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Summary
This thesis deals with the concept of maximum dissipation in order to derive material mod-
els for shape memory alloys. This principle of material modeling allows to fulfill the first
and second law of thermodynamics, to include constraints like mass conservation very eas-
ily and to end up with thermo-mechanically coupled governing equations. To demonstrate
these advantages, in the first part of this work different principles of material modeling are
recalled and compared. Based on the example of perfect plasticity the interrelation between
material modeling by means of yield functions and the principle of the minimum of the dis-
sipation potential is shown. The inclusion of constraints for modeling inelastic materials is
much simplified by this second principle. Afterwards, the principle of maximum dissipation
is presented and its embedding in the thermodynamical context is explained.

Based on the theoretical foundations for material modeling discussed in the first part,
the second part of this work is dedicated to the application of the principle of maximum
dissipation to the modeling and simulation of shape memory alloys. The physical behavior
of this fascinating class of materials is explained both for the macro- and microscopic scale.
Additionally, its description in an energetic framework is presented. Finally, three different
models are derived in a row, each serving as basis for the subsequent one. All models are
evaluated in a finite element scheme and compared to experimental data. Wires of Nickel
Titanium at different temperatures are simulated such as stripes of different length. Further-
more, numerical results for springs round the entire analysis of each model. The last model
is able to display almost all important aspects of shape memory alloys such as localized
transformation fronts, temperature dependence and pseudo-elastic as well as pseudo-plastic
material behavior. The material softening which associates with the localized phase trans-
formation in pseudo-elasticity and which would cause mesh dependence is solved by a reg-
ularization approach. Due to the energetic formulation the model’s deductive universality is
empirically shown.

Concluding, a new interpretation of a factor that measures the amount of produced en-
tropy is presented. This parameter would be quite hard to determine experimentally. In this
work a new scheme of calculating the parameter was found since it could be shown that the
parameter is directly linked to chemical energies which are well known. Various numerical
examples prove the applicability of this interpretation.



Kurzfassung
In der vorliegenden Arbeit wird das Konzept der maximalen Dissipation angewendet, um
Materialmodelle für Formgedächtnislegierungen zu entwickeln. Dieses Prinzip der Ma-
terialmodellierung ermöglicht das identische und simultane Erfüllen des ersten sowie des
zweiten Hauptsatzes der Thermodynamik. Weiterhin wird das Einfügen von Nebenbedin-
gungen, wie bspw. Massenerhaltung, sowie das Herleiten von thermo-mechanisch gekop-
pelten Gleichungen, die das Materialverhalten vorhersagen, wesentlich vereinfacht. Um
diese Vorteile zu demonstrieren, werden im ersten Teil der Arbeit verschiedene Prinzipien
zur Materialmodellierung miteinander verglichen. Ideale Plastizität dient dabei als Refe-
renz, um den Zusammenhang zwischen der Methode von Fließfunktionen und dem Prinzip
des Minimums des Dissipationspotentials aufzuzeigen. Das Einfügen von Nebenbedingun-
gen wird durch das zweite Prinzip wesentlich vereinfacht. Im Anschluss wird das Prinzip
der maximalen Dissipation erläutert und seine Einbettung in den thermodynamischen Kon-
text erklärt.

Basierend auf den theoretischen Grundlagen der Materialmodellierung aus dem ersten
Teil der Arbeit greift der zweite Teil das Prinzip der maximalen Dissipation auf, um Form-
gedächtnislegierungen zu modellieren und zu simulieren. Das physikalische Verhalten dieser
besonderen Klasse von Werkstoffen wird sowohl auf makro- als auch auf mikroskopischer
Ebene erklärt. Zusätzlich wird eine Beschreibung des Materials von einem energetischen
Standpunkt dargelegt. Schließlich werden drei verschiedene Materialmodelle hergeleitet,
die aufeinander aufbauen und eine kontinuierliche Verbesserung in ihrer jeweiligen Re-
alitätsnähe aufweisen. Alle Modelle werden im Rahmen der Finite-Elemente Methode aus-
gewertet und mit experimentellen Daten verglichen. Drähte aus Nickel-Titan bei verschiede-
nen Temperaturen werden simuliert genauso wie Flachproben unterschiedlicher Länge. Wei-
terhin runden numerische Ergebnisse für Federn die Analyse der einzelnen Materialmodelle
ab.
Das letzte Model ist schließlich in der Lage fast alle wichtigen Eigenschaften von Form-
gedächtnislegierungen wiederzugeben wie lokalisierte Phasenumwandlungen und die Tem-
peraturabhängigkeit des Materialverhaltens. Dabei liefert das Modell realistische Ergeb-
nisse sowohl für pseudo-elastische als auch für pseudo-plastische Formgedächtnislegierung-
en, einzig abhängig von der entsprechenden Legierung und Umgebungstemperatur. Der
Materialentfestigung, die im pseudo-elastischen Fall mit der lokalisierten Phasenumwand-
lung einhergeht und Netzabhängigkeiten der numerischen Lösung hervorrufen würde, wird
durch einen Regularisierungsansatz begegnet. Aufgrund der energetischen Formulierung
des Modells ist es in einem sehr hohen Maße universell anwendbar: Es liefert realisti-
sche Ergebnisse für beliebige Lastfälle und Geometrien. Dies wird empirisch an unter-
schiedlichen Beispielen demonstriert.

Abschließend wird eine neue Interpretation eines Modellparameters präsentiert, der ein
Maß für die produzierte Entropie ist. Dieser Parameter ist experimentell nur sehr schwer
zu bestimmen. In dieser Arbeit konnte jedoch ein neues Berechnungsverfahren für diesen
Parameter gefunden werden. Es wurde gezeigt, dass er direkt in Verbindung zu chemi-
schen Energien steht, die wohlbekannt sind. Verschiedene numerische Beispiele belegen
die Anwendbarkeit der neuen Interpretation und schließen die Arbeit ab.
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w = ẋ velocity
dx1, dx2, dx3 increment in coordinate x1, x2, x3

x vector,
space coordinate in the undeformed configuration

ẍ = d2x
dt2

acceleration
x̃ space coordinate in the deformed configuration

Greek notations & symbols

αθ dissipation parameter for heat flux ≡ inverse of heat conductivity
β LAGRANGE parameter
βφ coupling parameter
χ mapping between original and deformed configuration
cφ average surface energy, penalization parameter
δ variation (operator)
δij KRONECKER delta
∆ dissipation functional
ε (total) strain
εji strain of crystallographic variant i in grains with orientation j
εel elastic strains
εpl plastic strains
φ scalar function,

field function
Φ yield function
γj
i KUHN-TUCKER parameter



CONTENTS xiii

ηji transformation strains for martensite variant i > 0
rotated in grain orientation j

κ LAGRANGE parameter
λ tensor of internal variables, volume fractions
|λ0| average amount of austenite
Π total potential
Πin internal potential
Πex external potential
θ (absolute) temperature
θ mass moment of inertia
ρ density,

consistency parameter
σ stress
Σ indicator function for plastic material behavior
ω̇ angular acceleration
Ω body’s volume
∂Ω body’s surface
∂Ωu boundary with prescribed displacements
∂Ωt boundary with prescribed tractions
ξj volume fraction of grains with orientation j

Ξ value for a subdifferential for λ̇ = 0
Ψ HELMHOLTZ free energy
Ψcon condensed energy
Ψrel relaxed energy
Ψtot total free energy

C elastic constants
Cj

i elastic constants for crystallographic phase i rotated in direction j
(C)−1 inverse of tensor C
S tensor of fourth order

A active set
B passive set
D dissipation
E internal energy
J entropy flux and supply,

LEGENDRE transformation
K kinetic energy
L LAGRANGEan
L⋆ LEGENDRE transformed LAGRANGEan
O order
Q rate of heat supply
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Chapter 1

Introduction

Material modeling in continuum mechanics is the science of finding equations which are
able to display a reaction of a certain material which was observed in experimental test-
ing. The entire set of equations which describe the material behavior is termed material
model. In general there exist several different principles to establish a model for a specific
material. One way are phenomenological models whose aim is to display the observed ma-
terial reaction as best as possible by means of different parameters which have to be fit.
Another possibility of material modeling is to understand the underlying processes which
evolve in materials during loads and include these processes directly into the material model.
Such models are called micromechanical models. After deriving this, the micromechanical
model’s quality and the correctness as well as the completeness of the implemented assump-
tions are tested by comparison between numerical simulation results and experiments. Due
to the incorporation of the specific reasons for a certain material behavior via the microme-
chanical considerations, in general a more universal application of micromechanical models
can be expected. An universal material model which is capable of reproducing experimental
observations can be used to predict the material reaction of more complex structures and
geometries. This may reduce the expenses for experiments if that they are possible which is
of great interest in industrial applications.
Although micromechanical models are designed in a way the knowledge about the physical
properties of a specific material is implemented, they still may depend on parameters which
are only valid for some loading states. A micromechanical model which uses only global
parameters which are independent of certain local quantities such as stress or strain is called
in this work energetic model. If only parameters are used which are independent of loading,
geometry and others that energetic model is universal and even the parameter identification
from experiments is relatively easy since every arbitrary test could be used.

As there exist a whole variety of different methods to execute material modeling, this
work focuses on a class of methods which are based on potential principles. This may be
understood as deriving the governing equations which are needed to describe the material
behavior coming from an energetic point of view. This has the great importance - for ex-
ample compared to the phenomenological approach mentioned before, for instance in [32],
[26], [30], [7], [49] - that energy principles are the most basic physical consideration and
independent of any load state or geometry of specimens. Effects which may cause a certain
material response do not have to be taken into account while dealing with phenomenological
modeling which is in contrast to micromechanical modeling. Here, the internal processes
have to be implemented in a more detailed way and thus special artifacts are not smeared
out which can be the case if models are basically just relied on rather simple load states.
Unfortunately the numerical treatment of micromechanical material models is more com-
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2 CHAPTER 1. INTRODUCTION

plex than that of phenomenological ones which means that the numerical effort measured in
computation time is higher. Examples for micromechanical modeling can be found in [16],
[53] or in [52].

The aim of this work is to contribute to the field of material theory by application of the
principle of maximum dissipation to the case of shape memory alloys. Shape memory alloys
belong to the class of smart materials which are self-adapting. They own the fascinating fea-
tures of pseudo-elasticity and pseudo-plasticity which are both of great interest in the field
of science as well as in the field of industrial engineering. The property of pseudo-elasticity
allows to deform an alloy - hence a metallic material - up to 8% elastically which is an enor-
mous number. Steel, for instance, can be deformed only up to approx. 0.2 % until plastic
deformation takes place, [13]. So, pseudo-elasticity combines parts of the high elasticity of
polymers with the high strength of metals. An application of pseudo-elastic shape memory
alloys are medical stents, for instance, which open a closed blood vessel. This obviates a
by-pass surgery.
Pseudo-plasticity gives this class of alloys its name and reminds to perfect plasticity in a
stress-strain diagram at first glance (constant or ’plateau’ stress in the stress-strain diagram
after exceeding a certain threshold although strain is increased further). In a macroscopic
observation, after application and removing of an external mechanical load to a specimen
reacting pseudo-plastically, an apparent durable deformation remains in the specimen. Sur-
prisingly, heating the specimen up the ’plastic’ deformation will be reversed and the original,
undeformed configuration is restored. For this effect only a certain threshold temperature
has to be overcome. An application example is a valve which is supposed to open or to close
at specific fluid temperatures.
The triggering variable for pseudo-elasticity and pseudo-plasticity is temperature: above a
certain temperature pseudo-elastic material behavior is observed, below a certain tempera-
ture pseudo-plasticity takes place, [46], [45].
Other material models for shape memory alloys can be found in [2], [4], [15], [16], [40],
[41] or [62].

Taking the example of perfect plasticity where its modeling via yield functions is well
known as methodical reference, this work will light on different energy based principles of
material modeling. The principles discussed here are the usage of yield functions, see [33],
[51] and [47] for instance, the principle of the minimum of the dissipation potential, used for
example in [35], [23] [36], [4], [20], [25], and the principle of maximum dissipation which
was introduced in [43] and [44], rediscovered in [55] and used in [54] and [56]. Particularly
the two last mentioned principles make use of the advantage of potentials. Having a poten-
tial, there are two main benefits: first, one can be sure that the resulting material model is
of a quite constant quality in its ability to deliver realistic simulation results. If the model
is able to predict a material answer which coincides well with experiments, the application
of the model to any other load state and any other specimen’s geometry will create results
of similar correctness. Secondly, the inclusion of constraints is much more simplified when
dealing with potentials compared to the introduction of yield functions, for instance. In con-
clusion, energy based methods synthesize a much broader reliability and a very simple and
elegant way to take constraints into account.

Processes in shape memory alloys are strongly connected and dependent on temperature.
This is why the principle of maximum dissipation is applied in this work to derive a material
model for shape memory alloys. Phase transformations in shape memory alloys evolve in a
very localized way. Since the basic material model is not able to display this phenomenon,
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it is extended in order to display the mentioned localized phase transformations which are
observed in experiments. To take the influence of temperature into account, finally a fully
thermo-mechanically coupled material model is derived. All models are solved in a finite
element scheme which allows to simulate entire specimens made of shape memory alloys.
Various numerical examples are presented and compared to experiments from [59] and [48].
Making use of the principle of the minimum of the dissipation potential as well as of the
principle of maximum dissipation, a so-called dissipation parameter has to be defined which
is quite difficult to be measured directly. Interestingly, a new interpretation of this dissipa-
tion parameter or dissipation coefficient could be found in this work which allows to calcu-
late it straight forwardly from well known experimental quantities as enthalpy and entropy
differences. This interpretation and this ability of calculation may be valid for all materi-
als undergoing smooth phase transformations (shape memory alloys and water for instance).

In order to clarify the notation as well as to give a very short introduction into the field of
continuum mechanics which is supposed to be sufficient to understand the rest of the work,
Sec. 2.1 deals with mathematical and physical fundamentals. In Sec. 2.2 the physics of
inelastic materials are described as well as their mechanical treatment. As basic example
plasticity is discussed in Sec. 2.2.2.

Section 3 deals with different principles of material modeling. Thus, in Sec 3.1 the
interrelation between the method yield function and the principle of the minimum of the
dissipation potential is pointed out using the example of perfect plasticity, first without any
constraints, later including the constraints of volume preservation. Section 3.2 gives a gen-
eral outline how the principle of the minimum of the dissipation potential is used until in
Sec. 3.3 the principle of maximum dissipation is presented. This principle is even more
convincing from a thermodynamical point of view and allows for the inclusion of thermal
effects.

Section 4 is dedicated to the topic of shape memory alloys. So, in Sec. 4.1 physical prop-
erties of shape memory alloys are discussed, both on macroscopic and microscopic scale.
The following Sec. 4.2 deals with the micromechanical modeling of shape memory alloys
for which in Sec. 4.2.1 a rather short excursion to energy convexification is performed. In
Secs. 4.2.2, 4.2.3 and 4.2.4 three different models for shape memory alloys are presented,
starting from a basic version which is extended in a first step and to which finally thermal
dependence is added.

In order to evaluate the material models on a macroscopic scale - thus for entire speci-
mens - in Sec. 5 a short introduction to the finite element method is given, first for elastic
materials and later for inelastic materials, Sec. 5.2. The treatment of the different models in
a finite element scheme is presented in Secs. 5.2.1, 5.2.2 and 5.2.3.

In Sec. 6 numerical results for all models are presented for different geometries as well
as parameter studies. In Sec. 6.3.1 the new interpretation of the dissipation parameter is
pointed out and its calculation can be found in Sec. 6.3.2.

Finally, a conclusion and an outlook is given in Sec. 7.
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Chapter 2

Fundamentals

2.1 Introduction to Continuum Mechanics
Continuum Mechanics is most generally spoken the science of modeling materials with
continuously distributed mass. The issue of continuum mechanics is the transportation of
an observed material’s physical behavior under certain loads to a mathematical level. In this
way, a prediction of the material’s reaction is possible which is of great interest in the field
of engineering. Since this work contributes to continuum mechanics, a basic introduction to
the theme is given in this section. More general and detailed information may be found in
[27], [33], [50] or [22], for example.

2.1.1 Mathematical Basis: Scalars, Vectors, Tensors
The purpose of this section is to lay down a mathematical basis and to clarify the used
notation. Although this foundation is sufficient to understand this work, it is certainly not
enough to serve as a general basis for continuum mechanics.

Mathematical fields of different order are important in this work. Thus, a short introduc-
tion in tensor calculus and analysis is given.

Notation

A number can be interpreted as a tensor of zero order - the dimension of this single valued
array is zero. These quantities are denoted as scalars and will be indicated by a small letter,
a for instance. A combination of scalars in a one dimensional array are vectors. Vectors are
equivalently tensors of order one if there exist certain transformation rules, [29]. For vectors
small but bold letters are used, for example

x =

x1

x2

x3

 . (2.1)

A combination of vectors to a two dimensional array gives a matrix. They are tensors of
second order only if the aforementioned transformation rules are fulfilled. Such quantities
are indicated by capital and bold symbols. Thus,

F =

F11 F12 F13

F21 F22 F23

F31 F32 F33

 . (2.2)

5



6 CHAPTER 2. FUNDAMENTALS

This scheme can be extended to tensors of arbitrary order. A tensor of fourth order, for
instance, can be represented as a matrix having matrices themselves as components. One
famous tensor of fourth order is the elasticity tensor. These class of tensors (tensors of fourth
order) is indicated by double stroke symbols, for example C.

Products

A normal multiplication with a scalar is denoted by a small gap between the individual terms
which are supposed to be multiplied, a = b c (two scalars) or x = by (a scalar with a vector)
for example. Multiplication of a scalar with a tensor of higher order than zero is carried out
by multiplying every single component of the tensor with the scalar, hence

aB =

aB11 aB12 aB13

aB21 aB22 aB13

aB31 aB32 aB13

 . (2.3)

Of course, as well as there exists the operation to associate scalars with scalars and
scalars with tensors, operations can be introduced which associate tensors with tensors. The
first one introduced here is the so-called dyadic or tensor product. It is indicated by a ⊗
symbol, hence x⊗F or simply xF . This operation multiplies each entry of one tensor with
each entry of the other tensor while each scalar valued product is ’saved’ in a component of
the resulting tensor. In order to provide enough components, the resulting tensor has always
an order equivalent to the sum of the single orders the multiplied tensors have. Thus,

x⊗ y = xy =

x1

x2

x3

⊗
y1
y2
y3

 =

x1 y1 x1 y2 x1 y3
x2 y1 x2 y2 x2 y3
x3 y1 x3 y2 x3 y3

 . (2.4)

This product is a very useful and important point in tensor calculus to represent tensors in a
so-called index notation.
To illustrate this tool, imagine the unit vectors in two dimensions. They are indicated by e1

and e2 and read

e1 =

(
1
0

)
, e2 =

(
0
1

)
. (2.5)

Application of the tensor product associating two of the unit vectors gives

e1e1 =

(
1 0
0 0

)
, e1e2 =

(
0 1
0 0

)
, e2e1 =

(
0 0
1 0

)
, e2e2 =

(
0 0
0 1

)
.

(2.6)
Then, obviously every second order tensor A can be represented by

A =

(
A11 A12

A21 A22

)
= A11

(
1 0
0 0

)
+A12

(
0 1
0 0

)
+A21

(
0 0
1 0

)
+A22

(
0 0
0 1

)
. (2.7)

Thus, it is possible to write
A =

∑
i,j

Aij eiej (2.8)

or just
A = Aij eiej . (2.9)

The summation convention after EINSTEIN has been used in Eq. (2.9). That means, every
time two same indices occur, a summation over this index has to be carried out for which the
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summation sign can be dropped. This convention is used in this work if nothing different is
said. Of course, same derivations can be carried out for tensors of arbitrary order. Then, the
elasticity tensor as example for tensors of fourth order can be written as

C = Cijkl eiejekel . (2.10)

The first inner product recalled here is the so-called dot-product. This is indicated by
x · y and defined to be calculated as

x · y :=
∑
i

xi yi . (2.11)

The advantage of tensor calculus is evident when the index notation is considered. Then,
the dot-product only acts on the basis vectors spanning the tensor and gives

δij := ei · ej =

{
1 , i = j
0 , i ̸= j

(2.12)

for which the KRONECKER delta δij can be defined. The result of a dot-product is always a
tensor whose dimension is the sum of single dimensions of the product’s components minus
two.
An important property of the dot-product is that it is equivalent to

x · y = |x| |y| cos∠(x,y) (2.13)

where |(·)| indicates the EUCLIDian norm calculated by

|x| :=
√∑

(xi)2 . (2.14)

In an analogous way this norm is applied to tensors of higher order as well.
Another inner product is the so-called double dot-product or double contraction which is
denoted by (·) : (·). This operation associates two pairs of basis vectors instead of one pair
in the dot-product. Therefore, the double dot-product reduces the resulting dimension by
four. It is defined as

C : S = Cijkl eiejekel : Sopqr eoepeqer

= Cijkl Sopqreiej ek · eo︸ ︷︷ ︸
=δko

el · ep︸ ︷︷ ︸
=δlp

eqer

= Cijkl Sklqr eiejeqer . (2.15)

A different definition for a double contraction is given by (·) · ·(·) which associates different
basic vectors, namely

C · ·S = Cijkl eiejekel · ·Sopqr eoepeqer

= Cijkl Sopqreiej ek · ep︸ ︷︷ ︸
=δkp

el · eo︸ ︷︷ ︸
=δlo

eqer

= Cijkl Slkqr eiejeqer . (2.16)

If there exists an appropriate symmetry of the associated tensors, both double contractions
yield same results, for example in the HOOKE’s law, Sec. 2.1.9.
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Tensor analysis

To model and simulate materials the analysis of tensor valued functions is necessary. There-
fore, a small introduction in tensor analysis is given in this section. A function is called
field function if its variable is the spatial vector, given by x, no matter whether the resulting
function value is a scalar or a tensor of higher order. Thus,

φ = φ(x) , u = u(x) (2.17)

for example. Now, the gradient of the functions, denoted by a nabla symbol ∇, can be
interesting which is calculated for φ by the partial derivatives of the scalar function φ with
respect to each spatial coordinate, thus

∇φ :=



∂φ

∂x1

∂φ

∂x2

∂φ

∂x3

 . (2.18)

If the function itself is a vector, as it is the case for u, then the gradient is the conclusion of
all partial derivatives of every component of u with respect to every component of x, so

∇u = ∇

u1

u2

u3

 :=



∂u1

∂x1

∂u1

∂x2

∂u1

∂x3

∂u2

∂x1

∂u2

∂x2

∂u2

∂x3

∂u3

∂x1

∂u3

∂x2

∂u3

∂x3

 . (2.19)

In order to simplify this, the general notation under consideration of the different products
can be used. Hence, the nabla operator is introduced in index notation as

∇ :=
∂

∂xi

ei . (2.20)

This simplifies the formulation of Eq. (2.18) to

∇φ =
∂φ

∂xi

ei . (2.21)

For the second case application of this notation yields

∇u =
∂ui

∂xj

eiej , (2.22)

where the dyadic product has been used. It is emphasized that the basis vector of the nabla
operator, although incorporating the first position in the operation, always takes the last po-
sition in the dyadic product. This special treatment of the nabla operator is very common.
From these examples and in particular from the introduction of the nabla operator as vec-
torial quantity, it is obvious that the result of nabla acting on a certain quantity will have a
dimension increased by one compared to the previous one. Another way to define this is the
gradient operator, thus gradφ=̂∇φ. The divergence of a vector, introduced as sum of all
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partial derivatives, is by usage of the nabla operator equivalent to divu=̂∇ · u.

If the chain rule has to be applied to a function with a tensorial argument caution has to
be exercised which scalar product has to be used. Let the arbitrary function Ψ be a function
of the tensorial quantity λ = (λij) which is a function of a scalar variable t itself, thus
Ψ = Ψ(λ(t)), then the derivative of Ψ with respect to t is

dΨ

dt
= Ψ̇ =

∑
i, j

∂Ψ

∂λij

λ̇ij =
∂Ψ

∂λ
: λ̇ . (2.23)

This scheme holds in general.

2.1.2 abs-function: Subdifferentials and differential inclusions
In this work several times subdifferentials and differential inclusions occur. To illustrate a
subdifferential, the curve of the function r |x| is printed in Fig. 2.1. Since there is no unique

Figure 2.1: Different subdifferentals for the function r|x| at x = 0.

derivative at the point x = 0, there are all tangents possible whose slope is between −r and
r, for example Ξ1x or Ξ2x. The set of all tangents with slope between these bounds is called
subdifferential of r|x| and indicated by ∂(r|x|).

∂(r|x|) =

{
r x
|x| x ̸= 0

Ξ, |Ξ| < r x = 0
(2.24)

If a subdifferential occurs in an equation, there is no unique way to find the solution since
the value of the subdifferential is not unique. Hence, as there exists a set of valid functions,
there exists a unique solution for each of these functions. The specific solution has to be
taken out of the set of all admissible solutions. This set is called differential inclusion and
as it is a mathematical set, the ∈ symbol is used.
For the function above, one example could be

g′(x)− ∂(r|x|) ∋ 0 . (2.25)

In this case, the solution is just

g′(x) =


r x > 0

Ξ, |Ξ| < r x = 0
−r x < 0

(2.26)

which is nothing else but g′(x) = r sign x.
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2.1.3 Kinematics: Displacement, Deformation and Strain
In this work, a mechanical body will be treated as an ensemble of points. That means
that under deformation the material points forming the body may move and show exactly
as ensemble a rotation – each single material point does not have any rotation due to its
treatment in this work as mathematical point with infinitely small extension. Hence, here
only the CAUCHY theory is used instead of the theory of COSSERAT .
In order to describe each point in the material, a vector may be used, denoted by x. It
contains components in each direction of a Cartesian coordinate system and gives therefore
the position of each material point with reference to the origin of ordinates, see Fig. 2.2.
This vector x gives the position of the undeformed configuration, while the material points

Figure 2.2: Mechanical body at various time steps.

of the body in its deformed configuration are indicated by x̃. Then, the displacements, so
the difference between the deformed and the original configuration, can be estimated by

u := x̃− x . (2.27)

Of course, there will exist a relation between the position vectors in the deformed configu-
ration and those in the original configuration, so x̃ can be expressed by means of x through
a mapping χ, namely

x̃ = χ(x) , (2.28)

where χ is called deformation. Hence, the displacements read

u = χ(x)− x = u(x) . (2.29)

Two neighboring points have in the original configuration a distance which tends to zero.
This allows to write dx for exactly this difference. Since this analysis is restricted to contin-
uous materials, it is always possible to find points which have in the original as well as in the
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deformed configuration a distance tending to zero. Therefore, the two points having dx as
distance in the original configuration have a distance of dx̃ in the deformed configuration.
These two lines are linked via

dx̃ =
∂x̃

∂x
· dx (2.30)

which follows from the chain rule. Now, the transition from the original line increment
dx to the deformed one dx̃ can obviously be carried out by means of the derivative of
the material points in the deformed configuration with respect to the position vector in the
original configuration. This gradient is denoted by deformation gradient and termed F . It
can be calculated according to

F :=
∂x̃

∂x

(2.28)
=

∂χ(x)

∂x

(2.29)
=

∂u(x)

∂x
+ I (2.31)

where I is the identity matrix, or in components

Fij = χi,j = ui,j + δij . (2.32)

From now on, (·),i means the derivative with respect to component i.
As usual, as measure for the change in distance of two neighboring points the EUCLIDian
norm is chosen which is

| dx̃|2 = dx̃ · dx̃ = (F · dx) · (F · dx) = dx · F T · F · dx . (2.33)

From Eq. (2.33) it becomes obvious that the term F T · F serves as measure how a line
element with previously known length dx changes its length to the one of dx̃. This term
is named as right CAUCHY-GREEN tensor and denoted by C whereas the left CAUCHY-
GREEN tensor is indicated by B, depending on the position of F , so

C := F T · F , B := F · F T . (2.34)

Thus, C and B serve as measure for the change of distances between neighboring points.
However, GREEN-ST.VERNANT proposed a more meaningful measure which is

E :=
1

2
(C − I) =

1

2
(∇u+ u∇+ (∇u) · (u∇)) . (2.35)

Imaging F describing a pure rotation, then it follows due to the resulting orthogonality of
F that C = I . For this example no changes in the distances occur for which a measure
yielding zero is more meaningful. This property is exactly fulfilled by E. If small deriva-
tions between original and deformed configuration are assumed, which is done in this work,
a simplified version of Eq. (2.35) can be used as measure. This measure is called linear
strain tensor and denoted as

ε :=
1

2
(∇u+ u∇) =

1

2

(
∇u+ (∇u)T

)
. (2.36)

It can be seen from Eq. (2.36) that ε is symmetric.

2.1.4 Interaction between bodies: Force and Stress
In contrast to other physical quantities, such as mass or temperature, the purpose of forces
and stress is of rather auxiliary character. Derived from the observation that some quan-
tities cause bodies under load to deform, forces are introduced which may react inside a
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Figure 2.3: Interaction between bodies: forces.

body (volume forces) and on its outside (surface forces). Since a general force may cause
deformations in every direction of the current space (mostly a three-dimensional space), it
is mathematically a vector with components in each of the individual basic directions. The
vector of a surface force is termed traction vector and denoted by t. Traction vectors can be
synthesized by integration to the resulting force f according to

f :=

∫
∂Ω

t dA (2.37)

with ∂Ω as the body’s surface. Forces are then used to take the interactions of different
bodies into account which form the entire physical system. This allows to treat single bodies
individually.
On the other hand, sometimes the definition of traction vectors by means of forces is carried
out as

t := lim
∆A→0

∆f

∆A
=

df

dA
, (2.38)

see [22], for instance.

To determine the load state of an infinitesimal small volume element uniquely in a Carte-
sian coordinate system, three traction vectors have to be estimated: One traction vector for
each of the three planes perpendicular to one basic direction, t1, t2 and t3, Fig. 2.4. The
information carried by the three traction vectors can be synthesized in a new quantity σ in
the way that

σ · nj = tj (2.39)

for nj as unit vector normal to a plane j, (j = 1, 2, 3), stretched by two basic vectors ei and
ek with i ̸= k ̸= j. With the valid notation

tj = tjiei , (2.40)
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Figure 2.4: Traction vectors.

ei unit vectors in each direction i, for the components of σ has to hold

σi1 = t1i , σi2 = t2i , σi3 = t3i . (2.41)

This yields

(σ)ij =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

t11 t21 t31
t12 t22 t32
t13 t23 t33

 . (2.42)

The quantity σ is called stress and provides as space dependent function information about
the load state of each point. Of course, if the body deforms under load and the material
points change their position, it is necessary to indicate in which coordinate system the stress
is given: for the deformed body in the deformed configuration, for the deformed body in
the undeformed configuration or for the undeformed body in the undeformed configuration.
Since in this work small deformations are assumed, this topic is not discussed here but can
be found in [27], [33] or [50], for instance. As a small remark, it is mentioned that again the
deformation gradient can be used to transform the information between the different states.

For a given stress tensor, it is possible to find the traction vectors acting on arbitrary sur-
faces with normal direction n according to Eq. (2.39). This relation is called the CAUCHY

hypothesis.

In general, forces are grouped into internal and external forces. The internal forces are
equivalently stresses. External forces are body forces such as gravitation and electromag-
netic forces, surface forces denoted by t⋆, and inertial forces due to acceleration.
The boundary of the entire body where external loads are given is indicated by ∂Ωt. Here

σ · n !
= t⋆ on ∂Ωt (2.43)
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has to hold. The total surface of the body is

∂Ω = ∂Ωt ∪ ∂Ωu (2.44)

where the displacements are prescribed on ∂Ωu.

It can be shown that the stress tensor carries information which remains unchanged under
rotation. That is, if for one given stress state the point of view is changed by changing
the orientation of the coordinate system. This effect of information independent from the
coordinate system is quite reasonable since the physics which is mapped by σ must not
depend on the choice of view. Then, the traction vectors for an infinitesimal small cube with
reference areas perpendicular to the respective basis vectors of the coordinate system can be
calculated. The so-called invariants, thus constant properties under rotations, are

J I = trσ = σii , (2.45)

J II =
1

2
(σijσji − σiiσjj) , (2.46)

J III = detσ =
1

3
σijσjkσki . (2.47)

Therefore, if the stress state is once known in one specific coordinate system the state can
be given in any other rotated coordinate system as well.

2.1.5 Balancing: Conservation of Mass

No processes including nuclear fission or atomic fusion are treated here. Hence, the total
amount of mass in a system, denoted by m, must not change. This is

m =

∫
Ω

ρ dV = const ⇔ ṁ = 0 . (2.48)

2.1.6 Kinetic equilibrium conditions: Linear and Angular Momentum

Linear Momentum

The equilibrium condition in classical mechanics in terms of forces, often called NEW-
TONean laws, are ∑

i

f i = −bin = m ẍ (2.49)

with bin as inertial force. This means that the sum of all forces f i acting on a body yields
a change in impulse which is given by mass m times the acceleration ẍ. Regard the cubic
volume element already used in Sec. 2.1.4 to introduce stress. This element is cut off the
body for which on all sides traction vectors have to be considered. The traction vectors form
the components of the stress matrix, Eq. (2.42). Now, in general the values of tractions may
change over space. Thus, if the extensions of the cube tend to an infinitesimal length the
stresses acting on the cube can be formulated as shown in Fig. 2.5 (only components which
contribute to the equilibrium condition in x1-direction are plotted). Furthermore, there may
occur body forces denoted by f . Now, the NEWTONean law can be executed by multiplying
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Figure 2.5: Stresses acting in x1-direction

the stresses with their respective area and summing these resulting forces up. This results in

∑
i

f i =

(
−σ11 + σ11 +

∂σ11

∂x1

dx1

)
dx2 dx3

+

(
−σ21 + σ21 +

∂σ21

∂x2

dx2

)
dx1 dx3

+

(
−σ31 + σ31 +

∂σ31

∂x3

dx3

)
dx1 dx2 + f1 dV = ẍ1 dm = ρ ẍ1 dV

∣∣ 1
dV

⇔ ∂σ11

∂x1

+
∂σ21

∂x2

+
∂σ31

∂x3

+ f1 = ρ ẍ1 . (2.50)

Similar derivations for the x2- and x3-direction yield the complete set of equilibrium condi-
tions for continuous materials as

∇ · σ + f = ρ ẍ . (2.51)

Angular Momentum

The linear momentum refers to a change in impulse, thus a change in a translational move-
ment. For an arbitrary body with finite expansion a translational movement is not the only
degree of freedom but rotations about the three axes are possible, too. Thus, a change in
angular impulse can be used to state the second equilibrium condition in terms of moments.
This is ∑

i

mi = −min = Θ · ω̇ (2.52)

with the vector of angular accelerations around each of the axes ω̇ and the mass and geom-
etry dependent factor Θ. The moments are defined as force times the orthogonal distance
to a reference point. This point may be chosen arbitrarily. Application of the equilibrium
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Figure 2.6: Stresses causing an angular momentum around the x1-axis

condition for angular moments to the cubic volume element of Sec. 2.1.4 yields for angular
moments around the x1-axes with the center of the element as reference point∑

i

mi =

(
σ32 +

∂σ32

∂x2

dx2 + σ32

)
dx1 dx3

dx2

2

−
(
σ23 +

∂σ23

∂x3

dx3 + σ23

)
dx1 dx2

dx3

2
= −min,x1 = 0

∣∣ 1
dV

⇔ σ32 − σ23 = 0 , (2.53)

see Fig. 2.6.
The cubic volume element tends to a point with infinitesimal small edge lengths. Therefore,
the inertial moment in Eq. (2.53) is identically zero since the CAUCHY theory is used.
Additionally, the changes of the shear stress are of smaller order for which they do not have
to be considered. Similar derivations for the x2- and x3-axes lead to a symmetric stress
tensor,

σ = σT . (2.54)

2.1.7 (Im-)Balances: Energy and Entropy
Energy

In this section the two laws of thermodynamics are recalled. The first law deals with the
conservation of energy since in a closed system, which is the case in this work. The energy
cannot be lost but only transferred between different states. Regarding an arbitrary volume
element of an arbitrary body, Fig. 2.7, the postulation is made that a change or the rate of
the body’s entire energy, split into the internal part and the kinetic part, is caused by external
mechanical power (due to external forces, for instance) on the one hand and by the heat flow
or rate of heat supply (due to heat fluxes) on the other hand. Introducing E for the internal
energy, K for the kinetic energy, W for the mechanical power and Q for the rate of heat
supply, the postulate can be brought into the formula

Ė + K̇ = W +Q . (2.55)
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Figure 2.7: Arbitrary body with internal and kinetic energy under the influence of tractions
and heat fluxes.

Since the so called (specific) HELMHOLTZ free energy, or just free energy, Ψ is defined as∫
Ω

ΨdV = E −
∫
Ω

s θ dV , (2.56)

measuring the ’usable’ amount of energy which is not ’tied’ due to the material’s tempera-
ture, it is possible to exchange the internal energy in Eq. (2.55) by the free energy. In Eq.
(2.56) s denotes the specific entropy and θ the absolute temperature. The integral is taken
over the entire material’s volume denoted by Ω. Furthermore, the mechanical power is given
by

W =

∫
Ω

f ·w dV +

∫
∂Ωt

t⋆ ·w dA (2.57)

with f being internal forces (gravitation, for instance) and w the velocity vector. Applying
the CAUCHY -hypothesis, Eq. (2.39), and considering the balance of linear momentum, Eq.
(2.51), the mechanical power can be brought into the form

W =

∫
Ω

(
d

dt

1

2
ρ |w|2 + σ : ε̇

)
dV (2.58)

Internal heat sources, h, as well as the heat flux, q, entering the body contribute to the rate
of heat supply, hence

Q =

∫
Ω

h dV −
∫
∂Ω

q · n dA , (2.59)

n is a normal vector pointing to the outside of the body. Using GAUSS theorem, Eq. (2.59)
can be transformed to

Q =

∫
Ω

(h−∇ · q) dV . (2.60)

Introducing

K =

∫
Ω

1

2
ρ |w|2 dV (2.61)
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as kinetic energy, the balance of energy, Eq. (2.55), finally reads∫
Ω

(
Ψ̇ + (s θ)˙+

d

dt

1

2
ρ |w|2

)
dV =

∫
Ω

(
d

dt

1

2
ρ |w|2 + σ : ε̇+ h−∇ · q

)
dV

⇔ Ψ̇ + (s θ)˙ = σ : ε̇+ h−∇ · q (2.62)

since the volume over which the integral is taken may be chosen arbitrarily.

Entropy

The second law of thermodynamics deals with the direction processes evolve in time. This
is caught by the internal variable s, called entropy, and its evolution. More details for
internal variables and the entropy are given in Sec. 2.2.2. In contrast to energy which
has to be maintained, entropy may only increase in closed systems. Therefore the entropy
production, D, for the entire body has to be non negative. On the other hand the entropy can
be changed, similar to energy, due to entropy fluxes and entropy supplies. Entropy flux and
entropy supply are collected in J . This yields

Ṡ = J +

∫
Ω

D dV

⇔
∫
Ω

D dV = Ṡ −
∫
Ω

h

θ
dV +

∫
∂Ω

q

θ
· n dA

!

≥ 0 (2.63)

with
Ṡ =

∫
Ω

ṡ dV (2.64)

and the usual assumption for the relation of J to other thermodynamic quantities. The part
q/θ is the amount of entropy leaving the volume due to conduction while h/θ indicates
the change of entropy by effects such as radiation and chemical or radioactive processes.
Applying GAUSS theorem the imbalance of Eq. (2.63) can be transferred to the balance∫

Ω

(
ṡ− h

θ
+∇ ·

(q
θ

))
dV =

∫
Ω

D dV

⇔ ṡ− h

θ
+∇ ·

(q
θ

)
= D . (2.65)

This theorem is obviously true if and only if

D
!

≥ 0 (2.66)

holds. Of course, an expression for the entropy production D cannot be found from ther-
modynamical principles whereas Eq. (2.63), known as the CLAUSIUS-DUHEM inequality,
is sometimes more often used. However, if there can be made a reasonable ansatz for the
entropy production, Eq. (2.65) offers a very elegant way of mechanical modeling as it is
shown in Sec. 3.3. More details on that can be found in [58] or [57].

Entropy production and energy conservation

Having now two equations at hand which describe the first and second law of thermody-
namics, Eqs. (2.62) and (2.65) can be combined. This yields under elimination of h

D =
1

θ

(
σ : ε̇− Ψ̇− s θ̇

)
+ q · ∇1

θ
. (2.67)
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2.1.8 Dependences on free energy: Constitutive equations
In this section the relation between the free energy Ψ and other variables is investigated.
When it comes to modeling by means of the principle of maximum dissipation (further de-
tails will be given in Sec. 3.3), an approach has to be made for both, energy and entropy
production D. Although in this section no explicit formulation for the energy is made, a
more general property of Ψ is used to show how stress and entropy depend on the free en-
ergy due to the second law of thermodynamics. A more detailed focus on the energy for
elastic materials is given in Sec. 2.1.9 and for the class of materials being topic of this work
in Sec. 4.2.1.

Energy serves as measure for stored abilities. If a certain material possesses some energy
due to its current state (loads, temperature e.g.) there exists the possibility that the material
may change this state when the outside conditions are changed, such as an elastic material
will restore the original configuration if former external loads are removed. In general the
free energy may be a function of displacement, strain, temperature and the gradient of tem-
perature, hence Ψ = Ψ(u, ε, θ,∇θ) in the thermo-elastic case. Then, the rate of energy can
be calculated as

Ψ̇ =
∂Ψ

∂u
·w +

∂Ψ

∂ε
: ε̇+

∂Ψ

∂θ
θ̇ +

∂Ψ

∂(∇θ)
· (∇θ)˙ . (2.68)

Now, this expression can be plugged into Eq. (2.67) which results in

θD = −∂Ψ

∂u
·w+

(
σ − ∂Ψ

∂ε

)
: ε̇−

(
∂Ψ

∂θ
+ s

)
θ̇− ∂Ψ

∂(∇θ)
·(∇θ)˙+θ q·∇1

θ

(2.66)

≥ 0 (2.69)

since for the absolute temperature θ ≥ 0 holds. The velocity w as well as the rates of strain
ε̇, temperature θ̇, and gradient of temperatur, (∇θ)˙, may take arbitrary values. Furthermore,
all terms of the sum are independent of each other at first glance. Thus, in general the
in-equality condition in Eq. (2.69) can only be fulfilled if

σ − ∂Ψ

∂ε
= 0

⇔ σ =
∂Ψ

∂ε
, (2.70)

∂Ψ

∂θ
+ s = 0

⇔ s = −∂Ψ

∂θ
, (2.71)

and
q · ∇1

θ
≥ 0 (2.72)

hold since. Additionally, the free energy cannot be a function of displacement nor gradient
of temperature, Ψ = Ψ(ε, θ). Hence, the energy fulfills the purpose of a potential field from
the mathematical point of view. Stress and entropy can be recast from this potential through
the so-called constitutive equations Eqs. (2.70) and (2.71).
If the energy depends on more variables than just strain and temperature, for example on
another state variable (see Sec. 2.2.2) which is termed λ, then the rate of the energy gives

Ψ̇ =
∂Ψ

∂ε
: ε̇+

∂Ψ

∂θ
θ̇ +

∂Ψ

∂λ
: λ̇ . (2.73)
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Putting this energy into Eq. (2.67), the additional condition

−∂Ψ

∂λ
: λ̇ ≥ 0 (2.74)

has to be fulfilled which is valid for any additional state variable. This property will be
important in Sec. 3.2.

2.1.9 Elastic Materials: Free Energy and HOOKE’s Law
As this work is restricted to small deformations, the free energy Ψ for elastic materials can
be derived in terms of ε. A TAYLOR expansion of the (isothermal) energy Ψ(ε) around
ε = 0 yields

Ψ(ε) = Ψ(0) +
∂Ψ

∂ε

∣∣∣∣
ε=0

: ε+
1

2
ε :

∂2Ψ

∂ε2

∣∣∣∣
ε=0

: ε+O(|ε|2) . (2.75)

Since the energy is a potential field, the reference value, namely Ψ(0), can be chosen ar-
bitrarily and is set without any restrictions to zero. Even if the energy may have a value
different from zero at zero strain due to chemical parts which are temperature dependent,
this constant in the sense of strains would not contribute to any derivative with respect to
strain.
Furthermore, it can be postulated that in a so called natural configuration the free energy has
a local minimum at ε = 0. As necessary consequence the first derivative of Ψ with respect
to strain is a zero tensor, namely

∂Ψ

∂ε

∣∣∣∣
ε=0

= 0 = σ|ε=0 (2.76)

from which follows, according to Eq. (2.70), that in the natural configuration an elastic
material is stress-free. In plasticity, inelastic parts of strain would cause stresses even if the
total strain is zero.
The sufficient condition for the minimum is that the second derivative of Ψ is positive-
semidefinite. That means

T :
∂2Ψ

∂ε2

∣∣∣∣
ε=0

: T ≥ 0 (2.77)

for any given tensor T . In Eq. (2.75) the evaluation of the second derivative of the free
energy at ε = 0 is obviously a constant which is called elasticity tensor and denoted as

C :=
∂2Ψ

∂ε2

∣∣∣∣
ε=0

. (2.78)

The entries of this tensor of fourth order depend on the specific material and can be estimated
experimentally. In result, the free energy for an elastic material is given by

Ψ(ε) =
1

2
ε : C : ε . (2.79)

From Eq. (2.79) the constitutive equation between stress and strain can be derived using Eq.
(2.70) as

σ =
∂Ψ(ε)

∂ε
= C : ε . (2.80)

This linear relation between stress and strain is the famous HOOKE’s law and displays ex-
actly the well known experimental observations for linear elastic materials such as steel
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under small loads.

Since stress σ and strain ε are both symmetric from Eqs. (2.36) and (2.54), respectively,
there has to be a symmetry relation in the elastic constant C as

Cijkl = Cijlk and Cijkl = Cjikl . (2.81)

Equation (2.78) gives in components

Cijkl =
∂2Ψ

∂εij∂εkl
=

∂2Ψ

∂εkl∂εij
= Cklij (2.82)

from which follows that C has another symmetry, namely

Cijkl = Cklij . (2.83)

2.1.10 Elastic Materials: Elasticity, Hyperelasticity and Hypo-Elasticity
In the Secs. 2.1.8 and 2.1.9 the term ’elasticity’ has been used quite naturally. However,
elasticity can be defined in a finer way. A purely elastic material follows the HOOKE’s law,
Eq. (2.80), in a way that

σ = C : ε (2.84)

holds, see Sec. 2.1.9. Hence, the stress only depends linearly on the strains. This very simple
relation is not fulfilled by many materials. Therefore, a material is called hyperelastic if a
free energy can be found such that

σ|t⋆ =
∂Ψ

∂ε

∣∣∣∣
t⋆

. (2.85)

In other words, a material is hyperelastic if for every single point in time t⋆ the free en-
ergy may be defined right ahead. In this case, if Ψ = Ψ(ε(t)) is known the stress can be
calculated without any additional equations or relations. Of course, coming from this math-
ematical and physical potential, a non-linearity in the material reaction can be taken into
account which has a broader applicability than Eq. (2.84). The problem in this case is that
the closed formulation of the free energy for every point in time can be hardly found even
for simpler materials.
To circumvent the problem of a closed formulation for Ψ, it may be defined in dependence
of additional variables which change in time, too. So, if the free energy is not only a function
of strain but also of some problem specific internal variables called λ, additional equations
are necessary, namely evolution equations for λ. Then, the set of equations

σ =
∂Ψ(ε,λ, θ, . . . )

∂ε
λ̇ = g1(ε,λ, θ, . . . )
...

(2.86)

has to be solved for the entire solution of the material’s behavior. Although now more equa-
tions have to be found, the formulation of the additional equations is easier to execute than
finding the ’correct’ potential according to Eq. (2.85). Still, there are different ways of find-
ing these equations. This topic is discussed in Sec. 3.
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To close the classification of materials, it is mentioned that materials whose governing equa-
tions are stated in rate-form are termed hypo-elastic,

σ̇ = g2(ε̇, . . . ) . (2.87)

In contrast to hyperelasticity, Eq. (2.85), now the free energy is not used. Instead, by
integration of Eq. (2.87) the material reaction can be prescribed.
More detailed discussion on that may be found in [58].

2.1.11 Potential: Energy Minimization and Equilibrium Conditions
The free energy can be used to introduce the so-called internal potential. That is just

Πin :=

∫
Ω

Ψ(ε) dV . (2.88)

Then the internal potential measures the energy stored inside the material. Furthermore, a
so-called external potential can be defined. All internal and external forces which contribute
to the total energy of the material are collected in here. Thus, it follows

Πex := −
∫
Ω

f · u dV −
∫
∂Ω

t⋆ · u dA (2.89)

with the (prescribed) traction vectors t⋆ acting on the body’s surface. Since the total po-
tential as combination of the internal and the external potential is supposed to indicate only
the potential stored in the material, the external potential contributes with a negative sign,
similar to the definition of the free energy in Eq. (2.56). Consequently,

Π := Πin +Πex =

∫
Ω

Ψ(ε) dV −
∫
Ω

f · u dV −
∫
∂Ω

t⋆ · u dA . (2.90)

This potential can be used to find the displacement field u for a body under certain internal,
f , and external, t⋆, loads by minimizing it with respect to the displacements. This procedure
is based on the physical axiom that a system will always tend to a configuration which
minimizes its energy. Since the variable of Π (which are the displacements u) is a function
itself, the necessary condition for the minimization of Π is that its variation vanishes, so

δΠ =

∫
Ω

∂Ψ

∂ε
: δε dV −

∫
Ω

f · δu dV −
∫
∂Ω

t⋆ · δu dA
!
= 0 . (2.91)

The first part in Eq. (2.91) can be reformulated since the order of the derivative of u (which
gives the strain) and the derivation can be changed. Furthermore, the identity of Eq. (2.70)
allows to write in sum for the first integral∫

Ω

∂Ψ

∂ε
: δε dV =

∫
Ω

σ : ∇ (δu) dV . (2.92)

Partial integration of Eq. (2.92) gives∫
Ω

σ : ∇ (δu) dV =

∫
∂Ω

σ · n · δu dA−
∫
Ω

∇ · σ · δu dV . (2.93)

Inserting this result in Eq. (2.91) yields

−
∫
Ω

(∇ · σ + f) · δu dV +

∫
∂Ω

(σ · n− t⋆) · δu dA = 0 . (2.94)
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Since the integrals are independent at first glance and furthermore the variation of the dis-
placement δu may take arbitrary values, it must hold

∇ · σ + f = 0 ,x ∈ Ω (2.95)
σ · n− t⋆ = 0 ,x ∈ ∂Ωt . (2.96)

The approach of minimizing the potential consequently results in the equilibrium condition
for continua, Eq. (2.95), and gives furthermore the CAUCHY hypothesis, Eqs. (2.39) and
(2.96). On the other hand, the (unknown) displacements can be found through minimizing
Π under the constraints of prescribed displacements u⋆ on the boundary ∂Ωu. Thus,

u = argmin {Π(u) | u = u⋆ on ∂Ωu} . (2.97)

If the boundary conditions change in time, for each point in time, or better to say time step,
the minimization has to be executed.
This method will be applied to evaluate the material models derived in Sec. 4.2 for entire
bodies, see Sec. 5.

2.2 Inelastic Materials
The specific constitutive relation between stress and strain is obviously of great importance
for the engineering point of view. As the most simple possible relation, the HOOKE’s law
has been presented in Sec. 2.1.9. However, this linear relation does not hold for many ma-
terials, not only due to large deformation so that the introduced measure ’strain’ is not valid
anymore. In fact, in many materials changes in the physical properties occur during load-
ing (mechanical, thermal, electric, ...) which influence the macroscopic material behavior.
Some examples for these changes are described in the following Sec. 2.2.1. This work fo-
cuses on alloys so this section is restricted to metals. Since the aim is to model and simulate
shape memory alloys which belong to the class of materials with changing physical proper-
ties, a general overview of mechanical modeling of inelastic materials is given in Sec. 2.2.2
using the example of perfect plasticity. Although a different approach will be used later on,
perfect plasticity will be used as methodical reference.

2.2.1 Physical Properties of Inelastic Materials
Metals are composed of atoms forming, at least locally, periodic and structured patterns. An
example is presented in Fig. 2.8, [42]. This pattern is always a lattice for whose descrip-
tion different geometrical objects (cube, hexahedron, ...) are used. For further details see
Sec. 4.1.2. In reality this lattice is never perfect but inhibits certain forms of defects. These
can be inclusions, vacancies, grain boundaries where lattices of different orientations meet,
micro-cracks and others, see Fig. 2.9. All of them have significant influence on the mate-
rial behavior: at least when the number of defects increases it is easy to imagine that the
material reacts different than in the original configuration. Cyclic loading or stress greater
than a certain threshold stimulates the growth of defects until the specimen fails. Thus, the
current microstructure is of substantial importance from the engineering point of view. This
becomes evident in Fig. 2.10 where one famous material behavior is caught in a stress-strain
diagram: the plastic behavior of steel with hardening (non-linear part with positive slope)
and softening region (non-linear part with negative slope). After linear parts non-linear re-
gions follow which may be of quite different character. Whereas the stress-strain diagrams
reflect a rather global effect, the underlying reason are the processes which take place on the
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200 µm

Figure 2.8: Experimentally observed microstructure in steel, courtesy of [42]. Regions of
same orientation appear as continuous areas. These areas are single crystals and called in
this work grains.

Figure 2.9: Schematic plot of a microstructure. a: inclusion, b: vacancy, c: micro-crack, d:
grain boundary.
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Figure 2.10: Experimentally observed material behavior of a steel, courtesy of [42]

micro-mechanical level.
Similar to the aforementioned changes in microstructure which are permanent, some mate-
rials provide the possibility of reversible, elastic changes which offer completely different
application than ’regular’ materials as steel, for instance. One class of these ’smart’ materi-
als are shape memory alloys which are of main interest in this work. A detailed discussion
on the processes evolving in shape memory alloys will be given in Sec. 4.1.

2.2.2 Mechanical Modeling of Inelastic Materials
In Sec. 2.1.3 the displacement field denoted by u was introduced. This field is sufficient to
describe the ’macroscopic’ and isothermal state of a body and could be used for the linear
constitutive relation between stress and strain in the HOOKE’s law. As it was pointed out in
Sec. 2.2.1, there exists a huge variety of materials which do not follow this law. Therefore,
the displacement field as only variable cannot be enough to model inelastic and particularly
hypo-elastic materials, see Sec. 2.1.10. From the physical point of view, changes of the
micromechanical properties effect the macroscopic material behavior significantly. In order
to take this phenomenon into account during modeling, additional information is needed
which describes exactly these physical changes. Hence, problem dependent additional vari-
ables have to be used which describe the internal state of the material which are therefore
called internal variables. The most general and universal internal variable is the well known
entropy s which purpose is to provide information about the direction of time. For example,
the entropy can be used to describe the cooling process of a piece of heated metal in a cool
surrounding. Since the direction of heat flow (from the hot metal to the cool surrounding)
is not reversible in time, the entropy may be used to take exactly this phenomenon into
account. In contrast to the elastic specimen under mechanical load where a release of the
specimen will be accompanied by a return to the original zero displacement field, the heat
will not flow back to its source when the heating process is stopped. Thus, this irreversible
process of heating has a well defined and unique direction in time which is expressed by

ṡ ≥ 0 (2.98)

for closed systems. This equation is known as second law of thermodynamics, Sec. 2.1.7.
Similar to the internal variable ’entropy’ additional internal variables can be introduced in a
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way that they are able to provide the desired information.

The modeling of plasticity for instance can be carried out by defining an internal variable
which collects all effects causing a plastic deformation. These effects may be inclusions,
vacancies, micro-cracks and others which are synthesized in one additional variable, called
plastic strain and denoted by εpl. Since this work is restricted to small deformations, the
total strain is just the addition of its elastic and plastic part, thus

ε = εel + εpl

⇔ εel = ε− εpl . (2.99)

Obviously, the elastic free energy is only a function of the elastic part of the strain. Appli-
cation to the energy used in Sec. 2.1.9 gives

Ψ(ε) =
1

2
(ε− εpl) : C : (ε− εpl) (2.100)

and using the constitutive equation for stress yields

σ =
∂Ψ

∂ε
= C : (ε− εpl) . (2.101)

Hence, for a given strain ε the energy as well as the stress can be calculated if the plastic
part of the strain, εpl, is known. Until now, only the equations derived in Sec. 2.1.11 are
given which can be solved for the displacements u. From the displacements both strain and
stress can be estimated. As shown in that section, the equilibrium equation may be obtained
from the physical principle of energy minimization. Here, the additional variable εpl is in-
troduced which has to be determined and consequently equations are needed describing its
evolution.

As shown in Fig. 2.10, a steel under load first reacts linearly in the stress strain diagram.
If the total load is too small to leave that region (a value of app. 580 MPa in Fig. 2.10),
removing of the load causes the specimen to return to its original undeformed state. On the
other hand, if a certain threshold value (here 580 MPa) has been overcome the material be-
haves non-linearly. From the modeling point of view, in the linear part the simple HOOKE’s
law is completely sufficient to display the material reaction. Reaching the non-linear plastic
part the HOOKE’s law has to be extended according to the presented idea of introducing
the addition internal variable εpl. Thus, the introduction of a measure which distinguishes
between these two parts seems to be convenient. The most popular measure is a so-called
yield function denoted by Φ. This yield function is defined in a way that if Φ is smaller than
zero a modeling with the use of the linear HOOKE’s law is chosen, plastic behavior takes
place for Φ = 0. Positive values are not allowed and thus Φ equals zero indicates that a plas-
tic deformation takes place. In this case, a switch to the non-linear modeling is necessary
and an evolution of the plastic strains has to be regarded. In a numerical treatment testing
values for the plastic strain will cause positive values for Φ. Then, an update of the plastic
strains is executed until the yield function is zero again. Hence, for each state, irrelevant if
elastic or plastic deformation is taking place, the yield function has to be less or equal to
zero. Assuming that the yield function is a function of some variable P it may be defined as

Φ(P ) := f(P )− r2
!

≤ 0 (2.102)

with an appropriate function f(P ). The value of r has to be chosen such that the previously
mentioned threshold value for plastic behavior is mapped correctly. From the mathematical
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point of view the yield function defines a (hyper-)plane in the space of the variable P for
which the plastic strains have to be updated until the yield surface is reached again. For
the yield surface Φ = 0 holds true. Consequently, the derivative of Φ with respect to some
parameter a defined on the surface (⇒ P = P (a)) is

Φ′ =
∂f

∂P
:
∂P

∂a
!
= 0 . (2.103)

The derivative of P with respect to a is the tangent to the surface whereas ∂f/∂P =
∂Φ/∂P is its normal. Thus, for a given Φ(P ) the normal vector n to the function is obtained
by its gradient in the corresponding space

n = ∇P Φ =
∂Φ(P )

∂P

(2.102)
≡ ∂f(P )

∂P
. (2.104)

Back to the modeling of plasticity once an update of the load yields Φ > 0 with the internal
state (expressed by εpl) of the previous load state, the plastic state in the material will ac-
commodate to a state most closely to the initial state. This assumption is convenient since a
complete jump to a state without any connection to the previous one would cost infinite en-
ergy in the limit case. In the mathematical discretization during the numerical treatment the
shortest path between the point outside and onside the yield surface has to be chosen, Fig.
2.11. This shortest path is naturally given through a straight line going through the point

Figure 2.11: Schematic plot of a yield surface in the principle stress space. During numerical
discretization the plastic strains are updated with direction ∂Φ/∂P and norm ρ until the
yield surface is reached again.

outside the surface and having a direction which coincides with the normal to the yield sur-
face. Thus, the change of the plastic strains which is called rate or evolution is related to a
given yield function through

ε̇pl = ρ
∂Φ(P )

∂P
, (2.105)

where ρ is a scalar parameter which has to be estimated such that Φ(P ) = 0 holds again.
In Eq. (2.105) the derivative is equivalent to the normal in direction to the yield surface as
pointed out previously. Therefore, the direction in which the plastic strains may evolve is
completely determined by this normal for which the quantity ρ must not have any influence
on the direction. This can only be fulfilled if ρ is positive. Then and only then ρ measures
the rate of εpl consistently for which ρ is called consistency parameter. Obviously, ρ may
only have a value differently from zero if plastic processes evolve in the material and it has
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then to be chosen so that the indicator function Φ is zero again. These relations can be
caught by

ρ ≥ 0 , Φ ≤ 0 , ρΦ = 0 . (2.106)

The relations in Eq. (2.106) are called KUHN-TUCKER conditions after the KUHN-TUCKER

theorem known from the field of convex optimization. This theorem generalizes the usage
of LAGRANGE parameters when inequalities occur as side constraints.



Chapter 3

Principles for Evolution Equations

In Secs. 2.1.10 and 2.2.2 it has been pointed out that so-called evolution equations for the
additional internal variables which describe the inner state of the material are needed. As
an example the modeling of plasticity has been presented. There, a yield function has been
introduced in order to serve as indicator whether plastic deformation is taking place or not.
The internal variable plastic strain has then to be updated until the yield function again turns
to zero for each time step. The yield function consists of two parts: primarily, the threshold
value r which has to be overcome before plastic behavior can be assumed and secondly, the
function f(P ) which has to be chosen ’appropriately’. At that point mechanical modeling
has to be carried out by assuming f(P ) in a way that the experimental observations are
caught best.

In this section a different approach of modeling is presented where not the yield function
directly has to be assumed but a so-called dissipation potential. This different way, which
yields however same results, is based on potentials as the name indicates. The difference
between these two ways, yield function on the one hand, dissipation potential on the other
hand, is basically only the point of view, similar to finding equilibrium equations which
can be carried out through NEWTONean principles or through potentials, see Secs. 2.1.6
and 2.1.11. To prove that both ways give identical results for the governing equations, the
dissipation potential is introduced in the upcoming Sec. 3.1 using the example of plasticity
without, Sec. 3.1.1, and with constraints, Sec. 3.1.2. In Sec. 3.2 this concept is put on
a general basis and discussed from the thermodynamic point of view before in Sec. 3.3 a
comparable but thermodynamically even more convincing approach is presented.

3.1 Plasticity and Dissipation Potential

3.1.1 Simplest Approach for Plasticity
As presented in Sec. 2.2.2, the yield function Φ depends on some variable P . Through Eq.
(2.105),

ε̇pl = ρ
∂Φ(P )

∂P
, (3.1)

a relation between the yield function and the plastic strain rate ε̇pl is given. From various
other examples it is known that the use of a mathematical potential may provide different
positive aspects. One example for this tool has already been presented in Sec. 2.1.11.
Analogously, a potential L is now introduced in a way that its minimization condition
∂L/∂ε̇pl = 0 yields exactly the evolution equation presented in Eq. (3.1). One can eas-
ily imagine that the plastic strain rate and the variable P are not independent from each

29
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other. Thus, a re-formulation of the yield function Φ(P ) is necessary.
Differently to the application of certain yield functions Φ(P ) a so-called characteristic func-
tion, denoted by Σ(P ), may be used to serve as indicator whether elastic or plastic material
behavior takes place. This function is defined by

Σ(P ) :=

{
0 , Φ(P ) < 0

∞ , Φ(P ) ≥ 0
(3.2)

and exhibits the ’pure’ information about the material reaction. That means Σ(P ) is in-

Figure 3.1: Different approaches for yield functions Φ1, Φ2, and the characteristic function
Σ.

dependent from the exact choice of Φ(P ), see Fig. 3.1. A frequently used approach is
f(P ) = |P |a. For instance, the exponent may be chosen to a = 2 or can be chosen to any
other even number. Since this exponent does not have an influence on the resulting gov-
erning equations and furthermore the values of Φ(P ) outside its valid region (Φ(P ) > 0)
are not supposed to be taken into account, Σ(P ) is taken to change the mathematical space:
from a function depending on P now a function depending on the plastic strain rate is
searched for. In order to change the mathematical basis for description, a LEGENDRE trans-
formation of Σ(P ) is carried out by means of

J (ε̇pl) = sup
P

{
ε̇pl : P − Σ(P )

}
(3.2)
= sup

P

{
ε̇pl : P

∣∣ Φ(P ) < 0
}

. (3.3)

The supremum in Eq. (3.3) has to be found under the constraint Φ(P ) < 0. Similar to Eq.
(2.106) this constraint can be reformulated to −ρ Φ(P ) = 0 where ρ is a KUHN-TUCKER

parameter for the inequality in Eq. (2.102). Hence, a LAGRANGEan L⋆ is introduced which
serves as formulation for the entire optimization problem according to Eq. (3.3). This is

L⋆ = ε̇pl : P − ρ Φ(P )→ max
P

. (3.4)

The maximization condition of Eq. (3.4) gives

∂L⋆

∂P
= ε̇pl − ρ

∂Φ(P )

∂P
= 0 (3.5)
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from which follows according to the example above

ε̇pl = 2ρP . (3.6)

Now, this result is plugged into the approach for Φ(P ) which gives

Φ(P ) = |P |2 − r2
(3.6)
=

1

(2ρ)2
|ε̇pl|2 − r2

!
< 0 . (3.7)

Then, this yields
1

2ρ
<

r

|ε̇pl|
→

(
1

2ρ

)
max

=
r

|ε̇pl|
(3.8)

from which the final formula for the LEGENDRE transformation results as

J (ε̇pl) =
1

2ρ
|ε̇pl|2 = r|ε̇pl| . (3.9)

Now, it is necessary to focus on the variable P which has been introduced in Sec. 2.2.2 quite
arbitrarily. Obviously this variable has to be related to the internal variable since the value
P determines whether a plastic deformation occurs or not. Therefore, P can be identified
as thermodynamic force acting on the thermodynamic flux ε̇pl. Thus,

P = − ∂Ψ

∂εpl
. (3.10)

Introducing the above mentioned potential L as

L := −P : ε̇pl + r|ε̇pl| = Ψ̇ +∆→ stat
ε̇pl

(3.11)

with ∆ := r|ε̇pl| which is called dissipation functional, the minimization condition of Eq.
(3.11) exactly yields the evolution equation as in Eq. (3.1). Since the minimization of Eq.
(3.11) is carried out with respect to the internal variable’s rate, it is valid to use the rate of
the free energy Ψ̇. The entire LAGRANGEan L is termed as dissipation potential or some-
times as total power of the material which is in contrast to the thermodynamical definition
of power. However, L is rather a mechanical / mathematical tool for finding evolution equa-
tions for internal variables in an elegant way.
The great advantage of this approach is now that the evolution equation can be derived from
a potential which has several benefits: due to its minimization character it can be evaluated
without any order like it would be the case for a saddle point problem (first minimization,
then maximization or the other way round) - this point will be discussed more detailed later.
Another positive outcome is that constraints can be taken into account much more easily as
it is going to be presented.
Therefore, it has been shown that minimization of the dissipation potential is equivalent to
the introduction of a yield function in plasticity. The two approaches differ in the way a mod-
eling of a material can be carried out: The yield function requires an appropriate assumption
for yielding which can be quite difficult for some materials (if there are constraints) as it can
be seen in Sec. 4.2.2. On the other hand, the dissipation potential demands an ansatz for the
entropy production, ∆, which is in many cases easier to formulate. As usual, coming from a
potential, roughly speaking from an energetic point of view, any possible coupling between
variables is much more intuitive since it is a straight side effect of the model’s derivation.
For the entropy production, such coupling has not to be considered which makes this strat-
egy much more favorable than the ’direct’ way of formulating a yield function. A general
framework for material modeling based on the so-called principle of the minimum of the
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dissipation potential is given in Sec. 3.2.

If the way is taken from the opposite side, thus by minimizing Ψ̇+∆ with respect to ε̇pl

min
ε̇pl

{
Ψ̇ + ∆

}
= min

ε̇pl

{
∂Ψ

∂εpl
: ε̇pl + r |ε̇pl|

}
, (3.12)

the result is
∂Ψ

∂εpl
+ ∂∆ ∋ 0 . (3.13)

In Eq. (3.13) the derivative of ∆ = r|ε̇pl| is not uniquely defined for ε̇pl = 0. Therefore in
the differential inclusion the sub-differential for ∆ has to be found according to

∂∆ =

r
ε̇pl

|ε̇pl|
, ε̇pl ̸= 0

Ξ̇
∣∣∣ |Ξ̇| ≤ r , ε̇pl = 0

. (3.14)

With the usage ∂Ψ/∂ε̇pl = −P Eq. (3.13) can be reformulated to

ε̇pl =


|ε̇pl|
r︸︷︷︸
=ρ

P , ε̇pl ̸= 0

Ξ̇ | |Ξ̇| ≤ r , ε̇pl = 0

. (3.15)

Regarding Eq. (3.1) in combination with Eq. (3.7)

ε̇pl = ρ
∂Φ(P )

∂P
= 2ρP , (3.16)

it turns out that the evolution equations for the plastic strains, obtained on the one hand by
the minimum of the dissipation potential, Eq. (3.15), and on the other hand through the
normal of the yield function, Eq. (3.16), ’differ’ by a factor of 2. This artifact comes from
the choice of the yield function and is of no influence on the evolution equation’s function:
in both cases, the driving forces P determine the direction in which the plastic strains are
supposed to evolve. The pre-factor ρ and 2ρ, respectively, have to be determined in both
ways so that the yield function gives zero again. Hence, choosing the way of the minimum
of the dissipation potential, valid evolution equations result – for an easier execution it is
convenient to find the corresponding yield function via an associated LEGENDRE transfor-
mation in order to have an exit criteria at hand when the update of the plastic strains has
completed, Φ(P ) ≤ 0.
Similar derivations can be found in [18] and [31].

3.1.2 Plasticity with Constraints
In the previous Sec. 3.1.1, very basic plasticity has been introduced, indeed a model for
plasticity which probably is not used at all. This comes from the fact that this model does
not account for any constraints, particularly the constraint that plasticity is a volume pre-
serving process. Normally, this fact is taken into play through defining the yield function
not in terms of stress (stress is indeed the thermodynamical driving force for plastic strains
according to the constitutive relation Eq. (2.70), P = −∂Ψ/∂εpl = σ), but in terms of
the so-called stress deviator. That this method identically fulfills the constraint of volume
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preservation and additionally the principle of the minimum of the dissipation potential al-
lows to take this constraint into account very intuitively is shown in this section.

The constraint of volume preservation of the plastic strains can be brought into formulas
simply by

ε̇pl11 + ε̇pl22 + ε̇pl33 = ε̇plii = 0 , (3.17)

since only the parts of ε̇pl with two same indices contribute to a change of the element’s
volume. Now, the previously introduced dissipation potential

L = Ψ̇ +∆ (3.18)

has to be extended by the constraint according to Eq. (3.17) via usage of a LAGRANGE

parameter, denoted by κ. Thus, the LAGRANGEan of the problem reads

L = Ψ̇ + ∆+ κ ε̇plii =
∂Ψ

∂εpl
: ε̇pl +∆+ κ ε̇plii → min

ε̇pl
. (3.19)

Since a quasi-static behavior is expected – in contrast to a visco-plastic one – for the dissi-
pation the form

∆ = r|ε̇pl| (3.20)

is chosen. The minimizing condition of Eq. (3.19) gives for every component ε̇plij

∂L
∂ε̇plij

=
∂Ψ

∂εplij
+ ∂∆ij + κ δij ∋ 0 . (3.21)

Summing this result up over all three components with pairs of same indices the sub-
differential vanishes (see constraint) and it remains

∂Ψ

∂εplkk
+ 3κ = 0

⇔ κ = −1

3

∂Ψ

∂εplkk
=

1

3
Pkk . (3.22)

With the use of the sub-differential already applied in Sec. 3.1.1 and the expression for the
LAGRANGE parameter κ, Eq. (3.21) can be evaluated as

ε̇plij =


|ε̇pl|
r︸︷︷︸
=ρ

(
Pij − δij

1

3
Pkk

)
, ε̇pl ̸= 0

Ξ̇
∣∣∣ |Ξ̇| ≤ r , ε̇pl = 0

. (3.23)

The first line of Eq. (3.23) can be reformulated using the property P = −∂Ψ/∂εpl = σ to

ε̇plij = ρ

(
σij − δij

1

3
σkk

)
. (3.24)

This expression is well known: the second part in Eq. (3.24) (in matrix notation) 1
3
trσ I is

termed deviatoric part of the stresses which forces a material element to change its volume.
In plasticity, the most commonly used yield function is

Φ = |devσ|2 − r2 (3.25)
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with the deviator

devσ := σ − 1

3
I trσ (I : identity matrix). (3.26)

Exactly this yield function results from a LEGENDRE transformation of Eq. (3.19). The
only ’difference’ between both ways lies, again, in a factor of 2 in the evolution equations,

ε̇pl = 2ρ devσ , (3.27)

which, as pointed out, has no influence at all. Concluding, the principle of the minimum of
the dissipation potential has the great advantage that constraints, like in this case the volume
preservation due to normal plastic strains, can be included in a very elegant way.

3.2 Principle of the Minimum of the Dissipation Potential
As it was exemplarily shown in Sec. 3.1, the formulation of a so-called dissipation potential
and its minimization yield same results for the governing equations for material modeling.
This is quite clear since in the previous example the characteristic function of plasticity
and the dissipation functional could be interchanged through a LEGENDRE transformation
which is a bijective mapping. However, to lay down a more general basis for material mo-
deling using this principle, the general framework is discussed in this section.

The starting point for each modeling based on the minimum of the dissipation princi-
ple is the so-called LAGRANGEan , denoted by L. It consists of two parts, first the time
derivative of the free HELMHOLTZ energy Ψ̇ and second the dissipation or entropy pro-
duction ∆. The unit of this LAGRANGEan is obviously the same as a mechanical power.
However, it is not equivalent to the power. In contrast, from the thermodynamical point of
view two problems occur: first, the time derivative of the free energy is already defined to
be the mechanical power. Thus, the summation of Ψ̇ and ∆ can not be the power of the
system. Second, and this is maybe of even greater importance, according to the second law
of thermodynamics the dissipationD is already included in the power Ψ̇, or vice versa. Con-
cluding, an interpretation of the principle of the minimum of the dissipation potential is not
very straight forward from a thermodynamical point of view. However, as illustrated via the
example of plasticity, this principle can be interpreted generally as the LEGENDRE transfor-
mation of an associated characteristic function. Therefore, this principle has an equivalent
justification as the principle of yield functions for hyper-elastically or plastically behaving
materials. It is rather a tool to formulate material models in continuum mechanics. And
this tool provides everything required to find a closed model: the evolution equations for
internal variables and yield functions indicating whether elastic or hyper-elastic processes
evolve. As already mentioned, the usage of this tool allows to include constraints very easily.

The general framework of the principle of the minimum of the dissipation potential is
then as follows:

1. introduction of the problem’s LAGRANGEan⇔ stating approaches for Ψ and ∆

2. adding constraints

3. evaluation of the minimum condition

4. search for the constraints and the evolution equations
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5. introduction of the associated LEGENDRE transformation to find the yield function

The LAGRANGEan of the problem always consists of the free energy’s rate and the dissi-
pation. Obviously, both the free energy as well as the dissipation are material and problem
dependent. Thus, ’modeling’ has directly to perform when expressions for energy and dis-
sipation have to be found. An important question is then which of the variables the energy
depends on are dissipative and have therefore to be regarded in the formulation for the dis-
sipation functional.

L := Ψ̇(ε,λ) + ∆(λ̇) + cons→ min
λ̇

(3.28)

In a general context, the problem specific and dissipative variables are denoted by λ. Then,
the LAGRANGEan would look like in Eq. (3.28), cons indicates constraints which are added
via LAGRANGE or KUHN-TUCKER parameters, depending on whether the constraints are
equations or inequations. The explicit formulation of the energy depends, again, on the
current problem. For the dissipation itself two main formulations can be chosen - depending
on the expected material reaction. One possibility is the choice as done before: the norm of
the internal variable’s rate. For these cases it turns out that the resulting evolution equations
as well as the yield functions are of the expected type for quasi-static processes, thus for
processes which will accommodate from a given initial state to new boundary values in an
infinitesimal small amount of time. In terms of the dissipative variable λ it would be

∆(λ̇) := r1|λ̇| (3.29)

Another possibility to choose the general approach for the dissipation is an additive combi-
nation of the norm of the internal variables and the norm to a specific power differently to
one, for instance

∆(λ̇) := r1|λ̇|+ r2|λ̇|2 . (3.30)

This time, the resulting governing equations reflect viscous processes.
The time derivative of the free energy in Eq. (3.28) is always the product of the conjugated
thermodynamical forces (∂Ψ/∂λ =: −P ) and the associated thermodynamic fluxes (λ̇)
- the derivative of Ψ with respect to strains can be neglected since L is minimized with
respect to the rate of the internal variables. In general the internal variables λ may be
tensorial quantities. Thus, attention has to be payed which product is the appropriate one.
For the example of λ being a tensor of second order, the LAGRANGEan of Eq. (3.28) reads

L = −P : λ̇+∆(λ̇) + g → min
λ̇

, (3.31)

where g are all side constraints of the problem, see previous examples. For the first case
of quasi-statically behaving materials the minimization conditions for L yields evolution
equations of the form

−P + ∂∆(λ̇) + g′ ∋ 0 (3.32)

with ∂∆ as subdifferential and g′ as appropriate derivative of g with respect to λ̇. This
equation can be reformulated to

λ̇ = ρ (P + g′) (3.33)

with ρ = |λ̇|/r1 for λ̇ ̸= 0. The corresponding yield functions are like

Φ = (P + g′)
2 − r21

!

≤ 0 . (3.34)
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Then, the internal variable may be updated from the previous time step (·)n to the current
one (·)n+1 according to

λ̇ =
λn+1 − λn

∆t
=
|λn+1 − λn|

r1 ∆t
(P + g′)

⇔ λn+1 = λn +
|λn+1 − λn|

r1︸ ︷︷ ︸
=:ρ̃

(P + g′) (3.35)

where the parameter ρ̃ = ρ∆t (∆t is an arbitrary (positive) time increment) has to be
estimated such that Φ ≤ 0 from Eq. (3.34) holds again. This is synthesized in the KUHN-
TUCKER conditions

ρ ≥ 0 , Φ ≤ 0 , ρΦ = 0 . (3.36)

Choosing the driving forces from the current time step which is P n+1 or from the previous
one, P n, determines whether an EULER backward (n+1) or forward (n) scheme is used to
solve the evolution equation numerically.

For the second case where the dissipation consists of two parts, Eq. (3.30), the mini-
mization condition for L is

∂L
∂λ̇

= −P + r1
λ̇

|λ̇|
+ 2r2 λ̇+ g′ !

= 0 . (3.37)

From Eq. (3.37) the evolution equation for λ can be calculated to

λ̇ =
1

2r2

(
P − r1 sign λ̇+ g′

)
. (3.38)

The signs of the flux λ̇ and the force P have to be identical according to the second law of
thermodynamics, Eq. (2.74). Thus, it is possible to write

λ̇ =
1

2r2
(absP − r1 1+ g′) (3.39)

with

absP :=

|P11| · · · |P1l|
... . . . ...
|Pk1| · · · |Pkl|

 . (3.40)

In this case a yield function is not introduced: a viscous process will always evolve imme-
diately for which an indicator function like a yield function is not needed as in the previous
case (however, sometimes a yield function is defined anyways, [51]). Then, the process has
to be discretized directly in time by assuming a specific value for the time increment ∆t
which allows to update the internal variables with

λn+1 = λn +∆t λ̇ . (3.41)

Although this principle of the minimum of the dissipation potential can be used as tool
for mechanical modeling of classes of materials, in the upcoming section the principle of
maximum dissipation will be discussed which allows material modeling in a more consis-
tent way from the thermodynamical point of view and additionally the derivation of heat
conduction equations.



3.2. PRINCIPLE OF THE MINIMUM OF THE DISSIPATION POTENTIAL 37

Subsequently, a short excursion is presented from which method the principle of minimum
of the dissipation potential was derived. So, the great advantage of L being just a pure min-
imization problem is pointed out in detail.

The principle of the minimum of the dissipation potential is a continuation of a different
approach, presented in [38] or [39] for instance. The method used here is based on the
minimization of the total potential introduced in Sec. 2.1.11. If the description and thus the
modeling of a certain material requires more variables than just the displacements, the free
energy Ψ in the potential Π is exchanged by

Ψ→
∫ tn+1

tn

(
Ψ̇ + ∆

)
dt . (3.42)

Here, tn+1 is, again, the current time step and tn the previous one. Through this exchange
the path dependence of the material’s reaction can be taken into account: Ψ is a function of
strains and internal variables whose change contributes to the potential via the introduction
of ∆ = ∆(λ̇). Of course, the displacements may depend on time as well. Hence, the
potential reads

Π =

∫
Ω

∫ tn+1

tn

(
Ψ̇ + ∆

)
dt dV −

∫
Ω

∫ tn+1

tn
f · u̇ dt dV −

∫
∂Ω

∫ tn+1

tn
t⋆ · u̇ dt dA

=

∫
Ω

∫ tn+1

tn

(
Ψ̇ + ∆

)
dt dV − L(u, t) . (3.43)

In Eq. (3.43) the parts depending linearly on u are collected in L(u, t). Naturally, by
introduction of tn+1 and tn as specific points in time, a discretization in time is executed im-
plicitly which stands in contrast to the principle of the minimum of the dissipation potential.
The integration over time gives (for small time increments ∆t = tn+1 − tn)

Π =

∫
Ω

(
Ψ(εn+1,λn+1)−Ψ(εn,λn) + ∆(λn+1 − λn)

)
dV

−
∫
Ω

f ·
(
un+1 − un

)
dV −

∫
∂Ω

t⋆ ·
(
un+1 − un

)
dA

→ inf
un+1,λn+1

(3.44)

Seeking for the infimum of Π with respect to the current displacements and the current
variables yields the entire set of variables necessary to describe the material, quite similar
to the case without internal variables Eq. (2.97). For the infimum, the parts in Eq. (3.44)
which depend only on the previous time step are of no interest. Thus,{
un+1,λn+1

}
= arg inf

{∫
Ω

(
Ψ(εn+1,λn+1) + ∆

(
λn+1 − λn

))
dV − L

(
un+1, tn+1

)}
.

(3.45)
Obviously, L(u, t) does not depend on the internal variables for which a minimization of
the first part in Eq. (3.45) can be carried out first with respect to the current internal vari-
ables. Inserting the result into the minimization problem subsequently gives then the current
displacement field. This way allows to define the so-called condensed energy

Ψcon
(
εn+1,λn

)
:= inf

λn+1

{
Ψ
(
εn+1,λn+1

)
+∆

(
λn+1 − λn

)}
. (3.46)

from which the current internal variables can be found as

λn+1 = arg inf
{
Ψcon

(
εn+1,λn

)}
. (3.47)
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Analogously, the condensed potential is

Πcon
(
un+1,λn

)
:=

∫
Ω

Ψcon
(
εn+1,λn

)
dV − L

(
un+1, tn+1

)
(3.48)

and the current displacements un+1 are found from

un+1 = arg inf
{
Πcon

(
un+1,λn

) ∣∣ u = u⋆
(
tn+1

)
on Γu

}
. (3.49)

From Eq (3.47) the current internal variables can be calculated as

∂Ψ
(
εn+1,λn+1

)
∂λn+1︸ ︷︷ ︸
=−Pn+1

+
∂∆
(
λn+1 − λn

)
∂λn+1 ∋ 0 (3.50)

For the case ∆(λ̇) = r|λ̇|, Eq. (3.50) reads

P n+1 ∈ r sign
(
λn+1 − λn

)
⇒

∣∣P n+1
∣∣ := P n+1 : P n+1 ≤ r (3.51)

Eq. (3.51) can be evaluated as{
|P n+1| < r → λn+1 = λn

|P n+1| = r → λn+1 − λn = ρ̂P n+1
(3.52)

which is equivalent to Eq. (3.35), thus a discretized version of Eq. (3.33). In combina-
tion with the fact that the maximum value for the norm of P n+1 can only be r, Eq. (3.51)
serves as a kind of yield function (P n+1 = P n+1(λn+1)). Here, constraints have not been
considered yet. Of course, this result has to be plugged back into the condensed energy
and minimized with respect to the displacements afterwards. Due to the dependence of Eq.
(3.51) on the current displacements and due to the closed formulation over the entire body,
the missing (global) minimization of Πcon in order to finally arrive at un+1 and λn+1 is a
challenging task.
In contrast to this approach, the principle of the minimum of the dissipation potential gives
evolution equations as well as yield functions for which a global minimization over the in-
ternal variables is not necessary any more since the evolution equations can be evaluated
locally on the material point level. The costs for the resulting significantly reduced nu-
merical effort is that an assumption for the occurring microstructure has to be made. This
assumption influences the shape of the energy Ψ, see Sec. 4.2.1.

3.3 Principle of Maximum Dissipation
As it was shown in the previous Secs. 3.1 and 3.2 the so-called principle of the minimum of
the dissipation potential was mainly a LEGENDRE transformation of a characteristic func-
tion. Due to its bijectivity it is only a ’personal choice’ which way is taken. Though, from
a thermodynamical point of view the term ’dissipation’ is not unique since dissipation in
thermodynamics is already well defined as

D = −∂Ψ

∂λ
: λ̇ = P : λ̇ , (3.53)

Eq. (2.67) in the isothermal case. Then, it becomes obvious that the previously presented
principle of the minimum of the dissipation potential is not very straightforward from the
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thermodynamical point of view. Therefore, a different scheme is presented here, named
principle of maximum dissipation. This principle is based on works and ideas of ONSAGER

which can be found for example in [43]. In contrast to the principle of the minimum of the
dissipation potential, the principle of maximum dissipation is derived directly from thermo-
dynamics. In order to do so, the observation is used that systems always tend from one state
to another by losing the maximum amount of energy. This can be performed by considera-
tion of the thermodynamical identity, Eq. (2.67)

D =
1

θ

(
σ : ε̇− Ψ̇− s θ̇

)
+ q · ∇1

θ
. (3.54)

This identity was derived from the most general first and second laws of thermodynamics
which are valid for every material without any restrictions. Now, the key idea of a maximum
of the dissipation D is followed by the introduction of a LAGRANGEan as

L = D + β

{
D − 1

θ

(
σ : ε̇− Ψ̇− s θ̇

)
− q · ∇1

θ

}
+ cons→ max . (3.55)

Here, the LAGRANGEan consists of the dissipation which is going to be maximized under
several constraints: on the one hand the identity of Eq. (3.54) which comes into play through
a LAGRANGE parameter β and on the other hand additional problem dependent constraints
cons. Beside the formulation of the material specific free energy Ψ and the dissipation D,
the free variables have to be determined which maximize the dissipation. Without question,
some variables are always free and do always occur. These are the rate of strain, ε̇, the
rate of temperature, θ̇, and the heat flux, q. Additionally, the rate of the problem dependent
internal variables are quantities the dissipation may have to be maximized with respect to,
for example λ̇. Then, the maximization reads

L → max
ε̇,θ̇,q,λ̇

. (3.56)

Of course, there exists no ’thermodynamic rule’ or even ’law’ which demands the dissipation
to be maximized. However, when it comes to modeling, assumptions always have to be
made for instance that the amount of lost energy is always at its maximum. This is consistent
with thermodynamical observations. Furthermore going this way the first and the second law
of thermodynamics are fulfilled identically and no confusion between the tool dissipation
potential and the thermodynamical quantity dissipation occurs. On the other hand, it has
been shown in [18] that for some cases ∆ of the dissipation functional and D as dissipation
are identical if and only if the relation

∂D
∂vi

∂2D
∂vj∂vk

vk ≡
∂D
∂vj

∂2D
∂vi∂vk

vk (3.57)

holds, where v denotes the vector of the dissipative internal rates, [18]. This relation holds
true for instance when the dissipation is chosen to be the norm of all internal rates.
The driving forces, which can be calculated either from Eq. (3.33) (principle of the mini-
mum of the dissipation potential) or from

∂L
∂λ̇

= 0 (3.58)

(principle of maximum dissipation), are identical if and only if(
∂∆

∂λ̇
: λ̇

)(
∂2∆

∂λ̇
2 : λ̇

)
≡
(
λ̇ :

∂2∆

∂λ̇
2 : λ̇

)
∂∆

∂λ̇
(3.59)
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This can also be found in [18].
The advantage of the principle of maximum dissipation is now that additionally to the sim-
plified consideration of constraints it is more straight forward from the thermodynamical
point of view. Due to the identical fulfillment of both energy conservation and the second
law of thermodynamics (requiring that D : Rn×···×w 7→ R≥0), it is possible to take temper-
ature dependencies into account for which the maximization condition with respect to the
heat flux q serves.

In this work different models for shape memory alloys are derived by using the principle
of maximum dissipation. This method serves in conclusion best to fulfill the goals of this
work. First, the hard task of introducing ’correct’ or appropriate yield functions from which
the driving forces can be calculated is circumvent. Secondly, entire specimens made of
shape-memory alloys are going to be simulated. In this context the approach which serves
as historical basis for the minimum of the dissipation potential would cost too much com-
putational power. Additionally, thermodynamically more convincing approaches than the
minimum of the dissipation potential are supposed to be used. The principle of maximum
dissipation will serve deductively as methodical basis for all material models derived in this
work. Furthermore, the influence of thermo-mechanical coupling comes out immediately as
well. This is of great importance since the processes evolving in shape-memory alloys are
highly dependent on temperature.



Chapter 4

Smart Materials –
Simulation of Shape Memory Alloys

From the engineering point of view the evolution of new materials is strongly connected to
the industrial progress and provides a huge variety of applications. One class of new mate-
rials are functional materials. This group is characterized by its ability to adapt to specific
load states. A sub-group of functional materials are the so-called shape memory alloys.
These metals provide a huge variety of fascinating properties. This is why shape memory
alloys can be found in many industrial applications. Although not all processes evolving
in shape memory alloys are already completely understood, shape memory alloys can be
found for instance in medical devices, actuators and automotive engineering even today and
are expected to keep on capturing markets.

This work is intended to contribute to the understanding as well as the applicability of
shape memory alloys by developing new approaches for their numerical simulations. Thus,
in this section first an introduction to the physical properties of shape memory alloys is
given, both on a macro- and microscopic scale. The main focus of this section is laid on
the derivation of different material models for shape memory alloys based on the principle
of maximum dissipation. Because of the necessity to provide an approach for the free en-
ergy, a short excursion to energy convexification introduces the section of micromechanical
modeling of shape memory alloys.

4.1 Physical Properties of Shape Memory Alloys

4.1.1 Macroscopic Behavior of Shape Memory Alloys
Shape memory alloys have been discovered in 1951, [45]. The first alloy exhibiting the fas-
cinating properties which define shape memory alloys was Au47.5Cd. Later, in 1963 Nickel
Titanium (NiTi) was reported. Until today, NiTi is the most widely used shape memory
alloy. Therefore, although the models derived in this work are valid for all kind of shape
memory alloys, numerical results will be given for NiTi and a GAUSS point analysis for
CuAlNi, Secs. 6.3.1 and 6.3.2.

Fig. 4.1 shows a plot of a stress-strain diagram received from experimental observa-
tions, [59]. In the experiment a wire of NiTi has been clamped at both sides into a testing
machine which sets the wire under tension. The prescribed displacements as well as the
resulting force yield the mentioned stress-strain diagram. From Fig. 4.1 it can be seen that
the material reacts in a quite unexpected way: After reaching a certain threshold the force
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Figure 4.1: NiTi-wire under tension at 60◦ C, courtesy of [59].

remains constant which strongly reminds of plasticity, see Fig. 2.10. In contrast, increasing
the load, in this case the displacements, the force starts to grow again linearly but with a
different slope compared to the first part. During unloading, even more surprising, the force
decreases first linearly but then its curve turns again into that plateau-like branch as during
loading. The level of the plateau while unloading is less then during loading. After reaching
the linear branch of the elastic region again, the material behaves purely elastic once more.
During the entire process remarkable high strains occur. However, the material goes back
into its original state. Since no permanent deformations remain but the behavior still is not
purely elastic, this phenomenon is called pseudo-elasticity.
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Figure 4.2: NiTi-wire under tension at -40◦ C, simulation.

A completely different material response is given via the next Fig. 4.2. Here, the ma-
terial response is similar to the case of pseudo-elasticity in the beginning: first a linear
reaction, then a plateau and finally again a linear response. However, when the prescribed
deformation is being decreased the resulting force reduces linearly but without turning into
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that plateau branch like in the previous case. Instead, the resulting force decreases further
and further and even at zero force a remaining deformation is observed which reminds even
more of plasticity as the first experiment. Interestingly, a further reduction of the load yields
again a plateau but with negative resulting force. Despite the linear branch at the very begin-
ning, the entire material reaction is point symmetric to the origin of ordinates which induces
that the material does not return to its original, undeformed configuration.

Figure 4.3: Paper clip made of NiTi in its original configuration (a), after mechanical load-
ing and unloading with remaining deformations (b). Heating forces the material to restore
its original configuration (c - f ).

Fig. 4.3 shows a deformation of a wire made of exactly the same material as discussed
for Fig. 4.1 but with a different chemical composition. Here, an apparently durable defor-
mation is observed after removing the load (b). Fascinatingly, providing heat to the wire
yields the material to spontaneously returning to the undeformed configuration (c - f ). Due
to this remarkable effect in combination with the observations in the force-displacement di-
agram, Fig. 4.2, the material response is called pseudo-plastic.
Which effect arises is a matter of the specific alloy’s composition and temperature. At
relatively high temperatures the material behaves pseudo-elastically, at relatively low tem-
peratures pseudo-plasticity is observed. Hence, materials of this class can show, although
not at the same point in time, both features. Therefore, pseudo-plasticity is taken to call this
class of materials shape memory alloys which comes from the impression that these materi-
als can remember their original shape.
In both cases a hysteresis occurs in the stress-strain diagrams. Thus, both pseudo-elasticity
and pseudo-plasticity are dissipative.

4.1.2 Microscopic Behavior of Shape Memory Alloys
The remarkable effects of shape memory alloys have their origin in the specific atomistic
arrangement of this class of materials. Such as all alloys, shape memory alloys are com-
posed of metallic elements which are ordered in so-called crystallographic lattices. That
means that - at least locally - the atoms are grouped in a periodic way. So-called lattice
vectors are introduced to describe the atomistic structure. Due to its periodicity a lattice can
be represented via elementary cells which are the smallest pattern to describe the atomistic
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arrangement. From those elementary cells the entire lattice can be reconstructed. Figure 4.4
shows the atomic arrangement in NiTi at high (left) and low (right) temperatures. The high
temperature phase is characterized by a high symmetry and called austenite whereas the low
temperature phase splits in several variants which are all termed martensite. The different
martensitic variants can be converted into each other by means of rotation and mirroring
matrices, see A.3.

What happens to a two dimensional austenitic lattice under tension is drawn in Fig. 4.5

Figure 4.4: Atomic structure in NiTi. Austenite (left) and one variant of martensite (right).
Black atoms are Nickel, gray atoms are Titanium.

where a view on the x1-x2–plane is presented. Due to mass conservation the atoms do not
only move in x1 direction but also in (negative) x2 direction. The elementary cell is deform-
ing during this process from a cube to a rectangle. On the right hand side of the lattice a cube
which is rotated about 45◦ serves as representative pattern for the lattice structure. This cube
is changing its shape much more drastically during deformation, namely to a sheared and
shuffled parallelogram. Hence, it follows that there exist different possibilities to describe
the same lattice, namely the different martensitic variants.
The occurring martensite results from a diffusion-less solid to solid phase transformation, in
this presentation the transformation comes just from a mechanical load without any chem-
ical gradient. Of course, according to this introduction it would follow that an austenitic
lattice under load entirely would transform to martensite. Indeed, that is true only for per-
fect single crystals which cannot be found in reality. In contrast, due to imperfections in
the entire structure, e.g. dislocations or precipitates which cause a specific stress field, at
some point the nucleation of martensite is preferred. Starting from nucleation zones the
phase transition spreads through the specimen. During this evolution other effects due to the
underlying microstructure, such as grain boundaries, may influence the further expansion
of the transformation, but they do not inhibit phase transition as it is the case in most other
materials. The entire process is accompanied by a relaxation of strain.
Such a transformation of the lattice can not only be evolved due to mechanical loads as pre-
sented here, but also - and even more generally - due to temperature. The high temperature
phase is the austenite while martensite can be found at low temperatures with a transforma-
tion temperature between which a smooth transformation between austenite and martensite
takes place. Then, a mapping from the phase found at high temperature to the phase found
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Figure 4.5: x1-x2–plane of a crystal lattice.

at low temperature can be derived from the experimental measurements of the atomic (av-
erage) position. Outgoing from this mapping, which is actually a deformation, a strain is
derived which describes the transformation from austenite to martensite. Consistently, this
strain is called transformation strain and denoted by η.
From Fig. 4.5 it is obvious that a load in x2 direction would force the material to generate
martensite which is rotated about 90◦ around the x3 direction. Thus, the mapping η is not
unique but - depending on the specific material - there exists a certain number of martensitic
variants as already mentioned.
In material science it is more usual to identify the martensitic elementary cell according to
[46] or [60] which is obviously only a rotation of the reference coordinate system.

Forming martensite from an originally austenitic state due to mechanical loading is the
reason why shape memory alloys exhibit the property of pseudo-elasticity: the transforma-
tion from austenite to martensite is a diffusion-less and furthermore elastic process. There-
fore, shape memory alloys can sustain high strains elastically.
The scheme of forming martensite from austenite was very general, thus it is valid for all
metals. However, ordinary metals do not show the characteristics of shape memory alloys
because of the properties of η. In contrast to all other alloys the transformation strain for
shape memory alloys is (nearly) volume preserving. Thus, dislocations, grain boundaries
and others do not prevent the process of mechanically induced, reversible phase transfor-
mations which is normally the case. In regular metals a transformation between austenite
and martensite only occurs reversibly only due to change of temperatures, not because of
mechanical loads (TRIP-steels may transform form austenite to martensite, too, but this is
an irreversible and inelastic process).
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The property to undergo phase transformations from martensite to austenite due to tem-
perature as well, gives rise for the effect of pseudo-plasticity. Starting from a random crystal
all possible martensitic variants occur (this is called disordered martensite). Due to external
mechanical loading the different variants reorientate, see Fig. 4.6 upper part, and ordered
martensite arises. If the load is removed no orientation back to the disordered martensite

Figure 4.6: Schematic illustration of the one–way–effect which is called pseudo-plasticity.

occurs. This is since all martensitic variants exhibit the same chemical (thus temperature
dependent part of the free) energy. Hence, the body deforms elastically until the load van-
ishes but some deformations maintain. Application of heat to the system allows the material
to transform from ordered martensite to austenite, the high temperature phase, which is ac-
companied by a deformation back to the initial state (a body in the initial state as well as
in the austenitic state has the same shape because of the transformation strains being vol-
ume preserving). If the body is cooled down afterwards to the original temperature there is
not reason for the material to favor a specific martensitic configuration of variant. Thus, a
(nearly) uniform composition of all martensitic variants evolves which is exactly the initial
state of disordered martensite. Concluding, due to a martensite↔ martensite and a subse-
quent martensite→ austenite transformation the effect of pseudo-plasticity is accomplished
by a final austenite→ martensite transition. The entire process is illustrated in Fig. 4.6.

Naturally, in most cases the schemes presented here are too simplified. In reality the
most common case is that the material comes along with combinations of single crystals.
For the description of single crystals only one lattice orientation is sufficient. Compositions
of single crystals are called poly-crystals where every single crystal (which is termed as
grain in this context) has its own lattice coordinate system for identification. More detailed
discussion about shape memory alloys both from a material scientist’s and a mechanical
point of view can be found for instance in [45], [34], [46] and [6].
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4.2 Micromechanical Modeling of Shape Memory Alloys

4.2.1 Energy Convexification
In order to model materials it is necessary to make assumptions for both the free energy
and ∆ from the minimum of the dissipation potential or the dissipation D respectively,
depending on the principle which is chosen. In this section a rather short introduction to
convexification is given since this is necessary to find an appropriate approach for the free
energy.

Figure 4.7: Energies for austenite A (dashed) and two martensitic variants M1 and M2,
respectively. The transformation strain η as well as the chemical energy for austenite c0 are
indicated.

From the physical point of view, shape memory alloys are compositions of different
crystallographic phases whose volume fractions may change during mechanical and / or
thermal loading. For each phase an energy can be assumed according to

Ψj
i (ε

j
i ) =

1

2

(
εji − ηj

i

)
: Cj

i :
(
εji − ηj

i

)
+ ci(θ) , (4.1)

since in the linear case an additional decomposition of the total strain into the elastic part
and the transformation part is possible. Here, a distinction between the different phases i
has been made. The index i runs from 0, which refers to the austenitic phase, to n which is
the material dependent maximum number of different martensitic phases. Additionally, the
index j runs from 1 to N and indicates N orientations of grains a poly-crystal may consist
of. ci(θ) is the phase and temperature dependent chemical part of the energy. Each energy
has a minimum if the strain in the corresponding grains and phases coincides with same
experimentally determined transformation strain denoted by ηj

i . For the one dimensional
cases it is possible to draw the energies which is executed in Fig. 4.7.

In the landscape of energies the example of pseudo-elasticity is discussed and presented
in Fig. 4.8. Then, at zero strain only the austenite phase exists because this yields the min-
imum energy. Increasing the load (that means the strain) the austenitic energy is the lowest
one for which this path has to be followed (dashed branch). At a certain point (↓) both
energies (for austenite and martensite) yield the same value whereas for a further increased
strain the path of the martensitic energy would yield minimum energy. Thus, after reaching
this point (↓) spontaneously a phase transformation from the completely austenitic case to
a purely martensitic case evolves, according to Fig. 4.8. So, the black branch indicates
the combination of energies chosen during loading. Actually, this behavior is not observed
in reality. Indeed, a smooth transition from austenite to martensite takes place in experi-
ments. Hence, the path described in Fig. 4.8 cannot be the ’correct’ one. Therefore, in Fig.
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Figure 4.8: Multi-well potential. Dashed line refers to the austenite energy, gray lines refer
to martensite one and two, respectively. A: austenite, M1: martensite variant 1. Reversible
way: a ↔ b ↔ c ↔ d. The black line is the lowest energy path which coincides with a
spontaneous and complete phase transition at point ↓.

4.9 a different path is drawn while neglecting dissipation. The energies for austenite and
martensite remain the same. However, if now a mixture of the two pure phases is allowed
an obviously different path results (black curve again): it is smooth (differentiable at every
point) and consequently the transition which is described by that path is smooth as well.
This phenomenon reflects the experimental observations remarkably better. Furthermore,
from the mathematical point of view the black curve is a so-called convex hull. The indi-
vidual energies are convex, the combination of both according to Fig. 4.8 is obviously not.
Since for a modeling the entire energy for a material point has to be used this non-convex
hull would have been taken. This hull would have been used to find a microstructure which
minimizes exactly this hull. Then, there are several points where the criteria of minimum
energy hull does not yield unique solutions, see Fig. 4.8. Therefore, this idea could not be
applied here.
In contrast, the hull in Fig. 4.9 is indeed convex which is equivalent to a one-to-one relation
between strain and energy. This makes it possible to use the convex hull for a prediction of
microstructure.

The case of pseudo-plasticity is illustrated in Fig. 4.10, again without dissipation.
Pseudo-plasticity is observed when room temperature is too low for the high temperature
phase austenite at zero strains. Then, the energy for austenite (dashed curve, part a) lies
above the energy for martensite. Since all martensitic variants incorporate the same chemi-
cal energy at zero load, in the beginning there exists a uniform distribution of martensite (in
this case: M1 = 50%, M2 = 50%). By increasing the load the material undergoes a phase
transformation to martensite one at the expanse of martensite two. This process takes place
when the material behavior is described by the horizontal part of the convex energy (black
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Figure 4.9: Relaxed energy for pseudo-elastic shape-memory alloys (black curve). A:
austenite, M1: martensite variant 1, M2: martensite variant 2. Reversible way: a ↔ b ↔
c↔ d.

branch, a). When this part of the energy turns into the quadratic function, phase transfor-
mation is accomplished (b) and the material reacts in the following (c). During unloading,
that means removing the force, an apparently durable strain remains (d), equivalent to the
transformation strain. If now the temperature is changed, so heat is supplied to the sys-
tem, the energy of austenite becomes more and more favorable, in other words it is moved
downwards (d). When the temperature has overcome a certain threshold value, the energy
of austenite has a lower value than the energy of martensite. Hence, a transformation from
the martensite one variant, M1, which was due to the direction of load, to the pure austen-
ite phase takes place (e). During subsequent cooling, the energy of austenite moves back
upwards and the martensite becomes more favorable again. Thus, the material transforms
back into martensite and since there is no energetic reason, the evolving microstructure is
again the uniformly distributed martensite (f ).

In the multi-dimensional case (strain as full tensor) the convex hull cannot be drawn.
Additionally, it is not possible to postulate a single definition for convexity. However, the
derivation of one convex hull for the material point’s free energy is recalled here due to the
need of having approaches for energy and dissipation to apply the principle of maximum
dissipation introduced in Sec. 3.3.
Going back to the energy Ψj

i in Eq. (4.1), the rotation of the tensors can be executed simply
by using orthogonal matrices Qj for each randomly chosen direction j. Then, the rotated
transformation strains can be calculated according to

ηj
i = (Qj)T · ηi ·Qj (4.2)

and the entries of the rotated elastic constants with

Cj
i,opqr = Qj

soQ
j
tpQ

j
uqQ

j
vrCi,stuv . (4.3)
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Figure 4.10: Schematic energy plot for the case of pseudo-plasticity without dissipation.
M1: martensite variant one, M2: martensite variant two. Way: a → b → c → d → e →
f → a.
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As pointed out, a material point in a poly-crystal consists of a certain amount of grains in
which different crystallographic phases may be found, namely austenite and / or variants of
martensite. Therefore, it is convenient to introduce quantities which measure the amount of
a single phase in comparison to the mass of a single grain. This quantity is defined through

λj
i :=

mj
i

mj
=

∫
Ωj

i
ρd dV∫

Ωj ρd dV
=

∫
Ωj

i
dV∫

Ωj dV
(4.4)

with the material’s density ρd (although there are different phases the density remains the
same and constant) and mj

i and Ωj
i being the mass and the volume, respectively, of a phase

i in a grain j. From the definition of λj
i it is straight forward to call it volume fraction and

collect all single λj
i in a quantity λ. According to the definition of λj

i it is necessary to
introduce a measure for the volume fraction of grains in comparison to the entire material
point. This quantity is denoted by

ξj :=
mj

m
=

∫
Ωj ρd dV∫
Ω
ρd dV

=

∫
Ωj dV∫
Ω
dV

(4.5)

and all single entries are synthesized in ξ. With the volume fractions and the free energies
Ψj

i at hands, it is possible to postulate that the free energy of the entire material point is
the sum of the single free energies, weighted with their respective volume fractions. Then,
for fixed volume fractions the convex hull of the energy can be calculated by minimizing
the weighted sum of individual energies with respect to the strains in each phase and each
direction, εji . Obviously, this minimization is not constraint free. At least, the result for
the convex hull is supposed to yield a value for the energy when an average value for the
individual strains is given. This average value is the strain ε which is known from a more
smeared scale for which the constraint can be put into the minimization problem

Ψrel = inf
εji

{
N∑
j=1

n∑
i=0

ξjλj
iΨ

j
i (ε

j
i )

∣∣∣∣∣
N∑
j=1

n∑
i=0

ξjλj
iε

j
i = ε

}
. (4.6)

Due to this simplest possible constraint the relaxation problem in Eq. (4.6) is called convex-
ification. It is easy to imagine that the resulting energy hull gives the lower energy the less
constraints have to be fulfilled. Hence, the convexification gives the minimum energy and
serves as lower bound for the exact energy just like a REUSS energy. Details for that and
other convexification possibilities as well as the complete derivation can be found in [19],
[4] or [25]. General frameworks and other examples are found in [3], [8], [9] and [17]. Since
it is beyond the scope of this work, here only the result for Eq. (4.6) is presented which is

Ψrel =
1

2
(ε− ηeff) : Ceff : (ε− ηeff) + ceff(θ) (4.7)

with

ηeff =
N∑
j=1

n∑
i=0

ξjλj
iη

j
i , Ceff =

[
N∑
j=1

n∑
i=0

ξjλj
i

(
Cj

i

)−1

]−1

, ceff(θ) =
N∑
j=1

n∑
i=0

ξjλj
ici(θ) .

(4.8)
An energy bound including lamination can be found additionally in [17] and [14].

4.2.2 A basic Model
Outgoing from the previously presented principle of maximum dissipation, in this section
a basic model for poly-crystalline shape memory alloys is derived. The intention of the
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following approach is the modeling of the main characteristics of shape memory alloys
such as the dissipative (hysteresis) and anisotropic behavior in the stress-strain-diagram but
neglecting any coupling between phase transitions and temperature which means

θ = const ⇔ θ̇ = 0 (4.9)
and
q = 0 . (4.10)

Therefore, the entropy production or dissipation D, introduced in Sec. 2.1.7 is simplified to

D
(4.9),
(4.10)
=

1

θ

(
σ : ε̇− Ψ̇rel

)
. (4.11)

Following the principle of maximum dissipation the entropy production is maximized with
respect to its free variables which are, of course, problem dependent as the ansatz for D it-
self. The maximization has to be executed under certain constrains. Naturally, the identity in
Eq. (4.11) has to hold. Additionally the problem itself requires two constraints. First, mass
conservation has to be fulfilled. The same parameters as in Sec. 4.2.1 are used to identify
the specific volume fractions in grains with the same orientation. Thus, mass conservation,
Eq. (2.48), has to hold for every direction of grains assumed and is expressed here by∑

λ̇j
i = 0 ∀ j . (4.12)

Furthermore, negative volume fractions do not yield any physical plausibility which yields
the additional constraints

λj
i ≥ 0 ∀ i, j . (4.13)

For the constraints of mass conservation, Eq. (4.12), LAGRANGE parameters are introduced,
denoted by κj , whereas for the non-negativity, Eq. (4.13) KUHN-TUCKER parameters come
into play, γj

i ,

γj
i =

{
0 for λj

i > 0 ∨
(
λj
i = 0 ∧ λ̇j

i > 0
)

γ̄j
i > 0 else

. (4.14)

Using the free energy’s property Ψrel = Ψrel(ε,λ) the energy’s rate gives

Ψ̇rel =
∂Ψrel

∂ε
: ε̇+

∂Ψrel

∂λ
: λ̇ . (4.15)

Combination of the constraints for the volume fractions and the thermodynamical identity
Eq. (4.11) (LAGRANGE parameter β) in a maximum problem allows the introduction of a
LAGRANGE functional

L = L(ε̇, λ̇)

= D + β

{
D − 1

θ

(
σ : ε̇− ∂Ψrel

∂ε
: ε̇− ∂Ψrel

∂λ
: λ̇

)}
+

N∑
j=1

κj

n∑
i=0

λ̇j
i −

N∑
j=1

∑
i=0

γj
i λ̇

j
i → max

ε̇, λ̇
. (4.16)

The stationary conditions of the problem read

∂L
∂ε̇

= 0 ⇔ σ =
∂Ψrel

∂ε
(4.17)

∂L
∂λ̇

= 0 ⇔ ∂D
∂λ̇

(1 + β) +
β

θ

∂Ψrel

∂λ
+ κ− γ = 0, (4.18)
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with

κ = κjejei , γ = γj
i ejei , ei, ej : unit vectors . (4.19)

Regarding Eq. (4.17), it becomes obvious that the presented approach provides the consti-
tutive equation for stress immediately, Eq. (2.70).
In order to circumvent the need of finding explicit expressions for the KUHN-TUCKER pa-
rameters γj

i , the active set strategy is applied. Two sets are used for each direction j, one
passive set Bj for all phases which have zero volume fraction, and one active set Aj which
collects on the one hand all the phases with zero volume fraction but fulfilling the constraint
of positivity identically since they have a positive rate and on the other hand all the rest.
Thus,

Bj =
{
i | λj

i = 0
}

(4.20)

Aj =
{
i ∈ Bj | λ̇j

i > 0
}
∪
{
i /∈ Bj

}
(4.21)

Applying this strategy to every component of Eq. (4.18) and summing over all phases i
yields for every direction j

κj = −β

θ

1

nAj

∑
k∈Aj

∂Ψrel

∂λj
k

, (4.22)

where nAj denotes the number of active phases according to Eq. (4.21) in each direction.
Here, the property of D being a homogeneous function of rank one has been used. This
implies ∑

k∈Aj

∂D
∂λ̇j

k

= 0 . (4.23)

Now, Eq. (4.18) can be transformed to

1

θ

∂Ψrel

∂λ
= −1 + β

β

∂D
∂λ̇
− 1

β
κ+

1

β
γ (4.24)

and inserted in Eq. (4.11) which yields

D − 1 + β

β
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1

f
. (4.25)

The thermodynamical conjugated forces are denoted as

P = −∂Ψrel

∂λ
. (4.26)
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Using Eqs. (4.25) and (4.26), Eq. (4.18) turns
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(4.27)

The expression

P j
i −

1

nAj

∑
k∈Aj

P j
k = : devAjP j

i (4.28)

in Eq. (4.27) is termed active deviator.

The equations in Eq. (4.27) are sufficient to predict the evolution of phase fractions.
However, they can be evaluated first when a specific ansatz for the free energy Ψrel and the
entropy production D has been chosen. For the free energy the approach of [19], mentioned
in Sec. 4.2.1, is taken and for the dissipation the ansatz

D =
r

θ

√√√√ N∑
j=1

ξj
n∑

i=0

(
λ̇j
i

)2
=

r

θ
|λ̇| . (4.29)

is chosen. D is homogeneous in λ̇ of first oder. Therefore, derivation of D yields a subdif-
ferential as

∂D
∂λ̇j

i

=: ∂Dij =



rξj

θ

λ̇j
i

|λ̇|
, λ̇ ̸= 0

Ξ̇j
i

∣∣∣∣∣∣
√√√√ N∑

j=1

ξj
n∑

i=0

(
Ξ̇j
i

)2
≤ r

θ

 , λ̇ = 0 .

(4.30)

Now, the evolution equations can be analyzed since plugging ∂D/∂λ̇ from Eq. (4.30) into
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the first part of Eq. (4.27) gives

f

θ
devAjP j

i =
∂D
∂λ̇j

i

, i ∈ Aj

⇒


f

θ
devAjP j

i =
rξj

θ

λ̇j
i

|λ̇|
, i ∈ Aj , λ̇ ̸= 0√√√√ N∑

j=1

1

ξj

n∑
i=0

(
devAjP j

i

)2 ≤ r

θ
, i ∈ Aj , λ̇ = 0

(4.31)

where the first line of Eq. (4.31) gives

λ̇j
i =

f |λ̇|
rξj

devAjP j
i , i ∈ Aj , λ̇ ̸= 0 . (4.32)

The remaining factor f is determined as, Eq. (4.25),

f =
∂D
∂λ̇

: λ̇

D
=
D
D

= 1 . (4.33)

Analyzing Eq. (4.25) under consideration of Eq. (4.33) gives

1 + β

β
!
= 1 ⇒ β →∞ . (4.34)

Thus, for quasi-static problems, which is the current one as well, the constraints ’defini-
tion of entropy production’, Eq. (4.11), ’mass conservation’, Eq. (4.12), and ’positivity’,
Eq. (4.13), play the important roles (the LAGRANGE and KUHN-TUCKER parameters may
be redefined as κj → κj/β and γj

i → γj
i /β). Hence, the LAGRANGE functional can be

rewritten as

L = D − 1

θ

(
σ : ε̇− ∂Ψrel

∂ε
: ε̇− ∂Ψrel

∂λ
: λ̇

)
+ κ : λ̇− γ : λ̇ → max

ε̇,λ̇
. (4.35)

An analogous derivation to the previously presented gives

λ̇j
i =

|λ̇|
rξj

devAjP j
i , i ∈ Aj and λ̇ ̸= 0 . (4.36)

In order to evaluate the evolution equation as well as the yield function, the driving forces
remain to be calculated. Since they are well defined through

P j
i = −∂Ψrel(ε,λ)

∂λj
i

(4.37)

the thermodynamical driving forces can be found as

P j
i = ξj

[
ηj
i : Ceff : (ε− ηeff) +

1

2
(ε− ηeff) :

(
Ceff :

(
Cj

i

)−1
: Ceff

)
: (ε− ηeff)− ci

]
,

(4.38)
compare to [19]. Now, everything is derived which is needed to describe the evolution in
poly-crystalline shape memory alloys. Furthermore the inclusion of hysteresis and tension-
compression asymmetry was reported.
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A model which provides completely same results was presented in [19], a continuation
of the model in [20] and its analysis in [21]. In contrast to the approach based on the princi-
ple of maximum dissipation which was presented here, in [19] the principle of the minimum
of the dissipation potential was used. As explained in [18] both principles yield the same
result, under the consideration that the dissipation D shows certain properties, see Sec. 3.3.
The comparison between material point evaluation of the model with experimental observa-
tions showed good agreement, [24].

The presented equations completely describe the evolution of the internal variables.
Thus, the model in its current state could be implemented into a proper solution scheme.
However, for further mathematical simplification a LEGENDRE transformation of the vari-
ational problem in Eq. (4.16) is executed. This idea is straight forward due to the origin
of the principle of the minimum of the dissipation potential which was derived through a
LEGENDRE transformation of the original problem formulation as explained in Sec. 3.2.

The LEGENDRE transformation of Eq. (4.16) is

J (P ) = sup
λ̇

{
1

θ
P : λ̇−D(λ̇)

∣∣∣∣ (4.11), (4.12), (4.13)}

= sup
λ̇

 |λ̇|θ r

(
N∑
j=1

1

ξj

n∑
i=0

(
devAjP j

i

)2 − r2

)
︸ ︷︷ ︸

∣∣∣∣∣∣∣ A
 . (4.39)

=: Φ(P ) ≤ 0

The function Φ(P ) fulfills a similar purpose as yield functions in classical plasticity. The
rate of volume fractions may take every arbitrary value. Hence, in order to keep J bounded,
Φ has to be less or equal zero. In combination with Eq. (4.31) where the active deviator
plays the role of the stress deviator in plasticity showing the direction normal to the yield
surface, the factor |λ̇|/r =: ρ is interpreted as step size which is needed to reach again the
yield surface characterized by Φ(P ). Thus, the fraction is denoted from now as ρ which
results in the entire set of equations

λ̇j
i =

ρ

ξj
[
devAjP j

i

]
Aj (4.40)

with the KUHN-TUCKER conditions

ρ ≥ 0 , Φ ≤ 0 , ρΦ = 0 (4.41)

and the consistency condition

devAjP j
i ≤ 0 for i /∈ Aj (4.42)

from the second part in Eq. (4.27).
An evaluation of the model on the material point level may be found in [19] and [25] and a
comparison to experiments in [24].

This work focuses on the simulation of entire specimens made of shape memory alloys.
Therefore, the model is scaled on the finite element level, see Sec. 5, and numerical results
are presented and discussed in Sec. 6. It turns out that the model, although providing
good results on the material point level, is not able to display the material behavior on the
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specimen level. For further details see Sec. 6.1. Hence, further extensions of the model are
necessary. In Sec. 4.2.3 a modified model is presented taking into account different energy
costs of phase nucleation and evolution. This model is still limited to the isothermal case.
A fully thermo-mechanically coupled model is presented afterwards in Sec. 4.2.4.

4.2.3 An extended Model
Due to the insufficient results of the basic model in the simulation of entire specimens a
modification of the model has to be carried out. As discussed in detail in Sec. 6.1, the basic
model predicts a homogeneous phase transformation over the specimen. This does not coin-
cide with experimental results, [48], and gives a hint that the entropy production for which
always an ansatz has to be made is not taking into account sufficiently enough the physical
behavior. Equivalently spoken, energy costs caused by phase transitions are not mapped cor-
rectly by the current approach forD if the transformations are not only evolving over time or
load – as it was the case for the material point analyses in [19] – but also evolving over space.

As it was stated in Sec. 4.1.2, the different crystallographic phases of shape memory
alloys can be classified in austenite and martensite. They are coupled via a shear and shuffle
relation. Obviously, there exists an energetic difference between two cases: case one is
when a martensitic phase wants to nucleate in a purely austenitic lattice. Case two is when
a certain amount of martensite has already nucleated and only wants to grow. Then, it is
quite clear that the energy barriers which have to be overcome in order to transform the
material from one phase to another have to be different. If there is already a certain amount
of martensitic ’interface’ from which a further phase transition can evolve the energetic cost
and thus the dissipated energy is lower. Hence, the approach for the entropy production
has to take that phenomenon into account by having a state or phase dependent dissipation
coefficient. In order to do so, the average amount of austenite at one specific material point
is denoted by |λ0| and calculated by

|λ0| :=
N∑
j=1

ξjλj
0 . (4.43)

Then, the approach for the entropy production can be modified according to

D =
r(|λ0|)

θ

√√√√ N∑
j=1

ξj
n∑

i=0

(
λ̇j
i

)2
=

r(|λ0|)
θ
|λ̇| . (4.44)

Applying this ansatz for the entropy production to the principle of maximum dissipation,
analogous equations to the basic model can be found. The main difference is the modified
yield function. The set of equations is

λ̇j
i =

ρ

ξj
[
devAjP j

i

]
Aj (4.45)

as evolution equations for the crystallographic phases and

Φ =
N∑
j=1

1

ξj

n∑
i=0

(
devAjP j

i

)2 − r2(|λ0|) (4.46)

as yield function with the state dependent ’yield limit’ r(|λ0|) for which an appropriate
ansatz has to be made. Again, the KUHN-TUCKER conditions

ρ ≥ 0 , Φ ≤ 0 , ρΦ = 0 (4.47)
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together with the consistency conditions

devAjP j
i ≤ 0 for i /∈ Aj (4.48)

have to hold. Numerical results for this model are given and discussed in detail in Sec. 6.2.
It is obvious that the modification of the basic model yields the desired results as localized
transformations. However, due to the softening character of the resulting yield function the
results are mesh dependent. In order to circumvent that problem, a method presented in [10]
and [11] is applied here.

In order to solve the problem of mesh dependent results a strategy presented in [11]
for damage models with softening character is adapted for the case of simulations of shape
memory alloys. The internal variable, damage variable in [11], volume fractions λ in this
work, is boosted by the specific approaches to evolve where it has nucleated. Although the
internal variables at different GAUSS points are coupled through the displacement field in a
finite element implementation this evolution may proceed very localized. Due to the cou-
pling between displacements and internal variables the effect of boosting locally limited is
enhanced and since the displacements themselves are only an approximation and directly
solved only at the nodes, the discretization over space, realized by the meshing, influences
the phenomenon of localization (→ mesh dependence). This may occur since the formu-
lation of the problem does not take into account any space related gradient of the internal
variables. As presented in Sec. 5.1, a finite element calculation in mechanics is equivalent
to the minimization of the free energy Ψrel. Hence, it seems very convenient to modify
the potential provided to the calculation in a way that the gradient of the internal variables
contributes to the free energy. This can be carried out by introducing an additional space
dependent field variable termed as φ which is coupled with the locally defined volume frac-
tions. Since an average information is sufficient and furthermore the average amount of
austenite is the variable the softening dissipation coefficient r depends on, φ will be coupled
with |λ0|. Due to the associated shift of the information carried by the internal variables
on the GAUSS point level to the space dependent level of φ, penalizing the gradient of the
field function will indirectly penalize the gradient of the internal variables. Therefore, the
localized transformation can be retained but detached from the discretizing finite element
mesh. So, the total energy is introduced as

Ψtot(ε,λ, |λ0|, φ) := Ψrel(ε,λ) +
βφ

2
(φ+ 1− |λ0|)2︸ ︷︷ ︸

coupling

+
cφ
2
|∇φ|2︸ ︷︷ ︸

penalization

(4.49)

with some at first glance numerical parameters βφ and cφ. As shown in [11] the parameter
βφ does not have any influence on the solution and just has to be positive. The second
parameter cφ in contrast has direct physical meaning: increasing the parameter, and thus
penalizing the gradient more strongly, results in the limit in the homogeneous transformation
as for the basic model. Decreasing the parameter on the other hand causes a more and more
localized behavior and yields in the limit to the mesh dependent results (cφ → 0). Thus, that
parameter may be interpreted as ’averaged interface or surface energy’. The corresponding
LAGRANGE functional in this case, analogous to Eq. (4.35), is

L = D − 1

θ

(
σ : ε̇− ∂Ψtot

∂ε
: ε̇− ∂Ψtot

∂λ
: λ̇

)
+ κ : λ̇− γ : λ̇→ max

ε̇,λ̇
, (4.50)

where κ and γ are again LAGRANGE and KUHN-TUCKER parameters respectively to fulfill
the constraints of mass conservation and positivity. The maximization conditions and a
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subsequent LEGENDRE transformation of the dissipation D yield same results as for the
not-regularized extended model, namely

λ̇j
i = ρ

[
devAjP j

i

]
Aj (4.51)

and

Φ =
N∑
j=1

1

ξj

n∑
i=0

(
devAjP j

i

)2 − r2(|λ0|) (4.52)

with
ρ ≥ 0 , Φ ≤ 0 , ρΦ = 0 (4.53)

and
devAjP j

i ≤ 0 for i /∈ Aj . (4.54)

In contrast to the basic model, now the thermodynamic driving forces are

P j
i = − dΨtot(ε,λ, |λ0|, φ)

dλj
i

= ξj
[
ηji : Ceff : (ε− ηeff) +

1

2
(ε− ηeff) :

(
Ceff :

(
Cj

i

)−1
: Ceff

)
: (ε− ηeff)− ci

]
+βφ ξ

j (φ+ 1− |λ0|) δ0i︸ ︷︷ ︸
⋆

. (4.55)

Thus, the value of the field function or better to say the deviation between φ and the average
amount of austenite has a direct influence on the evolution of the volume fractions through
the part (⋆). Via this approach, the volume fractions being internal or equivalently GAUSS

point quantities are shifted from the GAUSS point level to a field level.

Missing is an approach for the dissipation coefficient r. To postulate an appropriate
ansatz first imagine a crystal of pure austenite. Now, an applied load forces the atoms to
leave the austenitic state and transform to martensite, Fig. 4.11. This process does not affect
the entire crystal immediately but only a certain amount of mass will transform which is
denoted by its volume fraction. Since the evolution of martensite will be easier to perform
compared to the nucleation of martensite the energy costs vary between these states. The
nucleation will cost more energy compared to the evolution of martensite. Thus, the entropy
produced will be more during nucleation and less during evolution.
Now, imagine a completely transformed crystal for which the applied load is reduced again.
Obviously, similar effects are to be expected. The creation of the first austenite costs more
energy and deductively produces more entropy compared to the austenite which is mani-
fested later on. Therefore the argumentation remains the same but the energy costs depend
on the evolution direction the material favors. This direction is naturally determined by the
thermodynamical driving forces, P . In order to take the constraints into account it is neces-
sary to use the sign of the rate of volume fractions instead of the ones of the driving forces.
If now an entropy production is a linear function of the average amount of austenite |λ0|, it
changes its slope depending on the sign of (|λ0|)˙. Thus, an ansatz according to

r
(
|λ0|, sign (|λ0|)˙

)
=


rAs + (rAf

− rAs)(1− |λ0|) , sign (|λ0|)˙ < 0

min{rAs , rMf
} , sign (|λ0|)˙ = 0

rMs + (rMf
− rMs)|λ0| , sign (|λ0|)˙ > 0

(4.56)
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Figure 4.11: Idealization of a poly-crystal with individual grain orientations. Under load in
different grains with preferred orientation a specific amount of martensite evolves. Black
indicates martensite, gray is austenite. Filled volume in the schematic unit cell in the left
corner shows the average amount of transformed austenite in the entire material point (=
GAUSS point).

with rAs , rAf
, rMs , rMf

as dissipation parameters for start and finish of austenite and marten-
site, respectively, is chosen. sign (|λ0|)˙ terms the average sign of the driving force for
austenite calculated by

sign (|λ0|)˙ =
1

nA

∑
k∈A

sign λ̇k
0 , (4.57)

where nA is the total number of active austenitic phases in the entire material point. is the
The finite element implementation scheme is given in Sec. 5.2 and numerical results as
well as their discussion can be found in Sec. 6.2. This extended model provides far better
results compared to the basic model since now the localized transformation behavior known
from experiments is caught in a mesh independent manner. However, this model still only
allows the simulation of pseudo-elastic shape memory alloys which additionally may only
be loaded very slowly. This is not caused mainly by the neglect of inertial forces but due
to the missing influence of temperature. As it will be pointed out in the upcoming Sec.
6.3, the temperature distribution is more than just an additional information. Indeed, due
to the also temperature driven phase transformations in shape memory alloys, there exists
an important coupling between mechanical loading and temperature which influences the
phase transitions. The corresponding material model for the numerical results in Sec. 6.3 is
presented in Sec. 4.2.4.

4.2.4 A thermo-mechanically coupled Model

In order to take effects due to temperature and heat into account as well, the thermodynam-
ical identity of Eq. (2.67) for the entropy production is now taken in its complete form
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as
D =

1

θ

(
σ : ε̇− Ψ̇− s θ̇

)
+ q · ∇1

θ
. (4.58)

Again, the principle of maximum dissipation is applied for which a LAGRANGE functional
L is introduced. This functional takes into account the constraints of mass conservation
and positivity as in the cases before. In contrast to those, the LAGRANGE functional now
depends on more free variables which are rate of strain, ε̇, and volume fractions, λ̇ as before
and additionally rate of temperature, θ̇, and heat flux, q. This leads to

L = D − 1

θ

(
σ : ε̇− Ψ̇− s θ̇

)
+ q · ∇1

θ
+ κ : λ̇− γ : λ̇→ max

ε̇, λ̇, θ̇, q
. (4.59)

Modified to both models presented before, the free energy is now temperature dependent to
leave the isothermal case. Thus, the time derivative of the free energy Ψ gives

Ψ̇ =
∂Ψ

∂ε
: ε̇+

∂Ψ

∂λ
: λ̇+

∂Ψ

∂θ
θ̇ . (4.60)

Inserting the identity of Eq. (4.60) into the LAGRANGE function in Eq. (4.59) allows to find
its stationary point by setting the derivatives of L with respect to its free variables to zero.
So,

∂L
∂ε̇

= 0 ⇔ σ =
∂Ψ

∂ε
, (4.61)

∂L
∂λ̇

= 0 ⇔ ∂D
∂λ̇

+
1

θ

∂Ψ

∂λ
+ κ− γ = 0 , (4.62)

∂L
∂θ̇

= 0 ⇔ s = −∂Ψ

∂θ
, (4.63)

∂L
∂q

= 0 ⇔ ∂D
∂q
−∇1

θ
= 0 . (4.64)

Additionally to the constitutive equation for stress, Eq. (4.61), the principle of maximum
dissipation provides the constitutive equation for entropy s as well, Eq. (4.63).
Analogously to the basic model, the evolution equations can be determined from Eq. (4.62)
which gives again devAjP j

i =
∂D
∂λ̇j

i

, i ∈ Aj

devAjP j
i = −γj

i ≤ 0 , i ̸∈ Aj

(4.65)

with the active deviator
devAjP j

i := P j
i −

1

nAj

∑
k∈Aj

P j
k . (4.66)

The driving forces can be calculated as

P j
i = − dΨtot(ε,λ, |λ0|, φ, θ)

dλj
i

= ξj
[
ηji : Ceff : (ε− ηeff) +

1

2
(ε− ηeff) :

(
Ceff :

(
Cj

i

)−1
: Ceff

)
: (ε− ηeff)− ci(θ)

]
+βφ ξ

j (φ+ 1− |λ0|) δ0i . (4.67)

where the same energy as for the extended model has been used (Ψ = Ψtot), but now with
temperature dependent chemical parts ci = ci(θ).
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Until now, there is no difference between the previous models and the current, thermo-
mechanically coupled one. Again, assumptions for the energy and the entropy production
have to be made. For the energy, the relaxed energy Ψrel is used which now depends on the
temperature as well. Thus,

Ψrel =
1

2
(ε− ηeff) : Ceff : (ε− ηeff) + ceff(θ) (4.68)

where for the chemical part the approach of [28] is followed. This is

ci(θ) = cθ (θ − θR) + cθ θ log

(
θ

θR

)
+ ai − bi θ (4.69)

with phase dependent constants ai and bi, the heat capacity cθ and a reference temperature
θR.
Furthermore, the entropy production now does not only depend on the rate of the volume
fractions but additionally on the heat flux q. Hence, the ansatz

D =
r
(
|λ0|, sign (|λ0|)˙

)
θ

√√√√ N∑
j=1

ξj
n∑

i=0

(
λ̇j
i

)2
+

αθ

2
|q|2

=
r
(
|λ0|, sign (|λ0|)˙

)
θ

|λ̇|+ αθ

2
|q|2 (4.70)

with some parameter αθ is used.
Similar to previous calculations, again a LEGENDRE transformation of the LAGRANGE

functional L is executed. This yields

J (P , q) = sup
λ̇

{
1

θ
P : λ̇−D(λ, q)

∣∣∣∣ (4.12) , (4.13) , (4.58)}

= sup
λ

 |λ0|
θ r

(
N∑
j=1

1

ξj

n∑
i=0

(
devAjP j

i

)2 − r2

)
︸ ︷︷ ︸

∣∣∣∣∣∣∣ A
− αθ

2
|q|2 − q · ∇1

θ
.

=: Φ ≤ 0 (4.71)

So, the yield function remains the same as before as well.

Temperature is now a variable. Therefore, an equation for the temperature is searched
for. In order to do so, energy conservation is regarded once more, Eq. (2.62), which is

Ė = Ψ̇ + ṡ θ + s θ̇ = σ : ε̇−∇ · q

⇔ ∂Ψ

∂ε︸︷︷︸
(4.61)
= σ

: ε̇+
∂Ψ

∂λ︸︷︷︸
(4.37)
= −P

: λ̇+
∂Ψ

∂θ︸︷︷︸
(4.63)
= −s

θ̇ + ṡ θ + s θ̇ = σ : ε̇−∇ · q

⇔ −P : λ̇+ ṡ θ = −∇ · q . (4.72)

In Eq. (4.72) all quantities are already determined except the rate of entropy ṡ. Hence, the
constitutive equation for entropy, Eq. (4.63), is used together with the ansatz for energy,
Eqs. (4.68) and (4.69). This allows to calculate

s = −∂Ψ

∂θ
= 2cθ + cθ log

(
θ

θR

)
+

N∑
j=1

n∑
i=0

ξj λj
i bi (4.73)
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and following

ṡ = cθ
θ̇

θ
+

N∑
j=1

n∑
i=0

ξjλ̇j
i bi . (4.74)

Inserting Eq. (4.74) into Eq. (4.72) yields

−P : λ̇+ cθ θ̇ + θ

N∑
j=1

n∑
i=0

ξj λ̇j
i bi = −∇ · q

⇔ cθ θ̇ = P : λ̇− θ
N∑
j=1

n∑
i=0

ξj λ̇j
i bi −∇ · q

(4.64)⇔ cθ θ̇ = P : λ̇− θ
N∑
j=1

n∑
i=0

ξj λ̇j
i bi −∇ ·

(
1

αθ

∇1

θ

)
.

(4.75)

Finally, together with the approach for the entropy production in Eq. (4.70) the evolution
equations can be derived from Eq. (4.65) which provides in combination with Eqs. (4.71)
and (4.75) the entire set of governing equations as

λ̇j
i =

ρ

ξj
[
devAjP j

i

]
Aj (4.76)

cθ θ̇ = P : λ̇− θ
N∑
j=1

n∑
i=0

ξj λ̇j
i bi −∇ ·

(
1

αθ

∇1

θ

)
(4.77)

with the KUHN-TUCKER conditions

ρ ≥ 0 , Φ ≤ 0 , ρΦ = 0 (4.78)

and the consistency condition

devAjP j
i ≤ 0 , i ̸∈ Aj . (4.79)

Eq. (4.77) is the heat conduction equation for this problem. It can be seen that it has quite
a standard form – except that not the gradient of the temperature itself occurs but the gra-
dient of the temperature’s inverse. This different ’scaling’ of the differences in temperature
over space is accompanied with a negative sign compared to more regular heat conduction
equations. However, without any assumptions for the coupling between phase transforma-
tions and heat production the coupling comes out automatically. This emphasizes the great
advantage of the principle of maximum dissipation compared to the approach of defining a
yield function. In that case, not only the yield function has to be assumed but also the terms
for internal heat sources due to phase transformation. To find a stringent relation between
both is a much more difficult task than just assuming the entropy production which has been
carried out without any coupling.

The temperature is driven by the phase transformations while the evolution of the crys-
tallographic phases is influenced by the temperature since the driving forces are now directly
depending on the temperature through the chemical part in it.
The governing equations are implemented in a finite element scheme, Sec. 5.2, and numer-
ical results are discussed in Sec. 6.3.



64
CHAPTER 4. SMART MATERIALS –

SIMULATION OF SHAPE MEMORY ALLOYS

4.3 Phenomenological Modeling of Shape Memory Alloys
The derived models are not only compared to each other in Sec. 6 but furthermore the mod-
els’ results are supposed to be evaluated in a broader framework. Therefore, a comparison
to the phenomenological material model for shape memory alloys of Auricchio and Taylor,
[2], is carried out. Since the results are obtained using the program ABAQUS, a very brief
review of the model is given in its ABAQUS version [1].

In this model, there is no explicit distinction between the different martensitic variants
nor grains. Rather there is a parameter for the volume fraction of austenite, indicated by γA,
and for martensite it is γM. In order to maintain mass conservation,

γA + γM = 1 (4.80)

has to hold. To distinguish between elastic behavior and phase transformation a yield func-
tion is introduced as

Φ̃ := q̃ + ϑ trσ (4.81)

with

q̃ :=

√√√√ 3∑
i,j

σ2
ij . (4.82)

The parameter ϑ is used to include tension-compression asymmetry. It is calculated accord-
ing to

ϑ :=
σAS
c − σAS

t

σAS
c + σAS

t

(4.83)

where σAS
c and σAS

t are the plateau stresses at the beginning of a pseudo-elastic phase trans-
formation. The index ’c’ is used for compression, ’t’ for tension. Both stresses have to be
found from experimental data of an appropriate test.
The evolution law for the martensitic volume fraction is assumed to be

γ̇M :=

−H
AS(1− γM)

˙̃Φ
Φ̃−RAS

f

austenite to martensite

HSAγM
˙̃Φ

Φ̃−RSA
f

martensite to austenite
(4.84)

where the factors RAS
f and RSA

f are found from

RAS
f := σAS

f (1 + ϑ) and RSA
f := σSA

f (1 + ϑ) (4.85)

and analogously

RAS
s := σAS

s (1 + ϑ) and RSA
s := σSA

s (1 + ϑ) . (4.86)

The factors HAS and HSA take the values

HAS =

{
1 if RAS

s < Φ̃ < RAS
f ∧ ˙̃Φ > 0

0 else
(4.87)

and

HSA =

{
1 if RSA

f < Φ̃ < RSA
s ∧ ˙̃Φ < 0

0 else
. (4.88)
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Finally the stress as well as the evolution of the transformation strains are formulated in an
incremental way to

σ̇ := C : (ε̇− ε̇tr) (4.89)

and

ε̇tr := γ̇M εL
∂Φ̃

∂σ
. (4.90)

In Eq. (4.90), εL is the (scalar) maximum transformation strain observed in a tension test.
Taking only the maximum transformation strain measured in a tension test, gives a hint
that for a general loading case this assumption might not provide best results. However,
for tension test simulations this model will be taken as a reference to compare the models
presented in this work.
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Chapter 5

The Finite Element Method

In this section the essential motivation and the working principles of the finite element
method are laid down. More detailed derivations can be found - for instance - in [5], [63] or
[61].
Generally spoken, the finite element method is nothing else but a mathematical tool for
the numerical solution of partial differential equations (PDE) of certain classes. The equi-
librium equation for solids as well as the heat conduction equation or the equations from
electrodynamics belong to these classes. Although in mechanical and civil engineering the
term ’finite elements’ is directly linked in mind to the calculation of solids, the concept of
finite elements goes much further. Since the material models derived in Secs. 4.2.2, 4.2.3
and 4.2.4 are supposed to be evaluated on the macroscopic space level, thus for entire speci-
mens, the method of finite elements is introduced through linear elastic solids in this section.
Furthermore, deductions are discussed and a general procedure for the application of finite
elements is presented.

5.1 Fundamentals of the Finite Element Method
In Sec. 2.1.11 the potential of a material is introduced as sum of internal and external parts
contributing to the potential. A minimization of the potential results in the equilibrium
condition

∇ · σ + f = 0 (5.1)

From the mathematical point of view Eq. (5.1) is a system of PDEs. Since there exists by
the HOOKE’s law

σ = C : ε (5.2)

and the relation between strain and displacements

ε =
1

2
(∇u+ u∇) (5.3)

a relation between stress and displacements as well, the system of PDEs in Eq. (5.1) has
to be solved for the unknown (function) u(x). Of course, for every physical body dis-
placements are known at some surfaces, for example through supports or other prescribed
non-zero displacements termed u⋆. The boundary where the displacements are known is
indicated as ∂Ωu. Consequently,

u
!
= u⋆ on ∂Ωu . (5.4)

67
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Additionally, the condition

σ · n !
= t⋆ (5.5)

has to be fulfilled, see Eq. (2.43). Therefore, Eq. (5.1) with Eqs. (5.4) and (5.5) constitute
as a boundary value problem. For an arbitrary body in three dimensions it is not possible
to find the solution for the problem analytically, consequently a numerical approach has to
be followed. This can be carried out by going back to minimizing the potential which gives
due to the symmetry of σ, Eq. (2.94),∫

Ω

σ : ∇δu dV =

∫
Ω

f · δu dV +

∫
∂Ω

t · δu dA ∀ δu . (5.6)

The comparison between Eqs. (5.1) and (5.6) shows that two properties differ: first, in Eq.
(5.6) a formulation in integral form is given. This allows all functions to be defined just
piecewise which is a great advantage from the point of solving the equations. Secondly,
only σ occurs in Eq. (5.6) in contrast to its divergence ∇ · σ in Eq. (5.1). This implies that
the order of the PDE system has been reduced from second to first, thus only first deriva-
tives of u occur. Hence, since both equations are equivalent a focus on Eq. (5.6) is of huge
advantage.

As it has already been mentioned, an analytical solution of Eq. (5.6) is in general not
possible to find. Therefore, an approximation of the solution is the aim left. Due to the
integral form of the problem a piecewise or elementwise approximation is applicable. This
allows to formulate

u(x) ≈ Nu(x) · û = Nu · û (5.7)

and similarly
δu(x) ≈ Nu(x) · δû = Nu · δû (5.8)

with so-called shape functions Nu and nodal values û and δû, respectively. By this, the
entire body of volume Ω has been divided into a certain number of sub-volumes, indicated
by z, which are called elements, see Fig. 5.1. The elements are defined through their
surfaces which themselves have so-called nodes as construction parts. Then, the differential
equations are to be solved exactly only at the nodes. The purpose of the shape functions is
an interpolation between the nodal values in order to find an approximation for u(x) and
δu(x). Thus, for given nodal values the functions can be constructed under the limitation
the shape functions imply: depending on the class of function the shape functions are chosen
from, the approximation will have different accuracy. However, if the shape functions are
chosen the gradient of the solution function can be found according to

∇u = ∇Nu · û (5.9)

from which immediately with Eq. (5.8)

∇δu = ∇Nu · δû (5.10)

follows.

For further simplification MEHRABADI-COWIN introduced in [37] a special notation for
strain, stress and the elastic modulus C outgoing from the VOIGT notation. The key idea
is a shift from the three dimensional space in which the variables are originally defined to
a six dimensional space. Due to the symmetry properties of the variables it is possible to
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Figure 5.1: Discretized body. Volume of a single element, Ωm, prescribed zero and non-zero
displacements u⋆ and nodal forces t⋆.

neglect multiple ’transportation’, for instance σT = σ. In order to maintain Eigenvalue
characteristics the HOOKE’s law can be expressed as

σ11

σ22

σ33√
2σ23√
2σ13√
2σ12

 =



C11 C12 C13

√
2C14

√
2C15

√
2C16

C21 C22 C23

√
2C24

√
2C25

√
2C26

C31 C32 C33

√
2C34

√
2C35

√
2C36√

2C41

√
2C42

√
2C43 2C44 2C45 2C46√

2C51

√
2C52

√
2C53 2C54 2C55 2C56√

2C61

√
2C62

√
2C63 2C64 2C65 2C66


·



ε11
ε22
ε33√
2 ε23√
2 ε13√
2 ε12


(5.11)

where the matrix valued quantities stress and strain have been transformed to vectors and
the elasticity tensor of fourth order to a matrix (elastic constants Cij are from the VOIGT

notation). Furthermore, the inner product reduces from a double scalar product to a regular
single dot scalar product. Quantities denoted in the MEHRABADI-COWIN notation are from
now on indicated by a tilde, thus σ → σ̃, ε→ ε̃ and C→ C̃.

The modification of notation allows furthermore the introduction of an operator matrix
denoted as B̃ which allows a linear mapping between strains and displacements. The oper-
ator matrix is defined in the three dimensional space according to

B̃ :=



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

0 1
2

∂
∂z

1
2

∂
∂y

1
2

∂
∂z

0 1
2

∂
∂x

1
2

∂
∂y

1
2

∂
∂x

0


(5.12)
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from which results

ε̃ = B̃ · u
⇔ ε̃ = B̃ ·Nu · û . (5.13)

The product between operator matrix and shape function in Eq. (5.13) is synthesized to B,
so

B := B̃ ·Nu . (5.14)

Application of the MEHRABADI-COWIN notation to Eq. (5.6) gives then∫
Ω

BT · σ̃ dV −
∫
Ω

Nu · f dV −
∫
∂Ω

Nu · t dA = 0 (5.15)

where the (constant) variation of the displacements, δu, can be taken out of the integral and
canceled out.
Eq. (5.15) is supposed to be solved with respect to the unknown displacements from which
the stress depends on through

σ̃ = C̃ · ε̃
⇔ σ̃ = C̃ ·B · û . (5.16)

Hence, Eq. (5.15) can be brought into its final form

z∑
m

∫
Ωm

BT · σ̃ dV =
z∑
m

∫
Ωm

Nu · f dV +
z∑
m

∫
∂Ωm

Nu · t dA

⇔
z∑
m

∫
Ωm

BT · C̃ ·B dV︸ ︷︷ ︸
=:Km

·û =
z∑
m

∫
Ωm

Nu · f dV︸ ︷︷ ︸
=:ff m

+
z∑
m

∫
∂Ωm

Nu · t dA︸ ︷︷ ︸
=:ftm

⇔ K · û = ff + f t (5.17)

with the so-called (assembled) stiffness matrix K and the (assembled) internal and external
forces ff and f t, respectively. Ωm is the volume of every element m and ∂Ωm its sur-
face. The only remaining unknowns in Eq. (5.17) are the displacements at the nodes. Thus,
the PDE system of Eq. (5.1) of second order could be transformed to a system of algebraic
equations which is obviously much easier to solve. For elastic materials this system of equa-
tions is indeed a linear one which reduces the problem to the calculation of the inverse of K.

It remains to calculate the integrals in (5.17) until a solution for u can be found. In
a general application of the finite element method on a specific boundary value problem,
the integration has to be performed in a numerical way due to time expenses. For this the
common GAUSS integration can be used. This is based on∫ b

a

g(x) dx ≈
∑
i

wi g(xi) (5.18)

where the specific integral of a polynomial g(x) can be approximated best by the sum of
the function, evaluated at certain so-called integration or GAUSS points xi, multiplied with
some weighting factors wi. The GAUSS points are the zero points of the corresponding
LEGENDRE polynomial, depending on g(x)’s order, and the weighting factors can be found
from a coefficient comparison of the integral of the LAGRANGE polynomial. Thus, if the
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order of g(x) is fixed, the GAUSS points as well as the weighting factors are constant.
Furthermore, the discretization of the body’s volume is carried out by elements of different
shape. Thus, it is convenient to introduce a special space where each element can be de-
scribed by means of a so-called isoparametric element. The isoparametric element serves
as template both defining the shape functions and finding the integrals. Figure 5.2 shows
the isoparametric element for the three dimensional case. In the three dimensional case the

Figure 5.2: Isoparametric element with length 2 in each direction and nodes (1) to (8).
JACOBIan J̃ maps on the element in the physical space.

tri-linear shape functions (eight nodes) can be found as

N1(r, s, t) =
1

8
(r + 1) (s+ 1) (t+ 1)

N2(r, s, t) =
1

8
(r − 1) (s+ 1) (t+ 1)

N3(r, s, t) =
1

8
(r − 1) (s− 1) (t+ 1)

N4(r, s, t) =
1

8
(r + 1) (s− 1) (t+ 1)

N5(r, s, t) =
1

8
(r + 1) (s+ 1) (t− 1)

N6(r, s, t) =
1

8
(r − 1) (s+ 1) (t− 1)

N7(r, s, t) =
1

8
(r − 1) (s− 1) (t− 1)

N8(r, s, t) =
1

8
(r + 1) (s− 1) (t− 1)

(5.19)
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with the GAUSS points

x̃i ∈




± 1√

3

± 1√
3

± 1√
3




i ∈ {1, . . . , 8} (5.20)

The shape functions are defined in the space of the isoparametric element. In contrast, for
the calculation of the operator matrix B, Eq. (5.14), it is necessary to find the derivatives
of the shape functions wih respect to the spacial coordinates x = {x1, x2, x3} instead of
x̃ = {r, s, t}. By use of the chain rule the demanded coordinate transformation can be
executed, so 

∂

∂r
∂

∂s
∂

∂t

 =



∂x1

∂r

∂x2

∂r

∂x3

∂r
∂x1

∂s

∂x2

∂s

∂x3

∂s
∂x1

∂t

∂x2

∂t

∂x3

∂t


︸ ︷︷ ︸

=: J̃

·



∂

∂x1

∂

∂x2

∂

∂x3

 (5.21)

where J̃ is called JACOBIan . Then, the derivatives with respect to the coordinates x can be
found according to

∂

∂x
= J̃

−1 · ∂

∂x̃
(5.22)

from which B can be constructed. The entries of the JACOBIan can be calculated by means
of the shape functions and the coordinates of the nodes i which are denoted by x̂i. This
yields

J̃ =



∂N1

∂r
. . .

∂N8

∂r
∂N1

∂s
. . .

∂N8

∂s
∂N1

∂t
. . .

∂N8

∂t

 ·
x̂

1
1 x̂1

2 x̂1
3

...
...

...
x̂8
1 x̂8

2 x̂8
3

 . (5.23)

Furthermore, the integration over the material body has to be transformed. The determinant
of the JACOBIan serves per its definition as measure for the coordination transformation
x̃ 7→ x for the integrals. Thus,∫

Ω

g(x̃) dx1 dx2 dx3︸ ︷︷ ︸
=dV

≈ det J̃
∑
i

wi g(x̃
i) (5.24)

with x̃i again as GAUSS points.

With these tools at hands the equilibrium conditions for solid materials can be solved.
However, the scheme of finite elements can be applied to many partial differential equations
(a counter-example are equations where jumps occur and hence non-smooth functions have
to be found as solution - in this case an extended finite element method can be used). A gen-
eral framework to convert a differential equation into a finite element based formulation is to
multiply both sides with a so-called testing function which is denoted as δu, if the equation
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is expressed in terms of u, and called variation. This is done since the equation itself can
be interpreted as extremal condition for an associated variational problem in which the vari-
ation would have come out as result of an ’inner derivation’. Then, the original differential
equation is called EULER equation which is always a result of minimizing or maximizing a
corresponding functional. The generality of the equation multiplied with its variation is still
maintained when the equation is integrated over the space the function is defined in. After
that, an integration by parts is applied with the motivation to reduce the order of the differ-
ential equation by shifting this order of derivative from the original function to its variation.
When the minimum order of derivative is reached, the integration by parts is stopped. Then,
the function as well as its variation and all derivatives are approximated by means of shape
functions where the entire space is divided in a certain number of z elements. The remaining
integrals can be solved and leave an algebraic system of equations for the nodal values of
the function. Concluding,

g(u) = 0

⇔ g(u) δu = 0 ∀ δu

⇔
∫
Ω

g(u) δu dV = 0 ∀ δu

i.p.⇔
∫
Ω

g
∫
Ω(u) δu

′ dV +

∫
∂Ω

g
∫
∂Ω(u) δu dA = 0 ∀ δu

⇔
∑
z

∫
Ωz

g
∫
Ω(u) δu

′ dV +
∑
z

∫
∂Ωz

g
∫
∂Ω(u) δu dA = 0 ∀ δu

⇒ K · û+ f = 0 (5.25)

Trivially, δu ̸= 0 has to hold. In Eq. (5.25), g(u) synthesizes the entire specific differential
equation whereas g

∫
Ω(u) and g

∫
∂Ω(u) indicate the parts of g(u) integrated over the volume,

dV , or an area, dA, respectively. Of course, space and area are not necessarily their physical
compliances. It indicates solely that dA has a reduced number of integrands compared to
dV . The index δu′ refers to a corresponding derivative of δu which is accompanied by the
associated part of gΩ(u) with reduced order of derivatives, termed g

∫
Ω(u), due to integration

by parts.
Since the functions u are approximated by means of shape functions and for which the
values at the nodal points are the only unknowns, the derivatives δu′ can be calculated -
except for the interpolation values, of course.

5.2 The Finite Element Method for non-linear Materials
In Sec. 5.1 the fundamentals for linear elastic materials have been recalled. However the
strategy is quite similar when dealing with non-linear materials, in this section an introduc-
tion to the application of the finite element method to non-linear materials is given. It is
emphasized that ’non-linear’ means in this context a non-linear relation between stress and
strain, thus non-linear constitutive equations for example in the form

σ = C(ε) : ε . (5.26)

Non-linearity due to a non-linear relation between displacements and strains, following Eq.
(2.35) for instance, is not treated in this work and so it is not considered in this section.
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The example of the application of the finite element method to linear elastic materials is
based on minimizing a potential of the form

Π =

∫
Ω

ΨdV −
∫
Ω

f · u dV −
∫
∂Ω

t · u dA→ min
u

. (5.27)

In Eq. (5.27) no assumptions for the material have been made. The only assumption is
the most general that this potential tends to a minimum for every physical material. The
dependence on the specific material comes into play when the free energy Ψ has to be
defined which can obviously only be a material dependent procedure. That means, plugging
the ’correct’ energy into Eq. (5.27) allows to solve the equilibrium equations for every
arbitrary material.
In general the minimizing condition of Eq. (5.27) reads∫

Ω

∂Ψ

∂ε
: δε dV −

∫
Ω

f · δu dV −
∫
∂Ω

t · δu dA
!
= 0 (5.28)

for which the previously presented discretization method by means of shape functions and
operator matrix B can be applied. Furthermore, the constitutive equation for stress, as Eq.
(2.70),

σ =
∂Ψ

∂ε
(5.29)

has to hold even for non-linear materials. This yields as well as for the linear case

Ru :=

∫
Ω

BT · σ̃ dV −
∫
Ω

Nu · f dV −
∫
∂Ω

Nu · t dA
!
= 0 . (5.30)

Ru is called residual since its norm serves as criteria to stop an iterative solution process.
In contrast to the linear case, now a direct separation of σ in the (constant) elasticity tensor
and operator matrix times displacements is not possible due to the non-linear relation of Eq.
(5.26). This yields a non-linear algebraic system of equations for the displacements. Thus,
the well known NEWTON scheme can be applied to seek for the zero point of Ru in an
iterative way. Therefore

Ri+1
u = Ri

u +
∂Ri

u

∂u
·∆ui+1 !

= 0 (5.31)

with i as iteration number. From Eq. (5.31) the displacement increment ∆ui+1 can be found
according to

∆ui+1 = −
[
∂Ri

u

∂u

]−1

·Ri
u . (5.32)

Then, the displacements are updated as

ui+1 = ui +∆ui+1 . (5.33)

Of course, this iterative scheme can be applied to the linear case as well, where the so-called
tangent matrix can be calculated analytically to

∂Ri
u

∂u
=

∫
Ω

BT · C̃ ·B dV (5.34)

since
ε̃ = B · u (5.35)

holds, Eq. (5.13). Hence, in the linear elastic case the derivative of the residual equals the
stiffness matrix K as introduced in Eq. (5.17).
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5.2.1 Implementation of the basic Model
As pointed out in Sec. 5.2, the application of the finite element method is carried out in
order to solve the EULER equations, resulting from the minimization of the functional Π.
The functional is the so-called total potential of the body and based on fundamental physi-
cal axioms. Consequently, this scheme is valid for all mechanical bodies. The only aspect
which has to be adopted is the elastic energy Ψ which is - of course - material dependent.
For purely linear elastically behaving material this scheme has been used in Sec. 5.2.

Now, this method is applied to the basic model for shape memory alloys derived in
Sec. 4.2.2. The corresponding energy is the relaxed energy Ψrel. Using this energy in the
potential yields

Πbasic =

∫
Ω

Ψrel dV −
∫
Ω

f · u dV −
∫
∂Ω

t · u dA→ min
u

(5.36)

which - again - is supposed to be minimized with respect to the unknown displacement
field u for fixed time. The minimization condition of Eq. (5.36) constitutes as variational
equation and reads

δΠbasic =

∫
Ω

∂Ψrel

∂ε
: δε dV −

∫
Ω

f · δu dV −
∫
∂Ω

t · δu dA
!
= 0 . (5.37)

According to the relaxed energy Ψrel, Eq. (4.7), its derivative with respect to the strains can
be calculated to (λ is fixed)

∂Ψrel

∂ε

(2.70)
= σ = Ceff : (ε− ηeff) . (5.38)

This allows to apply the scheme of finite elements to Eq. (5.37). The residual which has to
become zero is then

Ru =

∫
Ω

BT · σ̃ dV −
∫
Ω

Nu · f dV −
∫
∂Ω

Nu · t dA
!
= 0 (5.39)

with σ̃ the stress from Eq. (5.38) in the notation of MEHRABADI-COWIN . Due to the
non-linearity of Ru the iterative solution scheme presented in Sec. 5.2 is used. Thus, the
derivative of Ru has to be found which gives

∂Ru

∂u
=

∫
Ω

BT · ∂σ̃
∂ε̃
·B dV. (5.40)

Obviously, for the evaluation of the integrals in Eqs. (5.39) and (5.40) the stress as well as
its derivative with respect to strains have to be found. Although the stress can be calculated
analytically if the internal variables, the volume fractions λ, are known, its derivative can
only be found numerically when having a reasonable computation time in mind. Since the
integrals are computed numerically using the GAUSS quadrature, both the stresses and their
derivative have to be evaluated for every integration or GAUSS point. Thus, from the current
approximative solution of the displacement field, ui+1, the strains at each GAUSS point
can be derived. These serve as input parameter for the basic model derived in Sec. 4.2.2.
Depending on the results of the previous time (and thus load) step, λn and An, the volume
fractions and the active set are updated. (·)n counts the time step. Then, the evolution
equations can be discretized as presented in Sec. 3.2 as

λn+1 = λn + ρ̃ λ̇ (5.41)
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with the KUHN-TUCKER conditions

ρ̃ ≥ 0 Φ ≤ 0 ρ̃Φ = 0 . (5.42)

The active set is updated according to Eq. (4.42).
With the updated internal quantities the norm of the residual in Eq. (5.39) is tested whether
it gives approximately zero. If the residual is sufficiently small the updated volume fractions
as well as the active set is taken as input for the next time step. Another convergence criteria
is the so-called energy norm instead of the simple norm of Ru. The energy norm is defined
as Ri+1

u · ui+1. Thus,

Ri+1
u · ui+1 ≤ tol : λi+1 → λn+1 , Ai+1 → An+1 , (5.43)

where tol is a numerical tolerance. Hence, in order to solve the governing equations for
entire specimens in a finite element algorithm two NEWTON schemes have to be executed:
one on the material (or equivalently GAUSS ) point level and one for the non-linear algebraic
system of equations resulting from the approximation of the equilibrium condition which
yields the unknown displacements at the nodes.

5.2.2 Implementation of the extended Model
Although the changes for the material model in the extended version are relatively small, the
treatment of its finite element implementation is a remarkably higher effort. This influences
the calculation time in a negative way. As pointed out in Secs. 2.1.11 and 5.2, for the finite
element implementation of different materials only their corresponding free energies have
to be put into the total potential. This yields in the case of the extended model

Πext =

∫
Ω

Ψtot dV −
∫
Ω

f · u dV −
∫
∂Ω

t · u dA→ min
u,φ

. (5.44)

In contrast to the basic model, now the total potential is a functional of two functions:
similarly it depends on the displacement field u but furthermore on the field function φ, too.
Thus, the variation of Πext gives

δΠext =

∫
Ω

(
∂Ψtot

∂ε
: δε+

∂Ψtot

∂φ
δφ

)
dV −

∫
Ω

f ·δu dV −
∫
∂Ω

t ·δu dA
!
= 0 . (5.45)

In the variation of Πext parts occur which depend on the variation of the displacements (or
their derivative which is strain). Additionally, parts depending on the variation of φ, δφ,
come into play. Since the field functions u and φ may be treated independently at first
glance, a separation of Eq. (5.45) into two individual equations is possible. This yields∫

Ω

σ : ∇δu dV −
∫
Ω

f · δu dV −
∫
∂Ω

t · δu dA
!
= 0 ∀ δu (5.46)∫

Ω

βφ (φ+ 1− |λ0|) δφ dV +

∫
Ω

cφ (∇φ · ∇δφ) dV
!
= 0 ∀ δφ (5.47)

where the derivatives of Ψrel with respect to strain and field function have been directly
plugged in.
For the Eqs. (5.46) and (5.47) the finite element approximations are applied. In the case of
the displacements, Eq. (5.46), the results are the same as for the basic model. It remains to
approximate the equation for the field function. In order to do so, the field function and its
variation are replaced by

φ = Nφ · φ̂ , δφ = Nφ · δφ̂ . (5.48)
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The gradient of φ as well as the gradient of the variation are approximated by

∇φ = ∇Nφ · φ̂ , ∇δφ = ∇Nφ · δφ̂ . (5.49)

Of course, similarly to the displacements the exact values of the field functions are approx-
imated by an interpolation of values known at the nodes. These nodal values are, again,
collected in a vectorial quantity φ̂. The interpolating functions are shape functions which
may be chosen differently from those for the displacements in general. They are denoted by
Nφ.
Now, for the two variational equation, Eqs. (5.46) and (5.47), the finite element formulation
is

Ru =

∫
Ω

BT · σ dV −
∫
Ω

Nu · f dV −
∫
∂Ω

Nu · t dA
!
= 0 (5.50)

Rφ =

∫
Ω

βφ (Nφ · φ̂+ 1− |λ0|)Nφ dV +

∫
Ω

cφ (∇Nφ · ∇Nφ · φ̂) dV
!
= 0 (5.51)

It is convenient to introduce a new vector, denoted by R, which collects both individual
residual vectors. Then, the NEWTON scheme gives[

Ru

Rφ

]i+1

= Ri+1 = Ri + J ·
[
∆û
∆φ̂

]
!
= 0 , (5.52)

again with i as iteration number for fixed load step n. In Eq. (5.52), J indicates the JA-
COBIan , thus the partial derivatives of the entries of R with respect to the displacements
and the field function, so

J =


∂Ru

∂û

∂Ru

∂φ̂
∂Rφ

∂û

∂Rφ

∂φ̂

 . (5.53)

The derivatives are
∂Ru

∂u
=

∫
Ω

BT · ∂σ̃
∂ε̃
·B dV (5.54)

∂Ru

∂φ̂
=

∫
Ω

BT · ∂σ̃
∂φ
⊗Nφ dV (5.55)

∂Rφ

û
=

∫
Ω

βφNφ ⊗
(
−∂|λ0|

∂ε̃

)
·B dV (5.56)

∂Rφ

∂φ̂
=

∫
Ω

βφ

(
1− ∂|λ0|

∂φ

)
Nφ ⊗Nφ dV +

∫
Ω

cφ (∇Nφ)
T · ∇Nφ dV (5.57)

The remaining derivatives in the Eqs. (5.54) until (5.57) have to be calculated numerically.
Of course, the derivative of Ru with respect to u is identical to that in the basic model.
Then, this derivative can be interpreted as the entire JACOBIan for the basic model. From
the JACOBIan J for the extended model, which is equivalent to the stiffness matrix K when
applied to the entire set of nodes, it can be seen that in the case of the extended model the
material model has to be executed eight times (including six times for the derivatives with
respect to all components of strain; both derivatives with respect to φ are evaluated with
one single call of the material model - one additional call for the residuals). In contrast,
for the basic model seven single executions of the material model per GAUSS point were
necessary (six for the JACOBIan - one additional call for the calculation of the residuals
again). Additionally, for tri-linear shape functions with eight nodes per element the stiffness
matrix increases from a 24× 24-matrix to a 32× 32-matrix. Thus, the mentioned increased
time consumption becomes evident.
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5.2.3 Implementation of the thermo-mechanically coupled Model
The thermo-mechanically coupled model is a continuation of the extended model with the
difference that now the temperature may change and have an influence on the phase tran-
sitions. This means that for the finite element implementation of the thermodynamically
coupled model the total potential remains the same as for the extended model. Additionally
to the resulting variational equations for displacements and field function the heat conduc-
tion equation has to be solved. The character of the heat conduction equation allows a finite
element based solution. Therefore,

cθ θ̇ = P : λ̇− θ

N∑
j=1

n∑
i=0

ξjλ̇j
i bi −∇ ·

(
1

αθ

∇1

θ

)
(5.58)

can be interpret as EULER equation of an associated variational problem for which Eq.
(5.58) is reformulated by following the method in Sec. 5.1 to∫

Ω

cθ θ̇ δθ dV =

∫
Ω

P : λ̇ δθ dV −
∫
Ω

θ
N∑
j=1

n∑
i=0

ξjλ̇j
i bi δθ dV

−
∫
∂Ω

1

αθ

∇1

θ︸ ︷︷ ︸
=q

·n δθ dA+
1

αθ

∫
Ω

∇1

θ
· ∇δθ dV ∀ δθ .

(5.59)

with a normal vector n pointing outside of the body. Similarly to the displacements as well
as the field function, the temperature and its gradients are approximated by means of shape
functions. Thus,

θ = N θ · θ̂ , ∇1

θ
= ∇

(
N θ · θ̂

)−1

, δθ = N θ · δθ̂ , ∇δθ = ∇N θ · δθ̂ .

(5.60)
Inserting this into Eq. (5.59) results in the residual for temperature

Rθ :=

∫
Ω

cθ N θ · ˙̂θ N θ dV −
∫
Ω

P : λ̇ N θ dV +

∫
Ω

N θ · θ̂ |λ̇ : bθ|N θ dV

−
∫
∂Ω

q · n N θ dA+
1

αθ

∫
Ω

∇N θ · θ̂
(N θ · θ̂)2

· ∇N θ dV
!
= 0

(5.61)

with

|λ̇ : bθ| :=
N∑
j=1

n∑
i=0

ξjλ̇j
i bi . (5.62)

In contrast to the previously presented residuals for displacements and field function respec-
tively, in Rθ a time dependent derivative occurs for which it is a transient equation. For the
time derivative a direct discretization is chosen to be

˙̂
θ =

(
θ̂
n+1
− θ̂

n
) 1

∆t
(5.63)

where n is, again, the number of previous load step. By choosing a specific value for the
time increment ∆t implicitly the loading velocity v can be taken into account by

v ≈ ∆u

∆t
. (5.64)
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Since the increment of displacements ∆u has to be chosen, the known testing velocity can
be displayed by an appropriate time increment.

Again, a residual vector is defined, collecting all single residual vectorsRu

Rφ

Rθ

i+1

= Ri+1 = Ri + J ·

∆û
∆φ̂

∆θ̂

 !
= 0 . (5.65)

In this case the JACOBIan reads

J =



∂Ru

∂û

∂Ru

∂φ̂

∂Ru

∂θ̂
∂Rφ

∂û

∂Rφ

∂φ̂

∂Rφ

∂θ̂
∂Rθ

∂û

∂Rθ

∂φ̂

∂Rθ

∂θ̂


. (5.66)

The derivatives in the upper left 2 × 2 sub-matrices are the same as in the extended model.
The missing derivatives are calculated to

∂Ru

∂θ̂
=

∫
Ω

BT · ∂σ̃
∂θ
⊗N θ dV (5.67)

∂Rφ

∂θ̂
=

∫
Ω

βφNφ ⊗
(
∂|λ0|
∂θ

)
N θ dV (5.68)

∂Rθ

∂û
= −

∫
Ω

N θ ⊗

(
∂(P : λ̇)

∂ε̃
·B

)
dV

+

∫
Ω

(
N θ · θ̂

)
N θ ⊗

(
∂|λ̇ : bθ|

∂ε̃
·B

)
dV (5.69)

∂Rθ

∂φ̂
= −

∫
Ω

∂(P : λ̇)

∂φ
Nφ ⊗N θ dV +

∫
Ω

N θ · θ̂
∂|λ̇ : bθ|

∂φ
Nφ ⊗N θ dV (5.70)

∂Rθ

∂θ̂
=

∫
Ω

cθ
∆t

N θ ⊗N θ dV −
∫
Ω

∂(P : λ̇)

∂θ
N θ ⊗N θ dV

+

∫
Ω

|λ̇ : bθ|N θ ⊗N θ dV +

∫
Ω

N θ · θ̂
∂|λ̇ : bθ|

∂θ
N θ ⊗N θ dV

+
1

αθ

∫
Ω

(∇N θ)
T ·N θ

(N θ · θ̂)2
− 2

(
(∇N θ · θ̂)⊗N θ

)T
(N θ · θ̂)3

· ∇N θ

 dV (5.71)

The derivative of the residual for the temperature, Rθ, with respect to the temperature is
executed for the discretized rate of temperature. Then, there exists the possibility to find the
derivative with respect to the current time step, θ̂

n+1
, or with respect to the previous time

step, θ̂
n
. Here, the derivative is found with respect to the current time step. In this case the

resulting JACOBIan is called consistent tangent operator.
In the thermo-mechanically coupled model only one additional call of the material model
has to be executed compared to the eight calls of the material model in the extended model.
This is an increase as from the basic to the extended model. Consequently, the calculations
are once again remarkably slower than the extended model due to the much more compli-
cated and larger stiffness matrix. In this case the element-stiffness matrix contains 40 × 40
entries because each of the eight nodes has five unknowns.
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Chapter 6

Numerical Results

In this section numerical results for all three material models are presented and discussed.
First, simple geometries are regarded in order to validate the results with experimental obser-
vations in [48]. In the experiment, a stripe of pseudo–elastic NiTi has been clamped in a ten-
sion machine and the resulting displacement field was measured by a method called Digital-
Image-Correlation. From the displacement field the strain field could be derived which itself
serves as indicator for the different crystallographic phases (small strains: austenite; large
strains: martensite). The results are recalled in Fig. 6.1. There, it can be seen that the phase

Figure 6.1: Experimentally observed distribution of austenite and martensite at various time
steps, [48].

transformation from austenite to a specific martensitic combination initiates at the supports
due to resulting stress peaks. Outgoing from these nucleation zones at both ends, the trans-
formation evolves in a front like behavior, similar to LÜDERS bands known from plasticity.
Due to stochastic imperfections, the inclination of the front may change.

The experiment is discretized by a rectangular body with free length of 35 mm, width
of 3.3 mm and thickness of 0.68 mm. In order to capture the experimental conditions best,
for the numerical investigations of the models’ qualities the displacements for the very first
rows of nodes within the discretized body are prescribed. The nodes at the lower side are
fixed whereas for the nodes at the upper side the displacements in longitudinal direction
(corresponds to the x1-direction) are prescribed. The displacements in x2- and x3- direction

81



82 CHAPTER 6. NUMERICAL RESULTS

are set to zero at these nodes.

To compare the models with the experiments two different results are presented. First,
corresponding stress-strain diagrams are presented which provide information of the entire
material reaction. The occurring residual forces at the nodes with prescribed non-zero dis-
placements are summed up and divided by the original cross section. This is interpreted as
stress. The prescribed displacements are referred to the original free length which is used
as average strain. The stress is plotted over strain. For the experimental data similar treat-
ment was performed. Measured forces as well as prescribed displacements were divided
by original cross section and free length, respectively. Thereby, the material reaction and
the influence of geometry are visualized and the models’ capacities on a global scale are
investigated.
Secondly, the distribution of austenite over the geometry is discussed which can be com-
pared to the experimentally estimated one in [48], Fig. 6.1. This gives a hint about the
models’ capacities to display a realistic material behavior on a local scale.

At lower temperatures, the evolution of the so-called R-phase takes place as interstate of
the austenite-martensite phase transformation, [46]. This effect is not included in the model.
Hence some characteristics cannot be displayed. Due to this and furthermore in order to
have experimental basis for the dependence of the material reaction on room temperature,
experimental results with wires of NiTi at different temperatures are taken into considera-
tion, too. These experiments can be found in [59].

Figure 6.2: Experimentally observed distribution of temperature at various time steps. Cour-
tesy of A. Schäfer & M.F.-X. Wagner. The background is colored in blue. Zones of increased
temperature move analogously to the transformation zones. If these zones collide a remark-
able peak in temperature is observed.

After these analyses, a more complex geometry is considered which is a spring. In this
case the predominant loading state is torsion. So the models are tested to their applicability
to this loading state as well. All models are executed for all geometries.
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Furthermore, the field model is tested with focus on the influence of different parameters
for the interface energy cφ. In this way, the parameter can be found such that the experiments
are displayed best and furthermore the desired state of mesh independence is achieved.

The distribution of temperature calculated with the thermo-mechanical model is brought
into comparison with experimental results again from [48] which is recast in Fig. 6.2.

A heating–cooling process on material point level is discussed from which a new under-
standing of the dissipation coefficient r is derived which allows the calculation of r just by
means of the chemical energy and experimentally observable transformation temperatures
for austenite and martensite. Then, the thermo-mechanical model is used to simulate various
examples of pseudo-elasticity to prove its capability of displaying realistic results.

6.1 Numerical Results for the basic Model
The model is based on a subset of all possible grain orientations which may be found in a real
poly-crystal. This subset is included in the model in order to display the material behavior
of poly-crystalline shape memory alloys. Thus, first investigations using the basic model are
focused on the influence of the specific number N of assumed grain orientations. Since the
orientations are chosen randomly, a lower bound for the minimum number of N has to be
found in order to receive reproducible results. Hence, the first results presented here show
the material reaction of a stripe of NiTi which is fixed in a way that catches the experimental
conditions best, see Sec. 6. In Fig. 6.3 the resulting force displacement diagrams for a wire
at 50◦ C are presented. So, the geometry as well as loading conditions were exactly the
same but the randomly chosen specific set of angles forming the grain orientation differs for
every single curve.

Figure 6.3: Basic model. Stress-strain diagram for a wire made of NiTi at 50◦ C. Dashed
line reflects experimental results by [59], the solid lines are observed from numerical simu-
lations. Only difference was the specific set of N = 30 randomly chosen orientations.

The material parameters were set to r = 0.0084 [GPa] and c0 = −0.065 [GPa] (all other
ci>0 = 0). The volume fraction of grains is taken as ξj = 1/N for all calculations.
The diagrams prove in an empirical way that the number of N = 30 orientations is sufficient
to receive reproducible results, of course with a small stochastic fluctuation. Consequently,
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in all subsequent calculation this number of grain orientations is used. Although in general
an even higher number would be possible to calculate, the benefit in the simulation’s quality
would not justify the remarkably higher numerical effort.

Figure 6.4: Basic model. Stress-strain diagram for a wire made of NiTi at 60◦ C. Dashed
line reflects experimental results by [59], the solid lines are observed from numerical simu-
lations. Only difference was the set of N = 30 randomly chosen orientations.

Fig. 6.4 shows the numerical results for the same experiment now at 60◦ C room temper-
ature. Here r has been hold constant and c0 = −0.075 [GPa] (all other ci>0 = 0). For both
temperatures same observations can be made. After a purely linear reaction when no trans-
formation takes place (app. 600 MPa at 50◦ C or 700 MPa at 60◦ C), a plateau-like branch
follows which accompanies the phase transition from austenite to martensite. At a strain
of 0.05 at 50◦ C or 0.045 at 60◦ C, in the simulations the stress increases slightly which is
in contrast to the experimental results. In this part the plateau is left and a non-linear part
indicates that less transformation occurs compared to the transformation which would be
needed to keep on track to the plateau. In other words, the rate of phase transformation is
higher in the experiments. This is due to the remaining austenite which could transform
but which is found in grains orientated in a less favorable direction which inhibits further
transformation.

During unloading the stress decreases first linearly while the material contains both rest-
austenite and martensite. So, it has the elastic properties of a mixture of austenite and
martensite. After reaching a certain threshold, which is lower than the one for the trans-
formation during loading, the material transforms back. This can be seen in first plateau
like and then non-linear curve in the stress-strain diagram. The entire process of transfor-
mation during loading and unloading with the plateau like and non-plateau like parts and
the hysteretic character is well known from experiments, [46]. Although the calculations
were performed with the elastic constants from [60] the slope in the first linear part does not
match the experimental results. Even more interestingly the slope of the simulated stress-
strain diagram coincides very well after back transformation. Despite this artifact, the basic
model gives a quite nice material answer.

Beside the global material reaction, reflected in stress-strain diagrams, the accuracy of
the basic model for the local behavior is of interest. Therefore, the distribution of austenite
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Figure 6.5: Basic model. Distribution of austenite over time for a wire made of NiTi at 50◦

C. Geometry as well as free length are based on the experimental conditions in [59].

over the wire is displayed in Fig. 6.5. It can be seen that the transformation starts quite in
the center of the wire and proceeds in a rather homogeneous way. The dissipative character
of the material, which can also be seen from the hysteresis in the stress-strain diagrams,
may be observed in the finite element results, too. While the transformation starts at higher
strains the end of transformation during unloading takes place at lower strains.
To focus more on the local behavior of the material model, the geometry of the stripe men-
tioned above is used in additional simulations, see Figs. 6.6 and 6.7. Again, NiTi at 50◦ C
and at 60◦ C is simulated and the distribution of austenite presented.

Figure 6.6: Basic model. Distribution of austenite over time for a stripe of NiTi at 50◦C.

The differences in the distributions at the two different temperatures are very low: the
transformation initiates at the nodes with fixed or prescribed non-zero displacements which
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is in accordance to the experiment. In contrast to the material behavior in reality, the austen-
ite does not drop until a very low value in a localized way before transformation zones run
through the specimen: after the initial transformation at the nodes with prescribed displace-
ments all further transformations take place very homogeneously distributed over the entire
volume between the supports. In order to improve the coincidence between the local mate-
rial reaction in the simulations and experimental observations, the extended material model
is used for same boundary value problems in Sec. 6.2.

Figure 6.7: Basic model. Distribution of austenite over time for a stripe of NiTi at 60◦ C.

To prove the independence of the material model from the finite element mesh, a rather
fine mesh is used for the simulation of the same boundary value problem. The results for
this fine mesh are presented in Fig. 6.8 for 50◦ C and in Fig. 6.9 for 60◦ C room temperature.
The results differ very slightly compared to those obtained from the coarse mesh.

Figure 6.8: Basic model. Distribution of the austenite for a stripe of NiTi at 50◦ C, refined
mesh (by factor two compared to the other results).

In Figs. 6.10 and 6.11 the material answer in the stress-strain space at 50◦ C and 60◦ C
respectively is shown, each time for the coarse and the fine mesh. The differences which
occur here are due to stochastic fluctuations since different subsets of N = 30 orientations
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Figure 6.9: Basic model. Distribution of the austenite for a stripe of NiTi at 60◦ C, refined
mesh (by factor two compared to the other results).

are used. In conclusion, there is no indicator that the results are mesh depended and partic-
ularly from the curve in the stress-strain diagram - which gives a hint to a (globally) convex
energy which has been minimized during calculation - the results for the basic model are in
fact mesh independent.

Figure 6.10: Basic model. Stress-strain diagram for stripe of NiTi at 50◦ C. Different mesh-
ing: coarse (black), fine (gray).

The influence of the free length of the specimen is investigated in the next simulations.
Here, a free length of 70 mm has been chosen. All input parameters were kept constant
for the respective temperatures of 50◦ C and 60◦ C (of course, the chemical energy is set to
c0 = −0.065 [GPa] and c0 = −0.075 [GPa]). The global material reaction is presented in
the associated stress-strain diagrams in Figs. 6.12 and 6.13.

At 50◦ C, Fig. 6.12, for the specimen with a free length of 70 mm the plateau is kept
until maximum load. Due to the increased amount of mass between the supports there exist
more possibilities that grains with appropriate orientations are loaded and the rate of phase
transformation increases. So, the plateau during loading evolves in a more pronounced way.
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Figure 6.11: Basic model. Stress-strain diagram for stripe of NiTi at 60◦ C. Different mesh-
ing: coarse (black), fine (gray).

Figure 6.12: Basic model. Stress-strain diagram for stripe of NiTi at 50◦ C. Free length: 35
mm (black), 70 mm (gray).
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During unloading first a quite perfect plateau is established. If the load is decreased further
this parallel line to the x-axis is left although the behavior in total has a better coincidence
to the real plateau.

This effect is lost when temperature increases, Fig. 6.13. At this higher temperature
austenite is more stable for which the rate of phase transformation is - again - not suffi-
ciently high to show a perfect plateau. This is valid for loading and unloading, and the
results are quite the same as for the specimen with a free length of 35 mm.

Figure 6.13: Basic model. Stress-strain diagram for stripe of NiTi at 60◦ C. Free length: 35
mm (black), 70 mm (gray).

The distribution of austenite is displayed in Fig. 6.14 for 50◦ C and in Fig. 6.15 for 60◦

C. Similar to the simulations for a free length of 35 mm the martensite evolution starts at the
supports. However, this stress peaks do not trigger the material to continue transforming at
these localized zones. In contrast, the evolution proceeds very homogeneously in the entire
material between the supports. This allows the conclusion that the occurring driving forces
are only slightly increased due to the supports’ influences. Since this impact is very slow
on the one hand but on the other hand the global stress state is quite constant, the material
reacts very homogeneously.

Same observations can be made during unloading. In the entire process the material
transforms back from some mixture state of austenite and martensite to a purely austenitic
state. The remaining amount of austenite is slightly increased in the specimens with free
length of 70 mm compared to those with 35 mm. Similar to the reaction in the stress-strain
diagrams there are more possibilities for the material to transform so that an individual zone
has to transform slightly less than in the shorter specimen. However, stochastic fluctuations
are playing some role, too.

Additionally, results are presented for a more interesting geometry than in the previous
examples. The last example for the basic model investigated here is a spring with fixed
displacements at the lower front surface and prescribed displacements in longitudinal axes
at the upper front surface. In this geometry mainly shear loads occur. The resulting entire
material answer is presented in a force-displacement diagram, Fig. 6.16, where the resulting
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Figure 6.14: Basic model. Distribution of austenite in stripe of NiTi at 50◦ C. Free length is
70 mm.
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Figure 6.15: Basic model. Distribution of austenite in stripe of NiTi at 60◦ C. Free length is
70 mm.
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forces in longitudinal direction are averaged and plotted over the displacement in longitu-
dinal direction. In this case, a non-linear material response is observed which is neither a
plateau. The non-linearity is rather smooth compared to the quite distinct kink which occurs
in the tension tests when transformation starts. Same is valid when back transformation
from austenite to martensite takes place. The transition from the linear part to the non-linear
one during unloading cannot be identified by a specific point. However, a hysteresis and
deductively dissipative material behavior occur as expected.

The local material behavior can be seen in Fig. 6.17 where the distribution of austenite is
shown during loading as well as during unloading. Time starts in the first row at the left side,
then middle row at left and so on. In the inner part of the spring most phase transformation
happens. The amount of transformed material is higher in the centered region of the spring
in its longitudinal length (spring interpret as coiled wire). The total amount of austenite
left is similar to all other simulations (app. 50%). Due to transformation no particular
deformations are observed such as in the tension tests.

Figure 6.16: Basic model. Force-displacement diagram for a spring of NiTi at 50◦ C (gray
curve) and 60◦ C (black curve).

Concluding, although the results from the basic model are not as good as demanded on
the local layer, the global material reaction is displayed with a satisfying accuracy since
it shows good agreement to the characteristic and therefore expected properties of shape
memory alloys. Despite the missing localized transformations this model may be used for
a rather rough investigation of industrial pieces since the global response in stress-strain or
force-displacement diagrams is in good agreement to the desired characteristics. The ener-
getic formulation of the entire model is the reason why the results are of same quality for
the wires, at which the model was calibrated, and for the stripe which exhibits a different
geometry and additionally was tested at a different temperature, see Fig. 6.18. Therefore,
the model is able not only to calculate problems for which the material reaction can be mea-
sured but for even more complex geometries and loadings. However, in Sec. 6.2 results are
presented where much better coincidence can be achieved by means of the extended model.
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Figure 6.17: Basic model. Distribution of austenite in a spring of NiTi at 50◦ C. Time runs
row wise.
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Figure 6.18: Basic model. Resulting stress-strain diagram of a stripe of NiTi at 22◦ C. Solid
line: simulation. Dashed line: experiment. r = const = 0.0084 [GPa], c0 = −0.037 [GPa].
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6.2 Numerical Results for the extended Model
As it was mentioned in Sec. 4.2.2 and presented in Sec. 6.1, the basic model is not able to
display the localized transformations which evolve in shape memory alloys. Since the exact
distribution of crystallographic phases has a high influence on the resulting stresses, it is
necessary to expand the model in a way that exactly these localized transformations can be
displayed. In order to do so, the basic model was modified in a way that the dissipation co-
efficient was assumed to be a function of average austenite, Sec. 4.2.3. Figure 6.20 presents
stress-strain diagrams for the completely same initial boundary value problem of a stripe of
NiTi as used before but now with r = r(|λ0|, sign (|λ0|)˙) according to Fig. 6.19.

rAf
= 0.017 [GPa] rAs = 0.0004 [GPa]

rMf
= 0.018 [GPa] rMs = 0.006 [GPa]

Table 6.1: Material parameters for the extended model.

Figure 6.19: Dissipation parameter in dependence of the average volume fraction of austen-
ite, |λ0|, and the sign of its rate, sign (|λ0|)˙.

The specific values for rAs , rAf
, rMs and rMf

can be taken from Tab. 6.1. The chemical
energy for austenite was set to c0 = −0.030 [GPa] and for martensite ci>0 = 0.0 [GPa].

In Fig. 6.20 cφ has been varied, so the penalization of the spatial gradient of the vol-
ume fractions. The values are a : cφ = 0.0 [GPa], b : cφ = 0.001 [GPa], c : cφ =
0.01 [GPa], d : cφ = 0.03 [GPa]. Due to the missing penalization in a there are oscillations
during the plateau. This results from single rows in the finite element discretization which
soften one after the other, see Fig. 6.21. Since the gradient is penalized more with increasing
value for cφ, the effect of oscillations is reduced from b to d. The softening can be clearly
identified in all stress-strain diagrams: After reaching a certain threshold all stresses reduce
in a remarkably way before the curves turn into the plateau. During unloading the stress de-
creases - again - first linearly. Then, back transformation starts and a non-linear behavior is
observed. Now, using the extended model the stress has the plateau like character in a much
more pronounced way compared to the basic model, see Fig. 6.18. Although the stresses
remain not completely constant during unloading, a much better agreement to experimental
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Figure 6.20: Extended model. Stress-strain diagrams for a stripe of NiTi at 22◦ C. a: cφ =
0.0 [GPa], b: cφ = 0.001 [GPa], c: cφ = 0.01 [GPa], d: cφ = 0.03 [GPa]. Dashed line:
experimental result after [48].

results is achieved. In the experiments a non-constant plateau stress is observed as well.
The deviations during loading in the elastic region, hence before any austenite–martensite
transformation has started, are due to the R-phase which is not included in the model. This
phase is an interstate phase between austenite and martensite and causes the small changes
from a purely elastic behaving material.

The distribution of austenite for a coarse mesh with no regularization is presented in
Fig. 6.21. Here, it can be seen that exactly the desired effect evolves: the transformation
starts at the supports and the amount of average austenite drops until only austenite has left
in orientations which are unfavorable for transformation. Then, starting from both sides the
transformation takes place in a very localized way. In contrast to experiments, only at one
side the transformation proceeds until a distinct front has evolved. This front is moving
subsequently through the specimen. During unloading phase transformation takes place at
both fronts which are moving back to the center of the transformed zone in the stripe.
In the simulations a set of N = 30 orientations was used. In the elastic region before any
phase transformation a mixture of all rotated elastic constants of austenite has been used
(the elastic constants for austenite are anisotropic). Of course, due to the mixture of rotated
elastic constants an isotropic behavior is reached in the limit N → ∞. Unfortunately, the
convergence rate is quite slow. Hence, there is still a very slight anisotropic behavior in-
cluded in the elastic region. In combination with quite small dissipation parameters this is
why the transformation fronts start to evolve at both sides but establish completely only at
one side.

The resulting amount of austenite which is left is much smaller compared to the results
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Figure 6.21: Extended model. Distribution of austenite in a stripe of NiTi at 22◦ C. Coarse
meshing. No regularization.

Figure 6.22: Extended model. Distribution of austenite in a stripe of NiTi at 22◦ C. Fine
meshing. No regularization.
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of the basic model (now app. 22%, previously app. 50%). This is obvious because now in
the extended model a comparable amount of material transforms but distributed on a smaller
volume. Consequently more austenite has to transform locally to martensite. In the stress-
strain diagram the evolution of the front is accompanied by the softening character. While
the front is moving the plateau like behavior takes place. During this, in the distribution of
austenite the transformation starts in one row of elements in the discretization and only there
all transformation evolves before the next row of elements transforms. Since only one row
transforms, and all the neighboring rows do not, the spatial gradient of the volume fractions
for the phases tends to infinity. This behavior has influence on the stress-strain diagram as
explained: here the sawtooth-like, oscillating behavior occurs during transformation. Final
prove is made by applying all the same parameters and approaches to the finer mesh used
in Sec. 6.1 as well. The result for this mesh is presented in Figs. 6.22. Now, when the
mesh size is smaller the transformation front is smaller, too. It has exactly the width of
the mesh width. The inclination of the front is just due to the different set of orientations
represented by the randomly chosen orientation matrices. Concluding, the results for the
material model only using the non-constant approach for the dissipation (which is equiva-
lent to cφ = 0.0 [GPa]) yields mesh dependent results which have to be avoided in any case.
Although it would be possible to set the mesh discretization in a way that the mesh sice
coincides with the width of the transformation front in a tension test, application of this - if
any possible - to other problems and geometries would only yield doubtful results. Hence,
the extended material model using the additional field function φ by choosing cφ ̸= 0 [GPa]
is applied from now on.

The distribution of austenite for different values for the penalization parameter cφ are
presented in the upcoming. For all calculations the coupling parameter was set to βφ =
1 [GPa]. Other values yield only to a different valuation between the coupling and the
gradient term which has the same influence like fixing βφ and changing only cφ.
Two remarkable aspects can be seen immediately: first, and most important, the results are
not mesh dependent anymore which is proven by the transformation zones moving smoothly
spread over several rows of elements, see Figs. 6.23, 6.24 and 6.25, and secondly, the width
of the transformation front depends directly on the value of cφ, compare Figs. 6.23 and 6.25.
Thus, there exists now an additional parameter which can be brought to the physical level -
cφ is a measure for the surface energy - and the mesh size is no simulation parameter which
would have to be determined very hard. The shift of information mentioned in Sec. 4.2.3
which was carried formerly only by the volume fractions from a GAUSS point level to a field
level by means of φ results in a smooth distribution of the volume fractions.

The characteristic small jumps of GAUSS point quantities such as stress or internal vari-
ables at the element bounds do not occur any longer but the appearance is similar to one of
the nodal variables such as displacements.
The resulting amount of austenite is nearly the same and all differences come from stochas-
tic fluctuations due to the different set of orientation matrices.

Numerical results for a stripe with a free length of 70 mm with different penalization
parameter cφ are presented in Fig. 6.26. It can be seen that the oscillations are smeared
out with higher cφ. However, the results are very similar. The zone of material softening
is much smaller compared to those obtained for stripe with free length of 35 mm. Due to
localized character of the phase transformations the discretization is finer in comparison to
strain. Despite the regularization approach the results still exhibit some mesh dependence:
the width of the softening region is dependent on the mesh discretization. This effect will
be removed by the incorporation of temperature which is carried out in the next section.
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Figure 6.23: Extended model. Distribution of austenite in a stripe of NiTi at 22◦ C. Coarse
meshing. Regularized with cφ = 0.001 [GPa].

Figure 6.24: Extended model. Distribution of austenite in a stripe of NiTi at 22◦ C. Coarse
meshing. Regularized with cφ = 0.01 [GPa].

Figure 6.25: Extended model. Distribution of austenite in a stripe of NiTi at 22◦ C. Coarse
meshing. Regularized with cφ = 0.03 [GPa].
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Figure 6.26: Extended model. Stress-srain diagram for a stripe with free length of 70 mm
at 22◦ C. Regularization parameter was cφ = 0.01 [GPa] (left) and cφ = 0.03 [GPa] (right).
Oscillations were smeared out with higher cφ.

The distribution of austenite is presented in Figs. 6.27 and 6.28 for cφ = 0.01 [GPa] and
cφ = 0.03 [GPa], respectively. Similar to the shorter specimen the evolution of austenite
starts at the supports. Again, due to effects of anisotropy the complete front establishes
only at one side before it begins to move from its origin into the direction of the specimen’s
center. During unloading from both sides of the transformed region transformation fronts
run to the center of the transformed material and finally collide. This restores the original
configuration. The entire material behavior is quite the same as for the short specimen.

The extended model is applied to the spring, too. The resulting distribution can be found
in Fig. 6.29. Similarly to the basic model austenite evolves at the inner parts of the spring.

Again, the zone with maximum transformation is located in the center of the unwound
wire. This result is reasonable since there are no stress peaks due to supports which influence
the phase transition. Main loading is due to shear which is of quite constant intensity in the
entire spring. Thus, the transformation is rather smooth such as in the basic model. However,
the effect of the field function is evident. The entire distribution of austenite is spread in a
smooth way. Although the underlying material model works on the GAUSS point level the
results are now - due to the field coupling - similar as it would have been using a phase field
model. Of course, since only the average amount of austenite is coupled to the field function
φ which is used here, only this single ’phase’ has to be solved on the nodal level. In contrast
to a real phase field model where all the phases would have been discretized individually by
means of individual field functions, in this model only the single field function is sufficient
to create a phase field character for the entire model. All further field functions are of no
need due to the coupling of the volume fractions at the GAUSS point level.

The resulting global material reaction is displayed in a stress-strain diagram, see Fig.
6.30. Similar to the results for the basic model in Fig. 6.16 a very smooth transition occurs
without any distinct kink. A detailed comparison with the result for the basic model yields
the inside that the values are quite comparable to the results at 60◦ C in the basic model.
This is surprising at first glance since same values as for the tension test at for 22◦ C room
temperature have been used. The effect can be explained by the specific values used in the
basic and the extended model: the starting value in the extended model, rAf

, has app. double
the value as the dissipation parameter r in the basic model. On the other hand, the chemical
energy was chosen to be app. half the value as in the basic model to display the experi-
mental observations for tension tests. Due to the used values and the structure of the model
(see the yield condition), it is reasonable that similar results appear although this is not very
physical. Hence, the reason for this quite strange behavior does not lie solely in the chosen
parameters for the model. Rather the manner how the phase transformation takes place is
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Figure 6.27: Extended model. Distribution of austenite in a stripe of NiTi at 22◦ C. Free
length is 70 mm, regularization with cφ = 0.01 [GPa].
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Figure 6.28: Extended model. Distribution of austenite in a stripe of NiTi at 22◦ C. Free
length is 70 mm, regularization with cφ = 0.03 [GPa].
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Figure 6.29: Extended model. Distribution of austenite in a spring of NiTi at 22◦ C. Regu-
larized with cφ = 0.01 [GPa]. Time runs row wise.
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Figure 6.30: Extended model. Force-displacement diagram for a spring of NiTi at 22◦ C.
Regularized with cφ = 0.01 [GPa].

important. In both cases, for the basic as well as for the extended model, a very homoge-
neous phase transformation takes place in the case of the spring. In contrast, in the tension
test a localization occurs in the extended model. This is accompanied by a remarkable soft-
ening in the stress-strain diagrams for the tension test for which the parameter rAf

has to be
set quite high so that the final plateau coincides with the experimental observation. Since
there is no localized but homogeneous phase transition in the spring there is no remarkable
drop of stresses in the force-displacement diagram. In combination with the explained set
of model parameters the resulting curve for the spring in the force-displacement diagram for
the extended model has to be quite the same as for the basic model at higher temperatures.

Concluding, the extended model is able to display the localized transformation fronts
moving forward during loading and backward during unloading which are well known from
experiments. This effect was achieved by non-constant parameters for the dissipation which
yield a softening character and deductively mesh dependent results. The applied method of
regularization was successful to yield results which are independent of the finite element
discretization. After a remarkable drop of stresses, the resulting material behavior on the
global level, investigated in the space of stresses and strains, is in good agreement to ex-
perimental data. However, if no localized phase transformation occurs due to boundary and
geometry reasons the extended model yields remarkable too high forces, see the example
of a spring. Hence, if no investigations about the local material reaction are made the basic
model should be used since here the dissipation is not as much spatial dependent as in the
extended model. On the other hand, to be sure that no localized phase transformations occur
in a specific specimen first calculations with the extended model are recommended.
The effect of the dependence of the extended model on localized phase transformations is
extinct by the thermo-mechanically coupled model for which numerical results are presented
in the upcoming section.
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6.3 Numerical Results for the thermo-mechanically cou-
pled Model

For the case of including the non-isothermal character of phase transformations in shape
memory alloys, the thermo-mechanically coupled model is applied - like the previous mod-
els - first to basic problems which serve as validation to experiments. As initial problem a
heating-cooling experiment is simulated which gives rise of an approach how to interpret
and - even more interesting - how to estimate the dissipation coefficient which has been
assumed quite arbitrarily before. After the prove of the model’s quality, the example of the
spring is presented for the thermo-mechanically coupled model.

6.3.1 Evaluation on the GAUSS point level

As short preface, the material model is evaluated on the material point level for a purely
thermal load and with a constant dissipation parameter r = 0.01137 [GPa]. Hence, temper-
ature is changed over time and serves as given input for the model for which an evaluation
of the heat conduction equation according to Eq. (4.76) is not necessary. In Fig. 6.31
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Figure 6.31: Phase fraction of one martensitic variant over time. Red curve is during heating,
blue curve during cooling.

the resulting distribution of one martensite phase in CuAlNi is shown. This alloy shows a
cubic-orthorhombic phase transformation. In this case there exist six different martensitic
variants (n = 6). From energetic considerations it is obvious that the volume fraction of that
particular martensitic phase equals 1/n, again with n as number of martensitic variants, see
Sec. 4.2.1 and Fig. 4.10. Differently to the schematic plot in Fig. 4.10, the transformation
between austenite and martensite does not take place immediately but quite smoothly over
a small temperature interval. This fact comes from the inclusion of dissipation in the model
- dissipation has been neglected in the schematic plots due to simplicity.
Without any further modifications, the model provides the attribute of showing a hysteresis
which is well known from experiments, Fig. 6.33.
From this result the value for the quite arbitrary introduced dissipation coefficient r can be
derived in terms of entropy and enthalpy differences analytically which is presented in the
next section.
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6.3.2 Estimation of the dissipation coefficient r from experiments
The observation of hysteresis in the diagram volume fraction over temperature yields the
idea to calculate the dissipation parameter from experimentally determined quantities. In
order to do so, the condition that the yield function Φ equals zero when phase transformation
takes place is recalled. For the special case of thermal loading this means that the active
deviator has the form

devAjP j
i =


P j
0 −

1

n+ 1

n∑
i=0

P j
i ∀j , i = 0 (austenite)

P j
i>0 −

1

n+ 1

n∑
i=0

P j
i ∀j , i > 0 (martensite)

(6.1)

Here, the driving forces are only the chemical energies (no mechanical loading) which are
the same for all martensitic variants and do not depend on the orientation j. Same is valid
for the active phase. All the phases become active in this case. Then, the driving forces are
renamed to PA for austenite and for martensite PM. Hence, the deviator reads

devAjP j
i =


PA

(
1− 1

n+ 1

)
− n

n+ 1
PM ∀j , i = 0

PM

(
1− n

n+ 1

)
− 1

n+ 1
PA ∀j , i > 0

⇔ devAjP j
i =


n

n+ 1
(PA − PM) ∀j , i = 0 (austenite)

1

n+ 1
(PM − PA) ∀j , i > 0 (martensite)

(6.2)

Inserting this result in the condition for transformation gives

Φ
!
= 0

⇔

[
N∑
j=1

1

ξj

n∑
i=0

(
devAjP j

i

)2]
= r2

⇔
(

n

n+ 1

)2

(−cA + cM)
2 +

n

(n+ 1)2
(−cM + cA)

2 = r2

⇒ r =

√
n

n+ 1
|∆c| (6.3)

with |∆c| = | cA−cM| and the chemical energies at transformation temperature for austenite
cA and martensite cM, respectively.
In Fig. 6.32 the chemical energies for both austenite and martensite are presented.

From the approach of [28], see Eq. (4.69), it is clear that the difference in the chemical
energies for austenite and martensite is a linear function with temperature as argument,
namely

∆c(θ) := ∆a−∆b θ (6.4)

where ∆a = a0 − ak>0, ∆b = b0 − bk>0 and some arbitrary martensitic phase k (all the
martensitic phases have the same values for ai>0 and bi>0). According to Eq. (6.3), the
dissipation coefficient equals the absolute differences of the chemical energies, despite the
factor (n/n + 1)1/2. Since the chemical energies and their difference are functions of tem-
perature, the dissipation coefficient cannot be a constant value. This fact coincides with the
experimental observation in Fig. 6.33, [12].
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Figure 6.32: Chemical energies in dependence of temperature. Energy for austenite is plot-
ted in red, blue indicates the martensitic energy.

Figure 6.33: DSC curve for NiTi with marked phase transformations, [12].
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There, a result of a DSC measurement is plotted from which the transformation over
temperature can be derived: When the peaks in the heat flux occur, phase transformation
takes place. Thus, it is obvious that the temperature interval in which transformation hap-
pens is of unequal length: the bounds are θAs for the beginning and θAf

for the end of a
martensite→ austenite transformation, and θMs for the beginning and θMf

for the end of an
austenite → martensite transformation. This fact gives an additional hint that r cannot be
constant.

Unfortunately, no satisfactory scheme for the calculation of the chemical energies nor
their differences could be found in the literature. However, if they would be known the
dissipation parameters were known immediately, too. Then, the transformation temperatures
can be taken from experiments to calculate

rAs = |∆c(θAs)| , rAf
= |∆c(θAf

)|
rMs = |∆c(θMs)| , rMf

= |∆c(θMf
)| .

(6.5)

Due to the different temperature intervals for thermally driven phase transformation, tem-
perature cannot be the variable describing the dependence of r. In fact, the parameter chosen
best is the average amount of austenite, like in the approach for the extended model. This
average amount of austenite will change its value during phase transformation from 0 to 1
or the other way round, without any direct dependence on the temperature interval. Hence,
|λ0| may be interpreted as mathematical parameter describing both temperature intervals.
Furthermore, there exists obviously the possibility to transform from martensite to austenite
(during heating) and backwards from austenite to martensite (during cooling). In both cases,
the volume fraction of average austenite changes between the same boundaries. However,
the differences in the chemical energies are not equal as pointed out before. So, an additional
parameter is needed in order to distinguish between these two cases. Obviously, the direc-
tion of (|λ0|)˙, precisely sign (|λ0|)˙, changes. Hence, this parameter is taken into account by
formulating the dissipation coefficient as

r(|λ0|, sign (|λ0|)˙) =

√
n

n+ 1


rAs + (rAf

− rAs)|λ0| , sign (|λ0|)˙ > 0

min{rAs , rMs} , sign (|λ0|)˙ = 0

rMf
+ (rMs − rMf

) |λ0| , sign (|λ0|)˙ < 0

(6.6)

Using this non constant dissipation coefficient and performing the same calculation as for
the example according to Fig. 6.31 the result is in very nice agreement to the experimen-
tal data, see Fig. 6.34, where the starting and finishing temperatures for austenite and
martensite where chosen to be θAs = 265.0 [K], θAf

= 280.0 [K], θMs = 230.0 [K] and
θMf

= 210.0 [K].

Summarizing, until here the presented approach for the dissipation coefficient is capable
to describe in a thermodynamically convincing way and furthermore based only on experi-
mental data the transformation between the crystallographic phases austenite and martensite
in both directions. Additionally, the exact values for both ∆a and ∆b are not important –
same results will occur for different values. This is obvious since not only the dissipation
parameter depends on it but also the chemical energies which are used in the material model.

On the other hand, the formulation of r is not completed yet. The argumentation exe-
cuted for the extended model in Sec. 4.2.3 that nucleation of martensite costs more than its
evolution in the case of pseudo-elasticity is not incorporated yet. The current approach
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Figure 6.34: Phase fraction of one martensitic variant over time. Red curve is during heating,
blue curve during cooling.

would yield a constant dissipation parameter, again. This is clear since ’pure’ pseudo-
elasticity - so starting from a purely austenitic crystal lattice - can only be performed when
the surrounding temperature is above the finish temperature for austenite, θAf

. So, the dif-
ference between the chemical energies has a constant value - if the heat production due to
phase transformation is neglected for the moment.

In the case of pseudo-elasticity martensite evolves due to mechanical loading although
austenite is the stable phase at that temperature. Hence, the approach for r - which was
based only on thermal loadings - has to be modified. This is done in the way, that if the
current temperature lies above θAf

and despite that fact sign (|λ0|)˙ < 0, the dissipation has
to be the curve chosen during heating which is now gone backwards. Same is valid during
transformation from martensite back to austenite: then the curve from θMs to θMf

has to be
gone backwards, as well. This yields for the total dissipation parameter in dependence of
|λ0| and sign (|λ0|)˙ and accounting for θ

r(|λ0|, sign (|λ0|)˙, θ) =

√
n

n+ 1


rMf

+ (rMs − rMf
)|λ0| , θ < θAf

∧ sign (|λ0|)˙≤ 0

rAs + (rAf
− rAs)|λ0| , θ < θAf

∧ sign (|λ0|)˙ > 0

rAs + (rAf
− rAs)|λ0| , θ ≥ θAf

∧ sign (|λ0|)˙ < 0

rMf
+ (rMs − rMf

)|λ0| , θ ≥ θAf
∧ sign (|λ0|)˙≥ 0

(6.7)
The first two conditions of Eq. (6.7) are valid for room temperatures below the austenite fin-
ish temperature. The sign of the rate distinguishes - again - between austenite→ martensite
and martensite→ austenite transformations. If the amount of austenite is zero and addition-
ally its rate then the very first condition has to be taken which yields r = rMf

, so the value
for r for pseudo-plasticity.
The last two conditions account for pseudo-elasticity since here the approaches for r are
exchanged according to the explanation above.
In combination, this formulation accounts for both pseudo-elastic and pseudo-plastic pro-
cesses as well as heating and cooling.
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6.3.3 Finite Element Results for the thermo-mechanically coupled Model
The intention is to have a model where the number of parameters is as small as possible. In
other words, if there exists a relation between some parameters as derived in the previous
section this relation should be used. Hence, due to the missing calculation of the differ-
ences in entropy and enthalpy between the different crystallographic phases they are simply
chosen. It is possible to calculate the intersection point of the chemical energies just from

∆a−∆b θ⋆
!
= 0 (6.8)

which obviously yields

θ⋆ =
∆a

∆b
. (6.9)

It is clear that the start and finish temperature for martensite have to be smaller than θ⋆

whereas those for austenite have to be greater. Hence, there exist the possible interval in
which θ⋆ may lie in. This is

θMs < θ⋆ < θAs . (6.10)

So, for the upcoming calculations ∆a and ∆b are chosen in a way that Eq. (6.10) is not
violated. The parameters are collected in Tab. 6.2.

∆a = −0.208199 [GPa] ∆b = −0.000775501 [GPa]

θ⋆ = 268.47 [K] θR = 295.15 [K]

θAf
= 291.79 [K] θAs = 268.64 [K]

θMf
= 233.47 [K] θMs = 260.31 [K]

rAf
= 0.0174 [GPa] rAs = 0.0002 [GPa]

rMf
= 0.026 [GPa] rMs = 0.006 [GPa]

βφ = 1.0 [GPa] cφ = 0.001 [GPa]

cθ = 0.0105 [GPa/K] αθ = 0.0075 [mmK/W]

Table 6.2: Material parameters for the thermo-mechanically coupled model.

The transformation temperatures are taken from [12] and linearly interpolated to get val-
ues for a NiTi alloy with 50.9% Ni. No convincing measured values for the heat capacity
nor the heat conductivity (≈ 1/αθ ) could be found in the literature. Hence, they were cho-
sen such that the experimental data was reached best. Due to the stabilizing influence of
temperature the parameter for penalizing the gradient, which is cφ, could be set relatively
small. As mentioned before, the dissipation coefficients are calculated from the differences
in entropy and enthalpy, the number of possible variants is n = 12 for this alloy.

For the numerical simulations first investigations for the wire used already for the basic
and the extended model are carried out. The result in the stress-strain diagram is presented
in Fig. 6.35. Here, the dashed lines represent the experiments at different temperatures and
the solid lines the associated simulations. It can be seen that there still exists some deviation
between the individual plateau stresses. However, the principle character of the material
behavior is displayed quite well. Although the model works with non-constant dissipation
parameters there is no drop in the stresses at all. This is a great advantage compared to the
extended model where this effect had some influence on the simulation of specimens which
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do not show localized transformation zones due to their geometry and loading. Here, a very
distinct kink occurs in the stresses when phase transformation initializes. The subsequent
plateau is in rather perfect agreement despite the specific value. Only very slight slopes
occur in the simulations which can be seen in a comparable way in the experiments as well.

Figure 6.35: Thermo-mechanically coupled model. Stress-strain curves for a wire of NiTi
at 50◦ C and 60◦ C. Dashed lines are experiments, solid lines are simulations.

During unloading the plateau is rather smooth. This is another improvement compared to
the previous models since it coincides better to the experimental observations. Interestingly,
the entire character of the material reaction which is in very nice agreement to experiments
is incorporated in the model. Only difference between the two simulations was the respec-
tive starting temperature. Hence, a further investigation and even better estimation of the
only two parameters ∆a and ∆b could improve the quantitative coincidence even more.

Next example is again the stripe of NiTi. The resultant material answer is depicted in
Fig. 6.36. Only change between this simulation and the previous form Fig. 6.35 - despite
the geometry - was the starting temperature. It can be seen that the general character of the
material is simulated quite well. Similarly as in the previous result for the basic model there
exists only a very slight softening in the stress-strain response. Temperature which is now
an evolving variable stabilizes the austenite. Hence, the strong influence of the decreasing
dissipation parameter and deductively the threshold for the yield function is damped. Again
the experimental data is reached quantitatively not perfectly. Improvements in the values
for the chemical energies could correct this. However, just by changing temperature and
geometry the material model is able to predict the real behavior in a comparable manner as
it could simulate the wires from Fig. 6.35.

The influence of different loading velocities can be observed in Fig. 6.36 as well. When
a higher loading velocity is applied more heat is generated. This results in a smoother curve
since all phase transformations are influenced by temperature. Particularly in the beginning
of the plateau the stress is slightly higher because the rate of transformation is reduced due
to the stabilizing effect of temperature to austenite. During unloading a line rather parallel
to the abscissa shows up in the plateau.

Although only a very slight softening was observed in the stress-strain diagram the lo-
calizing phase transformations are desired as outcome since they are an experimental evi-



112 CHAPTER 6. NUMERICAL RESULTS

Figure 6.36: Thermo-mechanically coupled model. Stress-strain diagram for a stripe of
NiTi at 22◦ C. Loading velocities are u̇x1 = 0.1 [mm/min] (black curve) and u̇x1 =
1.0 [mm/min] (gray curve).

Figure 6.37: Thermo-mechanically coupled model. Distribution of austenite in a stripe of
NiTi at 22◦ C. Loading velocity u̇ = 0.1 [mm/min].
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Figure 6.38: Thermo-mechanically coupled model. Distribution of temperature in a stripe
of NiTi at 22◦ C. Loading velocity u̇ = 0.1 [mm/min].

dence. In Fig. 6.37 the distribution of austenite over time in the specimen corresponding
to the results of Fig. 6.36 can be seen. Here, the loading velocity was relatively small with
u̇ = 0.1 [mm/min]. The phase transformation starts - as well as in all previous tension ex-
amples - at the supports. In contrast to the basic model and the extended model, at both sides
distinct localized transformation zones evolve. Due to the damping effect of temperature the
small deviations in the elastic constants from a purely isotropic material in the beginning are
smeared out. Consequently, at both sides fronts evolve. Still, the transformation zones do
not move with the same velocity which is - again - due to the set of N = 30 orientations.

Figure 6.39: Thermo-mechanically coupled model. Distribution of austenite in a stripe of
NiTi at 22◦ C. Loading velocity u̇ = 1.0 [mm/min].

During unloading first the upper fronts vanish and afterwards the fronts in the lower
parts collide. The amount of transformed material is of same order as in the extended model
and much higher compared to the basic model.
In Fig. 6.38 the corresponding distribution of temperature is presented. Here, only the de-
viation from the start temperature is shown. Due to phase transformation heat is produced.
Therefore, analogously to the evolution of martensite the temperature first increases quite
localized. While the transformation zones are moving which serve as internal heat wells the
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distribution of temperature is moving, too. Of course, due to its transient character the dis-
tribution of temperature is much more smeared out compared to the one of austenite. There
occurs a peak in the distribution of temperature when the two heat fronts meet, compare to
Fig. 6.2.
When the specimen is unloaded a phase transformation from martensite back to austenite
takes place. According to this, the temperature is decreasing again. Since the entire process
is dissipative there is a lower temperature in the specimen after complete unloading than in
the original state. In reality this gap of heat would be compensated by a heat flux from the
surrounding inside the specimen for which the model does not account for.

Figure 6.40: Thermo-mechanically coupled model. Distribution of temperature in a stripe
of NiTi at 22◦ C. Loading velocity u̇ = 1.0 [mm/min].

At higher loading velocities (u̇ = 1 [mm/min]) the distribution of austenite is different,
Fig. 6.39. Here, transformation initializes again at the supports but due to the high evolution
of temperature its stopped quite immediately. In contrast, in the center of the specimen all
further phase transition proceeds which comes from the fact that the temperature is minimal
there. Two distinct transformation fronts evolve which move through the specimen in the
direction of the supports. The influence of the relatively high temperature can be seen in the
remaining amount of austenite. With a number of app. 40% it is quite high compared to
the slow loading velocity. This is reasonable since temperature stabilizes the austenite and
serves as driving force directed in the contrary direction than the mechanical ones. Thus,
less material transforms.
During unloading both fronts move back in the center of the specimen and meet again there.

Figure 6.40 shows the evolution of temperature at high loading velocities. Again, tem-
perature evolves strongly connected to the phase transformations. The maximum value for
temperature is slightly lower than in the example of slow loading. The absolute value of its
minimum is even remarkably smaller. However, the amount of produced heat is higher. This
can be seen from the temperature which has the maximum and minimum value for a much
broader expansion.

For a stripe with a free length of 70 mm the distribution of austenite is presented in Fig.
6.42. In all subsequent calculations the strain velocity was set to same values as for the short
specimens so that the velocities vary between u̇ = 0.2 [mm/min] and u̇ = 2.0 [mm/min].
Here, the phase transformation starts at the lower end. Due to the stabilizing effect of tem-
perature a second transformation zone in the upper part of the specimen evolves. Both zones
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Figure 6.41: Thermo-mechanically coupled model. Distribution of averaged of all marten-
site three variants (

∑N
j=1 ξ

jλj
3) in a stripe of NiTi at -40◦ C. Loading velocity u̇ =

0.28 [mm/min].

Figure 6.42: Thermo-mechanically coupled model. Distribution of austenite in a stripe of
NiTi at 22◦ C with free length of 70 mm. Loading velocity u̇ = 0.2 [mm/min].
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have a distinct transformation front. These fronts are moving from both ends to the center
of the specimen. During unloading exactly these fronts move back to the supports where
the transformation had initialized. The associated distribution of temperature in the stripe
with free length of 70 mm is shown in Fig. 6.43. According to phase transformation tem-
perature evolves first at the lower part. Then, it is increased in the upper part, too. While the
transformation fronts are moving temperature is moving as well, exhibiting a distinct zone
which separates the warm from the cool part. This is in good agreement to experimental ob-
servations, see Fig. 6.2. During unloading the edges of the hot part of the specimen which
are located next to the center are cooled down. This is since the transformation zones are
moving back to the supports.

Figure 6.43: Thermo-mechanically coupled model. Distribution of temperature in a stripe
of NiTi at 22◦ C with free length of 70 mm. Loading velocity u̇ = 0.2 [mm/min].

Results for the same specimen but now with an increased loading velocity are presented
in Fig. 6.44, distribution of austenite, and in Fig. 6.46, distribution of temperature. In con-
trast to the previous result at high loading velocity only one transformation zone evolves.
Although temperature stabilizes again the austenite, due to the set of orientations it is still
more favorable for the material to maintain only one transformation zone. Differently to the
slow loading velocity the remaining amount of austenite is remarkably higher here. During
unloading the same transformation front which has moved during loading is going back-
wards into the direction of the support.

The distribution of temperature shows a similar behavior like in the previous example.
It is strongly in accordance with the phase transformations. During loading the material
is heated up while unloading and the associated phase transformations cool the specimen
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Figure 6.44: Thermo-mechanically coupled model. Distribution of austenite in a stripe of
NiTi at 22◦ C with free length of 70 mm. Loading velocity u̇ = 2.0 [mm/min].
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again. The maximum heat produced in the material is quite the same as in the specimen
with slow loading velocity. However, compared to the amount of transformed material the
heat production is much higher. Although less martensite evolves in the specimen under fast
loading the maximum enhancement of temperature is as high as in the case of slow loading.

Figure 6.45: Thermo-mechanically coupled model. Stress-strain diagram for stripes of NiTi
at 22◦ C with free length 70 mm. Loading velocities are u̇x1 = 2.0 [mm/min] (black curve)
and u̇x1 = 0.2 [mm/min] (gray curve).

The entire material reaction is - again - represented in a stress-strain diagram, Fig. 6.45.
In the case of slow loading there occur two regions of material softening in the stress-strain
diagram. This coincides with the observation that two transformation zones are evolving.
This happens in a row. Hence, the two small hills show up. After that, the material hardens
which is slightly higher than expected. This results from the complex between stabilizing
temperature and softening in the dissipation parameters. Due to the high temperature within
the transformation zone the rate of phase transformation is reduced. On the other hand, a
third transformation zone in the center does not evolve since temperature enhancement has
spread to this region already. Therefore, a conflict between a simplified further transfor-
mation in the transformation zones where the temperature is quite high and an initializing
transformation in the center where only austenite exits and temperature is relatively low.
Since in both cases a transformation is impeded somehow the entire material reacts stiffer
than expected. This effect is slightly neglected since in the case of fast loading some trans-
formation at the upper part is able to compensate the ’missing’ transformation in the main
transformation zone.

In Fig. 6.47 the stress-strain diagram for the pseudo-plastic stripe is plotted. The elastic
region is quite small. The transition from that region into the plateau is very sharp. The
entire plateau has a very small slope and shows no softening due to the constant dissipation
parameter.

Figures 6.41 and 6.48 show the evolution of martensite variant 3 and temperature, re-
spectively. The room temperature was set to -40◦ C. Hence, pseudo-plastic material behavior
occurred. The amount of martensite is just an averaging of all martensite 3 variants in all
grains at each GAUSS point. Of course, martensite 3 is not a unique definition - still it gives
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Figure 6.46: Thermo-mechanically coupled model. Distribution of temperature in a stripe
of NiTi at 22◦ C with free length of 70 mm. Loading velocity u̇ = 2.0 [mm/min].
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Figure 6.47: Thermo-mechanically coupled model. Stress-strain diagram for a stripe of NiTi
at -40◦ C. Loading velocity is u̇ = 0.28 [mm/min].
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a hint how phase transformations evolve. The dissipation parameter is constant in this case,
namely r = rMf

. Consequently, the distribution of martensite reminds to the one received
for the pseudo-elastic case with the basic model. Phase transformation starts at the supports
and spreads rather homogeneously over the entire specimen.

Figure 6.48: Thermo-mechanically coupled model. Distribution of temperature in a stripe
of NiTi at -40◦ C. Loading velocity u̇ = 0.28 [mm/min].

In the distribution of temperature a different effect than for the case of pseudo-elasticity
can be observed. While in pseudo-elasticity a back transformation from martensite to
austenite causes a decrease of temperature, the temperature in the case of pseudo-plasticity is
just increasing, no matter whether the specimen is loaded or unloaded. This is in accordance
to the fact that the original state is not restored during unloading but a certain combination
of unevenly distributed martensitic variants. The absolute value for temperature is much
smaller than in the case of pseudo-elasticity.

As the last geometric example simulations for the spring are executed. The numerical
results for the case of pseudo-elasticity are presented in Fig. 6.49. Room temperature was
set to 22◦ C. Similar to all previous examples including the spring most phase transforma-
tion takes place in the inner part of the spring, Fig. 6.50. Additionally, in the center of the
unwound wire the maximum transformation is observed. Now, which is in strong contrast
to the basic and the extended model, the remaining amount of austenite is only at app. 9%.
This is app. only one fifth of the amount calculated by one of the other models. Although
again a rather homogeneous load state is established due to the boundary conditions the
transformation takes place quite distinct at the inner circle of the spring. The evolution of
temperature is relatively small, Fig. 6.50. However, it is sufficient to force the material to
transform at the inner circle in a more or less pronounced way. This happens on such a
small volume that the heat produced here does not inhibit the transformation too much. In
contrast, at different locations in the spring the mechanical driving forces are smaller and
the temperature evolution too high that in these volumes phase transformation could occur
in such a homogeneous way as in the other models. Hence, a more localized phase transfor-
mation takes place.

The temperature is the highest in the center of longitudinal axes of the spring. This
causes the austenite to be more stable locally. Since the mechanical driving forces are the
highest in the inner circle of the spring, here the localized phase transformations are ob-
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Figure 6.49: Thermo-mechanically coupled model. Distribution of austenite in a spring of
NiTI at 22◦ C. Loading velocity u̇ = 0.4 [mm/min].
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Figure 6.50: Thermo-mechanically coupled model. Distribution of temperature in a spring
of NiTi at 22◦ C. Loading velocity u̇ = 0.4 [mm/min].
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served. During unloading temperature decreases again to a smaller value than in the initial
state.

Figs. 6.51 and 6.52 show the result for a spring at -40◦ C which behaves pseudo-
plastically. In this case no austenite comes into play for which the average over the marten-
site six variant is plotted in Fig. 6.51. Again, this gives rather a hint where phase transitions
take place not which variant exactly may be found. Similar to the previous results phase
transformations occur mainly in the inner circle of the spring. Due to twisting in the spring
the distribution of the average value for martensite is not even (more transition in the lower
part, less transition in the upper part), see above.

Figure 6.51: Thermo-mechanically coupled model. Distribution of averaged of all marten-
site six variants (

∑N
j=1 ξ

jλj
6) in a stripe of NiTi at -40◦ C. Loading velocity u̇ =

0.4 [mm/min].

The distribution of temperature, presented in Fig. 6.52, shows that main heat is produced
in the center of the spring. This is in accordance to the phase transformation evolving.
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Similar to the previous example of pseudo-plasticity, the produced heat in the specimen is
higher at the end of the entire loading and unloading process. However, the entire amount
of produced heat is much smaller than in the case of pseudo-elasticity for which only the
starting temperature was changed. This effect holds true although the spring at -40◦ C was
only loaded half the way as the spring at 22◦ C.

Figure 6.52: Thermo-mechanically coupled model. Distribution of temperature in a stripe
of NiTi at -40◦ C. Loading velocity u̇ = 0.4 [mm/min].

The global material reaction is displayed in a force-displacement diagram, see Fig. 6.53.
The result is in this case similar to the ones of the other models. However, there exists a
remarkable difference. Although the total character is quite comparable for the case of
pseudo-elasticity, 22◦ C room temperature, the resulting force is remarkably smaller than
in the other results. Of course, higher forces for the basic model were expected since the
input parameters for 50◦ C and 60◦ C were used. Still there was the first surprising result
for the extended model which yield due to homogeneous phase transformation similar re-
sults as the basic model although the room temperatures differed much (50◦ C, 60◦ C for
the basic model, 22◦ C for the extended model). Using the thermo-mechanically coupled
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model gives for only changed input room temperature a resulting force which is of reason-
able magnitude. This shows that the effect of temperature should be taken into account if a
non-constant dissipation parameter is used.

Furthermore, the material reaction of the pseudo-plastically behaving spring at -40◦ C
is caught in the force-displacement diagram (gray curve). Due to the martensitic elastic
constant the spring behaves much stiffer in the elastic region. When phase transformation
takes place the force is quite constant. Despite the rather smooth transition from the elastic
region into the plateau the resultant curve for the spring is of quite similar character like the
curve for the pseudo-plastic stripe, Fig. 6.47. Of course, the forces have different values.

Figure 6.53: Thermo-mechanically coupled model. Force-displacement diagram of a spring
of NiTi at 22◦ C (black curve) and -40◦ C (gray curve). Loading velocity in both cases
u̇ = 0.4 [mm/min].

Concluding, the thermo-mechanically coupled model shows reasonable results. Evolu-
tion of temperature fulfills the physically motivated expectations. Additionally, the temper-
ature has a remarkable influence on the results. Both for the case of pseudo-elastic mate-
rial and pseudo-plastic material, temperature forces the material to react in a different way.
Softening effects are damped but the localized character of phase transitions in pseudo-
elasticity are maintained. Furthermore, the establishment of several transformation zones is
supported. At higher loading velocities the material reaction is of quite different character
which has been reported e.g. in [49]. Influence of temperature improves the applicability
of the model since the resulting force-displacement curves are in much better coincidence
as the results for the extended model applied on a spring. Pseudo-plastic problems could be
simulated just by changing the room temperature as input.

The approach of calculating the dissipation parameter straight from the chemical con-
stants is very promising. With a rather rough estimate of the chemical distances already
quite good results could be obtained. As long as there exists no approach to calculate ∆a
and ∆b analytically a continued parameter identification can be used to improve the results
further.

There exists quite a bunch of different models for shape memory alloys. Hence, in the
next section results for the famous model of Taylor and Auricchio are presented. These are
used as benchmark for the quality of the models presented in this work.
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6.3.4 Comparison between the basic model and the phenomenological
model of Auricchio and Taylor

As reference model for the material models derived in this work, the model of Auricchio
and Taylor is used in its ANSYS implementation. The distributions of the internal phases,
on the one hand volume fraction of martensite, γM, for the Auricchio and Taylor model and
on the other hand the average amount of austenite in the basic model, |λ0|, are compared.
The parameter for the model of Auricchio and Taylor introduced in Sec. 4.3 are fitted to the
resulting stress-strain curve of the calculation obtained by the basic model. Hence, they are
not displayed here.
The spatial phase distributions provide information about the models’ qualities to display
the materials reaction on a local level, as already mentioned before. The main characteriza-
tion for the local material behavior are the localized phase transitions which are supposed to
be displayed by the material models.

The regarded geometry is quite similar to the stripe treated before. The displacements
are fixed at the left hand side and vary in time at the right hand side. The model of Auricchio
and Taylor does not include temperature effects nor thermal coupling. Therefore, the basic
model from this work is taken for comparison, Sec. 4.2.2.

Fig. 6.54 displays the distribution of austenite at various time steps calculated with the

Figure 6.54: Distribution of austenite in a stripe of CuAlNi calculated with the basic model.

basic model of this work. Due to the similarity of the geometries in this section and in Sec.
6.1, the results are quite the same. The phase transformation initializes at the supports (first
rows of nodes within the discretization at both ends) while afterwards a homogeneous trans-
formation follows. As pointed out, this is in contrast to the experiments in [48], Fig. 6.1.

The numerical results for the material model of Auriccio and Taylor is presented in Fig.
6.55. The boundary conditions as well as the geometry and loading are completely the same
as in the previous calculation with the basic model. Here, the phase transformations start
at both ends due to stress peaks. After that a very homogeneous transformation takes place
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where there is no spatial localization as observed in experiments. However, the results are

Figure 6.55: Distribution of martensite in a stripe of CuAlNi, calculated with the model of
Auricchio and Taylor in its ANSYS implementation.

very similar to the results obtained by the basic model. This proves empirically that for a
simple geometry and simple loading both models yield similar results.

The model of Auricchio and Taylor is quite comparable to a material model for plastic-
ity. It does not account for different martensitic phases nor for different grain orientations.
This makes the model very fast.
The basic model here resolves for the volume fractions of all the martensitic variants in all
the different grain orientations. This makes the model quite slow. Still, the model is more
robust from a numerical point of view. The calculations with the model of Auricchio and
Taylor tend to fail if the values characterizing the hysteresis, σAS

s and σAs
f as well as σSA

s and
σSA
f , are set in a way that the hysteresis reveals a plateau. The basic micromechanical model

is quite robust in that regard.
Due to the more detailed resolution more information is provided by the basic model which
can be interesting from the material science’s or material theory’s point of view. However,
both models are not able to display the localizing character of the phase transformations
evolving in reality. Furthermore, the thermal character is neglected in both models.

The micromechanically motivated model, even in its basic version, does not need prob-
lem dependent parameters like stress values nor transformation strains as scalar quantity
from a tension test. The parameters here, chemical energy and dissipation parameter, are
both only global, problem and loading independent quantities. These quantities have to be
set only once. After that they are fixed and can be transferred for any other problem due to
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their universality. This testifies a broader applicability to micromechanical models like the
basic one here, see the examples given above.

The extended as well as the thermo-mechanically coupled model yield results which
are in remarkably better coincidence with experimental observations than the results for the
basic model. Therefore, a substantial improvement has been performed during the further
development of the basic model. Now, localized transformation fronts, well known from ex-
periments, can be displayed and the thermal coupling is included which has a strong impact
on the material reaction even in the case of pseudo-elasticity: the loading velocity changes
the material behavior significantly which can be observed both in stress-strain diagrams and
the amount of transformation fronts.



Chapter 7

Conclusions and Outlook

7.1 Conclusions
Main focus of this work laid on the discussion of the principle of maximum dissipation and
its application to the simulation of shape memory alloys. First, different schemes for evo-
lution equations were compared: the introduction of yield functions for elasto-plastically
behaving materials, the principle of the minimum of the dissipation potential and the prin-
ciple of maximum dissipation. All three methods are in general possible to use for mechan-
ical material modeling. Since modeling is always based on some assumptions the different
methods provide different advantages or disadvantages. Depending on the desired model’s
capability of reflecting different material properties, different concepts can be applied. The
interrelation between the models and the respective interpretation in a thermodynamical
context were highlighted.

It was pointed out that the desired governing equation which describe inelastic material
reactions can be derived from yield functions. The derivative of the yield function with re-
spect to the driving forces, in which the yield function is stated, gives the normal to the yield
surface and thus the (relative) change of internal variables. Seeking for the root of the yield
function gives then the ’length of the rate vector’. In combination with the general equations
in continuum mechanics, the system of equations is closed and can be solved for the entire
set of variables describing the current physical state of the treated mechanical body. It was
explained that the difficulty of this method lies in the formulation of the yield function: in
order to take constraints into account the yield function has to be found in a way that these
constraints are fulfilled. While dealing with materials for which modeling is complex, it is
complicated to find the correct yield function.

Based on the example of perfect plasticity, the principle of the minimum of the dis-
sipation potential was derived. Starting from a yield function and deductively evolution
equations, a LEGENDRE transformation of the problem was carried out. The result of this
effort was that the problem could be reformulated by means of a (mathematical) poten-
tial which was called dissipation potential. Minimization of this potential resulted in the
same evolution equations like in the case of introducing yield functions. The difference be-
tween the two concepts was that the mathematically different treatment of the same physical
problem by using the dissipation principles allowed to introduce constraints very easily. A
back LEGENDRE transformation of this potential gave then the corresponding yield function
which already accounts for constraints.

The last principle of material modeling was the principle of maximum dissipation. This

129
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concept used a thermodynamical identity which combined the first and second law of ther-
modynamics. Then, the principle of maximum dissipation is used to introduce a LA-
GRANGEan consisting of the dissipation itself, the mentioned thermodynamical identity and
further, problem dependent constraints. This LAGRANGEan was then maximized with re-
spect to all free variables. Resulting from the maximization conditions, the constitutive
equations for stress and entropy respectively could be derived and additionally the heat con-
duction equation and evolution equations for the internal variables. A final LEGENDRE

transformation of the problem gave then the yield function for the problem.
This concept combined the advantage of an easy introduction of constraints with the inclu-
sion of thermal effects.

After a detailed discussion and general methods to deal with the different principles,
the principle of maximum dissipation was applied to the modeling of shape memory alloys.
Giving an introduction to the topic both on the material science as well as on the mathe-
matical level, a basic model was derived. Starting from this basic model, two new models
were presented whose abilities to predict the material reaction of shape memory alloys on a
macroscopic level are much better. All three models were evaluated on a macroscopic level
by means of the finite element method for the first time.
Although the basic model yields good results on the GAUSS point level, the material model-
ing for entire specimens was not satisfactory. This fact motivated the derivation of the two
new models. The first one of the new models is able to display the localized transformation
fronts which occur during pseudo-elasticity - this stands in contrast to the basic model. The
extended model, including softening behavior, was regularized in order to yield still results
independent of the finite element discretization of the boundary value problem. The last
model takes the influence of temperature into account. This allows that the loading velocity
is represented which has a direct influence on the number of transformation fronts evolving
due to the stabilizing effect of temperature to austenite. Concluding, this model is able to
simulate cooling and heating of shape memory alloys.

The heating-cooling simulations gave raise to a new interpretation of the dissipation pa-
rameter. This parameter was formerly a model parameter which was hard to derive from
experimental data. Due to its new interpretation, it could be shown that the dissipation pa-
rameter is - just like elastic constants and transformation strains - a material parameter which
can be examined from the chemical energies of austenite and martensite. This fact broads
the even wide basis of the models more and increases the applicability of the models.

The numerical results for the three models proved the progress in modeling and simula-
ting shape memory alloys which was shown by a comparison to the model of Auricchio and
Taylor. Starting with the basic model, different boundary value problems were simulated
and brought into comparison with experiments. Due to the gap between simulation and ex-
periment, the extended model was derived taking into account different energetic thresholds
for nucleation and evolution of crystallographic phases. This model delivered the desired
result of localized transformations but in order to receive results independent of the finite
element mesh, a regularization method had to be applied. The final, thermo-mechanically
coupled model was used to simulate different problems which served as basis for discussion.

Concluding, particularly the extended and the thermo-mechanically coupled model show
very good agreement to experimental observations both on local as on global scale. The
simulation of pseudo-elasticity and pseudo-plasticity are possible, all based on the basic
physical laws and on parameters which can completely be found from experiments, except
for one phenomenological parameter (penalty parameter for the gradient of the field func-
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tion: global surface energy). Since the parameters seem to have an universal character and
even completely different material behavior is possible to be simulated the model presented
here belongs to the class of energetic models described in Sec. 1.

7.2 Outlook
Although the results are now quite good, the models could be improved further. Particu-
larly the exact values for the differences in the chemical energies have to be investigated in
further parameter studies. A topic of recent origin is the interplay between phase transfor-
mations and plasticity. This effect is discussed right now in science. In order to understand
the processes which evolve in real materials, the tool of simulation can be helpful. Hence,
the inclusion of plasticity in the models is a point which is left to be done. Then, it might be
easier to understand the underlying reasons and processes how and under which conditions
material reactions occur which are observed in experiments. An example can be the func-
tional fatigue which appears with increasing number of load cycles.

Furthermore, the extension of the model by means of damage is a very interesting goal
for future activities. Then, the processes of structural as well as functional fatigue - maybe
in combination with the inclusion of plasticity - can be eventually understood better, too. Al-
though this topic shows a certain potential, its realization is a quite hard task as usual when
dealing with damage: the estimation of material parameters which are valid for all loading
cases in an optimal solution, is very complicated. However, as executed for the dissipation
parameter simulations itself may show a better understanding of the underlying model and
hence there may exist a way to estimate this parameters, as well.

Based on the new interpretation of the dissipation coefficient a database seems to be use-
ful. Relying on experimental data, the chemical constants depending on the specific alloy
composition and maybe temperature have to be found. Then, finally a universal model for
shape memory alloys is available where the only input parameters are the current material
and the current room temperature. If there are ways to accelerate the models calculation
speed, the model derived in this work may be used even in industrial applications.

Finally, from the programmer’s point of view a parallelization seems to be convenient
to accelerate the model in order to simulate specimens with an even higher resolution. This
would make the simulation for bending processes of shape memory alloys in an acceptable
amount of time possible where a very high number of elements for the numerical treatment
is necessary.
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Appendix A

Material Data

A.1 Nickel Titanium

The material data for Nickel Titanium (NiTi) are taken from [60] and collected in Tab. A.1,
transformation strains, and Tab. A.2, elastic constants.

η1 =

α δ ϵ
δ α ϵ
ϵ ϵ β

 η2 =

 α δ −ϵ
δ α −ϵ
−ϵ −ϵ β

 η3 =

 α −δ −ϵ
−δ α ϵ
−ϵ ϵ β


η4 =

 α −δ ϵ
−δ α −ϵ
ϵ −ϵ β

 η5 =

α ϵ δ
ϵ β ϵ
δ ϵ α

 η6 =

 α −ϵ δ
−ϵ β −ϵ
δ −ϵ α


η7 =

 α −ϵ −δ
−ϵ β ϵ
−δ ϵ α

 η8 =

 α ϵ −δ
ϵ β −ϵ
−δ −ϵ α

 η9 =

β ϵ ϵ
ϵ α δ
ϵ δ α


η10 =

 β −ϵ −ϵ
−ϵ α δ
−ϵ δ α

 η11 =

 β −ϵ ϵ
−ϵ α −δ
ϵ −δ α

 η12 =

 β ϵ −ϵ
ϵ α −δ
−ϵ −δ α


Table A.1: Material data for NiTi: transformation strains. α = 0.02381, β = −0.02480,
δ = 0.07528, ϵ = 0.04969

The elastic constants for martensite have to be rotated and / or mirrored into the direc-
tion of every variant. This is carried out by means of the operation matrices in Tab. A.3
which serve as input for special rotation matrices in the six-dimensional space according to
MEHRABADI-COWIN . The general six-dimensional rotation matrix Q̃ is given, according
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C̃0 =


140 110 110 0 0 0
110 140 110 0 0 0
110 110 110 0 0 0
0 0 0 32 0 0
0 0 0 0 32 0
0 0 0 0 0 32

 GPa

ˆ̃Ci>0 =


223 129 99 0 7 0
129 241 125 0 −9 0
99 125 200 0 4 0
0 0 0 76 0 −8
7 −9 4 0 21 0
0 0 0 −8 0 77

 GPa

Table A.2: Material data for NiTi: elastic constants for austenite and martensite (in notation
of MEHRABADI-COWIN ).

to [37], as

Q̃(Q) =



Q2
1,1 Q2

1,2 Q2
1,3

Q2
2,1 Q2

2,2 Q2
2,3

Q2
3,1 Q2

3,2 Q2
3,3√

2Q2,1Q3,1

√
2Q2,2Q3,2

√
2Q2,3Q3,3√

2Q1,1Q3,1

√
2Q1,2Q3,2

√
2Q1,3Q3,3√

2Q1,1Q2,1

√
2Q1,2Q2,2

√
2Q1,3Q2,3

√
2Q1,2Q1,3

√
2Q1,1Q1,3

√
2Q1,1Q1,2√

2Q2,2Q2,3

√
2Q2,1Q2,3

√
2Q2,1Q2,2√

2Q3,2Q3,3

√
2Q3,1Q3,3

√
2Q3,1Q3,2

Q2,3Q3,2 +Q2,2Q3,3 Q2,3Q3,1 +Q2,1Q3,3 Q2,2Q3,1 +Q2,1Q3,2

Q1,3Q3,2 +Q1,2Q3,3 Q1,3Q3,1 +Q1,1Q3,3 Q1,2Q3,1 +Q1,1Q3,2

Q1,3Q2,2 +Q1,2Q2,3 Q1,3Q2,1 +Q1,1Q2,3 Q1,2Q2,1 +Q1,1Q2,2


(A.1)

with the components Qi,j of the three-dimensional rotation matrix Q. In that way, every ro-
tation matrix in the three-dimensional space can be transferred to the corresponding rotation
matrix in the six-dimensional space. For example,

QT · η ·Q 3↔6←→ η̃ · Q̃(Q) (A.2)

for the rotated transformation strains and

QsoQtpQuqQvr Cstuv
3↔6←→ Q̃(Q)so C̃sv Q̃(Q)vr (A.3)

for the rotated elastic constants, both in the MEHRABADI-COWIN notation.
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M̂ 1 =

1 0 0
0 1 0
0 0 1

 M̂ 2 =

1 0 0
0 1 0
0 0 −1

 M̂ 3 =

−1 0 0
0 1 0
0 0 1


M̂ 4 =

1 0 0
0 −1 0
0 0 1

 M̂ 5 =

1 0 0
0 0 1
0 1 0

 M̂ 6 =

1 0 0
0 0 1
0 −1 0


M̂ 7 =

−1 0 0
0 0 1
0 1 0

 M̂ 8 =

1 0 0
0 0 −1
0 1 0

 M̂ 9 =

0 0 1
0 1 0
1 0 0


M̂ 10 =

 0 0 1
0 1 0
−1 0 0

 M̂ 11 =

0 0 1
0 −1 0
1 0 0

 M̂ 12 =

0 0 −1
0 1 0
1 0 0


Table A.3: Material data for NiTi: operation matrices to calculate the elastic constants for
the specific martensitic variants according to Q̃(M̂

T

i ) ·
ˆ̃Ci>0 · Q̃(M̂ i) = C̃i>0.
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