Christoph Muller

Thermodynamic modeling of
polycrystalline shape memory alloys
at finite strains

Heft Nr. 132




INSTITUT FUR MECHANIK
RUHR-UNIVERSITAT BOCHUM

Christoph Miiller

Thermodynamic modeling
of polycrystalline shape memory alloys

at finite strains

MITTEILUNGEN AUS DEM INSTITUT FUR MECHANIK NR. 132
August 2003



Herausgeber:

Institut fiir Mechanik
Ruhr-Universitit Bochum
D-44780 Bochum

ISBN 3-935892-07-1

Dieses Werk ist urheberrechtlich geschiitzt. Die dadurch begriindeten Rechte, ins-
besondere die der ﬂbersetzung, des Nachdrucks, des Vortrags, der Entnahme von Ab-
bildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfalti-
gung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben,
auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfaltigung dieses
Werkes oder von Teilen dieses Werkes ist zuldssig. Sie ist grundsatzlich vergilitungs-
pflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechts-
gesetzes.

© 2003 Institut fiir Mechanik der Ruhr-Universitdt Bochum

Printed in Germany



Zusammenfassung

In dieser Arbeit wird ein thermodynamisch konsistentes Modell zur Beschrei-
bung pseudoelastischer Formgedachtnislegierungen vorgestellt.

Zur Beschreibung der Kinematik wird auf eine Eulersche Theorie endlicher
Forméanderungen zuriickgegriffen. Der thermomechanische Zustand wird im
Rahmen der Thermodynamik mit internen Zustandsvariablen anhand des Mas-
sengehaltes der martensitischen Phase als interner Zustandsvariable beschrie-
ben. Die freie Helmholtz Energie wird als Funktion des elastischen Anteils
der Hencky Dehnung, der Temperatur und des Martensitgehalts formuliert.
Aus diesem Potential wird eine Evolutionsgleichung fiir den Martensitgehalt
abgeleitet. Die wahrend der Phasentransformation erzeugte Warme schlagt
sich infolge der thermomechanischen Kopplung unmittelbar im modellierten
Materialverhalten nieder. Das Materialmodell kann um die Beschreibung von
Ein- und Zweiwegeffekten sowie funktionaler Ermiidung erweitert werden.
Das Stoffgesetz ist zu Finite-Element Berechnungen im Rahmen einer Updated
Lagrange Formulierung geeignet. Die Parameter des Modells werden anhand
von Daten aus isothermen Versuchen identifiziert und durch thermische Pa-
rameter aus der Literatur erginzt. Berechnungen mit dem implementierten
Stoffgesetz auf Basis dieses Parametersatzes verdeutlichen den Einfluss der
thermomechanischen Kopplung und zeigen die Eignung des Stoffgesetzes zur
Analyse komplexer Bauteile aus Formgedachtnislegierungen.

Summary

In this treatise, a thermodynamically consistent material model for pseudo-
elastic shape memory alloys is proposed.

The kinematics are described based on a self-consistent Eulerian theory of fi-
nite deformations. Adopting a thermodynamic theory with internal state vari-
ables, the thermomechanical state is described choosing the mass fraction of
martensite as internal state variable. The Helmholtz free energy is formu-
lated as a function of elastic Hencky strain, temperature and mass fraction
of martensite. A kinetic law governing the evolution of martensite is derived
from this potential. Due to the thermomechanical coupling, thie heat generated
during phase transformation directly affects the material behavior modeled.
The proposed material law may be extended to include additional effects such
as one- and two-way shape memory effects and functional fatigue.

The material law is used in finite element analyses in an updated Lagrangian
scheme. Its parameters are calibrated to isothermal experimental data. They
are complemented by thermal parameters published in the literature. Calcula-
tions using the implemented material law based on this parameter set demon-
strate the effects of the thermomechanical coupling and the suitability of the
model to analyze complex shape memory structures.
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1 Introduction

1.1 Introduction to shape memory alloys

Shape memory alloys are used in many applications, especially medical, where
their use is superior to using conventional materials. The term shape memory
refers to the ability of this class of materials to “remember” a shape assumed
earlier, even after being deformed rather severely.

When a shape memory alloy is subjected to deformation at low temperature,
where the material is in its martensitic state, the deformation is retained until
the specimen is heated above a certain temperature, at which it will sponta-
neously return to its original shape prior to deformation. This effect is referred
to as shape memory effect.

At more elevated temperatures, the material behavior changes to so-called su-
perelasticity’. Characteristic for superelastic alloys is a hysteretic stress-strain
response, where the original shape is recovered completely during unloading
from the deformed state. The width of the hysteresis and the stress level at
which it occurs depend on many parameters, such as the composition of the
respective shape memory alloy, its thermomechanical treatment, temperature
etc.

By subjecting shape memory alloys to external loads or to internal stresses,
e.g. by introducing dislocations, the so-called two-way shape memory effect
may be observed. Here, shape changes are observed by simply heating or cool-
ing a specimen.

Today, shape memory alloys are chosen as couplings for aircraft hydraulic tub-
ing because they are lightweight, easy to install and have a proven reliability.
In this area, use is made of the one-way effect (Stockel 1993, Melton 1998).
Also, shape memory alloys are used as electrical connectors. Currently, several
different designs compete on the market.

Applications of superelasticity are mostly in the medical industry, but they
also include support wires in bras — the first widespread non-medical use of
superelasticity, wires affixed to the heel of shoes to retain their shape, head
bands of headphones, superelastic NiTi eyeglass frames, etc. In dental appli-
cations, orthodontic arch wires exhibiting superelastic behavior are superior
to conventional materials as they supply a constant stress in a wide range
of strains. Other applications are dental implants and attachments for partial
dentures. In orthopedics, bone plates are attached with screws to secure bones,
giving a compressive force on the fracture zones. U-shaped staples perform
well in the same task (cf. Miyazaki 1998). However, while corrosion resistance
of (NiTi) shape memory alloys is very good, biocompatibility is still an issue.
For more than 20 years, Nitinol stents have been used in coronary, peripheral
vascular and non-vascular applications. Today, many different designs are on

!The terminologies pseudoelasticity, superelasticity and rubber-like behavior are often
used in an inconsistent manner, see Section 2.1.1 for a definition.




2 1 Introduction

the market. Using shape memory alloys, self expanding stents can be designed
that are delivered more easily. Some current stent designs are illustrated in
Figure 1.1 (c¢f. Memry 2003).

Figure 1.1: Stent designs

1.2 Motivation

In this treatise, a model for pseudoelastic or more precisely superelastic shape
memory behavior is proposed, adopting the notions underlying an existing
theory. To date, no thermodynamic theory for shape memory alloys within
a self-consistent Eulerian scheme of finite deformations has been proposed, in
spite of the large deformations observed in shape memory alloys and elaborate
theories of kinematics available today:.

Considering the applications presented in the previous section, there is demand
for a three dimensional model of pseudoelastic material behavior. While appli-
cations such as orthodontic arch wires may be designed and simulated using
one-dimensional models, the complex stress states in medical stents clearly
require three-dimensional theories. In order to be employed as a simulation
device, such a theory has to be adaptable to numerical solution procedures
such as the finite element method. As the strains observed in shape memory
alloys are in the range of 10% for polycrystals (cf. Gadaj et al. 1999, Shaw
2000), a large deformation scheme should be used.

It has been established experimentally that phase transformation to marten-
site is a thermomechanically coupled process, with latent heat being generated
during transformation to martensite. At the same time, the material behav-
ior is strongly dependent on temperature. A model of shape memory alloys
should account for that. For obvious reasons, the theory should be motivated
by micromechanical observations to actually model physical effects. It should
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be able to account for complex loading paths as well.

Hence, the task is as follows: Based on an evaluation of existing models,
within a kinematically consistent framework of finite deformations a thermo-
dynamically consistent model for pseudoelasticity is to be found. The model
has to account for the thermomechanical coupling and is to be implemented
into a finite element code. The formulation should be readily extendable to
include additional effects such as one-way shape memory effect and tension-
compression asymmetry at a later stage.

1.3 Outline

This dissertation is structured into eight chapters. Subsequent to this preface
the properties of shape memory alloys and theories to their description are
examined in detail. Micromechanical explanations for the behavior observed
on the macroscale are given as modeling of shape memory alloys from a phe-
nomenological point of view has to be motivated on physical grounds. For
reference, literature covering a range of different experimental observations on
shape memory alloys is cited.

Existing models describing shape memory alloy behavior may be categorized
according to the technique applied. Theories representative of each class are
presented and compared with regard to some features considered to be impor-
tant here. Based on this discussion, the approach to modeling followed in this
dissertation is outlined and justified.

In Chapter 3, the kinematical frame to be used is defined. Thorough deriva-
tions of the measures of deformation and strain needed give rise to the def-
inition of objective rates, suitable for the formulation of material laws in a
Eulerian frame.

Complementary to these kinematical considerations is the subsequent pre-
sentation of conservation equations and stress measures in Eulerian and La-
grangian formulations. Based on the definition of stress measures associated
with both current and reference configurations, the stress power is derived.
Subsequently, objective stress rates are introduced which may be used in the
development of constitutive equations. Hill’s notion of work conjugacy is in-
troduced next. An extension of this concept to Eulerian quantities proposed
by Xiao et al. (1998b) is used to define stresses and strains that form work
conjugate pairs. This provides the foundation of the thermodynamical con-
siderations in Chapter 5. However, first the weak form of the balance of
momentum equation is formulated in rate form with regard to a subsequent
numerical simulation.

The framework for phenomenological modeling is completed by defining the
thermodynamic theory to be employed. Here, a theory with internal state
variables is established based on a thermodynamic conjugate pair of stress and
strain. The number and type of internal state variables is specified in Chap-
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ter 6. In fact, criteria for thermodynamic consistency and thermomechanical
coupling are derived for arbitrary sets of scalar or tensorial state variables.
Having elaborated the foundations to the constitutive theory, one of the mod-
els presented in Section 2.2, i.e. the Ry-model proposed by Raniecki et al.
(1992), is reformulated on the grounds of a Eulerian theory based on the log-
arithmic rate, carefully choosing thermodynamically independent variables of
state. First, a complementary hyperelastic potential for the elastic material
response is defined. In order to describe the behavior of a solid in a two-phase
state of constrained equilibrium, the Helmholtz free energy of the individual
phases is derived. An averaging procedure based on the single internal vari-
able of the model, the mass fraction of martensite, yields the Helmholtz free
energy of the two-phase system, amended by a term accounting for the inter-
nal interaction in constrained equilibria. Adopting the concept of irreversible
forces, the evolution of the thermodynamic driving force and subsequently a
kinetic law for the mass fraction of martensite are obtained. The chapter is
concluded by specifying the independent parameters of the model that need to
be calibrated to experimental data for simulations. To this end, an isotropic
material symmetry is proposed. By incorporating Fourier’s law, the formula-
tion of the model is concluded.

One of the objectives giving rise to the considerations in this treatise is the
lack of a three-dimensional comprehensive theory readily adaptable to finite
element methods. In Chapter 7, the implementation of the model into a fi-
nite element code is discussed. Care is exercised to retain objectivity during
integration. The model is calibrated to experimental data. One-dimensional
calculations in tension and simple shear are presented to characterize the mate-
rial behavior predicted by the model. Finally, the model is successfully applied
to the finite element simulation of fairly complex structures.

The dissertation is concluded by a summary of the treatise. Some remarks
concerning possible modifications of the model to account for shape memory
effects other than pseudoelasticity are given.

1.4 Mathematical notations

In addition to the conventions and notations defined on pages vi to xii, some
mathematical notations of importance to the subsequent modeling are sum-
marized here.

Tensor components are defined with respect to an orthogonal Cartesian coor-
dinate system. The symmetric unit tensor of second order is given as

1= Jijez~®ej, (1'1)

while the symmetric unit tensor of fourth order has the form

I= % (5im5jn + 51,71,5771_7) e;® €, ende,. (12)
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Contraction operations are defined by
a®b = az-bje¢®ej
a-b = aib,;
AB = Aiijke,; Q@ ex
A:B= Aij B,;j

(1.3)

for i, j, kK = 1, 2, 3. For trace, transpose, deviator and inverse, the following
definitions hold

tr (A) = A,;,;
(AT = Ay
tr(AB) =A B
A’ = A -~ %tr (A)1 (1.4)
AATY =1
_ 1 =3
A AT =6, =
ik’ kj J {0 i 7& j.
For rotation tensors Q and R obeying
QQT =1 detQ =1 (1.5)
the Rayleigh product is defined by
Q*x« = Q«
QxA = QAQT (1.6)
(Q *]H[)ijkl = Qinijk'rle]H[pqrs
for i, 7, k, ... = 1, 2, 3. The following rules hold
Qx(H:A) = (Q+H): (QxA)
* (RxA = (QR)x A
Q * ( ) (QR) (L

(QxA): (QxB)=A:B
tr (ABC) =tr (CAB).






2 Properties and description of shape memory alloys

The phenomenological description of shape memory alloys requires some basic
knowledge of the underlying crystallographic effects. Thus, in this chapter the
fundamental crystallographic properties responsible for shape memory behav-
ior are presented. Micromechanical observations substantiate the stress-strain
behavior macroscopically observed.

The characterization of different shape memory alloys from various perspec-
tives is a matter of ongoing research. In Section 2.1.3, some references are
made to experimental results giving rise to the assumptions necessary in for-
mulating material laws.

Different models proposed to date were studied in the process of establishing
the material law presented in Chapter 6. Their main features are summarized
below.

2.1 Shape memory effects
2.1.1 Microscopic properties

Martensitic transformations are generally displacive or diffusionless transfor-
mations, characterized by a motion of the interface between the phases in the
order of magnitude of the speed of sound. They are referred to as athermal
transformations because the transformation to or from martensite is indepen-
dent of time, but only dependent on temperature. Martensitic transformation
is associated with latent heat, with heat being released during the transfor-
mation to martensite. Associated with the transformation is a hysteresis, and
there is a temperature range where both phases coexist (cf. Wayman & Duerig
1990).

From a crystallographic point of view two mechanisms may be identified, the
Bain strain and the lattice-invariant shear. The Bain strain, also referred to
as lattice deformation, is the coordinated step-wise movement of the atoms
of an initially austenitic structure, leading to a deformed martensitic struc-
ture. Depending on the alloy under consideration, there is a small volumetric
change of about —0.2% to —0.5 % during phase transformation from austenite
to martensite (cf. Funakubo 1984).

The lattice-invariant shear is an accommodation step. While the shape of
the martensitic structure produced by the Bain strain differs from the original
shape, here the shape of the transformed structure is accommodated to its
surroundings. Such an accommodation is possible either by irreversible slip,
which can accommodate both volumetric and shape changes, or by twinning.
Twinning is the dominant accommodation process in shape memory alloys as
it can accommodate shape changes in a reversible way. The number of direc-
tions or variants required to restore the original shape of the matrix depends
on the shape memory alloy.
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Twin boundaries are of a very low energy and they are quite mobile. Under
an applied stress, the twin boundaries, i.e. the boundaries between marten-
site plates as well as the boundaries within plates, will move to a resultant
shape better accommodating the stress. The process of orientation due to
the condensation of many twin variants into a single favored variant is called
detwinning.

Shape memory alloys are frequently characterized by their transformation tem-
peratures. These temperatures, usually denoted by M, M;, A and A; re-
fer to the temperature at which the temperature induced transformation to
martensite respectively austenite starts and finishes. As these transformation
temperatures differ, a hysteresis of alloy-dependent width is associated with
martensitic transformations. The notion of friction associated with the move-
ment of twin-boundaries is often employed to explain the hysteresis.

Below M, temperature induced martensite is in a self-accommodated state.
Application of an external load results in detwinning by lattice-invariant shear.
Upon unloading, the stress-induced martensite is relaxed elastically without
shape recovery. The remaining strain is not due to slip, therefore this ef-
fect is called pseudoplasticity or one-way shape memory effect, see Figure 2.1
(after Helm 2001). The remaining deformation may be removed by heating
the specimen to a temperature above A;. During this process, the oriented,
stress-induced martensite transforms to austenite, hence the original shape is
recovered. Subsequent cooling below the M 5 temperature is associated with
the formation of martensite twins, leading to both the original shape and the
original crystallographic structure.

If the transformation back to martensite is prevented, either by application of
external loads or by internal stresses, e.g. due to dislocations, the microstruc-
ture will change between austenite and martensite when the body is subjected
to temperatures varying between M, and A ;. This leads to shape changes due
to variations in temperature only. This effect is called two-way shape memory
effect.

If the specimen is loaded in its austenitic phase, stress-induced transformation
to martensite sets in at a certain level of stress. The resulting oriented marten-
site is associated with significant strains, but may be completely recovered
upon unloading. Therefore, such material behavior is called superelasticity.
It must be distinguished between the terminologies pseudoelasticity, super-
elasticity and rubber-like behavior. Here, the definition given by Otsuka &
Wayman (1998b) is adopted. When an apparently plastic deformation recov-
ers by isothermal unloading, i.e. a closed hysteresis in stress-strain space is
observed, the behavior is called pseudoelasticity, regardless of the origin of
this behavior. The term pseudoelasticity comprises both superelasticity and
rubber-like behavior. Superelasticity is characterized by a closed loop stress-
strain curve due to stress-induced martensitic transformation during loading
and reverse transformation during unloading. On the other hand, the latter
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Figure 2.1: Shape memory effects

terminology, i.e. rubber-like behavior, refers to hysteretic behavior due to re-
versible movement of twin boundaries in the martensitic state. See Otsuka &
Wayman (1998a) for a further discussion of microscopic properties.

2.1.2 Macroscopic properties

Macroscopically, the microscopic effects result in stress-strain responses which
strongly depend on temperature. In Figure 2.2, the material response at tem-
peratures above M, above A, but below M, and below M, is depicted (see
also 2.3). In the first case the material behavior is plastic because the energetic
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T

Figure 2.2: Plastic austenite, pseudoelasticity, shape mem-
ory effect (front to rear)

barrier to form martensite is so high at elevated temperatures that plastic slip
occurs before stress-induced transformation sets in (cf. Hornbogen 1987).
Closer to the A s-temperature, a pseudoelastic stress-strain hysteresis is ob-
served. With varying temperature, this hysteresis may change its position,
width and height (cf. Funakubo 1984). This is the temperature range under
consideration here. Upon conclusion of the phase transformation, the material
response is again elastic due to elastic deformation of stress-induced, oriented
martensite.

Below M, one-way shape memory behavior is observed. Here, temperature-
induced, accommodated martensite is converted into oriented martensite dur-
ing deformation. There is no phase transformation involved in the process.
However, in contrast to pseudoelasticity, where strains are recovered instanta-
neously upon unloading, the reverse transformation from oriented martensite
below M, must be initiated by heating above the A, temperature first. As
the material returns to a “remembered” previous configuration during shape
recovery, the term shape memory alloy is motivated by the one-way effect.
Not shown in the diagram are two-way effect and rubber-like behavior. At
temperatures well below M £ rubber-like behavior due to movement of twin
boundaries may be observed, leading to hysteretic behavior without phase
transformation (cf. Otsuka & Wayman 1998b). Two-way shape memory ef-
fect is obtained by introducing dislocations to stabilize the configuration of
martensite. The dislocations are not removed in the parent phase after reverse
transformation and subsequent heating and are surrounded by a stress field
which induces particular variants upon cooling. In two-way effect, contraction
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and elongation behavior can be observed when the specimen is subjected to
thermal cycling. See Figure 2.3 (Otsuka & Wayman 1998b) for the different
regions of shape memory effect in stress temperature plane. For alloy B, the
slip stress is so low that superelasticity or shape memory effect are not per-
mitted. These effects require that the stress must remain below the line for
critical stress to avoid permanent deformation.

In TiNi shape memory alloys, the rhombohedral R-phase transformation oc-
curs in a particular temperature range prior to the transformation to marten-
site (cf. Miyazaki & Otsuka 1986, Kawai et al. 1999). The R-phase shall not
be discussed here explicitly.

2.1.3 Literature on shape memory alloys

In this section a short overview regarding the extensive literature on experi-
mental results on shape memory behavior is given. It is by no means complete,
but rather intended to provide a basis for further study and to motivate the
modeling below.

A first impression of the stress strain response of NiTi at various temperatures
is obtained from the work of Miyazaki et al. (1981) and Miyazaki et al. (1986),
who study the effects associated with cyclic loading. Here, an evolving per-
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manent set is observed.

The thermomechanical behavior of stress-induced martensitic transformation
is investigated by Orgéas & Favier (1998). In their study, they observe a
strong asymmetry between tension and compression. Kaack et al. (2002),
Kaack (2002), Gibkes et al. (2002) study the influence of defects induced by
mechanical and thermal cycling on the thermoelastic behavior of NiTi using
frequency dependent photothermal radiometry. Based on this work, the tem-
perature dependence of mechanical elasticity constants may be established.
Gadaj et al. (1999) determine the temperature evolution during tensile tests
on TiNi specimens. They measure between 10 and 20 Kelvin temperature
change while loading up to 4% true strain at different strain rates, which lead
to different temperature evolutions. The effect of hydrostatic pressure is in-
vestigated by Kakeshita et al. (1992).

Under certain loading conditions, NiTi specimens may exhibit a macroscopic
martensite band during superelastic deformation. Based on the work by Shaw
& Kyriakides (1995), who study the uniaxial pseudoelastic response exten-
sively to monitor and describe the evolution of phase boundaries, subsequent
studies are conducted using flat strips (cf. Shaw & Kyriakides 1997) respec-
tively microtubes (cf. Li & Sun 2002). It is observed that under combined
tension and torsion the homogeneous torsional phase transformation is super-
posed by the initiation and growth of a macroscopic spiral martensite band
appearing under tension. In this respect, a size effect is noticeable (cf. Sun
et al. 2001).

The hysteretic behavior of NiTi is studied by Lin et al. (1994) and Tanaka
et al. (1995a), who obtain results contradictory to those obtained by Miiller
& Xu (1991), Huo & Miiller (1993) on a CuAlZn specimen. Evidently, the
initiation of phase transformation within the bounding loop is not governed
by a diagonal in NiTi as is the case for CuAlZn (see also the discussion of
Miiller & Xu 1991 below).

Phase transformation of SMAs is approximately isotropic. Orgéas & Favier
(1998) study the isothermal behavior of stress induced martensitic transfor-
mations in an equiatomic NiTi alloy. Their shear specimens exhibit com-
pletely isotropic behavior both during initial loading, which is stress-induced
martensitic transformation, and during subsequent cycling, which is a marten-
site reorientation process as they conduct their experiments below the A ,-
temperature. Sittner & Novdk (2000) arrive at the same conclusion by em-
ploying a constant stress averaging approach to model polycrystalline SMAs.
Their calculations are based on experimental data obtained on CuAlNi single
crystals.



2.2 Modeling of shape memory alloys 13

2.2 Modeling of shape memory alloys

Common approaches to modeling of shape memory alloys may be classified
according to the applied technique, differentiating between

e theories based on statistical mechanics
e models based on Landau theory
e micromechanical models and

e phenomenological theories.

Some concepts developed within these categories are presented below. As the
focus is on phenomenological theories here, no in-depth discussion of other
techniques but rather a general overview is given. Theories of particular in-
terest to the phenomenological modeling in Chapter 6 are described in more
detail.

2.2.1 Statistical mechanics

Within the framework of statistical mechanics, it is postulated that the rate
of transformation between constituents is proportional to the net probability
that one phase will overcome the energetic barrier required to transform to
a second phase. Several theories have been established on these grounds to
characterize and model the behavior of shape memory alloys.

A very popular model is proposed by Achenbach and Miiller (see Achenbach
1989 and the references therein). They consider a lattice body which may be
austenitic or in one of two martensitic configurations. The energetic state of
the system depends on temperature, the load applied, and on the interfacial
energy. The latter is a function of the number of interfaces. By means of
statistical mechanics the free energy at equilibrium and constitutive equations
are obtained.

Based on this model, Seelecke studies the torsional vibration of a shape mem-
ory wire by subjecting a rigid mass suspended by the wire to a rotational
motion (cf. Seelecke 1997). As the wire behaves as a torsion spring, the
mass oscillates, its motion being damped by the dissipation of energy during
martensitic transformation. Since this effect is temperature dependent, the
system may be actively controlled by heating of the wire. Similar experiments
by Seelecke (2002) using a tubular specimen lead to an amended version of
the model to study the damping behavior. In Govindjee & Hall (2000), com-
putational aspects regarding the implementation of the model by Achenbach
(1989) are considered. Numerical simulations on a structural system yield re-
alistic and promising results.

The notions introduced by Miiller (1989) in his study on the size and tempera-
ture dependence of the pseudoelastic hysteresis under one-dimensional tension
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and his definition of an interfacial energy between martensitic and austenitic
domains in the body have inspired many other theories. They were subse-
quently generalized to three dimensions, see the discussion of Raniecki et al.
(1992) below. According to Miiller (1989), the interfacial energy includes phe-
nomena such as the elastic misfit of the individual phases and the energy of
elastic interaction of neighboring domains. It is the determinant for the size
of the pseudoelastic hysteresis.

Later, Miiller & Xu (1991) give further experimental results on the hysteretic
behavior of CuZnAl single crystals to determine the width of the pseudoelastic
hysteresis, if and how the width of the hysteresis changes with temperature and
what kind of processes are admissible within the bounding loop. They con-
clude that the width is determined by the interfacial energy including elastic
misfit of the phases and elastic interaction of neighboring domains. Revising
some of their previous arguments concerning inner loops (cf. Miiller 1989),
they find that phase transformation is initiated at states of unstable equilib-
ria, which may be represented by a diagonal in the stress-strain hysteresis.
Based on these observations, they develop a one-dimensional theory that is
in good agreement with their experimental data. A more phenomenological
approach by Fu et al. (1993), approximating a non-convex free energy curve
by two intersecting parabolas and a non-monotone load by a straight line in a
load-deflection diagram, leads to a qualitative description of pseudoelasticity,
reproducing the experimentally observed characteristics of inner cycles. The
theory is elaborated further based on additional data measured on an CuAlZn
specimen by Huo & Miiller (1993), reviewing other concepts of statistical me-
chanics as well. Again, emphasis is on the description of the behavior observed
within the bounding loop of the hysteresis.

2.2.2 Landau theory and relaxation of free energy

Within the framework of Landau theory, Falk proposes a one-dimensional
model capable of a qualitative description of the material behavior of shape
memory alloys (cf. Falk 1983). Considering a single crystal, the temperature
dependent (one-dimensional Landau) Helmholtz free energy density is derived.
All thermodynamical functions are derived from this potential. To account for
the interfacial energy, a Ginzburg-Landau theory is adopted. The concept is
extended to three dimensions by Falk & Konopka (1990). Based on a mod-
ified version of the original model developed by Falk (1983), Bubner (1996)
simulates the behavior of CuZnAl single crystals. His model reproduces exper-
imental observations except for the diagonal of unstable equilibria, identified
by Miiller (1989) as the criterion for initiation of phase transformation.

Recently, relaxation methods have been becoming increasingly popular. They
are motivated by the common problem of microstructural approaches, that
a given material can form many different microstructures, which are difficult
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to construct collectively. Also, numerical computations are elusive, as dis-
crete schemes develop oscillations on the scale of the grid. Hence, it has been
proposed to relax the problem and to minimize a relaxed energy function in-
stead of the free energy determined using e.g. Landau theory (Bhattacharya &
Dolzmann 2000). Adopting the model by Achenbach (1989), Govindjee et al.
(2002) examine the free energy of mixing for the case of n variants. Based on
a quasi-convex analysis, the free energy is relaxed yielding a lower bound that
gives rise to practical evolutionary computations.

2.2.3 Micromechanical models

A micromechanical model for superelasticity is proposed by Patoor et al.
(1996). Here, the micromechanical analysis is based on a kinematical descrip-
tion of the physical strain mechanisms and a definition of a local thermody-
namical potential. The volume fractions of the different variants of martensite
are chosen as internal variables describing the evolution of the microstructural
state of the material. Using a self-consistent scheme, global relationships are
obtained. Calculations performed based on the constitutive equation derived
in this manner are in good agreement with experimental data on Cu-based
shape memory alloys.

Within the model, the internal stresses are presumed to originate from marten-
sitic interactions. Hence, an interaction matrix is introduced to account for
these microstructural aspects.

This concept has been refined continuously. Niclaeys et al. (2002) modify the
interaction matrix to obtain a more realistic description of the interaction en-
ergy, which is influenced by the fact that martensitic variants tend to form in
self-accommodated groups to minimize the energy associated with their for-
mation. So far, this effect had been considered only within micromechanical
models (cf. Gao et al. 2000, Huang et al. 2000).

Adopting a self-consistent model to calculate the transformation surfaces for
different textures, Chirani et al. (2003) observe that the normality rule known
from plasticity is obeyed. This property indicates that the phenomenological
description of superelasticity may be possible with plasticity type models.
Other micromechanical models regard the martensite generated during A — M
phase transformation as a spherical inclusion in the austenitic matrix which
is subject to interactions with the matrix (cf. Sun & Hwang 1993). Applica-
tion of Eshelby or Mori-Tanaka (self-consistent) methods (c{. Mori & Tanaka
1973), commonly under the assumption of isotropic elasticity for matrix and
inclusion, leads to descriptions on the macroscopic scale.

Other micromechanical approaches are concerned with the kinetics of phase
boundary movement. Based on thermodynamic principles at the material
microlevel, Fischer & Oberaigner (2001) derive a jump condition and ther-
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modynamic force at the interface and eventually obtain two coupled relations
describing the kinetics of the phase boundary and heat conduction. A micro-
mechanical model proposed by Sun & Lexcellent (1996) based on Sun & Hwang
(1993) describes the two-way shape memory effect during cooling and heating
after initial training of the material. The model may be used as a theoretical
basis to predict the two-way shape memory effect of polycrystals. Sittner &
Novék (2000) study the anisotropy behavior of martensitic transformation in
tension/compression experiments with oriented CuAlNi single crystals. Ap-
plication of a constant stress averaging procedure to model the behavior of
the polycrystal shows the impact of crystallographic properties and material
attributes associated with martensitic transformations on the macroscopic be-
havior of shape memory alloy polycrystals. The link between micromechanical
and phenomenological theories is investigated by Fischer & Tanaka (1992), who
give a review of various approaches, equations and general results on condi-
tions for the development and growth of transformed regions on a microscale
(cf. Fischer et al. 1994).

2.2.4 Phenomenological models

Many phenomenological models are based on plasticity theories or on exten-
sions thereof. Within an extended classical theory of plasticity, Bertram (1982)
proposes a model based on two temperature dependent yield functions in stress
space. A criterion for the conclusion of phase transformation, called plastic
limit deformation, is defined in strain space. A one-dimensional theory to
describe the thermomechanical behavior during processes of stress-induced
martensitic transformation is developed by Tanaka et al. (1986). As no re-
orientation of martensite is considered, the theory is limited to pseudoelastic-
ity, defining the mass fraction of martensite as an internal variable determining
the constitutive equation. The evolution of martensite is described using an
exponential function proposed by Koistinen & Marburger (1959). Delobelle
& Lexcellent (1996) define an internal variable similar to the kinematic hard-
ening variables of plasticity theories to describe the pseudoelastic hysteresis.
Using a viscoplasticity-type flow rule, internal loops under isothermal con-
ditions are described in reasonable agreement with experimental data. By
treating the continuum as a three-phase body, Lexcellent et al. (2000) differ-
entiate between both self-accommodating, thermally induced martensite and
detwinned or oriented, stress induced martensite, leading to an amended defi-
nition of the Helmholtz free energy. Two internal variables, the volume fraction
of self-accommodating martensite and the volume fraction of stress induced
martensite, are used. By accounting for the thermomechanical procedure of
training of the material by a term in the free energy function, i.e. the applied
stress during thermal cycling, the two-way shape memory effect is accounted
for.
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Raniecki et al. (1992) propose a three-dimensional thermodynamic theory,
elaborated further by Raniecki & Lexcellent (1994, 1998), to describe pseudoe-
lasticity. The model is based on a specific Helmholtz free energy function for
a two-phase solid in a state of constrained equilibrium. Introducing the mass
fraction of martensite as an internal state variable, all states on and within
the stress-strain hysteresis are accounted for. Hence, adopting the concept of
generalized irreversible forces, the thermodynamic force driving martensitic
phase transformation can be identified. Considerations concerning active and
neutral processes lead to a rate-equation for the mass fraction of martensite,
uniquely determining the inelastic strain rate and thereby the stress. As this
model is based on thermodynamical considerations, thermodynamical consis-
tency is automatically ensured.

The model may be interpreted as an extension of the one-dimensional theories
proposed by Miiller (1989) and Miiller & Xu (1991) to three dimensions. The
description of transformation kinetics is based on Tanaka (1990), who adopts
the argumentation of Magee (1970). The model has been shown to be read-
ily implemented into finite element codes and may be calibrated to various
shape memory alloys (cf. Raniecki & Lexcellent 1994, Zi6lkowski 2001, Miiller
& Bruhns 2002a). As the model proposed in Chapter 6 is an extension of
Raniecki et al. (1992), a more detailed discussion is given below.

A model for both pseudoelasticity and one-way shape memory effect is subse-
quently proposed by Boyd & Lagoudas (1996a, 1996b). By accounting for the
reorientation of martensite, the description of one-way shape memory effect
becomes possible. However, reorientation of martensite is disregarded later in
a theory extending the earlier concepts by Lagoudas and coworkers (cf. Qidwai
& Lagoudas 2000). The latter theory is based on an additive decomposition
of the Green-Lagrange strain tensor to account for motions characterized by
small strains but large rotations.

Within the framework of generalized plasticity (cf. Lubliner 1984), Auricchio &
Lubliner (1995) and Lubliner & Auricchio (1996) propose a model to describe
pseudoelasticity and one-way shape memory effect. Based on the definition
of an inelastic potential of Drucker-Prager type, inelastic domains for A — M
and M — A transformations are defined. In conjunction with a flow rule for
the Drucker-Prager potential, a rate equation for the mass fraction of marten-
site is postulated. For the dependence on the inelastic potential chosen, a
closed-form solution for the mass fraction of martensite exists, giving rise to
an explicit equation for the inelastic strain rate associated with forward and
reverse phase transformations, respectively. However, while the underlying
generalized plasticity theory incorporates thermodynamic fundamentals, such
as the Clausius-Duhem inequality, the model is not embedded in a thermo-
mechanical frame in the sense that no definition of a free energy function is
included. This is a drawback shared by most plasticity-type models of shape
memory behavior.
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Even though the model is intended to be used for the description of both
pseudoelasticity and one-way shape memory effect, it is in fact limited to the
former as no reorientation of martensite is considered. Also, without a sound
thermodynamic framework incorporating the latent heat of phase transforma-
tion, the thermomechanically coupled process of temperature-induced shape
recovery cannot be modeled adequately. While subsequent developments (cf.
Auricchio & Taylor 1997, Auricchio et al. 1997, Auricchio 2001) do not over-
come the shortcomings mentioned, they show the efficient implementability of
the model into the finite element method (see also Rebelo et al. 2001a, Rebelo
et al. 2001b).

A very comprehensive model to describe pseudoelasticity as well as one- and
two-way shape memory effects is developed by Bo & Lagoudas (1999a, 1999b,
1999c, 1999d). Based on a micromechanical analysis over a representative vol-
ume element (RVE) they first obtain a generic form of the Gibbs free energy
for polycrystalline shape memory alloys. Except for the term accounting for
plasticity effects, their Gibbs free energy function is equivalent to the formu-
lation by Raniecki & Lexcellent (1994), which in turn is closely related to the
Helmholtz free energy as derived in Raniecki & Bruhns (1991) that is adopted
below.

Bo & Lagoudas introduce a set of four internal state variables, i.e. the volume
fraction of martensite, a macroscopic transformation strain, and back and drag
stresses due to both martensitic phase transformation and its interaction with
eigenstrains. In addition, they consider plastic strains as the microstructural
change responsible for the two-way shape memory effect. While the fraction of
martensite and the drag stress are scalars, the remaining three internal vari-
ables are second-order tensors.

The definition of both a volume fraction of martensite and a transformation
strain tensor is motivated by the necessity to differentiate between twinned
and detwinned martensite, which is of fundamental importance to model both
temperature- and stress-induced transformations. Still, calibrating the model
by thermal cycling at different prescribed levels of stress yields a parameter
set unable to describe both types of transformations quantitatively. In addi-
tion, the manner in which the accumulation of plastic eigenstrains in terms
of the loading history is accounted for cannot be readily adapted to numer-
ical solution procedures. Only under certain assumptions, e.g. requiring the
proportionality of loading paths and disregarding the evolution of plastic eigen-
strains, but at the same time abandoning the characteristics which distinguish
the model from other approaches, the model is suited for numerical implemen-
tations. However, the underlying concepts are valuable in developing material
laws accounting for all three shape memory effects.

A few models such as Lexcellent et al. (1994) are specifically proposed for
R-phase transformations. However, on the macroscopic scale it may be admis-
sible to employ existing phenomenological theories for austenite-martensite
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transformations in a analogous manner to R-phase transformations.

There is only a very limited number of theories of shape memory behavior
within large deformation schemes. Auricchio & Taylor (1997) propose a finite
deformation theory based on the multiplicative decomposition of the deforma-
tion gradient into an elastic part and a part associated with phase transforma-
tion. Disregarding martensitic reorientation, only pseudoelasticity is within
the scope of the model. The theory is based on the notions of plasticity and
not embedded in a thermodynamic frame. Pethé (2000, 2001) decomposes
the total deformation gradient into elastic, plastic, and phase transformation
parts, describing elasticity using an integrable hypoelastic model based on the
logarithmic rate proposed recently, see below. A multiplicative decomposition
of the deformation gradient is proposed by Helm as well (cf. Helm 2001, Helm
& Haupt 2001, 2003). He extends a geometrically linear theory intended for
the description of pseudoelasticity and both one- and two-way shape memory
effects to finite deformations.

2.3 Motivation

Studying the extensive literature on models for shape memory alloys, it may
seem that there is no need for another phenomenological model. In fact, the
question arises why so many different theories coexist.

As all models are based on simplifications of observed phenomena, the suit-
ability of one model or another sometimes is a matter of priorities. A model
not appropriate in one particular case may be very well suited in another sit-
uation, where different phenomena are under consideration.

The majority of existing models is based on an assumption that is regarded
as an oversimplification here: the assumption of small strains. In view of
the magnitude of the strains observed in pseudoelasticity and one-way shape
memory effect, which may exceed 15 % for monocrystals (cf. Sittner & Novak
2000, Miyazaki et al. 1984) and is close to 10% for polycrystals (cf. Gadaj
et al. 1999, Shaw 2000), the assumption of small strains is a rather strong
restriction. Hence, in contrast to many researchers regarding the error due
to the small strain-assumption as irrelevant in comparison to other simplifica-
tions of their models, here the focus is on providing a sound thermomechanical
basis for models of shape memory alloy behavior, comprising a Eulerian theory
of finite deformations based on the logarithmic rate (cf. Xiao et al. 1997a,
1997b, 1998c, 1998d) and a thermodynamic theory with internal state vari-
ables (cf. Truesdell & Toupin 1960, Coleman & Gurtin 1967, Malvern 1969,
Truesdell & Noll 1992), regarding only the reversible strain as thermodynamic
state variable (cf. Lehmann 1974, 1984).

The phenomenological model proposed is limited to the description of pseu-
doelasticity. However, it will be illustrated how the model may be extended
to include one- and two-way shape memory effects and other phenomena ex-
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perimentally observed. It seems that this approach is advantageous to first
proposing an extensive model and then attempting to reestablish this theory
within a different kinematical setting.



3 Deformation and motion

3.1 Introduction

In this chapter the kinematics of non-linear continuum mechanics are pre-
sented. The kinematic relations relevant to subsequent considerations and
the respective Eulerian and Lagrangian? strain measures are given. Based on
the notion of objectivity, the corotational rate adopted later for the formu-
lation of constitutive equations describing pseudoelastic material behavior is
introduced. The theory consistently combines the additive and multiplicative
decompositions discussed in the literature.

This chapter is based mainly on the monograph by Ogden (1984) and the
work of Xiao et al. (1997a, 1997b, 1998¢c, 1998d, 2000b) and Bruhns et al.
(2001). Some references are made to the monographs of Truesdell & Noll
(1992), Malvern (1969), Chadwick (1976) and Marsden & Hughes (1983), who
treat the subject in more detail.

3.2 Kinematics
3.2.1 The notion of observers

The concept of an observer provides the framework necessary for the descrip-
tion of the phenomena that occur in the physical world. An observer is in-
troduced in order to provide a means of measuring physical quantities and to
monitor the relative positions of points in space and the progress of time (cf.
Ogden 1984).

In continuum mechanics, the space under consideration generally is the three-
dimensional Euclidean point space £, and the times observed are elements of
the set of real numbers R. Events are recorded by an observer O as a pair (x, t)
in the Cartesian product £ x R, where x € £ is a point of £ and t € R is a
time in R.

Two events perceived by O at distinct points x; and X2 at times ¢; and is
are separated by distances |x2 — x;| in £ and |tz —t1| in R. The most general
one-to-one mapping of £ x R onto itself that preserves both these distances in
space and time and the order in which events occur is given by

x5 —X; = Q(t)(x2 —x1) with t*=t—a. (3.1)

Here, the tensor Q is a time dependent second-order orthogonal tensor and
a € R a constant. Stipulating that different observers should agree about
distance and time intervals of events, (3.1) may be referred to as an observer
transformation. Adopting this concept, the mapping

(x,t) — (x*,t) (3.2)

20gden (1984) uses the term Lagrangean strain measure instead of Lagrangian strain
measure.
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is a change of observer from O, who records the event at place x and time ¢,
to O, who observes the same evenl at place x* and time t*.

The tensor Q introduced above is specified to be proper orthogonal. Hence,
transformation (3.1) is interpreted as a rotation of vectors in E which preserves
orientation. With the additional notational change c(t) = x] — Q(¢)xi1, a
change of observer according to (3.1) is given by the well-known equation

x* = Q(t)x+c(t) with t*"=t—-a, (3.3)

where the index 2 is omitted.

It should be noted that the definitions of an observer and of an observer
transformation are independent of the choice of basis for the vector space E.
The notion of an observer is of fundamental importance. For example, for the
same moving point, two observers in relative motion will record different values
of speed. Evidently, measurements of physical quantities generally depend on
the choice of observer. On the other hand, in contrast to their kinematical
descriptions do physical phenomena not depend on the choice of observer.
This must be reflected by the mathematical formulation of physical laws such
as the constitutive model developed below.

In the following, the distinction between t and t*, which separates the recording
of events between O and 0%, is of no relevance, and for simplicity it is assumed
that t* =t or equivalently a = 0.

The definition of an observer is independent of a choice of origin. However,
if observers O and O™ choose origins o0 and o* in &, respectively, x and x*
may be interpreted as the respective position vectors of the points x and x*
relative to o and o™,

3.2.2 Configurations and motions of bodies

A body B is a set of (material) points or particles which can be put into one-
to-one correspondence with some region B of the Euclidean point space £. As
the body moves, the region B it occupies in £ changes constantly.

The one-to-one mapping

x:B—E (3.4)

of the particles of B to the places they occupy in £ is termed a configuration
of B. The configuration x of the body and its inverse x~! are taken to be
twice continuously differentiable (cf. Ogden 1984). For a generic particle X
of B, the place x occupied by X € B in the configuration x is

x = x(X,t). (3.5)

Inversely, a particle X of B may be found for known, observer-dependent
configuration x, given the position x

X =x"'x,1). (3.6)
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The set of places B occupied by all particles of the body B in the configura-
tion x is

x(B) = {x(X), X € B} . (3.7)

A one-parameter set of configurations x, : B — £ depending on the parame-
ter t is termed a motion of the body B. For fixed X corresponding to a given
particle, the equation

x = x,(X) = x(X, 1) (3.8)

describes a curve in £ called the path of X in the motion.

3.2.3 Reference configurations and deformations

The domain of a body in the initial state at a time ¢ = 0 is called the initial
configuration. Physical observations of the body B are made in specific con-
figurations. Therefore, in describing the motion and deformation of the body,
a reference configuration is needed. During the motion, the particles of B may
be labeled by their places in this fixed, but arbitrarily chosen reference config-
uration. It is not required that the reference configuration corresponds to the
initial configuration, in fact, it does not have to be a configuration actually
occupied by B at any point in time at all. The significance of the reference
configuration lies in the fact that motion is defined with respect to this config-
uration. However, here it is assumed that initial and reference configuration
are identical.

For given position X of the particle X in the reference configuration, the
time-independent configuration x, specified by

x:XO(X)) X:Xal(x’t) (3'9)

is the reference configuration. The region of £ occupied by B in the reference
configuration is denoted by By. The current configuration is denoted by x,
with x,(B) = B;.

Ignoring the distinction between the particle X and the place X used to iden-
tify it for practical purposes, from the last two equations the current place x
of the particle with the position X in the reference configuration is

x = x(X,t). (3.10)

The mapping x from By to B; defined by (3.10) depends implicitly on the
reference configuration chosen. For any fixed time ¢, x is called a deforma-
tion from the reference configuration, and for arbitrary time ¢, equation (3.10)
specifies a one-parameter family of such deformations. Clearly, a deformation
can be defined only for a given reference configuration. While different ob-
servers may choose different reference configurations, any choice of reference



24 3 Deformation and motion

configuration is independent of observer.

The places X and x occupied by the particle X of B in the reference and cur-
rent configurations may also be regarded as position vectors in [ relative to the
respective fixed origins O and o in £. For the general case of non-coinciding
origins, the body with the particle X is depicted in its reference and current
configurations in Figure 3.1 (see Ogden 1984).

Bo

Figure 3.1: Body and particle in reference and current con-
figurations

Rigid-body motions

A rigid-body motion of a body B recorded by a single observer O is a mo-
tion during which the distance between arbitrary pairs of particles of B is
preserved. Formally, the motion

x = x(X, ) (3.11)
observed by O is rigid if and only if

x=c(t) + Q(t)X, (3.12)
where x € Bp.

Notation

Components of vectors and tensors associated with a basis {E4} in the refer-
ence configuration By will be denoted by Greek character indices

X = XoEq . (3.13)
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The coordinates X, are called referential or Lagrangian coordinates of the
particle X. Italic indices will be used for components of vectors and tensors
associated with a basis {e;} in the current configuration B;. The corresponding
coordinates in the current configuration z;

X = %€ (3.14)

are called current or Bulerian coordinates of X.

Scalar, vector or tensor fields may be defined over either the reference config-
uration By or the current configuration B;. If ¢ is a scalar, vector or tensor
field defined over B:, using (3.10) the corresponding field ® over By is

®(X,t) = p(x,t) = p(x(X,1),1) - (3.15)

Inversely, for ® defined over Bop, the equivalent scalar, vector or tensor field
over B, is defined by the inverse of the deformation (3.10)

X = x"1(x,t) (3.16)
which yields
p(x,t) = B(X,t) = B(x T (x,1),1). (3.17)

Physical phenomena associated with the deformation (3.10) of a body B may
be described using fields defined over By in the so-called Lagrangian or refer-
ential (material) description, or using fields defined over B; in the Eulerian or
spatial description.

The notation of upper-case letters for Lagrangian and of lower-case letters for
Eulerian fields introduced here sometimes conflicts with the notation using
bold-face, lower-case letters for vectors and bold-face, upper-case letters for
tensors. In these cases, the latter convention overrides the former and it will
be stated explicitly over which configuration the respective field is defined.

3.2.4 Velocity and acceleration

The velocity v(X,t) defined over the reference configuration Bg of a material
particle occupying the position X in By is given by

v(X,1) = X (X,0) = X(X.1). (3.18)
The velocity represents the rate of change of the position vector for a material
point, i.e. the time derivative with X held constant. The acceleration a(X,t)
is the rate of change of velocity of a material point. Defined over By the
acceleration is

2
a(X, 1) = %(x, £) = ‘fiT’;(x, ). (3.19)
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The derivative d(-)/dt at fixed X is called the Lagrangian time derivative, while
the derivative with respect to time at fixed x is referred to as the Fulerian
time deriwative. The Eulerian time derivative follows from the Lagrangian or
material time derivative using the chain rule for partial derivatives

d()| _ 20)

a@ |y 2 +(V® () v(x,t). (3.20)

X

The term (8(-)/0t)|,, is called the spatial time derivative; the second term on
the right-hand side of (3.20) is the convective or transport term (cf. Belytschko

et al. 2000).
Hence, in the Eulerian description the acceleration is

ov

ot (xs t) +L- v(x, t) 3 (3.21)

a(x,t) =

where the velocity gradient tensor L, a Eulerian tensor, is introduced

ov(x,t) .

o (3.22)

L=VQ®v(xt)=

Under an observer transformation as defined by equation (3.3), the motion is
perceived by the observer O* as

X" (X, 1) = Q()x(X,t) +c(t) - (3.23)

Introducing the axial vector w associated with the skew-symmetric spin tensor

Q=QQ"
Q- a=wxa VaceE, (3.24)
the velocity observed by O* is calculated using (3.10) as

vi(X,t) = Qv +et) + Qx (X, t)
=Qv+et)twx (x*—c). (3.25)

In the same manner, the acceleration observed by O, who is in relative motion
to O, is found to be

a*(X,t) = Qa+ &(t) + Qx(X,t) + 2Qv

=Qa+&(t) +w x (x" —¢) — [[w]*(x" —¢) + 2w x Qv.
(3.26)

Here, ||(-)|| is the norm of the vector (-).
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3.3 Analysis of deformation

In this section, the quantities and relations required to analyze a deformation
of a body B from a reference configuration By to a current configuration B; are
presented. Since the comparison of reference and current configuration does
not require the knowledge of intermediate stages in the motion, in (3.10) the
explicit dependence on time is suppressed

x = x(X), (3.27)

and the current configuration is now denoted by B. In component form with
respect to an orthogonal Cartesian basis {E.} respectively {e;} and origin O
respectively o chosen by O in the reference (current) configuration, the defor-
mation from By to B may be written as

T = Xi (Xa) . (328)

3.3.1 Deformation gradient

In the neighborhood of a material particle X, the derivatives 0x;/0X, are
continuous and the differential of (3.28) is

3:1);

or in tensorial notation

dx = FdX . (3.30)

The tensor F given by (3.30) is called the deformation gradient. 1t is defined
by
ox
F = X)= s 3.31

Vo ® x(X) X ( )
The deformation gradient lives partially in the reference configuration and
partially in the current configuration. For this reason, it is often referred to as
a two-point (or mized Eulerian-Lagrangian) tensor, with one leg or index in
each configuration, the reference configuration and the current configuration.
With respect to bases {E,} and {e;} the deformation gradient reads

8:1)1'

= 9%, , 32
F BXae®Ea (3.32)

According to (3.30), a material line element dX, i.e. a vector dX at the
point X in By, is transformed by F to the line element dx at the point x in B.
To rule out the physically unrealistic case where the deformation reduces the
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length of line elements to zero, F is required to be a non-singular tensor. This
can be assured if its determinant fulfills the inequality

J =det(F) > 0. (3.33)

The inverse F~! of the deformation gradient exists and may be used to in-
vert (3.30)

dX = F~'dx. (3.34)

3.3.2 Deformation of volume and surface

The Jacobian determinant J is the local ratio of current to reference volume
of a material volume element

dv=JdV . (3.35)

This is observed by considering the non-coplanar line elements dX® trans-
forming according to

dx® = FdX® (3.36)

At a point X in the reference configuration, these line elements define the
infinitesimal volume element dV

dV =dX® . (dX® x dX®) = det(dXP,dX®,dX®), (3.37)
while their Eulerian counterparts define the infinitesimal volume element dv
dv = det(dx'V, dx®, dx®) (3.38)

at the place x. These two equations in conjunction with (3.30) and (3.33)
yield equation (3.35).
The material time derivative of the Jacobian determinant J is given by

J=JV v. (3.39)
Deformations with
J =det(F) =1 (3.40)

are said to be isochoric or volume preserving at X.
The infinitesimal vector element of material surface dA defined by dx®
and dX® transforms to da defined by dx® and dx®. By virtue of (3.35)

it follows

dx® .da = JdX® .dA. (3.41)
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Then, substitution of (3.30) yields Nanson’s formula (cf. Ogden 1984)
da = JF~TdA (3.42)

with da = nda and dA = N dA, respectively. The positive unit normals n
and N to the surfaces da of B and dA of By, respectively, are pointing away
from the respective surfaces. As these vectors are not embedded in the mate-
rial, they do not transform according to transformation rule (3.30).

3.3.3 Polar decomposition

According to the polar decomposition theorem, any non-singular second-order
tensor A can be decomposed uniquely into positive definite symmetric second-
order tensors V and U, and an orthogonal second-order tensor R such that
(cf. Malvern 1969)

A=VR=RU. (3.43)

Specifically, the deformation gradient F' may be decomposed into its left and
right multiplicative decompositions

F=VR=RU, (3.44)
where, owing to (3.33), the rotation tensor R is proper orthogonal

RTR=RR" =1 with det(R)=1. (3.45)
Here, 1 is the second-order identity tensor. From (3.45) it follows that

det(F) = det(V) = det(U). (3.46)

The positive definite symmetric second-order tensors V and U are called the
left and right stretch tensors, respectively. V is a Eulerian quantity and U a
Lagrangian tensor.

The polar decomposition theorem may be illustrated graphically as shown in
Figure 3.2 (cf. Macvean 1968). Note that the orientation of arbitrary line-
elements is not preserved by V or U. As a consequence, even for R = 1 the
orientation of a line element transformed according to (3.30) generally changes
during deformation.

The left stretch tensor V is obtained from the right stretch tensor U by
forward-rotating with R and vice versa

V=RxU U=R"xV. (3.47)

For R = 1, the deformation is said to be a pure strain and V =U = F. The
deformation gradient F represents a rigid rotation if and only if V. = U = 1.
However, in general the deformation is decomposed into a rotation R followed
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Figure 3.2: Polar decomposition

by a stretch V (left polar decomposition), or using the right polar decompo-
sition, into a stretch U succeeded by a rotation R.

The symmetric and positive definite tensors FFT and FTF respectively are
called the left and right Cauchy-Green tensors

B =V?=FFT C=U?=F"F. (3.48)

The following rotated correspondence between the Eulerian tensor B and the
Lagrangian tensor C holds

B=RxC C=R"xB. (3.49)

Spectral representation

In a spectral representation, a second-order tensor A is expressed in terms of its
eigenvalues or principal values X\ and its eigenvectors a, which are commonly
referred to as principal azes or principal directions as well. The eigenvalues
and -vectors of A satisfy the relation

Aa=)a. (3.50)
The eigenvalues A; of A are obtained by solving the characteristic equation

det(A — A1) =0, (3.51)
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which can be expanded in terms of the principal invariants of A

A — T(AN2 4+ IT(A)N—IIT(A) =0, (3.52)
where

I =tr(A) (3.53)

I = % (tr (A)? — tr (A?)) (3.54)

IIT = det(A). (3.55)

In addition to the principal invariants I, IT and III, the main invariants I, I»
and I3 are defined for later use

I =tr(A) (3.56)

L=tr(A? (3.57)

I; = tr (A%). (3.58)
They are related to the principal invariants by

I =1 (3.59)

I = -;- (I - I) (3.60)

I = % (I —3hL+25) . (3.61)

For symmetric second-order tensors A = AT, the eigenvectors are mutually
orthogonal and the eigenvalues A are real (cf. Basar & Weichert 2000). Then,
a closed-form solution is available (cf. Hoger & Carlson 1984, Sawyers 1986)

\; = % (I +2¢/1% — BIICOS(%((,D— 271'2')))

o = cos-] (213 —9l-1I + 27111) (3.62)

2(12 - 3I1)3

1=1,2,3.
Denoting the eigenvalues of the right stretch tensor U by A; and the corre-
sponding orthonormal unit eigenvectors by N*, |N*|| = 1, gives the spectral
representation
3 . .
U=) MN'@N'. (3.63)
=1

The unit eigenvectors N* are termed Lagrangian principal azes. They can be
rotated forward into the current configuration to yield the Fulerian principal
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ares n° = R * N* with ||n’|| = 1. By virtue of (3.47), U and V have the
same eigenvalues A;. Hence,

3
V=> xn'®n’ (3.64)
i=1

Noting (3.46) it is observed that the eigenvalues of F correspond to those of V
and U. Owing to the fact that F and R are two-point tensors, in their spectral
representation the first eigenvector lives in the current configuration and the
second lives in the reference configuration. All eigenvalues of R. are equal to 1.
Of particular interest to the subsequent considerations are the eigenvalues

of B. The spectral representations of the left and right Cauchy-Green tensors
follow from their definitions (3.48) together with (3.64) and (3.63)

3 3
B=) xn'®n' C=> x;,N'@N*, (3.65)
i=1 i=1

where x; = \;? are the eigenvalues of B and C.

For multiple eigenvalues, the eigenvectors of the corresponding tensor are no
longer unique. Using eigenprojections (cf. Xiao et al. 1998b, 1998d, Hoger
1986, Carlson & Hoger 1986), uniqueness can be established, and basis-free
forms of the considered tensors can be derived with the aid of equation (3.70)
given below. For example, the left Cauchy-Green tensor may be expressed in
terms of its eigenprojections B, as

n
B=) x,B.. (3.66)
g=1

Here, the number of unique eigenvalues is denoted by n. The following simple
manipulation relations hold

B,B, =4,.B. (3.67)
> B, =1 (3.68)
a=1

Ba'B = Xa-Ba' 3 (369)

where the Kronecker delta symbol J§;; has been introduced. The eigenpro-
jections may be calculated by means of Sylvester’s formula (cf. Xiao et al.
1998d)

~ B-—x.1
'1‘7’-‘0' a XT

Here and henceforth, the notation []7_,(-) represents the continued product
for all o,7 = 1,... ,n with 7 # o. The product vanishes for n = 1.
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3.4 Analysis of strain
3.4.1 The notion of strain

To define the notion of strain, the deformation of an arbitrary line element dX
at the point X is considered. During deformation, its length changes to dx,
and the difference between the squared lengths of the line element in 3 and Bg
can be calculated from (3.30)

|dx|? — |dX|? = dX(FTF - 1)dX. (3.71)

If the length of the line element is unchanged after deformation, the material
is unstrained. In this case, the right-hand side of equation (3.71) must vanish
for arbitrary dX, hence the tensorial restriction

F'F=1 (3.72)

must hold true. Evidently, noting (3.33), the most general deformation yield-
ing zero strain is a rigid translation combined with a rigid rotation. If (3.72)
is fulfilled, the deformation gradient F is a proper orthogonal tensor Q.

The material is said to be strained at X if (3.72) is violated. Relation (3.71)
for the change in length of an arbitrary line element of material may then be
used to define a strain tensor called Green-Lagrangian strain tensor E

1 1, 5
E = E(FTF -1)=3(U*-1). (3.73)

The factor % is a normalization factor whose significance follows from the
discussion of general measures of strain in Section 3.4.2.
If equation (3.71) is not written in the referential configuration, but instead in

terms of dx in the current configuration
|dx|? — |[dX|? = dx(1 — (FFT) " 1)dx, (3.74)

the Almansi-Fulerian strain tensor may be defined
e = %(1 _ (FFT)") = %(1 —v-Y). (3.75)

The Green-Lagrangian and Almansi-Eulerian strain tensors are related not
only by a rotated correspondence as stated in the next section for arbitrary
strain measures, but specifically the Green-Lagrangian strain tensor can be
obtained as one — of four possible — induced Lagrangian tensors (cf. Ogden
1984)

E = FT¢F. (3.76)

Although formally not quite correct (cf. Bongmba 2001), this operation is
often referred to as the pull-back of the Almansi-Eulerian strain tensor to the
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reference configuration. Equivalently, by an operation frequently termed push-
forward, the Almansi-Eulerian strain measure may be derived as an induced
Eulerian tensor from the Green-Lagrangian strain tensor

e=F TEF'. (3.77)

Linearization

Considering the displacement u of a material particle X from its position in
the reference configuration Byg to its position in the current configuration B

u=yx(Xt-X, (3.78)
the displacement gradient is

Vo®u=F—1. (3.79)
Substitution into the definition of the Green-Lagrangian strain tensor (3.73)
gives
_1
2

Adopting the assumption of small displacements underlying the theory of small
strains, the quadratic term of u is negligible in comparison to the other terms
in (3.80). Then, Lagrangian and Eulerian descriptions coincide and as F =~ 1,
the gradient with respect to X approximately equals that with respect to x.
Therefore, for small displacements the linearized strain

E (vo Qut (Voo u) + (Voo u) ' Vo® u) : (3.80)

Exe= %(V@u—!—(VT@u)) (3.81)

can be derived from (3.80). As the assumption of small displacements is not
assumed to be fulfilled here, this relation is only given for the sake of com-
pleteness. All derivations in succeeding chapters are based on finite measures
of strain.

3.4.2 Strain measures

Strain measures such as the Green-Lagrangian and Almansi-Eulerian strain
tensors have to fulfill certain criteria. They have to be objective® and isotropic?
tensor functions. Also, they have to be monotonically increasing when the

3See Section 3.5.

4A tensor function is a function whose arguments are (second order) tensors and
whose values are scalars or tensors. A scalar valued tensor function f(A1,...,A,)
is said to be isotropic if the relation Q x f(Ai1,... ,A,) = f(QxA;1,... ,QxA,)
is satisfied for all orthogonal tensors Q and all A; in the domain of definition
of f. In particular, f is isotropic if and only if the forms of its component func-
tions are the same for all orthonormal bases (cf. Macvean 1968, Truesdell & Noll 1992).
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length of a line element of material increases. For small strains, all strain
measures are to be equivalent to the first order in some suitable measure of
‘smallness’ (cf. Ogden 1984). For rigid body motions, a measure of strain has
to vanish.

As has been shown in the previous section, the material is unstrained if and
only if V = U = 1. Therefore, according to Hill (1968), the criteria

e™mMV=1)=EMm™MU=1)=0 (3.82)

and

()| = (em)| - (3.83)

U=1

may be postulated for positive or negative integers m. I is the symmetric
fourth-order identity tensor and (-)’ denotes the gradient of (-) with respect
to V on the left-hand side of (3.83) respectively the gradient with respect
to U in the middle term of (3.83). Then, in addition to the Green-Lagrangian
and Almansi-Eulerian strain tensors defined above, the following strain tensors
may be defined (cf. Ogden 1984)

e(m)(V) E(m)(U)
(v 1) %(Um — 1 (m # 0) (3.84)
InV InU (m =0).

They can be transformed between the current and reference configurations in
the same way as the stretch and the Cauchy-Green tensors by the rotated
correspondence

e(™ =R « E™ EM =R xe™, (3.85)

Using the notion of eigenprojections introduced in Section 3.3.3, a general class
of Eulerian and Lagrangian strain measures can be defined through one single
scalar function, the scale function f(As) (cf. Hill 1978, Xiao et al. 1998b), in

the form

el™ = znj fe) Ve EM = znj FOe)Us

o=t o=t (3.86)
= 5" 9(x)B. =3 9(x.)Co
with
FO) = %(A;ﬂ ~1). (3.87)
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Here, the eigenprojections V., U, and C, of the left and right stretch tensors
and the right Cauchy-Green Tensor, respectively, are introduced. They may
be calculated using Sylvester’s formula (3.70). Conditions (3.82) and (3.83)
are then expressed as (cf. Hill 1978)

f(1)=0 Fy=1. (3.88)

The Almansi-Eulerian strain tensor e defined over B8 and the Green-Lagrangian
strain tensor E defined over By may be derived from (3.86; ) respectively (3.86)
and (3.87) for m = —2 respectively m = 2

e = i -;-(1 -2V, = %(1 —-V~Y (3.89)

Il

E = Z_:l %(,\?, - 1)U, %(U2 ~1). (3.90)

Using the natural logarithmic scale function g(x) = %lnx, Hencky’s logarith-
mic strain measure can be found (Hencky 1928, Xiao et al. 1997b)

n
h =) % Inx,B, = %mB (3.91)
o=1
~\ 1 1
H=>)" 5 10X,Co = 7 InC. (3.92)

I

ag

The logarithmic strains h respectively H are of particular importance for the
constitutive model proposed below. They possess some intrinsic advantages
in contrast to other measures of strain, i.e. the property of additivity, read-
ily observed in one-dimensional loading (cf. Ogden 1984, Xiao et al. 1998b).
However, due to the transcendental form of logarithmic strain measures, their
use was often limited to particular cases. Recently, it was shown by Xiao et al.
that there exists an objective corotational rate of Hencky’s Eulerian logarith-
mic strain measure h that is identical to the Eulerian stretching tensor D, see
Section 3.6.2.

For m = 1, the Biot strain tensor can be derived

EV(U) = i(’\a ~-1)C,=U-1, (3.93)

o=1

The Biot tensor is used frequently for developing constitutive equations as
the principal values of U are the elongations of line segments in the principal
directions of U (Belytschko et al. 2000).

In the succeeding chapters, the focus will be on the Eulerian logarithmic
strain h and an appropriate rate.



3.5 Objectivity 37

3.5 Objectivity

As has been pointed out before, the description of a physical quantity associ-
ated with the motion of a body generally depends on the choice of observer.
However, in contrast to their kinematical descriptions, physical phenomena
are independent of the choice of observer. In this section, an approach to
determine the objectivity, i.e. the observer-independence of scalar, vector and
tensor fields, is presented.

Given the observer transformation (x,t) — (x*,t*) as specified in (3.3)

x*=Q(t)x +c(t) with t'"=t—a, (3.94)
the motion (3.11) transforms to
x*(X,t") = Qt)x(X,t)+c(t) with t*'=t—a. (3.95)

The definitions of velocity (3.18) and acceleration (3.19) are relative. Hence,
they are linked to kinematics through the relative motion of the observers.
This is reflected by the quantities ¢(t), é(t), Q(t) and Q(¢t) occurring in (3.25)
and (3.26).

It has to be distinguished between the transformation rules for Eulerian ten-
sors, Lagrangian tensors and two-point tensors, i.e. the transformation rule a
tensor has to satisfy in order to be objective depends on the configuration it
lives in.

Following Ogden (1984), Lagrangian scalars &, vectors & and tensors A are
objective if they are unaffected by an observer transformation

6* (X, t*) = a(X,t) (3.96)
a*(X,t*) = a(X,t) (3.97)
A*X,t*) = AX,t). (3.98)

On the other hand, Eulerian scalars «, vectors a and tensors A are objective
if they obey the transformation rules

o (x*, t7) = a(x,t) (3.99)
a*(x*,t") = Qt)a(x,t) = Q(t) x a(x,t) (3.100)
A*(x', ) = QAR Q)T = Q) * A%, 1). (3.101)

For second-order two-point tensors, Ogden (1984) defines the objectivity cri-
terion

A X, t") = Q()A(X,¢). (3.102)

Based on these definitions, the objectivity of the kinematical quantities intro-
duced above may be examined. It should be noted that no distinction between
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the terms (observer) frame indifferent and objective is made here.
Under a change of observer, for an observer-independent reference configura-
tion the deformation gradient transforms to

F* = QF. (3.103)

Therefore, the deformation gradient F is an objective two-point tensor.
Its determinant, the Jacobian J, is unaffected by an observer transformation,
i.e. the local volume ratio does not depend on its kinematical description

J* = det(F*) = det(F) = J. (3.104)
The tensors V and B are objective Eulerian tensors

V'=QxV B*=Qx*xB (3.105)
and U and C are objective Lagrangian tensors

U'=0U C*=C. (3.106)
The rotation tensor R is an objective two-point tensor

R"=QR. (3.107)

It should be noted that if an Eulerian tensor is objective, then its Lagrangian
counterpart via the rotated correspondence (3.85) is also objective, and vice
versa (cf. Xiao et al. 1998b).

The transformation behavior under a change of observer exhibited by other rel-
evant quantities will be examined as the respective quantities are introduced.

3.6 Analysis of motion
3.6.1 Deformation and strain rates

For the discussion of deformation and strain rates, the time dependence in
the description of deformation (3.10) that was suppressed in (3.27) is included
again

x = x(X,1). (3.108)

Then, taking the material time derivative of the deformation gradient (3.31)
and making use of the commutativity of the partial derivatives with respect
to ¢ and X resulting from the independence of these variables gives

F=VexX)=(Vev(xt)F=LF. (3.109)
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In this way, an alternative definition of the velocity gradient tensor L first
introduced in (3.22) is obtained
ox .
= _—=FF"!, .
L B F (3.110)
The velocity gradient may be used to relate the material line element dx in B
to its material time derivative

dx = Ldx, (3.111)

which is derived by taking the material time derivative of equation (3.30) and
using definition (3.110). Relative to a rectangular Cartesian basis, the velocity
gradient has the components

a’Ui

Oxr;

Lij = (3.112)
Taking the material time derivative of definition (3.73:) of the Green-Lagrang-
ian strain tensor and applying (3.110) yields

1

E= 515‘T(L+LT)F:FTDF, (3.113)

where the Fulerian strain rate tensor or stretching tensor D is defined
D= % (L +LT) . (3.114)

Until recently it was believed that the stretching tensor D is not in general
expressible as either the Lagrangian or Eulerian time derivative of a strain
tensor, so it was not considered a rate of strain (cf. Ogden 1984). However,
Xiao et al. (1997b, 1998d) showed that the stretching is in fact integrable to
deliver the Eulerian Hencky strain tensor h defined in (3.91), see the discussion
below.

The stretching is a measure of the rate at which line elements of material
are changing their length. Hence, a rigid-body motion requires D = 0. In
addition, D is also a measure of the rate of change of the angle of shear
between line elements.

From (3.114) it follows that D is the symmetric part of the velocity gradient L.
The antisymmetric part of the additive decomposition

L=D+W (3.115)

is called the vorticity or body spin tensor W

W= %(L —LT). (3.116)
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If a motion is rigid, it represents a rigid-body rotation or spin with angular
velocity w, where w is the axial vector of W; otherwise, the vorticity tensor
contributes a rigid-body spin to the motion, and an additional component in
terms of the stretching D describes the rotation of line elements superposed
on the rigid body spin.

The following relations hold (cf. Ogden 1984)

8J .1 . J_ _
=5 = JF Fr=JL 5 =tr (L) = tr (D). (3.117)

Under a change of observer, the velocity gradient transforms to
L*=QxL+ QQ~. (3.118)

It is therefore not an objective tensor. On the other hand, its additive decom-
position D transforms objectively

D*=QxD, _ (3.119)

while the vorticity tensor W, as a measure of the rigid rotation of a triad of
line elements, is influenced by the rotation of observers and is not an objective
Eulerian tensor

W*=Qx*W +QQ~. (3.120)

3.6.2 Spins and corotational rates

Under a change of observer or change of frame® as given by equation (3.3),
the deformation x(X,t) transforms to

X" (X,t") = Qt)x(X,t) +¢c(t) with t*=t—a. (3.121)

To simplify matters, in the following it is assumed that a = 0, i.e. a possible
difference in time between the two frames is ignored.

In equation (3.121), the rotating frame (:)* is defined by the skew-symmetric
second-order Eulerian tensor Q = Q(t). Alternatively, the rotating frame (-)*
may be defined by its spin ¥, which determines Q to within a constant proper
orthogonal tensor through the linear tensorial differential equation (cf. Xiao
et al. 1998b)

2"=Q"Q=-Q'Q. (3.122)

5The phrases frame of reference and change of frame (of reference) are used here as

equivalents of observer and change of observer, although formally for an arbitrarily
chosen observer, the assigned coordinate system for that observer represents the
frame of reference of the particular observer. According to this definition, a change
of frame of reference does not involve a change of observer.
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This second definition of a rotating frame by its spin 2, an Eulerian time-
dependent skew-symmetric tensor, will be adopted here.

In the transformed (£2*-)frame, the objective symmetric time-dependent se-
cond-order Eulerian tensor A has the representation

A*=Q*A=QAQ". (3.123)

The material time derivative of (3.123) then gives

A*=QAQT+QAQT + QAQT = Q« A", (3.124)

where the corotational rate of the Eulerian tensor A defined by the Eulerian
spin 2* has been defined

A"=A+AQ* —Q°A. (3.125)

Substituting (3.123) into (3.124), it is evident that the corotational rate of an
objective Eulerian tensor defined by an Eulerian spin Q" is a material time
derivative in an 2*-frame

Q+A*=Q~*A. (3.126)

This interpretation does not hold for tensors A that are not objective.

Corotational rates of objective Eulerian and Lagrangian tensors must be ob-
jective rate measures to ensure that any superimposed rigid rotation motion
has no effect on them (cf. Truesdell & Noll 1992). This condition is essential to
the notion of work-conjugacy which will be presented in Section 4.4. However,

(o}
of the infinitely many corotational rates possible, not every rate A™* of the
objective Eulerian tensor A is objective. Generally, whether the corotational

rate A™ is objective or not depends on its defining spin €, which should be
associated with the deformation and motion of the deforming body in an ap-
propriate manner (cf. Bruhns 2003).

The local deformation state and the rate-of-change of the local deformation
state are characterized by the deformation gradient F' and the velocity gradi-
ent L. Therefore, the most general form of a spin tensor £2* associated with
the deformation and rotation of a deforming body is assumed by Xiao et al.
(1998b) as

Q* = Q*(F,L). (3.127)

They specify necessary requirements that have to be fulfilled by the spin Q* to
ensure that it defines a reasonable objective rate. Based on these requirements,
a general form of spins " may be derived (cf. Xiao et al. 1998c¢)

w = ' Xa' XT
Q= W+§Th (tr B & (B)) B,DB._. (3.128)
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Here and henceforth, the notation 3 7, (-) represents the summation for all
o,7=1,...,n with o # 7. The sum vanishes for n = 1.

All commonly known spins can be obtained from a subclass of these material
spins

Q=W+ h (i-‘(ﬂ) B,DB._, (3.129)
oFT T

where the simplified spin Function h(z~') has the property
h(z7!) = —h(2) Vz>0. (3.130)

A rotating frame which is defined by a material spin of the form (3.128) re-
spectively (3.129) is called a corotating material frame. The time rate of an
objective Eulerian tensor in a corotating material frame is an objective coro-
tational rate and vice versa (Xiao et al. 1998b).

For example, h’(z) = 0 yields the vorticity tensor W

Q' =w, (3.131)

which by substitution into (3.125) defines the Zaremba-Jaumann rate

A=A+ AW - WA. (3.132)

The Zaremba-Jaumann rate is used frequently as an introductory example of
objective corotational rates. However, in developing constitutive equations it
should be used with care as it predicts oscillatory stresses under plane shear
loading (cf. Lehmann 1972, Dienes 1979, Khan & Huang 1995).

For

1o
W) = 10 (3.133)

the polar spin QF is obtained

n —_—
QF=RRT=w+y YV Vg pp (3.134)

which defines the so-called polar or Green-Naghdi rate

AR=R+RT+A = A+ AQR _ QA (3.135)

Evidently, the Eulerian counterpart of the material time rate of an objective
Lagrangian tensor is the polar rate of the Eulerian counterpart of this tensor.
This indicates that the material time rate of an objective Lagrangian tensor
is a particular kind of corotational rate of this tensor, which is defined by the
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Lagrangian spin RTQER.

It has been shown that several widely used Eulerian rate type equations in-
tended for characterizing elastic response cannot be integrated to yield an
elastic relation (cf. Simo & Pister 1984). Both the Zaremba-Jaumann rate
and the polar rate do not fulfill the self-consistency condition stating that, for
each process of purely elastic deformation, a constitutive formulation of D€ in-
tended for characterizing elastic response must be exactly-integrable to yield
an elastic, in particular, a hyperelastic relation between an elastic strain mea-
sure and a stress measure. In this sense they are self-inconsistent (cf. Bruhns
et al. 1999, Xiao et al. 2000b).

On the other hand, the Eulerian rate type formulation based on the stretch-
ing D as suggested by Xiao et al. (1997a, 1997b, 1998¢c, 1998d) has been shown
to be self-consistent. It is based on the logarithmic spin

Log __ = 1 + (XO‘/XT) 2
ATsWe g;, (1 ~ (Xo/Xx) ln(xa/xr)) DB (3136

which follows from (3.129) by substitution of the logarithmic spin function

2
14z, 2 (3.137)

he8(z) = 1—2z Inz

Adopting the logarithmic spin 028, equation (3.125) takes the form

A8 — A 4 AQLoE _ QLoSA | (3.138)

The objective corotational rate jokL°g is called the logarithmic rate of A.

For a long time it was believed that the stretching tensor D cannot be written
as a direct flux of a strain measure (cf. Ogden 1984), in spite of the names
rate of deformation or Fulerian strain rate given to D. Recently, it was proved
that for the logarithmic rate of the Eulerian Hencky strain h the relation

hL% — | 4+ h2'°¢ — Q°8h = D (3.139)

holds (cf. Xiao et al. 1997b, 1998c, 1998d; see also Reinhardt & Dubey
1995, 1996): The objective corotational rate of Hencky’s Eulerian logarithmic
strain measure defined by the logarithmic spin £27°% (3.136) is identical to the
Eulerian stretching tensor D, i.e. in a corotating material frame D is a true
time rate of h, and h is the only strain measure enjoying this property.

The proper orthogonal tensor RI°¢ defined by the linear tensorial differential
equation

Rl — _RLognLlos RLoglt—_—o =1 (3.140)
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is called logarithmic rotation. Using RM%, the rotated correspondence

RI%% 4 A = RLo6 4 A Log (3.141)

holds true, which is of particular interest when it is applied to h using the
kinematical relation (3.139)

R +h =RM8x D, (3.142)

The left-hand side of (3.141) represents the material time rate of a Lagrangian
tensor. This measure can be integrated with respect to time and rotated
forward into the current configuration to give

t
A = (R8T & / R84 ALogd (3.143)
0

This technique is called corotational integration (cf. Khan & Huang 1995).
Corotational integration of the stretching D gives the Eulerian Hencky strain h.
The logarithmic rate is the rate-of-change observed in a rotating frame with
the logarithmic spin %%, which does not coincide with a rotating frame with
the polar spin QF. In a rotating frame with the polar spin QF, each R-
rotated material symmetry axis keeps unchanged. Therefore, for an initially
anisotropic material, the contribution of the rates of the R-rotated material
symmetry axes must be incorporated in a rate equation for D®. The resulting
relationship between the logarithmic rate (3.138) and the polar rate (3.135) is

Alos — AR L AQLR _ QLRA (3.144)

Here, the spin tensor

AW oy
QR = Qles _ QR = 3" ( Xo/Xr | 2 ) B_DB_ (3.145)

CAT 1- (XO'/XT) ln(Xa'/X‘r)

was defined from (3.136) and (3.134) (cf. Xiao et al. 2000b).

3.7 Decomposition of finite deformation

For processes of combined elastic and inelastic material behavior, the respec-
tive elastic and inelastic components of the deformation have to be determined.
In a linear theory of small strains, the additive decomposition

g=2¢°4¢ (3.146)

of the total strain rate ¢ into its elastic component ¢° and its inelastic com-
ponent &* is frequently used. For the general case of finite deformations, there
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Figure 3.3: Multiplicative decomposition of the deformation
gradient

has been some debate on the appropriate decomposition (cf. Naghdi 1990,
Xiao et al. 2000b).

Here, for each process of elastic-inelastic deformation the additive decompo-
sition of the total stretching D into an elastic part D® and a coupled elastic-
inelastic part D¢ is assumed (cf. Xiao et al. 2000b)

D = D° + D¢ (3.147)

The additive decomposition was successfully applied to small and finite defor-
mation elastoplasticity theories (cf. Drucker 1988, Nemat-Nasser 1983, 1992).
In a natural and direct manner, the elastic part D€ may be interpreted as the
deformation rate related to the elastic deformation F€ in equation (3.148) be-
low. The coupled elastic-inelastic part D is associated with both the elastic
deformation F¢ and the inelastic deformation F*. When there is no change in
the microstructure responsible for inelastic deformation®, the deformation is
purely elastic and the elastic part D¢ corresponds to the total stretching D.
From the decomposition (3.147), it is not possible to determine which part of
the total deformation F is inelastic. However, in general there is no a priori
definition of the elastic and the inelastic deformations, either. To appropri-
ately relate D and D** to elastic deformation and inelastic deformation, the
multiplicative decomposition of the deformation gradient F into its elastic and
inelastic parts F¢ respectively F* as depicted in Figure 3.3 is considered

F = F°F*. (3.148)

This decomposition is attributed to Lee (1969), but it was first introduced by

%The general term of inelastic deformation will be specified to include only deformation
due to martensitic phase transformation in Chapter 6.




46 3 Deformation and motion

Kroner (1960) with reference to linear theory. Applying the polar decomposi-
tion theorem (3.44) to F*® and F* gives

F¢ =V°R° = R°U°® (3.149)
respectively
F‘'=V'R'=R'U". (3.150)

For each process of purely elastic deformation, F¢ equals F.
The determinants of both the elastic and the inelastic parts of the deformation
are required to be non-negative

det(F¢) > 0 det(F*) > 0. (3.151)

Inelastic deformations due to plasticity are generally treated as volume pre-
serving. Then, changes in volume are associated with elastic deformation
alone, J = det(F°).

By decomposition (3.148), an additional configuration, the stress-free inter-
mediate configuration B is introduced. At each moment in time, B is reached
by elastic unloading from B. The elastic part of the deformation F¢ is as-
sociated with a motion from the intermediate configuration B to the current
configuration B, while the inelastic part of the deformation relates the refer-
ence configuration By with the intermediate configuration B.

Taking the initial, natural state of the material as the reference configuration,
the initial condition for the deformation gradient is

Flt=o=1. (3.152)

From this, it is evident that the three configurations By, B and B coincide at
the initial instant ¢ = 0. However, an arbitrary rigid body rotation superposed
on the intermediate configuration has no effect on decomposition (3.148)

F = F°F! = F°F", (3.153)
where
F° =F°Q F:= QTF:. (3.154)

As a consequence, F¢ and F* can be determined only to within an arbitrary
rotation Q. Due to this fact, the initial conditions for the intermediate and
the reference configurations may differ by a rigid body rotation.

However, the stated indeterminacy is of greater consequence if it is removed
in constitutive modeling by adopting an additional assumption, i.e. choos-
ing F° = V° and thus ignoring the elastic rotation R°. This widely used
assumption is inconsistent with the invariance requirement under a change of
observer in a general sense (cf. Casey & Naghdi 1981, Naghdi 1990), and
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no use of it will be made here. Instead, a relationship between decomposi-
tions (3.147) and (3.148) will be established.

With (3.148), from definition (3.110) and the material time derivative of the
deformation gradient

F = FeF! + FeF (3.155)
the decomposition
L =FF!=L¢4+FLF° (3.156)

may be derived. Here, the elastic and inelastic parts of the velocity gradient, L®
respectively L*, are defined as

L¢ = F°F~° L= FF¢, (3.157)
Substitution into (3.114) and (3.116) gives

D = sym(L®) + sym(F°L‘F~¢) (3.158)

W = skw(L®) + skw(FL‘F~¢). (3.159)

By comparison of (3.147) and (3.158), a natural and direct relationship be-
tween the decompositions (3.147) and (3.148) is obtained

D¢ = sym(F°F~°) D* = sym(F°*FFF°). (3.160)

The result explains the name coupled elastic-inelastic part of D previously as-
signed to D*.

Adopting the relationship supplied by equation (3.160) between the decompo-
sitions (3.147) and (3.148), without any assumptions relating to F© or F%, the
elastic and inelastic parts F¢ respectively F in the decomposition (3.148), as
well as all their related kinematical quantities, can be determined consistently
and uniquely by (3.160) in conjunction with an appropriate elastic equation
for the elastic part of the left stretch tensor V¢ (cf. Xiao et al. 2000b). In
addition, it was shown by Xiao et al. (2000b) that the invariance requirement
stated by Casey & Naghdi (1981) and Naghdi (1990) is obeyed in a full sense,
as the transformation rules

F** = QFQ” F** = QF* (3.161)

hold. Here, the rotation Q is the rotation of the initial intermediate configu-
ration in the transformed frame B*|;—o relative to the initial configuration in
the transformed frame Bj.

Due to these properties, the presented theory is used as kinematical frame-
work underlying finite elastoplasticity models with and without damage (cf.
Xiao et al. 2000b, Bruhns et al. 2001, Bongmba & Bruhns 2001). It will
be adopted to the formulation of a constitutive law describing pseudoelastic
material behavior in the following chapters.






4 Conservation equations and stress measures

4.1 Introduction

The kinematical relations given in the previous chapter have to be comple-
mented by appropriate balance laws. In this chapter, the principles of con-
servation of mass, linear and angular momentum as well as the conservation
of mechanical energy are presented both in Eulerian and Lagrangian formula-
tions.

The formulation of constitutive equations has to be preceded by the definition
of appropriate stress measures and stress rates which obey the principle of
frame indifference introduced above. Hence, the stress tensors and stress rates
underlying the subsequent considerations are specified and interpreted.

In Section 4.4, the notion of work conjugacy attributed to Hill (1968, 1978)
and recently extended to Eulerian measures of stress and strain by Xiao et al.
(1998b) is introduced. The chapter is completed by specifying the weak form
of the balance of momentum equation in a Eulerian and a Lagrangian formula-
tion. The rate form of this equation plays a fundamental role in the numerical
solution of elastic-inelastic material laws.

The subsequent derivations are based in part on the monographs by Ogden
(1984) and Simo & Hughes (1998) and complemented by the books of Chad-
wick (1976) and Belytschko et al. (2000).

4.2 Conservation laws
4.2.1 Conservation of mass

For arbitrary bodies B, the mass is defined by the function
m(B) > 0. (4.1)

The mass m(B) is inherent to the body B and independent of its motion.
It is an objective scalar, independent of the configuration occupied by B as
perceived by an arbitrary observer

m(B) =0. (4.2)

Equation (4.2) is an expression for the principle of conservation of mass (cf.
Ogden 1984). Tt is also referred to as continuity equation. For each config-
uration B of the body B, there exists a scalar field called the mass density
p(x,t) > 0 of the material of B in B. In the reference configuration Bo, the
density is denoted by po. Thus, for a volume element dv for B and a volume
element dV for By, the mass is given by

m=/pdv:/podV. (4.3)
B Bo
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Using (3.35), invoking the smoothness of the integrand yields the following
local form of the principle of conservation of mass

p=J1pg. (4.4)

Noting (3.39) in conjunction with (3.110) and (3.115), the material time deriva-
tive of (4.4) may be written as

J=JV-v=Jtr (D). (4.5)
Hence, the usual dynamic form of mass conservation is obtained
p+pV-v=0, (4.6)

or equivalently, using V- (pv) = Vp- v + pV - v,

op

- - = 0. 4,
The corresponding global form of the continuity equation is

/ [p+pV - (v)] dv=0. (4.8)

B

4.2.2 Conservation of linear momentum

In the Eulerian configuration, the linear momentum of the body B is defined
as

/pv dv. (4.9)

B

Newton’s second law of motion, the principle of conservation of linear momen-
tum or simply momentum conservation principle, is obtained by considering
an arbitrary configuration B of B with boundary 8B, subjected to body forces
and to contact forces

pbdv + [ tda. (4.10)
[ oo |

B oB

Here, the body-force density b acting over B is a force per unit mass and the
contact-force density t acting over OB is a force per unit area, with b = b(x, t)
and t = t(8B, x,1).

The forces on a given body which arise from external influences are indepen-
dent of the observer or frame of reference. Hence, it must be distinguished
between these applied forces and inertial forces, which depend fundamentally
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on the choice of observer and his frame of reference. Both the body-force den-
sity b and the contact-force density t, also called traction or stress vector, are
objective Eulerian vector fields and transform according to rule (3.100).
Newton’s second law of motion states that the material time derivative of the
linear momentum defined in (4.9) equals the resultant applied force (4.10)

% pvdv:/pbd’l}—l—/tda. (411)
B B oB

4.2.3 Conservation of angular momentum

The rotational momentum of B with respect to a point xg is defined as

/p(x —xp) X vduv. (4.12)
B

Here, the point x¢ of £ is not required to be a point of B. However, the value of
the rotational momentum, sometimes called moment of momentum, depends
on the choice of xp.

The resultant moment or torque of the applied forces about xg is

/p(x—xo)xbdv+/[x—x0)xtda. (4.13)
B oB

As the moment of the applied forces depends on the choice of the point xo, it
is not objective.

Similarly to the balance of linear momentum, there is a balance between the
resultant moment of the applied forces and the rate of change of the rotational
momentum of the body, the balance of rotational momentum

4 p(x — Xo) X vdv:/p(x—-xo) X bdv—l—/(x—xo) x tda.

dt
B B o8

(4.14)

Balances (4.11) and (4.14) are independent of each other and known as Euler’s
laws of motion.

4.2.4 Cauchy’s laws of motion

According to Cauchy’s fundamental postulate, the traction t at a position x
depends on the surface through the unit normal n to the considered surface
at x, and on the time ¢. If the stress vector is continuous in x, the dependence
on n is linear

t(x,n,t) =o(x,t)n. (4.15)
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This relation is known as Cauchy’s theorem. The objective Eulerian second-
order tensor field o independent of n is the Cauchy siress tensor, also referred
to as true stress tensor.

In component notation with respect to a rectangular Cartesian basis, equa-
tion (4.15) reads

L = oiyn, . (416)

Hence, 0;; may be interpreted as the e;-component of the force per unit area
on an element of surface in B whose unit normal is in the e;-direction.

Using Cauchy’s theorem, the balance of momentum equation (4.11) is written
in the form

d

a pvdv:/pbd'l)-l-/anda. (417)

B B o8
Application of the divergence theorem to the surface integral on the right-hand
side gives

f[p\'f—pb—V-O’T] dv=0. (4.18)
B

Then invoking the arbitrariness of the domain for continuous p, b and v, and
for o once continuously differentiable, the local form known as Cauchy’s first
law of motion

V.ol +pb=pv (4.19)
is obtained. Here, the relation
d .
a/pgadv = /pgodv, (4.20)
B B

valid for arbitrary scalar, vector or tensor fields ¢ defined over B, is used.
In terms of rectangular Cartesian components, Cauchy’s first law of motion
(4.19) reads

Ooyj .
by = pv;. 4.21
iy + pbi = pv (4.21)

Substitution of (4.19) into the balance of rotational momentum (4.14) gives

/(x—xo)xV~0Tdv=/(x—xo)xanda. (4.22)
B 8B



4.2 Conservation laws 53

Noting that u x v is the axial vector of the antisymmetric second-order ten-
sor v® u— u ® v for arbitrary vectors u and v, the rotational momentum
balance may be written in the form (cf. Chadwick 1976, Ogden 1984)

/{(x—xO>®(v-aT)—(V-aT>®<x—xO)}dv
B

= /{(x —X0) ® (on) — (on) @ (x —xo)}da. (4.23)
o8

Application of the divergence theorem to the surface integral on the right-hand
side and the relation

V- (6T®(x~-%0))=(V-07)®(x—x%0)+ 0o (4.24)
lead to

/ (0 —oT)dv=0. (4.25)

B

Invoking the arbitrariness of B for continuous o yields Cauchy’s second law of
motion

cl=0. (4.26)

By virtue of (4.19), the balance of rotational momentum is equivalent to
Cauchy’s second law of motion (4.26), which may be expressed in rectangular
Cartesian components to give

O‘ij = 0ji. (427)

As a consequence of symmetry (4.26), the Cauchy stress tensor o is expressible
in the spectral representation defined in Section 3.3.3. However, in general the
eigenvectors of & do not coincide with the directions of the Eulerian principal
axes n' introduced in (3.64). This is true for isotropic elastic solids only.
The Eulerian field equations, i.e. the equation of mass conservation (4.6), and
Cauchy’s laws of motions (4.19) and (4.26), are summarized in Figure 4.1.

Conservation of mass p+pV-v =0
Cauchy'’s first law of motion V-o' +pb=pv
Cauchy’s second law of motion oT = 0o

Figure 4.1: Eulerian field equations



54 4 Conservation equations and stress measures

4.3 Stress measures and stress rates
4.3.1 Lagrangian and two-point stress measures

The description of nonlinear problems requires the definition of additional
stress measures that are related to the reference configuration.
The Cauchy stress tensor o is a Eulerian stress measure. Using Nanson’s

formula (3.42)
da = JF TdA (4.28)

to express the resultant contact force on the boundary 0B of the current con-
figuration B in terms of the force on the referential boundary 08¢ of By gives

/ onda = / JoF TN dA, (4.29)
oB 8Bg

where the unit normal to the boundary 0Bg is denoted by N and the element
of surface in the reference configuration by dA.
With the definition of the first Piola-Kirchhoff stress tensor T

T =JoF T, (4.30)
the resultant force on the boundary 0By may also be written as
/ JoF " TNdA = / TN dA. (4.31)
8Bg 8Bg

The first Piola-Kirchhoff stress is an objective two-point tensor which is in-
duced from Jeo. Its transpose is called the nominal stress tensor’ P

P=T =JF 0. (4.32)

With respect to rectangular Cartesian Lagrangian and Eulerian bases, {E.}
of Bp and {e;} of B, the components of the first Piola-Kirchhoff stress and the
nominal stress tensor are

T = T;eei @ E, P=PFP,E.Qe;. (433)

The Eulerian load vector dl = tda on an element of surface da in B can be
expressed as

dl = oda = TdA. (4.34)

"The nomenclature used by different authors is contradictory. The definition adopted
here is given by Ogden (1984) and Truesdell & Noll (1992). However, Malvern (1969)
and Simo & Hughes (1998) call P the first Piola-Kirchhoff stress.
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N n

dL = F-1d]
8B, A ‘
dl

dl
Bo
Reference configuration Current configuration
Cauchy stress dl = oda

First Piola-Kirchhoff stress dl =TdA
Second Piola-Kirchhoff stress dL = SdA

Figure 4.2: Definition of stress measures

Hence, component T;, of T is the e;-component of force per unit reference
area on an element of surface in the current configuration, whose normal was in
the E,-direction in the reference configuration (see Figure 4.2, after Belytschko
et al. 2000).

By multiplying with F~!, a Lagrangian stress measure may be derived from
relation (4.34), yielding the Lagrangian load vector dLL

dL =F~'dl = F~'TdA = SdA. (4.35)

The objective second-order Lagrangian tensor S is called the second Piola-
Kirchhoff stress tensor. The second Piola-Kirchhoff stress is symmetric

S=JFloF T=F!T=PF 7. (4.36)

Frequently, the weightied Cauchy stress Jo is referred to as the Kirchhoff
stress T

r=Jo. (4.37)

The second Piola-Kirchhoff stress may be interpreted as a Lagrangian tensor
induced from the Eulerian tensor 7

S=F17FT r =FSFT. (4.38)




56 4 Conservation equations and stress measures

4.3.2 Lagrangian field equations

The stress measures defined in the previous section can be used to derive a
Lagrangian set of field equations. Using the nominal stress tensor P, the
balance of linear momentum in form of equation (4.11) is rewritten in the
reference configuration By

/poxdv =/pobodV+ / PTNJA. (4.39)
Bo Bo a8,
Here, the referential body-force density is given by bo(X,t) = b(x(X,t),t).

Invoking the divergence theorem, the Lagrangian representation of Cauchy’s
first law of motion, the so-called Lagrangian equation of motion

8Pai
8Xa

Vo - P + pobo = poX + poboi = poX; (4.40)

is obtained. It is given here both in tensorial notation and in component no-
tation with respect to a rectangular Cartesian basis.

To complete the set of Lagrangian field equations, the symmetry of o is ex-
pressed as

FP = P'F7 PFT=F'P", (4.41)
and the mass conservation equation is written in the form

P _ . (4.42)
P

The Lagrangian field equations are summarized in Figure 4.3.

Conservation of mass Jold = Jp
Cauchy'’s first law of motion Vo-P+ pobo= poX

Cauchy’s second law of motion FP =PTFT

Figure 4.3: Lagrangian field equations

4.3.3 Work rate and conservation of energy

From Cauchy’s first law of motion, the mechanical conservation of energy equa-
tion may be obtained. In particular, the mechanical stress power describing
the work done during deformation can be defined.
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Noting the symmetry of o by virtue of Cauchy’s second law of motion, the
scalar product of (4.19) with the velocity v gives

(V-a)-v+pb.-v=pv-v. (4.43)
This may be rearranged to yield
V:-(ov)—tr(e(VRv))+pb-v=pv-v. (4.44)

Integration over the domain B and subsequent use of the divergence theorem
and the conservation of mass leads to the mechanical energy balance equation

/pb'vdv—i—/t-vda:(;i—t/—;-pv-vdv—i-/tr(aD)dv. (4.45)

B aB B B

Here, the definition of the stretching tensor (3.114) in combination with (3.22)
D =sym(VQ®v) (4.46)
is used in conjunction with the symmetry of o, which gives rise to the relation
tr (o) = tr (¢D). (4.47)

The left-hand side of the equation of mechanical energy conservation (4.45)
represents the rate of work of the applied forces on the body B in configura-
tion B. The first addendum on the right-hand side of equation (4.45) com-
prising the kinetic energy density %pv - v is the rate of change of the kinetic
energy of B

4 /[l
dt J 2
B

pov-vdu. (4.48)

The second part, which may be written in the form

/cr:de=/cr:LdU, (4.49)

B B

is the rate of work of the stresses on the body, also referred to as stress power.
By virtue of definitions (4.32) and (3.110) and noting (4.47), the stress power
per unit volume of By is derived

W = tr (PF) —tr(P(LF)=Jo:D=7:D. (4.50)

Due to the objectivity of J, o and D, the stress power is objective. Still, in-
dividual terms in the above equation, such as F, do not transform objectively.
Alternatively to deriving the Lagrangian form of the conservation of mechan-
ical energy equation from (4.40) by repeating the method outlined above,
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equation (4.50) may be inserted directly into equation (4.45). Then, the Eule-
rian balance of mechanical energy equation may be reformulated with respect
to the Lagrangian configuration By to yield

/pobo-)'(dV—I— /(PTN)-)'(dA
Bo 88op
d

| :
=T 5,oox-de—i—/tr (PF)dV. (4.51)

Bo Bo

4.3.4 Stress rates

In Section 4.2.4, the Cauchy stress o was defined as an objective Eulerian
tensor field. Hence, it transforms according to rule (3.101)

ot (x*t") = Q) xo(x,t). (4.52)
Yet, the material time derivative of o given by

d=83—0t-+v-(V®0') (4.53)

is not objective, as follows by combination of the equations above
&' (%) = QW+ + (QWQTW) o* - o (AWQTW) . (454

However, while the kinematical description of the material behavior may be
dependent on the choice of observer, the material behavior itself is a physical
phenomenon independent of the choice of observer. Hence, constitutive models
must be based on objective quantities, i.e. on an objective stress rate.
Considering (4.54), one particular objective corotational stress rate, the so-
called Jaumann rate of the stress o, may be derived

c'=6+0W-Wo. (4.55)

As outlined in Section 3.6.2, other objective corotational rates are defined by a
general class of spin tensors *. Here, the Green-Naghdi and the logarithmic
rate of the weighted Cauchy or Kirchhoff stress 7 will be of importance

TR =7 +7QR — QFr (4.56)
,;’_ Log _ + + TQLOg — QLogr - (457)

The concepts of pull-back and push-forward (see also Section 3.4.1) provide
a mathematically consistent method for defining time derivatives of tensors,
called Lie derivatives. The Lie derivative of the Kirchhoff stress, which is
essentially the push-forward of the material time derivative of the pull-back of
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the Kirchhoff stress, plays a crucial role in the rate-incremental version of the
weak form of the balance of momentum equation. The Lie derivative may be
derived considering the identity

d 1 ~1d ~1

— (F7)=~-F "—(F)F -, 4.58

T = (F) (4.58)
which is an immediate consequence of FF~! = 1. Taking the material time
derivative of the second Piola-Kirchhoff stress (4.381) leads to

S=F'7LFT r =FSFT, (4.59)

where the Lie derivative of 7 is given by

Tl = F% (F'rF ) F' =+ - 7L" - L7. (4.60)
For subsequent considerations, the Lie derivative has to be related to the log-
arithmic rate of the Kirchhoff stress. Following Simo & Pister (1984), the
Lie derivative is expressed in terms of the Jaumann rate by virtue of rela-
tions (3.115) and (4.55)

rl=+—-7LT - Lt
=+—-7(W+D)" -~ (W+D)r (4.61)
=77 7D -Dr.

Then, noting the relationship between the logarithmic spin ©%°€ and the vor-
ticity W (cf. Xiao et al. 1997b)

QN8 = W 4 NEos | (4.62)

the logarithmic rate of the Kirchhoff stress is written as

(o)

TLOg = ‘([)' J + TNLO% — NLOgT . (463)

Thus, substitution into (4.61) yields the required relationship between the
logarithmic rate of 7 and the Lie derivative of 7

7l = 7log_ rNL°&  Ns;r — 7D - Dr
=7l _7B:D)+(B: D)7 —7D-Dr (4.64)
=7l G:D.

The spin N™°8 is given by equation (A.16) in Appendix A.2. The respective
definitions of B and G are presented in Appendix A.2 and Appendix A.3.
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4.4 Conjugate stress analysis

In Section 4.3.3, the stress power per unit volume was derived
w=T71:D. (4.65)

Equation (4.65) describes a physical quantity, the rate of work of the stresses on
the body. However, this expression for stress power is difficult to incorporate
in the formulation of constitutive laws as it is based on the stretching tensor D,
which cannot be written as the direct flux of any strain tensor. Hence, to fulfill
the conservation of energy requirement in the formulation of constitutive laws,
an appropriate alternative relation is needed. The work conjugacy relation

w=TM™ . E™=+:D, (4.66)

defined by Hill (1968, 1978), is a notion to overcome this difficulty. It states
that the Lagrangian measure of stress T™) and the Lagrangian measure of
strain E™) form a conjugate pair if the inner product of T¢™ and E(™) equals
the stress power i specified by equation (4.66).

For example, according to Hill’s work conjugacy relation (4.66), the second
Piola-Kirchhoff stress tensor S and the Green-Lagrange strain tensor E are
conjugate stress and strain tensors as well as the nominal stress tensor P and
the deformation gradient F. For other measures of stress and strain, such as
the rotated Kirchhoff stress RT =+ and the referential Hencky strain H, the
work conjugacy relation holds for coaxial RTx7and H only.

Due to the limitation of Hill’s work conjugacy notion to Lagrangian measures
only, an extension of (4.66) to Eulerian measures of stress and strain may
be considered. For example, for a conjugate pair of Lagrangian stress and
strain tensors, the rotated correspondences defined by (3.85) should be work
conjugate as well.

A relation to formalize this argument is proposed by Xiao et al. (1998b). They
consider a pair of symmetric Eulerian tensors (t,e), where t is an objective
stress measure and e an objective measure of strain.® In a frame defined by
the spin Q* relative to a fixed background frame, this pair is observed by an
observer O* as (Q xt, Q *x e).

Hence, for the observer O* taking the inner product (Q*t) : (Q * e), the pair
(t,e) is work conjugate if the relation

w=(Qxt): (Qre)=t:&* (4.67)

is satisfied. Here, e* is a corotating time derivative of the strain tensor e,
defined by the spin 2*T = QTQ, as introduced in relation (3.122)

g*zQT*dit(Q*e)zé-}-eﬂ*—ﬂ*e. (4.68)

8The Eulerian stress tensor t is not to be mistaken for the traction t used in the
previous sections.



4.4 Conjugate stress analysis 61

From the symmetry requirement of t and e, and the objectivity of t and w, it
is concluded that the extended work conjugacy relation (4.67) holds true only

for objective corotational rates e* (cf. Xiao et al. 1998b).
Using the spectral decomposition of e

e = Z 9(Xa)Bg 9(Xa) = f(\/x_a) ) (4.69)

the following expression for e* is obtained

n

e* = Z P(XaaXﬁ)BaDBg- (4.70)
a,f=1

Here, the eigenvalues and eigenprojections of the left Cauchy-Green tensor B
are denoted by X, and B_, respectively. The functional

P(Xos Xpg) = [(Xo +Xp) + (Xa — Xg) W (Xa/X8)] 9ap s (4.71)
with
9 (Xa) for a=p
928 =\ g(xa) — 9(X) (4.72)
Xo — Xo forr a#p0

depends on the eigenvalues of B and on the spin function h, see Section 3.6.2.
Hence, the objective corotational rate é* is determined by specifying the Eu-
lerian measure of strain through the scale function f(,/X4), and by the choice
of rate through the spin function A.

The Q*-work conjugate stress measure t of an arbitrary Eulerian strain mea-
sure e is given by

n
t = Z p_l(xa’Xﬁ)BaTBﬁ . (4.73)
a,f=1

In particular, the polar spin function (3.133), for which QT = R in (4.67)
and (4.68), yields the work conjugate stress

_ - -1 Xo — Xp -
t= 2 V) (o005 =) BemBo: (7

Specifying the Eulerian measure of strain to correspond to the Hencky strain h

1
g(Xa) == 5 lnXa s (475)
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the Q®-conjugate stress to h is obtained. It is denoted by

_ —1 —1
m = Z vV Xxa (mx _lnxﬁ)BaTBﬁ. (4.76)

a,f=1

Note that for the polar spin 2%, the extended work conjugacy relation (4.67)
corresponds to Hill’s work conjugacy relation (4.66), since by virtue of (3.135;)
and (1.73)

QU:W:]?IRZ(RT*‘R'):(RT*}OIR)ZH:H. (4.77)
Here, use is made of the rotated correspondences (3.85)
=R "xmw m=RxII, (4.78)

and of the definition of the Lagrangian stress Il from the rotated Kirchhoff
stress F = RT x 1

= -1 -1 Xa — Xﬁ ~
= = —F . 4.
" aﬁz=1 Yo Xo (lnxa—lnxﬁ) Ca™Cs (4.79)

Hence, relations (4.76) and (4.79) are independent of the material symmetry.
In particular, the Eulerian stress m defined in equation (4.76) and the La-
grangian stress II given by (4.79) hold for isotropic and anisotropic material
symmetries.

For isotropic materials, the Kirchhoff stress 7 and the left Cauchy-Green ten-
sor B are coaxial. Hence, T and B, commute in (4.76). Noting manipulation
rules (A.1) to (A.7) for elgenprOJectlons and hm (xa Xp)/(InX, —1InXg) = X4
then gives

7r=i7’aBa=T H=iTaCa=7‘. (4.80)

The Kirchhoff stress 7 and the Hencky strain h form a work conjugate pair
according to Hill’s definition (4.66) under isotropy only. Basis-free expressions
for t and T are given in Appendix A .4.

From equation (4.73), stress measures work conjugate to any given Eulerian
or Lagrangian strain measure e respectively E with regard to material spins
defined by the spin function A may be obtained. Specifically, substituting the
logarithmic spin function (3.137) gives the stress

T="T. (4.81)

Thus, extension (4.67) of Hill’s work conjugacy relation implies that the Kirch-
hoff stress T is the stress measure that is ©%°%-conjugate to the Fulerian
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Hencky strain. Invoking equation (3.139), stating that the stretching D equals
the logarithmic rate of h, by virtue of (4.67) the Kirchhoff stress 7 and the
Hencky strain h form a work conjugate pair

w=t:e*=7:D. (4.82)

4.5 Weak form of balance of momentum
4.5.1 Principle of virtual work

The numerical solution of the balance of momentum equations (4.19) or (4.40),
e.g. by the finite element method, is based on the weak form, often called the
variational form, of the momentum equation (cf. Belytschko et al. 2000).
The principle of virtual work to be derived in this section is equivalent to the
momentum equation and the traction boundary conditions. Collectively, the
latter are called the classical strong form.

The boundary 8By of the body B in By is subject to displacement boundary
conditions 9,80, and. traction boundary conditions 9,Bg. At each element of
the boundary, either displacements or tractions are prescribed

OuBBoN OBy = & OBy = 0,Bo U 0,8y . (4.83)
The traction boundary conditions are given by

PTN=% on 8,8, (4.84)
and the displacement boundary conditions are

u=n1a on 9,Bp. (4.85)

In order to be kinematically admissible, the displacements u(X,t) have to
satisfy the displacement boundary conditions on 9,By. Therefore, the test
function

du(X,t) = u*(X,t) —u(X,t), (4.86)

relating kinematically admissible displacements u(X,¢) and u*(X,t), is re-
quired to vanish on 9, Bo

6U(X, t) =0 on 6uBO . (487)

The test function du(X,t) is called the virtual displacement.

With these definitions, taking the dot product of Cauchy’s first law of motion in
its Lagrangian description (4.40) with any admissible virtual displacement du
and subsequent integration over the reference volume leads to

/vo-P-5udv+/pobo-5udV=/p0>'g-5udv. (4.88)
Bo Bo Bo
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Restricting attention to quasi-static processes, inertial forces are neglected.
Then, applying the divergence theorem and rearranging of terms gives

/PT:(V(,@Ju)dV: /PTN-audA+/pobo-5udv. (4.89)
Bp 8Bo Bg

Defining the test function du(X, t) according to (4.86) as the difference of two
kinematically admissible displacement fields, the integral over the kinematic
boundary vanishes and the only boundary integral in the weak form is over the
traction boundary. Designating the virtual displacement gradient (Vo ® du)
by OF yields the principle of virtual work in Lagrangian form

/PTzapdV: /fo-audA+/pobo-5udV. (4.90)
Bg

Bg 8Bg

By the same method, a Eulerian formulation of the principle of virtual work
may be derived. Defining the Eulerian gradient of the virtual displacement as

V®du=(Vo@)F!, (4.91)

and noting the change of variable formula (3.17), application of Nanson’s for-
mula (3.42) and definition (3.35) of the Jacobian determinant J lead to

/o": (V®6u)dv=/E»Juda—i—/pb-éudv, (4.92)
B a8 B

with the traction and displacement boundary conditions

on=t on 9,8 (4.93)
respectively
u=1a on 0,B. (4.94)

4.5.2 Rate of the weak form of balance of momentum

Based on the considerations in the previous section, the rate form of the weak
form of momentum balance can be derived. It plays an important role in
the incremental solution of quasi-static elastic-inelastic processes (cf. Simo &
Hughes 1998). As will be seen below, it leads to the continuum tangent stiff-
ness matrix. Hence, it is closely associated with the numerical implementation
of hypoelastic models.

In a manner similar to the definition of admissible virtual displacements, the
spatial velocity field n(x,t) is defined as an admissible spatial variation. The
test function 1 is sometimes called a virtual velocity. It has properties equiva-
lent to those of Ju. In particular, i vanishes on the prescribed boundary 9, 5.
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Neglecting inertial contributions, for a rate of change in loading given by bo
and to, equilibrium condition (4.40) takes the form

Vo - P + pobo =0. (4.95)

Denoting the admissible material velocity field corresponding to the Eulerian
quantity 7 by n,(X,t), application of the divergence theorem to the above
yields

/PT:(VO(X)nO)dV—/Eo-nodA—/pobo-nodV=O. (4.96)
Bo 9By Bg

This is the rate-incremental version of the Lagrangian weak form of momen-

tum equation (4.90). The corresponding Eulerian counterpart is derived by

considering relations (4.32) and (4.36) between the nominal stress P and the
second Piola-Kirchhoff stress S

P=SFT=F"'1. (4.97)
With the definition
Ven=(Ven,)F ', (4.98)

equivalent to (4.91), by virtue of (3.110) and (1.74) the virtual power density
on the left-hand side of (4.96) is expressed in the form

PT : (VO ® 'I)O) = (FS + FS) : (VO ® 7]0)

LFS + Fs) : (Vo ® 1)

LFSFT + FSFT) FT: (Vo®n,) (4.99)

(
(
(L‘T + ‘?‘L) : (Vo ®@no)F!
(

LT—I—‘?‘L):(V@N)).

Hence
/(LT—{—‘IO‘L) (Ven)dV= /%O'ﬂodA‘F/Po.bO‘ﬂodV~ (4.100)
Bo 8By Bop

Substituting the logarithmic rate of the Kirchhoff stress (4.64) as well as for-
mulas (3.35) and (3.42), the Eulerian rate formulation of the weak form of
momentum balance is obtained

1 OLOg , ,
fj(LT-I-T —I—G.D).(V@n)dv
B

:/%~nda+/pb-ndv. (4.101)

oB B
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The tensor G first introduced in equation (4.64) is specified in Appendix A.3.
The rate-incremental version (4.101) of the weak form of the balance of mo-
mentum equation provides the basis for the finite element implementation of
the material law proposed.



5 Thermodynamics

Processes of phase transformation in solids are characterized by a strong
thermomechanical coupling. In order to phenomenologically describe thermo-
mechanical processes, not only a kinematical, but also a thermodynamic frame-
work is needed.

In this chapter, criteria for thermodynamically admissible processes are derived
within an internal-variable theory based on the work of Lehmann (1974, 1984,
1989b) and Coleman & Gurtin (1967) as well as the monographs by Truesdell &
Toupin (1960), Malvern (1969), Truesdell & Noll (1992) and Belytschko et al.
(2000). Starting from the principle of conservation of energy and the second
law of thermodynamics, the notion of decomposition of stress power into an
elastic and an inelastic part is introduced. For irreversible thermodynami-
cal processes of constrained equilibria, the internal entropy production rate is
expressed in terms of generalized irreversible forces. The thermomechanical
coupling is governed by a heat conduction equation in combination with a
suitable relation for the rate at which energy is generated.

5.1 Introduction

The phase transforming body B under consideration is treated as a classical
continuum. This implies that a macroscopic description of microscopic effects
such as the nucleation and evolution of austenite and martensite may be ob-
tained by employing suitable averaging procedures. As a consequence, the
kinematical framework presented in Chapter 3 may be used.

It is assumed that the thermodynamical state of each material element is deter-
mined uniquely by the values of a set of external and internal state variables,
even when the body is not in thermodynamical equilibrium. Thus, the dissi-
pative effects are accounted for by postulating the existence of internal state
variables which influence the free energy of the body. Their evolution is gov-
erned by differential equations in terms of the strain (cf. Coleman & Gurtin
1967).° For known current values of the external and internal state variables,
the response of the respective material element may be determined for arbi-
trary stages of any admissible thermomechanical process without knowledge
of the history of the process prior to the current state (cf. Lehmann 1989c).
Of course, as required by the principle of determinism, the current state is
determined by the current deformation and the history of the motion of the
body as reflected by the values of the internal variables (cf. Truesdell & Noll
1992).

9This is only one of several ways to account for the dissipative effects which, in
addition to heat conduction, accompany deformation. Alternatively, a viscous
stress depending on the rate of strain could be introduced, or it could be as-
sumed that the entire past history of the strain influences the stress in a manner
compatible with a principle of fading memory (cf. Coleman & Noll 1960, 1961, 1964).
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The thermodynamical state is described based on the assumption that each
particle of the body has the properties of a local thermodynamical system
whose state is uniquely determined by the values of a suitable set of well
defined external and internal state variables. By imposing appropriate con-
straints, the internal variables can be held at any definite set of values, with
the material sample attaining an equilibrium state corresponding to the pre-
scribed external state variables. The body is then said to be in a state of
constrained equilibrium (cf. Rice 1971).

External state variables are the stress o0 and the temperature © or their con-
jugated state variables, i.e. the reversible strain h® and the entropy S, respec-
tively.!® These external state variables suffice to describe reversible processes
only. Hence, to represent states of changing internal structure due to irre-
versible processes, such as the evolution of the local fraction of the austenitic
and martensitic phases, additional internal state variables a have to be intro-
duced. The additional state variables may differ from internal process variables
intended to characterize the irreversible process. However, process and state
variables must be equivalent quantities. Here, they are assumed to be equal,
hence they are referred to as internal state variables. In general, an infinite
set of internal state variables is required

a={ay,...,a0}- (5.1)

However, within phenomenological theories only finite sets of scalar or tensor-
valued internal state variables of even rank may be considered. In fact, the
phenomenological model presented in Chapter 6 is based on only one scalar
internal variable, the mass fraction of martensite £

a={{}. (5.2)

The evolution of the internal variables is governed by rate-equations in terms of
the independent external state variables and the set of all internal variables.
For prescribed deformation h® and temperature ©, the general form of an
evolution equation of the internal variable a; then is

57;* = 32'* (@, he, a) s (53)

o
where (-)* is a suitable time rate.
Note that no distinction is made between the terms elastic and reversible
here. Thus, reversible effects of thermal expansion are included in h®, which
represents the elastic part of the strain h.'!

t0For an analysis of stress and strain measures that are conjugate in power, see
Section 4.4.
115ee Section 5.4.2 for arguments on choosing h® instead of h as state variable.
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5.2 Thermomechanical processes

A thermomechanical process takes a body from its initial state B to its current
state B. All external and internal state variables and kinematical quantities
related to By are assumed to be given. The process is initiated by prescribing a
set of independent process variables consisting of thermomechanical boundary
conditions as well as body forces and sources of energy. All dependent process
variables in the thermomechanically deformed state B are obtained from the
description of this process. Among these variables are the thermomechanical
quantities at the boundaries of the body, the displacement, stress and tem-
perature fields as well as the specific body forces and sources of energy inside
the body wherever they are not prescribed. In addition, the internal state
variables and all other quantities of interest, such as the heat flux q, follow
from the description of the thermomechanical process (cf. Lehmann 1984).
Following Coleman & Gurtin (1967), a thermomechanical process for B may
be described by a set of nine functions depending on the time ¢ and the par-
ticle X, which is identified by its position X in the reference configuration on
the grounds of the discussion in Section 3.2.3:

Spatial position in the motion x x = x (X,1)
Stress tensor m == (X,t)
Specific body force per unit mass b =b (X,t)
Specific internal energy per unit mass u =1u (X,t)
Heat flux vector q =q (X,t) (5.4)
Heat source (incident radiation absorbed by B) r =7r (X,t)
Specific entropy per unit mass s =s (X,t)
Absolute temperature 0 =0 (X,t)
Set of internal state variables a =a (X,t)

The initial and current states of the body are linked by general, material
independent field equations and a constitutive law. Some material indepen-
dent relations have already been presented, i.e. the kinematics in Chapter 3
and the balance equations for mass, linear and angular momentum, and me-
chanical energy in Section 4.2. The set is completed in this chapter by the
thermodynamical conservation of energy equation frequently called first law of
thermodynamics, and the second law of thermodynamics, a relation in terms
of the entropy S. The set of nine functions (5.4) is called a thermomechanical
process'? in B if and only if it is compatible with the balance of linear and
angular momentum, see Figures 4.1 and 4.3, and the balance of energy (5.13)
(cf. Coleman & Gurtin 1967).

In order to uniquely define a reversible energy, an imaginary reference state Bj

12The term thermomechanical processes for the processes under consideration is used
here in agreement with Lehmann (1984), while Coleman & Gurtin (1967) refer to
thermodynamic processes.
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and the decomposition of mechanical work are introduced. The thermody-
namical reference state is not part of the history of thermomechanical defor-
mations of the body B, but quantities such as the reference temperature ©g
are defined with reference to By. It is not possible to define a process leading
from the initial state By to the imaginary reference state Bg. On the other
hand, an imaginary reversible process between the current state and the imag-
inary state exists, during which the internal variables remain constant. Such
a reversible process in combination with a unique decomposition of mechani-
cal work into a reversible and an irreversible part serves to define a reversible
energy, which may be determined from a unique measure of reversible strain.
Here, the elastic logarithmic strain h® is chosen to define the reversible energy
of the body.

5.3 Conservation of energy

The total energy W stored in a body B consists of its internal energy U and
its kinetic energy K

W=U+K. (5.5)

The internal energy is obtained by integration of the specific internal energy
u over the mass of the body

U:/udm=/pudv, (5.6)
m B

and its kinetic energy by integration of the square of the velocity of the body
over its domain

K:%/pv-vdv. (56.7)
B

Here, p is the current density and v is the velocity of the body.

In a thermomechanical process where mechanical work and heat are the only
sources of energy, the principle of conservation of energy states that the rate
of change in total energy W is equal to the work done by the body forces and
surface tractions plus the heat energy delivered to the body by the heat flux
and other sources of heat

W=P +0Q. (5.8)

The external work P, done by the body forces pb and surface tractions t is
given by

Pa=/pb-vd'v+/t-vda,, (5.9)

B oB
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where b is a force per unit mass and t is a force per unit area.
The power @ consists of the rate of change in the energy of heat sources r and
the heat flur h

Q=/prdv+/hda, (5.10)
B aB
where the heat flux h is obtained from
h=-n-q. (5.11)

Here, q is the heat flux vector and n the vector normal to the surface element
da pointing away from the body. In order to associate heat flows into the
body with increasing energy, the sign of the heat flux term (5.11) is negative,
since positive heat flow is out of the body.

The first law of thermodynamics states that the rate of change in the total
energy in the body is equal to the rate of work by the external forces and rate
of work provided by heat flux and energy sources (cf. Belytschko et al. 2000,
Altenbach & Altenbach 1994). The weak form of the first law of thermody-
namics is obtained using (4.15) and (4.43) by substitution of the rate form of
(5.5) with (5.6) — (5.7) and (5.9) — (5.11) into (5.8)

/pddvz/(a:D—V-q+pr)dv. (5.12)
B B

Then invoking the arbitrariness of the domain gives the partial differential
equation of energy conservation

pu=0:D-V.-q+ pr. (5.13)

For vanishing heat flux and heat sources, the differential equation for a purely
mechanical process is obtained from the strong form of the first law

pu=0:D. (5.14)

The above is called the internal energy rate or internal power. It defines
the rate of energy imparted to a unit volume of the body in terms of the
measures of stress and strain. Since according to (5.14) the internal power
is obtained by contraction of the Cauchy stress o and the stretching D, it is
evident that the Cauchy stress and the stretching are conjugate in power.!3
Equivalent Lagrangian descriptions to the Eulerian formulation of the first law
of thermodynamics (5.12) and (5.13) can be derived using (3.35) and (3.42).
With (4.42) and the referential heat flux vector

Q=JFq, (5.15)

13 Alternatively, the phrase conjugate in work or energy is used, but the phrase
conjugate in power is more accurate.
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the Lagrangian description of the weak form of the first law (5.12) is obtained

/poudv =/(tr (PF) —vo-Q+por) dv. (5.16)

Bo Bo

Here, equation (4.50) for the energy rate was used to express the internal
power in terms of the nominal stress tensor P and the rate of the deformation
gradient F'.

The Lagrangian counterpart to (5.13) is

pot = tr (PF) — Vo Q+ por. (5.17)

5.4 Second law of thermodynamics
5.4.1 Entropy

The first law of thermodynamics is an expression of the interconvertibility of
heat and work and imposes no restrictions on the direction of processes. Based
on the concept of entropy, the second law of thermodynamics puts limits on
the direction of irreversible processes. It therefore poses certain restrictions
on constitutive relations (cf. Belytschko et al. 2000).

The entropy S of a body B is obtained by integration of the specific entropy s
over the domain of the body

S = /psdv. (5.18)

B

Entropy is a measure for the amount of energy irreversibly transformed into
forms of energy such as heat that cannot be transformed into mechanical work.
Irreversible processes are always associated with the production of entropy and
vice versa. A process of constant entropy is called an isentropic process.

5.4.2 Thermodynamic potentials and Maxwell relations

Continuum thermodynamics with internal state variables based on a caloric
equation of state assumes that the local specific internal energy u is deter-
mined by the thermodynamic state, specified by external and internal state
variables (cf. Malvern 1969, Coleman & Gurtin 1967). For the material un-
der consideration, which may be treated as homogeneous as no changes in its
components are considered, the caloric equation of state

u = u(s, h® a) (5.19)

is postulated, the dependence on X being implicit. Note that, in accordance
with Lehmann (1974, 1984), only the reversible strain h€ is introduced as
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thermodynamic state variable. Specifically, the inelastic part of the deforma-
tion gradient F* is no state variable, since there are processes associated with
inelastic deformation that do not result in a change of state, and processes
without residual inelastic deformation may be associated with a change of
state. Therefore, the elastic-inelastic part of the strain h®* (compare equa-
tion (3.147)) is no state variable either. However, the concept is not unique to
the reversible Hencky strain. On the contrary, arbitrary reversible measures
of strain are admissible. Of course, different measures of strain are conjugated
in power to different stress measures.

Thermodynamic temperature © and thermodynamic tension 7 are defined by

ou ou
e =— — ,
™ = po iles

0s |, e

where the subscripts indicate variables held constant. Due to the assumed
dependence of u on h® the stress 7 is obtained as thermodynamic tension.
The specific internal energy can thus be regarded as a potential for the ther-
modynamic tension 7.1*

Holding the set of internal variables a intended to describe irreversible pro-
cesses constant momentarily, in the Lagrangian configuration the rate of change
in the thermodynamic state of a given particle X is

. Ou . Ou
U= g s+ SHE
By virtue of (1.7), (3.125) and (3.126), for the current configuration the rate
of the internal energy is

. Ou ., Ou ~l:eR.

(5.20)

. He. (5.21)

= = : 9.22
"= %5 ° " o (5.22)
By comparison with (5.20) it follows
1 o
1=0s5+ —m:h°}, (5.23)

po

This equation is called Gibbs relation.

In addition to the specific internal energy u, Malvern (1969) introduces three
other thermodynamic potentials: the specific Helmholtz free energy, specific
enthalpy and specific Gibbs energy. The specific Helmholtz free energy v is
the portion of the specific internal energy u available for doing work in an
isothermal process (© = const). It is defined from u by a single Legendre
transformation (cf. Oberste-Brandenburg 1999)

ou

'4As mentioned above, the energy of the body is influenced by the internal state
variables a. These parts of the internal energy do not contribute to the stress defined
by equation (5.203).
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This is combined with the definition of the thermodynamic temperature (5.20).
Then, replacing the specific entropy s by its conjugate variable © gives

Y =9 (h% ©,a)

5.25
=u—0Os. ( )

Elimination of the reversible Hencky strain h® from (5.25) by another Legendre
transformation yields the specific Gibbs energy or free enthalpy g

_a_ % .
9= ahe'h' (5.26)

The specific Gibbs energy depends on the thermodynamic temperature © and
on the stress 7

g=g(0,m a). (5.27)

Substitution of the time rate of (5.25) into (5.23) gives

¢ gg@—l— 81'/)6 : he R
lah . (5.28)

— 80+ — 7 :h°R,

Po
Evidently,
EY 8

- _ % - , 5.29
=7 50|, =P Bhe | (5.29)

Thus, the specific Gibbs energy may be obtained from the specific free energy
1

=1 — —m:he, (5.30)
Po

The specific enthalpy h is defined as the portion of internal energy that can
be released as heat when the thermodynamic tensions are held constant

dg (5.31)

Employing the same procedure as above, rate equations for g are obtained

X 3g 69
g = e) + =
=—30 - — he R

po
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Potential Partial Derivatives
ou Ou
Internal energy u o= EN . ™ = po ah° |,
o
Helmholtz free energy s = — 29% ” T = po g;fe .
' _ Og e dg
Gibbs energy g § = — 50 |_ h® = —po or |
Oh . oh
Enthalpy h 0 = 35 i h® = —po o7 )

Table 5.1: Definitions of thermodynamic variables based on
their potentials

This defines
g

_ he = —po 29| | 5.33
- P or |, (5:33)
and therefore
h=g+s0. (5.34)

Substitution of (5.34) into rate equation (5.32) yields

h = g +g—h xk
e (5.35)
=0i— —he: xR
Po

and temperature and elastic strain are found from the partial derivatives

oh . 8h
0= ) h = —po 5 s (5.36)

Using this result, another Legendre transformation may be used to obtain the
specific internal energy u

u—h—g—h
A (5.37)
=h+—h®:7

o
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The foregoing results are summarized in Table 5.1. From the first two rows
it can be seen that the internal energy density u is a potential for the ther-
modynamic tension 7 in an isentropic process (s = const), while the specific
Helmholtz free energy 1) is a potential for the tension in an isothermal pro-

cess.
From these potentials the Mazwell relations may be derived by calculating
their mixed second derivatives. For example, the specific Gibbs energy (5.27)

g=g(0,m, a) (5.38)

depends on the temperature © and on the stress w. Hence from (5.34) it
follows

g _ 9’h  (s9) _ _0s (5.39)

80dr ~ 009w  90dm  Om|y '
Equivalently, (5.30) gives

8%g 1 6h¢

80dr ~  po 9O |’ (5.40)

where it is assumed that the derivatives with respect to ©® and 7 commute.
Equating (5.39) with (5.40) yields one of four Maxwell relations. Application
of this procedure to the specific internal energy, Helmholtz free energy and
enthalpy then gives the set of Maxwell relations summarized in Table 5.2.

Potential Maxwell relation
00 1 o
he¢ = —_
U(Sa aa) 9he . 00 33 he
0s 1 O
h®, 0, - = —_—
10[)( a) (9he o 00 8@ he
0s 1 6h°®
9(671773') - % o - - E 86 .
00 1 Oh°
h(m,s,a) 5;3 = o Bs i

Table 5.2: Maxwell relations
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5.4.3 Clausius-Duhem inequality

The second law of thermodynamics is based on the notion of entropy and states
that the total rate of increase of entropy in a body B cannot be smaller than
the entropy input supplied to the body from the outside

%/psde/%dv—/qén da . (5.41)
B B OB
Applying the divergence theorem to the surface integral gives
. pr q
- — = >
f(ps SV (e)) dv >0, (5.42)
B

and noting that the inequality is valid for arbitrary volumes yields

pé—%-l—V-(%)EO. (5.43)

This inequality is known as Clausius-Duhem inequality. The Lagrangian for-
mulation of (5.43) is

o — Eg + Vo - (%) >0. (5.44)

In (5.43) and (5.44), the inequality implies internal entropy production in an
irreversible process; the equality holds for reversible processes.
Decomposing the rate $ in (5.43) as suggested by Lehmann (1984)

é = érev + qél”'»r (5-45)

into a reversible part

. r 1 q\

Srey — @ + ,Dv (@) = 0 (546)
and an irreversible part $; gives

pY = pSirr = p§ — % + V. (%). (5.47)

Here, $;+ is identified as the internal entropy production rate per unit mass 7.
Hence, in a Eulerian respectively Lagrangian description the Clausius-Duhem
inequality (5.43) respectively (5.44) is written as'®

py >0 poy > 0. (5.48)

18Qriginally, Clausius formulated the second law for cyclic processes § pv > 0 only.
He arrived at relations of the form of (5.48) by the additional assumption that two
arbitrary states within the cyclic process must be linked by a reversible path (cf.
Ziegler 1970).
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The first law of thermodynamics (5.13) and the Clausius-Duhem inequality
(5.48) may be combined by elimination of the heat source r to give

1
ps+v-(%)—6(pfa—a;D+v.q)zo. (5.49)
Using
G, 6 e? ’ '

the term V - q/© is eliminated and (5.49) can be rearranged to yield
Bpy=p(@s—1u)+o0:D—-0"1q- VO >0. (5.51)
Substitution of the time derivative of (5.25)
Qs —1i = —Os — 1 (5.52)

into (5.51) eliminates the rate of the specific internal energy and yields the
Clausius-Duhem inequality in terms of the specific Helmholtz free energy

9p7=a:D—p(¢+s®)-@—lq-vezo. (5.53)

This formulation of the Clausius-Duhem inequality will be used subsequently.
With respect to the Lagrangian configuration, the Clausius-Duhem inequality
reads

Opos = tr (PF) — o (¢ n se) —671Q- Ve > 0. (5.54)

5.5 Decomposition of stress power

Based on the multiplicative decomposition (3.148) of the deformation gradient
into an elastic and an inelastic part

F = F°F, (5.55)
and the corresponding relation (3.155) for the rate of the deformation gradient
F = F°F’ 4+ F°F¢, (5.56)

the stress power o : D in (5.563) may be decomposed additively into a reversible
(elastic) and an irreversible (inelastic) part

Jo :D ==+ it (56.57)

The elastic part of the stress power is denoted by w® and defined as

Wf =7 :D° = %T  (FFe + BT (5.58)



5.6 Thermodynamic consistency 79

and the inelastic part w® as

W' =7:D% = %‘r : (FFF‘F‘ + F—eTF-iTFiTFeT) : (5.59)
Here and henceforth the Kirchhoff stress 7 = Jo = (po/p) o is used.
Substitution of the decomposition of power into the Clausius-Duhem inequality

(5.53) gives
@p"yzﬁ‘r:De—}——p—wi—p(d')—l-s@)—@"lq-V@ZO. (5.60)
Jols) po
Using (3.139)

}olLog =D , (561)

the inelastic part of the specific energy rate (5.59) may be written in terms of
the logarithmic rate of the Hencky strain'®

Wt =7 : hetlog, (5.62)

5.6 Thermodynamic consistency

The constitutive theory to be developed can only be a valid description of the
thermomechanical process considered if it obeys the restrictions posed by the
first and second laws of thermodynamics. Specifically, the second law in form
of the Clausius-Duhem inequality puts limits on the direction of irreversible
processes. Using the relations presented in the previous sections, a criterion
for thermomechanical constitutive theories ensuring agreement with the laws
of thermodynamics can be derived. Theories obeying this criterion are called
thermodynamically consistent.

Based on the postulated caloric equation of state (5.19)

u = u(s,h® a), (5.63)

constitutive equations for temperature ©, stress 7w and heat flux q of the form

© = O(s, h% a)
m =m(s,h%a) (5.64)
q =q(s, h%, a)

may be established (cf. Malvern 1969). In accordance with Lehmann (1989c),
it is presumed that the specific internal energy is uniquely determined by the
external and internal state variables s, h®, and a. The choice of internal
variables a is specific to the respective phenomenological model.

16Note that motivated by (4.50), W’ is defined as an energy density here.
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Legendre transformation (5.25) introduces the absolute temperature as a state
variable

¥ =(h®,0,a). (5.65)
Consequently, the constitutive equations are of the form
7 = 7w(h® 0,a)
= s(h® 0,a) (5.66)
= q(h®,0,a).

Here, the principle of equipresence attributed to Truesdell (1951) is used, which
states that “a variable present as an independent variable in one constitutive
equation should be so present in all” (Truesdell & Toupin 1960), unless its
presence is contradictory to a general law of physics or the assumed symme-
try of the material. Processes defined by (5.66) have to obey the principle of
material frame indifference or principle of objectivity of material properties,
which asserts that an admissible process must remain admissible after a change
of frame (cf. Coleman & Gurtin 1967). Hence, constitutive equations (5.66)
must be isotropic tensor functions.

There are several other principles governing the mechanical behavior of mate-
rials, thus posing restrictions on constitutive equations to ensure mathematical
and physical compliance. Some of them, such as the choice of independent and
dependent variables according to the principle of causality, have been obeyed
implicitly. Equations (5.66) were formulated based on the principle of local ac-
tion, asserting that the state at a given particle X may be determined without
regard to the motion outside an arbitrary neighborhood of X (cf. Truesdell &
Noll 1992). Finally, physical consistency must be achieved by ensuring that
the constitutive equations do not contradict the balance equations derived in
Section 4.2 and the first and second laws of thermodynamics (cf. Altenbach &
Altenbach 1994). In the following, appropriate criteria for thermodynamical
consistency are derived.

The tg{tal differential of the specific Helmholtz free energy ¥ = ¢(h® ©,a)
reads’

O ern, My, W on
b=z h + 569+ 5 At (5.67)

By virtue of (3.144), the polar rate is eliminated from (5.67)

l:eR — l:e Log _ heﬂLR + ﬂLRhe

0
aR = alos _ QLR | LR,

(5.68)

17The appropriate type of contraction of the partial derivative of the free energy with
respect to the internal variables and the rate of the internal variables as well as the
appropriate time rate depend on the type of the respective internal variable.
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Here, a notion by Hill (1978) may be introduced (cf. Bongmba 2001). For
moderate deformations, the material time derivative of H is approximated by

H~x~R«D. (5.69)

Hence, for moderate deformations the stress 7 may be approximated by the
Kirchhoff stress . In addition, for the logarithmic rotation it follows that

(R*®)" ~R, (5.70)
giving
O ~o0. (5.71)

Hence, (5.67) takes the form

a_;ﬁf helos 4 gg e + g"’ alog, (5.72)

Combination of the Clausius-Duhem inequality (5.60) with (5.72) then gives

. o %L (8¢ )
Opy = — T - :he™ %% —p | — S
Y= po Wt (po T 3he) 56 " °

¢_

_ oY °Log -1
poe AL - 07q- VO 2 0. (573)

To ensure thermodynamic consistency, all admissible processes have to com-
ply with (5.73) for all particles X of B at any time ¢t. This is guaranteed for
(o]

arbitrary h®t°€ and © if the thermal equation of state introduced in equa-
tion (5.292) (cf. Lehmann 1984)

oY
— 5.74
T=00 s (5.74)
and the caloric equation of state (5.291) (cf. Coleman & Noll 1963, Malvern
1969)

o
- _Z¥ 5.7
T (575)
hold true (see also Schmidt et al. 1984). In addition, the remaining part called
internal entropy production rate 4 must be non-negative (cf. Kestin & Rice
1970)

: 14 a¢ o ale -1
Opy=—uw'— €—-0 -VO > 0. 5.76
pY = P 't P da q-VO >0 ( )

Generally, the inelastic mechanical work 4 is only dissipated in part: Depend-
ing on the material under consideration, a significant amount of inelastic work



82 5 Thermodynainics

may be stored in the body due to changes in its internal structure. Therefore,
Lehmann (1984) proposed the decomposition

W' = Wiss + Wt (5.77)
with
Waigs > 0. (5.78)

Here, 45, is the dissipative part of 4" as indicated by inequality (5.78). The
remaining part 1, of inelastic mechanical work is miechanical work associated
with changes in the internal structure of the material. Introducing the entropy
change n due to the interaction between these structural changes and the
external energy supplied to the body, and recognizing that such structural
changes will be accompanied by the evolution of a set of internal variables, the
stored mechanical work may be written in the form

o)

: amechLog . (579)

Wt = po©ON + po
°f poEn T p aamech
Here, the internal variables representing the changes in internal structure a .,
are introduced. The remaining internal variables of the set a are denoted
by ag,, hence

a= {amecha ath} . (580)
Substitution of (5.79) into (5.76) using (5.80) then gives
: . . 0 -
Opy = £ Wgiss + PON — p 9 'gmL"g -071q.- VO >0. (5.81)
Po Bath

It is not generally possible to resolve the inequality 4+ > 0 into an internal
dissipation term holding for nonzero VO and a heat conduction inequality
—©71q- VO > 0 holding for nonzero ay® (cf. Coleman & Gurtin 1967,
Kestin & Rice 1970). However, such a resolution is valid if the time rate of
the internal variables is independent of VO.

In the following, the set of internal state variables is chosen toincludeonly a e
describing internal changes in structure. Then, in conjunction with the rea-
soning above, the strong form of the Clausius-Duhem inequality requires that

Opyu = —0"1q- VO >0 (5.82)
and

OpYmech = p_ﬁ; Udiss + pON > 0 (5.83)

must hold, singly.
Recognizing the assumption a = amech, substitution of (5.77) and (5.79) into
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the latter inequality gives the internal entropy production rate due to dissipa-
tive power in the form

: p % 6110 o alos
= —w — > 0. .
@p'Ymech ,00 P 83. >0 (5 84)

The quantities entering the expression for internal entropy production are
often designated as generalized irreversible forces or affinities X* and fluzes J
(Truesdell & Toupin 1960, Kestin & Rice 1970). In the formulation above, by
virtue of (5.62) a possible choice for the generalized irreversible forces is

Xi = {;’O —p (g‘!’) ,-@*W@} , (5.85)

giving the fluxes

J= {heﬂwg aloe, q} : (5.86)

While the choice of which factor is flux and which factor is force is somewhat
arbitrary, they have to be chosen in such a manner that the contraction of the
generalized irreversible force vector X* and the fluxes J gives the mechanical
and thermal dissipation power

Opy=X"-J>0. (5.87)

Based on these considerations, in irreversible thermodynamics it is usually
assumed that the fluxes are determined by phenomenological equations as
functions of all generalized irreversible forces

(Nk = Lis(X%);, (5.88)
or inversely
(X = ak; ()5, (5.89)

where according to the Onsager reciprocal relations the coefficient matrices Ly
and ag; are assumed to be symmetric (cf. Malvern 1969).

Substitution of the phenomenological equations into (5.87) gives the quadratic
forms

Op = Liy (X3)e(X?); 2 0 (5.90)
and

OpY = ak; (I (T); 2 0. (5.91)
Equation (5.91) is called a dissipation function

D =D(J) = ax;(J)x(J); - (5.92)
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In agreement with the phenomenological equation (5.89) this definition yields

1 oD
20
Again, it should be noted that in general the dissipation function (5.92) does
not separate into the sum of two or more parts as it was assumed in (5.84)
and (5.82), where thermal and mechanical generalized forces were considered
uncoupled.

The constitutive relations derived in Chapter 6 will be based on the preceding
considerations to ensure thermodynamic consistency.

(X = (5.93)

5.7 Thermomechanical coupling

A thermomechanical process is characterized by a strong interaction between
thermal and mechanical effects. The evolution of temperature depends on heat
conduction to be described by an appropriate law, e.g. Fourier’s law, and on
the rate at which energy is generated during deformation.

To obtain a rate equation for the generated energy, first the total differential
of the specific Helmholtz free energy (5.67) is substituted into (5.52)

. _ 31.0 eR. 81,[) 1.0 2 ak
Qs =i — Os <8he h 8@6+ 8 . (5.94)
Adopting (5.68) and (5.71), (5.94) may be rewritten
s . 6"!} eLog 81[) 8¢ OLOS
O =14 — Os (E)he h + 866 + Ba , (5.95)

which, in conjunction with the thermal and caloric equations of state (5.74)
and (5.75), gives

o
05 =1 — 1 :helos _ 0¥ grog. (5.96)
pPo 3&
Eliminating the rate of the specific internal energy (5.13)
1 1
t=-0:D—-—-V.-q+r 5.97
p 5Va (5.97)
and replacing the Cauchy stress by the Kirchhoff stress 7 = Jo yields
.1 | oY o
O¢=—7:D¥--V. - -~ -a"°s, 5.98
p” ,Viatr- 5o a (5.98)

Furthermore, an additional equation for the rate of the specific entropy may
be obtained from the caloric equation of state in terms of the specific Gibbs
free energy g (5.33)

99
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The definition of the specific heat at constant pressure ¢, with w = 7

oh

56| (5.100)

Cp =

combined with Legendre transformation (5.31) of the specific Gibbs energy
g = g(©,T,a) to the specific enthalpy h = h(T,s, a)

dg
_ .101
h=g 66@ (5.101)
gives
32
=-0 = 362 . (5.102)

Rearranging the time rate obtained from the total differential of equation
(5.99)

—§= © :a~° 5.
= ge0r T+ 507° " posa 1 (5.103)
and substitution of (5.102) yields
82 (o] L 82 (o] L
og og
cp© = 68+6868‘r +@6@8a a8, (5.104)
Using (5.98) and noting that
0 0
% = 53:[’- , (5.105)
rearranging of terms gives
]. 1 89 o1,
6 —_ _ v _|_ - De‘b —J . og
Cp y q 20 T! +7 ~ Ba a

2 2
+@a(<993  2Log %g;:éms. (5.106)

The sum of the last five terms on the right-hand side of this equation equals
the rate at which energy is generated per unit mass
1. ]. ; 3g [o) L 82 o L 82 O I,0p
- h @ — : DE’I. - og og 6 og
S =T iDY =g a4+ 0580 1Tt © 550a

(5.107)

Here, the rate hy,; at which energy is generated per unit volume is defined.
Using (5.107), equation (5.106) reduces to

. 1 1.
O ===V -q+ = hia. (5.108)
p p







6 Phenomenological model

6.1 Introduction

Based on the one-dimensional theory for pseudoelasticity developed by Miiller
(1989, 1991), within a small deformation theory Raniecki et al. (1992) propose
a three-dimensional thermodynamic model to describe materials undergoing
pseudoelastic phase transformations. They call their model Ry -model since in
its original form it is a rather general reference model that can be specified
to correspond to a number of material models known in the literature (see
Section 2.2.4 in this context).

In this chapter, an extension of the Rr-model to finite deformations is pro-
posed. While the fundamental ideas of the R;-model are accepted and will
be adopted consequently, the thermodynamic framework is reformulated in
agreement with the considerations given in Chapter 5.

Constitutive relations are developed based on the kinematic theory presented
in Chapter 3. The derivations originate from the specific Helmholtz free en-
ergy of constrained equilibria. Hence, after a few remarks on the description
of the purely elastic response of the pseudoelastic body considered here, this
potential is formulated in terms of the external and internal state variables.
The general set of internal variables defined in Chapter 5 is specified to include
one scalar internal variable, the mass fraction of martensite £. This limits the
applicability of the phenomenological model to pseudoelasticity; however, it is
possible to extend the framework given to include shape-memory and two-way
effects. Some remarks regarding possible modifications are given in Section 8.2.
In agreement with the thermodynamic considerations presented in Chapter 5,
thermal and caloric equations of state are derived. Equations governing the
evolution of ¢ during forward and reverse phase transformations are specified
in agreement with the requirements posed by the Clausius-Duhem inequality.
Based on these relations, rate equations for the elastic-phase transformation
part of the strain and in turn for the elastic part of the strain are derived to
permit the calculation of stress.

6.2 Elastic material response

The elastic response of the phase transforming body has to be characterized
in order to derive the specific Helmholtz free energy function. In Section 3.7,
the decomposition of the stretching into an elastic and an elastic-inelastic part
was introduced. Here, the only type of inelastic material response under con-
sideration is inelasticity due to phase transformation. Hence, equation (3.147)
may be written as

D = D® + D°"". (6.1)
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The elastic-phase transformation part of the stretching denoted by D**" follows
from the description of the transformation kinetics in Section 6.4.

On the other hand, the purely elastic response depends on the elastic part
of the stretching D®. In this section, a rate type equation for D° is derived
based on a hyperelasticity theory developed by Xiao et al. (1999a, 2000b). In
its general form, this theory is applicable to both isotropic and anisotropic
material symmetries.

6.2.1 Complementary hyperelastic potential

In Section 5.4.2, the thermodynamic potential g(©,w,a) called Gibbs free
energy was introduced. The Gibbs free energy may be interpreted as the
complementary hyperelastic potential 3 of the elastic-phase transforming body.
In the reference configuration, this potential is defined as

S(O,RT + 7w, RT xa) = —pog(©,I1,A). (6.2)

Here, the Lagrangian stress measure that is work-conjugated to the Lagrangian
logarithmic strain measure H is designated by II. A is the Lagrangian repre-
sentation of the Fulerian internal variables a. For processes of purely elastic
deformation, where a = const, the elastic part of the Lagrangian Hencky strain
is obtained from the complementary hyperelastic potential (6.2) by virtue of
the thermal equation of state

s

=3
Following Xiao et al. (2000b), the complementary potential may equivalently
be written in terms of temperature ©, Eulerian stress 7« and internal variables a

He (6.3)

Y =X(0,r,a) (6.4)
with
ox 5)Y

Noting the rotated correspondence (3.85), the Eulerian thermal equation of
state (5.332) defining the elastic part of the Eulerian Hencky strain h is ob-
tained

>

h® = —.
or

(6.6)

The complementary hyperelastic potential 3(0,II) is invariant under the ini-
tial material symmetry group Go. Hence

5(0, Q, + IT) = £(O, ) (6.7)
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for arbitrary rotation tensors Q, € Go. As a consequence, its Eulerian coun-
terpart (0, ) obeys the invariance requirement

Y(0,Qxm) =3(0,m) (6.8)

for rotation tensors Q € R x Gy. Therefore, the complementary potential 3 is
a tensor function representable by the main invariants given in (3.56) to (3.58)
and vectors «; characterizing the structure of the R-rotated group R * Gy.
This is a consequence of the dependence of ¥(©,II) on the initial material
symmetry axes that characterize the structure of the group Go. Denoting the
vectors representing the initial material symmetry axes by &, their Eulerian
counterparts are given by a; = Ré&;.

6.2.2 Eulerian rate type formulation of hyperelastic response

Based on the hyperelastic potential (0, ) discussed in the previous section,
rate type constitutive equations applicable to arbitrary material symmetries
may be derived.

It is assumed that the rate equation

D¢ = 9% /om 8 (6.9)

holds true. This expression is based on the self-consistency condition intro-
duced in Section 3.6.2, requiring that for each process of purely elastic defor-
mation, a constitutive formulation of D€ must be exactly-integrable to yield a
hyperelastic relation between an elastic strain measure and a stress measure
(cf. Bruhns et al. 1999, Xiao et al. 2000b). Here, this concept is extended to
the non-isothermal case.

In evaluating (6.9), the dependency of the gradient 9% /9w on the R-rotated
material symmetry axes must be noted. The logarithmic rate is the rate-of-
change observed in a frame rotating with the spin Q2%°8. The material axes,
however, rotate with the spin Q®. The contribution of this relative rotation
must be taken into account in (6.9)

e 822 O R 82 LR LR 82 -
Here, definition (3.145) and
— s o
R __ . R

are used. The tensor of thermal expansion a;, see Section 6.3.1 below, is given
by

?y

a = m . (6.12)
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The latter equality in (6.10) is established on the grounds that R-rotated

material symmetry axes remain unchanged in a frame defined by the polar
s OR

spin Q™.

If the material behavior is isotropic, the chain rule

a(m)lt =~ 7 (6.13)

holds and the elastic part of the stretching is given by (cf. Xiao et al. 1999a,
Bruhns et al. 1999)

_ 8%
w2
Note that for arbitrary material symmetries, chain rule (6.13) does not hold

and the elastic part of the stretching cannot be described by a relation of the
form

D* w8 4 ad. (6.14)

__0 L 622 (o] L

D®=90%/0n "% £+ — : w8, 6.15

Jom s 4 S (6.15)
Hence, in general equation (6.10) must be used instead of (6.14) (cf. Xiao
et al. 2000b).
Later, attention will be restricted to isotropic elasticity. Then, the Eulerian
stress measure 7 is coaxial to h® and coincides with the Kirchhofl stress .
For now, no restrictions regarding material symmetries shall be imposed. It is

assumed that the complementary hyperelastic potential ¥ is of the form

E(W):%W:D:ﬂ'-l—(@—@o)a:ﬂ', (6.16)

where the elastic compliance tensor D is introduced. A linear dependence on ©
is assumed here in agreement with the considerations in Section 6.3.1. Using
equation (6.6), the elastic Hencky strain is specified in terms of 7 and I

he=m:D + (© — Op)cx. (6.17)

Introducing the tensor of elastic moduli C, also called elastic stiffness tensor,
the foregoing equation may be inverted to give

mn=h*:C—-(0-0y)a:C. (6.18)

6.3 Helmholtz free energy of constrained equilibria

In a state of constrained equilibrium, the material sample attains an equi-
librium state corresponding to the prescribed external state variables, i.e. re-
versible Hencky strain h® and temperature ©, when the internal variables are
taken to be held fixed at any definite set of values by imposition of appropriate
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constraints. Under constant external loads, a two-phase solid body B will thus
remain at complete rest, even though in general B will not be in a state of
absolute equilibrium.

The rate of progression of any local microstructural rearrangement within the
material is dependent on the current stress state only through the thermody-
namic force conjugate to the extent of that rearrangement (cf. Rice 1971).
However, considerations concerning this kinetic aspect must be preceded by
a characterization of the state of constrained equilibrium that is postulated
here.

Specifically, the existence of the specific Helmholtz free energy 1 depending
on the external state variables h® and © and the internal state variables a is
presumed. This thermodynamic potential was defined in equation (5.25)

Y =¢(h%,0,a). (6.19)

Note that, in accordance with Lehmann (1989c), a dependence of 3 on the
elastic-inelastic part of the strain measure is excluded in contrast to the the-
ory of Raniecki et al. (1992), see Section 5.4.2.

. In order to describe pseudoelasticity, the general set of internal variables de-
fined in Chapter 5 may be specified to include only one scalar internal variable

a={¢}. (6.20)

Here, the mass fraction of martensite £ is defined
£=— m=m*+m". (6.21)

The total mass of the phase transforming body B is denoted by m, and m*4
respectively m™ are the mass of the austenitic respectively martensitic phase
of B. Here and henceforth, quantities associated with the individual phases o
will be denoted by

A (Austenite)
o =
M (Martensite) .

It is assumed that the current state of B is uniquely determined for pre-
scribed £, given the external state variables h® and ©. Since the chemical
composition of the phases does not change during processes of diffusionless
martensitic transformation, no internal variable accounting for such effects
is necessary. However, the scope of the theory developed here is confined
to pseudoelasticity as a consequence of considering only one scalar internal
variable. To accurately model one-way and two-way shape memory effects,
additional variables are required, i.e. to represent the orientation of stress in-
duced martensite or to capture the evolution of plastic eigenstrains.
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The specific Helmholtz free energy of B in states of equilibrium may be written
as the weighted sum of the specific Helmholtz free energies of both phases

Y= (1-&yp* + M. (6.22)

In constrained equilibria, physical events such as the interaction of different
martensitic systems and the elastic misfit of differently oriented phase domains
within the single crystal have to be accounted for (cf. Raniecki et al. 1992).
Hence, equation (6.22) has to be supplemented by a an additional term to
allow for these effects, see Section 6.3.2.

6.3.1 Helmholtz free energy of a single phase

To derive the specific Helmholtz free energies of the individual phases, the
specific heat at constant volume c, is introduced. Its dependence upon the
temperature © may be obtained by studying an idealized model of a crystal,
such as the Einstein crystal or the Debye crystal (cf. Morrill 1972). The
very simple Finstein crystal gives a reasonably good description of the specific
heat for solids. However, only at very high temperatures it agrees with data
established experimentally, while for lower temperatures it underestimates the
values of ¢,. Debye used a more complicated model known as the Debye
crystal, which gives a better approximation of the specific heat c,

¢o =3R (4D (%—D) — exp?@?/g? - 1) , (6.23)

where the Debye temperature © p and Debye function D are introduced

_3f_
DW= 0/ =T e (6.24)

Specific heat (6.23) depends on the gas constant constant R, which is ob-
tained from the universal gas constant R,, = 8.315%J/kmol K and the molecular
mass M of the solid body B through

Rm
R= T (6.25)
For temperatures close to or above the Debye temperature, ¢, is almost con-
stant (cf. Raniecki & Bruhns 1991). This is illustrated graphically in Fig-
ure 6.1 (cf. Morrill 1972, Oberste-Brandenburg 1999). For stoichiometric
NiTi, Kuentzler (1992) measured a Debye temperature of about © p = 340K,
while Lee et al. (2001) experimentally obtained an effective Debye tempera-

ture of ©p = 370 K. These values are considered to be sufficiently close to the
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__—Range of pseudoelasticity

0.75 of near equi-atomic NiTi
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Figure 6.1: Dependence of specific heat at constant volume
on temperature

temperature range where Nickel-Titanium SMAs behave pseudoelastically.'®
Hence, in the following the dependence of the specific heat at constant vol-
ume ¢, upon temperature is neglected. However, a fairly accurate, but much
simpler expression for ¢, than given in equation (6.23) would be available from
a series expansion in ©/0p at low temperatures and in ©p/© at high tem-
peratures (cf. Callen 1970).

The specific internal energy u defines ¢, through

ou
= 58], (6.26)

Taking the derivative of Legendre transformation (5.255)

Y =u—Os (6.27)

8 The pseudoelastic temperature range depends on several parameters such as chemical
composition and thermomechanical treatment (cf. Hodgson & Brown 2000). There-
fore, an exact specification of the pseudoelastic temperature range is not possible
even for NiTi SMAs. The region depicted in Figure 6.1 is based on transformation
temperatures given in Funakubo (1984) and Saburi (1998).
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with respect to temperature, and substituting (6.26) as well as the equation
of state (5.291)

8= — g—é (6.28)
he
gives
0s

Martensitic phase transformation in SMAs, characterized here by the mass
fraction of martensite £, is approximately isochoric (cf. Funakubo 1984).
Therefore, the definition of ¢, at constant volume may equivalently be ex-
pressed as the specific heat at constant reversible strain (cf. Oberste-Branden-
burg 1999)

0s

Cy = @5(_—) e . (630)
Integration then gives
e
8= Cy ln(—) + s0. (6.31)
©o

The constant of integration sg, possibly dependent on reversible strain and
mass fraction of martensite

80 = So(he,ﬁ) s (632)

is left to be determined. Substitution of (6.28) into (6.31) and subsequent
integration yield

¢=cv(9—®o—91n(e%)) — 50 (@ — ©9) + tg, (6.33)

where the constant of integration

Yo = Po(h*,§) (6.34)

is introduced.
To determine the constants of integration so and 1, elasticity as specified
in (6.18) is adopted

or

=C. .
o (6.35)
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Then, following the considerations of Oberste-Brandenburg (1999), an expan-
sion of the temperature dependent tensor of elastic moduli € into a Taylor
series about ©¢ gives

= 1 e
C=Co —25(9—90) c?, (6.36)

i=1
where the stiffness tensor at reference temperature Cq
Co = C(B = Oy) (6.37)
and the partial derivatives of the stiffness tensor

_&C

Cs'= o

(6.38)

=069

are introduced. Taking the second derivative of (6.31) with respect to h® and
using the Maxwell relations summarized in Table 5.2, substitution of (6.35)
yields a differential equation for sg

3280

1 — 1 i—1g(i
= Z; (& —-60) P, (6.39)

(i—1)!

Integrating twice with respect to h® and denoting the constants of integration
by B, = B,(€) and s5 = s5(€), respectively, gives

1 = 1 i1 g (3)
(h% &) = —h°: — (-0 C : h®

+ B8 :h®+5s5. (6.40)
Since 3¢ is independent of temperature, this relation may be simplified to yield

1

h®:Ce : h®+ 3, : h® + s, (6.41)
2/)0

S0 (hea £) =
where the first derivative of C with respect to © is written as
Co =C§’. (6.42)

Due to the independence of so on temperature, all higher order derivatives
must vanish. Therefore, the dependence of C on temperature is at most linear

C=Co—(©-60)Co. (6.43)

Using equation (6.41), the second constant of integration 1, introduced in
equation (6.33) can be determined. Substitution of (6.33) into the thermal
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equation of state (5.292), and noting that (6.41) is a function of h® and that
so = 8o(£), gives
_ 8¢0 e. C
T = p0 She - (@ — @0) (h :Co + po,@O) . (6.44)
Combination of this preliminary result with (6.43) and (6.35) yields the dif-
ferential equation

eR)
ol 8116(2) =Cy, (6.45)
which may be integrated twice to give
1
= —h°: :he. 6.4
Yo=75,-h*:Co:h (6.46)

In deriving (6.46), use was made of the initial conditions

Yo(h®=0) =0
T (h®*=0)=0.

The constants of integration B, and sp are possibly dependent on the internal
state variable £. However, assuming that this influence is negligible, they are
treated as constant parameters here. Then, based on the definition of the
elastic compliance tensor (6.17)

Oh°

=D A48

W b, (6.45)
the tensor of thermal expansion o may be introduced

a=D:p8,. (6.49)

At the thermodynamic reference state By defined in Section 5.2, the specific
Helmholtz free energy must vanish. Hence, from equation (5.252) one obtains

uy = ©o8g . (6.50)

Using (6.43), substitution of (6.46) and (6.41) with (6.49) and (6.50) specifies
the free energy function (6.33) of a single phase to
1

d):—he:C:he—(@—-@o)ia:C:he
2p0 Po

+ ¢y (@— O — Gln(@g)) +uy —850. (6.51)
0

It should be noted that the presumed independence of temperature attributed
to ¢y has no influence on the preceding derivations. Also, equation (6.51) must
be complemented by an appropriate definition of the elastic strain measure h°®
before the free energy of a single phase solid may actually be calculated. Such
a definition will be provided below.
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6.3.2 Internal interaction in constrained equilibria

The free energy of a two-phase solid as obtainable by combination of (6.22)
and (6.51) is not able to account for the hysteresis observed in phase transfor-
mation from austenite to martensite. Hence, the above description has to be
modified based on the underlying physical phenomena.

Miiller (1989) and Miiller & Xu (1991) attribute the hysteretic behavior of
SMAs to the interfacial energy between martensitic and austenitic domains in
the body. In their theory, the interfacial energy includes phenomena such as
the elastic misfit of the individual phases and the energy of elastic interaction
of neighboring domains. This is motivated by the argument that coherence
between domains of different phases distorts the crystal lattice in the vicinity
of the interface, and that the energy required may be ascribed to the inter-
face. Hence, in the following the term free energy of internal interaction will
be used. It will be denoted by ;.

There is no unique approach to derive a free energy of internal interaction.
Based on micromechanical considerations, interaction matrices accounting for
the individual martensite variants may be defined (cf. Patoor et al. 1996,
Niclaeys et al. 2002). Then, appropriate averaging procedures such as self-
consistent polycrystalline models or numerical methods such as the finite ele-
ment method must be applied to find the interaction energy of a polycrystal
at the macroscale (cf. Gall et al. 2000).

In a phenomenological approach, Raniecki et al. (1992) introduce a configu-
rational internal energy w(€) and a configurational entropy 5(§) due to phase
transformations to amend the internal energy and entropy in equation (6.51),
ug respectively s85. Then, the internal energies and entropies accounting for
the effects of internal interaction may be written as

u? = ug? +a(l —¢§)

(6.52)
u = ug™ +u(f)
respectively
st =85t +3(1-¢) 653

sM = gtM 1 5(¢).

It is reasonable to assume that the configurational specific free energy of
martensite attains its maximum at the beginning of the A — M transfor-
mation and decreases with increasing £, while the configurational specific free
energy of austenite is maximal at the beginning of the reverse phase transfor-
mation. At the same time it is required that the configurational specific free
energy (5.252) in terms of the configurational internal energy and entropy be
non-negative for all admissible values of £, with the configurational internal
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energy u(¢) and entropy 5(§) approaching zero as £ tends to one (cf. Raniecki
et al. 1992). These requirements are met by the linear functions

1
u(z) = 3 to(l — )
) (6.54)
5(x) = 5 So(1 —1z),
where the constants %o and Sp 1nust satisfy
g — O30 > 0. (6.55)

Equations (6.52) and (6.53) define internal energies and entropies that are
meant to replace their counterparts in the respective specification of equa-
tion (6.51) to austenite and martensite. However, instead of modifying the
specific Helmholtz free energies of the individual phases, the free energy of
internal interaction may be taken into account by modifying equation (6.22):
Substitution of (6.52) and (6.53) into (5.252) gives the configurational specific
free energies of austenite and martensite

Y =ut — 95t Y =uM —esM. (6.56)

Adopting the interrelation between both phases as given by (6.22), the contri-
bution of these terms to the specific Helmholtz free energy of the two-phase
solid is

(- v + &l = (1 - s — Os5™) + £ (ug™ — ©s5™)
+&(1 = &) (w0 — ©50). (6.57)

The first two addenda on the right-hand side of (6.57) are contained in the
specific Helmholtz free energy as defined by equation (6.22) when (6.51) is
substituted for austenite and martensite, respectively. Thus, the third term
incorporates the effects of internal interaction and may be used to define the
free energy of internal interaction 1,

¥;;(©) = o — O3 . (6.58)
Then, equation (6.22) can be amended to yield
= (1= + M + (1 -y, . (6.59)

The configurational internal energy 4o and entropy S0 due to transformation
are to be determined experimentally.
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6.3.3 Helmholtz free energy of a two-phase solid

Equation (6.59) defines the specific Helmholtz free energy of a two-phase solid
from its constituents ¥ and 9™, which represent the specific Helmholtz free
energy of austenite and martensite, respectively. However, before 1 may be
calculated from (6.51), where the individual free energies of the phases «
are given in the form 9% = ¥*(h®*, ©), the relationship between the phase-
specific, intrinsic elastic strains h®*4 and h®™ must be evaluated.

In the previous chapters, decompositions in elastic and inelastic, or — depend-
ing on the respective quantity — elastic-inelastic parts were introduced. In
Section 6.2, the general term inelastic deformation was specified to include
only deformation due to phase transformation. Other inelastic effects, such as
plasticity or damage, are excluded.

The intrinsic elastic strains may then be obtained from the total and the
elastic-phase transformation strains within the respective phases!®

he* = h® — he?"™ (6.60)

The intrinsic elastic-phase transformation strain within the austenitic parent
phase is presumed to be zero

he4 = 0. (6.61)

To determine the intrinsic elastic-phase transformation strain of the marten-
sitic product phase, the intrinsic phase distortion k is introduced as a quantity
possessing the properties of a measure of strain. K is associated with the forma-
tion of martensite, which according to experimental observations on NiTi and
other shape memory alloys is characterized by negligible changes in volume.?°
Hence, k is required to be traceless. The intrinsic phase distortion may be in-
terpreted as an average measure of the distortions due to phase transformation
(cf. Raniecki & Bruhns 1991, Raniecki et al. 1992). It has the property

K:Kk=mn°= const, (6.62)

where the material parameter 7 is the amplitude of pseudoelastic strain or pseu-
doelastic flow. The intrinsic elastic-phase transformation strain of martensite
may then be defined as

herM = g tr (h*"M) =0. (6.63)

The strain of the two-phase solid B is postulated to obey the same mixture
rule as ¥

h=(1-¢&h?4¢enM, (6.64)

19The decomposition into an elastic and an elastic-phase transformation part is moti-
vated by the respective decomposition of the stretching D introduced in Section 3.7.

20%or NiTi, the volumetric change is —0.34 % from austenite to martensite (cf. Fu-
nakubo 1984).
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Given the intrinsic elastic strains, the intrinsic stresses follow by virtue of
equation (5.292)
o™
Ohe® '

(6.65)

o __
T = po

Equilibrium conditions

The intrinsic strains h® can be determined by analyzing states of equilibrium
within the two-phase region. At equilibrium, the free energy function (6.59) at-
tains its minimum. Hence, utilizing the method of Lagrange multipliers, (6.59)
is minimized with respect to the mass fraction of martensite £ and the intrin-
sic elastic strains h®” respectively h®™ for fixed temperature and strain under
constraint (6.64)

L= (1—Emp? 4+ &M + £(1 = &)y,
4+ A:(h—(1-¢&h?—¢hM) — Min!  (6.66)

The appropriate Lagrange multiplier A is identified as the stress 7 as derivable
from the thermal equation of state, weighted by the referential density po

oL o4 ' ot 1 4
—(1—&)2  —A(l-€L0 = A= ==
oA — 185~ A0 =0 = A=o g =
oL oM ! oM 1y
= —Af=0 = A= = — .
et~ Sgpem A oh"  po
(6.67)
Hence, the equilibrium stress is?!
r=7nt=nM, (6.68)
The partial derivative of (6.66) with respect to & gives
M — oyt + ;)1— m: (h* — h™) + (1 - 26)y,, = 0. (6.69)
0

Evidently, the Gibbs potentials of the phases « as defined by (5.30) must differ
at equilibrium only by a term depending on ;.

To determine the intrinsic strains, it is assumed that the thermoelastic prop-
erties of both phases are equal and approximately constant

c=Cc*=c¥=¢, a=a’=a" =a. (6.70)

21The phase distortion & may be considered to be a function of a micromechanically
motivated parameter h. Then, at equilibrium K attains its maximum with respect
to h, see Raniecki et al. (1992).
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Considering this simplification, the phase chemical potential nl(©) defined by
rf(0) =p* — M, (6.71)
by virtue of (6.51), (6.67) and (6.68) may be reduced to

7 (©) = Au* — OAs*, (6.72)
where

Au* = udt —ug™ (6.73)

As* = sy — g™, (6.74)

Here, the specific internal energy of austenite (martensite) at stress free state
is denoted by uy? (uy™), and the specific entropy of austenite (martensite)
at stress free state is denoted by s34 (s5™). The phase chemical potential w({
represents the driving force for temperature induced phase transformation at
stress-free state (cf. Raniecki et al. 1992). A graphical illustration is given
subsequent to the derivation of equilibrium conditions.

Equating (6.67;) and (6.672) based on (6.68) gives the intrinsic strains at
equilibrium

h* =h - ¢k (6.75)
and
W =h+(1-€)k. (6.76)

Based on these equations, using (6.67) and (6.75) the stress 7 at equilibrium
may be derived in terms of the total strain h, the phase distortion « and the
absolute temperature ©

T=0C: (h—fn—ao(@'—@o)). (6.77)
Then, the mass fraction of martensite £ at equilibrium follows

ki Co: (h = (© — Bo)axo) + po(md —wyy)

6.78
K:Co:k —2p00; (6.78)

=

Combining (6.77) and (6.78) gives an equilibrium condition for two-phase
states in terms of the phase distortion x

1
p—1r:l~c+7rg~—(1—2§)1/;it=0. (6.79)

0
To eliminate the phase distortion x from the foregoing relations, additional
restrictions must be imposed that associate k with h or w. Raniecki et al.
(1992) postulate that, after a change of the principal direction of stress and
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subsequent proportional loading, the existing martensitic plates will rotate
instantaneously. The new martensitic systems will then be formed in such a
way that the overall phase distortion will have the same principal directions
as the stress applied. Formally, this may be written as

71_’

Adopting this concept, (6.80) and (6.79) may be combined to yield a stress-
temperature relation in states of equilibrium. Graphically, this relation is rep-
resented by a circle with temperature-dependent radius in the m-plane. In ad-
dition, an equilibrium condition in stress-strain space is obtainable from (6.77)
by substitution of (6.78) and subsequent elimination of the phase distortion
by virtue of (6.80). However, these simplifications are deferred to Section 6.7.
The notion of a driving force for temperature induced phase transformation
at stress-free state wg defined in (6.71) is illustrated graphically in Figure 6.2
(cf. Wollants et al. 1979, Otsuka & Wayman 1998a). Here, the tempera-
ture of coinciding chemical free energy of both phases is designated by T° and
approximated by

1.0
T° = 5 (M) + AY). (6.81)
Transformation will be initiated only when a thermodynamic driving force
reaches a certain threshold value. At stress free state, supercooling to a suit-
ably low temperature AM f is required.

Agﬂ.{—vA

Degree of !

Figure 6.2: Phase chemical potential at stress free state
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The definition of T° as depicted in Figure 6.2 generally holds only for non-
thermoelastic martensitic transformations, characterized by an almost instan-
taneous growth of single martensite crystals to their final size, without further
growth with decreasing temperature. When these martensite crystals undergo
reverse transformation, austenite crystals are nucleated and grow within the
martensitic phase (cf. Funakubo 1984).

However, most martensitic transformations associated with superelasticity or
shape memory effect are thermoelastic. Here, the interface between austenitic
and martensitic phases is very mobile upon cooling and heating, leading to a
rate of growth of the nucleated martensite crystals proportional to the cooling
rate. The driving force required to initiate phase transformation is compara-
tively low in thermoelastic martensitic transformations. Regarding Figure 6.2,
the relation

M2 < A2 (6.82)

does not hold necessarily in thermoelastic martensitic transformations. Hence,
for alloys undergoing Type II thermoelastic martensitic transformation, char-
acterized by

0 0
AY > M, > A > M7, (6.83)

it is more appropriate to approximate the equilibrium temperatures by (cf.
Otsuka & Wayman 1998a, Funakubo 1984)

T0 ;(MO + 49 T = %(A‘; + MY, (6.84)

Constrained equilibria

The equilibrium states considered are unstable. No real process of phase trans-
formation from £ = 0 to £ = 1 would proceed along a path defined by the
equilibrium conditions derived above, which imply decreasing stresses in con-
nection with the evolution of martensite and increasing strains (cf. Miiller &
Xu 1991). In fact, the description of deformation processes involving phase
transformation relies on the idea of constrained equilibria presented in Chap-
ter 5.

The specific Helmholtz free energy function of constrained equilibria is given
by equation (6.59) derived in the previous section without regard to equilib-
rium states. Miiller & Xu (1991) introduced the notion of so-called uniform
stress models by proposing that both phases are subject to the same stresses

=M =1n. (6.85)

Hence, according to their theory, the intrinsic stresses of both phases are iden-
tical in states of constrained equilibrium as well. The latter equality in (6.85)
implies that equilibrium strains (6.75) and (6.76)

h* =h—¢k h™ =h+(1-¢k (6.86)
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and the equilibrium stress given by equation (6.77) hold for states of con-
strained equilibria as well

7 =(h®*—(©—60)ao) :Co. (6.87)
Here, the elastic Hencky strain is defined as
h® =h - ék. (6.88)

This is motivated by the definition of the intrinsic phase distortion x as an
average measure of the distortions due to phase transformation in polycrystals.
The intrinsic phase distortion weighted by the mass fraction of martensite may
then be defined as the elastic-phase transformation part of the strain, which
is denoted by h°¥"

he'" = ¢k (6.89)
Equivalent to (6.88) is the following decomposition

h® =h — h*"", (6.90)
From (6.63) it is readily seen that

tr (h**") = 0. (6.91)

Noting (6.86) and (6.88), equation (6.59) yields the specific Helmholtz free
energy of constrained equilibria in the form

Wb(he,0,8) = — he : Co : h® — (© — Og)~ v : Co : h°
2p, po
Fe (@ — 0y - eln(g)) (6.92)
©o

+up? — Os5? — £mf(©) + £(1 — E);,(O).

In deriving (6.92), identical thermomechanical properties for both phases were
stipulated. The preceding derivations do not rely on this simplification. In
fact, phase specific and temperature dependent stiffness tensors C* and tensors
of thermal expansion coefficients a® may be incorporated in the same fashion
as outlined here. However, they naturally imply a more complicated free
energy function than given by (6.92). For example, Bernardini (2001) derives
a free energy function taking into account phase specific material properties
based on a variational formulation, neglecting the energy of interaction. On
the grounds of micromechanical considerations, Zidlkowski & Raniecki (1999)
obtain a free energy function with phase-specific thermomechanical properties
that includes (6.92) as a particular case.

Relation (6.87) for the stress was derived based on the intrinsic strains h®®.
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Adopting (6.92), the stress may be calculated by means of the thermal equation
of state (5.74) instead

N
oh® (6.93)
= (he — (@ — eo)ao) . Co .

™ = pPo

Employing the caloric equation of state (5.75), the specific entropy of con-
strained equilibria is.given by

_o
56
1

=——0a0:Co:h®+ ¢y ln(g) — EAS* +E(1—£)30 + 551,
Po ©o

(6.94)

Internal loops of the hysteresis

Although during monotone loading of a pseudoelastic specimen the phase
transformation will not follow the equilibrium conditions defined above, they
are important to the description of internal loops of the hysteresis. Following
Miiller & Xu (1991), states within the bounding loop may be considered as
metastable. The material behavior of a process originating from a metastable
state depends on the position of this state relative to states of equilibrium and
on the direction of the process, i.e. loading or unloading. This situation is
depicted in Figure 6.3 in stress-strain-space in one dimension.

Here, states of equilibria are represented by a dotted line leading from the
upper left to the lower right corner of the idealized pseudoelastic hysteresis.
Considering the hysteresis on the left hand side first, it may be seen that elas-
tic unloading from the transformation plateau first leads to metastable states

Unstable equilibria

Figure 6.3: Criteria for internal loops
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above the line of unstable equilibria. Decreasing the strain further will even-
tually lead to a state on the line of unstable equilibria. Disregarding possible
threshold values 71, i.e.

TA=M(g) = YM=A(6) =0, (6.95)

reverse phase transformation will initiate from here. Reversing the strain rate
results in the same behavior, first elastic loading, followed by a process of phase
transformation once the line of unstable equilibria is reached (cf. Miiller & Xu
1991).

However, although assumption 6.95 is justified by isothermal, deformation-
controlled experiments on a CuZnAl single crystal (cf. Miiller & Xu 1991),
there is some experimental evidence obtained on NiTi specimens suggesting the
existence of threshold values that must be reached before phase transformation
is initiated (cf. Pascal & Monasevich 1981, Tanaka et al. 1995b, Helm 2001).
This is illustrated on the right-hand side of Figure 6.3, where it is assumed
that the threshold value is a linear function of the mass fraction of martensite.
Threshold values T will not be taken into account here. For a thorough study
on this subject, see Raniecki & Lexcellent (1994).

6.4 Transformation kinetics

With the relations presented in the previous section, the state of a single-
or two-phase material may be characterized. However, a kinetic equation
describing the evolution of martensite remains to be specified. In this section,
based on the notions and thermodynamic constraints discussed in Chapter 5,
an appropriate kinetic law will be derived.

6.4.1 Thermodynamic driving force and corresponding flux
The Clausius-Duhem inequality in form of equation (5.76) requires the internal

entropy production rate ¥ to be non-negative
p

Opy = — W' — %

o P o -als _9-1q.VO >0, (6.96)

or, more strictly, that both the entropy production rate due to the dissipative
power (5.84)

: —_ P i ?_'l‘_b_.oL05>
@p’ymech—pow P5a 2 >0 (6.97)

and the entropy production rate due to irreversible heat conduction in the
presence of a thermal gradient (5.82)

Opyy, = —071q- VO >0 (6.98)
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are non-negative, separately. As stated in Section 5.6, a priori there is no
reason to suppose that both (6.97) and (6.98) must hold singly. However,
as (6.97) contains no terms depending on VO, the above decomposition is
valid.

Recognizing that only inelastic deformations due to phase transformation are
considered here and that the mass fraction of martensite £ is the only internal
state variable, substitution of the phase transformation part of the specific
energy rate 1w’ given by (5.62) into equation (6.97) gives

T : hetrhee _ p, %—%)—f > 0. (6.99)

In order to employ the concept of generalized irreversible forces and fluxes
introduced in Section 5.6, the logarithmic rate of the elastic-phase transfor-
mation part of the strain is eliminated from (6.99) by means of definitions
(6.89) and (6.62) to yield

(ET  BE — o 3—’1’) £>0. (6.100)

Based on this inequality, the thermodynamic force 7/ driving phase transfor-
mation

. 1 o
(XY =7f = £ T :h®" — pg B_qé) (6.101)

and the corresponding thermodynamic flux
(D) =€ (6.102)

are defined.

On the grounds of these definitions, a kinetic law for phase transformation
can be proposed to associate the thermodynamic flux £ with a prescribed
thermodynamic force 7/.%? Relation (6.100) has to hold true to ensure ther-
modynamic consistency, implying the following requirement for the kinetic
equation

£>0 for wf>0

) 6.103
<0 for = <0. ( )

22The thermodynamic driving force mf is not to be mistaken for the phase chemical
potential ﬂ'g.
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6.4.2 Evolution of thermodynamic driving force

To describe the evolution of the thermodynamic driving force 7f, two func-
tions fA7M(xf €) for A - M and fM~A(nf €) for M — A transformation
are defined. Due to their dependence on 7/ and €, and the requirement that £
remain constant during processes of active phase transformation (cf. Raniecki
et al. 1992), they link the thermodynamic driving force to the mass fraction
of martensite

fA7™M = const for £€>0

_ (6.104)
fM=A = const for £ <O.

A possible interpretation is available by considering the yield surface known
from plasticity, which corresponds to (6.104) for const = 0. In fact, theories
of plasticity have been extended to model the behavior of SMAs (cf. Bertram
1982, and in a Eulerian description adopting the logarithmic rate, Pethd 2000),
and some authors refer to functions similar to relations (6.104) as yield surfaces
(cf. Orgéas & Favier 1998, Helm & Haupt 2003).

It is assumed here that the association between mf and £ is of the type

FAM(nd 6y =nf — pok?~M(€) <0 (6.105)
respectively
Mo A ) = —7f + pok™TA(€) < 0. (6.106)
f

T

fA™M = const <0

3

fM——»A =0

= const <0

f]VI—rA

Figure 6.4: Thermodynamic driving force for admissible
thermomechanical processes
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Here, functions k(¢) are introduced which will prove to be crucial to the de-
scription of #f. In fact, noting (6.104), the rate of the thermodynamic force el
may be calculated using

el =pol;;A"’M for é> 0

. : (6.107)
il = pokM=4 for £<0.

First, attention is restricted to the bounding loops of the hysteresis. It is ob-
served that m/ is zero at the initiation of forward respectively reverse phase
transformation. Motivated by the analogy to plasticity, this may be combined
with the assumption that the isoquants f(m/,¢) must vanish on the bound-
ing loops. Hence, for A — M transformation initiating from states £ = 0,
and for processes of M — A transformation initiating from martensitic states
(¢ = 1), the thermodynamic driving force equals the function £*(¢). Then,
initial conditions must be

A-M
kAN =0, (6.108)

A-M

following from f = 7rf|§=0, and

kM4 e =0, (6.109)

implied by fM~4 = — #f| oy

Processes of phase transformation originating from states within the bounding
loop are associated with 7/ = 0 at the moment of their initiation as well.
However, here it is postulated that f4~¥ < 0 and f¥~4 < 0 (see Figure 6.4
following Raniecki et al. 1992). Therefore, to obtain a positive respectively
negative driving force for A — M and M — A transformations, respectively,
it is required that

EA™M >0 kM—A <. (6.110)

To states of ¢ # 0 and 7 = 0 within the bounding loops correspond positive
kA—=M and negative kM4,

As fA7M <0 and M4 < 0 and states of complete A — M transformation
(¢ = 1) respectively complete M — A transformation (£ = 0) are not observed
experimentally on polycrystalline SMAs, the evolution of the thermodynamic
driving force depending on the mass fraction of martensite

0<é<1 (6.111)
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is subject to additional constraints, namely

k:A—wM k]\/f—-—»A

lim =00 lim = —00
£€—1 £—0
: _ A—- M — : M—A —
lim (1 =k 0 Yim £k 0 (6.112)
dkA—~M dkM—A
0 0
de > de >

These constraints may be derived from (6.105) to (6.107), noting the implica-
tions of definition (6.101) of 7/ in terms of the mass fraction of martensite &.
There is an indefinite number of functions k“ that satisfy these constraints.
Based on Tanaka (1990), who adopts the description of transformation ki-
netics proposed by Magee (1970), Raniecki et al. (1992) introduce the con-
stants A; > 0, B; and C; > 0 to propose the equations

EATM(E) = (A1 + Bif) In(1 — &) + Ci£ 2 0 (6.113)
for A —- M and
kM2 A(8) = (A2 — B2(1—€))Iné = C2(1 - €) <0 (6.114)

for M — A transformation, which comply with (6.108) and (6.109) as well
as (6.110) and (6.112). These functions are adopted here. Their evolution for
forward respectively reverse phase transformation is illustrated in Figure 6.5
(see Section 7.4.1 for the material parameter set used).

pok®

30.0 +—

20.0 JA—M
10.0 +

0.0

—-10.0

—20.0

-30.0 -~

Figure 6.5: Evolution of functions k&
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The shape of the hysteresis as determined by the model is very sensitive to
the functions k%. Therefore, depending on the characteristics of the respective
shape memory alloy under consideration, a different choice for k* may be
necessary to better represent the hysteresis experimentally observed.

6.4.3 Neutral processes

For active processes of phase transformation, the requirements

e A — M transformation: 7f > 0

e M — A transformation: 7/ < 0

for the thermodynamic driving force were specified. However, these necessary
criteria are not sufficient to determine whether a process initiating from a
given state (h®,0,£) will be actively phase transforming or a so-called neutral
process characterized by £ = const. Therefore, a criterion for neutral processes
is needed.

By virtue of (6.92), definition (6.101) of the thermodynamic driving force for
phase transformation

1 oY
b —_ = . lhetr
T : 7:h Oo 3 ' (6.115)
may be written in the form
1
mf = £T he¥ 4 porf (©) — po(1 — 26)1,,(©) . (6.116)

With the definition of the phase chemical potential (6.72), the free energy of
interaction (6.58), and the caloric equation of state (6.93), the driving force
reads

o = nf(he,0,¢) = % (h® - (8 — @0)aq) : Co : e
+ po(Au* — GAS*) - po(l — 26)(’&0 — @50) . (6.117)
To evaluate the total differential of (6.117)

o’ ot ot
il = lne Log 4 == 6.118
i T + 36 O+ B¢ —¢, ( )
the partial derivatives
o’ 1 ohetr 1
— : - C R hetr 6'119
dhe T 8he + 6 0 ( )

0 ——ap:Cp: heir — ,OoAS“r + ,00(1 — 25)30 (6.120)

96 ¢

¢
orf 1 ) N |
ET:

f etr
871' 61’1 . _]-_ p hetr + QPOILpit (6-121)

1
E AT
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are calculated. For constant mass fraction of martensite
£=0, (6.122)

the last term in (6.118) vanishes

. : ot °le. O .
ﬂ-f'E = 7Tf|€=const = Ohe 3 3_@6
f (6.123)
_ i 9
23
Noting (6.107)
il = pok® for k* e {’.CA_'M,’.GM_’A} , (6.124)
substitution of the partial derivative (6.121) into (6.1232) gives
ok* 1 ohe'" 1 :
. f — gr 2 . il . etr __ 2 . ) 12
WIE <po B¢ 5‘r 3¢ —l—£27' h po?,bu)ﬁ (6.125)

o
Evidently, there will be no active phase transformation for arbitrary rates h® Log
and © from a given state (h®,0,£) if the criterion

it =0 (6.126)

is fulfilled. Raniecki et al. (1992) introduce the term neutral process for the
resulting elastic material response.

6.4.4 Kinetic law

Inversion of equation (6.125) yields the required kinetic equation for processes
of active A — M transformation proceeding for 7/ > 0 and #f | s 0 as long
as ¢ <1

s A—M ﬁ-flﬁ
E = akA—aM 1 6het‘r‘ 1 (6127)
(w2 -2 T o o)

or M — A transformation subject to 7f < 0 and #/ | e < Oaslongas ¢ >0

it

okM=4 1 oh°r 1

T ——+ =71 :h®" — 2p09.

(”" g & e e "0‘”‘*)
where ﬂf'& is given by (6.1231) combined with (6.119) and (6.120).

Evaluation of the kinetic equation requires knowledge not only of the rates of

EM—A = ., (6.128)




6.5 Fourier’s law and heat conduction equation 113

the elastic Hencky strain h® and the mass fraction of martensite £, but also
of the elastic-phase transformation part of the strain h®"" and its derivative
with respect to £. Hence, additional specifications regarding the mechanical
properties of the material under consideration are required. In Section 6.7,
an isotropic material symmetry is postulated. Then, all quantities may be
expressed explicitly in terms of the state variables h®, ©, and £.

6.5 Fourier’s law and heat conduction equation

At this stage, the thermomechanical description of the process is comple-
mented by an appropriate heat transfer relation.

Heat transfer by diffusion or conduction refers to the transport of energy in a
medium due to a temperature gradient. The underlying physical mechanism
is that of random atomic or molecular activity. Conduction is the transfer of
energy from the more energetic to the less energetic particles of a substance
due to interactions between the particles (cf. Incropera & DeWitt 1996).
Fourier’s law is a phenomenological rate equation stating that the heat transfer
rate ¢ in a direction z is directly proportional to the temperature gradient VO
and the cross-sectional area A normal to z, and that g, varies inversely with
the length of heat conduction Az. The appropriate constant of proportionality
is the thermal conductivity k. Dividing by A, the heat flux in z-direction is
obtained

30

Gz = —k B (6.129)
Here, the minus sign is necessary because heat is always transferred in the
direction of decreasing temperature. The heat flux ¢, is normal to the cross-
sectional area A or, more generally, the direction of heat flow will always be
normal to a surface of constant temperature, called an isothermal surface.
Recognizing that the heat flux q is a vector quantity, a more general statement
of the conduction rate equation known as Fourier’s law?? is

q=-kVO. (6.130)

The energy conservation principle applied to an elemental volume as a closed
system states that the rate at which energy is stored in the volume Q,, equals
the sum of the heat transfer across the volume boundaries Q and the heat
generated by energy sources

Qy = pcp©dv = Q + hugsdv . (6.131)

23T account for the time dependence of heat conduction, a different heat conduction
equation, i.e. the heat conduction equation attributed to Maxwell and Cattaneo, is
required (cf. Kosiriski 1975). Oberste-Brandenburg (1999) successfully employed
Mazwell-Cattaneo’s relation when considering martensitic phase transitions at a
microscale, taking into account effects at the phase boundary.
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The net inflow heat flux
Q=-V . qdv (6.132)

is found from balancing the inflow and the outflow heat flux by application of
the divergence theorem. This gives

pcp® = =V - q+ hiat, (6.133)

which is identical to equation (5.108).

Introducing Fourier’s law for constant thermal conductivity, specifically as-
suming independence of temperature (k # k(0©)) and position (k # k(x))
yields the heat conduction equation known as Fourier’s equation

pcp©® = k V20 + hiat . (6.134)
Adopting Fourier’s law, condition (5.82)
Op¥uy, = —O07"'q- VO >0 (6.135)

is satisfied automatically. This may be observed by substitution of (6.130),
which gives

ok . A
@p’}’th. = @ (V@) >0 (6]36)

for non-negative thermal conductivity k. Hence, thermodynamic consistency
is obtained since relation (6.100) is required to hold true.

6.6 Identification of model-specific material parameters

Instead of the constants Au*, As™, 1o and 3¢ introduced in the definitions of
the phase chemical potential (6.72) and the specific free energy of interaction
(6.58), transformation temperatures are used to characterize shape memory
alloys in engineering sciences. From the above, two such temperatures, the
martensite start temperature M. and the austenite start temperature A° at
stress free states, may be derived in terms of the constants used here.
Starting from the thermodynamic driving force for phase transformation in
the form of (6.116)

w = 27 R pom] (6) - po(1 - 26)94(©). (6.137)

at stress-free states (7 = 0), the start temperatures are obtained using (6.72)
and (6.58)
Au* — ug
M=—"" "2 :
e = As e (6.138)
AO _ Au"‘ + Ug

* = AT 450 (6.139)
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In deriving these transformation temperatures, it is postulated that the thresh-
old values for ©/ are negligible and that 7/ vanishes at the onset of A — M
and M — A transformations, respectively (see Section 6.3.3).

Even though the definition of the thermodynamic driving force for phase
transformation used here differs from the definition of Raniecki et al. (1992),
the transformation temperatures derived from 7/ correspond to those of the
Rp-model. As the evolution of the thermodynamic driving force is described
here using the same functions k% as those adopted by Raniecki et al. (1992)
from Tanaka (1990), the constants A;, B; and C; are chosen in agreement
with the Rr-model, taking into account subsequent modifications introduced
by Zi6lkowski (1993) and Raniecki & Lexcellent (1994)

As* — 3g 27150

A=—""2 B = C1 = 2r1,, (M) (6.140)
ai ai
* = 2 -

A, = 28+ 50 B, = 2% Ca = 2, (A9). (6.141)
az az

These constants can be calculated for given Au*, As*, @y and 3q, provided
that @1 and a2 as well as 71 and r2 are known. The latter two constants, i.e. the
phenomenological constants 7; and r2, which are introduced to characterize
the transformation kinetics, may be determined by studying the slope of the
stress plateau during forward and reverse transformation under isothermal
conditions. In Figure 6.6, the effect of 1 on the forward and of r5 on the reverse
transformation is clearly visible. Depicted is an adiabatic test in tension, with
the intermediate values of the parameters r; obtained by calibrating a small
strain version of the model to experimental data (cf. Miiller & Bruhns 2002a).

To determine a; and a2, the bounding loops f4~" = 0 yielding

7l = pok®™M for £>0, (6.142)
and fM~4 = 0 giving

7l = pokM™4 for £<0 (6.143)

are considered. However, an explicit solution for the mass fraction of marten-
site as first suggested by Koistinen & Marburger (1959) is available only for
r; = 1. Then, with definitions (6.140) and (6.141) and As* > |3¢|, the mass
fraction of martensite during temperature induced phase transformation at
stress free states (7 = 0) can be derived from (6.137), combined with (6.113)
respectively (6.114). Noting (6.138) and (6.139) yields (cf. Raniecki et al.
1992)

f=1-e M-8 o 50 (6.144)
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=== r1 =0.57r2=0.82
1600 r; = 0.00
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——————F—+—+—+— hy, /1072
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Figure 6.6: Effect of 1 and r2 on stress-strain hysteresis

and
£ = 22(0— A) for £<0. (6.145)

The functions k% chosen above are singular at £ = 1 and £ = 0, respectively.
However, according to experimental observations, neither states of complete
A — M nor states of complete M — A transformations occur. Hence, limit-
ing values éA. M and ¢M = 4 corresponding to the termination of forward

respectively reverse phase transformation may be introduced. This gives

11’1(1 — TAna: M)
= — 6.146
“ M2 — M? (6.146)
and
M- A
ag = _%‘_) (6.147)

AS — A]

The limiting values are reached by temperature induced phase transformation
at temperatures ]VI? and A?c, respectively. Raniecki et al. (1992) propose to
set Eman T (M) = 0.99 and &M, A(A%) = 0.0L.

As stated above, the explicit solutions (6.144) and (6.145) are subject to the
condition r; = 0. In general, £(©) can only be determined iteratively from
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implicit equations. However, following the procedure described above, for a;
and a3 explicit equations may be obtained
. (AS* — 80 + 2T1§0£) ln(l — f)
2 (o — OF0 + 11 (M 50 — 7o) + (As* — 50)(M° — ©)
_ (As* + 80 — 2r230(1 — £)) In¢
2(1 — §)(’Uo + ©359 — 7"2(50142 + ﬂo)) + (AS"‘ + 50)(142 — @)

aly =

(6.148)

as

Substitution of the respective finish temperatures M}) and A?t and limiting
values ¢4~ M(M?) and ¢M — A(A?,) yields a; and as.

In addition to the elasticity constants F and v represented by Co, the tensor
of thermal expansion coefficients a, density po, specific heat ¢, and reference
temperature ©g, 19 model-specific constants Au*, As*, w0, So, 1, 41, A2,
B,, By, Ci, C2, a1, az, 71, T2, Ag, .Mf, A?, and MJ? have been introduced.
However, some of these constants are interrelated. Noting equations (6.138),
(6.139), (6.140) and (6.141) in conjunction with relations (6.148) defining a;
and a2, and r; and 7 already determined, for given transformation tem-
peratures _Mg , MJ?, Ag and A?e only three constants remain to be specified.
Raniecki et al. (1992) propose to use experimental data from isothermal, one-
dimensional experiments to determine 07 /8h, the value of 7 at the initiation of
phase transformation, and 7/ =0 (cf. Figure 6.7 for isotropy). This procedure
gives three relations for three unknown constants, i.e. 7, Au* and As*. Hence,
in effect the model requires five additional material constants Au™, As*, @g, So
and 7 in comparison to common isotropic thermoelasticity theories, and four
additional purely phenomenological parameters a;, az, 71 and ;.

6.7 Isotropy
6.7.1 Constitutive equations under isotropy

There is some experimental evidence supporting the assumption that phase
transformation of SMAs is approximately isotropic. Orgéas & Favier (1998)
study the isothermal behavior of stress induced martensitic transformations in
an equiatomic NiTi alloy. Their shear specimens exhibit completely isotropic
behavior both during initial loading, which is stress-induced martensitic trans-
formation, and during subsequent cycling, which is a martensite reorientation
process as they conduct their experiments below the A s-temperature. Sittner
& Novak (2000) arrive at the same conclusion by employing a constant stress
averaging approach to model polycrystalline SMAs. Their calculations are
based on experimental data obtained on CuAlNi single crystals.

Hence restricting attention to isotropy, the relations derived in the previous
sections may be specified to explicitly yield all quantities of interest in terms
of the state variables h®, ©, and &.
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In definition (6.80) it was postulated that stress w and phase distortion may
be considered as coaxial.?* Hence, with # = 7

K= 1 ——— . (6.149)

The denominator on the right-hand side is defined as an equivalent Kirchhoff
stress

T=vVT1' 7. (6.150)

Simplifying further and assuming isotropy, the deviatoric intrinsic phase distor-
tion k due to phase transformation is presumed to be proportional to the
deviator of the total strain h

1 1.,

Here, the quantity h is an equivalent Hencky strain defined from the deviatoric
part of h by

h=vh' :h'. (6.152)

Considering equation (6.89), which defines the elastic-phase transformation
part of the strain h®"" as the phase distortion x weighted by the mass fraction
of martensite &

hetr — §Kl, (6153)

the isotropic relationship

Lper Lo Ly (6.154)

né U] h

is obtained. Noting that the elastic Hencky strain was introduced as one of
three state variables in Section 5.6 motivates the derivation of an alternative
relation. Using

h = h® 4+ h*" (6.155)
to define the equivalent elastic strain
he=Vh* :h® =h—nt, (6.156)

24In both studies cited above, an asymmetry between tension and compression is
observed. This phenomenon cannot be represented by the simplified model. For an
extension of the theory, see Raniecki & Lexcellent 1998.
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0.0 n

Figure 6.7: Hysteresis in equivalent Kirchhoff stress and
equivalent Hencky strain plane

the elastic-phase transformation part of the strain may be expressed in terms
of the elastic Hencky strain

het = Z—g he. (6.157)

Postulating isotropy, the undetermined partial derivatives in equations (6.119)
to (6.121), (6.125), and (6.127) as well as (6.128) are specified to yield

ahe” 7)5 1 ( 1 )2 / ’
==2|I--1®1—-| —| h® h° 6.158

one ke ( 31T\ M (6:158)
ahetr

5 =0 (6.159)
ohetr  p o, 1
= L h¢ = Z e, 6.160
9 T T (6.160)

Combination with equation (6.127) respectively (6.128) gives £ subject to the
functional dependence

£ = £(h% he1°5, 0,6, ¢). (6.161)

With regard to numerical solution procedures, e.g. the finite element method,
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the dependency on the elastic part of the strain — which was introduced to
obtain thermodynamically independent state variables — has to be replaced
by a dependency on the total strain h and the stretching D. With

h= % h':D (6.162)

and (6.154), the logarithmic rate of the elastic-phase transformation part of
the strain is

hetrLog Deétr = % (hlf -|-£(]I— % 191 — %(h’ ®h’)) D) . (6163)

Substitution of (6.160) into equations (6.127) for A — M respectively (6.128)
for M — A transformation gives

: il
=7 ; (6.164)
(Poa—g - 2P0¢it)
where 1'rf|€ = 7'rf|€ (€%). In conjunction with equation (6.1231)
ort ont
vt ¢4 — 1
7 IE ne : De+ 86@ (6.165)

and the partial derivatives (6.119) and (6.120) as well as (6.158) and (6.159),
equation (6.164) can be solved for the rate of the mass fraction of martensite
to eliminate the functional correspondence (6.161). Hence

o = 1
- aka ] dev ﬂ_ . T/ ./
( 3 2Po¢ﬁ+h<h_ . . I hCo.h).h)

.((hjngrzllﬁe"—l—%cozh'):< gnde“: )

+ (_ﬂ 0o :Co:h’ — poAs* + po(l — 25)30) @) .

h
(6.166)
Here, the deviatoric unit tensor
dev 1
I, =1 31®1 h2h ®h' (6.167)

is introduced. Next, h® is eliminated from (6.87) to yield

T = ((h — n—}f hl) — (@ - 60)a0) :Co . (6~168)
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Now, the isotropic elasticity tensor Co introduced in (6.18) is specified to be
Co=f~cl®1-|—2p,(l[—%1®1>. (6.169)
Here, the bulk modulus  is defined in terms of the Lamé constants®® X and

n=)\—|—§p,, (6.170)

which in turn are related to Young’s modulus E and Poisson’s ratio v by

\ = vl _ E
T U+ -2 F=oa+v)-

In addition, the tensor of thermal expansion a is assumed to be isotropic
oo = apl. (6.172)

Using (6.169), elastic relation (6.18) may be expressed as (cf. Bruhns et al.
1999)

7 = Atr (h®)1 + 2ph® — 3x(© — G¢)aol, (6.173)
or (cf. Bongmba 2001)

(6.171)

n
T = Z ((F& - %,u)ln.]‘2 + plnxs — 3x(© — @o)ao) B:. (6.174)
o=1
Based on the isotropic tensors of elasticity and thermal expansion, equa-
tion (6.166) can be simplified by substitution of equation (6.162) to yield a
scalar equation for the rate of martensite £

_ 2umh + po (—As” + (1 — 26)50) ©

éa
ok“
o 9pnh.. 4 2un?

PO 5¢ poty, + 2un
With this result, rate equation (6.163) for h®"" may be evaluated. Combination
with the logarithmic rate of (6.90) yields the elastic part of the stretching.
Then, the elastic Hencky strain may be obtained by corotational integration
as defined in (3.143)

(6.175)

t
he = (RFo8)T & / R x Deds . (6.176)
0

Hence, adopting the stated relations, the mass fraction of martensite, the ela-
stic part of the strain, and consequently through equation (6.93) the stress T
may be readily obtained for prescribed rate of deformation D and tempera-
ture ©.

250f course, A and p are constant only when € is considered to be independent of
temperature.
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6.7.2 Transformation start and finish lines

Under the assumption of isotropy, the thermodynamic driving force given
by (6.117) may be specified using the isotropic elasticity and thermal expan-
sion tensors €y respectively oo to yield

7l =10+ po(Au* — OAs™) — po(1 — 2¢)(iio — OF) . (6.177)

Equation (6.177) can be used to derive criteria for the initiation and conclusion
of phase transformation. Phase transformation is initiated for 7/ = 0, hence
the equivalent Kirchhoff stress at the onset of A — M or M — A transforma-
tion is

= —% (Au* — OAs* — (1 — 26)(@o — O30)). (6.178)
Taking the derivative with respect to time gives the slope of the transformation
start and finish lines in the 7-©-plane

dr

_ Po * . 3
§6 = (5"~ (1-20)50). (6.179)

Setting £ = 0 for M, and A%, and £ =1 for A7 and M gives

dT dT Po * _

= - — =2 (As* — 6.180
and

dr _dr __ po .

@ A7 ) M}' B n (AS +SO). (6.181)

Note that equation (6.178) holds only for M] and A]. Relations (6.180)
and (6.181) for A} respectively My imply that at the conclusion of trans-

formation, the value of 7/ must be independent of temperature.

Relations (6.180) and (6.181) show that the transformation temperatures are
increased by the application of external stresses. This property of the model,
which is in agreement with experimental observations (cf. Tanaka 1990), is il-
lustrated graphically in Figure 6.8. Note the analogy to the Clausius-Clapeyron
equation, which describes the effect of hydrostatic pressure and temperature
on phase transition (cf. Wollants et al. 1979). In Figure 6.8, temperatures
below A(} are beyond the scope of the theory presented. Here, the calcu-
lated stress-temperature relations must be regarded as estimations since the
reorientation of martensite plates and other effects which are relevant in this
temperature range are not accounted for by the model (cf. Tanaka et al. 1986).
Hence, the respective parts of the graphs are denoted by dashed lines.
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Figure 6.8: Transformation temperatures depending on
equivalent Kirchhoff stress

6.7.3 Thermomechanical coupling

In Section 5.7, the rate at which energy is generated per unit mass was derived.
Noting that only inelastic effects due to phase transformation are considered
here, equation (5.107) may be specified to the single internal variable £ of the
theory presented. Neglecting heat sources such as radiation (r = 0), (5.107)
yields

o%g

1 dg ; 8%g

1 etr O Log :

- = —T: — : . 6.

phla't pOT D 356—'—66987 T +@3@8§£ (6.182)
This relation may be evaluated using (6.93)

T = (he — ((") — eo)ao) : CO (6.183)

and Legendre transformation (5.30) from the specific Helmholtz free energy to
the specific Gibbs energy, which is a function of stress, temperature and mass
fraction of martensite

9(1,0,8) =79 — 1 T :h®. (6.184)
Po

Noting the specific Helmholtz free energy as given in (6.92)

$(he,0,£) = —— h®:Co: h® — (6 — B)~- a0 : Co : h°
2p, po

+ ¢ (9—90 —@ln(-é%)) (6.185)

+ug? — Os5 — Emf(O) + £(1 - £)y,(O),
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the derivatives of the specific Gibbs energy with respect to £

0 o,
52 = Ge =~ (©) +(1 = 2, (©) (6.186)

and ©

8g _ 0y 1 e e
80~ 90 poao :Co:h cvln(@o)

4+ EAS" — E(1 - £)5o — s§? (6.187)
are obtained. Hence

d%g 1

5607 =~ ap (6.188)
and
9 _ pg - (1~ 2€)3o . (6.189)
0008¢ _
Defining the logarithmic rate of the Kirchhoff stress from (6.93)
7198 = (D® - Oay) : Co, (6.190)

the energy generation per unit mass is obtained in its final form, which may
directly be implemented into a finite element code

L e = L7 DO 4 (Aut — i0(1 — 26))€ — - Oacre : 1B, (6.191)
p po po



7 Implementation and numerical results

Finite element analysis is an essential component in design and development
of structures and parts. The presented thermomechanically coupled material
law is implemented into the commercial finite element code MSC.Marc. The
implemented model may be used to assist in the process of design and analysis
of pseudoelastic structures.

In this chapter, adaptions necessary for applying the model in numerical analy-
ses and the implementation of the pseudoelastic material law are presented.
The finite element method is not reviewed here. Instead, references to the
relevant literature are given when appropriate. Comprehensive monographs
on linear and non-linear finite element analysis are those written by Bathe
(1986), Crisfield (1991), Zienkiewicz & Taylor (2000) and Belytschko et al.
(2000). Parts of this chapter are based on these books.

This chapter is structured as follows. First, the finite element formulation
chosen and the structure of the material law to be implemented are defined.
As numeric analysis is based on discrete time steps, incremental kinematical
quantities must be derived. To retain objectivity, the definitions introduced in
the previous chapters have to be complemented or substituted by appropriate
discretized relations. Some remarks concerning the continuum and consistent
tangent stiffness are given in Section 7.3, as they may be used to increase
numerical efficiency during equilibrium iterations. Next, it is shown how the
model can be calibrated to experimental data. The properties of the model
are illustrated in stress-strain and temperature-strain diagrams, among others.
The chapter is concluded by presenting the finite element analysis of a more
complex pseudoelastic structure.

7.1 Introduction

The balance and constitutive equations presented in the previous sections in
conjunction with well posed initial and boundary conditions define a nonlinear
initial boundary value problem. Its solution gives the Kirchhoff stress 7, the
temperature © as well as all kinematical quantities such as the elastic and
phase transformation parts of the deformation gradient F and the elastic and
elastic-phase transformation parts of the stretching D.

In a finite element analysis, the problem is decomposed into discrete time
steps. For each time step, first incremental displacements are calculated based
on the discretized balance of momentum equation. From these, the deforma-
tion gradient is obtained, which is passed on to a — possibly user-defined —
material law. Primarily, stresses and tangent moduli are calculated here, but
depending on the respective material law, decomposed strains, temperature
rate and the set of internal variables may be determined as well. This second
step is the part of the solution process that will be considered in more detail
below. Finally, given the stresses, the balance laws can be evaluated to yield
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a new set of incremental displacements. The process is then repeated until a
pre-defined tolerance is met or exceeded.

For the model summarized in Figure 7.1, based on the total and incremental
deformation gradients, the stresses, strains, and internal variables have to be
computed. As the finite element code MSC.Marc chosen for the implementa-
tion does not permit fully thermomechanically-coupled analyses, equilibrium
iterations are performed for the mechanical problem only (cf. MSC.Marc 2001a
to 2001e). The error made by not directly accounting for temperature effects is
minimized by using short time steps. Nevertheless, greater accuracy and effi-
ciency can be expected from algorithms solving the thermomechanical problem
as a whole.

The discretization of the material law is performed based on the monographs
by Simo & Hughes (1998) and Belytschko et al. (2000) and adapted to the par-
ticular environment provided by the user subroutine hypela2 of MSC.Marc.
The finite element procedure used will be the so-called updated Lagrangian
formulation, which is well-suited for the constitutive law tabularized in Fig-
ure 7.1. In an updated Lagrangian formulation, Eulerian measures of stress
and strain are used in conjunction with a Lagrangian mesh. Derivatives and
integrals are taken with respect to the Eulerian (or spatial) coordinates.

_

Thermoelasticity: hé = o + a(© — 6))
D* = 55,37 °#
Pseudoelasticity: De" = g (h'é +EX - —zl); 1®1

*.}}i(h’@)h’)) : D)

Evolution equation: ¢ = £(he,hel°g 0,0, £)

Thermodynamic force: =/ = L he? 4 pord (©) — po(1 — 26)1,4(O)

§
Criteria for
active processes: A-M: #f>0 A 1'rf|6 >0
M—A: af<o A W <0
f f
. f _ (971' . l.eLog 371' ey
e = Gpe * %6
7 = pok®

Figure 7.1: Model for pseudoelasticity
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7.2 Objective discretization

The considerations in this section aim at the integration of the constitutive
equation for given stretching and rate of temperature. The Eulerian mate-
rial law is to be integrated in a way that satisfies the requirement of frame
indifference. Algorithms complying with this requirement are said to be in-
crementally objective (cf. Simo & Hughes 1998). Objectivity is preserved
by following three steps in the integration process: First, the given objective
rate quantity, e.g. the stretching D or the stress rate 7198 are tensorially
transformed to the reference configuration. Here, in the convected description,
arbitrary integration algorithms may be applied to determine the values of the
respective quantities at the end of the time step. Thirdly, the result has to be
transformed to the Eulerian description again.

Hence, discretized kinematic relations are required to describe the motion and
deformation within the time step. In addition, the aforementioned tensorial
transformation can be performed for known incremental rotation only.

7.2.1 Kinematics

It is assumed that the configuration is known at time ¢ = t,,. To determine the
state at the end of the time step, i.e. at t = t,,4+1, incrementally objective ap-
proximations for the relevant Eulerian rate-like objects, such as the stretching
and vorticity tensors, will be needed. However, first the relations describing
the kinematics of the time step must be discretized.

The incremental displacement u relates the motion at the end of the time step
tnt1 = tn + At to the motion at the beginning of the time step

Xni1 = Xp + U (7.1)
and defines the deformation gradient at the end of the time step

For1=Fn+Vo®u. (7.2)
Introducing the parameter «, intermediate stages in the motion are given by

Xnta = tXny1 + 1 —a)x, for aoe€l0,1], (7.3)
yielding the deformation gradient

Froto =aFp11 4+ (1 —a)F,. (7.4)

This relation may be used to define the incremental or relative deformation
gradient of the increment f

f...=F  F'l=14+aV,Qu, (7.5)

n nt+a-n
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where the gradient with respect to the configuration B, is denoted by V..
Specifically, the incremental deformation gradient is

f,,,=F F. '=1+V,Q®u. (7.6)

n

The deformation gradient F,11 determines left Cauchy-Green tensor
B,.,=F,. F.. (7.7)

and Hencky strain at the end of the increment

1
hn+1 = 5 ]Ian_H . (78)

The procedure employed in the numerical computation of (7.8) is outlined in
Appendix B.3.

7.2.2 Integration of logarithmic spin

Transformations between current and reference configurations require the dis-
cretized logarithmic rotation tensor Rkﬁ’fa. The logarithmic rotation is given
by the linear tensorial differential equation (3.140) in conjunction with the
initial value R,I;Og at the beginning ¢, of the time step

3y Log — (Log Log\T Log — Log
R Qlog(Rleg) RYo8| R, 8. (7.9)

t=in
An algorithm for the objective integration of 22%°% will be given at the end of
this section.

First, the stretching tensor D and the vorticity tensor W must be calculated
in terms of the discretized deformation gradient in order to determine the
logarithmic spin £2%°6, Note that to preserve incremental objectivity, these
quantities cannot be obtained from (3.114) and (3.116), respectively. In fact,

an incrementally objective approximation for the rate of deformation tensor is
given by (cf. Simo & Hughes 1998)

1

Dn+o: = E_E f'r_L—E‘a(f:+1fn+1 - l)fr_v.—}-a’ (710)
hence
1 1 T o
D, = m(fz+1fn+l —1) Dy = m(l - fn:flfn}rl)- (7.11)

The vorticity may be calculated from

1 _ _
Wn+a = m ((fn+l - l)fnj-a - fn—rfa(f;lz‘+l - 1)) ’ (712)
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yielding
1 T - -1
W, = m(fn+1 - fn+1 Wn+1 = m(f'rH-l f 1) (7-13)

By virtue of equation (3.12), for a rigid body motion the incremental defor-
mation gradient is

=Q, (7.14)

where Q is an orthogonal rotation tensor. Hence, it is readily observed that
the stretching, as given by (7.10), vanishes identically for incremental rigid
body motions

D,.=0. (7.15)
The logarithmic spin is then calculated from the left Cauchy-Green, stretching
and vorticity tensors using eigenprojections, see Appendix A.2. Differential
equation (7.9) for the logarithmic rotation may be solved by an extension of
the generalized midpoint rule to yield the incremental logarithmic rotation (cf.
Simo & Hughes 1998). For arbitrary « within the time step it follows

R = RL%(exp(a At QLB )T . (7.16)

n+aoa — n+a

The exponential map of orthogonal tensors can be parameterized in different
ways. Following Simo & Hughes (1998), a parameterization in terms of quater-
nion parameters qo and ¢* is adopted. It is based on the fact that for arbitrary
vectors «, there is a unique vector w defined by

Qa=wxa Yack (7.17)

called the axial vector of the skew-symmetric spin € (cf. Ogden 1984). Then,
the optimal evaluation of the exponential map is given by the algorithm in
Figure 7.2 (see Simo & Hughes 1998)%¢.
In particular, the logarithmic rotation at the end of the time step is given by
R:%% = R (exp(At2:8)) 7T . (7.18)
Hence, the incremental or relative rotation of the time step R may be
defined as
et = (R°6) TR = (exp(At255))". (7.19)

n+1

26There seems to be a mistake in formula (21) of Box 8.3 in Simo & Hughes (1998).
Hence, the formulation in Belytschko et al. (2000) is adopted here.
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1. Given the spin €, compute quaternion parameters

g0 = cos(||w||/2)
¢" = sin(||lw]|/2)

if |g*| > tol then
« 1lsin(|lw]2
;=1 (lwl]2)

2 (lw]l2)
else
* 1 2 4
¢ =51 - llwl”/24+[lw]"/1920 +... ]
end if
q=qw

2. Compute the exponential by the formula

. 1 .
exp(€2) = 2 (qg - 5) 1+ 2¢0$2 + 2qq”

95 + g — % q%ch —q3g0 193 + q290
=2| @a+ao @+dé-1 9243 — 4140
Bq — @0 BRt+ah a@6+a6—;

Figure 7.2: Optimal evaluation of the exponential map

7.2.3 Objective integration of constitutive equations

The key to preserving objectivity of the discrete equations is to formulate
the integration algorithm in a local rotated representation. In the rotated
description, the rotated objects remain unaltered under superposed spatial
rigid body motions. Subsequently to the corotational integration, the discrete
equations are transformed back to the Eulerian configuration (cf. Khan &
Huang 1995, Simo & Hughes 1998, Bruhns et al. 2001). This methodology is
well-suited for corotational objective stress rates such as the logarithmic rate
of the Kirchhoff stress considered here.

By virtue of (3.141), the logarithmic rate of the Kirchhoff stress can be written
in the form

RM8 5 7 = RM8 7 108 (7.20)
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and integrated as indicated in equation (3.143)
t
T = (R"8)T x / RY€ x 7108 s (7.21)
0

Hence, for known state at t,,

tnil
Top1 = Ry * |REEx7, + / RM8 78 ds (7.22)
tn
tn+1
— @) T+ RIS s [ Rt Flosds. (7.23)
tn

The remaining integral on the right-hand side may either be solved by direct in-
tegration of the constitutive equations, or by applying an iterative scheme com-
prising an implicit Eulerian integration algorithm and a subsequent Newton-
iteration. Here, integration is performed using a software package based on
Gear’s method (cf. Kahaner et al. 1989). Using this software package, no
further derivations except for the tangent stiflness (see Section 7.3) are re-
quired. The relevant equations of the model for the case of isotropic material
symmetry are summarized in Appendix B.1.

However, more insight is to be gained by alternatively considering the gener-
alized midpoint rule

tnt1
/ R x 719845 = At ( it *’r;‘jﬁ +(1—a)RE® % 'rL°g) (7.24)
tn
to give
T = Eh8) %+ AL (0?23 + (1 - a)(Th8) T+ 75%%) . (7.25)

Choosing a = 1 yields the implicit (backward) Euler scheme

Topr = (Ch8)Tx T, + ALT 1% (7.26)

Obviously, this algorithm is incrementally objective for arbitrary a € [0, 1].
This may be observed by considering the rate-constitutive equation

rle=A:D, (7.27)

subject to the rigid body motion £, , = Q as discussed above. For a rigid
body motion, the stretching vanishes. On the other hand, the incremental
logarithmic rotation is obtained as

g =Qr. (7.28)
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Hence the integration is objective
Tn_H:Q*‘rn. (7.29)

The discretized constitutive equations for the backward Euler scheme (7.26)
are given in Appendix B.5.

7.2.4 Validation

Before the pseudoelastic model is implemented, the implementation of the
kinematic relations and the objective integration algorithm are verified based
on the hypoelastic rate-constitutive law obtained by inverting (6.14), neglect-
ing temperature effects

rloe=pe.C. (7.30)

To this end, a test in simple shear is considered. The analytical solution
derived by Xiao et al. (1997a, 1997b) is as follows.

A deformation of simple shear in the e;-es-plane in a fixed orthonormal basis
(e1,e2,e3) has the representation

x = (X1 +yX2)e1 + Xzez + Xze3. (7.31)
From the deformation gradient

F=e1®Qe +ve1Q0er+ex@ex+e3R® ez, (7.32)
the left Cauchy-Green tensor is obtained

B=(l+7)e1®e1+y(e1®er+e:®e1) +e2Qex+e3®@e;. (7.33)

Its eigenvalues are calculated to be

x1= 2+ +y/4+~2)/2 (7.34)
X2 = (2+7" —yV4++2)/2 (7.35)
X3 =1, (7.36)

and, introducing 1 = (1 — e3 ® e3), its eigenprojections are

1 _
B, = B—x1—-e3s®e 7.37
1 X1—X2( X2 3 ® e3) (7.37)

1 —
B-—x1—-e3®e 7.38
XZ_Xl( X1 3 3) ( )

B;=es®es. (7.39)

B; =
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Hence, by virtue of definition (3.91), the Hencky strain tensor is computed

Inx; — Inx, X1lnx — xalnx, -
:—(B—-63®63 + 1, 7.40
2(X1 — X2) ) 2(x1 — X2) (7.40)
which, using (6.7.1), yields the stress components in the e;-ez-plane
2u Yo 1
= —" _In|l+ — — = —T9p = — .
T12 \/m lll: + 5 +vy/ 1+ 7 T11 T22 = 57712

(7.41)

Note that J = 1 gives o = 7 in simple shear. With increasing shear 4, the
corresponding shear stress 712 is strongly nonlinear, with a maximum at the
so-called hypoelastic yield point (ym = 3.0177171, T /u = 1.3254868) (cf.
Xiao et al. 1997a).

The same problem is solved numerically by considering a simple shear defor-
mation of a single finite element. The corresponding stress response is depicted
in Figure 7.3. Evidently, the agreement between analytical solution and finite
element analysis is very good. Hence, the implementation of the elastic law is
regarded as successful.

Tuy/ I — analytical

1% FEA
1.5

0.0 1

2.0 3.0 4.0

Figure 7.3: Simple shear: hypoelastic yield point

7.3 Tangent stiffness

The linearization of the constitutive equation may be carried out in two ways.
Using continuum tangent moduli, the so-called tangent stiffness matriz is ob-
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tained as the resulting material tangent stiffness matrix. Alternatively, the
constitutive equation may be linearized based on the algorithmic tangent mod-
uli, which gives rise to the so-called consistent tangent stiffness (cf. Simo &
Taylor 1985, Wriggers 1986).

The appropriate tangent stiffness for the particular problem depends on is-
sues regarding ease of implementation and on the smoothness of the problem.
While the continuum tangent modulus is often implemented without difficulty,
it may be subject to convergence problems at discontinuities of the derivatives
of the constitutive equation. On the other hand, the consistent tangent stiff-
ness, required for optimal convergence, may be harder or impossible to derive.
Without loss of generality, attention is restricted here to isothermal processes.
For an extension of the concept outlined below to thermomechanical processes,
see Miehe (1988).

Adopting the hypoelastic constitutive equation

rlog = C: De (7.42)

and recognizing the additive decomposition (3.147) of the stretching D into
its elastic part and elastic-inelastic parts, the continuum tangent stiffness may
be derived. To this end, it is postulated that the elastic-inelastic part of the
stretching is expressible in terms of the total stretching and possibly other
independent variables, i.e. D¢ = D®(D) for the material law under consider-
ation, which yields

rlos —C*:D. (7.43)

The weak form of the balance of momentum equation (4.101) consists of two
parts contributing to the internal nodal forces in a finite element discretization.
The first part involves the current state of stress 7. Due to its dependence
on the velocity gradient L, it accounts for geometric effects of deformation,
including rotation and stretching. Hence, the respective stiffness matrix de-
noted by C9 is referred to as geometric stiffness.

Through the rate of stress 71°8 given by (7.43), the second part of (4.101)
contributing to the internal nodal forces depends on the material response.
It leads to the so-called material tangent stiffness matrix €™, which relates
the rates of the internal nodal forces to the rate of the displacements due to
the material response. In equation (4.101), the Lie derivative of the Kirchhoff
stress is substituted by the logarithmic rate of 7

o]

TL=°L08_|_G:D. (7.44)

Here, the tensor G given in Appendix A.3 is defined by the logarithmic rate and
independent of the respective material response. Hence, by virtue of (7.43),
the material tangent is obtained

Ccmat = J7I(C +G). (7.45)
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For numerical efficiency, the consistent tangent is required (cf. MSC.Marc
2001a, MSC.Marc 2001d)

o708

c n+1

ntl — . (746)
6]:)n—|~1

The accuracy of computational results does not depend on the accuracy of the
stiffness matrix. However, convergence will be quadratic for a fully consistent
stiffness matrix only. Due to its formulation in strain space, for the model
under consideration the derivation of the consistent tangent proceeds in a
similar manner to that of the continuum stiffness matrix.

The continuum tangent stiffness C**" of the model discussed in Chapter 6 is
derived in Appendix B.4.

7.4 Calibration of the model to experimental data
7.4.1 Identification of parameters

In order to be applied to the simulation of pseudoelastic structures, the model
has to be calibrated. This is done based on experimental data obtained from
a specimen of chemical composition and thermomechanical treatment similar
to that of the respective structure whose behavior is to be analyzed. Accurate
predictions of the structural behavior can be expected only if the agreement
between the thermomechanical properties of the specimen the model is cali-
brated to and the structure under consideration is very good.

Referring to Sections 6.6 and 6.7, six constants governing the thermoelastic
and thermal material behavior, and nine model-specific parameters are to be
identified. With only experimental data on isothermal tests available, the value
of the coefficient of thermal expansion ag = 8.8-107° 1/k and the specific heat
at constant pressure ¢, = 837.36 J/kgk for the reference temperature ©g = 0K
are adopted from Hodgson & Brown (2000). Note that the value chosen for aq
is in fact the average of the phase specific properties given by these authors.
Hodgson & Brown (2000) specify a density of po = 0.0065 k&/m mm? and a Pois-
son’s ratio of v = 0.33. Young’s modulus is identified as £ = 35000 MPa
based on experimental data, which is obtained by subjecting a specimen of
near equiatomic NiTi (50.7 at % Nickel) as depicted in Figure 7.4 to simple
tension (cf. Wurzel 2001).

The parameters of the model relevant to the description of pseudoelasticity
are determined based on the same isothermal test in tension. Ideally, all pa-
rameters should follow from the respective relations specified in Section 6.6.
However, defining the optimal parameter set as the one which minimizes the
deviations in stress-strain-space between calculated hysteresis and experimen-
tal results, in general these parameters can be regarded as initial values only,
subject to subsequent optimization.
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Figure 7.4: Specimen 44-1-F

The optimal parameter set is the one which best fits the calculated curve to
the measured data. It is found by employing an appropriate optimization pro-
cedure such as the method of least squares. Here, it is assumed that the best-fit
curve of a given type is the curve that has the minimal sum of the deviations
squared, i.e. the least square error, from a given set of data. Denoting the
vector of parameters by x, according to the method of least squares the best
fitting curve has the property

Fx) =Y (@ - yi(x))*> > Min!  Vx € Dx. (7.47)
1

Here, y; are the values experimentally observed, and y; are the corresponding
values of the calculation, computed based on the parameter set x of the do-
main Dy.
In general, no analytical solution to the foregoing minimization problem is
available. Hence, numerical optimization procedures need to be applied. They
are classified according to their complexity into methods of zeroth, first and
second order. While procedures of order zero are limited to functional evalua-
tions, implying both low convergence ratio and low computational cost, higher
order methods employing the gradient V f converge faster, but are computa-
tionally more expensive (cf. Vogelsang 2001). Here, a method of order zero is
applied.
The parameters summarized in Table 7.1 are obtained by regarding the trans-
formation temperatures of the specimen depicted above as initial values of the
respective parameters of the model (cf. Wurzel 2001)

M? = 212K
M? = 243K
A? = 243K
A% = 268K.

Initially, the phenomenological parameters r; are chosen to be equal to one.
From the pseudoelastic hysteresis, the amplitude of pseudoelastic flow 7 is esti-
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Figure 7.5: Calibrated model

mated as illustrated in Figure 6.7. In addition, initial values of Au* and As*
are adopted from Zidlkowski (2001).

Based on this information, by virtue of (6.138) and (6.139), from the trans-
formation temperatures initial values of the configurational internal energy o
and entropy 3g are calculated. The phenomenological constants a; and a3 are
obtained from relations (6.146) and (6.147), noting that r; = 1, initially. The
tabulated parameters then follow by a minimization procedure using a linear,
small strain version of the model.

Evidently, the isothermal behavior experimentally observed can be simulated
very well (see Figure 7.5). However, although the agreement between measured
and calculated hystereses is very good, it should be noted that the parameter
set strongly relies on the assumption that the mass fraction of martensite is
equal to or at least close to one (£ = 1) at the reversal of the loading direc-
tion in the experiment. However, this information is not to be gained from
a stress-strain curve alone, and 7 can be determined accurately only by in-
situ measurement of the phase composition of the specimen. It remains to
be examined if the parameter set of Table 7.1 yields good results in tests in
torsion and in non-isothermal tests as well. Due to its geometric specifica-
tions, the specimen cut from sheet metal could not be subjected to simple
torsion or shear loading. As the transformation behavior of NiTi SMAs is
very sensitive even to minor changes in composition and thermomechanical
treatment, a comparison to experimental data available in the literature is of
little use. With regard to the latter issue, i.e. non-isothermal tests, reliable ex-
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Parameter Value
E/MPa 35000.0
v 0.33
o/ 1/x 8.8:107°
po/€/mmm?  6.45-107°
cp/ I/xg K 837.36
Au*/I/xg 16800.0
As*/I/kgk 64.50
o/ /e 4264.5
30/ I/kegK 11.5
n 0.055
a1 0.15
a2 0.70
71 0.55
T2 0.95

Table 7.1: Parameter set of specimen 44-1-F

perimental data with well defined thermal boundary conditions and accurate
measurement of temperature remains to be obtained. The model predictions
in non-isothermal calculations will, of course, be strongly influenced by the
thermal parameters adopted from the cited literature.

7.4.2 Transformation temperatures

From the parameter set given in Table 7.1, relations for the transformation
temperatures of Clausius-Clapeyron type, schematically illustrated in Fig-
ure 6.8 above, may be specified. The slopes of the transformation start and
finish temperatures, presumed to be identical for M and A} as well as for A{

and M7, respectively, follow from (6.180)

dr | _ 47| _ P (Ag* _35,) = 6.21 MPa

6|, .~ ® i = (As™ — 5p) = 6.21 MPa/g (7.48)
respectively (6.181)

dr dr Po . MP

—_— = — = -_— = . a . .4

6| - 10 e (As™ + 3¢) = 8.91 MPa/k (7.49)

To plot the equivalent Kirchhoff stress in terms of the transformation temper-
atures, their initial values at stress free state (7 = 0) are required. The start
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temperatures follow from (6.138) and (6.139)

Au* — o

M? = —"—— 2 =236.52K .
s = As — 236 (7.50)
respectively
Au™ + g
Al =" "2 =277.16K. :
* As*+ 5o K (7.51)
Rearranging (6.148) and substituting the limiting values corresponding to

the temperatures MJ? and A?c, chosen as ¢4 — M (MJ?) = 0.99 respectively

g%n_’ A(A?c) = 0.01, yields the finish temperatures

1
0 __
My = (26 — 1)30 + As*

+26((1 — r1)To + 7‘1§0M£) + Au” — ’Eo)l

(al_l(As* — 5o + 2r130€) In(1 = £)

| =22813K (7.52)

EA—»I\

and

1
0 _
Af - (1 —2£)50 — As*

—2(1 — €)((1 — r2)T0 — r250A%) — (Au”+ ao)) LMM = 207.74K .
(7.53)

(az_l(As*+ 50 — 2r250(1 — £)) In€

7/MPa

1600
1200
800

400

o/K

Figure 7.6: Transformation temperatures of the calibrated
model
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Note that at the point (©, = 370.83K, 75 = 834.78 MPa), M, and A] curves
intersect. While parallelism of these curves is not required by the model (cf.
Raniecki et al. 1992), experimental data on TiNi and Fe-based alloys indicate
that an intersection is not to be expected within the temperature range under
consideration (cf. Tanaka et al. 1995b). Hence, the intersection depicted
in Figure 7.6 is regarded as a non-physical effect attributable to the manner
in which the parameters of the model were calibrated. Calculations in the
vicinity of or above ©, are therefore not admissible. Concerning the process
of parameter identification, appropriate constraints should be introduced to
ensure that only valid parameter sets are generated.

7.5 Finite element analysis
7.5.1 Visualization of model properties

Based on the parameters summarized in Table 7.1, the characteristic proper-
ties of the model can be illustrated graphically by considering tests in simple
tension and simple shear. In the diagrams below, thermal boundary condi-
tions were either adiabatic or isothermal. Hence, the actual material behavior
subject to realistic boundary conditions is expected to correspond to some
intermediate curve.

First, isothermal and adiabatic curves in simple tension and simple shear are
depicted for a single cycle, see Figure 7.7. By definition, in a diagram show-

T/MPa - =~ adiabatic tension
—— jsothermal tension
1600 ~r~ adiabatic shear

= isothermal shear

1200

800

400

| h/1072
00 20 40 60 80 10.0

Figure 7.7: Equivalent stress response: simple shear and
simple tension
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ing the evolution of equivalent Kirchhoff stress in terms of equivalent Hencky
strain, the hystereses of tension and shear loading coincide. Noticeable, but
less pronounced than in some of the diagrams below, is the difference between
isothermal and adiabatic boundary conditions. The experimentally observed
fact that transformation stress increases with temperature is reproduced quite
well.

The dependence of phase transformation on temperature is indicated in Fig-
ure 7.8. Here, adiabatic tests in tension at © = 315K and at ©®© = 335K
are depicted. Evidently, with increasing temperature the hysteresis shifts to
higher stresses. However, its size is unaffected by temperature.

In Figure 7.9, the stress response during ten loading cycles under simple ten-
sion is depicted for an adiabatic and an isothermal specimen. The influence of
the thermomechanical coupling almost doubles the martensite finish stress af-
ter ten cycles. The corresponding temperatures are depicted in Figure 7.10. As
the adiabatic specimen heats due to energy dissipated irreversibly, the stress
(or strain) required to induce phase transformation increases and the upper
branch of the hysteresis shifts upwards. At the same time, the M — A trans-
formation stress increases in parallel as the reverse transformation to austenite
is initiated at higher stress levels, since stable martensite exists at increasing
levels of stress only. Apparently, the adiabatic process is not characterized
by a constant plateau stress. Note that the reversible piezocaloric effect as
depicted in Figure 7.10 is negligible in comparison to the heat generated due
to dissipation of mechanical work, which is responsible for the increase in tem-
perature from one cycle to the next in the adiabatic test, and especially in
comparison to the reversible heat due to phase transformation, causing ap-
proximately 90 % of the temperature effect.

The evolution of martensite is depicted in Figure 7.11. As the specimen heats
in the adiabatic test, the hystereses shift to higher strains in a manner con-
sistent with the stress response in Figure 7.9. As before, the hysteresis in the
&-hyy-plane remains constant during cycling for isothermal boundary condi-
tions.

The relationship between mass fraction of martensite £ and thermodynamic
driving force m/ defined by the functions k* is unaffected by thermal effects,
see Figure 7.12. It can be observed here that in the last two adiabatic cycles,
the specimen is unloaded before the A — M transformation is concluded.
The characterization of the model would not be complete without a descrip-
tion of the behavior of processes within the bounding loop. In Figures 7.13
to 7.16, stress response and evolution of martensite are depicted for adiabatic
and isothermal processes. In the first two figures, the loading process is in-
terrupted repeatedly. Upon reaching the line of unstable equilibria (7/ = 0),
processes of elastic unloading turn active until reversal of the loading direction.
Subsequently, when the line of equilibria is reached, active A — M processes
are initiated. Note that the transformation stress is lower now than before.
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This is not in agreement with experimental observations. In fact, in actual
specimens the stress remains at this lower level only initially. Once the point
of maximum strain in the history of the specimens is reached, the stress quickly
climbs to a level close to that of the original A — M process, where it remains
during further loading (cf. Lin et al. 1994).

In Figures 7.15 and 7.16, inner cycles are obtained by reversing the loading
direction repeatedly during unloading the specimen from its martensitic state.
Again, the diagonal corresponding to states of unstable equilibria is clearly
identifiable as the criterion for the initiation of active processes. Strictly
speaking, this observation is true for the isothermal test only, since during
adiabatic processes, the line of unstable equilibria is not a straight line due to
the increasing slope of the hysteresis.

Finally, the stress-strain-diagrams pertaining to simple shear are plotted as
well, see Figures 7.17 and 7.18. Based on the definition of equivalent strain
adopted here, the shear stress required to induce martensite is significantly
lower than the corresponding tensile stress.

Tyy/MPa ---  ©=2335.0K

— ©=315.0K
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Figure 7.8: Temperature dependence of hysteresis
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Figure 7.9: Stress response: 10 cycles in simple tension
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Figure 7.10: Temperature evolution: 10 cycles in simple ten-

sion
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Figure 7.11: Evolution of martensite: 10 cycles in simple
tension
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Figure 7.12: Martensite and thermodynamic driving force:
10 cycles in simple tension
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Figure 7.13: Stress response: inner cycles during loading in
simple tension
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Figure 7.14: Evolution of martensite: inner cycles during
loading in simple tension
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Tyy/MPa - == adiabatic
—— isothermal
1600 T
1200 -
- /I
800 it
1 -;::’f:,
< ”[ 147
400 + [
T 'l 1 [l I 1 1 —_—
T I -1 = T | T I l—= hyy/lo 2

0.0 2.0 4.0 6.0 8.0 100

Figure 7.15: Stress response: inner cycles during unload-
ing in simple tension

'3 - =~ adiabatic

—— isothermal
1.0 T

0.8 T
06 T

0.4

= hyy/1072
0.0 2.0 4.0 6.0 8.0 10.0

Figure 7.16: Evolution of martensite: inner cycles during
unloading in simple tension
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Figure 7.17: Stress response: inner cycles during loading in

simple shear
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Figure 7.18: Stress response: inner cycles during unloading

in simple shear
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7.5.2 Structural behavior

To validate the implementation of the material law into the finite element code
MSC.Marc, two fairly complex structures are considered. Both are design
concepts developed by El Hawary (2003) intended to be used as damping
devices or for load limitation purposes. The design concepts are depicted
in Figures 7.19 and 7.21; they are not to be evaluated here, but to be used
merely as examples of realistic pseudoelastic structures. The parts are to be
inserted within a drive shaft to keep external vibrations or excessive loads from
damaging sensitive components.

Figure 7.19: Flexible coupling: damping device using ten-
sion as active principle

The first design concept considered is specified in Figure 7.20. It is loaded by
bolts attached to a drive shaft. The other side of the bolts is inserted into

al

26.5

Figure 7.20: Damping device: Tension
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the eyelets at the upper and lower ends of the part. If the opposing ends of
the drive shaft are subjected to relative rotations, the device will be loaded in
tension.

The second design concept is intended for the same purpose, with bending as
active principle. This will naturally lead to a less efficient use of the pseu-
doelastic damping material, as the centers of the “arms” of the star-shaped
structure will always remain elastic and only the outer regions transform. The
star-shaped structure in Figure 7.21 is to be used in a similar manner. The
bolts attached to a drive shaft are inserted into every other eyelet of the pseu-
doelastic star-shaped part. The load is then transmitted by the part to bolts
inserted into the remaining three eyelets, which are attached to a drive shaft
opposite to the first one. The dimensioned drawing used to model the struc-
ture is shown in Figure 7.22.

Initially, the first structure, i.e. the device with tension as active principle, is
considered. Only half of the symmetry is made use of to obtain more illustra-
tive graphical results. The structure is subjected to a continuously growing
force until parts of the structure are becoming unrealistically high stressed as
the model does not account for plasticity in stress induced martensite. Ther-
mal boundary conditions are chosen to be adiabatic. This is expected to be
the realistic case in an application area of load limitation, where the load is
expected to be applied quickly, not leaving enough time for heat conduction
or convection.

Figures 7.23, 7.24 and 7.25 show the distribution of martensite, equivalent
Kirchhoff stress and temperature, respectively, at maximum load. The obvi-

Figure 7.21: Flexible coupling: damping device using bend-
ing as active principle
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22
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55

Figure 7.22: Damping device: Bending

ous result that stresses are higher in the eyelet than in the bar-shaped part,
of the structure is clearly visible. Deformations are depicted at full size, i.e.
the scale is 1:1. Note that due to narrowing of the eyelet, in reality interac-
tions between bolt and eyelet would be observed. From Figure 7.24 it is seen
that at maximum load, parts of the structure have reached stresses exceeding
1000 MPa. The simulation is stopped here as the model is not expected to
yield good results for stresses far higher than the plateau stress.

In Figure 7.26, the distribution of martensite, equivalent Kirchhoff stress and
temperature of the second structure are plotted at maximum load. The re-
spective contour bands are of the same range as those in Figures 7.23, 7.24
and 7.25, respectively. For this specimen, only the sixth part of the structure
is modeled for symmetry reasons. However, simulation of the part proved to
be computationally expensive, as the gradients along the cross section increase
with increasing load (see Figure 7.27).



7.5 Finite element analysis 151

¢ Inc. 0 ; ‘_ Inc. 8

, | ,
1.10 ; \ ;
1.00 VAR

0.90 TR /

0.80 ~— N

o
/
AN
“
-
—
.

0.70 Inc. 16 Inc. 24 ‘
0.60 "‘
0.50
0.40
0.30

0.20

0.10

0.00

—0.10

Figure 7.23: Evolution of martensite
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Figure 7.24: Evolution of equivalent Kirchhoff stress
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Figure 7.26: Distribution of martensite, equivalent Kirch-
hoff stress and temperature (Note: Contour
bands are of the same range as their respective
counterparts in Figures 7.23, 7.24 and 7.25)
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Figure 7.27: Equivalent stress over arc length close to an
eyelet of the star-shaped structure

In the preceding computations, a relative/absolute strain energy criterion of
eior = 10710 was used as global convergence criterion. The results show that
the implemented material law is suitable for the simulation of the behavior
of complex structures. The effects of thermomechanical coupling are clearly
visible.






8 Conclusion and possible extensions

8.1 Results

In this treatise a thermodynamic model capable of the description of pseudo-
elasticity is proposed based on a Eulerian finite deformation theory. Adopting
a thermodynamic theory with internal variables, the mass fraction of marten-
site is defined as an internal state variable. The state of the two-phase solid is
uniquely determined by temperature, elastic Hencky strain and mass fraction
of martensite.

Based on the concept of irreversible forces, an evolution equation for the mass
fraction of martensite £ is derived. Thus, by expressing the elastic-phase trans-
formation part of the stretching in terms of the rate of martensite, a constitu-
tive equation for the Kirchhoff stress is obtained.

The model is calibrated to experimental data obtained on a NiTi specimen.
While computational results obtained with this parameter set are in very good
agreement to the experimental data, it should be noted that an important
quantity, i.e. the value of £ at maximum strain, was not known in the process
of parameter identification.

For isotropy, the model is implemented into a finite element code in an up-
dated Lagrangian formulation. The constitutive equation is integrated by
corotational integration to preserve objectivity.

Using the parameter set referred to above, the stress-strain behavior predicted
by the model is analyzed. The stress response exhibits a strong dependence
on temperature, reflected both by isothermal tests at different temperatures
and by the comparison of isothermal and adiabatic simulations. This is in
agreement with experimental observations.

The implementation is successfully applied to the simulation of complex struc-
tures, predicting the heating of the structures due to thermomechanical cou-
pling. With regard to the damping devices simulated, the distribution of
martensite within the structure may be used to judge the suitability of the
devices for their intended purpose.

However, while the simulations endorse the applicability of the material model
to pseudoelastic structures in general, there are some drawbacks to the the-
ory as well that could be addressed in future extensions of the model. Some
suggestions in this regard are given next. For example, the model does not
account for the tension-compression asymmetry that is well-established in lit-
erature. To adequately model one-way shape memory effect, the reorientation
of martensite has to be considered. Also, for a continuum model it is hard
to account for effects such as the macroscopic transformation band observed
on NiTi specimens under certain conditions. During mechanical cycling with
increasing strain amplitude, Lin et al. (1994) observe a sudden increase in
transformation stress at the point where the processes had been reversed be-
fore. While the transformation stress of inner cycles is lower than that of
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the bounding loop initially, the old value of stress is attained at the point of
maximum strain in the loading history.

8.2 Possible extensions
The presented model may be extended in a number of ways to account for

e phase-specific thermoelastic constants
e tension-compression asymmetry

e one-way (shape memory) effect

e plasticity and two-way effect

o fatigue.

As the model has been formulated in a very general way, adopting the as-
sumption of isotropy at the latest possible moment, modifications should be
readily incorporated. For example, the model may be extended to include
phase-specific Young’s moduli in a straight-forward manner by following the
procedure presented, omitting some of the simplifications adopted here.

To take into account the tension-compression asymmetry, an extension of their
original R;-model is proposed by Raniecki & Lexcellent (1998). Their modifi-
cations lead to an amended free energy function. Bouvet et al. (2002) propose
a J2-J3 theory based on experimental data obtained on a CuAlBe specimen.
Qidwai & Lagoudas (2000) adopt the same type of criterion in their theory to
take into account volumetric changes as well, which are disregarded here. Au-
ricchio & Taylor (1999) propose an efficient integration algorithm for isotropic
J2-J3 plasticity which could be adopted as well.

Concerning the one-way effect, different concepts are introduced in the liter-
ature (cf. Section 2.2.4): Either, the mass (or volume) fraction of martensite
is decomposed into a twinned, thermally induced and an untwinned, stress
induced part, or in addition to a scalar fraction of martensite, a tensorial
quantity describing the orientation of martensite is introduced. The concept
presented here may be extended either way.

To model the two-way shape memory effect, a plasticity-type extension to the
presented theory may be considered. 1t seems to be reasonable to suppose
that the number of dislocations grows with the number of pseudoelastic cycles
as proposed by Bo & Lagoudas (1999a). A history variable that evolves with
the absolute value of the increments of the mass fraction of martensite could
be used to capture this behavior. The experimentally observed increase in
permanent set with growing number of cycles supports this notion. However,
the theory developed by Bo & Lagoudas (1999a) in this context does not fulfill
the requirement of implementability into numerical procedures such as finite
element methods.
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Finally, functional and mechanical fatigue are unsolved problems in the charac-
terization and modeling of shape memory alloys. When specimens are loaded
to almost completely martensitic state, mechanical fatigue gives rise to short
lifetimes. Functional fatigue results in a continuous decrease in the size of
the hysteresis. In fact, the maximal pseudoelastic hysteresis is generally ob-
served in the first loading cycle only. Both characteristics may be described
phenomenologically by combining the presented model with a damage theory
such as the anisotropic damage model developed by Bongmba (2001) based on
the kinematical framework underlying the presented theory.






A Relations regarding logarithmic spin and logarithmic
rate

The following relations are based on Xiao et al. (1997b) and Xiao et al. (1998b).
They are helpful in implementing material laws based on their theory into finite
element codes.

A.1 Eigenprojections

Spectral decomposition gives
B = Z XaBg' (Al)
o=1

where X, — eigenvalues of B
B, — corresponding orthonormal eigenprojections
m - number of distinct eigenvalues of B.

To calculate the eigenprojections, Sylvester’s formula may be used
y

B —x31
— 61111_'_ H — ﬁ (A.2)
bha Ko Xp
The following relations hold
> B, =1, (A.3)
a=1
B,B; =04sBg, (A.4)
B_B = x.B,. (A.5)
A Eulerian strain measure may be written in terms of a scale function
e=Y g(x,)B, (A.6)
o=1
with
e'B, =B_e’ = g(x,)'B, ieN, (A7)
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A.2 Calculation of logarithmic spin

In this section, relations for %8, N°8 and B are derived.
] 3

=\ Xat X 1
QLDS =W + ( a B 4+ ) BaDB Al
; Xg— Xa 9(Xa) — 9(Xp) B (A.8)
— {1+ (Xa/Xp) 2
QLog =W + ( @ n BaDB A 10
2 (1= (/o) il ) PP (A10)

Calculation of eigenprojections depending on the number of distinct eigenval-
ues:

en=1
B, =1 (A.11)
on=2
B, = L (B — x,1)
Y7 X = Xe 2
(A.12)
1
B, = B-—x1
2 X2 — X1( x1)
oen=23
X3— X
B, =3 - 2 [B? — (x2 + x3)B + x2Xs1]
X1— X
B, = - A 2 [B2 — (X1 +x3)B+ X1X31] (A.13)
X2 —X
B, = = n = [B? — (x;1 4+ X2)B + X1X21]
where
A= (x:— X2) (X2 — x3) (X3 — X1) - (A.14)

The definition of 2°% in terms of W and N°8 is

QLo = W + NLeg (A.15)
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where
0 X1 =X2= X3
NMg = { y[BD] X1 7 X2 = Xs
v1[BD] + v2[B?D] + v3[B’DB]  x; # X2 # X3 # X1
(A.16)
with??
1 1+ (X1/x2) 2 )
V= + . A.17
X1— Xa (1 — (X1/x2)  In(x1/x2) (A-17)
3 .
n=-3 S (2 D), k=123
A =1 1 —¢ = Ine; (A.18)
€1 = Xz/Xs €2 = X3/X1 €3 = XI/X2
[B'DB°] =B'DB° - B°DB" mit r,s=0,1,2. (A.19)

The eigenvalues of B follow from its principal invariants (3.53) to (3.55).

X; = % (I + 24/ 17 —3]]008(%((,0 — 27ri)))

R 2I° —9I - II + 27111 (A.20)
i 2(I? — 3113

1=1,2,3.
Hence, for n = 2

N3%8 = v(BiqDgj — DiqBy;)

= v(Big0qk0j1 — dikbq1Bg;) Dt (A.21)
= Bijk1 Dt
Bijkr = v(Bidji — duBjt) (A.22)
and forn =3
Ni3°8 = Bijr1 D (A.23)

Bijki = va( B Bji — BieBj)) + v2(Bj,651 — 6ikBj)) + v1(Bikbji — 8ixBji) .
(A.24)

2"Regarding (A.18;), cf. Bruhns et al. (1999).
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A.3 Tensors & and X
Tensors G and X are defined by

Gijkt = Xijkt — OakTj1 — O5uTik (A.25)
respectively
Xijkt = BirktTrj — Brjrimri . (A.26)

A.4 Basis-free expressions for t and 7

The stress tensors t and T are expressible in basis-free form as

r—1
t= ) 0i,BTB’ (A.27)
4,j=0
respectively
r—1
=Y n;BitB. (A.28)
1,7=0

75 is obtained from the formulas for g;; by replacing pi_jl by pij. In the
following, ).y is the sum for (ijk) = (123), (231), and (312), X ;5= Xj — Xk

Xk = Xj + X X5 = XXk pij = p(Xs, X;), and pis = limy;—x, p(Xa X;). A s
defined in (A.14).

Lr=1 X; =X2= X3

000 = p11”" (A.29)
2.1r=2: X1 # X2= X3
000 = (X1 — X2) "2 X311t + Xip22 ! — 2xax2p12 7]
—001 = (X1 — X2) 7 [Xaon1 T+ X1p22 = (X1 + X2)p12”']  (A.30)

onn = (X1 —X2) 2 o1t + a2t = 20127
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3.r=23 X1$£X275X3

Qo0 = A2 Z (pis~ ijkxﬁ Xk + QPz‘j_IXjkimxfx}L)
(ijk)

011 = 2 Z (pu JkXJk: + 2pi5 XJkazXJk:sz)
(ik)

022 = 5 Z (pis~ ka + 2055 "Xk Xki)
(k)

1 —1_ S
Qo1 =773 Z (pii IX?kakX? + pi~ XX (T1T + 211x))
(25k)

002 = QZ(pu X2 X5 + pis™ Rk X Xo Xeg)

(ijk)
Q12 = —— 3 Z (pu 'X 2 ng + pij )-(jkjeki(f + Xk))
(ijk)
(A.31)
Function p is given by
-1 -1 Xa — Xp
P~ (Xas Xg) = (2¢/XaX ( ) : (A.32
2 5"\ ) — 9x) )
The principal invariants of B in terms of its eigenvalues are
I =Xxi1+Xx2+Xs
II = x1X2 + X2X3 + X3Xa (A.33)

IIT = X1X2X3 -






B Implementation

B.1 Summary of equations

Transformation temperatures:

Au* — g

MO =S¥ —
s As* — 5p
AO _ Au* + uo
s As* 4+ 5p

Elastic tangent:

C
Lame constant:
_ E
b= 2(1+v)

Strain deviator:
hl

Equivalent strain:

h=+vh':h’

Rate of equivalent strain:
. 1 , o L
h=—-h :h"%

5 h

Phase chemical potential:
75 (0) = Au* — OAs”

with

* A * M
0

Au* =u — Up

* _  *xA = M
As™ = sp” — 8p

Specific free energy of interaction:
’l,bzt(@) = Up — O3

Thermodynamic driving force:

o = % T h® 4 pord (©) — po(1 — 26)3h,(©)

(B.3)

(B.4)

(B.7)

(B.8)

(B.9)
(B.10)

(B.11)

(B.12)
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Criterion for neutral processes for isotropy in terms of h and ©:
|, = 2unh + po (—As* + (1 — 2€)30) © (B.13)
Rate equation for £ for isotropy:

do = 2unh +éo£a( As* + (1 —26)30) © (B.14)

= 2poh; + 2un?

e
with
okA—M 23 As* — 3o(1 — 2¢) 0
T — In(1-¢&)+ ol —8) + 24, (M,) (B.15)
oKM—4 25, As* —30(1 — 2¢) 0
& o Iné€ + py: + 21, (A,) (B.16)

Logarithmic rate of the elastic-phase transformation part of the strain:

hetr Los — D& = % (h'é +£(I1 - % 11— %(h’ ®h')): D) (B.17)
Elastic stretching:

D® = D — Det" (B.18)
Stress rate:

7198 = (D° -~ Bay) : C (B.19)
Stress via corotational integration:

t
= (RY5)T « / R8 & 7 Loggs (B.20)

0
Energy generation per unit mass:

= hiat = 1 7 : D 4 (Au* — Go(l — 2€))E — — @ao 7 Los (B.21)
P Po Po
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B.2 Intermediate configuration

It was pointed out above that the kinematic framework used in this treatise is
kinematically consistent, i.e. the elastic and inelastic parts of the deformation
gradient, F¢ respectively F* = F'", as well as all related kinematic quantities,
can be uniquely determined without any assumptions regarding F¢. This may
be illustrated as follows.

Starting from the 7, ,, obtained from corotational integration of the consti-
tutive equation, the elastic left stretch tensor is given by

V; ., =exp(d5/0T,,,) . (B.22)

The elastic rotation follows from integration of the linear tensorial differential
equation

R® = Q°R° RY~t, = R, (B.23)
where the elastic spin is given by
Q° = QL — N¢©, (B.24)

Using the eigenvalues A¢ and eigenprojections B of V¢, the tensor N°® may
be expressed as

Ne—zn: A 1 B°D°B* (B.25)
A P e N S O L A ‘

Alternatively, a basis-free expression may be derived, see (A.16). Note that
by virtue of (3.145), the last two equations yield

Q¢ = QF (B.26)

for processes of purely elastic deformation, where V= V°® and R = R°.
Equation (B.23) is integrated as described in Section 7.2.2

R, . = exp(AtQ°)R; . (B.27)
Hence, the elastic part of the deformation gradient

Foy=VouRo, (B.28)
and with it the inelastic part

F:  =F °F

n+1 n+1f nt1 (B.29)

are readily obtained without any assumptions regarding F°.
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B.3 Calculation of h,, and h,;

To determine the time-discrete Hencky strains h, and h,41, the left Cauchy-
Green tensor is calculated using (3.48) at the times t = ¢, and t = tn41

Bn+aAt = Fn+aAtF:+aAt . (B30)

The eigenvalues and eigenprojections of the left Cauchy-Green tensor are ob-
tained by virtue of (A.11) to (A.13) and (A.20). Then, the Hencky strain at
t = t, respectively t = t,; is obtained from (A.6) for a = 0 respectively
o = 1 using the natural logarithmic scale function g(x) = 1 Inx given in (A.9)

hn+aAt = hn+aAt (Xg') Bcr) 'n+aAt . (B31)

B.4 Tangent stiffness matrix

Given the relations of the material law proposed in Chapter 6, the tangent stiff-
ness matrix is derived. The elastic-phase transformation part of the stretching
is

Detr = %h’é +D:Zi(¢,h, ) (B.32)
with
Z.(¢,h,h') = ’7_: (11 _ %1 ®1— % (h' ® h’)) (B.33)

having the symmetries
(Z1)ijk1 = (Zo1) w15 = (Z1) jikt = (Zn) jitk - (B.34)

The rate of the equivalent Hencky strain is given by

h=7h:D. (B.35)
Defining the function

Za(€) = (As" + (1 26)50) | (B.36)
the rate of the mass fraction of martensite is

£ = HL(’:C) (%D :h' — Zz(f)é‘)) : (B.37)
Here

HP = ok - 2y + 2L i (B.38)

513 0o
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The thermomechanical coupling is given by

1v.q+6 =—F oo e

pep Pep “r (B.39)

P tr : P ° Log

= L Do 1 4 Z3(8)é — L O : T8

pvs T+ Z3(§)¢ poc, D00 T
where
Z3(€) = 2 (Au” — (1 - 20)), (B.40)
p

and the logarithmic rate of the Kirchhoff stress is
718 = (D — D" — Qay) : C°. (B.41)

Now, the rate of temperature © is to be expressed in terms of the stretching D.
Hence, (B.41) is substituted in (B.39)

_F 9o 6= L periry i
PCp PoCp
——L oD -D —Oay):C°: ao
PoCp o
= PDeir . Z4(T,@) +Zgé — L(D — éao) cCe: Qo,
PoCp
(B.42)

where

with Z4(1,0) = p (1 +0C°: ay) . (B.43)

PoCp
Then, substituting (B.32) into (B.42) yields
—iV26+6 (1 _ 0 Qo :Ce:ao)
PCp pocp
_ M . D) : :_ PO b . ce.
= —¢th':Z44(Z,:D) : Zs + Z3€ — D:C°: ap (B.44)
: (k) ' PO e
=€Hh -Zs(h,h,{,@,T)-’r-D: Zy 24— Cé:apl .
PoCp
where
(k) / A/ PN
H® . Zs(h,1,¢€,0,7) = (Eh .z4+23) . (B.45)
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Using
Z,:D=D:Z,, (B.46)
substituting (B.36) into (B.44) gives

-—LVQG +6 (1 — ﬁao : C¢ :ao)

PCp PoCp
= (2“_77]3;}1’—22(;)) Zs+D: (Z1 1 Zy — PO Ce:ao)
poh PoCp

= GZG(h,h',§,9,T) =D: (Q'U—nZsh' +7Z1: 724 — PO Ce: ao)

poh poCp
+* ve
PCp
= ©=D:2Z;(hN ¢06 1')+i—k—V26
) ) ) 9 Z6 pcp bl
(B.47)
with
’ Jass e
Ze(h,h ,5,6,1’) = (1 - —Op Ce: g + Z2Z5) (B.48)
PaCp
and
2un Zs 1 1 p©
Z:(h,hW,£0, V= =2h+ -2, :Z4 — — €. .
7( '3 T) (,Ooh Ze + Ze 1 4 Ze POCpC (a7}
(B.49)
Substitution of © in £ yields
: 1 2um p Za k —9 )
=——(—D:h-2,D:2;, - =~—V*0
§ ngk) (poh 2 7 7o pCo
1 (2 1 7 k (B.50)
SN, 2 2
=D: —h' - 7,2 - —=——V0
[Hﬁf“) (poh i 7) H® Zs pep

Finally, substituting © and £ into (B.32) and (B.41), neglecting heat conduc-
tion leads to

rlos = D . C*, (B.51)
with

cei= (11 1 (Mh'—ZQZ"( ®h' —Z; -Z27Qa0 | : C*.
h H®*) \ poh

(B.52)
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B.5 Linearization

In this section, the material law is linearized with regard to an implementation
within a backward-Euler scheme. First,

1
zl(.g)=%g(n——1®1-—(h ®h)) (B.53)
is defined. The partial derivatives of this relation
0Z, 1
=1 _ - .54
e " (B.54)
and of Z, from above are
07, _
— = —23g. B.5
3§ 2359 ( 5)
For the transformation to martensite the following relation hold
P (6,6) = -2 - g 2L Pl 2 %)
a1(1 - §)
(B.56)
2un’
+2'f’n ( ) i
with
Y(©) = o — O30 . (B.57)

This gives the partial derivatives

(1)
agfg _ 25, (B.58)
and
OH) 95, 250 (1 — €) + Ag* — 50 (1 — 2¢)
& a(1-¢) ar(1 - €)? (B.59)

430 Zo
a(l-6 T al—0?

For the transformation to austenite the following relation holds

—30(1 — 2¢)
a,2§

HP(E,0) = 2

o, () +
(B.60)

2 2
+24p,, (A2) — 270 + 2030 + tj n,
0
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This gives the partial derivatives

oH®
80

= 259

and
OHY 25, | 250¢ — (As* —50(1-20) 450 2o
8¢  as€ a2’ a2 axé®
The evolution of martensite is governed by
~f

: 1 (2un / : 4l
£ = —— (—D:h —Zz@) = —,
ch) poh poHﬁk)

leading to the logarithmic rate of the stress
7l = (D - Iné—D:2: - o) : C°,
Discretization gives

/ !
Bnp1 = Vhap th oy,

and

Pr+1 det(Fn+1) :

The residual of the linearization with respect to £ is

Xn+1 = —En—kl + En + Atérﬂ—l = _§n+1 +§n + Afn-|-1 = 0,

with
1 2
Aéni1 = ® ( il (AtDryi1)h'pyr — Z2n+1A@n+1>
th+1 Pohn+1
Aﬂ'fn-l—l
k
90H§171+1

The residual of the linearization with respect to 7 is

Snt1 = —Tntl +Rn_|?gl * Tn + ALT ogn+1 =0.

Substitution of the logarithmic rate of 7 yields

Sn+1 = —Tn+tl + R,,%igl * Tn+ ((AtDn-l-l) - l'll'rz~l—1AE11.~I—1

hn+1
~ (AtDpy1) : Zy,,1 —AOpi1000 ) : Ce.

(B.61)

(B.62)

(B.63)

(B.64)

(B.65)

(B.66)

(B.67)

(B.68)

(B.69)

(B.70)
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Here, it must be noted that
AitDp4+1 #hpy1 — hy, . (B.71)

The independent variables are 7,41, £én+1, and ©,41. However, the latter is
given by the finite element code.
The partial derivatives are

8Xn+1 _ aA'fn+1

_ _1, B.72
Oén+1 O0€nt1 ( )

3Xn+1 _ 6A~£n+1

- : B.73
OTn+1 0T n+1 ( )

and

0Sn+1 ( n / O0AEn+1 O i1
— = - h', — (AtDyp :
35‘n+1 hn+l +1 6~£n+1 ( +1) 6£n+1
6A®n+1 >
—_ : Ce,
8£n+1 o

(B.74)

OSni1 _ g, (_ 1 g Obn _ 08O ®a0> .

OTn+1 hni1 OTny1 OTn+1
(B.75)
The derivatives of Af,41 are
k
0ALni1 (_ 1 6H§LT)H-1) Aty HE
- n hn+tl
9On-+1 (H 51k7)1+1)2 0On+1 "
1 ( 6A6n+1 )
+ -7y n+1 (B.76)
(k)
hn+1 86n+1
. 1 _ 6H£Lk,?b+l AE . 22 ) 6A®n+1
H&ka?t+1 8@n+1 " nt 6('-)'n,+l ,
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(k)
M — (_ 1 aHh”"‘l At +1H(k)
- n hn+1
(

6§n+1 H£k7)1+1)2 8£n+1
1 0z 0AO
+—% (“ 20 AOpi1 — 22 n+1—n+1)
HY ) On+1 Ont1
(B.77)
1 6H§Lk’3b+1 0Z2n+1
= C — Abpyr — AOpq1
Hh ) O0&nt1 O0&n+1
n+1
6A@n+1
Z2n+1 B ]
and
A&y _ 1 Zanin 0AOni1\ _ _ Z2nt1 O0AOy 41 . (B78)
OTnt1 ngkr)r.+1 OTn 1 Hsmkr)z+1 OTnt1
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schalen (Dezember 1989)

J. Badur/H. Stumpf:
On the influence of E. and F. Cosserat on modern continuum mne-
chanics and field theory (Dezember 1989)

Werner Fornefeld:

Zur Parameteridentifikation und Berechnung von Hochgeschwindig-
keitsdeformationen metallischer Werkstoffe anhand eines Kontinu-
ums-Damage-Modells (Januar 1990)

J. Saczuk/H. Stumpf:
On statical shakedown theorems for non-linear problems (April 1990)

Andreas Feldmiiller:
Ein thermoplastisches Stoffgesetz isotrop geschadigter Kontinua
(April 1991)

Ulfert Rott:
Ein neues Konzept zur Berechnung viskoplastischer Strukturen (April
1991)

Thomas Heinrich Pingel:
Beitrag zur Herleitung und numerischen Realisierung eines mathe-
matischen Modells der menschlichen Wirbelsdule (Juli 1991)

O. T. Bruhns:
Grofle plastische Forméanderungen — Bad Honnef 1991 (Dezember

1991)

J. Makowski/J. Chroscielewski/H. Stumptf:
Computational Analysis of Shells Undergoing Large Elastic Deforma-
tion Part I:. Theoretical Foundations
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J. Chroscielewski/J. Makowski/H. Stumpf:
Computational Analysis of Shells Undergoing Large Elastic Deforma-
tion Part II: Finite Element Implementation

R. H. Frania/H. Waller:
Entwicklung und Anwendung spezieller finiter Elemente fiir Kerb-
spannungsprobleme im Maschinenbau (Mai 1992)

B. Bischoff-Beiermann:

Zur selbstkonsistenten Berechnung von Eigenspannungen in poly-
kristallinem Eis unter Beriicksichtigung der Monokristallanisotropie
(Juli 1992)

J. Pohé:
Ein Beitrag zur Stoffgesetzentwicklung fiir polykristallines Eis (Feb-
ruar 1993)

U. Kikillus:
Ein Beitrag zum zyklischen Kiechverhalten von Ck 15 (Mai 1993)

T. Guo:
Untersuchung des singuliaren Rifispitzenfeldes bei stationdrem Rifi-
wachstum in verfestigendem Material (Juni 1993)

Achim Menne:
Identifikation der dynamischen Eigenschaften von hydrodynamischen
Wandlern (Januar 1994)

Uwe Folchert:
Identifikation der dynamischen Eigenschaften hydrodynamischer
Kupplungen (Januar 1994)

Jorg Korber:

Ein verallgemeinertes Finite-Element-Verfahren mit asymptotischer
Stabilisierung angewendet auf viskoplastische Materialmodelle (April
1994)

Peer Schiefle:

Ein Beitag zur Berechnung des Deformationsverhaltens anisotrop ge-
schadigter Kontinua unter Beriicksichtigung der thermoplastischen
Kopplung (April 1994)

Egbert Schopphoff:
Dreidimensionale mechanische Analyse der menschlichen Wirbelsaule
(Juli 1994)
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Christoph Beerens:
Zur Modellierung nichtlinearer Dampfungsphénomene in der Struk-
turmechanik (Juli 1994)

K. C. Le/H. Stumptf:
Finte elastoplasticity with microstructure (November 1994)

O. T. Bruhns:
Grofle plastische Formanderungen — Bad Honnef 1994 (Dezember
1994)

Armin Lenzen:
Untersuchung von dynamischen Systemen mit der Singularwertzer-
legung — Erfassung von Strukturverdnderungen (Dezember 1994)

J. Makowski/H. Stumpf:
Mechanics of Irregular Shell Structures (Dezember 1994)

J. Chroscielewski/J. Makowski/H. Stumpf:
Finte Elements for Irregular Nonlinear Shells (Dezember 1994)

W. Krings/A. Lenzen/u. a.:
Festschrift zum 60. Geburtstag von Heinz Waller (Februar 1995)

Ralf Podleschny:
Untersuchung zum Instabilitdtsverhalten scherbeanspruchter Risse
(April 1995)

Bernd Westerhoff:
Eine Untersuchung zum geschwindigkeitsabhangigen Verhalten von
Stahl (Juli 1995)

Marc Mittelbach:
Simulation des Deformations- und Schadigungsverhaltens beim Stof3-
versuch mit einem Kontinuums-Damage-Modell (Dezember 1995)

Ulrich Hoppe:
Uber grundlegende Konzepte der nichtlinearen Kontinuumsmechanik
und Schalentheorie (Mai 1996)

Marcus Otto:
Erweiterung des Kaustikenverfahrens zur Analyse raumlicher Span-
nungskonzentrationen (Juni 1996)

Horst Lanzerath:
Zur Modalanalyse unter Verwendung der Randelementemethode (Juli
1996)
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Andreas Wichtmann:
Entwicklung eines thermodynamisch konsistenten Stoffgesetzes zur
Beschreibung der Reckalterung (August 1996)

Bjarne Fossa:
Ein Beitrag zur Fliefflaichenmessung bei vorgedehnten Stahlen (Ok-
tober 1996)

Khanh Cha Le:
Kontinuumsmechanisches Modellieren von Medien mit veranderlicher
Mikrostruktur (Dezember 1996)

Holger Behrens:
Nichtlineare Modellierung und Identifikation hydrodynamischer
Kupplungen mit allgemeinen diskreten Modellansatzen (Januar 1997)

Johannes Moosheimer:
Gesteuerte Schwingungsdampfung mit Elektrorheologischen Fluiden
(Juli 1997)

Dirk Klaus Anding:
Zur simultanen Bestimmung materialabhiangiger Koeffizienten inela-
stischer Stoffgesetze (Oktober 1997)

Stephan Weng;:
Ein Evolutionsmodell zur mechanischen Analyse biologischer Struk-
turen (Dezember 1997)

Michael Strassberger:
Aktive Schallreduktion durch digitale Zustandsregelung der Struktur-
schwingungen mit Hilfe piezo-keramischer Aktoren (Dezember 1997)

Hans-Jorg Becker:
Simultation des Deformationsverhaltens polykristallinen Eises auf der
Basis eines monokristallinen Stoffgesetzes (Dezember 1997)

Thomas Nerzak:

Modellierung und Simulation der Ausbreitung adiabatischer Scher-
bander in metallischen Werkstoffen bei Hochgeschwindigkeitsdefor-
mationen (Dezember 1997)

O. T. Bruhns:
Grofle plastische Formanderungen (Marz 1998)

Jan Steinhausen:
Die Beschreibung der Dynamik von Antriebsstrangen durch Black-
Box-Modelle hydrodynamischer Kupplungen (August 1998)
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Thomas Pandorf:
Experimentelle und numerische Untersuchungen zur Kerbspitzenbe-
anspruchung bei schlagbelasteten Biegeproben (August 1998)

Claus Oberste-Brandenburg:

Ein Materialmodell zur Beschreibung der Austenit-Martensit Phasen-
transformation unter Beriicksichtigung der transformationsinduzier-
ten Plastizitat (Juni 1999)

Michael Martens:
Regelung mechanischer Strukturen mit Hilfe piezokeramischer Stapel-
aktoren (Dezember 1999)

Dirk Kamarys:
Detektion von Strukturverdnderungen durch neue Identifikationsver-
fahren in der experimentellen Modalanalyse (Dezember 1999)

Wolfgang Hiese:
Giiltigkeitskriterien zur Bestimmung von Scherbruchzahigkeiten
(Januar 2000)

Peter Jaschke:
Mathematische Modellierung des Betriebsverhaltens hydrodynami-
scher Kupplungen mit hybriden Modellanséatzen (Februar 2000)

Stefan Miiller:
Zum Einsatz von semi-aktiven Aktoren zur optimalen Schwingungs-

reduktion in Tragwerken (Februar 2000)

Dirk Eichel: _
Zur Kondensation strukturdynamischer Aufgaben mit Hilfe von Poly-
nommatrizen (Juni 2000)

Andreas Biirgel:
Bruchmechanische Kennwerte beim Wechsel im Versagensverhalten
dynamisch scherbeanspruchter Risse (August 2000)

Daniela Liirding:
Modellierung grofler Deformationen in orthotropen, hyperelastischen
Schalenstrukturen (Mérz 2001)

Thorsten Quent:

Ein mikromechanisch begriindetes Modell zur Beschreibung des duk-
tilen Verhaltens metallischer Werkstoffe bei endlichen Deformationen
unter Beriicksichtigung von Porenschidigung (Mai 2001)
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Ndzi C. Bongmba:
Ein finites anisotropes Materialmodell auf der Basis der Hencky-
Dehnung und der logarithmischen Rate zur Beschreibung duktiler

Schadigung (Mai 2001)

Henning Schiitte:
Ein finites Modell fiir sprode Schadigung basierend auf der Aus-
breitung von Mikrorissen (August 2001)

Henner Vogelsang:
Parameteridentifikation fiir ein selbstkonsistentes Stoffmodell unter

Beriicksichtigung von Phasentransformationen (Dezember 2001)

Jorn Mosler:
Finite Elemente mit sprungstetigen Abbildungen des Verschiebungs-
feldes fiir numerische Analysen lokalisierter Versagenszustande (De-

zember 2002)

Karin Preusch:
Hierarchische Schalenmodelle fiir nichtlineare Kontinua mit der p-
Version der Finite-Element Methode (Mai 2003)

Christoph Miiller:
Thermodynamic modeling of polycrystalline shape memory alloys at
finite strains (August 2003)
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