︸

=:C̄χ

: d∆ε̄. (A.3)
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Equivalently, we can write in index notation, for i, j = 1, 2, . . . , 6,

∂∆σ̄i

∂∆ε̄j
= C̄ε

ij +

N∑

a,b=1

〈(σa)i〉✷ Rab

∂∆χb

∂∆ε̄j
. (A.4)

For the integration of the ODE describing the temporal evolution of the viscoelastic
internal variables χ̂,

˙̂χ = Ĉ χ̂+ D̂ ˙̄̂ε, (A.5)

one can, for example, use a simple mid-point rule resulting in

χ̂(tn+1) ≈ χ̂(tn) + ∆t

[

Ĉ
[

χ̂(tn) +
1

2
∆t

(

Ĉ χ̂(tn) + D̂ ∆ε̂

∆t

)]

︸ ︷︷ ︸

=χ̂

(
t
n+1

2

)

+D̂ ∆ε̂

∆t

]

. (A.6)

Hence, it follows

∆χ̂ = χ̂(tn+1)− χ̂(tn)

= ∆t Ĉ
[

Î +
1

2
∆t Ĉ

]

χ̂(tn) +

[

Î +
1

2
∆t Ĉ

]

D̂∆ˆ̄ε (A.7)

with the n-dimensional identity matrix Î. Derivation with respect to ∆ˆ̄ε results in

∂∆χ̂

∂∆ˆ̄ε
=

[

Î +
1

2
∆t Ĉ

]

D̂, (A.8)

or, in index notation,

∂∆χb

∂∆ε̄j
=

N∑

c=1

[

δbc +
1

2
∆t Cbc

]

Dcj. (A.9)

Altogether, the algorithmic tangent stiffness operator is, therefore, computed as

d∆σ̄i

d∆ε̄j
= C̄ε

ij + C̄χ
ij (A.10)

with

C̄ε

ij =
6∑

s=1

〈
CisE

0
sj

〉

✷
, (A.11)

C̄χ
ij =

N∑

a,b,c=1

〈(σa)i〉✷ Rab

[

δbc +
1

2
∆t Cbc

]

Dcj. (A.12)
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This scheme is slightly modified if, on the small scale, the hybrid-dimensional approach
proposed in Section 4.3 is used. In this case, the starting point for deriving the algorithmic
tangent stiffness operators is the stress averaging rule

σ̄ =
〈
C : E0

〉

B
: ε̄ +

N∑

a=1

ξa

[

〈σa〉B −
n∑

k=1

〈pa τ0〉∂Fk
I

]

. (A.13)

Applying again the mid-point rule for the discrete time integration leads to the tangent
stiffness operator

d∆σ̄i

d∆ε̄j
= C̄ε

ij + C̄χ
ij (A.14)

with

C̄ε

ij =
6∑

s=1

〈
CisE

0
sj

〉

B
, (A.15)

C̄χ
ij =

N∑

a,b,c=1

[

〈(σa)i〉B −
n∑

k=1

〈pa τ0〉∂Fk
δi

]

Rab

[

δbc +
1

2
∆t Cbc

]

Dcj, (A.16)

and the appropriate definitions of the system matrices C and D. Hereby, we choose in 3D

δi =

{

1, i = 1, 2, 3,

0, i = 4, 5, 6
(A.17)

and, accordingly, in 2D

δi =

{

1, i = 1, 3,

0, i = 2.
(A.18)
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