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Summary

This thesis reports research progress on several fields of modeling microstructures in crystal-
line solids under elasto-plastic deformations. Based on thermodynamic minimum principles,
the origin and subsequent evolution of microstructures is analyzed and computational tech-
niques for their determination are presented. The present work decomposes into two major
parts which emphasize different modeling aspects in this context.

In the first part, microstructures as minimizers of non-convex energy potentials in fini-
te plasticity are investigated, following the thermodynamic principles of minimum potential
energy and of minimum dissipation potential. The relaxation of these potentials by applicati-
on of a rank-one-convex approximation of the quasiconvex hull allows for the description of
the evolving microstructural parameters involved. A novel incremental solution formulation
is derived for the simulation of laminate microstructures and applied to problems of single-
and double-slip single-crystal plasticity. In contrast to many literature approaches which we-
re based on a condensed energy, the present incremental method accounts for the existing
microstructure at the beginning of each time step. Numerical results from the present va-
riational formulation comprise the evolution of all microstructural laminate characteristics
upon deformation, and they indicate a considerable reduction of the energy during the course
of loading as compared to previous models.

The second part deals with the description of dislocation structures by means of a con-
tinuum dislocation theory. The free energy is modified to account for the energy of lattice
defects, so that dislocation characteristics may enter the constitutive equations as an inte-
gral part. The particular choice of this defect energy entails a saturation behavior: the local
maximum dislocation concentration is bounded. Based on this approach, closed-form ana-
lytical solutions for the pile-up of dislocations at the boundaries of bicrystals subject to a
mixed deformation of shear and extension are presented. Interestingly, results indicate a
size-dependence of the yield stress and of the hardening behavior. A variational formulati-
on allows for the numerical treatment of fundamental two-dimensional problems with one
active slip system. Numerical results comprise the formation of dislocation sub-structures
within single-crystal grains as well as an underlying size effect through all results, which is
typical to problems of crystal plasticity. Finally, the continuum dislocation approach is ap-
plied to deformation twinning. The twinning mechanism is decomposed into a plastic shear
and a rigid plastic rotation. The present continuum dislocation approach successfully repres-
ents the influence of dislocations in the twin model: the pile-up of dislocations within the
parent and twin phases gives rise to the appearance of some of the specific characteristics of
TWIP alloys in the present model.
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Kurzfassung

Die vorliegende Arbeit thematisiert verschiedene Aspekte der Modellierung von Mikrostruk-
turen in elasto-plastisch deformierten, kristallinen Werkstoffen. Auf der Grundlage thermo-
dynamischer Minimumprinzipien werden die Ursachen von Mikrostrukturen analysiert so-
wie numerische Methoden zu deren Bestimmung präsentiert. Diese Arbeit lässt sich inhalt-
lich in zwei Hauptteile gliedern, die unterschiedliche Modellierungsgesichtspunkte in die-
sem Kontext hervorheben. Im ersten Teil der Arbeit werden Mikrostrukturen als Minimierer
nicht-konvexer Energiepotentiale vorgestellt. Eine neuartige inkrementelle Lösungsstrate-
gie zur Simulation solcher Mikrostrukturen wird präsentiert und angewandt. Im zweiten Teil
der Arbeit folgt eine Zusammenfassung der Möglichkeiten, Versetzungsmikrostrukturen mit
Hilfe einer Kontinuumsversetzungstheorie zu beschreiben und vorherzusagen.

Der tatsächliche Verformungszustand eines belasteten Körpers resultiert aus den thermo-
dynamischen Prinzipien des minimalen Energiepotentials sowie des minimalen Dissipati-
onsfunktionals, die im Falle nicht-konvexer Energiedichten zur Ausbildung von feinskaligen
Strukturen führen. Die Relaxierung der freien Energie durch eine Approximation der rank-
1-konvexen Hülle ermöglicht die Lösung eines korrekt gestellten Minimierungsproblems.
Im ersten Teil der Arbeit wird eine analytische Relaxierung der Energie eines inkompres-
siblen Neo-Hooke-Materials mit einem oder zwei aktiven Gleitsystemen präsentiert. Die
relaxierte Energie wird zusammen mit einer inkrementellen Formulierung verwendet, um
die Evolution aller mikrostrukturellen Charakteristika eines Laminates erster Ordnung (d.h.
die plastische Gleitung in allen Laminatphasen, die zugehörigen Volumenanteile und die
Verfestigungsparameter) zu modellieren. Im Gegensatz zu vielen früheren Ansätzen, die
auf der Minimierung eines kondensierten Energiefunktionals beruhen, ermöglicht die hier
vorgestellte Methode die Berücksichtigung der bereits vorhandenen Mikrostruktur am An-
fang jedes inkrementellen Zeitschritts. Darüber hinaus wird ein Verfahren zur Abbildung der
tatsächlichen Veränderungen der Mikrostruktur während eines Zeitschritts im inkrementel-
len Modell vorgestellt. Die Ergebnisse zeigen deutliche Vorteile gegenüber der Benutzung
des kondensierten Energiefunktionals für einen einzigen Zeitschritt.

Der zweite Teil der Arbeit stellt die Beschreibung von Versetzungsstrukturen mit Hil-
fe der Kontinuumsversetzungstheorie in den Mittelpunkt. Die freie Energie wird um einen
zusätzlichen Term erweitert, der die Defektenergie der Versetzungen berücksichtigt. Die hier
getroffene Wahl der speziellen Form dieser Defektenergie birgt einen Sättigungseffekt: Die
Versetzungsdichte kann lokal nicht beliebig ansteigen, sondern ist durch einen Materialpara-
meter begrenzt. Auf der Grundlage dieses Ansatzes werden zunächst analytische Lösungen
für den Aufstau von Versetzungen an den Korngrenzen eines Bikristalls, der einer kombi-
nierten Scher- und Zugbelastung ausgesetzt ist, hergeleitet. Eine variationelle Formulierung
erlaubt die Erweiterung des Modells zur numerischen Lösung beliebiger zweidimensionaler
Randwertprobleme mit einem aktiven Gleitsystem. Die Ergebnisse dieses Verfahrens umfas-
sen die Ausbildung von Versetzungssubstrukturen im Innern der einkristallinen Körner eines
Polykristalls sowie einen durch alle Ergebnisse sichtbaren Skaleneffekt, der typisch für Pro-
bleme in der Kristallplastizität ist. Schließlich wird der Kontinuumsversetzungsansatz auf
die Modellierung von Deformationszwillingen angewendet. Hierbei spielt der Aufstau von
Versetzungen an den Zwillingsgrenzen im verzwillingten Material eine entscheidende Rol-
le, welcher im Modell berücksichtigt werden kann. Dies resultiert in der qualitativ korrekten
Repräsentation vieler Charakteristika von TWIP-Legierungen im Modell.
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xiii

Nomenclature

This thesis makes use of the following notation conventions: scalar variables are denoted by
lower case characters, vector and tensor quantities by bold lower and upper case characters,
respectively. Einstein’s summation convention is implied.

Use of the mathematical symbols is explained in detail in Section 2 and not repeated here
for conciseness. The following list gives a brief overview of those characters and symbols
with a specific physical meaning and the abbreviations used:

Latin notations

a,A deformed and undeformed area
ai amplitudes of laminate deformation gradients
A assembly operator for FE matrices
b Burgers’ vector
b laminate orientation unit vector,

Finger tensor
b̂ vector of nodal plastic distortion values
B gradient matrix for FE computations
C elasticity tensor
C right Caughy-Green tensor
d problem dimension
D dissipation
D dissipation distance
ei Cartesian unit vectors
E Young’s modulus,

dimensionless energy
E elastic modulus tensor for FE computations

Almansi-Hamel tensor
E tensor of the defect energy constants,
F deformation gradient tensor
F e,F p elastic and plastic deformation gradient tensors
f body or surface force vector
f int,f ext vector of internal and external forces
h height of the bicrystal or grain
H = hbρs dimensionless height of the bicrystal or twin
I total free energy
j = detF determinant of the deformation gradient tensor
J Jacobian
J determinant of the Jacobian
k material parameter (scaling factor of the defect energy)
K elastic bulk modulus
K stiffness matrix



xiv Nomenclature

` linear functional (power of the external forces)
L velocity gradient tensor
L Lagrange functional
m unit vector normal to the active glide plane
n are unit normal vector
Ni, Ñi shape functions
N , Ñ shape function matrices
p, pi hardening history variables
P power
q driving force on the volume fractions
Q FE auxiliary matrix for the plastic strains
Q heat
R rotation tensor
r material parameter (critical resolved shear stress)
s volume fraction of the twin phase
S entropy
s slip direction unit vector
sign sign function
sig sigmoid function (approximated sign function)
sym(·) = 1

2
(·+ ·T ) symmetric part of a tensor

t,∆t time and time increment
t thickness of a plane body
t traction vector
T temperature
T tangent stiffness matrix
u,v displacement field components in x- and y-direction
Û solution vector containing displacements and plastic distortion
U ,V right and left strech tensor
v velocity vector
Wi Gauß weight factors
x,X coordinates in the deformed and in the reference configuration
x, y, z Cartesian coordinates

Abbreviations

cond. condensed (energy)
EBSD electron backscatter diffraction
GB grain boundary
GND geometrically necessary dislocation
NH Neo-Hooke
rel. relaxed (energy)
red. reduced (energy)
SEM scanning electron microscopy
SSD statistically stored dislocations
TEM transmission electron microscopy



Nomenclature xv

Greek notations and other symbols

α (scalar) normalized dislocation density
α Nye’s dislocation density tensor
β, β1 plastic distortion and normalized plastic distortion
βa, βs symmetric and antisymmetric part of the plastic distortion
β plastic distortion tensor
χ parameter of the logarithmic energy approximation
δ variation,

Dirac-Delta distribution function
δ, δcr load parameter (extension and shear), critical load
δr = δ − δcr (positive) deviation of the load from the critical value
δl = δ + δcr (negative) deviation of the load from the critical value
δij Kronecker delta
∆,∆∗ dissipation potentials
γ plastic slip or distortion
γ, γcr load parameter (shear), critical load
γen energetic threshold for the shear strain
γr, γl shear strains, see δr, δl
Γ boundary surface energy
Γu,Γt boundary subsets with prescribed displacements or forces, resp.
Γ inverse Jacobian for FE mapping
ε load parameter (extension), strain
εr, εl extension strains, see δr, δl
εen energetic threshold for the extension strain
ε linear strain tensor
εp, εe linear plastic and elastic strain tensors
ε̃ strain vector in Voigt notation
εijk permutation symbol
φ deformation field
ϕ angle of the slip direction s with the x-axis
ϕl, ϕu slip system orientation in lower and upper bicrystal part
η dimensionless parameter in Section 4
κ hardening modulus
κ = µ/(λ+ 2µ) dimensionless modulus ratio
λ, µ elastic Lamé moduli
λi volume fractions of the laminate phases
Λ Lagrange parameter
ν Possion’s ratio
Π energy potential
ϑ load orientation
ρ, ρs scalar dislocation density and saturated dislocation density
ρi Lagrange parameters
σ Cauchy stress tensor
σ̃ stress vector in Voigt notation
ΣI ,ΣII first and second Piola-Kirchhoff stress tensors
τij shear stresses
τcr critical resolved shear stress



xvi Nomenclature

τε, τγ critical resolved stresses (extension and shear)
ω = λ/µ dimensionless modulus ratio
ω skew-symmetric rotation tensor
Ω body volume
ξ = ybρs dimensionless coordinate
ξ, η dimensionless coordinates for FE mapping
Ψ Helmholtz free energy density
Ψrel,Ψcond relaxed and condensed energy
CΨ, PΨ, QΨ, RΨ convex, polyconvex, quasiconvex and rank-one-convex hull
∂ (partial) derivative
∇ Nabla operator
〈 · 〉 = 1

h

∫
h
· dy average quantitiy

[[·]] jump of the quantity in brackets
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1 Introduction

1.1 Structures and Patterns

A close look at the constituents of nature reveals underlying structures in very many natural
aspects at various length scales. What appears macroscopically uniform and homogeneous
turns out to be composed of a large number of structural members on smaller scales. The
detailed inspection of a snowflake (see Figure 1.1) unveils the highly ordered branching
structure of what appears as a homogeneous, soft, white something to the naked eye. Many
biological, chemical or physical systems exhibit a more or less regular structure on a smaller
scale, and such structures are based on the very same of nature’s fundamental principles of
thermodynamics, which are commonly dictated by energies. These thermodynamic laws go-
vern the formation of structures and patterns on all scales. Therefore, it is not surprising that
very similar structures to those of the ice crystal appear e.g. during dendritic solidification
of metals from the melt.

Despite the huge variety of different structures and patterns in nature, these naturally
appearing small-scale structures have another crucial aspect in common (besides the same
underlying causal principles): the aggregate of all structural characteristics on the small
scale fulfills a functional purpose on a superior scale or, in other words, the macroscopic
appearance and behavior considerably depends on the microstructure. Let us outline a few
more examples.

Figure 1.2 illustrates three examples of natural structures on a small scale, which give
rise to a specific effect or property on some larger scale. The skin of a shark resembles a
rough sandpaper to the touch. As can be seen from the first micrograph, this property stems
from a very distinct small-scale composition of the shark skin, which is not a uniform sur-
face tissue. Instead, the skin is covered by millions of dermal teeth and their arrangement
provides the shark with hydrodynamic advantages (reducing turbulence while swimming)
and additional protection from damage and parasites. The middle image illustrates the inner
structure of human trabecular bone. In contrast to the white compact bone tissue surroun-
ding the outer layer of bones and providing them with their smooth and white appearance,
the inner structure (the trabecular bone) is less dense and consists of the shown network
structure. This special structure helps to reduce weight and provide space for blood vessels
and marrow, and to generally provide bones with their important viscoelastic properties.
The third image displays the surface of a lotus leaf which is well-known for the eponymous
lotus effect. Due to the specific micro- and nanoscopic architecture of the surface, these
leaves exhibit a maximum water repellency and a minimum adhesion (predominantly for
self-cleaning purposes), which has successfully been imitated in technical applications. De-
spite the differences between these three examples they all demonstrate how the (more or
less random) arrangement of structural members on a smaller scale gives rise to specific ma-
croscopic properties. Therefore, these examples stress the crucial importance to gain insight
into the causal mechanisms of the formation of such microstructures, into the behavior of
these microstructures and the resulting macrosopic characteristics.
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Figure 1.1: Optical micrographs of ice crystals, courtesy of Kenneth Libbrecht (2009). Re-
printed by permission.

Components in engineering applications are predominantly composed of metals. The-
se crystalline solids admit a similar decomposition into structures on smaller scales. Their
composition spans several length scales and, on each of these scales, is more or less regular-
ly ordered: from the periodic atomic lattice (which determines the elastic properties) to the
microstructure of all lattice defects to mesostructures of the grain assembly (the latter two
considerably determine the plastic properties) to composite morphologies. The enormous
influence of these microstructural characteristics credits special importance to the investiga-
tion of the microstructure’s origin and evolution in the modeling of crystalline solids.

1.2 Experimental Evidence of Microstructures in Solids

Modern microscopic techniques allow for a detailed characterization of the microstructure
of crystalline solids, which comprises all characteristics and defects on the microscale with

Figure 1.2: Natural structures and patterns: micrograph of a shark’s skin, c© eye of science;
scanning electron micrograph of the inner structure of bone (Boyde, 2003); com-
puter graphic of the surface of a lotus leaf with water drops, courtesy of William
Thielicke. All images reprinted by permission.
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Figure 1.3: Transmitted-light micrograph of lattice dislocation structure in an olivine sin-
gle crystal, courtesy of Read F. Cooper; EBSD map of a shear-deformed copper
single crystal with several microbands of different relative crystallographic ori-
entation (Dmitrieva et al., 2009). Images reprinted by permission.

typical length scales of a few micrometers. Similarly to those structures presented above,
microstructures in solids play a crucial role in the design, manufacturing and application of
engineering materials, as the microstructure of a material significantly affects its macrosco-
pic mechanical properties.

The mechanical properties of solids have been characterized by a large number of material
parameters which all depend – in some sense – on the material’s structure on smaller scales
(Reed-Hill, 1973). The average grain size and the dislocation density of metals have a signi-
ficant effect on the material’s strength, its hardness, and its fracture properties. Pre-existing
textures give rise to anisotropy. Dislocation mobility (highly dependent on the crystalline
structure and the presence of foreign atoms) affects the hardening rate, the yield stress, or
the ductility of the material. All of these examples confirm the tight connection between
the microstructure and a specific mechanical behavior. Therefore, it is of great importance
to understand the origin and the subsequent evolution of microstructural characteristics in
order not only to comprehend but even more to design materials according to engineering
demands.

Figure 1.4: Labyrinth wall structures in a fatigued copper single crystal (Jin and Win-
ter, 1984), wall structures in fatigued polycrystalline copper (Yumen, 1989)
and a polycrystalline CuNi alloy (Charsley, 1981). All images reprinted by
permission.
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Figure 1.5: Transmission electron micrographs of polycrystalline pure aluminum: disloca-
tion wall structures deformed in tension (Hansen et al., 2001) and after cold
rolling (Liu et al., 2002). Images reprinted by permission.

Figures 1.3 to 1.6 give a brief (and of course very limited) overview of some of the fre-
quently observed microstructures in metals. Common to all of these micrographs, the ob-
served microstructure hardly ever appears to be completely random but rather arranges dis-
locations and other lattice defects to specific ordered segments or sub-structures or, at least,
along preferred orientations. Figures 1.3 illustrate one of the geometrically simplest structu-
res commonly observed in deformed solids (here, in olivine and copper). The material forms
a lamellar structure with alternating micro-bands of differing states of deformation with dis-
location concentrations at the separating walls. Figures 1.4 show dislocations arranging to
cell structures of labyrinth- and other types in fatigued copper single crystals. Of course, the
orientation of such dislocation walls is commonly not random but accommodates specific
lattice directions as will be discussed.

Figures 1.5 illustrate another type of dislocation arrangement which can be observed du-
ring severe plastic deformation: dislocations accommodate wall structures within existing
grains. Such dislocation walls form within grains of a polycrystal and thus constitute sub-
structures and conglomerates of dislocation cells, which, upon further straining, can trans-
form into smaller grains, resulting in collective grain refinement (Hansen et al., 2008). Small
grains in the nanometer range are of particular interest for many engineering applications as
they give rise to considerably higher strength.

Figures 1.6 show transmission electron micrographs (TEM) of dislocation microstructu-
res in a high manganese steel. Graphics illustrate the arrangement of network dislocations
in more or less regular arrays. Besides, this type of steel tends to form deformation twins
(Christian and Mahajan, 1995). Deformation twins are lamellar structures with alternating
parent and twin phases with different (but symmetric) crystal lattice orientations. The twin
lattice is generated either by a rotation of the original crystal lattice or by reflection. Twin
structures give rise to higher yield strength and hardening rates. Practical applications make
use of this effect in so-called TWIP (twinning-induced plasticity) alloys.

As all of these microstructural characteristics show a direct impact on the macroscopic
mechanical behavior, a fundamental understanding of the origin and evolution of such mi-
crostructures is of great importance. Therefore, any thorough plasticity theory aiming at
describing those effects observed experimentally must account for the thermo-mechanical
processes on the microscale. This thesis summarizes progress in research on three particular
microstructural aspects: firstly, the formation of laminate microstructures as minimizers in
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Figure 1.6: TEM records of 32Mn–7Cr–1Mo-0.3N steel after impact testing: network dis-
locations, planar dislocation array, interaction between dislocation slip band and
stacking fault (Fu et al., 2005). Reprinted by permission.

finite elasto-plasticity; secondly, the arrangement and pile-up of dislocations in single and
polycrystals and the resulting dislocation structures; and thirdly, the interaction of dislocati-
on pile-ups and deformation twins in single crystals.

1.3 Modeling Plasticity and Microstructures: Motivation and State of
the Art

There has been a long history of plasticity models to describe elasto-plastic material beha-
vior and the related origin and evolution of microstructures in crystals. These models are as
various as the length scales involved, from macroscopic continuum approaches to multiscale
models to molecular dynamics simulations. Here, we stay within the framework of conti-
nuum plasticity and continuum dislocation theory and we present progress on the following
fields of research.

1.3.1 Description of Microstructures Based on Energy Relaxation in Finite
Elasto-Plasticity

Inelastic microstructures in finite elasto-plasticity can be described by non-convex varia-
tional problems. The non-existence of energy minimizers in these problems gives rise to
small-scale fluctuations, i.e. fine-scale minimizing sequences, which may be interpreted as
microstructures. The formation of such microstructures as a consequence of non-convex
potentials was shown first for elastic crystals undergoing phase transformations, in particu-
lar the austenite-martensite transformation, see e.g. (Ball and James, 1987, 1992; Chu and
James, 1995; Bhattacharya, 2003).

The boundary value problem in finite elasto-plasticity can be formulated as a variational



6 1 Introduction

minimization problem, where the deformation field φ : Ω→ R3 results from

φ = arg min
{
I(φ,K) =

∫
Ω

Ψ(∇φ,K)dv − `(φ)
∣∣ φ = φ0 on ∂Ω

}
, (1.1)

where Ψ is the elastic energy storage function,K is a set of internal variables capturing the
microstructural characteristics within volume Ω, and `(φ) is a linear functional. In contrast
to non-linear elasticity, the plasticity model requires an additional variational formulation
for the evolution of the internal variablesK. The fundamental idea of a general incremental
variational formulation goes back to Ortiz and Repetto (1999) and Ortiz et al. (2000) and
was later enhanced by Carstensen et al. (2002), Miehe (2002), Miehe et al. (2002). For
generalized standard media the variational formulation of inelasticity is thereby governed
by the aforementioned energy storage function Ψ and a dissipation functional ∆. This type
of material model is useful for a broad range of constitutive models in viscoelasticity and
-plasticity, and it can be related to those of Biot (1965); Ziegler and Wehrli (1987); Germain
(1973); Nguyen (2000). For this class of materials the minimum principle of the dissipation
functional governs the evolution of the internal variables by

K̇ = arg min
{ d

dt
Ψ(∇φ,K) + ∆(K, K̇)

∣∣ K̇ }
, (1.2)

which is evaluated locally and for discrete time steps. The variational problem given by
(1.1) and (1.2) can be employed to determine inelastic microstructures and also analyze
the stability of the incremental inelastic response, see e.g. Dacorogna (1989); Marsden and
Hughes (1994); Šhilhavý (1997); Gürses (2007). For rate-independent materials (1.2) can
account for instantaneous change of the value of K, since it can be integrated to finally
yield a condensed energy

Ψcond
Kn

(F ) = inf
{

Ψ(F ,K) +D(Kn,K)
∣∣K }

, (1.3)

with a so-called dissipation distance D (Mielke, 2002).

The existence of solutions to the minimum principle in (1.1) requires the quasiconvexity
(Morrey, 1952) of the energy storage function Ψ (Ball, 1977). In many problems of finite
elasto-plasticity, however, Ψ is not quasiconvex such that the lack of solutions of the non-
convex variational problem must be treated by the mathematical theory of relaxation (Daco-
rogna, 1989). The non-quasiconvex energy storage function is replaced by its quasiconvex
envelope

ΨQ(∇φ) = inf

{
1

|ω|

∫
ω

Ψ(F + ∇ϕ) dv

∣∣∣∣ ϕ : ϕ = 0 on ∂ω
}
, (1.4)

such that the relaxed functional IQ (with Ψ replaced by ΨQ) is well-posed, and a minimi-
zer exists. Unfortunately, the condition of quasiconvexity is non-local and so far no general
approach for determining the quasiconvex hull has been found, except for some particu-
lar cases where the it could be derived analytically, see e.g. (Kohn, 1991) or (DeSimone
and Dolzmann, 2000). However, the quasiconvex hull can be approximated by upper and
lower bounds given in terms of the rank-one-convex envelope and the polyconvex envelope,
respectively, which can be utilized to develop numerical schemes for the computation of
approximate hulls; examples can be found e.g. in (Dolzmann, 2003; Bartels et al., 2004).
The rank-one-convex hull has been of particular interest since it describes laminate-type mi-
crostructures (Pedregal, 1993) which can be observed experimentally. Accordingly, one can
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determine an approximation R1Ψ of the rank-one-convex hull RΨ for a first-order laminate
microstructure:

R1Ψ(F ) = inf {λ1Ψ(F 1) + λ2Ψ(F 2) | λi,F i ;
n∑
i=1

λi = 1, 0 ≤ λi ≤ 1, (1.5)

n∑
i=1

λiF i = F , rank(F 1 − F 2) ≤ 1

}
,

where λi are the volume fractions and F i the (rank-one-connected) deformation gradients
(the so-called atoms) in the laminate phases.

During the last decade, relaxation theory has been applied to a number of problems in
crystal plasticity, beginning with the seminal works by Ortiz and Repetto (1999) and Or-
tiz et al. (2000), who developed a relaxation algorithm based on a rank-one-convexification
and sequential lamination for modeling dislocation microstructures in single crystals. Their
approach was limited by certain assumptions concerning the form and type of the laminate
microstructures considered. In particular, the evolution of the phase volume fractions was
not determined. These and many of the following approaches made use of the condensed
energy functional (1.3) to analyze the development of microstructures in multiplicative pla-
sticity (Ortiz and Repetto, 1999; Lambrecht et al., 2003; Bartels et al., 2004; Mielke, 2004;
Conti and Theil, 2005). This approach is well-suited for the determination of an originating
microstructure; however, it is not suitable to describe the evolution of microstructures, as for
each time step the internal variables already exhibit a microstructure at the beginning of the
time increment as a result of a relaxation process in the preceding time-increment (Hackl
and Kochmann, 2008). The present approach attacks this problem by taking into account
not only the microstructure at the beginning of each time step but also the actual amount
of dissipation required to incrementally alter all microstructural variables (i.e., plastic slips,
volume fractions, hardening variables).

1.3.2 Continuum Dislocation Description of Dislocation Pile-Ups and Dislocation
Substructures

From the micro-mechanical point of view, plastic deformation is accommodated by the
nucleation and motion of dislocations, i.e. crystallographic defects or irregularities within
the periodic crystal lattice. The arrangement of the dislocation network is predominant-
ly dictated by the crystal’s energy. Plastic flow breaks up into moving dislocations which in
turn dissipate energy. Dislocation mechanisms on the microscale can hence be treated by the
very same aforementioned thermodynamic principles involving the energy and the dissipa-
tion potential. Although well-suited for the description of plastic strains, classical plasticity
theory, unfortunately, does not allow for a direct treatment of dislocations in the deformed
crystal, and hence their influence cannot explicitly be accounted for in the constitutive equa-
tions.

Many continuum descriptions of elasticity or elasto-plasticity have been developed to ac-
count for the influence of microstructure on the mechanical material response, beginning
with the early works by Cosserat and Cosserat (1909). Multi-polar and higher gradient ela-
sticity theories were established among others by Truesdell and Toupin (1960), Green and
Rivlin (1964) and Eringen (1972), followed by early strain gradient plasticity descriptions
as by Fox (1968), Teodosiu (1969), Lardner (1969) or Dillon and Perzyna (1972). Although
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the fundamentals of continuum dislocation theory were laid down around the same time
by Kondo (1952), Nye (1953), Bilby et al. (1955a), Kröner (1958), and Berdichevsky and
Sedov (1967), among others, the applicability of the theory became feasible only in recent
years (Ortiz and Repetto, 1999; Ortiz et al., 2000; Groma et al., 2003; Berdichevsky, 2006b),
thanks to the progress in statistical mechanics and thermodynamics of the dislocation net-
work (Berdichevsky, 2005, 2006b). In addition, higher order strain gradient models have
been developed to numerically capture the underlying size effects (Shu and Fleck, 1999;
Evers et al., 2002), to characterize deformation bands (Aifantis, 1987) or to describe the
nucleation of dislocations.

Various dislocation-based plasticity theories followed, see e.g. (Gao et al., 1999; Acharya
and Bassani, 2001; Huang et al., 2000, 2004; Han et al., 2005a,b; Aifantis and Willis, 2005;
Aifantis et al., 2006). Most dislocation-based plasticity theories make use of the concept of
geometrically necessary dislocations (GNDs) based on Nye’s tensorial description (1953).
All strain gradient-based plasticity theories have as a common feature the incorporation of
higher order strain gradients into the formulation of the free energy,

Ψ(F e,α) = Ψ0(F e) + Ψρ(α), α = curl F p, (1.6)

where α denotes Nye’s dislocation density tensor. Ψ0 is the classical elastic energy stora-
ge function whereas Ψρ captures the energy of the microstructure, often termed the defect
energy. A crucial question to all theories is how to formulate the contribution of the mi-
crostructural dislocation network to the free energy in a physically-reasoned way rather
than for reasons of mathematical regularization. Gurtin and co-workers (Gurtin, 2003; Gur-
tin and Anand, 2005; Gurtin et al., 2007) e.g. used second powers of strain gradients in their
works. Other approaches have been developed, e.g. by Volokh and Trapper (2007), based on
the idea that the effective plastic strain depends on the defect density. In this thesis we adopt
the free energy formulation proposed by Berdichevsky (2006a,b), in which the energy of the
microstructure involves a logarithmic dependency on the dislocation density:

Ψρ(ρ) = kµ ln
1

1− ρ/ρs
. (1.7)

k is a material constant, ρ the scalar dislocation density, and ρs represents a saturation dislo-
cation density. Superior to many higher order plasticity theories, this approach is physically
suitable as the energy of the microstructure rises linearly at small dislocation densities (whe-
re the interaction energy is negligible (Hirth and Lothe, 1982)) but increases to infinity as
the dislocation density reaches some saturation density (Berdichevsky, 2006b).

Now, one can combine the minimum principle (1.1) with a Biot-type evolution equation
for the internal variables,

δΨ

δK
+
∂∆

∂K̇
= 0, (1.8)

to solve the boundary value problem. Berdichevsky and Le (2007) used this energy formu-
lation to model the pile-up of dislocations in a single crystal. Le and Sembiring (2008a,b)
generalized the previous study to single- and double-slip in thin, infinitely extended sin-
gle crystal strips. Here, we investigate the plastic deformation of bicrystals first and then
generalize the model to arbitrary two-dimensional boundary value problems. A variational
formulation analogous to (1.2) has been reported for related problems, see e.g. (Dimitrijevic
and Hackl, 2008), but has not been applied to dislocation-based plasticity. Based on this
formulation, the arrangement of dislocations in confined volumes (e.g. within grains of a
polycrystal, at boundaries of single crystals and bicrystals, or at twin boundaries) can be
studied, giving rise to typical effects of crystal plasticity.
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1.3.3 An Energy-Based Continuum Dislocation Approach to Deformation Twinning

Besides plastic slip by dislocations there is another important mode of plastic deformation
in many crystalline solids, known as deformation twinning. Experimental evidence of de-
formation twins was found long time ago and described in terms of dislocations e.g. in the
early works by Frenkel (1926), Cahn (1954), and Hall (1954). A newer comprehensive state-
of-the-art survey of deformation twinning from a rather materials science perspective was
presented by Christian and Mahajan (1995). A very recent experimental study of the com-
peting mechanisms of slip and twin in Zr and Mg alloys was presented in a series of papers
by Kaschner et al. (2006, 2007) and Proust et al. (2009). Twinning becomes particularly im-
portant in metals with only a limited number of slip systems, as it can operate to provide the
five slip systems required to satisfy the criterion for a general slip deformation. Deformation
twinning basically divides the originally uniform single crystal into two volumetric parts –
a parent phase (with unaltered crystal lattice) and a twin phase (with a different, symmetric
crystal lattice orientation). Both phases normally occur in the form of lamellar structures,
where a bicrystal consisting of neighboring parent and twin phase is commonly referred to
as a twin.

The formation of deformation twins has a significant impact on the macroscopic stress-
strain response. The evolution of twins provides TWIP alloys with excellent hardening beha-
vior (Allain et al., 2004), allowing for higher stresses and larger strains than in common f.c.c.
or b.c.c. metals. As a special characteristic, the onset of twinning, i.e. the rapid nucleation
of deformation twins, often gives rise to a load drop in the stress-strain behavior (Christian
and Mahajan, 1995). The increase of strength and work hardening during microstructure
refinement by twinning in manganese steels or other TWIP alloys remains until now not
quite well understood. Perhaps the dislocation pile-up near the twin boundaries (raising the
boundary energy) and the related size effects play an important role in this context. Several
dislocation-based mechanisms have been proposed (Cohen and Weertman, 1963; Venables,
1964; Hirth and Lothe, 1982; Narita and Takamura, 1992) to explain twin nucleation in
f.c.c. materials. Most of these models are based on phenomenological observations rather
than physically reasoned on the microscale. The influence of temperature, strain-rate or
microstructural characteristics such as grain size or stacking fault energy on the onset of
twinning were investigated e.g. by Meyers et al. (1995).

Based on the continuum dislocation approach outlined in Section 1.3.2, it is possible to
describe the dislocation activity related to deformation twinning by introducing a so-called
twinning shear produced by the existing dislocations in the already active slip system, which
plays a similar role as Bain’s strain in the theory of martensitic phase transformations, see
e.g. (Bhattacharya, 2003). This twinning shear followed by a rotation enables the initially
homogeneous crystal to form the twin phase from the parent phase. The underlying me-
chanism of twin formation is closely related to that of Bullough (1957), who employed a
decomposition of the deformation into shear and rotation. The introduction of the twinning
shear into the energy of the twin renders the energy multi-welled and non-convex, which
gives rise to the formation of microstructures.
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1.4 Scope of this Thesis

Following this introduction, Chapter 2 gives a broad overview of the mathematical and
mechanical fundamentals which lay the basis of the micro-mechanical models in this thesis.
First, a mathematical introduction summarizes basic vector and tensor calculus and analysis,
followed by a survey of the notions of convexity. An introduction to continuum mechanics
at finite strains for elasticity and elasto-plasticity follows. A major part of the second half
of the Chapter deals with properties and mechanisms of dislocations as a motivation for the
subsequent introduction to continuum dislocation theory. Finally, Chapter 2 is completed by
a summary of the underlying thermodynamic principles and the energetic reasons for the
formation of microstructures.

Chapter 3 begins with a brief outline of the variational framework in finite elasto-plasticity
for those inelastic materials treated here. We then derive a partially relaxed energy functio-
nal for single and multi-slip plasticity in single crystals. Furthermore, we introduce an incre-
mental setting by which the time-continuous evolution of laminate microstructures can be
modeled by solving the stationarity conditions rather than minimizing a condensed energy
functional. Our results comprise several examples for microstructure evolution in single and
double-slip plasticity, both for monotonic and for cyclic loading.

In Chapter 4 we outline a plasticity model based on a continuum dislocation theory
at small strains. We apply the aforementioned energetic approach to derive closed-form
analytical solutions for the nucleation and pile-up of dislocations in single-slip bicrystals
with symmetric slip systems and outline a numerical procedure for arbitrary slip system
orientation. Our results comprise an energetic threshold for the dislocation nucleation, the
typical effects of work hardening and hysteresis, the Bauschinger effect and, especially,
size effects typical of crystal plasticity. Then follows a variational approach to determine
equilibrium dislocation substructures within grains and in polycrystals, for which we show
various computational examples.

The continuum dislocation approach outlined in Chapter 4 can then, in Chapter 5, be
applied to the problem of deformation twinning. We derive energetic thresholds both for the
onset of plastic flow and for deformation twinning in a single-slip single crystal and compute
the evolution of volume fractions, plastic slips and the spatial distribution of dislocations in
partially analytical form for a plane-constrained shear problem. Our results comprise the
stress-strain hysteresis as well as the evolution of all internal variables involved.

Chapter 6 finally discusses and summarizes the results presented in the preceding Chap-
ters and hints at possible future generalization and applications of the presented models.
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2 Mathematical and Mechanical Fundamentals

2.1 Vector and Tensor Analysis

2.1.1 Vector Calculus

Before introducing the fundamental concepts of continuum mechanics, let us review basic
notation conventions and mathematical operations on vector and tensor quantities, as given
e.g. by Flügge (1972) and Betten (1987). The following summary is, of course, far away
from being complete but sufficient to lay the basis for subsequent Sections.

In order to describe mechanical and physical phenomena in space, it is necessary to define
a frame of reference. The physical space R3 has three dimensions (d = 3), and it hence
takes three coordinates to locate a point in space. The orthonormal basis (also known as the
Cartesian or rectangular coordinate basis) in the three-dimensional Euclidean vector space,
which we assume to be time-invariant, be denoted by

B = {e1, e2, e3} (2.1)

such that each vector with components ui (i = 1 . . . 3) in the Euclidean vector space can be
expressed in its basic representation

u =
3∑
i=1

uiei (2.2)

or, using Einstein’s summation convention,

u = uiei (2.3)

where summation over repeated indices is implied. We denote vector and tensor quantities
by bold symbols, vectors being assigned lower case and tensors upper case characters; scalar
quantities are assigned lower case symbols. In the following, let us introduce the basic vector
operations needed for subsequent analyses. According to the requirements of later Sections,
we limit our review here to vector and tensor analysis in Cartesian coordinates only.

The scalar product of two vectors, also termed the inner product, be defined by

u · v = uTv = uivjei · ej = uiviδij = uivi, (2.4)

with the Kronecker delta

δij = ei · ej =

{
1, if i = j,

0, if i 6= j.
(2.5)

The length of a vector (i.e. the norm of a vector) in the Euclidean space be defined by

‖ u ‖=
√
u · u =

√
uiui. (2.6)
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A unit vector e is characterized by unit length, i.e. ||e|| = e · e = 1. Denoting the angle
between vectors u and v as ϕ, a geometric interpretation of the scalar product becomes
apparent from

u · v = cosϕ ||u|| ||v||. (2.7)

As a consequence, the scalar product of orthogonal vectors vanishes:

u⊥v ⇔ u · v = 0. (2.8)

Let us introduce the cross product of two vectors,

u× v = uivjei × ej = uivjεijkek, (2.9)

with the permutation symbol εijk defined by

εijk =


1, if i, j, k is a cyclic sequence,
−1, if i, j, k is an anticyclic sequence,
0, if i, j, k is an acyclic sequence.

(2.10)

The absolute value of the cross product ||u × v|| can be interpreted geometrically as the
area of the parallelogram spanned by u and v. The absolute value of the triple product
‖ u · (v ×w) ‖ equals the volume of the parallelepiped spanned by u, v and w.

Following the above definitions, the following useful identities hold true (m and n denote
scalar quantities, u, v and w are vectors):

u+ v = v + u (commutative law for addition)
u+ (v +w) = (u+ v) +w (associative law for addition)
m(nu) = (mn)u (associative law for multiplication)
(m+ n)u = mu+ nu (distributive law)
m(u+ v) = mu+ nv (distributive law)

u · v = v · u (commutative law for scalar multiplication)
(u+ v) ·w = u ·w + v ·w (distributive law for scalar multiplication)
m(u · v) = (mu) · v = u · (mv) (associative law for scalar multiplication)

u× v = −v × u (cross product not commutative)
(u+ v)×w = u×w + v ×w (distributive law for cross product)
m(u× v) = (mu)× v = u× (mv) (associative law for cross product)

2.1.2 Tensor Calculus

A tensor quantity T of second-order (commonly referred to as tensor) may result from the
outer product (often termed the tensor product or dyadic product) of two vectors u and v,
which is defined by

T = u⊗ v = uivjei ⊗ ej = Tijei ⊗ ej, Tij = uivj (2.11)
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with the special characteristic

(u⊗ v) ·w = u⊗ (v ·w). (2.12)

Note that in the ⊗-sign is generally not omitted to ensure differentiation from the inner
product. The components of a dyad T in the three-dimensional Cartesian coordinate space
can for conciseness be arranged in a square matrix

(Tij) =

 T11 T12 T13

T21 T22 T23

T31 T32 T33

 . (2.13)

Having introduced the concept of dyads and tensors, we can extend the definition of the
dot product by the linear mapping between tensors and vectors, i.e.

T · u = ujTijei. (2.14)

where the following relations apply:

T · (u+ v) = T · u+ T · v (distributive law)
T · (m u) = m (T · u) (associative law)
(m T ) · u = m (T · u) (associative law)
0 · u = 0 (zero element of linear mapping)

The scalar product of two tensors of second order yields

S · T = SijTjkei ⊗ ek. (2.15)

Furthermore, we mention the following helpful laws:

(T · S) · u = T · (S · u) (associative law)
(S + T ) · u = S · u+ T · u (distributive law)

Note that by an integer power of a tensor we simply denote

T n = T · T · T · . . . · T (n factors). (2.16)

Sums and products of tensors also obey the common algebraic manipulation rules such as
associative or distributive laws, except that the scalar product of two tensors, in general, is
not commutative.

T + S = S + T (commutative law),
T · (S + V ) = T · S + T · V (distributive law)
T · (S · V ) = (T · S) · V (associative law)
T · S 6= S · T

A specific component Tij of a tensor T in the Cartesian coordinate space can be obtained
from

Tij = ei · T · ej. (2.17)
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Since the dot product of a dyad with a vector is not in general commutative it makes sense
to introduce the transpose T T of a tensor such that

T T · u = u · T (2.18)

and thus the transpose of a dyad follows as

(u⊗ v)T = v ⊗ u. (2.19)

The transpose of tensor quantities obeys the following rules:

(T + S)T = T T + ST (transpose of a sum)

(T · S)T = ST · T T (transpose of a product)

(T T )T = T (double transpose)

We call a tensor symmetric if T T = T , and antisymmetric if T T = −T .

Analogously to the length of a vector, we define the norm of a tensor quantity T (the
Hilbert-Schmidt norm) by

‖ T ‖=
√
TijTij. (2.20)

A special symmetric tensor is the identity tensor, i.e. the identity element of linear map-
ping defined by

I = δijei ⊗ ej, I · u = u, (2.21)

with the special properties T · I = I · T = T , I = IT = I−1 and T 0 = I .

Beside the scalar product of tensors, we introduce the double contraction operator

(u⊗ v) : (w ⊗ x) = (u ·w)(v · x), (2.22)
T : S = T ijSij. (2.23)

For inverting the linear mapping as well as when solving sets of linear equations, it is
essential to introduce the inverse T−1 of a tensor T , which is defined via

T · T−1 = I. (2.24)

Note that for conciseness we write T−T = (T T )−1 = (T−1)T . For inverse tensors, the
following identities hold:

(TS)−1 = S−1T−1 (inverse of the scalar product)
(u⊗ v)−1 = −u⊗ v (inverse of the dyadic product)

Unfortunately, there does not exist a comparably simple identity for the inverse of a sum of
tensors.

In addition, let us introduce the cofactor of a tensor T (and its transpose, the adjoint),
which is defined (if T−1 exists) by

cof T = T−T detT , (cof T )T = adj T . (2.25)
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The cofactor matrix is obtained by replacing each entry with the determinant of the corre-
sponding matrix minor.

Following the above theorems, we can now define two important scalar characteristics of
second-order tensor quantities, the first being the determinant of a tensor T = Tijei ⊗ ej ,

det T = εijkT1iT2jT3k. (2.26)

When dealing with determinants, the following relations may be useful:

det (T · S) = detT · detS, (2.27)

det T T = detT , (2.28)

det T−1 = (detT )−1 (2.29)
det (u⊗ v) = 0 (2.30)
det (I + u⊗ v) = 1 + u · v. (2.31)

Beside the determinant, another important scalar property of a tensor is its trace, which is
defined by

trT = T : I = Tii, (2.32)

i.e. the sum of all diagonal elements; in particular, tr I = 3. Here, we mention the following
useful identities:

tr (u⊗ v) = u · v, (2.33)

trT = trT T . (2.34)

All tensors introduced so far were of zero order (scalars), first order (vectors) or second
order (commonly referred to as tensors in the preceding). In general, one can define tensors
of arbitrary order by combining tensor quantities via the dyadic product. The elasticity tensor
C e.g. is a tensor of fourth order and it is defined by

C = Cijklei ⊗ ej ⊗ ek ⊗ el. (2.35)

2.1.3 Basic Vector and Tensor Transformations

Although we limit our review of the basic vector and tensor relations in this Section to
Cartesian coordinate systems for conciseness, we briefly review some of the basic vector and
tensor transformation rules as needed for subsequent Sections. The necessity to transform
vectors and tensors arises from situations where more than one Cartesian coordinate system
is used, since all vector or tensor quantities may be transformed from one coordinate system
to another. Having defined two independent Cartesian coordinate systems with unit vectors
ei and e′i (i = 1, 2, 3), respectively, we can represent a position vector u with respect to both
coordinate systems by its components in each coordinate system, namely

u = uiei = u′ie
′
i. (2.36)

A coordinate transformation is available in the form

u′ = Q · u (2.37)
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where the transformation matrixQ is defined by

Q = e′ ⊗ e (2.38)

with the special properties Q · QT = I , Q−1 = QT and detQ = 1. Q is often termed
a rotation matrix as it maps the original coordinate system in space by a rotation onto the
new coordinate system. Analogously, we can transform a tensor T in the aforementioned
manner between independent coordinate systems, where the coordinate transformation rule
for second-order tensors now reads

T ′ = Q · T ·QT (2.39)

with Q from (2.38), obeying the same relations as above. For any second-order tensor T ,
there exist three specific transformation dyads Q such that T ′ is diagonal (these three choi-
ces of Q are not independent but represent different permutations of the three column vec-
tors). These diagonal entries are the so-called eigenvalues of a matrix T . (Note that changing
the ordering of the column vectors in Q simply changes the order of the eigenvalues on the
diagonal of T but not their values.) The eigenvalues of a matrix can also be interpreted as
follows: If we understand a second-order tensor T as a linear mapping of a vector x by

f(x) = T · x, (2.40)

then there will be special vectors xi that fulfill the relation

T · xi = λixi. (2.41)

These vectors xi are termed the eigenvectors of T , and λi are the corresponding eigenvalues.
λi and xi are independent of the choice of the Cartesian coordinate system. Re-arranging
(2.41), we arrive at the sufficient condition (the characteristic equation) to determine the
eigenvalues λi of a tensor T ,

det (T − λiI) = 0. (2.42)

Expansion of the determinant in (2.42) yields

det (T − λiI) = −λ3
i + J1λ

2
i − J2λi + J3, (2.43)

with

J1 = λ1 + λ2 + λ3,

J2 = λ1λ2 + λ2λ3 + λ1λ3,

J3 = λ1λ2λ3.

As the determinant is invariant with respect to coordinate transformations so are the so-
called tensor invariants J1, J2 and J3. To come back to our original introduction of the
eigenvalues of a tensor, note that, having determined all three eigenvalues λi and the corre-
sponding three eigenvectors xi of a second-order tensor T , we can write T in its diagonal
form

T =

 λ1 0 0
0 λ2 0
0 0 λ3

 , (2.44)
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and the rotation matrix Q to obtain this diagonal form (i.e., the basis of T ) is given by the
normalized eigenvectors xi = xi/||xi|| as

Q = (x1,x2,x3), (2.45)

i.e. the normalized eigenvectors form the basis of the coordinate system in which T has the
form (2.44).

With this definition of eigenvalues and -vectors, we can introduce special tensor opera-
tions commonly needed in the context of continuum mechanics. Let us first introduce the
square root of a second-order tensor

√
T by

√
T =

 √λ1 0 0
0
√
λ2 0

0 0
√
λ3

 , (2.46)

where λi are the eigenvalues of T and the rectangular bracket denotes a tensor with respect
to its eigenbasisQ. Analogously, one can also define other tensor operations such as e.g. the
logarithm:

lnT =

 lnλ1 0 0
0 lnλ2 0
0 0 lnλ3

 . (2.47)

Finally, let us mention for completeness specific tensor properties which can directly be re-
lated to the concept of eigenvalues and -vectors. A second-order tensor T is called positive-
definite, if

x · T · x > 0 ∀ x ∈ R3, x 6= 0. (2.48)

For a positive-definite tensor T all eigenvalues λi are real and positive. Analogously, we can
define a positive-semi-definite tensor T which satisfies x · T · x ≥ 0 ∀ x ∈ R3, x 6= 0
(all eigenvalues of T are real and non-negative), a negative-definite tensor by x · T · x <
0 ∀ x ∈ R3, x 6= 0 (all eigenvalues of T are negative), and a negative-semi-definite tensor
by x · T · x ≤ 0 ∀ x ∈ R3, x 6= 0 (all eigenvalues of T are real and non-positive). A
fourth-order tensor T is called elliptic if

(u⊗ v) : T : (u⊗ v) ≥ 0 ∀ u,v ∈ R3, u,v 6= 0, (2.49)

and strongly elliptic if the inequality is fulfilled strongly.

2.1.4 Vector and Tensor Analysis

In continuous systems, the physical variables are distributed through space. A function of
space is commonly known as a field. If to each position x of a region Ω ∈ R3 in space
there corresponds a scalar φ(x), then φ : Ω → R is called a scalar function. If to each
position x of a region Ω ∈ R3 in space there corresponds a vector u(x) then u : Ω→ R3 is
called a vector function. Analogously, we may define a tensor function T (x) with T : Ω→
R3 ×R3. Let us extend the common definition of partial derivatives to vector derivatives in
the Cartesian coordinate space by

∂

∂xi
u(x) = lim

∆xi→0

u(x+ ∆xiei)− u(x)

∆xi
(2.50)
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and introduce the abbreviation

u,i = ∂iu =
∂u

∂xi
. (2.51)

The vector differential operator ∇ be defined by

∇ ◦ F = ∂iF ◦ ei, (2.52)

so that the gradient of a scalar field φ(x) and of a vector field u(x) can be written as

grad φ(x) = ∇φ(x) =
∂φ(x)

∂xi
ei, (2.53)

grad u(x) = ∇u(x) =
∂ui(x)

∂xj
ei ⊗ ej. (2.54)

In a similar manner, the divergence of a vector field u(x) and of a tensor field T (x) be
defined by

div u(x) =
∂ui(x)

∂xi
= ui,i(x), (2.55)

div T (x) =
∂Tij(x)

∂xj
ei = Tij,j(x)ei. (2.56)

Note that by ∇u we mean ∇u = ∇⊗u. We complete the above definitions by introducing
the curl of a vector field u as

curl u(x) = εijkuk,j(x)ei. (2.57)

Note the following useful identities (where u is a vector field and φ is a scalar field)

grad (φ u) = u⊗ grad φ+ φ grad u (2.58)

div (grad u)T = grad (div u) (2.59)
curl (curl u) = grad (div u)− grad (grad u) I (2.60)
div (curl u) = 0 (2.61)
curl (grad φ) = 0 (2.62)
curl (grad u) = 0 (2.63)
div (φ u) = u grad φ+ φ grad u. (2.64)

Furthermore, let us introduce the Laplace operator,

∆ = ∇ ·∇ =
3∑
i=1

∂2

∂x2
i

ei (2.65)

with

∆φ = div (grad φ), (2.66)
∆u = grad (div u)− curl (curl u) = grad (grad u) I. (2.67)

For the treatment of mechanical problems in the three-dimensional Euclidean space, we
will evaluate volume and surface integrals, using the abbreviation for the integral over a
volume Ω as∫

Ω

φ dv =

∫ ∫ ∫
φ(x) dx1 dx2 dx3, (2.68)
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where the order of integration in the latter form is arbitrary. When integrating over a volume
Ω, we assume in subsequent analyses, that Ω is non-empty, open and bounded. Analogously,
we can define a surface integral over the surface ∂Ω parametrized by a system of curvilinear
coordinates x(s, t). Then, the surface integral is given by∫

∂Ω

φ ds =

∫
∂Ω

φ(x(s, t))

∣∣∣∣∂x∂s × ∂x

∂t

∣∣∣∣ ds dt. (2.69)

In problems of continuum mechanics, it is often beneficial to transform volume integrals into
surface integrals and vice-versa. This can be accomplished by employing Gauß’ theorem,
which states that∫

Ω

∇ · u dv =

∮
∂Ω

u · ds =

∮
∂Ω

u · n ds, (2.70)

where n is the unit outward normal vector on the surface ∂Ω.

So far, we have introduced only scalar derivatives of vector and tensor quantities. Dealing
with elastic potentials, the need arises for taking derivatives with respect to vectors and
tensors. Therefore, let us first introduce the (Frechet) derivative of a scalar function φ with
respect to a vector x by

dφ

dx
=
∂φ

∂xi
ei = ∂xφ. (2.71)

The derivative of a vector-valued function v or a tensor-valued function T with respect to a
vector x can be defined, respectively, by

dv

dx
=
∂vi
∂xj

ei ⊗ ej = ∂xv, (2.72)

dT

dx
=
∂Tij
∂xk

ei ⊗ ej ⊗ ek = ∂xT . (2.73)

Note that the resulting quantities obtained from these derivatives are tensors of higher order
than the original field; more accurate, the resulting quantity is of the same order as the sum
of the orders of the two original quantities involved (function and variable).

Rules for scalar derivatives also apply to vector and tensor derivatives in a somewhat
modified manner. The derivative of a product of two scalar fields φ(x) and ψ(x) e.g. follows
from the well-known rule of product differentiation

d

dx
(φψ) =

dφ

dx
ψ +

dψ

dx
φ. (2.74)

Care must be taken when applying product and chain rules since the multiplication symbol
between partial differentiation factors is no longer unique as for scalar variables and needs
adjustment, e.g.

dφ(u(x))

dx
=
∂φ

∂u
· ∂u
∂x

, (2.75)

dT (u(x))

dx
=
∂T

∂u
:
∂u

∂x
. (2.76)
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The following list gives an overview of special tensor derivatives commonly needed (e.g. for
deriving stress tensors from elastic potentials), which will be useful in subsequent Sections:

∂T T = I = δikδjlei ⊗ ej ⊗ ek ⊗ el (fourth-order identity tensor),
∂T trT = I = δijei ⊗ ej (second-order identity tensor),

∂S tr(T T · S) = T T ,

∂T tr(T T · S) = ST ,

∂T tr(T T · T ) = 2T T ,

∂T det T = T−1 det T ,

∂T (u · T T · T · v) = T · (u⊗ v + v ⊗ u) .

2.2 Notions of Convexity and Minimum Criteria

Before we introduce the framework of continuum mechanics, let us review a crucial ma-
thematical concept for finding solutions of mechanical problems and introduce the different
notions of convexity as well as minimum criteria. As we will see in subsequent Sections, mi-
crostructures commonly arise as energy minimizers whenever a non-uniform, microstructu-
red deformation field exhibits lower energy than a uniform homogeneous deformation state.
In order to investigate these energy minima, it is important to investigate the conditions for
the existence of such minimizers.

Let φ : R3 → R3 be a vector-valued function called the displacement field, and I :
R3 → R an energy potential commonly defined by

I(φ) =

∫
Ω

Ψ(∇φ) dv − `(φ), (2.77)

where Ψ : R3 × R3 → R denotes an energy density and `(φ) is a linear functional of φ
(resulting from body forces or surface tractions in the context of continuum mechanics), for
a given set of boundary conditions, e.g. φ = 0 on some part ∂Ωu of the boundary of the
bounded domain Ω ∈ R3. (In this case the linear term `(φ) drops and the energy potential
reduces to one which only depends on F = ∇φ.) Following the principle of minimum
potential energy (see Section 2.5.1), the actual displacement field φ is obtained from the
minimum principle

inf {I(φ) |φ,φ = φ0 on ∂Ω} (2.78)

Without going into detail about the physical meaning, let us investigate in which cases there
exists a solution to the variational problem (2.78). It has been shown (see e.g. Dacorogna
(1989) and the references therein) that there exists at least one minimum of I(F ) if functio-
nal I is

• bounded, i.e. there exist some a, b ∈ R with a > 0 and b ≥ 1 such that

|I(F )| ≤ a
(
1 + ||F ||b

)
∀ F , (2.79)

• coercive, i.e. there exist some a, b, c ∈ R with a > 0 and b > 1 such that

|I(F )| ≥ c+ a||F ||b ∀ F , (2.80)
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Figure 2.1: (a) A non-convex surface Ψ: The line connecting points C and D does not lie
above the surface. (b) The one-dimensional function Ψ is not convex. The dashed
line represents the convex hull.

• weakly lower semi-continuous, i.e.

lim
n→∞

inf I(ϕn) ≥ I(ϕ), (2.81)

for all weakly converging sequences ϕn ⇀ ϕ.

These conditions are the sufficient general conditions for the existence of a minimum of I.
Note that in general the minimum is not unique. The first two conditions provide upper and
lower bounds on I to prohibit minima at infinity as well as too strong a discontinuous rise
or jump of I. Softening or exponential growth of the energy potential are also prohibited.

Ball (1977) showed that the above three conditions can be recast into conditions applied
directly to the energy density function Ψ: There exists at least one minimum of I if

• Ψ is coercive,

• Ψ is bounded,

• Ψ is quasiconvex.

Indeed, the condition of weakly lower semi-continuity is rather complicated and, in common
practice, often replaced by the condition of quasiconvexity of the potential Ψ(F ). A potenti-
al Ψ(F ) is called quasiconvex (Morrey, 1952) if for every domain ω and every perturbation
field ϕ : R3 → R3 of the displacement field it holds that

Ψ(F ) ≤ 1

ω

∫
ω

Ψ(F +∇ϕ) dv with ϕ = 0 on ∂ω. (2.82)

It becomes apparent (Dacorogna, 1989) that it is sufficient to ensure that (2.82) holds for an
arbitrary domain ω to prove quasiconvexity in any domain ω. Therefore, one can replace the
integral in (2.82) with one over the unit volume which we abbreviate to (0, 1)d. Unfortuna-
tely, quasiconvexity is a non-local condition which is hence hard to prove. Therefore, it is
convenient to replace quasiconvexity with related approximate local conditions. Therefore,
let us complete our review by introducing the different notions of convexity:

A potential Ψ(F ) is convex (Rockafellar, 1970) if for all F 1,F 2 ∈ Rd×d, and λ ∈ [0, 1]

Ψ (λF 1 + (1− λ)F 2) ≤ λΨ(F 1) + (1− λ)Ψ(F 2), (2.83)
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which is equivalent to

Ψ(F ) ≤ λΨ(F + (1− λ)F 1) + (1− λ)Ψ(F − λF 1). (2.84)

A geometrical interpretation reveals that a surface defined by a function Ψ is convex if the
connecting line between any two points on the surface lies above the surface everywhere,
see Figure 2.1.

A potential Ψ(F ) is called polyconvex (Ball, 1977) if there exists a convex function f :
Rd×d → R such that

Ψ(F ) = f (F , cofF , detF ) . (2.85)

In Section 2.3 we will see that the quantities F , cofF and detF have a physical meaning;
they describe the change of a line, area and volume segment of a deformed body, respective-
ly.

A potential Ψ is rank-one-convex if function Ψ(F ) satisfies (2.83) with the constraint

rank(F 1 − F 2) ≤ 1 or F 1 − F 2 = m⊗ n form,n ∈ R3. (2.86)

It follows that if Ψ is quasiconvex, Ψ is also rank-one-convex. So, quasiconvexity is a suf-
ficient condition for rank-one-convexity which, in turn, is a necessary condition for quasi-
convexity. One can show that a potential Ψ is rank-one-convex if function

f(ξ) = Ψ(F + ξm⊗ n) is convex ∀m,n ∈ R3. (2.87)

Also, following a Taylor expansion, rank-one-convexity ensures that

Ψ(F +m⊗ n) ≥ Ψ(F ) + ∂F Ψ : (m⊗ n) ∀m,n ∈ R3 (2.88)

and furthermore

(m⊗ n) : ∂2
F F Ψ : (m⊗ n) ≥ 0 ∀m,n ∈ R3. (2.89)

The latter condition is equivalent to that of Hadamard (1903) for strong ellipticity, see e.g.
(Marsden and Hughes, 1994). This condition can also be recast by introducing the acoustic
tensor

T n = n · ∂2
F F Ψ · n, (2.90)

which must be positive-definite to ensure rank-one-convexity of Ψ. Following Morrey’s
(1952) conjecture, it had been a long time belief that quasiconvexity and rank-one-convexity
are equivalent until Šverák (1992) presented a counterexample. Now we know that the fol-
lowing relations hold among the various notions of convexity: Among the aforementioned
conditions, convexity is the strongest, which automatically implies polyconvexity, quasi-
convexity and rank-one-convexity. Convexity is a sufficient condition for polyconvexity
which, in turn, is a sufficient condition for quasi-convexity which then implies rank-one-
convexity. Accordingly, rank-one-convexity is the weakest of all four conditions, it is a
necessary condition for quasi-convexity, which, in turn, is a necessary condition for poly-
convexity. Poly-convexity then is a necessary condition for convexity. The relations among
all four definitions are summarized in Figure 2.2. In one-dimensional problems all four no-
tions of convexity coincide, see Figure 2.1.
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Figure 2.2: Relations among the conditions of convexity.

In many physical problems as those discussed in Chapter 3, the energy density is not qua-
siconvex such that there exists no solution to the minimization problem in the classical sense.
Instead, the energy minimum is accommodated by minimizers in the sense of Ball (1977),
forming fine-scale microstructures whose characteristics can be determined by employing
energy hulls also known as envelopes.

We make use of the abbreviation f ≤ g ⇔ f(x) ≤ g(x) ∀ x. Then, let us define the
convex hullCΨ, the polyconvex hull PΨ, the quasiconvex hullQΨ and the rank-one-convex
hull RΨ of Ψ in the following manner:

CΨ = sup {Φ | Φ convex; Φ ≤ Ψ} , (2.91)
PΨ = sup {Φ | Φ polyconvex; Φ ≤ Ψ} , (2.92)
QΨ = sup {Φ | Φ quasiconvex; Φ ≤ Ψ} , (2.93)
RΨ = sup {Φ | Φ rank-one-convex; Φ ≤ Ψ} . (2.94)

(2.95)

We can find the alternative definition of the convex hull

CΨ(F ) = inf

{
n∑
i=1

λiΨ(F i)

∣∣∣∣∣ λi,F i ;
n∑
i=1

λi = 1, 0 ≤ λi ≤ 1,
n∑
i=1

λiF i = F

}
, (2.96)

where the F i are often called the atoms. For finding the convex envelope in d dimensions,
d2 + 1 atoms are necessary. The polyconvex hull can be defined by

PΨ(F ) = inf

{
n∑
i=1

λiΨ(F i) | λi,F i ;
n∑
i=1

λi = 1, 0 ≤ λi ≤ 1,
n∑
i=1

λiF i = F ,

n∑
i=1

λicofF i = cofF ,
n∑
i=1

λi detF i = detF

}
(2.97)

and it requires 10 atoms in 2-D and 20 atoms in 3-D. The quasiconvex hull can be defined
analogously, following the definition of quasiconvexity:

QΨ(F ) = inf

{
1

ω

∫
ω

Ψ(F + ∇ϕ) dv | ϕ ; ϕ = 0 on ∂ω
}
. (2.98)

Finally, the most important hull for practical applications is the rank-one-convex envelope
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RΨ which can be approximated by

R1Ψ(F ) = inf {λ1Ψ(F 1) + λ2Ψ(F 2) | λi,F i ;
n∑
i=1

λi = 1, 0 ≤ λi ≤ 1, (2.99)

n∑
i=1

λiF i = F , rank(F 1 − F 2) ≤ 1

}
.

R1Ψ approximates the rank-one-convex hull by assuming a particular pattern of microstruc-
tures: a first-order laminate. A better agreement with the rank-one-convex hull can be achie-
ved by recursively repeating the above construction to obtain higher-order phase mixtures
with R2Ψ = R1(R1Ψ) = R2

1Ψ, and higher order laminates with increasing number of re-
cursions:

RkΨ = Rk
1Ψ. (2.100)

The rank-one-convex hull of Ψ can now be defined as

RΨ = lim
k→∞

RkΨ. (2.101)

In the context of continuum mechanics it would be most convenient to construct the qua-
siconvex hull. Since quasiconvexity is a non-local condition, however, the construction of
quasiconvex hulls in an analytical fashion turns out not to be feasible in many cases. There-
fore, the quasiconvex hull is approximated by other convex hulls (note that all other notions
of convexity involve purely local conditions). Following Figure 2.2 the relations among the
different hulls are:

CΨ ≤ PΨ ≤ QΨ ≤ RΨ ≤ RkΨ ≤ R1Ψ ≤ Ψ. (2.102)

One possibility to determine the quasiconvex hull is now to derive an upper and a lower
bound on the quasiconvex hull; e.g. authors have determined the polyconvex and the rank-
one-convex hulls of the energy under consideration. In those cases where these two hulls
(which bound the quasiconvex envelope from above and from below) coincide, they also
coincide with the quasiconvex hull which has thus been found. In those cases where the up-
per and lower bounds do not coincide, it is at least possible to approximate the quasiconvex
hull by e.g. the rank-one-convex hull (or one if its approximations RkΨ).

2.3 Fundamentals of Continuum Mechanics

2.3.1 Elastic Deformation

The description of the mechanical behavior of material bodies requires a mathematical mo-
del to represent the physical reality in a simplified and mathematically sound setting. Phy-
sically, any material consists of enumerable particles, molecules and atoms and is hence
discrete in nature. If the dimensions of the material body under consideration, however, are
much larger than those of atoms or molecules, the discrete nature can be neglected and the
material body may be treated as a continuum consisting of particles continuously distributed
in space. For this reason, we limit our analyses in this work to be within the framework of
classical continuum theory (Truesdell and Noll, 1965), which is based on the assumption
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Figure 2.3: Reference and deformed configuration of a material body in the Cartesian refe-
rence coordinate system.

of a continuous distribution of a body’s physical properties such as its density or its elastic
properties, but also of the mechanical field variables under consideration, e.g. displacement,
stress or temperature. Hence, we describe every material body as a compact, continuous
infinite set of material points in space, whose total entity forms a material body Ω ⊂ R3

with surface ∂Ω = Γ. To describe the position of each material point in space, we introduce
a time-invariant Cartesian coordinate system which is defined by the unit vectors ei with
respect to a fixed reference point, the origin O (see Figure 2.3).

As a consequence, the position of a point in space can be specified in terms of its coordina-
tes or its position vector, where we have to differentiate between the undeformed (reference)
configuration Ω and the deformed (current) configuration Ω′ of a body. Hence, we write for
each point in the undeformed configuration the position vector

X = Xiei, X ∈ Ω ⊂ R3, (2.103)

and for the same material point in the deformed configuration

x = xiei, x ∈ Ω′ ⊂ R3. (2.104)

The deformation of a body can be regarded as a mapping φ : Ω(R3)→ Ω′(R3) of a domain
Ω (i.e. of every material point contained in Ω) onto a domain Ω′. The change of position of
each material point can be described by its new position

x = φ(X), (2.105)

or by introducing a displacement field u that relates x toX by

u = x−X = φ(X)−X. (2.106)

Note that in general the displacement vector u can be given in terms of the original coordi-
nates as u(X) = x(X) −X or in terms of the coordinates in the deformed configuration
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as u(x) = x −X(x). In the following, we will neglect the latter formulation and use the
reference coordinate system only unless explicitly stated otherwise.

Not only material points but also line segments in Ω are mapped onto the deformed con-
figuration Ω′. An infinitesimal line segment dX is transformed into dx by

dx =
∂x

∂X
· dX = F · dX. (2.107)

F = ∇φ is called the deformation gradient tensor with components

Fij = δij + ui,j = φi,j. (2.108)

As a consequence, area segments dA = N dA (with N being the unit outward normal
vector on the surface of area dA) and volume segments dV of the reference configuration
Ω are deformed in Ω′ and given as

da = n da = (detF ) F−T · dA = (cof F ) dA, (2.109)
dv = detF dV. (2.110)

For incompressible (i.e. volume-preserving) materials the deformation gradient tensor must
hence obey the requirement detF = 1. Note that for physically reasonable deformations
the requirement

detF > 0 (2.111)

must hold. Analyzing the change of the length of a line segment ds in Ω, which can be
calculated as

||ds||2 = dX · F TF · dX, (2.112)

Cauchy and Green introduced the following tensors to describe finite deformations:

C = F TF , b = FF T , (2.113)

whereC and b are the so-called right and left Cauchy-Green tensors; the inverse of b is often
referred to as the finger tensor c = b−1. These tensors are commonly used to describe finite
deformation. For some applications, it is useful to employ the following representation of
the deformation gradient tensor, which follows Cauchy’s polar decomposition theorem and
states that any deformation gradient (or any tensor, in general) can be decomposed into
the symmetric, positive-definite right and left Cauchy tensors U and V , respectively, and a
rotation tensorR by

F = R ·U = V ·R, (2.114)

from which it follows that

b = V 2, C = U 2. (2.115)

Note that transformation rules discussed in Section 2.1.3 apply, so that the deformation
gradient tensor can also be written in terms of the principal stretches λi, i.e.

F =

 λ1 0 0
0 λ2 0
0 0 λ3

 . (2.116)
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The three invariants of the deformation gradient tensor follow as

I1 = trF = Fii = λ1 + λ2 + λ3,

I2 = 1
2
(F : F − (trF )2) = 1

2
(FijFij − FiiFjj) = λ1λ2 + λ2λ3 + λ1λ3, (2.117)

I3 = det F = λ1λ2λ3.

A special case of deformation is that of rigid body motion during which the original
body Ω only translates and/or rotates in space without changing its shape. For translational
motion, the displacement vector for each point in Ω is independent of its location X and
hence F = I and C = F TF = I . For pure rotation, F is a rotation tensor and e.g. for a
two-dimensional in-plane rotation about the e3-axis by an arbitrary angle ϕ specified by

F =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 (2.118)

such that againC = F TF = I . So, for rigid body motion we haveC = I (and thus b = I).
Normally, any deformation measure is expected to yield a zero tensor for rigid body motion.
This leads to the introduction of the Alamansi-Hamel strain tensor

E = 1
2
(C − I), (2.119)

which can also be written in terms of the displacement vector u so that its components read

Eij = 1
2
(ui,j + uj,i + uk,iuk,j). (2.120)

It can easily be verified that for rigid body motion E = 0.

To keep the mathematical analysis as simple as possible, it is often useful to resort to the
most important simplification in the analysis of deformation, viz. the assumption of infinite-
simal deformation, which is valid in the presence of small elastic but also small elasto-plastic
displacements; i.e. we assume infinitesimal strains if the displacements are negligible com-
pared to the geometric extensions of the body under investigation. Since ||ui,j|| � 1 in this
case, Eq. (2.120) reduces to the infinitesimal strain tensor ε with components

εij = 1
2
(ui,j + uj,i). (2.121)

When the material body Ω deforms in space, each point in Ω travels through space with a
velocity vector v(t), which is a function of time and position and can be expressed mathe-
matically as

v(x, t) = lim
∆t→0

u(x, t+ ∆t)− u(x, t)

∆t
=
∂u

∂t

∣∣∣∣
x

(2.122)

where the subscript x denotes keeping x constant while taking the partial derivative with
respect to time. For subsequent Sections, it is beneficial to introduce a new quantity which
describes the change of the velocity field v(x, t) for a fixed time t but with varying spatial
coordinates x. Therefore, let us calculate the velocity increment dv due to an infinitesimal
variation dx,

dv = v,x · dx = L · dx, (2.123)

where L is the gradient of v with respect to the spatial coordinates x. Applying the chain
rule and rearranging tensors, we obtain the following identities of practical use:

L = Ḟ F−1, F = LḞ , Ḟ
−1

= −F−1 ·L. (2.124)
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Figure 2.4: Reference, intermediate and final deformed configuration of the material body.

2.3.2 Plastic Deformation

In the previous Section we introduced the fundamental deformation measures and their rela-
tions, regardless of their physical origin and nature. In reality, however, we must differentiate
between two types of deformations. On the one hand, deformation can occur as a reversi-
ble process which is naturally recovered and vanishes upon removing all externally applied
loads. This type of deformation is termed elastic. In contrast, plastic deformation denotes
a permanent mapping into a deformed configuration, i.e. this type of deformation is irre-
versible – the material body remains in a strained configuration upon releasing all external
loads. These effects can be translated into the following mathematical concept illustrated in
Fig. 2.4. As before, the reference configuration Ω is mapped onto the deformed configura-
tion Ω′ and any infinitesimal line segment dX deforms into dx = F ·X with F being the
deformation gradient tensor. Let us now introduce an intermediate configuration described
by a coordinate p, as sketched in Fig. 2.4. This intermediate configurations Ωp is assumed
to be obtained from the deformed configuration Ω′ by unloading the continuum to a zero
stress state, or from the reference configuration Ω by pure plastic deformation. Therefore,
the current configuration and its line segment dx can be obtained by first deforming dX
purely plastically via dp = F p ·dX , where F p is the plastic deformation tensor, and further
deformation into dx by an elastic deformation via dx = F e · dp, where F e is the elastic
deformation tensor. Combining these two steps, we arrive at the well-known multiplicative
decomposition of the deformation gradient originally introduced by Lee and Lin (1967):

F = F e · F p. (2.125)

Note that for any plastic deformation

detF p = 1, (2.126)

i.e. plastic deformation is volume-preserving. From Eq. (2.119), the Almansi-Hamel strain
tensor can now be written as

E = 1
2
(F TF − I) = F T

pEeF p +Ep (2.127)
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with

Ee = 1
2
(V 2

e − I), Ep = 1
2
(F T

p F p − I). (2.128)

If the total deformation gradient is infinitesimal (i.e. elastic, plastic and total strains are
infinitesimal), then Eq. (2.127) reduces to

E = ε = εe + εp, (2.129)

which is the well-known additive decomposition of the strain tensor for infinitesimal defor-
mations. Use of this additive decomposition requires caution: In many physical problems the
elastic strain is very small compared to the plastic deformation and hence negligible. This
allows for the assumption that ||εe|| � 1, which in turn, however, does not automatically
imply the validity of Eq. (2.129). This can only be applied if also the plastic deformation is
infinitesimal. For most problems, one has to employ Eq. (2.125) which is generally appli-
cable. Note that the formulation E = Ee + Ep is not universally true and depends on the
definition of Ee and Ep. In particular, only E is kinematically expressible in terms of the
deformation gradient. For a detailed discussion see e.g. (Khan and Huang, 1995). In general,
we will obtain the strain tensor E from the overall deformation, define Ep by a constitutive
relation, and then obtain Ee from

Ee = E −Ep, (2.130)

which can be applied for both finite and infinitesimal deformations (for the latter in the
analogous form εe = ε− εp).

2.3.3 Stresses and Equilibrium

Following the mathematical description of the purely geometrical behavior of a material
body in terms of its deformation measures in the previous Sections, we will now focus
on the characterization of tractions and forces applied to a material body and the resultant
internal stresses within the material body. In general, we can divide the applied forces into
external forces (comprising body and surface forces) and internal forces (stresses within
the material body, following the Euler-Cauchy stress principle (Scipio, 1967)). The external
forces can further be subdivided into body forces

f v(x) = fvi
(x)ei, x ∈ Ω, (2.131)

which are continuously distributed throughout the volume of a body Ω (e.g. gravitational
forces), and surface forces (depending on the surface normal orientation n)

f t(x,n) = fti(x)ei, x ∈ Γt, (2.132)

which act on a part of the body’s surface and commonly result from contact of two bodies.
Therefore, we have divided the body’s surface Γ = ∂Ω = Γt

⋂
Γu into two parts, Γt deno-

ting that part of Γ, on which the applied surface forces act, and Γu being that part of Γ, on
which displacements u0 are prescribed.

Externally applied forces result in internal forces, which are commonly characterized by a
second-order stress tensor. The internal traction at a material point in a directionn is defined
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Figure 2.5: Stress, force and traction definitions.

as that force t = tiei which acts on an infinitesimal area element ∆a with normal n after
cutting the material body into two parts, as illustrated in Figure 2.5:

t = lim
∆a→0

∆p

∆a
. (2.133)

Note that the shape of the area ∆a does not affect the traction t. To uniquely describe the
complete stress state in any material point in Ω, it is sufficient to determine the traction
vector t on three mutually orthogonal surfaces at that point. For example, we can cut from
the material body an infinitesimal cube volume element around the material point whose
surfaces point into the directions of the three Cartesian coordinate axes, so that we obtain
a vector ti = (σ1i, σ2i, σ3i) on each surface of the cube, as sketched in Figure 2.5. We can
arrange all three surface traction vectors in a tensor, the stress tensor σ = σijei⊗ ej , which
uniquely defines the complete stress state at a material point and whose components may be
arranged in a square matrix,

(σij) =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 . (2.134)

By definition, the first index of σij then indicates the direction in which the stress component
is acting and the second index indicates the direction of the surface normal vector n of the
plane in which the stress is defined. In general, σij is the stress on the j-plane in the i-
direction. The diagonal entries σii hence act normal to the surface on which they are defined
and are therefore called the normal stresses. All entries on secondary diagonals σij(i 6= j)
act parallel to the surface on which they are defined and are referred to as shear stresses. As
transformation rules for tensors apply, the traction vector at a material point in any arbitrary
surface with unit normal vector n can be obtained from the stress tensor as

t = σ · n. (2.135)

Therefore, every component of σ can be obtained from

σij = ei · σ · ej. (2.136)
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The stress tensor defined in the aforementioned way (i.e. in the deformed configuration) is
commonly named the Cauchy stress tensor.

Although components of the stress tensor vary with orientation in the material body, there
are three invariants to transformations (cf. Eq. (2.117)), which are commonly defined by

J1 = tr σ = σii,

J2 = 1
2

(σijσji − σiiσjj) , (2.137)
J3 = detσ = 1

3
σijσjkσki.

When we cut the cube from the material body, we observe that the traction components
acting on its surfaces are not all independent but must be chosen in such way that the cube
is in a state of equilibrium, which means that the resultant force and momentum vectors on
the cube must vanish under the assumption of static deformation. Enforcing equilibrium on
an infinitesimal cube as in Figure 2.5, we derive from the (static) force balance equations
the equilibrium conditions

div σ + f v = 0 in Ω, (2.138)

where f v is the vector of body forces. Analogously, the momentum balance equations yield
the equilibrium conditions in the absence of continuously distributed body moments

σ = σT in Ω. (2.139)

At the free surfaces of the material body, we must satisfy the condition

σ · n = f t on Γt. (2.140)

When dealing with infinitesimal deformations and hence the infinitesimal stress tensor,
the definition of the stress tensor is unique and the above description is sufficient. Especial-
ly for the description of elasto-plastic or hyperelastic material behavior, the assumption of
infinitesimal deformation is often not appropriate. In the context of finite deformation ana-
lysis the stress tensor is no longer uniquely defined but we must specify the configuration in
which the tensor is defined. The Cauchy stress tensor is defined in the deformed configura-
tion Ω′. It varies with coordinate x and it is the true stress in a deformed body. In general
elasticity theory, there are two independent configurations, so that we can specify the stress
tensor with respect to X and x, and we can map the stresses between these configurations
by application of F (see Figures 2.3). In elasto-plasticity there are even three distinct con-
figurations (see Figure 2.4) so that, when determining a stress tensor, it becomes even more
important to specify the configuration in which it is defined.

The first Piola-Kirchhoff stress tensor ΣI (often abbreviated as first PK stress tensor) is
introduced to give the actual force or traction ∆P on the deformed area ∆a in the deformed
configuration Ω′, but it refers to the area ∆A in the reference configuration. It is therefore
linked to the Cauchy stress tensor σ via

σ = ΣI · F T (detF )−1. (2.141)

This stress measure is often termed the nominal stress because its component ΣI
ij represents

the stress component in the xi-direction of the force per unit area in the reference configu-
ration on a surface that is normal to the Xj-axis in that configuration. Note that, because σ
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Figure 2.6: Physical comparison between the stress tensors: (a) reference and deformed
configuration, (b) Cauchy stress (force in deformed configuration on deformed
area), (c) 1st PK stress (force in deformed configuration on undeformed area),
(d) 2nd PK stress (force mapped to undeformed configuration on undeformed
area).

is symmetric and F is generally not, the first Piola-Kirchhoff stress tensor is not symmetric.
Therefore, the second Piola-Kirchhoff stress tensor ΣII was introduced, which gives the
stress mapped to the reference area and measured on the undeformed area dA. It relates to
the Cauchy stress σ as

σ = F ·ΣII · F T (detF )−1 (2.142)

All three stress tensor definitions and the corresponding reference frames are compared in
Fig. 2.6. Comparing Eqs. (2.141) and (2.142), we finally conclude

ΣI = F ·ΣII . (2.143)

Note that in problems of elasto-plasticity, F 6= F e such that extra caution is required, see
Section 2.3.4.

Figure 2.7: Stress-strain curve example for uniaxial loading.
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2.3.4 Constitutive Laws

So far, we have described the concept of the strain tensor to describe the deformation state
of a material body, and the different formulations of the stress tensor to define the internal
forces acting within a material body subject to external forces. The goal of every mechanical
model is a description of the physical behavior of a material body by means of constitutive
laws which relate the strain tensor to the stress tensor. A constitutive law in our context is
hence nothing else but a mathematical equation relating stresses to strains, and its concept
was introduced among others by Noll (1954). In solid mechanics these constitutive laws
commonly do not follow directly from physical law but are rather a result of experimental
observation and very often of phenomenological nature.

An exemplary stress-strain relation for a simple uniaxial tension test e.g. for a mild steel
(a) and for aluminum (b) is illustrated in Figure 2.7. These curves depict results from
displacement-controlled experiments, i.e. the hard test device prescribes displacements (and
hence the overall strain ε) while the stress σ is measured and recorded as a function of strain.
Analogously, experiments can also be load-controlled, i.e. the external forces (or stresses)
are prescribed and the displacement is recorded. In technical reality the latter type of experi-
ment is the only one which can ideally be realized, since load-controlled testing can simply
be accomplished by means of dead loads, but a perfectly rigid hard device to rigidly enforce
displacements is a technical impossibility.

Let us discuss the exemplary stress-strain curves for a uniaxial tension test of a slender bar,
shown in Figure 2.7, to introduce some common definitions. In both curves we can clearly
identify an initial section OA, where the stress-strain behavior is linear with the propor-
tionality factor E (Young’s modulus). This initial section of a stress-strain curve therefore
describes a purely elastic loading of the material. Elastic loading is completely reversible
and the initial (stress- and strain-free) state is recovered as all external loads are removed
(i.e. when we load the body up to a point below A and then unload the body, we will return
to point O). At point A this linear relationship breaks down and the material begins to yield;
the material exhibits plastic flow. Consequently, A is called the yield point and, accordingly,
the stress at point A is termed the yield stress σy.

Upon further loading, the stress-strain curve commonly exhibits a decreasing slope de-
pending on the type of material. The stress-strain curve during plastic yielding sometimes
shows an almost horizontal line, known as perfectly plastic behavior, or it exhibits a further
increase of the stress but with a lower slope than during elastic loading. Often both appea-
rances occur in a combined fashion, as depicted in Figure 2.7a. The zig-zag curve between
points A and B is commonly referred to as a Lüdersband and usually arises due to stick-slip
mechanisms on the microscale, which involve dislocations whose motion is temporarily im-
peded. After point B, the material exhibits plastic flow and it hardens until point E. From
point E on the material softens and finally undergoes damage leading to material failure due
to fracture at point F. In the elastic region between points O and A the deformation is rever-
sible, and the material body recovers upon unloading, going back to point O. If we unload
the body after plastic, i.e. irreversible, deformation e.g. at point C, the stress-strain curve
follows the line CD which is parallel to OA (elastic unloading). State D is characterized by
zero stresses. The strain, however, is non-zero: the irreversible plastic strain εp remains. So,
only the elastic strain εe is recovered, whereas the plastic strain εp remains as permanent
deformation. While in Figure 2.7a the onset of plastic flow is sharp and clearly visible, the
stress-strain curve for aluminum in Figure 2.7b does not allow for such a clear identification
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of σy. For such materials, one commonly defines the yield point by means of a maximum
deviation from the proportional behavior, i.e one introduces a critical overall strain εy (often
2%) at which the yield point is defined.

As discussed in Section 2.3.1 and as shown in Figure 2.7, the total strain can be decom-
posed into elastic and plastic strain, ε = εe + εp for infinitesimal strains, and F = F eF p

for finite strains. This decomposition of the total strain calls for constitutive laws for both εe

and εp or F e and F p, respectively. During elastic loading (section OA) only εe or F e may
evolve; during general elasto-plastic deformation (section AF) both εe and εp or F e and F p

evolve. The constitutive law for the elastic strain (the proportionality in the above example)
will be discussed first. The constitutive law for the plastic strain, which is also known as the
flow rule, is subject of Section 2.4, where it can be linked to microscale mechanisms.

In elasticity theory, a constitutive law can be given directly, e.g. in the form of Hooke’s
law for linear elasticity

σ = C : εe, (2.144)

or indirectly by defining an elastic energy potential, which we will discuss in a moment. In
general, the elasticity tensor C = Cijklei ⊗ ej ⊗ ek ⊗ el of fourth-order has 81 components
which link the strain tensor to the stress tensor. Very often, it is not necessary to consider
all 81 components independent but due to symmetry of the stress and strain tensor and due
to isotropic material behavior (i.e. no directional dependence of the elastic properties), one
can reduce the relationship between stresses and strains to only two independent material
properties. One possible formulation is given in terms of the Lamé elastic moduli µ and λ,
i.e.

Cijkl = λδijδkl + µ(δikδjl + δilδjk). (2.145)

The constitutive law for linear elasticity now reads

σ = λ (tr εe) I + 2µ εe. (2.146)

Other typical engineering formulations of the elastic properties employ Young’s modulus
E, Poisson’s ratio ν and the bulk modulus K, which can be related to the Lamé moduli via

E = µ
3λ+ 2µ

λ+ µ
, ν =

λ

2(λ+ µ)
, K = λ+

2

3
µ. (2.147)

Note that in all formulations the stress state depends only on the elastic strain tensor (or
the elastic deformation gradient, as applicable). This agrees with the observation that the
introduced intermediate configuration Ωp is stress-free.

As already mentioned, a constitutive law can also be given indirectly and obtained from
an elastic energy potential, which for the above example of linear elasticity reads

Ψ(εe) = 1
2
εTe : C : εe. (2.148)

Such an energy potential Ψ, also termed the Helmholtz free energy, describes the stored
elastic energy at a given point of the material body, and it can be obtained from experimental
results, molecular dynamics simulations or other phenomenological approaches. For more
details on the possible choices of the energy potential Ψ see Section 2.5.1. In the theory of
infinitesimal elasticity, the stress tensor in Eq. (2.144) follows from the elastic potential via

σ =
∂Ψ

∂εe
= C : εe. (2.149)
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In finite elasticity, the constitutive law is most often given via an elastic energy potential,
which can be defined in many ways depending on the type of material to be described. The
well-known St. Venant-Kirchhoff potential is analogous to that of a Hookean material in
linear elasticity, i.e.

ΨK(Ce) =
1

2
ET

e : C : Ee =
1

8
(Ce − I)T : C : (Ce − I). (2.150)

Another important because widely used material model follows the so-called Neo-Hookean
constitutive law, which may be formulated e.g. as

ΨNH(Ce) =
µ

2
(trCe − 3) +

K

4

[
det Ce −

K + 2µ

K
ln (det Ce)− 1

]
. (2.151)

One important characteristic of this Neo-Hookean material model is the logarithmic term,
which penalizes the reduction of the body to zero volume since det Ce = 2 det F e =
2 det F captures the relative change of volume, cf. Eq. (2.110). For some materials (in
particular, for rubbers and also for some metals) it is convenient to assume incompressibility
(det F = 1), which reduces the elastic potential to

ΨNH(Ce) =
µ

2
(trCe − 3), (2.152)

Finally, let us mention a common model for the description of incompressible hyperelastic
materials, which was introduced independently by Mooney (1952) and Rivlin (1952):

ΨMR(Ce) =
µ

2
trCe +

µ̄

2
trC−1

e + c0. (2.153)

The choice of the elastic potential in an engineering application should be made by the type
of material to be modeled (and, unfortunately, very often by the amount of computational
complexity allowed).

As we have seen before, several stress tensor definitions exist in finite elasticity. As before,
the stress-strain relation is obtained from the elastic potential Ψ via differentiation, but we
must differentiate between the three stress tensors defined above. The first and second Piola
Kirchhoff tensors ΣI and ΣII , respectively, are obtained from the elastic potential Ψ in
general by

ΣI =
∂Ψ

∂F
=

∂Ψ

∂F e
· F−Tp , (2.154)

ΣII =
∂Ψ

∂E
= 2

∂Ψ

∂C
. (2.155)

The Cauchy stress tensor cannot directly be obtained by differentiation of the elastic po-
tential (there is no conjugate strain measure corresponding to the Cauchy stress), instead
the Cauchy stress can be obtained from the Piola-Kirchhoff stresses by mapping from the
intermediate plastic configuration to the deformed configuration by use of F e, e.g.

σ = F ·ΣII · F T (detF )−1. (2.156)

Note that very often it is more convenient (or even the only possible way) to define the
constitutive relation for infinitesimal changes of stress dε and strain dσ, which for linear
elasticity coincides with the infinitesimal formulation:

dσ = C : dε. (2.157)
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So far, we have only dealt with constitutive laws that link stresses to the elastic strain
measures. In elasto-plasticity, we also need constitutive laws to control the evolution of pla-
stic internal variables and the plastic strain tensor. These constitutive laws are often termed
flow rules since they specify the way in which plastic flow occurs. Explicit examples for
flow rules within the context of continuum plasticity and continuum dislocation theory will
be discussed in Sections 2.4 and 2.5.

2.3.5 Variational Formulation for Linear Elasticity

In previous Sections we have outlined the concepts of stresses and strains in a deformed
material body, and we have investigated the relationship between these tensor quantities by
means of constitutive equations. In problems of solid mechanics, a material body is subject
to external surface forces f t on some part of its surface, Γt, and volume forces f v, and it is
constrained by given displacements u0 on the remaining part of its surface, Γu. These given
external sources of influences give rise to internal stresses σ and strains ε (or F ) and result
in a deformation of the material body Ω, given in terms of the displacement vector u. As
required in the sequel, we limit our consideration in this Section to the geometrically linear
theory only. The problem is then to determine σ, ε and u which satisfy the constitutive laws
and the boundary conditions

u = u0 on Γu, (2.158)
σ · n = f t on Γt, (2.159)

where n is the outward unit normal vector. This leads to the boundary value problem, whose
formulation within the scope of linear elasticity can be given by

div σ + f v = 0
σT = σ
σ = C : ε

ε = 1
2
(∇u+ ∇uT )

 in Ω, (2.160)

subject to the boundary conditions

u = u0 on Γu,

σ · n = f t on Γt. (2.161)

This formulation of the problem in terms of differential equations is the so-called strong
form of the boundary value problem.

Unfortunately, an analytical solution does not appear feasible for many physical appli-
cations, which leads to the idea of deriving a numerical setting to obtain an approximate
solution to the problem. Following the principle of minimum potential energy (see Secti-
on 2.5 for details), we will now introduce a variational formulation for the above boundary
value problem, which allows for a numerical treatment by means of the finite element me-
thod (Hughes, 1987). This Section follows mainly the concepts and notation introduced by
Cook et al. (2002). Note that we will briefly review the well-known concept of the finite
element analysis for isothermal, purely elastic infinitesimal deformations only, as descri-
bed by Hughes (1987) and Cook et al. (2002). If plastic flow occurs and hence dissipation
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due to changes of the internal microstructure is no longer negligible, the problem becomes
more complex and cannot be treated in this simple fashion. It requires adjustment to the
appropriate form, which we will be discussed in Section 4.8.

According to the principle of minimum potential (see Section 2.5), the equilibrium state
of a deformed body in space is characterized by a minimum of the body’s total potential
energy (as we neglect sources of dissipation here). Thus, the above boundary value problem
can be transformed into a minimization problem which can then be solved numerically.
Consider a material body of linear elastic material, which is subject to conservative loads –
in particular, surface tractions f t, body forces f v – and surface constraints u0. Furthermore,
initial stresses σ0 and initial strains ε0 may be present. Then, the total elastic strain energy,
Πint, i.e. the inner energy of the body, and the work done by external forces, Πext, are given
for infinitesimal strains and for quasi-static processes by

Πint(ε) =

∫
Ω

[
1
2

(
εT : C : ε

)
− εT : C : ε0 + εT · σ0

]
dv (2.162)

Πext(u) = −
∫

Ω

u · f v dv −
∫

Γt

f t · u ds−
∫

Γu

t · (u− u0) ds. (2.163)

The total potential of a strained body is then given by

Πtot = Πint + Πext. (2.164)

Note that here we only account for the stored elastic energy so that the Helmholtz free
energy equals the elastic strain energy potential. As strains ε = ε(u) directly follow from
the displacement field u, we can formulate the strain energy and the external work in terms
of u only. Let us furthermore neglect initial stresses and strains so that (with t being the
traction)

Πtot(u) = 1
2

∫
Ω

εT (u) : C : ε(u) dv−
∫

Ω

u ·f v dv−
∫

Γt

u ·f t ds−
∫

Γu

t · (u−u0) ds.

(2.165)

Now, we can write the minimization problem as

u = argmin {Πtot(u) | u = u0 on Γu} , (2.166)

which leads to the variational equation

δΠtot(u) = 0. (2.167)

Applying (2.165) to (2.167), we obtain∫
Ω

εT (u) : C : ε(δu) dv−
∫

Ω

δu·f v dv−
∫

Γt

δu·f t ds−
∫

Γu

δt·(u−u0) ds = 0. (2.168)

We have arrived at the so-called weak form of the boundary value problem. If we now limit
our analysis to finding approximate solutions only to the boundary value problem defined
in (2.160) and (2.161), and hence consider a class of variations δu with u = u0 on Γu,
then the solution obtained from (2.168) will always exactly satisfy the boundary condition
(2.158) as well as the strain-displacement relation (2.121) and the constitutive law (2.144),
whereas the equilibrium conditions (2.138) and the boundary condition (2.159) hold true
in an integral sense only. Keeping in mind these numerical deviations from the differential
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problem, we can solve the variational problem (2.168) instead of the differential problem
(2.160), (2.161).

The finite element method is based on the discretization of the geometry as well as all
scalar and field variables involved and thereby provides approximate solutions to the given
variational problem. In order to treat Eq. (2.168) numerically, let us first introduce the ad-
vantageous Voigt notation for stresses and strains, which arranges these quantities as vectors
instead of tensors, i.e.

σ̃ = (σ11, σ22, σ33, σ12, σ23, σ31)T , (2.169)

ε̃ = (ε11, ε22, ε33, γ12, γ23, γ31)T . (2.170)

Following these definitions, the constitutive equation of linear elasticity reduces to

σ̃ = E · ε̃, (2.171)

where the elasticity matrix E is given by

E =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2
0 0

0 0 0 0 1−2ν
2

0
0 0 0 0 0 1−2ν

2

 (2.172)

for a general three-dimensional deformation of an isotropic linear-elastic material with
Young’s modulus E and Poisson’s ratio ν. In many engineering applications this general
formulation is not necessary and one can reduce the complexity of the mathematical pro-
blem by applying one of the two assumptions of plane strain or plane stress. If the body
under investigation is very thick compared to its other geometric extension, one can neglect
strain and deformation in direction of the thick extension so that the deformation and strain
field can be approximated as being completely in-plane (ε3i = 0), and the body is in a state
of plane strain. If, in contrast, the body is very thin compared to the other geometric extensi-
ons, we can assume that the stresses in the thickness direction vanish (σ3i = 0) and assume a
state of plane stress. Applying one of these two assumptions can reduce the above problem’s
complexity. For plane stress, we have

Eplane stress =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1− ν

 , (2.173)

and for plane strain

Eplane strain =
E

(1 + ν)(1− 2ν)

 1− ν ν 0
ν 1− ν 0
0 0 1− 2ν

 , (2.174)

with, in both cases,

ε̃ = (ε11, ε22, ε12)T , σ̃ = (σ11, σ22, σ12)T . (2.175)

In case of plane strain, the missing non-zero stress component in thickness direction follows
as σ33 = −ν(σ11 + σ22). Analogously, in case of plane stress the missing non-zero strain
component is obtained from ε33 = −ν(σ11 + σ22)/E.
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As the only numerical problems treated in this thesis are based on the assumption of plane
strain, we will proceed by using Eq. (2.174) only. Then, let us introduce the differential
operator matrix

B =

 ∂
∂x1

0

0 ∂
∂x2

∂
∂x1

∂
∂x2

 (2.176)

in order to write the strain-deformation relation as

ε̃ = B · ũ, (2.177)

where for plane deformation states we use

ũ = (u, v)T . (2.178)

As a consequence, the total strain energy takes the form

Π(u) = 1
2

∫
Ω

u ·BEB ·u dv−
∫

Ω

u ·f v dv−
∫

Γt

u ·f t ds−
∫

Γu

t ·(u−u0) ds. (2.179)

This formulation allows for the variational principle to be written as∫
Ω

u ·BEB ·δu dv−
∫

Ω

δu ·f v dv−
∫

Γt

δu ·f t ds−
∫

Γu

δt ·(u−u0) ds = 0. (2.180)

This variational formulation will be used in the following as the basis for finite element
approximations of the given boundary value problem. After specifying a class of variations
(i.e. a class of possible approximations for u), the solution is obtained from solving the
variational problem (2.180).
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Figure 2.8: Different length scales involved in plasticity: from the macroscopic body to the
grain level to the sub-grain dislocation network to an atomistic view.

2.4 Continuum Theories of Plasticity and Dislocations

2.4.1 Bridging the Scales in Elasto-Plasticity

One of the major difficulties when modeling the elasto-plastic behavior of engineering ma-
terials lies in the number of length scales involved. Elastic and in particular plastic deforma-
tion is not only the macroscopic behavior one can observe with the naked eye, but it involves
many mechanisms on length scales far below the body’s dimensions, which have only be-
en made visible thanks to the progress in modern microscopic techniques over the last few
decades. Figure 2.8 sketches the most important length scales involved.

The structure of a modeled body usually defines the macroscopic level, which can range
from a few millimeters to kilometers depending on the body’s extensions. This is the scale
we can commonly observe without technical equipment and where we are interested in the
mechanical behavior of the entire body or structure. A light microscope reveals characteri-
stics on the first length scale invisible to the naked eye, often called the mesoscale. On the
mesoscale, one notices that the seemingly homogeneous body consists of a large number
of grains with different crystal orientations, whose usual diameters lie on the order of ma-
gnitude of 5 − 200 µm. These grains form the polycrystal. In most of the investigations in
this thesis, we limit our considerations to single crystals which consist of only one homoge-
neous grain. With the aid of transmission electron microscopy (TEM) one can reach the next
length scale, often referred to as the microscale (with typical dimensions of 0.1 − 3 µm).
On this scale, large configurations of atomic lattice disorders (so-called dislocations) beco-
me visible, forming the dislocation sub-structures. Together with other crystal defects these
appearances form the so-called microstructure. The dislocations, as discussed in subsequent
Sections, are crucial to accommodate the plastic deformation of a crystalline solid. Final-
ly, the lowest of all levels, the atomic scale, displays the atomic structure of the body with
typical lengths of a few Å (10−10m).

An ideal modeling approach for elasto-plasticity of solids would involve modeling the
respective mechanisms on all length scales and combine these to finally determine the me-
chanical behavior. Common continuum mechanics approaches can attack the macroscopic
problem effectively but usually lack influence from the underlying levels. On the other hand,
molecular dynamics simulations can treat problems on the atomic level but are highly re-
strictive in time and space by the enormous computational effort. Modern approaches are
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Figure 2.9: Unit cells of (a) bcc, (b) fcc and (c) hcp crystal structures.

capable of combining the effects on more than one length scale in a continuum sense; they
are therefore called multiscale methods (Ilic, 2008; Bartel, 2009). In this thesis, we predomi-
nantly adopt a different approach which places the model on the macroscopic or mesoscopic
scale but accounts for microstructural effects (such as dislocation mechanics) in a continu-
um way. In this Section we will give a brief outline of those mechanisms on the microscale
which need to be represented in such models.

2.4.2 The Crystal Lattice, Elastic and Plastic Deformation

On a very small scale, every material consists of the very same fundamental components
of nature, atoms and molecules. In contrast to many other materials metals arrange these
atoms or molecules in a particular order, lining up the atomic cores in a three-dimensional
regular periodic array and leaving the electrons move freely within their orbitals (sometimes
referred to as the electron gas) around these core positions. In this configuration, every atom
of the unstrained body is in a stable equilibrium position. For simplicity, we will no further
consider this specific distribution of atomic cores and electrons but imagine only the far
heavier cores to be lined up following a regular pattern, which results in a periodic crystal
lattice. The repetitive structure of such a crystal lattice makes it sufficient to know only
the structure of one unit cell, as the entire crystal lattice can be obtained from that unit
cell via translational invariance. Depending on the arrangement of atoms in this unit cell,
the crystal lattice structure is called cubic face-centered (fcc), body-centered cubic (bcc) or
hexagonal close-packed (hcp), which constitute the most common configurations in metals.

a

Figure 2.10: The crystal lattice accommodates elastic deformation.
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The unit cells of all three configurations are illustrated in Figure 2.9. Of course, we will
limit our analyses in this thesis to such scales where the discrete lattice structure can be
neglected and the body hence treated by continuum theories. However, it is important to
understand the underlying mechanisms and have a basic background of those phenomena
accompanying elastic and plastic deformation of metals. Therefore, this Section will give a
brief introduction into the basic deformation modes and mechanisms in metals.

Metals undergo elastic and plastic deformations, which are sometimes very hard to diffe-
rentiate on the macroscale (remember the difficulty in finding the yield point in Figure 2.7b)
but which are traced back to completely different mechanisms on the microscale. Elastic
deformation results from collective straining of the crystal atoms about their equilibrium
positions as sketched in Figure 2.10. This deformation is reversible and, upon unloading the
crystal, all atoms will return to their equilibrium positions. (The elastic behavior can easily
be imagined as a cluster of point masses connected by non-linear springs, which upon un-
loading return to their original state of minimum energy. Molecular dynamics simulations
are, roughly speaking, based on this approach but with the spring-like interactions common-
ly characterized by Lennard-Jones potentials.) The elastic properties of a material are hence
a macroscopic result of the crystal lattice properties (such as the average atomic spacing a
and the resulting attractive and repulsive forces of regular lattice atoms), which allows for
an atomistic determination of the elastic constants from energetic considerations.

Plastic deformation, in contrast, is irreversible, it does not collectively strain the crystal
lattice, and its characteristics are far more complex and difficult to determine from the mi-
croscale than are the elastic constants. Ewing and Rosenhain (1899) were among the first
to propose that plastic deformation is realized by a glide process on certain glide planes
within the crystal, which was confirmed experimentally later. Crystallographic gliding is
one of the most important microstructural mechanisms to accommodate plastic deformati-
on, during which parts of the strained crystal irreversibly travel along a certain glide plane
into a given slip direction, see Figure 2.11a. This often gives rise to steps at the free crystal
surfaces. Plane and direction of slip determine the so-called slip system. The basic process
of plastic gliding is depicted in Figure 2.11b,c. First assumptions that the upper part of the
shown crystal would simply collectively glide on the lower part of the crystal were proved
invalid because this would predict too high a critical strength of the crystal (Frenkel, 1926).
The stress required to move a complete part of the crystal along another part at once would
simply be too high. Instead, plastic slip normally results from motion and interaction of mi-
crostructural lattice defects of all kinds, the most important ones forming the large group of
dislocations.

2.4.3 Lattice Defects

The crystal lattice depicted in Figure 2.10 is a perfect lattice. However, experimental obser-
vations have revealed that crystal lattice configurations in actual materials are hardly ever
perfect. Indeed, one finds that there are probably even more defects than perfectly arran-
ged lattice regions in a standard engineering metal. When talking about defects of crystal
lattices, we differentiate several kinds of defects, which can roughly be grouped by their
dimensions (see Figure 2.12b): Zero-dimensional defects or point defects comprise solute
foreign atoms at lattice positions (1) (e.g. manganese atoms in high-manganese steels), dis-
placed lattice atoms (2), interstitially solute foreign atoms (3) (e.g. nitrogen or hydrogen
atoms in steels), or vacancies (i.e. missing lattice atoms) (4). These defects are closely re-
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Figure 2.11: (a) Example of plastic slip in a uniaxial tension test, (b) microstructural sketch
of the perfect lattice and (c) of the sliding of a glide plane.

lated to the well-known Schottky defects, where a lattice atom has wandered to the surface
leaving a vacancy in the crystal lattice, and Frenkel defects, where a vacancy arises from a
lattice atom misplaced at an interstitial position. One-dimensional linear lattice defects are,
roughly speaking, irregularities in the periodic crystal lattice and very often extra or missing
half-planes of atoms in the regular lattice, see e.g. Figure 2.12c. Since in all of these latter
configurations groups of atoms are ”dislocated“ from their regular equilibrium positions, we
call these defects dislocations. Two- and three-dimensional defects finally comprise such
lattice distortions as due to particulate inclusions, phase boundaries or grain boundaries, to
mention only a few.

All of these crystal lattice defects influence their neighborhood through long-range stress
fields. For example, the larger foreign atom (1) distorts the crystal lattice, resulting in a
compressive stress in its neighborhood, which aims at expanding the crystal lattice locally,
whereas a vacancy (4) in the lattice gives rise to tensile stresses in its neighborhood, at-
tracting other defects and aiming at shrinking the lattice crystal locally. Finally, the small
interstitials (3) e.g. impede motion of the neighboring crystal atoms.

All such crystal characteristics appear on the material’s microscale. Therefore, they com-
prise the material’s microstructure. As we have seen, the properties of the regular lattice
(e.g. average atomic spacing, attractive and repulsive forces of regular lattice atoms) influ-
ence the elastic properties of a macroscopic material body. The crystal defects have some

(a) (b) (c)

(1)

(2)

(3)

(4)

T

Figure 2.12: Lattice defects in crystalline solids: (a) perfect lattice; (b) disturbed lattice with
substitute foreign atom, interstitially solute foreign atoms and a vacancy; (c)
edge dislocation.
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Figure 2.13: Edge and screw dislocation.

influence on the elastic properties (e.g. by changing the atomic spacing through foreign
atoms or interstitials) but, most important, they affect the ability of the atomic lattice to
undergo irreversible rearrangements and are hence responsible for the plastic behavior of
a material. Of the aforementioned defects, the most important ones for plastic deformation
of metals are the dislocations, which will be discussed in somewhat more detail in the next
Section. For a more detailed investigation see (Hirth and Lothe, 1982).

2.4.4 Properties of Dislocations

The theory of dislocations was originally developed by Volterra (1905) at the beginning
of the 20th century and has been enhanced and extended ever since. The foundation for
the modern theory of slip due to dislocations goes back to Orowan (1934), Polanyi (1934)
and Taylor (1934). Dislocations are irregularities in the periodic crystal lattice and there are
two primary types of dislocations, the edge dislocation and the screw dislocation. Both ty-
pes of dislocations are sketched in Figure 2.13. An edge dislocation results from an extra
half-plane (or a missing half-plane) in the otherwise perfectly arranged crystal, as seen in
Figure 2.13a. Therefore, an edge dislocation is often represented by a T-symbol as shown
already in Figure 2.12c. For an edge dislocation, the dislocation line lies within the glide
plane, the dislocation moves through the crystal perpendicularly to the dislocation line, i.e.
in the direction of the shown slip vector s. Therefore, the Burgers’ vector b (i.e. the resultant
vector needed to close the unit circuit around the dislocation core) is perpendicular to the
dislocation line. If the Burgers’ vector equals a lattice vector, we speak of a complete dislo-
cation, otherwise the dislocation is incomplete. The Burgers’ vector is of the same order of
magnitude as the lattice spacings and results from the lattice characteristics and the active
slip system. A screw dislocation (symbol �) is regarded more difficult to understand as it
usually results from a lattice irregularity that does not involve extra or missing elements but
simply a disorder of the otherwise perfectly arranged lattice, as shown in Figure 2.13b. The
dislocation line again lies within the glide plane, but now the dislocation moves parallel to
the dislocation line, and so is the Burgers’ vector, i.e. s||b. Dislocations in actual materials
are usually more complex and involve combinations of both types of dislocations, called
mixed dislocations.
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Figure 2.14: Prismatic dislocation loop.

In general, dislocation lines are not straight but may be curved in the crystal’s interior,
they can end at free surfaces (and only there) or they can close to form dislocation loops
which comprise parts of both edge and screw dislocation character. A special case among
these loops are the so-called prismatic dislocation loops which form around conglomerates
of vacancies or around obstacles, see Figure 2.14.

The choice of glide planes and Burgers’ vectors is, of course, not arbitrary but limited
in terms of the given crystal structure. In fcc and bcc metals, glide planes are commonly
close-packed planes in the lattice with the slip direction being in a close-packed direction.
Examples for glide planes in bcc and fcc metals are illustrated in Figure 2.9. For an fcc
metal e.g. glide planes commonly are of type {111}, and the slip direction is of type 〈110〉.
In bcc metals, we commonly observe glide planes of type {110} and slip directions of type
〈111〉. Planes and directions are characterized using standard Miller indices, see e.g. (Hirth
and Lothe, 1982). Typical slip planes for bcc and fcc metals are sketched in Figure 2.16.
In hcp materials, the choice of the slip direction is more limited than in fcc or bcc metals
because only a few slip systems exist.

Dislocations are important to realize plastic deformation as they can easily travel through
the crystal lattice. As already mentioned, early analyses revealed that metals do not deform
plastically by collective motion of entire blocks of atoms by one another but they accommo-
date plastic deformation by dislocation motion. Figure 2.15 illustrates how a moving edge
dislocation can accommodate the plastic deformation already depicted in Figure 2.11. The
stress required to move the edge dislocation step-by-step through the crystal is essentially
less than that required to move the upper part of the crystal as one, because – instead of

t

t

t t

t t
(a) (b) (c) (d)

Figure 2.15: Basic mechanism of plastic slip through a propagating dislocation.
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moving complete lattice regions one by another – it is sufficient to locally re-arrange the
lattice around the dislocation only to plastically deform the crystal. Figure 2.17 exemplarily
shows a moving edge dislocation traveling step-by-step through the crystal.

In metals dislocations have a variety of possible choices for active slip systems. In general,
plastic slip will prefer predominantly those slip systems where the highest internal shear
stresses act. If we apply an external tensile stress σ as in Figure 2.11a, this stress will result
in a shear stress on each glide plane, the so-called resolved shear stress, which depends on
the orientation of the slip system. The resolved shear stress τres resulting from an externally
applied tensile stress σ takes the form

τres = σ cosϕ cos θ, (2.181)

where ϕ denotes the angle between the glide direction and the direction of the applied tensile
stress, and θ represents the angle between the glide plane normal and the direction of the
applied stress. A material’s resistance to dislocation motion can now be characterized by a
critical resolved shear stress τcrit., which is a material property dependent on the slip system.

As this thesis is mainly concerned with edge dislocations to form microstructural patterns,
we will limit some of the sequel to pure edge dislocations only. One can easily imagine that
inserting an extra half-plane into an otherwise perfect crystal will give rise to an elastic dis-
tortion of the lattice and hence to a stress field around the dislocation, which is illustrated in
Figure 2.18a: In the upper part of the crystal the extra half-plane will result in compressive
stresses trying to relax the crystal lattice by expansion; in the lower part of the crystal the dis-
torted lattice atoms below the dislocation core give rise to tensile stresses aiming at bringing
the atoms closer together. The highest stresses occur in the neighborhood of the dislocation
core. The stress field is of long-range nature and can influence neighboring atoms as well as
other lattice defects, as will be discussed later. When treating the atomic body as an elastic
quasi-continuum, the stress field around the core of a screw dislocation can be derived in a
simple form using cylindrical coordinates (r, θ, z), as the only non-zero component is the
shear stress

τrz(r) =
µb

2πr
. (2.182)

For an edge dislocation, the picture is somewhat more complicated (see Figure 2.18a): The

(a) (b)

Figure 2.16: Typical slip planes in bcc and fcc unit cells (slip planes are closed-packed
planes).
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Figure 2.17: Edge dislocation traveling through the crystal lattice (numbering is for clear-
ness only).

stress field in cylindrical coordinates is characterized by the non-zero components

σrr = σθθ = − µb sin θ

2π(1− ν)r
, (2.183)

σrθ =
µb cos θ

2π(1− ν)r
, σzz = − µbν sin θ

π(1− ν)r
.

For details on the derivation see e.g. (Hirth and Lothe, 1982). From these results it becomes
obvious that the stress fields are long-range but decay rapidly with increasing distance r
from the dislocation core.

Now, imagine an externally applied homogeneous stress field acting on an existing dis-
location. Let the dislocation be straight with Burgers’ vector b but of mixed type such that
the dislocation line with orientation vector ξ is not necessarily parallel to b. Denoting the
external stress field (without self-stresses) by σ, the force on the dislocation per unit length
equals (Peach and Köhler, 1950)

f = (b · σ)× ξ. (2.184)

It can be shown that the force acting on the dislocation decomposes into a so-called glide
component and a climb component:

f glide =
[(b · σ)× ξ] · [ξ × (b× ξ)]

|b× ξ|
, f climb =

[(b · σ)× ξ] · (b× ξ)

|b× ξ|
. (2.185)

Figure 2.18: (a) Stress field around an edge dislocation; edge dislocation traveling through
the crystal lattice (b) by sliding, (c) by climbing.
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These forces can most easily be interpreted for a pure edge dislocation with b = (b, 0, 0)T

and the dislocation line direction l = (0, 1, 0)T , where the force per unit length reduces to
the neat form

f edge = (−σxzb, 0, σxxb)T . (2.186)

The first entry aims at moving the dislocation in its principal slip direction in the active glide
plane, it hence provides the driving force for dislocation gliding and is therefore called glide
force. The last entry tends to move the dislocation perpendicular to the glide plane, i.e. the
dislocation is driven to leave its glide plane by climbing upwards or downwards. Therefore,
this component is often termed the climb force. The force per unit length f is known as the
Peach-Köhler force (Peach and Köhler, 1950).

Note that the above shown climb force of an edge dislocation is only correct for conserva-
tive dislocation climbing, as pointed out by Weertman (1965) who proposed a modification
of the above formulation. Weertman (1965) argued that, in general, climbing of an edge dis-
location is linked to motion or nucleation of vacancies in the crystal lattice, which, in turn,
requires a chemical driving force. Hence the actual climb force is obtained by considering
only the deviatoric stress tensor in (2.184) and taking into account a chemical driving force
which depends on the vacancy concentration in the crystal.

Analogously for a pure screw dislocation (b = (b, 0, 0)T and l = (1, 0, 0)T ), we obtain
the Peach-Köhler force

f screw = (0,−σxzb,−σyzb)T . (2.187)

So, the Peach-Köhler force for a screw dislocation acts equally in y- and z-direction per-
pendicular to the dislocation line. There is no unique slip direction, and a screw dislocation
cannot climb like an edge dislocation.

Resulting from the glide and climb forces, there are two independent modes by means of
which an edge dislocation can move through the crystal. These modes are shown in Figu-
re 2.18. Figure 2.18b illustrates the same type of dislocation motion as already sketched in
Figure 2.17 (light atoms illustrate the original position, dark atoms the current position after
the dislocation has traveled through the plane). This mode of dislocation motion is known
as dislocation slip or dislocation gliding, since a half-plane glides through the crystal on a
certain glide plane. Figure 2.18c displays the other mode of dislocation motion, commonly
referred to as dislocation climbing: Driven by its stress field, the dislocation leaves its glide
plane and moves perpendicular to the Burgers’ vector. As dislocation climbing requires the
diffusion of a vacancy to the dislocation core (which, in turn, can only be thermally activated
at higher temperatures due an Arrhenius-type law), dislocation climbing only occurs when
thermally activated, e.g. at temperatures higher than half the holonomous temperature.

Now, it becomes apparent why plastic deformation accommodated by dislocation motion
is irreversible: There is no difference or preference of the new and the original atom positi-
ons in Figure 2.18. It takes an external stress to move the dislocation from one position to
another (which dissipates energy). The dislocation will not move back as the external stress
is released, but it remains at its new position. Plastic deformation due to dislocation motion
hence is permanent, i.e. irreversible, and it consumes energy.

The existence of a dislocation results in a distorted crystal lattice which, in turn, gives rise
to elastic pre-strains and pre-stresses in the crystal, see Eqs. (2.182) and (2.183). Therefore,
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Figure 2.19: Glide and climb forces between two interacting parallel edge dislocations (the
dislocation at the center is assumed fixed, the other dislocation mobile). Arrows
show forces acting on the mobile dislocation due to the fixed dislocations.

the dislocation stores elastic energy in the crystal:

Edisl =

∫
Ω

σ : ε dv (2.188)

One can show (Hirth and Lothe, 1982) that the stored energy arising from a single disloca-
tion, the so-called self-energy of the dislocation, is of the type

Edisl = αµb2, with α = 0.5 . . . 1.5, (2.189)

and that

Eedge = 1.5Escrew. (2.190)

This comparably high energy of dislocations indicates that dislocations are (other than e.g.
vacancies) non-equilibrium defects, i.e. it takes an externally applied force to create a dis-
location. They do not arise from thermodynamic principles out of a homogeneous material
body in equilibrium.

2.4.5 Dislocation Interactions and Sources

The stress field around a dislocation affects the interaction with other dislocations and de-
fects as well. For example, two parallel edge dislocations will attract or repel each other de-
pending on their arrangement as depicted in Figure 2.19 which illustrates the forces acting
on a second edge dislocation depending on its position relative to the first edge dislocation
in the center. Let us place the coordinate system’s origin at the dislocation core of the cen-
tral dislocation with the z-axis coming out of the plane (as illustrated). Now, the interaction
force per unit length between the two edge dislocations with parallel Burgers’ vectors b1

and b2, the second being at position (x, y, 0), yields

f inter =
µ b1 · b2

2π(1− ν)

1

r4

 x(x2 − y2)
y(3x2 + y2)

0

 , (2.191)
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where r =
√
x2 + y2 is the distance between the dislocations. According to their orientation

parallel and perpendicular to the glide plane, the first component represents a glide force, the
second component a climb force. Figure 2.19 illustrates the interaction forces between two
parallel edge dislocations of equal signs. Parallel edge dislocations with equal signs under
angles between −45◦ and +45◦ hence repel each other. Under angles between 45◦ < ϕ <
135◦ and −45◦ > ϕ > 135◦ parallel edge dislocations try to arrange above or below each
other (ϕ = 90◦) since this configuration is stable. This is e.g. the reason for the formation
of low-angle grain boundaries during recrystallization, see also Figure 2.22. The interaction
forces for arbitrary dislocation geometries can be found in (Hirth and Lothe, 1982).

As a result of these interaction stresses and forces we can also introduce an interaction
energy which results from the elastically distorted crystal lattice. For two parallel straight
edge dislocations with common Burgers’ vector the interaction energy scales as

Einter ∝
µb2

2π
lnR, (2.192)

where R is the distance between the dislocations. It becomes apparent that the energy tends
to infinity as the dislocations move together. The total energy of all dislocations in a crystal
equals the sum of the dislocation self-energies and the interaction energies. If only a few
dislocations are present in the crystal (with consequently large distances between them),
then the interaction energies are negligible and the dislocation self-energies dominate. With
increasing number of dislocations, however, the interaction energy gains more importance as
the dislocations move closer together. Examples for interaction energies are given in (Hirth
and Lothe, 1982).

Dislocations do not only interact with other dislocations but also with other sorts of mi-
crostructural defects, some further examples of dislocation interactions are shown in Figu-
re 2.20: Two parallel edge dislocations of opposite sign (a) attract and annihilate each other,
forming an again perfect crystal. Dislocations are attracted by free surfaces (b) where the dis-
location may leave the crystal. (Once having left the crystal, the dislocation does no longer
distort the crystal. However, each dislocation at the free surface creates a step of the surface
and thereby either additional surface energy.) Very often, dislocations are surrounded by
other defects which restrict the dislocation motion. Interstitials e.g. can impede dislocation
motion by forming clouds of interstitial atoms around the dislocation (c), so-called Cottrell
clouds. The dislocation is pinned. Other dislocation-pinning obstacles are foreign atoms (d)
but also grain or phase boundaries at which dislocations can pile-up. To move a pinned dis-
location it takes higher stresses such that often stick-slip mechanisms are observed, where
the dislocation is pinned until the increasing stress is high enough to move the dislocation
until it is pinned again etc.

Of course, interacting dislocations are not always parallel and straight and there’s hard-
ly ever only one active slip system, but very often dislocations on different slip systems
interact, and the presence of other slip systems can influence the behavior of an existing dis-
locations. Sometimes it is more convenient for a dislocation to leave its current slip system
and to travel further on another glide plane; this process is known as cross-slip. However,
the motion of dislocations in cross-slip is more complicated and requires higher activation
stresses such that dislocations exhibiting cross-slip are more difficult to move. A similar
behavior can be observed from dislocations having so-called kinks and jogs which form if
not the entire dislocation climbs but only part of the dislocation line climbs to the new glide
plane and the remaining slip line remains in the original glide plane. Kinks and jogs have a
similar aggravating impact on dislocation motion.
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As mentioned in the previous Section, dislocations are non-equilibrium defects and only
form under applied external stresses. However, dislocations commonly do not originate out
of a perfect crystal but they form heterogeneously at obstacles, crystal boundaries or other
dislocation sources. For example, grain or phase boundaries can emit dislocations into the
crystal. Dislocations can also originate at other obstacles where dislocations are pinned. The
most well-known such source is the Frank-Read source, named after its pioneering inventors
Frank and Read (1950). If a dislocation is pinned at both ends, as shown in Figure 2.21,
an external stress will result in a force on the dislocation line (and perpendicular to the
dislocation line) which makes the dislocation bow in the illustrated manner. As the external
stress increases, the dislocation line bows out more until the dislocation forms a half-circle,
which then becomes instable and grows even without external stresses to finally form a new
complete dislocation loop growing into the crystal. Therefore, a Frank-Reed source can emit
dislocation loops into the crystal under external stresses.

As seen before, parallel edge dislocations of the same sign on neighboring planes in an
infinite crystal would try to separate from each other as far as possible due to the interaction
stresses to reduce the crystal’s energy. In a similar manner, the stress fields of all microstruc-
tural defects interact and yield attractive and repulsive forces between defects. In a confined
region, however, there is only limited space for those defects due to grain boundaries or other
obstacles, so that nucleated dislocations pile-up between these obstacles according to certain
energetic principles and yielding a specific structure, the so-called dislocation network. This
will be discussed in somewhat more detail in Section 2.4.7.

The arrangement of dislocations to a dislocation network will be discussed in subsequent
Sections. In general, dislocations are not disruptive defects but necessary ingredients to ac-
commodate material microstructures. For example, the boundary between two neighboring
grains with different crystal orientation can be accommodated by edge dislocations as illu-
strated in Figure 2.22. Here, dislocations at the boundary accommodate the local change of
otherwise possibly incompatible crystal orientations. Dislocations which form (in particular
at boundaries or obstacles) in order to accommodate a change of the crystal lattice or to
accommodate kinematically necessary lattice distortions are called geometrically necessary
dislocations (GNDs), whereas dislocations that appear stochastically at arbitrary positions
within grains during deformation are known as statistical dislocations. (Often, an analogous
differentiation is made into immobile and mobile dislocations.) The most important of these
two types of dislocations in our models are the GNDs, since dislocations in the sequel are
assumed to accommodate plastic distortions in the continuum body (Fox, 1968).
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Figure 2.20: Cartoon of dislocation Interactions: (a) Attraction and annihilation of oppo-
sing dislocations, (b) attraction of dislocations to free surfaces, (c) pinning of
a dislocation by foreign atoms, (d) pinning of dislocations and pile-up at large
foreign atoms, grain boundaries etc.
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Figure 2.21: Frank-Read source of dislocation loops: Pinned dislocation between to
obstacles bows under applied stress.

2.4.6 Continuum Theory of Plasticity

One can now – at least in principle – model the plastic deformation of crystalline solids
by simulating the crystal as an ensemble of a large number of atoms which can constitute
dislocations and other crystal defects to accommodate plastic flow. However, as pointed out
in previous Sections, such molecular dynamics simulations are highly limited in time and
space for reasons of computational effort. Instead, it is convenient to employ methods of
continuum mechanics which allow for the simulation of macroscopic bodies while accoun-
ting for the underlying microscopic defect mechanisms described above.

In the context of continuum mechanics, the general state of deformation of a macroscopic
body is described by

F = F e · F p, or ε = εe + εp, (2.193)

for finite deformations and the geometrically linear theory, respectively. In both cases, the
elastic deformation results from the above decompositions as

F e = F · F−1
p or εe = ε− εp. (2.194)

It is now, at least in principle, possible to differentiate all variables involved into two
types: On the one hand, there are elastic variables (here, the elastic strains) which change
without dissipating energy. On the other hand, there are plastic variables (here, e.g. the
plastic strains) which may be summarized in a vectorK. Any change of the plastic variables
(i.e. a change of the plastic deformation) is accommodated by dislocation motion which, in
turn, dissipates energy. Therefore, the free energy Ψ (and hence the stresses) depends on the

j

Figure 2.22: Low-angle grain boundary consisting of edge dislocations.
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elastic variables only, the dissipation, however, is a function of the set of internal (plastic)
variables,

Ψ = Ψ(F e), D = D(K). (2.195)

The free energy and the dissipation functional determine the constitutive relations of the
material. To complete the continuum description of elasto-plasticity, we need to specify
the plastic deformation gradient F p or the plastic strains εp, respectively, as well as the
dissipation D and link these quantities to dislocation dynamics.

The impact of each dislocation on the crystal lattice can be characterized by the tensor of
plastic distortion, β, which is defined as follows: Imagine a perfect crystal is distorted by
inserting a single dislocation, e.g. an edge dislocation, i.e. an extra half-plane in the crystal
lattice. Comparing the perfect and the distorted (deformed) crystal, we can write for the
Burgers’ vector b, characterizı́ng the jump of the displacements on the slip surface Σ,

b = [[u]] = u+ − u−, (2.196)

where the superscripts denote the limiting values of the displacements on both sides of the
slip surface. Then, it follows that (Berdichevsky, 2006b)

β = b⊗m δ(Σ), (2.197)

with m being the unit normal vector on the slip plane (directing from Σ− to Σ+), and δ
denoting the delta function of the surface Σ, i.e.

δ(Σ) =

∫
Σ

δ(x− xΣ) da, (2.198)

where δ is the common three-dimensional Dirac delta function (Kunin, 1983).

The number of dislocations in deformed metals is quite high. In macroscopic problems,
where the problem dimensions are much larger than the dislocation characteristics, we re-
gard the crystalline solid as a continuous medium. Therefore, we neglect the fact that pos-
sible choices of b are realized by the step-wise motion of dislocations, are hence limited in
terms of the lattice spacings, and formulate the plastic distortion as a continuous function.

Let us assume a large number of dislocations on infinitesimally close planes of the same
slip system. Denoting the slip direction by s, we write for the plastic distortion

β = γ s⊗m, (2.199)

where γ = γ(x) is a continuous function, called plastic slip or plastic distortion. In order
not to confuse notations in finite-strain and infinitesimal plasticity, we will use γ(x) as the
plastic slip for finite deformations and denote the plastic distortion for small strains by β(x).
If several slip systems are active to accommodate plastic deformation (with slip directions si
and slip surface normalsmi), dislocation slip can occur on any of the n active slip systems,
such that the total plastic distortion results as

β =
n∑
i

γisi ⊗mi. (2.200)

Now, we link the plastic distortion to the plastic deformation gradient and the plastic strains.
This connection can also be interpreted as follows: As we saw in Figure 2.11, plastic de-
formation can be regarded as a collective gliding of parts of the crystal along certain slip
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systems. Therefore, we should be able to formulate the overall plastic strain resulting from
gliding of dislocations as a simple shear deformation. In the theory of finite plasticity, this
results in the flow rule

Ḟ pF
−1
p = β̇ =

n∑
i

γ̇isi ⊗mi, (2.201)

where – as before – si denotes the slip direction and mi represents the normal unit vector
on the glide plane of slip system i, with a total of n slip systems. If all slip systems under
consideration have parallel unit normal vectorsmi = m, we can easily integrate (2.201) by
assuming as an initial condition F p = I so that we arrive at (Carstensen et al., 2002)

F p = I + β = I +
n∑
i

γisi ⊗m. (2.202)

If the unit normal vectors of the slip systems are not parallel, such a neat form for F p is
unfortunately not available (Hackl et al., 2003a). A derivation for an iterative solution can
be found e.g. in (Miehe et al., 2004).

For the geometrically linear theory we can apply (2.202) for a single slip system to εp =
Ep = 1

2
(F T

p F p − I) and neglect the quadratic term in γ = β (for infinitesimal strains we
have |β| � 1) so that we arrive at the neat form

εp = 1
2
β(s⊗m+m⊗ s) = 1

2
(β + βT ). (2.203)

For multiple slip systems of arbitrary orientation the relations in the linear theory are less
complex than for finite strains, and the corresponding plastic strain tensor follows as

εp = 1
2

n∑
i

βi(si ⊗mi +mi ⊗ si) = 1
2

n∑
i

(βi + βTi ). (2.204)

With these representations at hand, we can compute the elastic strains required for the
constitutive relations involving the free energy density. When dealing with plastic defor-
mation of metals, we must also consider the dissipation due to dislocation motion. As we
have seen, dislocation motion (and hence plastic deformation) is irreversible, i.e. dislocation
motion dissipates energy. This is sometimes pictured by figuring dislocations not to ideally
glide on the slip plane but to encounter some friction on that plane which consumes energy
(this is, of course, only an instructive visualization). Therefore, any change of the plastic
(internal) variables comes along with a certain amount of dissipation. This loss of energy
should be related to the amount of plastic slip. The dissipation for rate-independent plasticity
theory is often assumed of the form

D(γ̇i) = ∆(γ̇i) = τcrit,i|γ̇i| = τcrit,i|β̇i|, (2.205)

where τcrit,i is a material constant, the critical resolved shear stress of slip system i. A more
detailed description of the flow rules in finite and infinitesimal formulations will be given in
Sections 3 and 4 where required. With this constitutive framework at hand we can describe
the plastic deformation of crystalline solids.
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2.4.7 Continuum Theory of Dislocations

The continuous quantities of plastic slip or distortion, introduced in the previous Section,
allow for a clear characterization of the plastic deformation state of a material body. Unfor-
tunately, they do not provide any direct information about the actual dislocation network nor
does the dislocation network influence the free energy and, as a consequence, does not affect
the constitutive relations. In order to describe the amount of dislocations stored in a crystal
by a scalar quantity, the dislocation density ρ was introduced, which is defined as the total
length of all dislocation lines in a unit volume or the total number of all dislocation lines
cutting a unit area. The number of dislocations in deformed metals can be quite high. Un-
deformed metals considered as almost ”defect-free“ already exhibit dislocation densities of
the order of magnitude of 108 m−2. Heavily strained metals can exhibit dislocation densities
as high as 1015 m−2. Lining up all dislocation lines within a cube of a moderately strained
steel with 1cm side length results in a dislocation line of about 500− 1000km. Due to these
large numbers it would be cumbersome and inefficient to account for every single disloca-
tion and its interactions with all other dislocations independently. Therefore, the continuum
theory of dislocations was developed, analogously to the continuum theory of plasticity, dis-
cussed in the previous Section. Although the fundamentals of continuum dislocation theory
were laid down long time ago by Kondo (1952), Nye (1953), Bilby et al. (1955a), Kröner
(1958), and Berdichevsky and Sedov (1967), among others, the applicability of the theory
has become feasible only in recent years (Ortiz and Repetto, 1999; Ortiz et al., 2000; Ber-
dichevsky, 2006b; Groma et al., 2003) thanks to the progress in statistical mechanics and
thermodynamics of the dislocation network (Berdichevsky, 2005, 2006a).

The continuum theory of dislocations aims at describing the behavior of the ensembles of
huge numbers of dislocations by the common methods of continuum mechanics. In contrast
to the classical theory of plasticity (see Section 2.4.6), the free energy function Ψ is a functi-
on of the dislocation density which hence enters the constitutive relations. As another major
difference it can include plastic rotations in the set of the dislocation network kinematic pa-
rameters in addition to plastic strains. The importance of these plastic rotations may be seen
from Figure 2.23: Imagine an unstrained square body as depicted in Figure 2.23a. Now, let
edge dislocations with their Burgers’ vector in the x1-direction pass the square, resulting in
a homogeneous plastic shear deformation, as shown in Figure 2.23b. Another set of edge
dislocations passes the crystal in the x2-direction so that the square takes the form of Figu-
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Figure 2.23: Schematic illustrating the rigid rotation resulting from edge dislocation flow
(for small angle ψ).
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Figure 2.24: (a) Continuous approximation of the dislocation distribution, (b) pile-up of dis-
locations from a single source between two obstacles.

re 2.23c. If the shear angle ψ is small and the crystal isotropic, then the bodies sketched in
Figure 2.23a and Figure 2.23c differ by only a rigid rotation; the plastic deformation obtai-
ned from Figure 2.23a to Figure 2.23c vanishes. If we only account for plastic strains F p or
εp, there is no difference between states a) and c), and hence the passing dislocations are un-
noticeable, i.e. they would not affect any relation of the classical plasticity theory. However,
the initial and final plastic states are different in reality, as the passing dislocations dissipate
energy and thereby heat the crystal (Berdichevsky, 2006b). We see from Figure 2.23 that the
passing dislocations do not change the orientation of the crystal lattice in space (denoted by
the Cartesian coordinate system). However, they do change the material coordinate system
which rotates as a consequence. Therefore, those tensors characterizing the crystal anisotro-
py rotate with respect to the material frame due to plastic flow. As a consequence, the free
energy density should be an explicit function of the plastic distortion.

Let us introduce an important function, the scalar dislocation density distribution function
ρ(x). Figure 2.24a sketches a simple one-dimensional example where the finite number
of dislocations in a crystal is approximated by a continuous function, ρ(x). This function
defines the dislocation density in every material point and satisfies the conditions of a density
distribution function,

ρ(x) ≥ 0, ρ =
1

|Ω|

∫
Ω

ρ(x) dv, (2.206)

where ρ is the total dislocation density stored in the crystal of volume Ω. Now, we can
deal with large numbers of dislocations without accounting for every single dislocation but
by dealing with function ρ(x) instead which carries all necessary information. A classical
example which was analyzed by Eshelby et al. (1951) and Leibfried (1951) is illustrated in
Figure 2.24b: Dislocations are emitted from a single source and pile up at opposite grain
boundaries. For this problem the dislocation density function ρ(x) can uniquely be derived.
As all edge dislocations piling up at each of the obstacles repel each other, the obstacle
encounters a considerable stress concentration with an increasing number of dislocations.

For general applications, the one-dimensional picture illustrated in Figure 2.24b is far too
simplistic since dislocations may originate and interact on any admissible slip system in the
crystal in three dimensions. Therefore, Nye (1953) introduced the concept of the dislocation
density tensor α which takes into account all geometrically necessary dislocations, later
propagated by Ashby’s seminal paper (Ashby, 1970). The dislocation density tensor α has,
as the stress or strain tensors, the advantage that it gives not only the number of dislocations
cutting a single oriented area but it determines the dislocation density in any arbitrarily
oriented area of the crystal. Nye’s dislocation density tensor α can be obtained from the
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plastic distortion β by

α = curl β = curlF p. (2.207)

The dislocation density tensor has the following physical meaning: For an arbitrary infinite-
simal surface da with the unit normal n, α · n da gives the resultant Burgers’ vector of all
dislocations whose dislocation lines cut the surface da. The scalar dislocation density func-
tion ρ(x) can then be obtained from α (Berdichevsky, 2006b) depending on the problem
(see Section 4 for examples).

The first problem was then to find the stress field produced by a given set of dislocations.
An elegant solution of this problem was found by Kröner (1958). As a next step the general
kinematic framework of continuum dislocation theory was provided by Kondo (1952) and
Bilby et al. (1955a). In their works the natural state of a crystal is considered as a manifold
equipped with an affine connection. Bilby et al. (1955a) argued that for crystal lattices the
curvature tensor obtained from this connection must vanish; consequently the metric tensor
(the plastic strain) and the torsion tensor (the dislocation density tensor) remain the only
characteristics of dislocations. The inverse statement also holds true: The plastic distortion
can be determined if the plastic strain and the dislocation density tensor are known (Le and
Stumpf, 1996a).

Another important ingredient to the continuum theory of dislocations is the energy of
the dislocation network. As mentioned before, the dislocation density should enter the free
energy density, which may therefore be written for isothermal processes as

Ψ(F e,α) = Ψ0(F e) + Ψρ(α), (2.208)

where Ψ0 is the elastic stored energy density and Ψρ is the energy density of the dislocation
network (which also accounts for plastic rotations). In general, the energy of all dislocations
in a crystal could be computed as the sum of all self-energies and all interaction energies.
Due to the large numbers of dislocations in deformed metals, this approach appears to be not
applicable for large representative volume elements and large dislocation densities. Instead,
we will make use of the introduced scalar dislocation density function ρ(x) and introduce a
free energy density of the microstructure Ψρ(ρ) = Ψself+Ψinter. The energy of the dislocation
network in a material body Ω is then given by

Iρ =

∫
Ω

Ψρ(ρ(x)) dv. (2.209)

As it does not follow from any physical law, it is essential to make a correct choice for
the type of Ψρ, (i.e. a choice agreeing as well as possible with experimental observations
and with thermodynamic principles). Until the end of the twentieth century all contributors
to the continuum dislocation theory assumed the dislocation energy density in the form, see
e.g. (Gurtin, 1972),

Ψρ(α) =
1

2
α : E : α (2.210)

with Eijkl being material constants.

The relevance of this quadratic dependence of the energy of the microstructure on the
dislocation density to describe the behavior of dislocations remained questionable for a long
time. The major concern was the smallness of the second term in (2.208). Constants Eijkl



58 2 Mathematical and Mechanical Fundamentals

Figure 2.25: Comparison of dislocation energy functions.

must have the dimension of the shear modulus µ times length squared. It was shown by Ber-
dichevsky (2006b) that, if the characteristic length is of the same order as the interatomic
distance b (or the average distance between dislocations), then the second term in (2.208)
is negligible compared to the first term for a body of macroscopic size. The problems de-
aling with bodies of meso- and microscopic sizes were not seen at that time and the theory
was not pursued further. The aforementioned difficulty seems to have been overcome, at
least partially, by a proposition about the microstructure energy made in (Ortiz and Repetto,
1999; Ortiz et al., 2000). Thanks to the progress in statistical mechanics and thermodyna-
mics of the dislocation network (Le and Berdichevsky, 2001; Groma et al., 2003, 2007;
Berdichevsky, 2005, 2006a), new understanding of the microstructure energy was gained.
Berdichevsky (2006a) showed that the microstructure energy which includes the interacti-
on energy between dislocations and the self-energy of dislocations is, in fact, a function of
local characteristics of dislocations only, despite the long-range character of the dislocation
interactions. For a single crystal deforming in single slip, Berdichevsky (2006a,b) proposed
the energy of the microstructure in the form

Ψρ = k µ

(
ln

1

1−
√
ρ/ρs

−
√

ρ

ρs

)
, (2.211)

where k is a material constant and ρs is the saturated dislocation density. This form of Ψρ

identically satisfies Voce’s law (Berdichevsky, 2006b) of phenomenological plasticity. As a
good approximation we will often use the less complex form

Ψρ = k µ ln
1

1− ρ/ρs
. (2.212)

The logarithmic energy stems from two facts: Firstly, the energy of the dislocation net-
work for small dislocation densities is the sum of the energies of non-interacting dislocations
(as the interaction energies are negligible) such that the energy must rise linearly for only
few dislocations present in the crystal. Secondly, there exists a saturated dislocation density
which characterizes the closest packing of dislocations admissible in the discrete crystal lat-
tice in a bounded domain. The logarithmic term ensures a linear increase of the energy for
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small dislocation density, as can easily be seen from a Taylor expansion,

ln
1

1− ρ/ρs
=

ρ

ρs
+

1

2

(
ρ

ρs

)2

+O

[(
ρ

ρs

)3
]
, (2.213)

and tends to infinity as ρ approaches the saturated dislocation density ρs. Due to the mini-
mum principle of potential energy, the energy hence asymptotically penalizes any dislocati-
on density approaching ρs. The saturated dislocation density can be observed experimentally
and lies for common metals in the range 1014−1017m−2. Of course, in a continuum approach
we intend to neglect the discrete nature of the crystal lattice and treat the mechanical body
as a continuum. If, however, we consider specimens at small scales where the size effects of
plasticity become apparent, as will be the subject of Section 4, we will very soon reach those
high dislocation densities and hence must account for the effect of saturation. A comparison
of the dislocation energy densities from Eqs. (2.211) and (2.212) is shown in Figure 2.25,
where the linear rise for small dislocation densities and the ultimate increase of energy with
the dislocation density approaching the saturation point become apparent.

Berdichevsky (2006b) also made a suggestion how to differentiate between moving and
stored dislocations such that the theory can account for discontinuities (which are prohibited
by the above form). Here and in the following, we investigate the continuous plastic defor-
mation of crystals and the dislocation pile-ups at boundaries, where the above formulation
(2.212) is appropriate.
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2.5 Thermodynamic Principles and the Origin of Microstructure

2.5.1 Thermo-Mechanical Principles

Before we can investigate the evolution of plastic microstructures in engineering materials,
we will review the fundamental concepts leading to the formation of microstructures which
are generally dictated by the body’s free energy. Therefore, in this Section we will focus on
the underlying thermodynamic principles, leading to the origin of microstructures.

The state of a general inelastic material is defined by external variables such as the tem-
perature T or the deformation gradient F = ∇φ and by internal variables which are intro-
duced to capture the microstructural characteristics and the history information concerning
plastic deformations (e.g. plastic slip γ, dislocation density ρ, volume fractions λi for a
multi-phase material, chemical composition etc.) In the following, we denote the collection
of internal variables by K. Of course, we will have to make a difference between formula-
tions in finite and infinitesimal deformations. To render the summary in this Section most
concise, we will generally describe the state of deformation by F = ∇φ, which can be
interpreted in both formulations.

Let us introduce an energy storage function Ψ with the following properties. Firstly, Ψ
must be objective with respect to rigid rotations (while assuming thatK remains unaffected
by the rotation), i.e.

Ψ(RF ,K) = Ψ(F ,K), ∀R ∈ SO(3). (2.214)

Secondly, we require an initial condition of zero stored energy and zero stresses, i.e.

Ψ(I,K0) = 0,
∂Ψ(F ,K0)

∂F

∣∣∣∣
F =I

= 0. (2.215)

For problems of solid mechanics, we use the Helmholtz free energy density Ψ(X, t) =
Ψ (∇φ(X, t),K(X, t)) as the above introduced storage function, which represents the
isothermal stored energy per volume at a material point X at time t. When dealing with
plasticity in finite deformation, one possible choice is a Neo-Hookean energy density of the
type

ΨNH(F e, p) =
µ

2
trCe +

K

4

[
detCe −

K + 2µ

K
ln (detCe)− 1

]
+ κ pα, (2.216)

where p is a real, scalar-valued internal history variable introduced to account for material
hardening, and α is commonly chosen to equal 2 (linear hardening) or higher even numbers.
The total potential energy of a strained body with volume Ω can then be given in terms of
the total free energy which reads

I(t,φ,K) =

∫
Ω

Ψ(∇φ,K) dv − `(t,φ), (2.217)

where `(t,φ) represents the linear potential of externally applied forces. As we are interested
in isothermal processes of homogeneous solids only, we do not consider any dependence on
temperature or chemical decomposition.

With the total potential energy I at hand, let us introduce a first important thermodynamic
principle. Well-known, the first law of thermodynamics requires that the total energy of an
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isolated system remains constant for all times, i.e.

Etot = const. (2.218)

For example, a swinging ideal pendulum in the absence of friction or other dissipative ef-
fects will periodically exchange kinetic against potential energy but never come to rest and
hence conserve its total energy. The second law of thermodynamics states that every isolated
system aims at maximizing its total entropy S, which is a thermodynamic measure of the
system’s state of disorder; i.e. naturally driven processes must obey

dS ≥ 0 (2.219)

so that the equilibrium state is reached at the maximum total entropy where dS = 0.

We can decompose any change of the total energy of an isolated system into

δEtot = δΠtot + δQ, (2.220)

where Πtot denotes the stored potential energy (in our context Πtot = I) and Q represents
the thermal energy, i.e. the heat stored in the isolated system. Furthermore, the change of
the heat of an isolated system is linked to its entropy for a reversible process via

dQ = T dS. (2.221)

Let us perform a gedanken experiment by considering an isolated system which aims to
achieve an equilibrium state. As the system maximizes its entropy, the potential energy
decreases due to the conservation of the total energy. As a consequence, maximizing the
entropy of an isolated system is equivalent to minimizing its total potential energy. There-
fore, we can conclude the first important principle, known as the principle of minimum total
potential energy (Truesdell and Noll, 1965), which may be written in our context as

φ = arg min
{
I(t,φ,K)

∣∣ φ = φ0 on Γu

}
. (2.222)

i.e. in an equilibrium state, the displacement field minimizes the free energy of the material
body subject to given boundary conditions.

For inelastic materials a change of the placement field φ (or of any elastic variables, in
general) does not entail dissipation. Any change of the internal (plastic) variables, however,
commonly dissipates energy. For example, a change of plastic slip or the dislocation den-
sity involves nucleation and motion of dislocations, which dissipates energy. If the internal
variables change without dissipating energy, the equilibrium state can be determined from

(φ,K) = arg min
{
I(t,φ,K)

∣∣ φ = φ0 on Γu, K = K0 on ΓK

}
. (2.223)

The first law of thermodynamics can be recast into

Ėtot = Π̇int + P = 0, (2.224)

where Π̇int denotes the rate of the total stored energy, and P is the work done by externally
applied forces, i.e.

Π̇int =
d

dt

∫
Ω

Ψ(F ,K, S) dv, P =

∫
∂Ω

n · P · u̇ da, (2.225)
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where S denotes the entropy of the body Ω, n is the outward normal vector on the boundary
∂Ω, P is a stress tensor and u̇ any prescribed boundary velocity. Computing the derivative
of Πint and applying Gauß’ theorem to P , we obtain (in the absence of body forces)

Π̇int =

∫
Ω

(
∂Ψ

∂S
Ṡ +

∂Ψ

∂F
: Ḟ +

∂Ψ

∂K
· K̇
)

dv, (2.226)

P =

∫
Ω

(
(∇ · P ) · u̇+ P · Ḟ

)
dv, (2.227)

so that application to (2.225) with the absolute temperature T = ∂Ψ/∂S yields∫
Ω

[
T Ṡ +

(
∂Ψ

∂F
− P

)
: Ḟ +

∂Ψ

∂K
· K̇ − (∇ · P ) · u̇

]
dv = 0. (2.228)

Like the first law of thermodynamics this relation must hold for an arbitrary volume Ω of
the material body so that at every material pointX we have

T Ṡ +

(
∂Ψ

∂F
− P

)
: Ḟ +

∂Ψ

∂K
· K̇ − (∇ · P ) · u̇ = 0. (2.229)

Here and in the following, we tacitly presume that all relations hold in every material point
X without writing out this dependence. The particular case of rigid body motion (where the
only non-zero rate is the velocity u̇) requires the well-known equilibrium condition (in the
absence of body forces)

∇ · P = 0. (2.230)

Usually, a change of the internal variables of a mechanical system comes along with a dis-
sipation of energy. Following Eq. (2.221), we introduce the dissipation D as

D = T Ṡ =

(
P − ∂Ψ

∂F

)
: Ḟ − ∂Ψ

∂K
· K̇. (2.231)

Re-arranging the above relation, we arrive at the Clausius-Planck inequality,

D = P : Ḟ − Ψ̇ ≥ 0. (2.232)

The first term of (2.231) represents dissipation of the type of viscous damping, the second
term characterizes dissipation due to changes of the internal variables. In general, we assume
for problems of elasto-plasticity that no viscous damping is present (in contrast to problems
of viscoelasticity or -plasticity), so that we arrive at the constitutive equation for the stresses
(known as Coleman’s method)

P =
∂Ψ

∂F
. (2.233)

It becomes apparent that, following these principles and our previous definitions, P is the
first Piola-Kirchhoff stress tensor ΣI . Furthermore, let us introduce a thermodynamically
conjugate stress for the internal variables by defining

Q = − ∂Ψ

∂K
(2.234)

so that we may also write the dissipation as

D = − ∂Ψ

∂K
· K̇ = Q · K̇. (2.235)
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The total dissipation of the body now reads

D =

∫
Ω

Q · K̇ dv ≥ 0. (2.236)

We can restate the thermodynamic principle of maximizing the entropy in terms of the
principle of maximum dissipation (because entropy production and dissipation are directly
correlated)

K̇ = argmax
{
D(X, K̇,Q)

∣∣D = K̇ ·Q
}
. (2.237)

For problems in elasto-plasticity the internal variables may only evolve if a yield condition

ϕ(K,Q) = 0

is satisfied (ϕ bounds the yield surface in the stress space). Ifϕ(K,Q) < 0 the body deforms
elastically. If ϕ(K,Q) = 0, then the body exhibits plastic flow. Any state characterized by
ϕ(K,Q) > 0 is prohibited. Therefore, it is convenient to introduce an indicator function
J(K,Q), sometimes called the inelastic potential (Carstensen et al., 2002), defined at each
material point by

J =

{
0, for ϕ(K,Q) ≤ 0,

∞, else.
(2.238)

Instead of dealing with the indicator function, it is of more practical use to introduce a
dissipation functional ∆(K, K̇), defined by the Legendre-Fenchel transform of J , which
only depends on the internal variables and their rates:

∆(K, K̇) = sup
{
K̇ ·Q− J(K,Q)

∣∣Q }. (2.239)

For irreversible processes in non-equilibrium thermodynamics the evolution of the inter-
nal variables is commonly defined by a flow rule of the type

Q = λ
∂∆

∂K̇
. (2.240)

In the following Chapters we will assume rate-independence of the plasticity models, which
requires that ∆ must be homogeneous of degree 1, i.e.

∆(ε · K̇,K) = ε ·∆(K̇,K), (2.241)

such that λ = 1 and as a consequence

D = ∆. (2.242)

As a simple example, when dissipation occurs due to plastic slip γ (and for simplicity we
here assume a single scalar internal variable γ only), we employ a dissipation functional of
the type ∆(γ̇) = c |γ̇| with some material constant c. Then it is easy to verify that

D =
∂∆

∂K̇
· K̇ =

∂∆(γ̇)

∂γ̇
γ̇ = c |γ̇| = ∆(γ̇). (2.243)
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Now, we can write the evolution equation for the internal variables in the form

Q ∈ ∂∆

∂K̇
(2.244)

or, by employing the Legendre transform, in an equivalent form as

K̇ ∈ ∂J

∂Q
. (2.245)

We often use differential inclusions in the notation of flow rules as in (2.244) and (2.245) to
also account for the elastic case.

Comparing Eqs. (2.234) and (2.244), we arrive at the well-known Biot equation for the
evolution of the internal variables (Biot, 1965; Germain, 1973; Ziegler and Wehrli, 1987;
Nguyen, 2000)

0 ∈ ∂Ψ

∂K
+
∂∆

∂K̇
. (2.246)

The complete evolution problem can now be described in terms of two principles. We
obtain the actual deformation of the material body from the principle of minimum potential
energy (2.222). The evolution of the internal variables results from Biot’s equation (2.246).
Hence, updates of all elastic variables can be determined from energy minimization, whereas
the internal (plastic) variables change according to specified flow rules.

In Chapter 4 we will apply these two principles to derive the displacement field u(X)
and the set of internal variablesK(X) as continuous functions throughout the body Ω with
given boundary conditions u = u0 and K = K0 on ∂Ω. We compute the distribution of
the internal variables in the material body under investigation and analyze microstructural
pattern formation and characteristics of the dislocation network.

In problems of crystal plasticity, we usually investigate the time-continuous evolution of
all variables involved. Therefore, it is convenient to modify the above formulation to allow
for an iterative solution scheme, using finite time increments ∆t. For a finite time interval
[tn, tn+1] with tn+1 − tn = ∆t, we define the stresses in the next time step according to the
principle of minimum potential energy as

ΣI
n+1 =

∂Ψ(F n+1)

∂F
. (2.247)

The question of how to define Ψ(F n+1) was first answered by Ortiz and Repetto (1999) with

Ψ(F n+1) = inf
K(t)

∫ tn+1

tn

ΣI : Ḟ dt = inf
K(t)

∫ tn+1

tn

(
Ψ̇ +Q · K̇

)
dt, (2.248)

along with the boundary conditions K(tn) = Kn and K(tn+1) = Kn+1. Carstensen et
al. (2002) and Miehe et al. (2002) replaced the above relation by incorporating a general
dissipation functional so that

Ψ(F n+1) = inf
K(t)

∫ tn+1

tn

(
Ψ̇ + ∆

)
dt. (2.249)
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For rate-independence (and hence a dissipation functional which is homogeneous of de-
gree 1) these two formulations coincide. The proof that Eqs. (2.249) and (2.246) yield the
same solution for a small time increment can be given as follows (Miehe et al., 2002).

First, we re-write Eq. (2.249) as

Ψ(F n+1) = inf
K(t)

[
Ψ(F ,K)|tn+1

tn
+

∫ tn+1

tn

∆(K̇,K) dt

]
, (2.250)

and perform the minimization in (2.250) by applying the first variation:

∂Ψ

∂K
· δK

∣∣∣∣tn+1

tn

+

∫ tn+1

tn

[
∂∆

∂K̇
· δK̇ +

∂∆

∂K
· δK

]
dt = 0. (2.251)

Integration by parts finally yields(
∂Ψ

∂K
+
∂∆

∂K̇

)
· δK

∣∣∣∣tn+1

tn

+

∫ tn+1

tn

[
− d

dt

∂∆

∂K̇
+
∂∆

∂K

]
· δK dt = 0. (2.252)

In the limit of an infinitesimal time increment tn+1− tn → dt and with δK(tn) = 0, we see
that the state of the internal variables at time t = tn+1 is obtained from

∂Ψ

∂K
+
∂∆

∂K̇
= 0, (2.253)

and the minimizing pathK(t) inside the time interval must satisfy the Euler equation

− d

dt

∂∆

∂K̇
+
∂∆

∂K
= 0. (2.254)

Therefore, as tn+1 → tn, Eq. (2.249) provides a point-wise approximation of Biot’s equation
(2.246). Note that this derivation must be modified if the free energy depends not only on
the internal variables but also on their gradient, i.e. Ψ = Ψ(F ,K,∇K), as will be required
in Section 4.

In Chapter 3 we investigate the time-incremental evolution of microstructures in finite
plasticity so that it will be beneficial to replace the solution of Biot’s equation by the afo-
rementioned incremental formulation. Therefore, the so-called minimum principle for the
dissipation functional is introduced, where we follow ideas presented by Ortiz and Repetto
(1999), Carstensen et al. (2002) and Miehe (2002), which recasts (2.249) into the following
form:

K̇ = arg min
{
L(φ,K, K̇)

∣∣ K̇ }
, (2.255)

where we introduced a Lagrange functional following Eq. (2.249):

L(φ,K, K̇) =
d

dt
Ψ(∇φ,K) + ∆(K, K̇). (2.256)

Hackl and Fischer (2007) investigated the interrelation of the minimum principle for the
dissipation functional (2.255) and the principle of maximum dissipation (2.237) and gave
evidence for their agreement for those problems treated here (i.e., for homogeneous dissipa-
tion potentials) and various other examples.

So far we have focused on the evolution of internal parameters connected to plastic defor-
mation and regarded the spatial distribution of microstructural characteristics as the materi-
al’s microstructure. Modeling finite elasto-plasticity (see Section 3) as well as deformation
twinning (see Section 5) or phase transformations, another problem arises which is connec-
ted to the formation of microstructural patterns and which we will focus on in the remaining
part of this Chapter.



66 2 Mathematical and Mechanical Fundamentals

Y

def.

state A
state B

FnF1 F2

A

B

A B

F1 F2Fn

Fn

YA YB

Figure 2.26: Non-convex energy landscape with two energy wells: For a given boundary
condition F n each energy well exhibits rather high energy values; the formati-
on of a mixture of states F 1 and F 2 can accommodate the boundary conditions
and achieve a state of lower energy.

2.5.2 Energy Minimizers, Minimizing Sequences and Microstructure

As we have seen, the state of deformation is governed by the free energy of the material
and aims at attaining a state of minimum energy. In an ideal situation the energy landscape
is (quasi-) convex, having a single global energy minimum (the energy is said to be single-
welled). Then, the body accommodates the energy minimum by means of its deformation
field. Very often, however, the energy landscape is not quasiconvex but multi-welled in na-
ture (exhibiting several local minima), where each energy well represents a different state
of the material (e.g. different transformation states for phase-transforming materials such as
the austenite-martensite structures in steels, different values of the plastic distortion in finite
plasticity, or different crystal orientations in parent and twin phase of deformation twins). A
complicating change in the theory of plasticity as compared to phase transformations arises
from the fact that, in plasticity, these energy wells are not located at fixed Bain strains but
may evolve as well. In both cases, as seen in Section 2.2, a lack of quasiconvexity of the
energy potential reveals that no minimizer exists.

Now, consider a homogeneous single-crystal of volume Ω subject to given boundary con-
ditions on ∂Ω. The crystal tends to achieve a state of minimum energy. If the prescribed
boundary conditions correspond to a state at a possible energy well, the body will accom-
modate the energy minimum by means of a homogeneous deformation state. If, however,
the boundary conditions enforce a deformation gradient F n between e.g. two energy wells
of states A and B, then no homogeneous minimizer exists. However, the material can sa-
tisfy both the boundary conditions and the energy minimum by forming a mixture of those
states A and B at the energy wells (see Figure 2.26). Let us illustrate this with a very simple
example in one dimension, which was presented (in a more elaborate form) by Ericksen
(1975).

The simplest example in one dimension is a slender bar stretched along its principal axis.
The deformation field simply reduces to only uniaxial displacements ux(x) and the only
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non-zero components of the deformation gradient F = ∇u are given by F11 = 1 + ux,x,
F22 = F33 = 1. Now, assume a free energy density of the type

Ψ(∇u) = µ
(
tr F TF − 4

)2
= µ

(
u2
x,x − 1

)2
. (2.257)

It is not hard to verify that this choice of Ψ is clearly not quasiconvex (Figure 2.27). The
total potential energy for a bar of length L reads

I(∇u) =

∫ L

0

Ψ(∇u) dl. (2.258)

Therefore, the energy comes to a minimum when the deformation gradient ux,x in every
material point equals +1 or −1. Now, however, assume the given boundary conditions

ux(0) = 0, ux(L) = 0, (2.259)

i.e. the displacement field is forced to vanish on both ends of the bar of length L (the bar
is constrained between rigid supports). A problem arises from satisfying both conditions
(2.259) and the principle of minimum potential energy. There exists no continuously dif-
ferentiable solution for ux which is 0 on the boundary but has gradient ±1 inside the bar.
Ericksen (1975) concluded that the bar can still satisfy both conditions by forming a mixture
of alternating sections with gradient +1 and −1 as sketched in Figure 2.28. The boundary
conditions are satisfied and the energy tends to zero. In general, the problem is more com-
plex (Bhattacharya, 2003) and to explore the full mathematical concept one will have to
modify the energy such that

I(u) =

∫ L

0

[
Ψ(ux,x) + (ux)

2
]

dl. (2.260)

Then one can show that the minimum energy (with u satisfying the boundary conditions) is
achieved as we make this mixture of alternating gradients finer and finer (see Figure 2.28).
The obtained sequence of functions ui is called a minimizing sequence and we can conclude
that in the limit of an infinitely fine microstructure the energy will approach its minimum
which is 0, i.e.

lim
n→∞

I(un) = 0. (2.261)

Therefore, the energy of the minimizing sequence is lower than that of a homogeneous
solution satisfying the boundary conditions (∇F = 0 and Ψ(0) = 1); i.e. the energy of the
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Figure 2.27: Free energy Ψ of the bar as a function of the strain ux,x.
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limit of deformation sequences (i.e. constant zero deformation) is greater than the limit of
the energy of the refining phase mixture:

I( lim
n→∞

un) > lim
n→∞

I(un). (2.262)

Note that the average deformation gradient on the total length of the bar is 0; thus, the
average deformation gradient corresponds to the overall deformation gradient imposed by
the boundary conditions. Furthermore, we see that the deformation u is continuous, the
deformation gradient ux,x, however, is not.

Whenever there exists a minimizing sequence φn which is capable of reducing the free
energy I beyond the free energy of a homogeneous deformation state φ in the limit n →
∞, then we say the energy I is not weakly lower semi-continuous, as weakly lower semi-
continuity of the energy I corresponds to

I( lim
n→∞

φn) ≤ lim
n→∞

I(φn) (2.263)

for all weakly converging sequences φn. As the condition of weakly lower semi-continuity
is hard to check in actual problems, Morrey (1952) introduced the concept of quasiconvexity.
The energy I(φ) as defined in Eq. (2.217) is then weakly lower semi-continuous if the free
energy density Ψ(φ) is quasiconvex (see Section 2.2). If the free energy density of a material
for a given overall deformation gradient φ is not quasiconvex, there exists no solution to the
minimization problem in the classical sense, and there is a minimizing sequence which can
reduce the material’s energy. If possible, the material will therefore accommodate the energy
minimum by forming fine-scale microstructures with alternating gradients.

In problems of finite plasticity the description is more complex and in general three-
dimensional. Therefore, the issue of the coherence of the deformation field arises, which was
not the case in the simple one-dimensional example. For the general understanding, however,
the problem in three dimensions is very similar to the one discussed above. Figure 2.29
illustrates the formation of fine mixtures for a two-dimensional problem in a square body.
Differently than before, the mixture of states or deformation gradients is now arranged by
forming thin laminate regions, and the boundary condition now must be accommodated by
a thin boundary layer region. Figure 2.29a shows a first-order laminate which arises from a
mixture of two energy wells and which mixes deformation gradients A and B to represent
the average deformation gradient

F λ = λA+ (1− λ)B, (2.264)

where λ denotes the volume fraction of phase A. Figure 2.29b illustrates a second-order
laminate which forms by mixing the states of four energy wells, where each deformation
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Figure 2.28: A sequence of deformations which minimize the total energy and, at the same
time, satisfy the boundary conditions.
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Figure 2.29: (a) First-order and (b) second-order laminate.

gradientA andB is again split into a mixture of finer laminates with deformation gradients
A1,A2 andB1,B2, respectively, i.e. here we have

F λ = λA+ (1− λ)B,

A = λAA1 + (1− λA)A2, (2.265)
B = λBB1 + (1− λB)B2.

As a conclusion, for a non-convex stored energy function Ψ there exists no solution to the
minimization problem (2.222) in the classical sense. If possible, the material will accom-
modate the energy minimum by forming fine-scale alternating gradients, often referred to as
fine-scale microstructures. Non-quasiconvex variational problems may have (depending on
the boundary conditions) a unique, many or even no solution.

If the material can form microstructures, the non-existence of a minimum will lead to
the development of small-scale oscillations or, in general, fluctuations of the deformation
gradient. The characteristics of these microstructures can be described by employing ma-
thematical relaxation theory. A relaxation is associated with a quasiconvexification of the
non-convex function Ψ by constructing its quasiconvex hullQΨ, which was already introdu-
ced in Section 2.2. The minimization problem (2.222) is modified by considering the relaxed
energy functional (Acerbi and Fusco, 1984; Dacorogna, 1989)

IQ(φ) =

∫
Ω

QΨ(∇φ) dv − `(φ), (2.266)

where QΨ denotes the quasiconvex hull of the original energy density Ψ, i.e.

QΨ(∇φ) = inf
1

|ω|

∫
ω

Ψ(F + ∇ϕ) dv for all admissible ϕ : R3 → R3. (2.267)

Physically, quasiconvexity is the passage from a microscopic energy to a macroscopic ener-
gy that is obtained from an averaging over fine-scale oscillations. Eq. (2.267) determines a
micro-fluctuation fieldϕ on the arbitrary domain ω. The relaxed minimization problem now
reads

φ = arg min
{
IQ(t,φ)

∣∣ φ = φ0 on Γu

}
. (2.268)

Note that, as the energy relaxation only affects the elastic variables, those principles presen-
ted in previous Sections to determine the evolution of the internal (plastic) variables are not
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affected. A relaxation of the energy can be carried out beforehand. The relaxed problem is
considered to be well-posed and as close as possible to the original unstable problem which
has no solution. The stress tensor is obtained from the very same quasiconvex hull (and
analogously the stiffness tangent tensor) to give

ΣI =
∂QΨ

∂F
. (2.269)

Unfortunately, the quasiconvex hull is very hard to determine for many engineering pro-
blems. Therefore, it is often replaced by convex, polyconvex or rank-one-convex hulls (Dolz-
mann, 1999; Bartels et al., 2004; Carstensen et al., 2008). In our analyses in Section 3 we
will make use of an approximation of the rank-one-convex hull and hence solve the minimi-
zation problem

φ = arg min
{
IR1(t,φ)

∣∣ φ = φ0 on Γu

}
(2.270)

with

IR1(φ) =

∫
Ω

R1Ψ(∇φ) dv − `(φ), (2.271)

where R1Ψ is the rank-one-convex hull approximation as a first-order laminate (N = 2),
defined by

R1Ψ(φ) = inf
λi,F i

{
2∑
i=1

λiΨ(F i)

∣∣∣∣∣ constr.

}
(2.272)

where the constraints read

0 ≤ λi ≤ 1,
2∑
i=1

λi = 1,
2∑
i=1

λiF i = F , rank (F 1 − F 2) ≤ 1. (2.273)

In general, the analogous conditions for more than two laminate phases (N > 2) are hard to
determine. Instead, Kohn and Strang (1986) proposed a sequential construction where each
phase further decomposes into a new laminate. The volume fractions λi can be considered
as probability measures in the sense of Young (1969).

Given the rank-one-convex hull or its approximation (2.271), we can solve the well-posed
minimization problem (2.270) instead of the original one to obtain the solution in terms of
laminate microstructures.

2.5.3 Material Microstructures

The experimental determination of material microstructures has been limited for a long ti-
me in terms of the microscopic resolution capabilities. Nowadays, modern techniques such
as transmission electron spectroscopy (TEM) or electron back scatter diffraction (EBSD)
allow for a close look at dislocation structures at very fine scales. Indeed, experimental fin-
dings confirm, in agreement with the predictions presented in previous Sections, that the
dislocation distributions in a strained material body are not random but very often exhibit
distinct patterns with structural characteristics. These dislocation patterns are dictated by the
crystal’s energy and the dissipation required to form those structures.
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(a) (b)

Figure 2.30: (a) Dislocation slip segregation into single-slip domains (Rasmussen and Pe-
derson, 1980), (b) labyrinth-type dislocation structure in a fatigued copper sin-
gle crystal (Jin and Winter, 1984). Images reprinted by permission.

Figure 2.30 shows exemplary TEM micrographs where dislocations and dislocation ac-
cumulations can be identified as dark lines. In Figure 2.30a, dislocations pile up at grain
boundaries and obstacles and grow into the undistorted crystals along preferred slip systems;
this behavior is known as slip segregation into single-slip domains. Figure 2.30b reveals a
labyrinth-type dislocation structure which clearly indicates the formation of a strict pattern
with preferred orientations for dislocation accumulation.

Other examples are illustrated in Figure 2.31 where in (a) parallel lamellar structures ari-
se. The lamellar boundaries are constituted of dislocations leaving most lamellar interiors
almost dislocation-free and forming dislocation sub-walls within the lamellae. In micro-
graph (b), a regular zig-zag pattern forms with alternating crystal orientations, commonly
referred to as micro-twins.

Finally, Figures 2.32 gives two examples of experimentally observed microstructures
which are linked to specific microstructural mechanisms: Micrograph (a) shows the for-
mation of lamellar twin domains that form during the transformation of steel in its auste-
nitic phase into martensite. Here, the origin of microstructures is based on the concept of
phase transformations, see e.g. (Bhattacharya, 2003), and results from the different energy

(b)(a)

Figure 2.31: (a) Lamellar dislocation wall structures in colled-rolled, pure aluminum (Li
et al., 2006), (b) twin-type laminate dislocation structures in compressed high
manganese steel (Meng et al., 2007). Images reprinted by permission.



72 2 Mathematical and Mechanical Fundamentals

(b)(a)

Figure 2.32: (a) Lamellar twin domains in martensite (Chu and James, 1995), (b) disloca-
tion twin structures in manganese-added TiAl (Hanamura and Tanino, 1989).
Images reprinted by permission.

wells of martensite and austenite variants. Two martensite variants form a lamellar pattern
(reducing the crystal’s energy beyond that of a homogeneous deformation gradient). Note
the change of the lamellae into thin needles as they approach the austenite boundary (thus
accommodating the aforementioned boundary region to satisfy the overall boundary cons-
traints). Figure 2.32b shows a special type of microstructure, called deformation twins, in
manganese-added TiAl. Here, two distinct energy wells (corresponding to different, symme-
tric slip system orientations) compete within one grain, giving rise to a zig-zag pattern with
alternating lattice orientations to reduce the energy beyond that of a homogeneous single-
crystal deforming in single slip. Under externally applied loads, the crystal lattice forms a
lamellar structure with alternating symmetric slip systems. We will deal with this type of
microstructure in more detail in Section 5.

Although there is a huge variety of experimentally observed microstructures in enginee-
ring materials, the underlying causal mechanisms obey the very same thermodynamic prin-
ciples. The following Chapters present some selected examples of microstructures deter-
mined from those variational principles presented in the previous Sections and investigate
the origin and subsequent evolution of these structures on the microscale. Of capital im-
portance, all microstructural characteristics are collectively responsible for the macroscopic
mechanical behavior of a material body. Therefore, it is crucial gain further understanding.
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3 Time-Continuous Evolution of Inelastic Microstructures
in Finite Plasticity

3.1 Introduction

The macroscopic response of a material body deforming plastically under the action of ex-
ternal forces is a direct result of physical mechanisms occurring on the body’s microscale.
Hence, microstructural lattice defects and related mechanisms are crucial in order to un-
derstand the macroscopic material behavior. The accommodation of plastic deformation by
huge numbers of such defects is dictated by the concepts of free energy and dissipation. In
elasto-plasticity the free energy is commonly assumed to stem from the uniform deformati-
on of the periodic crystal lattice and aims at restoring the material body in a zero-stress state.
It therefore comprises only energy due to elastic deformation. Dissipation arises as a con-
sumption of energy due to irreversible changes of the microstructure. The internal state of
the material’s microstructure is commonly described in terms of so-called internal or history
variables, a change of which causes dissipation. In crystalline solids dissipation may occur
as a consequence of dislocation motion through gliding or climbing, or as a result of grain
boundary motion, diffusion processes, phase transformations or sources of internal friction,
to mention only a few.

Given the free energy and the dissipation of a deformed material body as functions of
the displacement field and of the set of all internal variables, the principles of minimum
potential energy (Truesdell and Noll, 1965), see (2.222), and the principle of maximum
dissipation (Simo, 1988a,b), see (2.237), or of minimum dissipation potential (Carstensen
et al., 2002; Hackl and Fischer, 2007), see (2.255), determine the actual configuration of
the body. In rate-independent plasticity models the incremental evolution of the internal
variables may also be described by a Lagrange functional consisting of the sum of elastic
power and dissipation due to changes of the internal state of the material (Ortiz and Repetto,
1999; Carstensen et al., 2002).

Experimental evidence indicate very often that it is favorable for a material to accommo-
date an imposed deformation gradient not by a homogeneous deformation field but rather
by forming microstructural patterns which accommodate the overall deformation by mixing
different homogeneous states of minimum energy. Figure 3.1 shows the EBSD image of
a copper single crystal deformed under simple shear. A laminate microstructure of alter-
nating plastic slip and rotation becomes apparent. (For further examples of experimentally
observed microstructures see Section 2.5.3.)

Microstructure formation has been observed e.g. in the context of phase transformations
(Chu and James, 1995) and for deformation twin structures (Christian and Mahajan, 1995;
Bhattacharya, 2003), or for dislocation walls in single-crystals (Canadinc et al., 2005). An
interesting feature of all these microstructures is that they tend to form similar spatial pat-
terns, hinting at a universal underlying mechanism. Ericksen (1975) was among the first
to conclude microstructural patterns as a direct result of energy minimum principles, who-
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Figure 3.1: EBSD image of a copper single crystal deformed under simple shear, color dif-
ference represent deviation of the local configuration from the mean lattice ori-
entation (Dmitrieva et al., 2009). Reprinted by permission.

se idea was expanded and enhanced later to a more complex theory predominantly for the
treatment of phase transformations (Ball and James, 1987, 1992; Govindjee et al., 2003)
and problems in elasto-plasticity (Ortiz and Repetto, 1999; Carstensen et al., 2002; Conti
and Theil, 2005). In all of these examples, the free energy is non-quasiconvex and hence
multi-welled in nature. As a consequence, the material body, aiming to reduce its energy,
does not respond by means of a homogeneous deformation state but breaks up into multiple
phases at local energy minima in such way that it is compatible with the overall imposed
deformation field or any given boundary conditions. Solutions to describe these phase mix-
tures were developed by employing relaxation theory to find the quasiconvex hull of the free
energy (Ball, 1977). This approach is based on small-scale fluctuations related to probabi-
lity distributions of deformation gradients, so-called Young measures (Young, 1969). These
small-scale fluctuations correspond to the observed material microstructures. The particular
features of those, like orientation or volume fractions, can be calculated via relaxed potenti-
als.

Microstructures in physical reality exhibit an enormous variety of appearances, the simp-
lest example being a spatial lamination of different phases, i.e. regions with different defor-
mation states are separated by parallel planes with a common normal vector indicating the
laminate orientation. Values of the internal variables and of the deformation gradient differ
from phase to phase, with the given constraints that these values are chosen such as to ensure
compatibility and to match the boundary conditions. As the quasiconvex envelope in general
is too complex to compute, it is often approximated by the rank-one-convex envelope of the
free energy, see e.g. (Bartels et al., 2004; Carstensen et al., 2008), which corresponds to the
energy of such a laminate microstructure.

Approaches to model microstructural patterns must account for the two crucial problems
of the initiation of a forming microstructure and the subsequent evolution of the newly-
formed structure. The initiation of a forming microstructure usually follows from a loss of
stability. At a material point local instability corresponds to a state where the crystal can
reduce its energy by breaking up the homogeneous deformation state into fine structures.
For details on the differences between local and global stability for related problems see e.g.
(Miehe et al., 2002). Here we resort to the common approach that a microstructure may form
locally as soon as it becomes energetically preferable. By considering associated potentials
in a time-incremental setting, several authors have investigated the initiation of microstruc-
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tures (Ortiz and Repetto, 1999; Lambrecht et al., 2003; Bartels et al., 2004; Mielke, 2004;
Conti and Theil, 2005) using a condensed energy functional. This method was successfully
applied to the evolution of inelastic materials, see (Mielke and Ortiz, 2007; Conti and Ortiz,
2008). However, application of the condensed energy is based on the assumption that no
microstructure is present at the beginning of a time step (therefore, it is suitable to model
the onset of microstructure formation). Yet in order to model the time-continuous evolution
of microstructures, we need to account for the dissipation required to change from one state
in time to the next. Hence, the incremental update of the internal variables will depend on
the set of internal variables at the end of the preceeding time step, so that the use of the
condensed energy functional becomes rather unphysical. To overcome this problem, we de-
velop an incremental formulation based on laminated Young measures. The application of a
similar concept to shape-memory-alloys can be found in (Hackl et al., 2003a; Hackl, 2006;
Hackl and Heinen, 2008).

In this Chapter we outline a novel method to model the time-continuous evolution of
laminate microstructures, which accounts for the existing microstructure at the beginning
of each time step. In Section 3.2 we first review the underlying variational principles and
outline the concept of relaxed potentials, Young measures and lamination theory with ap-
plication to inelastic materials. In Section 3.3 we then derive explicit evolution equations
for the problem of single-slip crystal plasticity for a Neo-Hookean material and present a
numerical algorithm by means of which the time-continuous evolution can be determined.
This algorithm is based on a partially analytically relaxed energy and incrementally solves
the evolution equations. Finally, we apply this method to different loading cases and slip sy-
stem orientations, and we illustrate numerical results in Section 3.5. Section 3.6 concludes
the present Chapter with a discussion of the results.

3.2 Application of Relaxation Theory to Inelastic Microstructures

3.2.1 Minimum Principles and Young Measures

We will first lay the basis for the derivation of evolution equations for material microstructu-
res by briefly reviewing the underlying minimum principles, and we adopt their formulation
to our problem by introducing appropriate Young measures. For a more thorough investiga-
tion of the underlying thermodynamic principles see Section 2.5.1. In an isothermal setting,
the state of a general inelastic material is defined by its deformation gradient F = ∇φ,
where φ(X) represents the displacement field, and a collection of internal variablesK(X).
Denoting the specific Helmholtz free energy by Ψ(F ,K), we introduce thermodynamically
conjugate stresses by defining

ΣI =
∂Ψ

∂F
, Q = − ∂Ψ

∂K
. (3.1)

The evolution of K is governed either by a so-called inelastic potential J(K,Q) or its
Legendre-transform (Carstensen et al., 2002), the dissipation functional

∆(K, K̇) = sup
{
K̇ : Q− J(K,Q)

∣∣Q }. (3.2)

Evolution equations for the internal variables are then given in the two equivalent forms

K̇ ∈ ∂J

∂Q
, Q ∈ ∂∆

∂K̇
. (3.3)
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Note that in this Section we will often make use of the subdifferential notation as in (3.3) to
also account for the non-differentiable behavior of the dissipation potential (viz. to include
the case K̇ = 0).

The complete evolution problem can now be described in terms of two minimum princip-
les where we follow ideas presented by Carstensen et al. (2002); Mielke (2002); Ortiz and
Repetto (1999). We compute the total free energy of the entire body as

I(t,φ,K) =

∫
Ω

Ψ(∇φ,K)dv − `(t,φ) (3.4)

where `(t,φ) represents the potential of external forces, Ω is the body’s volume and Γu

denotes a subset of its boundary. The actual displacement field is then given by the principle
of minimum potential energy, i.e.

φ = arg min
{
I(t,φ,K)

∣∣ φ = φ0 on Γu

}
. (3.5)

Introducing the Lagrange functional

L(φ,K, K̇) =
d

dt
Ψ(∇φ,K) + ∆(K, K̇), (3.6)

we write the evolution equation (3.3) in the form

K̇ = arg min
{
L(φ,K, K̇)

∣∣ K̇ }
, (3.7)

where the dot denotes differentiation with respect to time. For a thorough investigation of
this principle and its relation to the principle of maximum dissipation, see (Hackl and Fi-
scher, 2007). For rate-independent materials, principle (3.7) allows to account for instanta-
neous changes of the value ofK, as it can be integrated to yield the balance law

Ψ(∇φ,K1)−Ψ(∇φ,K0) = −D(K0,K1), (3.8)

where

D(K0,K1) = inf
{ ∫ 1

0

∆(K(s), K̇(s)) ds
∣∣K(0) = K0,K(1) = K1

}
(3.9)

is the so-called dissipation distance (Mielke, 2002). When applied to a finite time-increment
[tn, tn+1], Eq. (3.8) allows for an approximate formulation where φn+1 and Kn+1 at time
tn+1 are determined for given loading at time tn+1 and the known value of the internal
variablesKn at time tn via the following principle (Carstensen et al., 2002; Mielke, 2002)

{φn+1,Kn+1} =

arg min
{ ∫

Ω

{Ψ(∇φ,K) +D(Kn,K)} dV − `(tn+1,φ)
∣∣ φ,K }

. (3.10)

Carrying out the minimization with respect toK in (3.10) beforehand gives the so-called
condensed energy

Ψcond
Kn

(F ) = inf
{

Ψ(F ,K) +D(Kn,K)
∣∣K }

(3.11)

which has been used in the literature to calculate the onset of microstructures (Ortiz and
Repetto, 1999; Lambrecht et al., 2003; Bartels et al., 2004; Mielke, 2004; Conti and Theil,
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2005). This approach, however, is based on the assumption that the material is homogeneous
and does not exhibit a microstructure at the beginning of the time increment. Hence, it is not
suitable to describe the evolution of already existing microstructures, as for each time step
the internal variables already exhibit a microstructure at the beginning of the time increment
as a result of a relaxation process in the preceding time-increment. Therefore, it is convenient
to express the internal variables in the form of so-called Young measures.

Young measures are probability distributions λF (X) ≥ 0 (given e.g. for the deformation
gradient, i.e. on GL(d)) which satisfy the following properties:∫

λF dF = 1,

∫
λF̄ F̄ dF̄ = F . (3.12)

Moreover, in the case of the deformation gradient the probability distribution must ensure
spatial compatibility, i.e. the distributed deformation gradient must be realizable by some
deformation field φ in Ω. This means that for some representative volume Ωrep

1

Ωrep

∫
Ωrep

Ψ(∇φ) dV =

∫
GL(d)

λF̄ Ψ(F̄ ) dF̄ (3.13)

must hold for all quasiconvex potentials Ψ. In this case we call λF ∈ GYM a gradient Young
measure.

It is now, at least in principle, possible to define a relaxed energy and dissipation functio-
nal Hackl (2005, 2006) via cross-quasiconvexication by

Ψrel(F , λK) = inf
{ ∫

ΛF̄ ,K̄Ψ(F̄ , K̄)dK̄ dF̄
∣∣ ΛF̄ ,K̄ ;

∫
ΛF̄ ,K̄ dK̄ dF̄ = 1,∫

ΛF̄ ,K̄ dK̄ ∈ GYM,

∫
ΛF̄ ,K dF̄ = λK ,

∫
ΛF̄ ,K̄ F̄ dK̄ dF̄ = F

}
, (3.14)

∆∗(λ̇K) = inf
{ ∫

ΛK0,K1D(K0,K1)dK0 dK1

∣∣ ΛK0,K1 ;∫
ΛK0,K1 dK0 dK1 = 1,

∫
ΛK0,K1 dK0 = λ̇K ,

∫
ΛK0,K1 dK1 = −λ̇K

}
.

(3.15)

Related concepts have already been introduced and discussed in different settings by Mielke
(2004). With these definitions we recover the original principles (3.5) and (3.7), with the
only difference that the internal variables K have been replaced by the Young measures
λK .

3.2.2 Approximation via Lamination

In general, expressions (3.14) and (3.15) will be hard to compute. One possible approxi-
mation is via so-called lamination. Applications of this procedure to the time-incremental
problem can be found e.g. in (Bartels et al., 2004). For brevity, we will restrict ourselves here
to first-order laminates. Everything stated in subsequent Sections can be extended to general
laminates in an essentially straightforward manner, but the details of this may become very
cumbersome.
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A laminate of first order is characterized by N volume fractions λi separated by parallel
planes with normal vector b, as sketched in Figure 3.2. To every volume fraction there
corresponds a value Ki of the internal variables. Moreover, in every volume fraction we
have a deformation gradient which we write in the form

F i = F (I + ai ⊗ b). (3.16)

By choosing this form, deformation gradients differ only by tensors of rank one, enforcing
compatibility at laminate interfaces and hence ensuring the existence of a corresponding
deformation field. We need to impose the volume average of the deformation gradient,

N∑
i=1

λiF i = F , (3.17)

which is equivalent to

N∑
i=1

λiai = 0. (3.18)

Let us consider the normal vector b as ingrained into the material because any change of b
would require a change of the internal variables and thus lead to dissipation. The amplitudes
ai on the other hand can be changed purely elastically. This suggests to define a relaxed
energy as

Ψrel(F , λ,K, b) = inf
{ N∑

i=1

λiΨ(F i,Ki)
∣∣ ai; N∑

i=1

λiai = 0
}
, (3.19)

where we introduced the abbreviations λ = {λ1, . . . , λN} and K = {K1, . . . ,KN}. If
we further assume that the lamination respects the ordering {1, . . . , N} and that the normal
vector remains fixed, the relaxation of the dissipation is given by

∆∗(λ,K, λ̇, K̇) =
N∑
i=1

λi ∆(Ki, K̇i) + inf
{ N∑
i,j=1

∆λij D(Ki,Kj)
∣∣∆λij;

N∑
i=1

∆λij = λ̇j,
N∑
j=1

∆λij = λ̇i,∆λij = 0 for |(i− j) modN | 6= 1
}
. (3.20)

Figure 3.2: Sketch of a first-order laminate for N = 3 with normal vector b.
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Figure 3.3: Rotation of the original laminate with old normal vector b0 to the new normal
vector b. The right graphic highlights the hatched regions which have changed
their phase membership upon rotation and hence caused dissipation.

Now, once again from (3.7), we obtain evolution equations for λ and K for fixed b. As
can be seen from Figure 3.3, however, a change of b results in changes of the plastic slip
in certain regions of the deformed body and is hence associated with a fixed amount of
dissipation given by

Db(λ,K) =
N∑
i=1

N∑
j=1

λiλjD(Ki,Kj). (3.21)

Db is proportional to the total area of exchanged volume fractions (the hatched area in
Figure 3.3) and the dissipation required for microstructurally changing these regions. We
assume that a change of orientation will take place as soon as it becomes energetically
favorable. This gives

inf
{

Ψrel(F , λ,K, b)−Ψrel(F , λ,K, b0)
∣∣ b; |b| = 1

}
+Db(λ,K) ≤ 0 (3.22)

for given b0, λ, K. The description of the inelastic evolution of a first order laminate is
hence complete by Eq. (3.22). In the following we will specify this method to the case of
crystal plasticity.

3.3 Incompressible Neo-Hooke Material in Single-Slip Plasticity

3.3.1 Constitutive Framework for a Single Active Slip System

We are going to demonstrate the general scheme introduced above by applying it to the
crystal plasticity model introduced originally by Carstensen et al. (2002). In the following,
we study the evolution of microstructures by employing a Neo-Hookean material with its
free energy density

Ψ(F e) =
1

2
µ
[
trF T

e F e − 3
]

+
K

4

[
j2 − 2

(
1 + 2

µ

K

)
ln j − 1

]
, (3.23)

where F e denotes the elastic deformation gradient tensor, j = detF e, and µ > 0 and
K > 0 are the shear and bulk moduli, respectively. To account for material hardening, let
us introduce an internal hardening history variable p. In most of the subsequent analyses
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we will limit our considerations to incompressible material behavior (a simplifying but ap-
proximately justified assumption for many materials) so that j = detF e = 1. Note that
incompressibility requires that not only detF p = 1 but also detF e = detF = 1. Then, the
above energy reduces to

Ψ(F e, p) =
1

2
µ
(
trF T

e F e − 3
)

+ κ pα, detF = 1, (3.24)

where κ > 0 is a hardening modulus of the material and α is commonly 2 (linear harde-
ning) or 4. Multiplicative split of the deformation gradient into an elastic part F e and an
irreversible, plastic part F p yields the standard multiplicative decomposition

F = F eF p. (3.25)

A slip system is characterized by its unit vectors s andm (|s| = |m| = 1, s·m = 0), where
s characterizes the slip direction, andm denotes the unit vector normal to the corresponding
slip plane. If we have n active slip systems, the flow rule can be given in the form

Ḟ pF
−1
p =

n∑
i

γ̇i si ⊗mi (3.26)

with plastic slip rates γ̇i and the initial conditions γi(0) = 0. Time-integration of (3.26)
reduces to a neat analytical form if we assume that all slip directions lie in the same slip
plane, i.e.m = mi ∀ i. Then, by time-integration (Carstensen et al., 2002) we infer

F−1
p = I −

n∑
i

γisi ⊗m. (3.27)

In this Section we limit our analysis to only one active slip system (single-slip plasticity or
infinite latent hardening) so that the above condition further reduces to

F−1
p = I − γs⊗m. (3.28)

Furthermore, consider the additional flow rule (Carstensen et al., 2002)

ṗ = |γ̇| (3.29)

with the initial condition p(0) = 0. For the dissipation functional (with only one active slip
system) we assume

∆(γ̇) = r|γ̇|, (3.30)

with a positive constant r (the critical resolved shear stress), see (Carstensen et al., 2002)
for details.

Due to a non-convex condensed energy, microstructures arise as energy minimizers. Let
us assume a first-order laminate microstructure with N phases having interfaces with unit
normal b. We define the deformation gradient in phase i according to Eq. (3.16). To ensure
incompressibility of each laminate phase, we must enforce that for every phase i we have
detF i = 1, which is equivalent to

ai · b = 0. (3.31)
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Taking this constraint into account, the laminate energy may be written as

Ψlam(F , λ, γ, p, b) =
µ

2

N∑
i

[λi trCe,i − 2λiΛ · ai − 2λiρiai · b]−
3

2
µ+κ

N∑
i

λip
α
i (3.32)

where Ce,i = F T
e,iF e,i denotes the elastic right Cauchy-Green tensor in phase i with

F e,i = F (I + ai ⊗ b)(I − γis⊗m), (3.33)

and Λ and ρi are Lagrange multipliers to enforce constraints (3.18) and (3.31). Minimizing
(3.32) with respect to the unknown quantities ai, we arrive at

∂Ψlam

∂ai
= 0 ⇔ 2λiC(I+ai⊗b)(I−γis⊗m)(I−γim⊗s)·b−2λiΛ−2λiρib = 0, (3.34)

where C = F TF denotes the right Cauchy-Green tensor. Let us define

bi = b− γi(b ·m s+ b · s m) + γ2
i b · s s (3.35)

to re-arrange the above equation to

ai bi · b = C−1Λ + ρiC
−1b− bi, (3.36)

from which follows that

ρi =
bi · b

b ·C−1b
,

Λ =
C∑
i
λi

bi·b

(∑
i

λi
bi · b

bi −
1

b ·C−1b
C−1b

)
, (3.37)

ai =
1

bi · b
C−1Λ +

1

b ·C−1b
C−1b− 1

bi · b
bi.

Application of (3.37) to (3.32) yields the relaxed energy in the form

Ψrel(F , λ, γ, p, b) = inf
{

Ψlam(F , λ, γ, p, b)
∣∣ ai}

= κ

N∑
i

λi p
α
i +

µ

2

[
1∑N
i

λi

bi·b

(
N∑
j

N∑
k

λjλkbj ·Cbk
bj · b bk · b

− 1

b ·C−1b

)
(3.38)

+
N∑
i

λi

(
bi · b

b ·C−1b
− bi ·Cbi

bi · b

)
+ trC +

N∑
i

λi
(
γ2
i s ·Cs− 2γis ·Cm

)
− 3

]

with γ = {γ1, . . . , γN}, p = {p1, . . . , pN}.

The non-convexity of the employed free energy density can easily be verified by investi-
gating the behavior of the unrelaxed solution for a single phase (N = 1), which gives the
condensed energy

Ψcond(F ) = inf
{

Ψ(F , γ, p) + r|γ|
∣∣∣γ : p = |γ|

}
. (3.39)

The condensed energy is illustrated in Figure 3.4 for plane-strain simple shear (F = I +
γ e1 ⊗ e2), where the in-plane orientation of the laminate phase normal vector is defined
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Figure 3.4: Unrelaxed condensed energy of a homogeneous single crystal with one active
slip system. The energy is clearly not convex for positive γ whereas convex for
negative γ. a) Condensed energy for fixed hardening and varying slip system
orientation, b) condensed energy for fixed slip system orientation and varying
hardening parameter values.

by b = (cosϕ, sinϕ, 0)T , for different orientations ϕ and varying hardening parameter κ
(α = 4). Note that upon positive loading (γ > 0) the energy is clearly non-convex giving
rise to instability and hence to the formation of microstructure whereas during negative
loading (γ < 0) no such non-convexity is observed, as has already been discussed e.g. by
Carstensen et al. (2002) or Lambrecht et al. (2003).

For simplicity let us reduce the present model to a two-phase laminate (N = 2) and define
the volume fraction of phase 2 as λ such that by taking into account (3.30) the dissipation
potential defined in (3.20) may be written in the form

∆∗(λ, γi, λ̇, γ̇i) = r
(∣∣∣λ̇(γ1 − γ2)

∣∣∣+ (1− λ) |γ̇1|+ λ |γ̇2|
)
, (3.40)

and the Lagrange functional corresponding to (3.6) now becomes

L(F , λ, γi, pi, λ̇, γ̇i, b) =
d

dt
Ψrel(F , λ, γi, pi, b) + ∆∗(λ, γi, λ̇, γ̇i). (3.41)

Here, one of the major differences of the present model to previous approaches becomes
apparent from the first term of (3.40): A change of the volume fractions (here, of λ) causes
dissipation. However, we do not consider the dissipation required to transform some region
with originally no plastic history into a part of the increasing phase. Instead, we correctly
account for the transformation of some part originally of phase 1 into a part of the expanding
phase 2 (hence, ∆∗ = λ̇|γ1 − γ2|). Therefore, the dissipation (and thus the evolution of the
internal variables) depends on the microstructure at the beginning of each time step.
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3.3.2 Time-Continuous Evolution for a Single Active Slip System

Via the principle given in (3.7) we now arrive at evolution equations for λ and γi from the
above Lagrange functional as

− r |γ1 − γ2| sign λ̇ ∈ −q =
∂Ψrel

∂λ
, (3.42)

−r(1− λ) sign γ̇1 ∈
∂Ψrel

∂γ1

+
∂Ψrel

∂p1

sign γ̇1, (3.43)

−rλ sign γ̇2 ∈
∂Ψrel

∂γ2

+
∂Ψrel

∂p2

sign γ̇2. (3.44)

For the above model the driving forces (i.e. the derivatives of the free energy) can analyti-
cally be computed as

∂Ψrel

∂λ
=
µ

2
[trCe,2 − trCe,1 − 2Λ · (a2 − a1)− 2(ρ2a2 − ρ1a1) · b]

+ κ (pα2 − pα1 ) , (3.45)

∂Ψrel

∂γ1

= −µ
2

(1− λ) tr [m⊗ s(I + b⊗ a1)C(I + a1 ⊗ b)(I − γ1s⊗m)] , (3.46)

∂Ψrel

∂γ2

= −µ
2
λ tr [m⊗ s(I + b⊗ a2)C(I + a2 ⊗ b)(I − γ2s⊗m)] , (3.47)

with Λ and ρi from Eqs. (3.37). Note that we may use the (for numerical computations
simpler) partial derivatives, since for all internal variables y involved (e.g. λ, γi) we have

dΨrel

dy
=
∂Ψrel

∂y
+
∂Ψrel

∂ai

∂ai
∂y

=
∂Ψrel

∂y
. (3.48)

Instead of solving the stationarity conditions one can also numerically minimize the Lagran-
ge functional

L(F , λ, γi, pi, λ̇, γ̇i, ṗi, b) =
∂Ψrel

∂λ
λ̇+

2∑
i=1

∂Ψrel

∂γi
γ̇i + ακ

2∑
i=1

pα−1
i |γ̇i|

+ r
[
λ̇(γ1 − γ2)

]
+ r (1− λ) |γ̇1|+ r λ |γ̇2|, (3.49)

with respect to the rates of all internal variables.

With our goal of computing the evolution of plastic microstructures in mind, we need to
find an incremental formulation to be solved numerically, using finite deformation incre-
ments [F n,F n+1] with known initial conditions F n, γi,n, λn, pi,n at the beginning of each
time step (i.e. at time tn) and the known deformation gradient F n+1 at the end of the time
step, i.e. at time tn+1 = tn + ∆t. For a small time step we approximate the rate of change of
the internal variables as

ẏ =
yn+1 − yn

∆t
=

∆y

∆t
. (3.50)

Eqs. (3.42)-(3.44) can then be used to compute the updates

∆λ = λn+1 − λn, ∆γi = γi,n+1 − γi,n, ∆pi = pi,n+1 − pi,n. (3.51)
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Before outlining the numerical scheme, we need to discuss three important steps of our
model. Firstly, any change of λ results in mixing the formerly pure phases in a small part of
Ω (as mentioned above); e.g. an increase in λ will raise the volume fraction of phase 2 (with
history variable p2) by certain regions which were previously associated with phase 1 and
hence exhibited history variable value p1. We propose to obtain the updated p-values in both
phases by taking the energetic average. For λn+1 = λn + ∆λ and ∆λ > 0 we have

(λn + ∆λ) pα2,n+1 = λn p
α
2,n + ∆λ pα1,n, p1,n+1 = p1,n, (3.52)

and analogously for ∆λ < 0

(1− λn −∆λ) pα1,n+1 = (1− λn) pα1,n −∆λ pα2,n, p2,n+1 = p2,n. (3.53)

Secondly, once a laminate microstructure exists, changes of the orientation vector b will
be treated using the criterion given in (3.22). We check upon each load increment whether or
not a rotation of the laminate is energetically admissible by means of (3.22), i.e. by finding
bn+1 from

Ψrel(F n, λn, γi,n, pi,n, bn+1)−Ψrel(F n, λn, γi,n, pi,n, bn)+2rλn(1−λn) |γ1,n − γ2,n| ≤ 0,

(3.54)

where the last term represents the dissipation given by (3.21).

Thirdly, a crucial issue is the initiation of the laminate microstructure from the originally
uniform single crystal. Here, two equally sensible methods are relevant. On the one hand, it
is possible to numerically compute the condensed relaxed energy, see (3.11),

Ψcond,rel
n+1 (F n+1) = min

{
Ψrel(F n+1, γ1,n, γ2, λ, b) + r |λ(γ2 − γ1,n)|

∣∣∣γ2, λ, b :

p2 = |γ2|, 0 ≤ λ ≤ 1, |b| = 1
}

(3.55)

and check whether or not Ψcond,rel
n+1 ≤ Ψcond

n+1, i.e. if the formation of a laminate can reduce the
energy below that of the homogeneous crystal. If Ψcond,rel

n+1 ≤ Ψcond
n+1, then a laminate forms

with (γ2, λ, b) = argminΨcond,rel
n+1 from (3.55). On the other hand, one can treat the laminate

initiation as follows. At the beginning of each time increment n, one computes the driving
force qλ,n on the volume fractions in the limit of a marginal amount of phase 2, i.e.

qλ,n(F n+1, γ1,n, γ2,n+1, p1,n, p2,n+1, bn+1) = lim
λ→0

q(F n+1, λ, γ1,n, γ2,n+1, p1,n, p2,n+1, bn+1).

(3.56)

Maximizing this driving force with respect to bn+1 and γ2,n+1, one can determine the ener-
getically favored values of these quantities in the arising phase 2, i.e.

(bn+1, γ2,n+1) = argmax
{
qλ,n

∣∣∣ p2,n+1 = |γ2,n+1|, |bn+1| = 1
}
. (3.57)

One then determines the actual value of λn+1 by solving

r |γ1,n − γ2,n+1| = q(Fn+1, λn+1, γ1,n, γ2,n+1, p1,n, p2,n+1 = |γ2,n+1| , bn+1). (3.58)

If there exists a solution λn+1, a laminate forms with phase 2 having the determined values
of λn+1, γ2,n+1 and bn+1.
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Algorithm 1: Incremental solution for a single active slip system

(a) incremental load update: F n+1 = F n + ∆F

(b) find λn+1 (assume γi = γi,n = const.):
• for the initially uniform single-crystal (λn = 0) find bn+1 and γ2,n+1 from

max
bn+1,γ2,n+1

{
lim
ε→0

q(F n+1, λ = ε, γ1,n, p1,n,

γ2,n+1, p2,n+1 = |γ2,n+1| , bn+1)

}
and λn+1 from

r |γ1,n − γ2,n+1| = q(F n+1, λn+1,γ1,n, γ2,n+1, p1,n,

p2,n+1 = |γ2,n+1| , bn+1).

⇒ if 0 ≤ λn+1 ≤ 1, update λn+1, γ2,n+1, bn+1

• for an existing laminate microstructure (λn > 0) solve:

q(F n+1, λn + ∆λ, γi,n, pi,n) sign ∆λ = r |γ1,n − γ2,n|
⇒ λn+1 = λn + ∆λ

• check for a laminate rotation by finding bn+1 such that:

min
bn+1

Ψrel(bn+1)−Ψrel(bn) + 2rλn+1(1− λn+1) |γ1,n − γ2,n|
?

≤ 0

• update pi,n+1 according to (3.52) or (3.53)

(c) find γi,n+1 (assume λ = λi,n+1 = const.) by solving:
∂Ψrel

∂γ1

+
∂Ψrel

∂p1

sign ∆γ1

∣∣∣∣ γi,n+∆γi

pi,n+|∆γi|

= −r (1− λn+1) sign ∆γ1

∂Ψrel

∂γ2

+
∂Ψrel

∂p2

sign ∆γ2

∣∣∣∣ γi,n+∆γi

pi,n+|∆γi|

= −r λn+1 sign ∆γ2

⇒ γi,n+1 = γi,n + ∆γi, pi,n+1 = pi,n + |∆γi|
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3.3.3 Numerical Scheme for a Single Active Slip System

Our numerical scheme takes the form outlined in Algorithm 1. This algorithm computes
the microstructure evolution (i.e. the updates of the plastic slips ∆γi, the history variable
update ∆pi, and the volume fraction update ∆λ) by incrementally minimizing functional
(3.41). Since we are using the relaxed energy and dissipation functional, this constitutes a
well-posed problem and we can resort to solving the stationarity conditions (3.42) through
(3.44). For a given load increment [F n,F n+1] each step starts with the current state as initial
conditions λn, γi,n, pi,n, and solves the stationarity conditions in order to update all internal
variables at time tn+1 with known load F n+1. For the initially homogeneous material the
interface normal bn+1 as well as the internal variables of the originating second laminate
phase, γ2,n+1 and p2,n+1, are determined from (3.57), and the initial value of λ is obtained
from (3.58). Alternatively, one can find the initial laminate by employing the condensed
energy functional. Once a laminate has formed the evolution of the variables λ, γi and pi is
computed by a staggered scheme. In a first step a time-discretized version of (3.42) is solved
for the increment ∆λ for fixed γ1 and γ2. Afterwards, p1 and p2 are updated via (3.52) or
(3.53). Then in a second step, (3.43) and (3.44) are solved for the increments ∆γ1 and ∆γ2

for fixed λ, and the pi-values are again updated according to (3.29). Finally the updated
values of λ, γ1, γ2, p1, p2 are transfered to the next time-step.

3.4 Generalization to Multiple Active Slip Systems

3.4.1 Constitutive Framework for Multiple Active Slip Systems

Analogously to the constitutive framework outlined in the previous Section, we employ the
energy density for an incompressible neo-Hookean material of the form

Ψ(F e,p) =
1

2
µ
(
trF T

e F e − 3
)

+ κ
n∑
i

pαi , detF = 1. (3.59)

Each of the now n active slip systems i is characterized by its slip direction si and slip plane
normal mi (|si| = |mi| = 1, si ·mi = 0). Cross hardening could be accounted for by
replacing the above hardening term by

∑
i

∑
j κij|pi pj|α/2 but here we limit our analysis to

the above form. We consider the same flow rules as before, with slip-rates γ̇i,

Ḟ pF
−1
p =

n∑
i

γ̇i si ⊗mi, ṗi = |γ̇i| (3.60)

with initial conditions γi(0) = 0 and pi(0) = 0. We limit our considerations here to slip
systems with a common slip plane normal mi = m. In this case, we can infer via time-
integration that

F−1
p = I −

n∑
i

γisi ⊗m. (3.61)

Wwe assume the same first-order laminate microstructure as before with N phases having
interfaces with unit normal b. We define the deformation gradient in phase i according to Eq.
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(3.16). For multiple slip systems, the relaxed energy for a first-order laminate analogously
to (3.38) takes the form

Ψrel(F , λ, γij, pij, b)

= κ

N∑
i

λi

n∑
j

pαij +
µ

2

[
1∑N
i

λi

bi·b

(
N∑
j

N∑
k

λjλkbj ·Cbk
bj · b bk · b

− 1

b ·C−1b

)

+
N∑
i

λi

(
bi · b

b ·C−1b
− bi ·Cbi

bi · b

)
+ trC − 3 (3.62)

+
N∑
i

λi tr

(
I −

n∑
j

γijm⊗ sj

)
C

(
I −

n∑
j

γijsj ⊗m

)]
,

where

bi =

(
I −

n∑
j

γijsj ⊗m

)(
I −

n∑
j

γijm⊗ sj

)
· b. (3.63)

C = F TF is the right Cauchy-Green tensor, pij is the hardening history and γij the plastic
slip in phase i on slip system j.

For simplicity let us reduce the present model to a two-phase laminate (N = 2) with two
active slip systems (n = 2). We define the volume fraction of phase 2 as λ such that the
dissipation potential for only one slip system was given in the form (Hackl and Kochmann,
2008)

∆∗(λ, γi, λ̇, γ̇i) = r
(

(1− λ) |γ̇1|+ λ |γ̇2|+
∣∣∣λ̇(γ1 − γ2)

∣∣∣) . (3.64)

For multiple slip systems, the definition of ∆∗ is no longer unique. We assume a dissipation
potential of the following type:

∆∗(λ, γij, λ̇, γ̇ij) = r [(1− λ) (|γ̇11|+ |γ̇12|) + λ (|γ̇21|+ |γ̇22|)

+|λ̇(γ11 − γ12)|+ |λ̇(γ21 − γ22)|
]
. (3.65)

This form implies that motion of dislocations occurs on both slip systems independently and
without interference.

The Lagrange functional corresponding to (3.6) now takes the form

L(F , λ, γij, pij, λ̇, γ̇ij, b) =
d

dt
Ψrel(F , λ, γij, pij, b) + ∆∗(λ, γij, λ̇, γ̇ij). (3.66)

Via the principle given in (3.7) we now arrive at five evolution equations for λ and γij from
the above Lagrange functional (for j = 1, 2)

− r [|γ11 − γ12|+ |γ21 − γ22|] sign λ̇ ∈ −q =
∂Ψrel

∂λ
, (3.67)

−r (1− λ) sign γ̇1j ∈
∂Ψrel

∂γ1j

+
∂Ψrel

∂p1j

sign γ̇1j, (3.68)

−r λ sign γ̇2j ∈
∂Ψrel

∂γ2j

+
∂Ψrel

∂p2j

sign γ̇2j. (3.69)
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To obtain a numerical scheme for computing the evolution of plastic microstructures, we
make use of an incremental formulation to be solved numerically for finite deformation
increments [F n,F n+1]. Note that a change of λ results in mixing the formerly pure phases
in a small part of Ω. We proposed to obtain the updated p values by taking the energetic
average (Hackl and Kochmann, 2008). Here, we adopt this in principle but for each slip
system independently (no slip system interaction), i.e. for λn+1 = λn+∆λ and e. g. ∆λ > 0
we have

(λn + ∆λ) pα21,n+1 = λ pα21,n + ∆λ pα11,n, p11,n+1 = p11,n, (3.70)

(λn + ∆λ) pα22,n+1 = λ pα22,n + ∆λ pα12,n, p21,n+1 = p21,n. (3.71)

To find the onset of microstructure formation, we investigate upon each increment if there
exists a combination (b, γ21, γ22, λ) which can reduce the crystal’s energy below the unrela-
xed energy of a homogeneous single crystal. If so, the unstable homogeneous deformation
state breaks up into a laminate microstructure with the determined values of b, γ21, γ22, λ.
Otherwise, no microstructure originates. Once the laminate has formed, we check with each
further increment whether or not a rotation of the laminate is energetically admissible by
means of (3.22), i.e. by finding bn+1 from

Ψrel(bn+1)−Ψrel(bn) + 2rλn(1− λn) (|γ12,n − γ22,n|+ |γ21,n − γ22,n|) ≤ 0, (3.72)

where the last term represents the dissipation given by (3.21).

3.4.2 Numerical Scheme for Double-Slip

Our numerical scheme is outlined in Algorithm 2. This algorithm computes the microstruc-
ture evolution (i.e. plastic slips γij and volume fraction λ) by incrementally minimizing
functional (3.66). As we still use the relaxed energy and dissipation functional, this consti-
tutes a well-posed problem and we can resort to solving the stationarity conditions (3.67),
(3.68) and (3.69). Each step starts with the current state as the initial condition and solves
the stationarity conditions in order to update the internal variables. For initially homoge-
neous material (i.e. no laminate present) the interface normal b as well as the slips γ2j for
the originating second laminate phase are determined via maximization of the driving force.
Once a laminate has formed, the evolution of variables λ and γij is computed by a staggered
algorithm: In a first step a time-discretized version of (3.67) is solved for the increment ∆λ
for fixed γij . Afterwards, pij are updated via (3.70) and (3.71). Then in a second step, (3.68)
and (3.69) (for j = 1, 2) are solved for the increments ∆γij for fixed λ. Again, we accom-
plish this in a staggered form (γ1j are updated first, then follow γ2j) to reduce complexity of
the minimization problem. Numerical experiments indicate a rather negligible influence of
the order of the staggered algorithm with a sufficiently small time step. Finally, the updated
values of λ and γij are transferred to the next time-step.
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Algorithm 2: Incremental evolution for double-slip plasticity

(a) incremental load update: F n+1 = F n + ∆F

(b) find λn+1 (assume γij = const. = γij,n):
• for the initially uniform single-crystal (λn = 0) find bn+1 and γ2j,n+1 from

(j = 1, 2)

max
bn+1,γ2j,n+1

{
lim
ε→0

q(F n+1, λ = ε, γ1j,n, γ2j,n+1, p1j,n,

p2j,n+1 = |γ2,n+1| , bn+1)}

and λn+1 from

r (|γ11,n − γ21,n|+ |γ12,n − γ22,n|) = q(F n+1, λn+1, γij,n, pij,n)

⇒ if 0 ≤ λn+1 ≤ 1, update λn+1, γ21,n+1, γ22,n+1, bn+1

• for an existing laminate microstructure (λn > 0) solve:

q(F n+1, λn + ∆λ,γij,n, pij,n) sign ∆λ = r (|γ11,n − γ21,n|
+ |γ12,n − γ22,n|) ⇒ λn+1 = λn + ∆λ

• check for laminate rotation by finding bn+1 from (3.72).
• update pij,n according to (3.70) and (3.71) or the analogous forms

for ∆λ < 0

(c) find γij,n+1 (assume λ = const. = λn+1) by solving in a staggered form:
∂Ψrel

∂γ11

+
∂Ψrel

∂p11

sign ∆γ11

∣∣∣∣ γ1j,n+∆γ1j

p1j,n+|∆γ1j |

= −r (1− λn+1) sign ∆γ11

∂Ψrel

∂γ12

+
∂Ψrel

∂p12

sign ∆γ12

∣∣∣∣ γ1j,n+∆γ1j

p1j,n+|∆γ1j |

= −r (1− λn+1) sign ∆γ12

⇒ γ1j,n+1 = γ1j,n + ∆γ1j, p1j,n+1 = p1j,n + |∆γ1j|


∂Ψrel

∂γ21

+
∂Ψrel

∂p21

sign ∆γ21

∣∣∣∣ γ2j,n+∆γ2j

p2j,n+|∆γ2j |

= −r λn+1 sign ∆γ21

∂Ψrel

∂γ22

+
∂Ψrel

∂p22

sign ∆γ22

∣∣∣∣ γ2j,n+∆γ2j

p2j,n+|∆γ2j |

= −r λn+1 sign ∆γ22

⇒ γ2j,n+1 = γ2j,n + ∆γ2j, p2j,n+1 = p2j,n + |∆γ2j|
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Figure 3.5: Unrelaxed condensed energy Ψhom for a homogeneous deformation state and
possible relaxations as defined in Section 3.5.1 for a plane-strain simple shear
test with linear hardening. The right image shows a magnification of the initial
section of the left one.

3.5 Results

3.5.1 Relaxed and Condensed Energy

As a first result it is interesting to present the condensed energy functional for the two-phase
laminate (now employing the relaxed laminate energy density derived above), i.e.

Ψcond,rel(F ) = min
{

Ψrel(F , λ, γi, pi, b) + r(1− λ)|γ1|+ r λ|γ2|
∣∣ γi, λ, b :

pi = |γi| , 0 ≤ λ ≤ 1, |b| = 1} , (3.73)

which has been used in the literature in a different setting to compute laminate microstruc-
tures, see e.g. (Bartels et al., 2004; Carstensen et al., 2008). Note that here it is assumed
that the orientation vector b can be chosen purely elastically and also we do not account
for dissipation due to changes of the volume fractions. (Furthermore, this approach does
not account for an existing microstructure at the beginning of a time step and is hence only
suitable for one time increment when a laminate forms.) As the energy is semi-relaxed with
respect to amplitudes ai already, minimization with respect to the remaining unknowns can
conveniently be performed numerically.

As shown e.g. in (Carstensen et al., 2008), approximations of the above condensed energy
can be determined for specific microstructures, for which a solution can easily be found. Fi-
gure 3.5 illustrates the unrelaxed energy Ψhom for a homogeneous deformation state (which
is clearly non-convex) along with a comparison of several relaxation results based on the
present energy formulation. The highest of these relaxed energy curves shown is obtained
from mixing one purely elastic phase with one elasto-plastic phase (γ1 = 0, γ2 6= 0):

Ψel-pl(F ) = min
{

Ψrel(F , λ, γi, pi, b) + r λ|γ2|
∣∣∣λ, γ2, b : γ1 = p1 = 0, p2 = |γ2|,

0 ≤ λ ≤ 1, |b| = 1} . (3.74)

Another possible relaxation corresponds to a laminate approximation where both phases are
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Figure 3.6: Unrelaxed condensed energy Ψhom for a homogeneous deformation state and
possible relaxations as defined in Section 3.5.1 for a three-dimensional tension-
compression test with non-aligned slip system and with linear hardening. The
bottom image shows a magnification of the indicated region.

elasto-plastic but with equal amounts of plastic slip of opposite signs (γ1 = −γ2 = γ):

Ψ1(F ) = min
{

Ψrel(F , λ, γi, pi, b) + r |γ|
∣∣λ, γ, b : γ2 = −γ1 = γ,

p1 = p2 = |γ|, 0 ≤ λ ≤ 1, |b| = 1} . (3.75)

A comparison of all three energy curves is shown in Figure 3.5 for a simple shear test with
F = γe1 ⊗ e2. Clearly, the elastic-plastic energy Ψel-pl lies higher than the relaxed con-
densed energy Ψcond,rel as well as the energy curve of Ψ1 (the latter two almost coincide).
Computations were performed with µ = 20, κ = 0.01µ, r = 0.001µ. Note that the results
in Figure 3.5 (and also Figure 3.6) are for linear hardening (α = 2) to allow for a compa-
rison with literature results as e.g. in (Carstensen et al., 2008). Unless otherwise noted, all
subsequent results are plotted for α = 4.

Another comparison of these energy paths is shown in Figure 3.6 for a tension-compression
test with the macroscopic deformation gradient (this particular form is chosen to ensure in-
compressibility)

F =

 1 + δ 0 0
0 1/(1 + δ) 0
0 0 1

 . (3.76)

Note that the active slip system does not lie in the same plane as the deformation to present
a fully three-dimensional example.

Although only partially relaxed, the quality of the relaxed energy Ψrel in (3.38) can be
estimated by a comparison with the convex energy lower bound. A convex energy hull be
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Figure 3.7: Comparison of the relaxed energy with the convex energy hull for fixed internal
variables λ, γi, and pi = |γi|, for different slip system orientations and loading
cases and with linear hardening (α = 2).

defined by

Ψconv(F , λ,γi, pi) = min {(1− λ)Ψ(F 1, γ1, p1) + λΨ(F 2, γ2, p2)|F 1,F 2 :

detF 1 = detF 2 = 1, (1− λ)F 1 + λF 2 = F , pi = |γi| } , (3.77)

Unlike for the laminate energy hulls (with additional constraint rank(F 1−F 2) ≤ 1), defor-
mation gradients in the two phases of the convex energy hull do not guarantee compatibility.

To estimate the quality of the relaxed energy Ψrel (the semi-analytical relaxation with
respect to the amplitude vectors was derived in previous Sections) one can compare the fully
relaxed laminate energy to the convex energy hull for given values of λ,γi and pi and for a
given deformation path. By fully relaxed we mean the energy Ψrel* obtained from numerical
minimization with respect to the orientation vector b, i.e.

Ψrel*(F , λ, γi, pi) = min
{

Ψrel(F , λ, γi, pi, b)
∣∣ b : |b| = 1

}
. (3.78)

Results are illustrated in Figure 3.7 for the given values of the internal variables; note that
the relaxed energy is obtained from numerical minimization with respect to b. Examples
comprise a tension-compression test with the overall deformation gradient F a and a mixed
tension-compression-shear test with F b with slip system orientations defined according to
Figure 3.6:

F a =

 1 + δ 0 0
0 1/(1 + δ) 0
0 0 1

 , F b =

 eδ δ 0
0 e−δ 0
0 0 1

 (3.79)

The difference between the relaxed energy and the convex energy curve is small: for
the example in Figure 3.7a the relative deviation of the relaxed energy from the convex
hull is less than 1% everywhere (and, of course, the relaxed energy lies above the convex
hull). The right example shows a larger relative error for small strains δ of less than 5%.
With increasing strain δ the deviation rapidly decreases to less than 0.5%, which hints at
a good approximation of the quasiconvex envelope by the (semi-)relaxed energy, since the
quasiconvex energy hull ist bounded from above and below by the rank-one-convex hull and
the convex hull, respectively.
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Figure 3.8: Microstructure development of a first-order laminate for a simple shear test with
a single active slip system. Two bifurcated laminate phases arise with common
surface normal b. The newly nucleated phase 2 exhibits finite plastic slip already
at the onset of lamination whereas the original phase 1 remains elastic first and
finally yields plastically, too. Volume fractions develop to finally recover the
crystal in a stable homogeneous state with uniform plastic slip.

3.5.2 Single-Slip Plastictiy for a First-Order Laminate

For modeling the incremental evolution of the microstructure, the numerical scheme out-
lined in previous Sections can be applied to arbitrary deformations, so long as the defor-
mation remains volume-preserving to account for the assumption of incompressibility. In
the following, we present examples of applying Algorithm 1 to different three-dimensional
examples with varying hardening parameters and active slip systems. For simplicity, we use
for all results µ = 2 and r = 0.001, and we name results obtained from this method relaxed
compared to the unrelaxed solution for a homogeneous deformation state. Whenever the
example is in plane-strain, the slip system orientation is characterized by the angle ϕ of the
slip direction s with the x-axis.

When plotting the stress components as functions of the overall strain, we must specify a
zero stress niveau because of the backstress arising from the enforcement of incompressibi-
lity. Assuming a general neo-Hookean free energy formulation of the type

Ψ(F e) =
1

2
µ
[
tr (F T

e F e)− 3
]

+
K

4

[
j2 − 2

(
1 + 2

µ

K

)
ln j − 1

]
, (3.80)

we obtain the first Piola-Kirchhoff stress in our model as

ΣI =
∂Ψ

∂F

∣∣∣∣
det F =1

= µ
(
F e − F−Te

)
F−Tp , (3.81)

from which the Cauchy stress follows as

σ = µ
(
F eF

T
e − I

)
. (3.82)

Note that the constraint of incompressibility gives rise to the hydrostatic back stress in
(3.82).

Figure 3.8 illustrates the general nature of solutions obtained for those problems consi-
dered here: First, the crystal behaves in a homogeneous elastic manner. (Depending on the
non-aligned slip system, plastic flow may also occur before the onset of lamination.) At the
onset of lamination, a second phase arises out of the originally uniform single crystal. This
newly nucleated phase exhibits a finite amount of plastic slip already, whereas the original
phase may still evolve elastically, and it occupies only a small volume fraction of the crystal.
Upon further loading both phases eventually exhibit plastic flow and all internal variables
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Figure 3.9: Plane-strain simple shear test for zero and non-zero hardening (κ = 0 and
κ = 0.1, respectively): (a) comparison of unrelaxed and relaxed energy (energy
computed via the incremental method), (b) origin and evolution of the volume
fraction λ of phase 2, (c) evolution of the plastic slips γi for both laminate phases
compared to the unrelaxed slip, (d) comparison of unrelaxed and relaxed Cauchy
shear stress.
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evolve. Finally, only one phase remains at the recovery of convexity of the unrelaxed energy,
leaving the crystal in a homogeneous stable state with uniform plastic slip.

The first example investigates the microstructure evolution during a plane-strain simple
shear test parametrized by the macroscopic deformation gradient

F =

 1 γ 0
0 1 0
0 0 1

 . (3.83)

Results in Figure 3.9 are for κ = 0 (no hardening) and κ = 0.1µ, computed with constant
load increments of ∆γ = 5 · 10−4 up to a maximum of γmax = 2.8. The exact step size of
the load increment is of minor importance so long as the increment is kept small. (This is
of particular importance for finding the initial laminate.) The slip system is oriented under
an angle of ϕ = 135◦. Because of the non-aligned slip system the material stability of
the homogeneous deformation is lost and microstructures arise. Due to the convexity of the
unrelaxed energy Ψunrel for γ < 0, no microstructures form with negative strain γ. Figure 3.9
summarizes the evolution of the laminate microstructure by illustrating the paths of energy,
the evolution of the volume fraction λ of phase 2, plastic slips γi and the Cauchy shear stress
σ12 upon straining. Also included is a sketch of the originating laminate and the resultant
normal vector b. Note that for simple shear without hardening (κ = 0) the orientation of the
laminate (i.e. the orientation of b with the x-axis) results under an angle of approximately
−27.59◦, whereas in the case of hardening (κ = 0.1) the orientation changes to −23.49◦.
Figure 3.10 exemplarily illustrates the evolution of the laminate microstructure during the
simple shear test.

As a second example, we investigate the microstructure evolution during a plane-strain
tension-compression test with the macroscopic deformation gradient

F =

 1 + δ 0 0
0 1/(1 + δ) 0
0 0 1

 . (3.84)

Computations were carried out for different hardening parameters (κ = 0.001 and κ = 0.01)
and with constant load increments ∆δ = 5 · 10−4 up to the maximum load of δmax = 3. The
slip system was oriented under an angle of ϕ = 70◦. Again, due to the loss of rank-one
convexity, the homogeneous deformation state is not stable and decomposes into micro-
deformations. Figure 3.11 shows the microstructure evolution, displaying the evolution of
plastic slips, volume fractions, and Cauchy stress components upon straining. The corre-
sponding paths of the energy are provided in Figure 3.12.

In these examples the body behaves elastically first, until a second phase with finite, non-
zero slip γ2 originates from the uniform ground state, until finally phase 1 exhibits plastic
flow, too (cf. Figure 3.8). Once the laminate has formed with a distinct orientation vector b,
we do not observe laminate rotations due to the large amount of dissipation necessary for a
rotation. Rotation commonly only occurs when the body is in an almost uniform state (i.e.
if λ ≈ 0 or λ ≈ 1).

A very important aspect of the present model is the updating procedure for the internal
hardening variables pi. In the literature the condensed energy functional is often used for
a single time step only to model the entire course of microstructure evolution, i.e. one as-
sumes no microstructure at the beginning of the time step. As for the hardening variables,
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Figure 3.12: Relaxed and unrelaxed energy of a plane-strain tension-compression test with
different hardening parameters; results correspond to curves and data shown in
Figure 3.11.

these models presume that pi = |γi| at each time step. In reality, however, changes of the vo-
lume fractions result in a mixture of phases and hence a mixture of previous pi-values. The
present approach accounts for this mixture by the energetic averaging, see Eqs. (3.52) and
(3.53). The effect becomes apparent when considering e.g. tension-compression examples
as parametrized by (3.84). Figures 3.13 and 3.14 illustrate examples of the very same ma-
croscopic deformation gradient (3.84) but with a slip system orientation which is not in the
same plane to obtain a fully three-dimensional problem.

The example in Figure 3.13 shows a typical evolution of all parameters involved. Note that
due to the slip system orientation the second energy well is no longer zero (even for zero
hardening) but bears some finite value. Results in Figure 3.14 are the analogous solution at
non-zero hardening (κ = 0.004). One interesting aspect to be observed is the deviation of the
relaxed energy path from the unrelaxed energy curve even beyond the recovery of convexity
of the unrelaxed solution. An analogous but smaller deviation also holds true for the Cauchy
stress components plotted here. An even stronger such effect is visible in Figure 3.12. This
deviation stems from the updating procedure of the hardening variables. Therefore, let us
investigate the influence of the hardening parameters more in detail.

The influence of the hardening variable updates can best be inspected by a comparison
of the curves of energy. Figure 3.15 illustrates results from the simplest example of a plane-
strain simple shear test with in-plane slip system orientation. The unrelaxed energy of a
homogeneous deformation state is clearly non-convex (the right image shows a magnifica-
tion of the non-convex region of the left graphic). The dashed line represents the solution
obtained from the condensed energy functional when assuming one purely elastic phase and
one elasto-plastic phase, i.e. using (3.74). The dot-dash line results from employing the fully
relaxed condensed energy (3.73). The two remaining curves are obtained from the present
incremental approach: the higher one, labeled Ψnum,1, results from the present approach wi-
thout updating the hardening variables due to volume changes, the lower one, labeled Ψnum,2,
from the proposed updating procedure. It becomes obvious that the energy path without up-
dates lies slightly above the relaxed energy curve from condensation – due to a different
form of the dissipation functional: the condensed energy functional cannot correctly cap-
ture the actual amount of dissipation required to change the volume fractions. The solution
from the present approach with updates considerably reduces the energy during straining
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Figure 3.15: Comparison of the energy paths obtained from condensation and from the pre-
sent approach for a plane-strain simple shear test (the right image shows a
magnification of the left).
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Figure 3.16: Difference between the present approach and results from energy condensation
for a single time step: Evolution of plastic slips and hardening variables, the
volume fraction of phase 2, the energy path and the Cauchy stress σ11.

(essentially below the energy obtained from the condensed approach). This indicates that
the material can indeed lower its energy by changing the volume fractions of an evolving
microstructure, but also that any approach dealing with the condensed energy functional and
employing a single time step only cannot capture this release of energy.

This effect becomes elucidating from the tension-compression tests in Figures 3.13, 3.15,
3.16. Let us investigate Figure 3.16. The two bottom images clearly show a similar behavior,
i.e. here, the energy from the present approach Ψrel does not only lie considerably below the
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condensed solution Ψrel*,1 but even shows an essentially lower energy at the recovery of con-
vexity of the unrelaxed energy Ψunrel,1. The two top images explain the causal mechanism:
The left image shows the evolution of (the absolute value of) the plastic slips γi as well as
the hardening parameters pi. It is clear that we still have p1

∼= |γ1|, but p2 rapidly decrea-
ses from the initial value |γ2| (in the forming laminate) to lower values to finally approach
approximately the value of p1. As the final homogeneous material after lamination contains
only phase 2 (see the course of λ to the right), the homogeneous body exhibits values γ2 and
p2 where p2 is |γ2| − ξ (here, ξ is approximately 0.5122). Assuming p2 = |γ2| − ξ in the
unrelaxed (condensed) energy functional results in the curve Ψunrel,2, which very well fits
into the picture. Here, it becomes more apparent that the present approach can reduce the
crystal energy during laminate evolution considerably below the energy predicted by using
the condensed energy functional in a single time step. The corresponding effect can also
be observed for the Cauchy stress (see the bottom right image). The very same effect of a
rapidly decreasing p2-value after the onset of lamination can also be noted for Figures 3.13
and 3.14.
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Figure 3.17: Orientation vector b of the forming laminate for different orientations of the
active slip system (s,m) for κ = 0.1 and plane-strain simple shear.

The orientation of the laminate (characterized by vector b which is normal to the laminate
interfaces) highly depends on the choice of the material parameters and the orientation of the
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Figure 3.18: Volume fraction λ of phase 2 for different orientations of the active slip system
(characterized by ϕ) for κ = 0.1 and plane-strain simple shear.
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Figure 3.19: Cyclic simple shear test at zero hardening: evolution of (a) the relaxed energy,
(b) the volume fraction of phase 2, (c) the plastic slips, (d) the Cauchy shear
stress.

active slip system. The latter dependence can best be illustrated for a plane problem where
b is in-plane, too. Figure 3.17 shows the changing laminate orientation b for different active
slip systems (s,m) in a plane-strain simple shear test with non-zero hardening. It becomes
apparent that (for this particular example) the laminate normal vector b commonly arranges
close to the direction of plastic slip. Note the change of the orientation as the active slip
system passes 135◦: below, the laminate orientation deviates from the slip system orientation
clockwise; above, the deviation appears counter-clockwise. Not only the orientation of the
laminate changes but so do the evolving laminate characteristics. Figure 3.18 illustrates the
volume fraction of phase 2 during the same simple shear test and with varying slip system
orientations. Of course, the presented results are valid only for this particular example which,
however, stresses the influence of the choice of the active slip system.

Finally, let us investigate the behavior of the present model during cyclic loading. Fi-
gure 3.19 illustrates the numerical results of a cyclic test in plane-strain simple shear, see
Eq. (3.83). Computations were carried out with µ = 2, κ = 0 (no hardening), r = 0.001,
and with constant increments ∆γ = 4 · 10−4 up to the maximal load of γ = ±0.05. The slip
system was oriented under an angle of ϕ = 150◦. Due to the lack of hardening all curves
follow unaltered paths during subsequent loading cycles. The stress-strain curve exhibits a
typical hysteresis loop.

Figure 3.20 illustrates the results from the same simple shear experiment but with non-
zero hardening (κ = 0.01). It becomes apparent that the stress-strain hysteresis considerably
alters its path with increasing number of load cycles. This can be understood by aid of
a comparison of the evolving laminate volume fractions at zero and non-zero hardening.
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of phase 2 and the Cauchy shear stress.

If material hardening is absent, the volume fractions evolve along the same paths during
subsequent cycles. At non-zero hardening, however, the volume fractions tend to approach
a constant limit as can be seen from Figure 3.20: the volume fraction of phase 2 eventually
exhibits a value between 25% and 30%. This (more or less permament) established laminate
results in the stiff stress-strain hysteresis shown. Of course, this behavior highly depends on
the choice of the material parameters and of the slip system orientation chosen.

3.5.3 Double-Slip Plasticity for a First-Order Laminate

Based on Algorithm 2 we can also analyze the microstructure evolution with two active slip
systems (assuming no cross-slip). Again we perform a plane-strain simple shear experiment,
now on a sample with two active slip systems. The orientations of the two active slip systems
are depicted in Figure 3.21, with ϕ = 150◦, α1 = 5.71◦, α2 = 16.70◦, where m1 = m2 =
m = (− sinϕ, cosϕ, 0)T . Results for the relaxed energy, the volume fractions, plastic slips
and the Cauchy shear stress are summarized in Figure 3.21.

We see that the non-convex energy density gives rise to the formation of a laminate mi-
crostructure of the same type as before. The material first deforms elastically, now along
both slip directions on the common slip plane. Then, a second laminate phase arises with
already finite plastic slips γ21 and γ22 along the two slip directions, respectively. Due to the
non-symmetric alignment of both slip directions, the plastic slips in the two directions are
not the same. The originating laminate exhibits an orientation as sketched in Figure 3.21. Of
course, relaxation of the energy via lamination also affects the stress-strain behavior, as can
clearly be seen from the plotted Cauchy shear stress. This approach can equally be applied
to arbitrary three-dimensional loading cases and slip system orientations, but we limit our
overview here two this illustrative example.

3.6 Discussion and Conclusions

In this Chapter we have summarized a novel incremental approach to model the origin and
subsequent evolution of laminate microstructures in elasto-plasticity at finite strains. The
non-convexity of the free energy for an imcompressible Neo-Hookean material gives rise
to the formation of fine-scale microstructures as energy minimizers. A Lagrange functional
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Figure 3.21: Plane-strain simple shear test with two active slip systems: (a) comparison of
condensed and relaxed energy, (b) volume fraction of phase 2, (c) Cauchy shear
stress, (d) plastic slips γij .

(i.e., the sum of the rate of the free energy and a dissipation potential) is introduced to be
employed in the principle of minimum dissipation potential. Integration of this principle for
rate-independent processes yields the so-called condensed energy which has been used to
compute the evolution of microstructures. However, the condensed energy does not account
for a microstructured state of the material at the beginning of the time increment. Instead,
authors have employed the condensed energy to model the microstructure by always presu-
ming a homogeneous state at the beginning of each time step. Also, the condensed energy
does not account for the actual amount of dissipation required to change the volume fracti-
ons of an existing laminate. Therefore, it is reasonable to employ an incremental formulation
that does account for the state of the internal variables at the beginning of each time step, as
does the present method.

We have analytically relaxed the energy of an incompressible Neo-Hookean material with
respect to the elastic variables. The relaxed energy is employed in the Lagrange functional
to incrementally solve the stationarity conditions at each time step. Thereby, we model the
evolution of all internal variables for a given path of deformation. Results indicate that the
incremental approach and the related updating of the hardening variables essentially impact
the path of energy during straining. Updating the hardening variables upon each change of
the volume fractions results in a path of energy that lies considerably below the solution
obtained from employing the condensed energy functional for a single time step only. As
a consequence, the present method is more appropriate to capture the physical effects of a
material lamination. In this context, we have also introduced a new form of the dissipation
functional which does not only account for the dissipation required to change the volume
fractions but also characterizes the amount of dissipation required for a laminate rotation.
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In conclusion, the present approach is more appropriate to model the evolution of laminate
microstructures in finite plasticity, but it is also numerically more involved. The minimizati-
on of a condensed energy functional is certainly of less numerical effort than is the solution
of the stationarity equations for each time step (especially as the time step size must be kept
small). Note that the present model bears its limitations in terms of the model assumption:
We only model an incompressible Neo-Hookean material. Also, we only accounted for a
first-order laminate with one and two active slip systems. A generalization to second-order
laminates and to multiple slip systems is a rather technical issue and can be performed by
modifications of the above solution procedure. Research in all of these directions is under
way at present.
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4 Modeling Microstructures via Continuum Dislocation
Theory

4.1 Introduction to Continuum Dislocation Theory

4.1.1 Motivation

The plastic deformation of polycrystalline materials depends to a high degree on the me-
chanisms related to the dislocation network. In order to accommodate plastic distortion and
to reduce the crystal’s energy, new dislocations are nucleated and pile up near the grain or
phase boundaries, thereby giving rise to material strengthening. The nucleation and motion
of dislocations is hence an essential mechanism for explaining plastic yielding and work
hardening as well as size effects and hysteresis effects in crystal plasticity, and it needs
embedding into the constitutive framework of modeling materials with microstructure. An
important aspect of modeling dislocation microstructures by a continuum approach lies in
a sensible representation of those effects stemming from the characteristics of the discrete
crystal lattice which, in particular, prohibits too high a local dislocation concentration. Such
a saturation behavior gives rise to numerous experimentally observed effects, some of which
are analyzed in this Section.

Dislocations are not only a key microstructural defect for the plastic deformation of ma-
terials but are also the core ingredient for forming microstructural patterns and substructu-
res that may give rise to outstanding material performance. One of these dislocation-based
mechanisms, which may give rise to excellent material performance, is the formation of
deformation twins (Hirth and Lothe, 1982; Christian and Mahajan, 1995). The increase of
strength and work hardening during microstructure refinement by twinning in manganese
steels or other TWIP-alloys (twinning induced plasticity; see e.g. (Allain et al., 2004), and
the references therein) is one example which has remained until now not quite well un-
derstood. Perhaps the dislocation pile-up near the phase boundaries (raising the boundary
energy) and the related size-effect play an important role here. It is believed that the fini-
te phase boundary energies accompanying the pile-up of dislocations limit the refinement
of microstructure and hence are responsible for the formation of twin patterns. In order to
propose a model capable of describing this complex phenomenon we must in the first step
be able to analyze the most simple situation, namely the dislocation pile-ups at the phase
boundaries of a bicrystal. This simplified model of a bicrystal of the shape of a thin strip
has already been employed in the literature to investigate the dislocation nucleation from
interfaces and grain boundaries (Spearot et al., 2007a; Capolungo et al., 2007) as well as the
structure and strength of grain boundaries (Tschopp et al., 2007; Spearot et al., 2007b) and
to model the constitutive behavior of polycrystals (Evers et al., 2002).

The thin strip bicrystal is only one example of an important aspect of plasticity theory:
Experiments indicate that many effects of plasticity exhibit an underlying size effect – i.e.
the size of the body under consideration influences its plastic behavior. Hall (1951) and
Petch (1953) were among the first to report an inversely proportional effect of the grain si-
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ze in a polycrystal on its yield strength. The well-known Hall-Petch relation σy ∝ d−1/2

holds for a large variety of metals and for a large range of grain diameters d. This effect
can be understood by the restrictions imposed on the mean travel distance of dislocations in
a polycrystal, see also (Taylor, 1934). It has been observed, however, that this relationship
breaks down for small grain sizes well in the lower micro- and nano-meter range (Lou-
chet et al., 2006). Here, the strength of a crystal increases faster with decreasing grain size,
an effect experimentally observed e.g. during equal channel extrusion (Le and Kochmann,
2009). Besides this influence of the grain size in polycrystals, a similar size effect can be
observed for single crystals with decreasing size. In particular, the mechanical behavior of
thin metallic films with respect to their strength and hardness considerably depends on the
film thickness, see (Nicola et al., 2003) and the references therein. Freund (1987) and Nix
(1998) have proposed a model based on the confined motion of a threading dislocation in
a single crystal film, which suggests that the yield strength scales with the film thickness.
Hartmaier et al. (1998) have discussed the role of thickness on the possibility of the gene-
ration of new dislocations. Again, the nucleation and subsequent pile-up of dislocations on
the crystal boundaries are in some sense responsible for causing the size effects.

These size effects are not captured by the classical continuum plasticity theories as they
lack an internal length scale. This difficulty can be overcome by employing continuum dis-
location theory along with an energetic formulation that includes the effect of dislocation
saturation. The present approach adopts the energy formulation proposed by Berdichevs-
ky (2006b) to account for dislocation saturation and describe related size effects on small
scales.

This Chapter is structured as follows: After this short introduction, we first discuss the
development of continuum dislocation theory and then derive its equilibrium and constitu-
tive equations for our purposes in this Section. Sections 4.2-4.6 analyze thin strip bicrystals
under plane-constrained shear, uniaxial extension and a combination of shear and extension,
both at zero and non-zero dissipation. Then, Section 4.8 introduces a variational formulation
to numerically investigate two-dimensional plane-strain examples of dislocation microstruc-
ture evolution at zero and non-zero dissipation by employing finite element methods. The
finite element procedure at non-zero dissipation thereby requires the extension of the varia-
tional formulation for general standard media and incremental time steps, as proposed by
Ortiz and Repetto (1999) and Carstensen et al. (2002), to include gradients of the internal
variables. Section 4.9 illustrates various numerical examples. Finally, Section 4.10 discusses
the obtained results and possible generalizations, and it concludes this Chapter.

4.1.2 Continuum Dislocation Theory

Continuum dislocation theory deals with the ensembles of a large number of dislocations by
the methods of continuum mechanics. The complexity of the system makes the phenome-
nological approach unavoidable. Guiding principles for finding an appropriate phenomeno-
logical formulation are the laws of thermodynamics (see also Section 2.5.1).

For simplicity we restrict in this Chapter to the geometrically linear theory. For a crystal
deforming in single slip the plastic distortion produced by this slip system is given by β =
β(x) s⊗m, with s being the slip direction and m the unit normal vector to the slip plane.
If the crystal has n active slip systems, the plastic distortion is the sum of those produced by
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these slip systems

β(x) =
n∑
i=1

βi(x) si ⊗mi. (4.1)

One can easily verify that consequently continuous plastic distortions do not cause any vo-
lumetric change.

The plastic strain tensor εp and the plastic rotations ω are the symmetric and skew-
symmetric parts of the plastic distortion

εp =
1

2
(β + βT ), ω =

1

2
(β − βT ). (4.2)

The elastic strain tensor is defined as the difference between the total compatible strains and
the incompatible plastic strains, cf. Eq. (2.130),

εe = ε− εp =
1

2
(∇u+ u∇)− εp, (4.3)

with u being the displacement vector.

In the sequel we employ the dislocation density tensor introduced by Nye (1953),

α = curl β. (4.4)

For an arbitrary infinitesimal surface da with the unit normal n,α ·n da gives the resultant
Burgers’ vector of all dislocations whose dislocation lines cut the surface da. For a crystal
deforming in single slip, we write in components

αijnj = siεjklβ,kmlnj, (4.5)

so the resultant Burgers’ vector turns out to be parallel to the slip direction. The number of
dislocations per unit area can then be computed as

ρ =
1

b
|εjklβ,kmlnj|, (4.6)

with b the magnitude of Burgers’ vector. Within this kinematic setting the methods of non-
equilibrium thermodynamics can be applied to obtain the governing equations. The equa-
tions of the continuum dislocation theory were derived by Berdichevsky and Sedov (1967)
by using the variational approach of Sedov (1965), see also (Le and Stumpf, 1996a,b). With
this set of equations the firm framework of dislocation theory was laid down.

4.1.3 Energy of Dislocations and Constitutive Framework

Within the framework of continuum dislocation theory, each model describing dislocations
is based on a specific choice of the type of the energy and dissipation. For a single crystal
deforming in single slip we adopt in the present approach the formulation proposed by
Berdichevsky (2006a,b)

Ψρ(ρ) = kµ ln
1

1− ρ/ρs
, (4.7)
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where k is a material constant and ρs is the saturated dislocation density. The logarithmic
term ensures a linear increase of the energy for a small dislocation density (where the self-
energies of non-interacting dislocations dominate), and it tends to infinity as ρ approaches
the saturated dislocation density ρs (the interaction energies of closely-packed dislocations
dominate). Due to the minimum principle of potential energy, the energy hence asymptoti-
cally penalizes any dislocation density approaching ρs.

Deriving the constitutive framework, we follow principles and definitions from Section
2.5.1. However, in contrast to the standard problem presented there, we need to account for
the chosen type of the dislocation energy, i.e. we must deal with an energy that additionally
depends on the gradient of internal variables: Ψ = Ψ(εe,K,∇K). Here, K summarizes
the plastic distortion β, the dislocation density tensor α and (for a most general derivation)
the entropy S.

Let Ω be any regular, bounded sub-region of the crystal in its initial ground state. Follo-
wing (2.217), the energy of the crystal confined in the region Ω reads

I =

∫
Ω

Ψ(εij, βij, αij, S) dv. (4.8)

Here and in the sequel, we employ index notation for all quantities for conciseness. Ac-
cording to the first law of thermodynamics (2.224), the energy rate equals the power of
the external forces (for simplicity we here neglect the heat supply by considering adiabatic
processes)

İ =
d

dt

∫
Ω

Ψ(εij, βij, αij, S) dv = P. (4.9)

The structure of the power of external forces, P , must be controlled by the form of the
energy (Sedov, 1965). In our case the power is given by

P =

∫
∂Ω

(σijnju̇i + σijknkβ̇ij) da, (4.10)

where ∂Ω is the boundary of Ω with n being the unit outward vector normal to ∂Ω. We see
that some stresses of higher order enter into the theory as a result of the dependence of the
stored energy density on the gradient of the plastic distortion.

Transforming the surface integral in (4.10) into a volume integral by Gauß’ theorem and
requiring that (4.9) is satisfied for arbitrary Ω, we arrive at

T Ṡ +

(
∂Ψ

∂εij
− σij

)
u̇i,j +

(
∂Ψ

∂βij
− σijk,k

)
β̇ij (4.11)

+

(
∂Ψ

∂αim
εmkj − σijk

)
β̇ij,k − σij,ju̇i = 0,

where T = ∂Ψ/∂S is the absolute temperature.

For rigid translations the energy does not change while u̇i,j , β̇ij and β̇ij,k are zero. There-
fore the stress must obey the equilibrium equation (in the absence of body forces)

σij,j = 0. (4.12)

Similarly, the first law of thermodynamics can be satisfied for arbitrary rigid rotations only
if the stress tensor is symmetric

σij = σji. (4.13)
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Let us introduce the following abbreviations

τij = σij −
∂Ψ

∂εij
, τijk = σijk −

∂Ψ

∂αim
εmkj, (4.14)

κij = − ∂Ψ

∂βij
+ σijk,k. (4.15)

Then the first law of thermodynamics becomes

T Ṡ = τiju̇i,j + κijβ̇ij + τijkβ̇ij,k. (4.16)

Eq. (4.16) shows that τij and τijk are those parts of the stresses and the higher order stresses
which cause heating of the crystal. Tensor τij describes heating in a non-uniform flow, so
it has the meaning of viscous stresses. Tensors κij and τijk describe heating caused by
homogeneous and inhomogeneous plastic deformation, respectively.

The widely used closure of non-equilibrium thermodynamics assumes that the right hand
side of (4.16), i.e. the dissipation D is a given function of u̇i,j , β̇ij , and β̇ij,k, cf. (2.231),

T Ṡ = D(u̇i,j, β̇ij, β̇ij,k), (4.17)

and that the tensors τij , κij , and τijk controlling the irreversible processes are linked to u̇i,j ,
β̇ij , and β̇ij,k by the relations

τij = λ
∂D
∂u̇i,j

, κij = λ
∂D
∂β̇ij

, τijk = λ
∂D
∂β̇ij,k

. (4.18)

Then the parameter λ is determined from (4.16) and (4.18) as

λ =
D

∂D
∂u̇i,j

u̇i,j + ∂D
∂β̇ij

β̇ij + ∂D
∂β̇ij,k

β̇ij,k
. (4.19)

The set of equations (4.12), (4.13), (4.14), (4.15) and (4.18) is closed with respect to the
unknown functions ui and βij . Eq. (4.16) can be used to determine the temperature.

The simplest model assumes that the dissipation is zero. In this case all tensors τij , κij and
τijk vanish, and functions ui and βij should be found from pure energy minimization. The
next model, also quite simple, neglects the viscous effect as well as the dissipation caused
by β̇ij,k. In this model D is assumed to depend only on β̇ij so that τij = 0 and τijk = 0 and

σij =
∂Ψ

∂εij
, σijk =

∂Ψ

∂αim
εmkj. (4.20)

If, furthermore, D is a homogeneous function of first order with respect to β̇ij , then again
λ = 1 and Eq. (4.18)2 becomes

κij =
∂D
∂β̇ij

. (4.21)

We will consider in what follows only these simplified dissipation potentials. For a more
thorough investigation of this relation see Eqns. (2.240)-(2.244) in Section 2.5.1.
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We further require that the stored energy density depends only on the elastic strain εeij and
on the dislocation density αij:

Ψ = Ψ(εeij, αij). (4.22)

In this case the stress is given (as usually) by

σij =
∂Ψ

∂εeij
, (4.23)

while Eq. (4.21) can be written in the variational form (for rate-independence D ≡ ∆)

∂∆

∂β̇ij
= − δεΨ

δβij
= − ∂Ψ

∂βij
+

∂

∂xk

∂Ψ

∂βij,k

∣∣∣∣
εij

. (4.24)

Based on this constitutive framework, Berdichevsky and Le (2007) found the analytical
solution of an anti-plane-constrained shear problem for single crystals. Their results show
how nucleated dislocations pile up at the boundaries. Interesting features of their solution
comprise energetic and dissipative yielding thresholds, Bauschinger translational work har-
dening and a size effect typical for problems of crystal plasticity. The dislocation nucleation
admits a clear characterization by the variational principle for the final plastic states (Ber-
dichevsky, 2006b). Le and Sembiring (2008a) obtained the solution for a plane-constrained
shear problem of a single crystal strip, which exhibits the same features as that of Berdi-
chevsky and Le (2007).

Figure 4.1: Comparison of results obtained from this approach and from discrete dislocation
dynamics, modified after (Le and Sembiring, 2008a): Overall strain profile and
stress-strain behavior of a single crystal under simple shear deformation.

A comparison with the results of discrete dislocation simulations reported by Needle-
man and Van der Giessen (2001) and Shu et al. (2001) shows good agreement between the
discrete and the present continuum approach. Figure 4.1 compares results from the present
approach and discrete dislocation simulations at the example of a simple shear test of a sin-
gle crystal (Le and Sembiring, 2008a). Results indicate that for a single crystal strip with
decreasing slip plane distance d (here h/d must be sufficiently large, where h is the height
of the strip) good agreement of various results is achieved when ρs and k are obtained from
curve-fitting stress-strain curves. Le and Sembiring (2008b) investigated the influence of a
second slip system, using the present approach, and also showed agreement with discrete
dislocation simulations. Here, we go a step beyond and investigate the deformation under
shear, tension and combined loading of a bicrystal, which may lay the basis for a continu-
um description of deformation twinning (see Section 5). Also, we employ a finite elemente
description to model general polycrystals.
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Figure 4.2: Combined deformation of uniaxial extension (ε) and simple shear (γ) of a bicry-
stal with one active slip-system within each of the two perfectly bonded single
crystals.

4.2 Plastic Deformation of Bicrystals: Boundary Value Problem

We now consider a bicrystal consisting of a strip made up of two perfectly bonded single
crystals of equal heights h/2, which undergoes a plane-strain deformation of mixed shear
and extension, as illustrated in Figure 4.2. Let the cross-section of the strip be a rectangle of
width a and height h, 0 ≤ x ≤ a, 0 ≤ y ≤ h. Displacements at the upper and lower sides of
the bicrystal are rigidly enforced in a hard device as

u(0) = 0, v(0) = 0, u(h) = γh, v(h) = εh, (4.25)

where u(y) and v(y) are the longitudinal and transverse displacements, respectively, with ε
denoting the overall tensile strain and γ the overall shear strain. We can as well introduce
the total prescribed displacement δh applied under an angle θ as sketched in Figure 4.2 such
that

ε = δ sin θ, γ = δ cos θ. (4.26)

We assume that the thickness in the z-direction of the strip, L, is large, and the width a
is much greater than the height h (L � a � h) to neglect end effects and to have the
stresses and strains depending only on one variable y in the central part of the strip. For the
plane-strain state the components of the strain tensor are

εxx = 0, εxy = εyx =
1

2
u,y, εyy = v,y. (4.27)

If the overall strain is sufficiently small, the bicrystal deforms elastically and u = γy,
v = εy everywhere in the strip. If the applied load exceeds some critical threshold, edge
dislocations may appear to reduce the crystal’s energy. We assume that each layer admits
only one active slip system, with the slip directions (or the directions of the Burgers’ vectors)
perpendicular to the z-axis and inclined at an angle ϕ(y) with the x-axis and the dislocation
lines parallel to the z-axis. In this problem, the angle ϕ(y) is piecewise constant, i.e.

ϕ(y) =

{
ϕl, for 0 < y < h/2,

ϕu, for h/2 < y < h.
(4.28)

In general, one may wish to incorporate multiple slip systems to better represent the physical
reality. Multiple slip systems can easily be included into the present model; the influence
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of multiple slip systems on the plane-constrained shear in single crystals was investigated
by Le and Sembiring (2008b). Here, we limit our analysis to the case of only one active
slip system within each layer of our model bicrystal to avoid complexity and hence allow
for a closed-form analytical solution. This corresponds to the assumption of infinite latent
hardening (Ortiz and Repetto, 1999).

Since each layer has only one active slip system, we have for the plastic distortion βij =
βsimj , with s = (cosϕ, sinϕ, 0)T being the slip direction and m = (− sinϕ, cosϕ, 0)T

the unit normal vector to that slip plane. Due to the geometry we may assume translational
invariance to have β depending on one variable one, viz. β = β(y). Because of the prescri-
bed displacements (4.25), dislocations cannot penetrate the boundaries y = 0 and y = h,
therefore

β(0) = β(h) = 0. (4.29)

Note that we assume that dislocations cannot leave the bicrystal at the boundaries. This
can be interpreted as a grain constrained by neighboring grains with different slip system
orientation such that dislocation penetration of the boundary is impeded. Furthermore, let us
assume that dislocations cannot penetrate the phase boundary either because the neighboring
crystal does not admit the same slip system, so

β(h/2) = 0. (4.30)

This assumption, of course, is a simplification of the physical reality as effects such as dislo-
cation emission from grain boundaries, grain boundary sliding or grain boundary diffusion
are not accounted for.

The components of the plastic strain tensor εpij = 1
2
(βij + βji) follow as

εpxx = −1

2
β sin 2ϕ, εpxy =

1

2
β cos 2ϕ, εpyy =

1

2
β sin 2ϕ. (4.31)

With (4.27) and (4.31) we obtain the components of the elastic strain tensor εeij = εij − εpij ,

εexx =
1

2
β sin 2ϕ, εexy =

1

2
(u,y − β cos 2ϕ), εeyy = v,y −

1

2
β sin 2ϕ. (4.32)

As β depends only on y, there are two non-zero components of Nye’s dislocation density
tensor αij = εjklβil,k (Nye, 1953), with εjkl being the permutation symbol,

αxz = β,y sinϕ cosϕ, αyz = β,y sin2 ϕ. (4.33)

Thus, the resultant Burgers’ vector of all dislocations whose lines cut the area perpendicular
to the z-axis is parallel to the slip direction s. The scalar dislocation density equals

ρ =
1

b

√
α2
xz + α2

yz =
1

b
|β,y sinϕ|. (4.34)

Assuming that both single crystals are elastically isotropic with equal elastic moduli, we
write for the energy per unit volume (Berdichevsky, 2006a,b)

Ψ(εeij, αij) =
1

2
λ (εeii)

2 + µεeijε
e
ij + µk ln

1

1− |β,y sinϕ|
bρs

, (4.35)
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where µ and λ are the Lamé elastic moduli, ρs is the saturated dislocation density, and k a
material constant. The logarithmic term ensures a linearly increasing energy for small dis-
location density ρ and tends to infinity with ρ approaching the saturated dislocation density
ρs, hence providing an energetic barrier against over-saturation. The first and second term
of (4.35) describe the elastic energy, the third term is the energy of the dislocation network.

With our aim in mind to derive closed-form analytical solutions, let us furthermore reduce
the complexity of the model by assuming first that the active slip systems are symmetric with
respect to the interface, i.e. we analyze twins with −ϕl = ϕu = ϕ. As we assume that both
single crystals are elastically isotropic with equal elastic moduli, the total energy functional
becomes, using (4.35),

I(u, v, β) = aL

∫ h

0

[
1

2
λv2

,y +
1

2
µ(u,y − β cos 2ϕ)2 +

1

4
µβ2 sin2 2ϕ

+ µ(v,y −
1

2
β sin 2ϕ)2 + µk ln

1

1− |β,y sinϕ|
bρs

]
dy. (4.36)

Functional (4.36) can be reduced to a functional depending on β(y) only. Indeed, by first
fixing β(y) and taking the variation of (4.36) with respect to u and v, we derive the equili-
brium equations

µ (u,y − β cos 2ϕ),y = 0,

[(λ+ 2µ) v,y − µ β sin 2ϕ],y = 0.
(4.37)

Integration of these equations and use of the boundary conditions (4.25) as well as the con-
tinuity of displacements and tractions at the phase boundary y = h/2 yield

u,y = γ + β cos 2ϕ− 〈β cos 2ϕ〉,
v,y = ε+ κ(β sin 2ϕ− 〈β sin 2ϕ〉),

(4.38)

where we introduced

ω =
λ

µ
, κ =

µ

λ+ 2µ
, 〈·〉 =

1

h

∫ h

0

· dy. (4.39)

Substitution of (4.38) into (4.36) leads to the sought energy functional in terms of β only:

I(β) = aLµ

∫ h

0

[
1

2
ω [ε+ κ(β sin 2ϕ− 〈β sin 2ϕ〉)]2 +

1

2
(γ − 〈β cos 2ϕ〉)2

+
1

4
β2 sin2 2ϕ+ [ε+ (κ− 1/2)β sin 2ϕ− κ〈β sin 2ϕ〉]2 + k ln

1

1− |β,y sinϕ|

]
dy

(4.40)

For brevity, we make use of the dimensionless definitions

E =
bρs
aLµ
I, ξ = bρsy, H = bρsh. (4.41)

For small up to moderate dislocation densities the logarithmic term in (4.40) may be appro-
ximated by keeping the first two terms of a Taylor expansion only, i.e.

ln
1

1− |β,y sinϕ|
bρs

∼=
|β,y sinϕ|

bρs
+

1

2

β2
,y sin2 ϕ

(bρs)2
, (4.42)
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so that the dimensionless energy functional becomes

E(β) =

∫ H

0

[
1

2
ω [ε+ κ(β sin 2ϕ− 〈β sin 2ϕ〉)]2 +

1

2
(γ−〈β cos 2ϕ〉)2 +

1

4
β2 sin2 2ϕ

+ [ε+ (κ− 1/2)β sin 2ϕ− κ〈β sin 2ϕ〉]2 + k(|β′ sinϕ|+ 1

2
β′2 sin2 ϕ)

]
dξ, (4.43)

where the prime denotes differentiation with respect to ξ. If the dissipation of energy is negli-
gible, then the plastic distortion β minimizes (4.43) under the constraints (4.29) and (4.30).
The overall strain is regarded as a given function of time, so we can study the evolution of
the dislocation network which accompanies changes of ε and γ.

If the resistance to dislocation motion cannot be neglected, the energy minimization with
respect to β must be replaced by a flow rule which, in case of rate-independent plasticity,
for β̇ 6= 0 reads

∂∆

∂β̇
= −δε,γΨ

δβ
, (4.44)

with the dissipation potential

∆(β̇) = τcrit(ξ)|β̇|, (4.45)

where τcrit(ξ) is the critical resolved shear stress (τcrit = τcr,l for ξ ∈ (0, H/2) and τcrit = τcr,u

for ξ ∈ (H/2, H)) and

κ ≡ −δε,γΨ
δβ

= −∂Ψ

∂β
+

∂

∂ξ

∂Ψ

∂β,ξ

∣∣∣∣
ε,γ

. (4.46)

For β̇ = 0, the evolution equation (4.44) does not have to be satisfied: It is replaced by
β̇ = 0.

4.3 Energetic Threshold for Dislocation Nucleation

The results in (Le and Berdichevsky, 2001; Le and Sembiring, 2008a,b) show that, for the
variational problem of this type, we can find a threshold value δen such that when δ < δen
no dislocations are nucleated and β = 0. The threshold stress has an energetic origin: Below
it the crystal reaches a global energy minimum elastically without geometrically necessary
dislocations. Above the energetic threshold the energy minimum of the deformed crystal
is accommodated by means of newly nucleated dislocations. Near the threshold value the
dislocation density must be small so that the quadratic term containing β′ in (4.43) can be
neglected. Besides, the width of the boundary layers tends to zero as δ → δen. This gives
rise to the idea of finding the threshold value by employing a minimizing sequence (Ball
and James, 1987) of the form

β(ξ) =



βl

ε
ξ, for ξ ∈ (0, ε),

βl, for ξ ∈ (ε,H/2− ε),
βl

ε
(H/2− ξ), for ξ ∈ (H/2− ε,H/2),

βu

ε
(ξ −H/2), for ξ ∈ (H/2, H/2 + ε),

βu, for ξ ∈ (H/2 + ε,H − ε),
βu

ε
(H − ξ), for ξ ∈ (H − ε,H),

(4.47)
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where βl and βu are unknowns, and ε is a small unknown length which tends to zero as
δ → δen. Substituting (4.47) into (4.43) and minimizing the energy with respect to βu and
βl, we determine the threshold value δen for any given combination of slip system orientation
ϕ and load direction θ.

For the particular cases of plane-constrained shear (Kochmann and Le, 2008a) and uni-
axial extension (Kochmann and Le, 2008b) we can derive neat analytical solutions. First, we
investigate the case of plane-constrained shear (θ = 0 and δ = γ). Substituting (4.47) into
the energy functional (4.43) (with the quadratic term in β′ being removed) and neglecting
all small terms of order ε and higher, we obtain after some algebraic manipulations

E(βl, βu) =
H

8

[
2(1− κ)(β2

l + β2
u) sin2 2ϕ+ κ(βu − βl)2 sin2 2ϕ

+ (2γ − (βl + βu) cos 2ϕ)2

]
+ 2k(|βl|+ |βu|)| sinϕ|. (4.48)

A rather simple analysis shows that for ϕ ∈ (0◦, 45◦) the energy minimum requires a sym-
metric solution, i.e.

βl = βu =
2γ cos 2ϕ− 8k| sinϕ|/H

2− κ+ κ cos 4ϕ
> 0, (4.49)

and for ϕ ∈ (45◦, 90◦) we have

βl = βu =
2γ cos 2ϕ+ 8k| sinϕ|/H

2− κ+ κ cos 4ϕ
< 0 (4.50)

if (in both cases)

γ > γen =
4k

hbρs

| sinϕ|
| cos 2ϕ|

. (4.51)

In the case of uniaxial extension (θ = π/2 and δ = ε), we obtain the energy from the
minimizing sequence approach:

E(βl, βu) =
H

8

[
4
ε2

κ
− 4ε(βu − βl) sin 2ϕ+ (βu + βl)

2 cos2 2ϕ+ κ(βu − βl)2 sin2 2ϕ

+2(1− κ)(β2
u + β2

l ) sin2 2ϕ

]
+2k(|βl|+ |βu|)| sinϕ| (4.52)

We conclude that, for ϕ ∈ (0◦, 90◦), the energy minimum is achieved for antisymmetric β
with

βu = −βl = 2
ε sin 2ϕ− 4k sinϕ/H

sin2 2ϕ
> 0, (4.53)

and for ϕ ∈ (90◦, 180◦) the minimum is achieved at

βu = −βl = 2
ε sin 2ϕ+ 4k sinϕ/H

sin2 2ϕ
< 0, (4.54)

if (in both cases)

ε > εen =
4k

hbρs

sinϕ

| sin 2ϕ|
. (4.55)
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After these simple examples let us find the energetic threshold for general loading. De-
composing the plastic distortion β(ξ) into a symmetric function βs(ξ) and an antisymmetric
function βa(ξ), i.e.

β(ξ) =

{
βs(ξ) + βa(ξ) for 0 < ξ < H/2,

βs(ξ)− βa(ξ) for H/2 < ξ < H,
(4.56)

a rather simple analysis shows that we have to consider four cases for the determination of
the threshold value δen (see also Figure 4.4):

Case 1: 0 < ϕ < 45◦ and tan θ < − 1
tan 2ϕ(κ−1/ sin2 2ϕ)

:

We obtain a positive distortion β across the entire height of the bicrystal, i.e.

βl = βs + βa > 0 and βu = βs − βa > 0, (4.57)

with

βs =
γ cos 2ϕ− 4| sinϕ|k/H

1− κ sin2 2ϕ
, βa = − ε

sin 2ϕ
. (4.58)

Applying the definition of γ and ε in terms of the loading parameter δ (see Eq. (4.26)),
we obtain the threshold value

δ > δen =
4 |sinϕ| k/H

cos θ cos 2ϕ+ sin θ sin 2ϕ(κ− 1/ sin2 2ϕ)
. (4.59)

Case 2: 0 < ϕ < 45◦ and tan θ > − 1
tan 2ϕ(κ−1/ sin2 2ϕ)

:

Now, we have unequal signs of β throughout the height of the bicrystal, i.e.

βl = βs + βa < 0 and βu = βs − βa > 0, (4.60)

with

βs =
γ cos 2ϕ

1− κ sin2 2ϕ
, βa =

−ε sin 2ϕ+ 4| sinϕ|k/H
sin2 2ϕ

. (4.61)

In terms of the loading parameter δ, we obtain the threshold value

δ > δen =
4 |sinϕ| k/H(κ− 1/ sin2 2ϕ)

cos θ cos 2ϕ+ sin θ sin 2ϕ(κ− 1/ sin2 2ϕ)
. (4.62)

Case 3: 45◦ < ϕ < 90◦ and tan θ < 1
tan 2ϕ(κ−1/ sin2 2ϕ)

:

In this case we obtain a negative β throughout the height of the bicrystal, i.e.

βl = βs + βa < 0 and βu = βs − βa < 0, (4.63)

with

βs =
γ cos 2ϕ+ 4| sinϕ|k/H

1− κ sin2 2ϕ
, βa =

−ε
sin 2ϕ

(4.64)

The threshold value now reads

δ > δen = − 4 |sinϕ| k/H
cos θ cos 2ϕ− sin θ sin 2ϕ(κ− 1/ sin2 2ϕ)

. (4.65)
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Figure 4.3: Energetic threshold value δen for the nucleation of dislocations in a symmetric
bicrystal with varying angles ϕ and θ.

Case 4: 45◦ < ϕ < 90◦ and tan θ > 1
tan 2ϕ(κ−1/ sin2 2ϕ)

:

Finally, in this case, we conclude that again

βl = βs + βa < 0 and βu = βs − βa > 0, (4.66)

with the same βs and βa as in Case 2 but with the threshold value

δ > δen = − 4 |sinϕ| k/H(κ− 1/ sin2 2ϕ)

cos θ cos 2ϕ− sin θ sin 2ϕ(κ− 1/ sin2 2ϕ)
. (4.67)

The general solution for varying angles ϕ and θ is illustrated in Figure 4.3 with material
properties from Table 4.1 and h = 1µm (H = 0.349).

It is remarkable that all of these threshold values are twice that of a single crystal, showing
clearly the size effect that was already observed for single crystals. Also, the model predicts
increasing nucleation strength with decreasing height h of the bicrystal.

Figure 4.4: Plot of theϕ-θ-plane identifying four different regions for the energetic threshold
value δen and for the evolution of the plastic distortion. Labeling refers to cases
1. through 4. as explained above.
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material µ (GPa) ν b (Å) ρs (m−2) k

aluminum 26.3 0.33 2.5 1.396 · 1015 1.15 · 10−3

Table 4.1: Material characteristics

4.4 Plane-Constrained Shear of Single-Slip Bicrystals

Before we analyze the general loading situation with arbitrary angle θ, we limit our ana-
lysis to particular cases first. In the following, we investigate the evolution of plastic slip
and the dislocation density at zero and non-zero dissipation for the special case of a plane-
constrained shear deformation of our model bicrystal with symmetric slip systems, follo-
wing (Kochmann and Le, 2008a). We present the derivation of this problem in some more
detail to demonstrate the general solution method and to abbreviate the remaining problems
later.

4.4.1 Plane-Constrained Shear at Zero Dissipation

Based on the previous analysis (see solutions (4.49) and (4.50)), we now assume that for
plane-constrained shear we have symmetry of β in the bicrystal, i.e. β(H/2 + ξ) = β(ξ) for
ξ ∈ (0, H/2). Thus, 〈β sin 2ϕ〉 = 0 and the dimensionless energy functional reduces to

E(β) =

∫ H

0

[
1

2
(1− κ)β2 sin2 2ϕ+

1

2
(γ − 〈β〉 cos 2ϕ)2

+ k|β′|| sinϕ|+ 1

2
kβ′2 sin2 ϕ

]
dξ, (4.68)

Due to the boundary conditions, β′ should change its sign on the interval (0, H/2). Our
previous results suggest to seek the minimizer in the form

β(ξ) =


β1(ξ), for ξ ∈ (0, l),

βm, for ξ ∈ (l, H/2− l),
β1(H/2− ξ), for ξ ∈ (H/2− l, H/2),

(4.69)

where βm is a constant, l an unknown length, 0 ≤ l ≤ H
4

, and β1(l) = βm at ξ = l. We need
to find β1(ξ) and the constants βm and l. With β from (4.69) the energy functional (4.68)
becomes

E = 4

∫ l

0

[
1

2
(1− κ)β2

1 sin2 2ϕ+
1

2
(γ − 〈β〉 cos 2ϕ)2 + k|β′1 sinϕ|

+
1

2
kβ′21 sin2 ϕ

]
dξ + 2

[
1

2
(1− κ)β2

m sin2 2ϕ+
1

2
(γ − 〈β〉 cos 2ϕ)2

]
(H/2− 2l),

(4.70)

where

〈β〉 =
1

H

(
4

∫ l

0

β1 dξ + 2(H/2− 2l)βm

)
. (4.71)
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Varying functional (4.70) with respect to β1(ξ), we obtain the differential equation

(1− κ)β1 sin2 2ϕ+ (ε− κ〈β sin 2ϕ〉) sin 2ϕ− kβ′′1 sin2 ϕ = 0 (4.72)

on (0, l) where β1(ξ) is subject to the boundary conditions

β1(0) = 0, β1(l) = βm. (4.73)

The variation of (4.70) with respect to l gives the additional boundary condition

β′1(l) = 0, (4.74)

which means that the dislocation density must be continuous at ξ = l. Varying the energy
functional with respect to βm, we obtain a condition for βm at y = l, which reads

4k| sinϕ|signβ′1 + [(1− κ)βm sin2 2ϕ+ (ε− κ〈β sin 2ϕ〉) sin 2ϕ](H − 4l) = 0.
(4.75)

Eqs. (4.72), (4.73)1 and (4.74) yield the solution

β1(ξ) = β1p (1− cosh ηξ + tanh ηl sinh ηξ) , 0 ≤ ξ ≤ l (4.76)

with

β1p =
γ cos 2ϕ− 〈β〉 cos2 2ϕ

(1− κ) sin2 2ϕ
, βm = β1p

(
1− 1

cosh ηl

)
, (4.77)

and

η = 2

√
1− κ
k
| cosϕ|. (4.78)

The average of β can be obtained as

〈β〉 =
γ cos 2ϕ

(
4
(
l − tanh ηl

η

)
+
(

1− 1
cosh ηl

)
(H − 4l)

)
g(l)

, (4.79)

with

g(l) = H(1−κ) sin2 2ϕ+cos2 2ϕ

[
4

(
l − tanh ηl

η

)
+

(
(1− 1

cosh ηl

)
(h− 4l)

]
. (4.80)

The unknown boundary thickness l must be determined numerically from the equation

4k| sinϕ|signβ′1 −
γ cos 2ϕ− 〈β〉 cos2 2ϕ

cosh ηl
(H − 4l) = 0. (4.81)

Figure 4.5 shows the evolution of β(ξ) with increasing γ, for ϕ = 30◦ (continuous lines)
and ϕ = 60◦ (dashed lines), where ξ = ybρs. For the numerical simulation we take the
material parameters from Table 4.1 as well as h = 1µm so that H = hbρs = 0.349. Clearly,
β is symmetric in the bicrystal.

It is interesting to plot the shear stress

τ = µ(γ − 〈β〉 cos 2ϕ) (4.82)
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Figure 4.5: Evolution of β for constrained shear of a bicrystal at zero dissipation: a,d) γ =
0.005, b,e) γ = 0.02, c,f) γ = 0.05

as a function of the shear strain. As we know, for γ < γen no dislocations are nucleated and
β = 0, so the shear stress τ = µγ. For γ > γen we take 〈β〉 from (4.79) to compute the
shear stress.

Figure 4.6 illustrates the normalized shear stress versus shear strain curve OAB for
ϕ = 30◦ (continuous lines) and OA′B′ for ϕ = 60◦ (dashed lines), with material pro-
perties from Table 4.1 and H = hbρs = 0.349. Note the work hardening section AB for
γ > γen caused by the dislocation pile-up. Due to the absence of dissipation, however, there
is no residual strain as we unload the twin by decreasing γ. The stress-strain curve follows
the same path BAO. So, the plastic deformation is completely reversible, and no energy dis-
sipation occurs. During unloading the nucleated dislocations annihilate, and as we approach
point A, all dislocations disappear.

4.4.2 Plane-Constrained Shear at Non-Zero Dissipation

If the resistance to dislocation motion (and hence the dissipation) cannot be neglected, the
plastic distortion may evolve only if the yield condition |κ| = τcrit(ξ) is fulfilled, see (4.46).
If |κ| < τcrit(ξ), then β is frozen, the dislocation density remains unaltered and the bicrystal
deforms elastically. Again we conclude symmetry of β from our threshold analysis, i.e. we

j=30°
j=60°

t/m

g
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B

B’0.008

0.006

0.004

0.002

0.002 0.004 0.006 0.008 0.01

Figure 4.6: Normalized shear stress versus shear strain curve for a constrained shear test of
a bicrystal at zero dissipation.



4.4 Plane-Constrained Shear of Single-Slip Bicrystals 123

assume β(H/2 + ξ) = β(ξ) for ξ ∈ (0, H/2), and due to the symmetry of slip systems
τcr,l = τcr,u = τcrit. Thus, the energy functional is the same as in (4.68). Computing the
variational derivative of (4.68), we derive from (4.44) the yield condition∣∣−(1− κ)β sin2 2ϕ+ cos 2ϕ(γ − 〈β〉 cos 2ϕ) + kβ′′ sin2 ϕ

∣∣ = τcrit/µ = γcr cos 2ϕ, (4.83)

where we introduced γcr = τcrit/µ cos 2ϕ.

Consider the case ϕ < 45◦ first. We regard γ as a given function of time and try to
determine β(t, y). We consider the loading path shown in Figure 4.7. The rate of change of
γ(t) does not affect the results due to the rate independence of dissipation. The problem is
to determine the evolution of β as a function of t and ξ, provided β(0, ξ) = 0.

Since the plastic distortion β is initially zero, we see from (4.83) that β = 0 as long as
γ < γcr. Thus, the dissipative threshold stress (the yield stress) is σy = τcrit. For small β(t, ξ)
and γ > γcr, the yield condition becomes

−(1− κ)β sin2 2ϕ+ cos 2ϕ(γ − 〈β〉 cos 2ϕ) + kβ′′ sin2 ϕ = γcr cos 2ϕ. (4.84)

Let us introduce the deviation of γ(t) from the critical shear γcr,

γr = γ − γcr (4.85)

and rearrange (4.84) to obtain

(1− κ)β sin2 2ϕ− cos 2ϕ(γr − 〈β〉 cos 2ϕ)− kβ′′ sin2 ϕ = 0. (4.86)

As this equation is linear, β is proportional to γr such that β = γrβ1, where β1 is the solution
of (4.86) with γr = 1. As in the zero-dissipation case, we conclude that the solution for the
plastic distortion is symmetric within each crystal, i.e.

β1(ξ) = β1(H/2− ξ) for ξ ∈ (H/4, H/2). (4.87)

Function β1(ξ) is determined from Eq. (4.86) (with γ = 1) and the boundary conditions

β1(0) = 0, β′1(H/4) = 0. (4.88)

As before, the first condition means that dislocations cannot reach the boundary of the re-
gion. The second condition follows from the continuity of plastic distortion and the symme-
try property (4.87).

t

g

-gcr

*g

Figure 4.7: A closed loading path.
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Figure 4.8: Graphs of β1(ξ) for constrained shear of a bicrystal at non-zero dissipation

Eqs. (4.86) and (4.88) admit the solution

β1 = β1p

(
1− cosh ηξ + tanh η

H

4
sinh ηξ

)
, 0 ≤ ξ ≤ H

4
, (4.89)

with

β1p =
cos 2ϕ− cos2 2ϕ〈β1〉

(1− κ) sin2 2ϕ
, (4.90)

and η from (4.78). The average of β1 is given by

〈β1〉 =

cos 2ϕ

(
1− 4 tanh ηH

4

ηH

)
(1− κ) sin2 2ϕ+ cos2 2ϕ

(
1− 4 tanh ηH

4

ηH

) . (4.91)

Figure 4.8 shows the graphs of β1(ξ) for ϕ = 30◦ (continuous lines) and ϕ = 60◦ (dashed
lines). For the numerical simulation we took the same material data as before and H =
0.349.

After reaching γ∗ > γcr, we unload the crystal by decreasing γ. Since κ becomes smaller
than τcrit, β does not change (β = β∗(ξ)) until

−(1− κ)β∗ sin2 2ϕ+ cos 2ϕ(γ − 〈β∗〉 cos 2ϕ) + kβ∗′′ sin2 ϕ = −γcr cos 2ϕ, (4.92)

where β∗(ξ) is the solution of (4.86) for γ(t) = γ∗. From (4.92) we can identify the onset
of plastic flow at γ − (γ∗ − γcr) = −γcr, i.e. when γ = γ∗ = γ∗ − 2γcr. From that value
of γ, the yield condition reads κ = −τcrit leading to a decrease of β which now must be
determined from

−(1− κ)β sin2 2ϕ+ cos 2ϕ(γ − 〈β〉 cos 2ϕ) + kβ′′ sin2 ϕ = −γcr cos 2ϕ. (4.93)

Since for γ ∈ (−γcr, γ∗) the deviation γl = γ + γcr is positive, Eq. (4.93) can again be
transformed to equation (4.86) and solved in exactly the same way by replacing γr = γ−γcr
in all formulae (4.89)-(4.91) by

γl = γ + γcr. (4.94)
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Figure 4.9: Graphs of the normalized dislocation density α1(ξ) for constrained shear of a
bicrystal at non-zero dissipation

As γ approaches −γcr, β tends to zero as γl → 0. Further increase of γ from −γcr to zero
does not cause change of β which remains zero. The complete solution for ϕ > 45◦ can be
found in an analogous way and is omitted here for conciseness.

The normalized dislocation density

α(ξ) = β,ξ sinϕ(ξ) (4.95)

can be calculated from (4.89). Since β(ξ) is proportional to γr, so is α(ξ) such that α(ξ) =
γrα1(ξ). For ξ ∈ (0, H/4) we have

α1(ξ) = −β1p

(
−η sinh ηξ + η cosh ηξ tanh

ηH

4

)
sinϕ(ξ) (4.96)

with β1p from (4.90) and η from (4.78). For ξ ∈ (H/4, H/2), we have α1(ξ) = −α1(H/2−
ξ) due to symmetry. Figure 4.9 illustrates the graphs of α1(ξ) for ϕ = 30◦ (continuous lines)
and ϕ = 60◦ (dashed lines), computed with material properties from Table 4.1 and H =
hbρs = 0.349. It becomes apparent that dislocations pile up at the crystal boundaries, leaving
the central parts of both single crystals dislocation-free. The changing signs in Figure 4.9
simply represent dislocations of different orientations.

Finally, let us calculate the shear stress τ , an experimentally measurable quantity. During
loading we have for the normalized shear stress

τ

µ
= γcr + γr

[
1−

(
1−

4 tanh ηH
4

ηH

)
β1p cos 2ϕ

]
, (4.97)

with β1p from (4.90). The second term of (4.97) causes hardening due to the dislocation pile-
up and depends on the height H . Eq. (4.97) hence describes the size effect in this model:
With decreasing height of the bicrystal the hardening rate increases. During inverse loading,
when the yield condition κ = −τcrit holds true, Eq. (4.97) changes into

τ

µ
= −γcr + γl

[
1−

(
1−

4 tanh ηH
4

ηH

)
β1p cos 2ϕ

]
. (4.98)

Figure 4.10 shows the normalized shear stress versus shear strain curve for the loading
path of Figure 4.7, with τcrit = 23.67 MPa, γ∗ = 0.01, ϕ = 30◦, while all other parameters
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Figure 4.10: Normalized shear stress versus shear strain curve for a constrained shear test of
a bicrystal at non-zero dissipation, for ϕ = 30◦

remain the same as before. The straight line OA corresponds to purely elastic loading with
γ increasing from zero to γcr. Line AB corresponds to plastic yielding with κ = τcrit.
Plastic flow begins at point A with the yield stress τy = τcrit/ cos 2ϕ, and we observe a work
hardening effect (due to the dislocation pile-up), described by the second term of (4.97) and
(4.98).

During unloading, as γ decreases from γ∗ to γ∗ = γ∗− 2γcr (line BC), the plastic distor-
tion β = β∗ is frozen. As γ decreases further from γ∗ to −γcr, plastic yielding occurs with
κ = −τcrit (line CD). It is seen from Figure 4.10 that the yield stress τy = τ ∗−2τcrit/ cos 2ϕ
at point C, where the inverse plastic flow begins, is larger than −τcrit/ cos 2ϕ (because
τ ∗/µ > γcr = τcrit/(µ cos 2ϕ)). Along line CD, as γ decreases, the nucleated dislocati-
ons annihilate, and at point D all dislocations have disappeared. Finally, as γ increases from
−γcr to zero, the crystal behaves elastically with β = 0. In this closed cycle OABCDO,
dissipation only occurs along lines AB and CD. Note that lines DA and BC are parallel
and have the same length. In phenomenological plasticity theory this property is known as
the so-called Bauschinger effect (a translational shift of the yield surface in the stress space).

4.4.3 Numerical Solution for Plane-Constrained Shear with Non-Symmetric Active
Slip Systems

Analyzing the plane-constrained shear problem of a bicrystal with arbitrary non-symmetric
active slip systems, we notice that a neat closed-form analytical solution is no longer feasi-
ble. However, we can easily obtain a numerical solution for the evolution of β for given slip
orientations ϕl and ϕu by means of a finite element procedure. In the special case of sym-
metric slip planes, the analytical solution confirms the correctness of the numerical solution.

Based on the previous results for dislocation pile-ups as well as from discrete dislocation
dynamics (Needleman and Van der Giessen, 2001), we again assume the plastic distortion β
to be constant in the middle of each layer at zero dissipation. This means, in terms of dislo-
cations, that dislocations nucleated within the two layers pile up at the boundaries, forming
thin boundary layers and leaving the center of each crystal dislocation-free. Furthermore,
we assume the solution to be symmetric within each layer as has been found for all cases
before. The major advantage of formulating the numerical problem this way lies in the small
number of degrees of freedom needed for minimization. Computations in this Section were
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Figure 4.11: Sketch illustrating the finite element model used to compute the numerical solu-
tion. Plastic distortion β is assumed to be symmetric within each layer of the bi-
crystal (i.e. values at square-nodes are obtained from dot-nodes via symmetry).

performed with as few as 20 elements per boundary layer to show agreement with analytical
results in the symmetric case (with the largest relative error less than 0.1%).

With these assumptions we employ linear elements to model the plastic distortion β over
the height of the bicrystal under consideration as sketched in Figure 4.11. To model each
boundary layer with n elements, it requires 2n + 2 degrees of freedom at nodes plus the
unknown boundary layer thicknesses in the lower layer and in the upper layer, ll and lu,
respectively. Boundary conditions along with the assumption that β = 0 at the interface
yield the constraints

β0 = βn+1 = 0. (4.99)

The dimensionless energy can now be written in the form (using the same dimensionless
definitions as before),

E = E(βi, ll, lu). (4.100)

For the example of pure shear the energy functional can be written as

E =
H

2
(γ − 〈β cos 2ϕ〉)2 +

H

2
(1− κ)〈β2 sin2 2ϕ〉

+
H

2
κ〈β sin 2ϕ〉2 + kR1 + kR2, (4.101)

with the following average values

〈β cos 2ϕ〉 =
1

H

[
βn cos 2ϕl

(
H

2
− 2ll

)
+ β2n+1 cos 2ϕu

(
H

2
− 2lu

)
+ ∆l cos 2ϕl

n∑
i=1

(βi + βi−1) + ∆u cos 2ϕu

2n∑
i=n+1

(βi + βi+1)

]
, (4.102)
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〈β sin 2ϕ〉 =
1

H

[
−βn sin 2ϕl

(
H

2
− 2ll

)
+ β2n+1 sin 2ϕu

(
H

2
− 2lu

)
−∆l sin 2ϕl

n∑
i=1

(βi + βi−1) + ∆u sin 2ϕu

2n∑
i=n+1

(βi + βi+1)

]
, (4.103)

〈β2 sin2 2ϕ〉 =
1

H

[
β2
n sin2 2ϕl

(
H

2
− 2ll

)
+ β2

2n+1 sin2 2ϕu

(
H

2
− 2lu

)
+

2

3
∆l sin

2 2ϕl

n∑
i=1

(
β2
i + βiβi−1 + β2

i−1

)
+

2

3
∆u sin2 2ϕu

2n∑
i=n+1

(
β2
i + βiβi+1 + β2

i+1

)]
(4.104)

and

R1 =

∫ H

0

|β′(ξ) sin 2ϕ| dξ = 2 |sinϕl|
n∑
i=1

|βi − βi−1|+ 2 |sinϕu|
2n∑

i=n+1

|βi − βi+1| ,

R2 =
1

2

∫ H

0

β′2(ξ) sin2 2ϕ| dξ =
2

∆l

sin2 ϕl

n∑
i=1

(βi − βi−1)2+
2

∆u

sin2 ϕu

2n∑
i=n+1

(βi − βi+1)2 ,

where

∆l =
ll
n

and ∆u =
lu
n
. (4.105)

Note that the minus signs in 〈β sin 2ϕ〉 result from the definition of ϕl. Minimizing the
energy functional with respect to the vector (βi, ll, lu) and with additional constraints

0 ≤ ll ≤
H

4
, 0 ≤ lu ≤

H

4
, (4.106)

one obtains the numerical solution for the plastic distortion β.

To illustrate the numerical solution for non-symmetric active slip planes in the two layers
of our model bicrystal, let us consider the case of ϕl = −60◦ and ϕu = 30◦, i.e. the active
slip planes in the two layers are perpendicular to each other but not symmetric with respect
to the interface. Note that, according to the analytical solution in the symmetric case, we
can expect positive β in the upper layer and negative β in the lower layer. Figure 4.12
illustrates the evolution of β in the two layers with increasing strain γ for the case of zero
dissipation. For the numerical simulation we took µ = 26.3GPa, ν = 0.33, k = 3.8 10−4,
ρs = 3. 1014 m−2, b = 2.5 10−10 m and h = 10µm.

The critical threshold value for the nucleation of dislocations for this special case of ϕl =
−60◦ and ϕu = 30◦ can be obtained analytically by employing a minimizing sequence like
in previous Sections, yielding

γen =
k

hbρs

(
13−

√
3
)
− 6κ

(
1 +
√

3
)

3(1− κ)
. (4.107)
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Figure 4.12: Evolution of β(ξ) for a constrained shear test at zero dissipation, for ϕl = −60◦

and ϕu = 30◦: a) γ = 0.005, b) γ = 0.02, c) γ = 0.05.

However, due to the different orientations of the active slip systems in upper and lower layer
and the resulting difference of the resolved shear stresses, one of the slip system may remain
passive even at γ > γen. Indeed, one can see in Figure 4.12 that β is already well-developed
in the upper layer at γ = 0.005 whereas it only starts to evolve in the lower layer at the same
overall shear strain.

The stress-strain curve corresponding to the evolution of β in Figure 4.12 is shown in
Figure 4.13. Note the steep slope of the stress-strain curve beyond the onset of dislocation
nucleation due to the active slip systems chosen here.

In the case of non-zero dissipation the evolution of β must be obtained from solving the
flow rule instead of minimizing the energy functional. However, adding an artificial term of
dissipation to the energy functional and omitting the term with β′, one can numerically find
the solution by minimizing the modified energy functional E∗. E∗(β) can be regarded as an
accumulated energy functional for standard dissipative solids, and it is simple to verify that
the minimizer of E∗ automatically satisfies the evolution equations, as they are the exact
Euler equations thereof, see e.g. (Kochmann and Le, 2008a, 2009a). For the simple shear

Figure 4.13: Normalized shear stress versus shear strain curve for a plane-constrained shear
test at zero dissipation for ϕl = −60◦ and ϕu = 30◦.
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Figure 4.14: Sketch illustrating the finite element model used to compute the numerical so-
lution in the case with dissipation. Symmetry requires square-nodes to have
the same value as the corresponding symmetric dot-nodes, thus reducing the
number of degrees of freedom.

example, we have

E∗ =
h

2
(1− κ)〈β2 sin2 2ϕ〉+

h

2
κ〈β sin 2ϕ〉2

+
h

2

(
γ2 + 〈β cos 2ϕ〉2

)
− hγr〈β cos 2ϕ〉+ kR2 (4.108)

where

γr = γ − γcr. (4.109)

Here, we assume for simplicity that γcr,l = γcr,u = γcr, i.e. the threshold value γcr is the
same in both layers. (Of course, one may expect different threshold values in the two layers
due to the orientations of their active slip systems as shown in the case without dissipation.)
As before, the minimizer depends on γr only. Regarding the analytical solution in the pre-
vious Sections, we do not expect the same boundary layer-type solution as in the previous
case without dissipation. Therefore, we now employ linear finite elements throughout the
entire height of each layer without assuming a constant region in the middle of each layer
(see Figure 4.14).

Then, the components of the energy functional can then be written as

〈β cos 2ϕ〉 =
∆

2H

(
cos 2ϕl

n∑
i=1

(βi + βi−1) + cos 2ϕu

2n∑
i=n+1

(βi + βi−1)

)
, (4.110)

〈β sin 2ϕ〉 =
∆

2H

(
− sin 2ϕl

n∑
i=1

(βi + βi−1) + sin 2ϕu

2n∑
i=n+1

(βi + βi−1)

)
, (4.111)

〈β2 sin2 2ϕ〉 =
∆

3H

(
sin2 2ϕl

n∑
i=1

(
β2
i + βiβi−1 + β2

i−1

)
+ sin2 2ϕu

2n∑
i=n+1

(
β2
i + βiβi−1 + β2

i−1

))
, (4.112)
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R2 =
1

2∆

(
sin2 ϕl

n∑
i=1

(βi − βi−1)2 + sin2 ϕu

2n∑
i=n+1

(βi − βi−1)2

)
, (4.113)

where

∆ =
H

2n
. (4.114)

Boundary conditions (i.e. zero plastic distortion at the boundaries and at the interface) read

β0 = βn = β2n = 0. (4.115)

Furthermore, we assume the plastic distortion β to be symmetric within each layer of the
bicrystal, as has been found in all previous solutions, i.e. we require

βn−i = βi for i = 0 . . . n/2 and β2n−j = βn+j for j = 0 . . . n/2 (4.116)

and thereby reduce the number of degrees of freedom by a factor of 2. A comparison with
the analytical solution for twins with n = 100 shows a relative error less than 0.3%. For the
numerical simulations we took (for pure copper and the chosen upper slip system) γcr =
0.0018.

Figure 4.15 illustrates the evolution of β in the two layers of the bicrystal with increasing
strain γr for the case with dissipation and with non-symmetric angles ϕl = −30◦ and ϕu =
40◦. Observe the difference in the height of the β-curves due to the different angles of the
active slip systems.

Finally, the stress-strain curve is computed for the above non-symmetric example with
ϕl = −30◦ and ϕu = 40◦, following the closed strain path as in previous Sections: We
increase γ from zero to the arbitrary value γ∗ = 0.01, then decrease γ to −γcr and finally
increase γ back to zero. Due to the rate independence of dissipation, the strain rate γ̇ does not
affect the results. Figure 4.16 illustrates the normalized shear stress versus shear strain curve.
A similar hardening behavior as in previous Sections can be observed. The Bauschinger
effect can be noted as well.

Figure 4.15: Evolution of β for plane-constrained shear at non-zero dissipation with non-
symmetric slip system orientations: a) γr = 0.01, b) γr = 0.05, c) γr = 0.1
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Figure 4.16: Normalized shear stress versus shear strain curve at non-zero dissipation with
non-symmetric slip system orientations, ϕl = −30◦ and ϕu = 40◦.

4.5 Plane-Strain Uniaxial Extension of Single-Slip Bicrystals

Following our analysis of the plane-constrained shear problem, the solution for the uniaxial
extension problem is briefly presented in the following. We derive closed-form analytical
solutions for the case of plane-strain uniaxial extension of the bicrystal with symmetric
active slip-systems, thereby following (Kochmann and Le, 2008b). We will first analyze the
deformation of a bicrystal at zero dissipation and later take into account the dissipation of
energy due to dislocation motion.

4.5.1 Plane-Strain Uniaxial Extension at Zero Dissipation

Based on the threshold analysis (see solutions (4.53) and (4.54)), we now assume that, in
contrast to the shear problem, β is antisymmetric in the bicrystal with respect to the interface,
i.e. β(H/2 + ξ) = −β(ξ) for ξ ∈ (0, H/2). Thus, in this case 〈β cos 2ϕ〉 = 0 and the
dimensionless energy functional (4.43) reduces to

E(β) =

∫ H

0

[
1

2
ω (ε+ κ(β sin 2ϕ− 〈β sin 2ϕ〉))2 +

1

4
β2 sin2 2ϕ

+
(
ε+ (κ− 1

2
)β sin 2ϕ− κ〈β sin 2ϕ〉

)2
+ k(|β′ sinϕ|+ 1

2
β′2 sin2 ϕ)

]
dξ.

(4.117)

The results obtained in previous Sections suggest to seek the minimizer again in the form
(4.69), with βm being a constant quantity, l the unknown boundary layer thickness (0 ≤ l ≤
H
4

) and β1(l) = βm. With β from (4.69) the energy functional (4.117) becomes

E =
ε2H

2κ
+ 4

∫ l

0

[
1

2
(1− κ)β2

1 sin2 2ϕ+

(
ε− κ

2
〈β sin 2ϕ〉

)
β1 sin 2ϕ+ k|β′1 sinϕ|

+
1

2
kβ′21 sin2 ϕ

]
dξ + 2

[
1

2
(1− κ)β2

m sin2 2ϕ+

(
ε− κ

2
〈β sin 2ϕ〉

)
βm

]
(H/2− 2l),

(4.118)

where

〈β sin 2ϕ〉 = − 1

H

(
4

∫ l

0

β1 dξ + 2(H/2− 2l)βm

)
sin 2ϕ. (4.119)
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Figure 4.17: Evolution of β for uniaxial extension of a bicrystal at zero dissipation for a,d)
ε = 0.01, b,e) ε = 0.05, c,f) ε = 0.1

Varying functional (4.118) with respect to β1(y), l and βm, we obtain the solution for this
case, which is of the same type as before, cf. (4.76),

β1(ξ) = β1p (1− cosh ηξ + tanh ηl sinh ηξ) , 0 ≤ ξ ≤ l (4.120)

with η from (4.78), but now with

β1p = −ε− κ〈β sin 2ϕ〉
(1− κ) sin 2ϕ

, βm = β1p

(
1− 1

cosh ηl

)
. (4.121)

The average of β sin 2ϕ yields

〈β sin 2ϕ〉 =
ε
[
4
(
l − tanh ηl

η

)
+
(

1− 1
cosh ηl

)
(H − 4l)

]
g(l)

, (4.122)

where

g(l) = H(1− κ) + κ

[
4

(
l − tanh ηl

η

)
+

(
1− 1

cosh ηl

)
(H − 4l)

]
. (4.123)

The following equation must be solved numerically to determine the boundary layer thick-
ness l

4k| sinϕ|signβ′1 + (ε− κ〈β sin 2ϕ〉)sin2 2ϕ− cosh ηl + 1

sin 2ϕ cosh ηl
(H − 4l) = 0. (4.124)

Figure 4.17 shows the evolution of β(ξ) as ε increases, for ϕ = 60◦ (continuous lines)
and ϕ = 120◦ (dashed lines), where ξ = ybρs. Note that the solution exhibits antisymmetry
of cases a) and d), b) and e) as well as c) and f), respectively, which is physically reasoned
by the symmetry of the problem. For the numerical simulation we used the same data as
before.

Similarly to the shear problem, let us plot a measurable quantity, here in terms of the
dimensionless normal tensile stress

σyy
λ+ 2µ

= ε− κ〈β sin 2ϕ〉 (4.125)
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Figure 4.18: Normalized tensile stress versus strain curve for the uniaxial extension test of
a bicrystal at zero dissipation

as a function of the strain ε. As we know, for ε < εen no dislocations are nucleated and
β = 0, so the tensile stress evolves elastically and σyy = (λ+ 2µ)ε. For ε > εen we employ
〈β sin 2ϕ〉 from (4.122) to obtain the stress σyy according to the above relation.

Figure 4.18 illustrates the normalized tensile stress versus strain curve OAB for ϕ = 30◦

(continuous lines) and OA′B′ forϕ = 60◦ (dashed lines), computed with material properties
from Table 4.1 and H = hbρs = 0.349. Note the work hardening section AB (or A′B′) for
ε > εen (ε > ε′en) caused by the dislocation pile-ups. However, there is no residual strain as
we unload the twins by decreasing ε. The stress-strain curve follows the same path BAO
since the plastic deformation is completely reversible, as already discussed in Section 4.4.1.

4.5.2 Plane-Strain Uniaxial Extension at Non-Zero Dissipation

Let us complete this Section by investigating the uniaxial extension problem at non-zero
dissipation so that the plastic distortion may evolve only if the yield condition |κ| = τcrit(ξ)
is satisfied. As before, if |κ| < τcrit(ξ), then β is frozen and the bicrystal behaves elastically.
We limit our analysis to the evolution of β in the special case of symmetric active slip
systems where−ϕl = ϕu = ϕ (i.e. for twins) for which we may again assume antisymmetry,
i.e. β(H/2 + ξ) = −β(ξ) for ξ ∈ (0, H/2) and τcr,l = τcr,u = τcrit. Thus, 〈β cos 2ϕ〉 = 0 and
the energy functional takes the form (4.117).

First, let us consider the case 0 < ϕ < 90◦. Computing the variational derivative of
(4.117), we derive from (4.44) the dimensionless yield condition for the lower layer (with
the same dimensionless notation employed before)∣∣−(1− κ)β sin2 2ϕ− sin 2ϕ(ε− κ〈β sin 2ϕ〉) + kβ′′ sin2 ϕ

∣∣ = τcrit/µ = εcr sin 2ϕ,

(4.126)

where we introduced εcr = τcrit/µ sin 2ϕ. Unlike for the shear problem, where the plastic
distortion was identical in both single crystals due to symmetry, we now have different diffe-
rential equations to determine β for the lower and upper layer because of antisymmetry. The
analogous yield condition for the upper layer is identical except for a changed sign in front
of the second term resulting from the definition of ϕ = −ϕl = ϕu. Both yield conditions
provide identical results for our model bicrystal as we assume β to be antisymmetric in the
two single crystals. Therefore, in the following we may deal with the evolution of β in the
lower layer only.
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We regard ε as the driving variable and determine β(t, ξ). We consider a loading path
analogous to the one shown in Figure 4.7: ε is first increased from zero to some arbitrary
value ε∗ > εcr, then decreased to −εcr, and finally increased to zero. Again, the rate of
change of ε(t) has no impact on the results due to the rate independence of dissipation. The
problem is to determine the evolution of β as a function of t and ξ with the initial condition
β(0, ξ) = 0.

As β is initially zero, we see from (4.126) that β = 0 as long as ε < εcr. Thus, the
dissipative threshold stress (the yield stress) is σy = τcrit. Let us introduce the deviation of
ε(t) from the critical strain εcr,

εr = ε− εcr. (4.127)

For small β(t, ξ) and ε > εcr the yield condition in the lower layer becomes (again for
0 < ϕ < 90◦)

(1− κ)β sin2 2ϕ+ sin 2ϕ(εr − κ〈β sin 2ϕ〉)− kβ′′ sin2 ϕ = 0. (4.128)

As this equation is linear, β is proportional to εr (note that in the simple shear problem β is
proportional to γr in a similar manner) such that we may write again β = εrβ1. Here, we
obtain the solution

β1(ξ) = β1p

(
1− cosh ηξ + tanh η

H

4
sinh ηξ

)
, 0 ≤ ξ ≤ H

4
, (4.129)

with η from (4.78) and

β1p =
κ〈β1 sin 2ϕ〉 − 1

(1− κ) sin 2ϕ
. (4.130)

The average of β1 sin 2ϕ is obtained in the form

〈β1 sin 2ϕ〉 =
1− 4 tanh ηH

4

ηH

(1− κ) + κ

(
1− 4 tanh ηH

4

ηH

) . (4.131)

Note the similarity of results obtained here and in the problem of plane-constrained shear
in the previous Section.

Figure 4.19 shows the graphs of β1(ξ) for ϕ = 60◦ (continuous lines) and ϕ = 120◦

(dashed lines). Again, note the symmetric solution for these two angles due to the symmetry
of the problem. The same material parameters were used as in previous Sections.

After reaching ε∗, we unload the bicrystal by decreasing ε. Since κ becomes smaller than
τcrit, β does not change (β = β∗(ξ) where β∗ denotes the solution of (4.128 for ε(t) = ε∗)
until

(1− κ)β∗ sin2 2ϕ+ sin 2ϕ(ε− κ〈β∗ sin 2ϕ〉)− kβ∗′′ sin2 ϕ = −εcr sin 2ϕ, (4.132)

where β∗(ξ) is the solution of the flow condition for positive loading and for ε(t) = ε∗.
From (4.132) it becomes apparent that plastic flow begins when ε− (ε∗ − εcr) = −εcr, i.e.
for ε = ε∗ = ε∗−2εcr. From that value of ε the yield condition κ = −τcrit holds true leading
to a decrease of β.
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Figure 4.19: Graphs of β1(ξ) for uniaxial extension of a bicrystal at non-zero dissipation

For ε ∈ (−εcr, ε∗) the deviation

εl = ε+ εcr (4.133)

is positive and the solution can be obtained in exactly the same manner as in the shear
problem, i.e. by replacing εr = ε − εcr by εl = ε + εcr in all formulae (4.129) through
(4.131). As ε approaches −εcr, β tends to zero because εl → 0. The further increase of ε
from −εcr to zero does not cause change in β which remains zero.

The above construction can easily be modified to find the solution for ϕ > 90◦.

The normalized dislocation density α(ξ) = β,ξ sinϕ(ξ) can be calculated from the above
solution (4.129). As β(ξ) is proportional to εr, so is α(ξ) such that α(ξ) = εrα1(ξ) For
ξ ∈ (0, H/4) we have

α1(ξ) = −β1p

(
−η sinh ηξ + η cosh ηξ tanh

ηH

4

)
sinϕ, (4.134)

with β1p from (4.90) and η from (4.78). For ξ ∈ (H/4, H/2) we have α1(ξ) = −α1(H/2−ξ)
due to symmetry of the plastic distortion β. Due to symmetry, the solution in the upper layer
is the same.

Let us now complete this Section by determining the tensile stress σyy. During loading
we have for the normalized average stress

σyy
λ+ 2µ

= εcr + εr(1− κ〈β1 sin 2ϕ〉) (4.135)

with 〈β1 sin 2ϕ〉 from (4.131). The second term of (4.135) causes hardening due to the dislo-
cation pile-up and describes the size effect in this model. Decreasing the height H (= hbρs)
results in an increasing hardening rate.

During inverse loading when the yield condition κ = −τcrit holds true, Eq. (4.135) chan-
ges into

σyy
λ+ 2µ

= −εcr + εl(1− κ〈β1 sin 2ϕ〉) (4.136)

with

εl = ε+ εcr. (4.137)
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Figure 4.20: Normalized tensile stress versus strain curve for uniaxial extension of a bicry-
stal at non-zero dissipation, for ϕ = 60◦

Figure 4.20 shows the normalized tensile stress versus strain curve for the loading path as
before, with τcrit = 23.67MPa, ε∗ = 0.008, ϕ = 60◦, while all other parameters remain the
same. The straight line OA corresponds to the purely elastic loading with ε increasing from
zero to εcr. Line AB corresponds to plastic yielding with κ = τcrit. The onset of plastic flow
is at point A, and we can observe a work hardening section due to the dislocation pile-ups,
which is described by the second term of (4.135). During unloading, as ε decreases from
ε∗ to ε∗ = ε∗ − 2εcr (line BC), the plastic distortion β = β∗ is frozen. As ε decreases
further from ε∗ to −εcr, plastic yielding occurs with κ = −τcrit (line CD). Along line CD,
as ε is decreased, the nucleated dislocations annihilate, and at point D all dislocations have
disappeared. Finally, as ε increases from −εcr to zero, the crystal deforms elastically with
β = 0. In this closed cycle OABCDO dissipation again occurs only along lines AB and
CD. It is interesting to note that again lines DA and BC are parallel and of the same length
(Bauschinger effect).

4.5.3 Numerical Solution for Uniaxial Extension for Non-Symmetric Active Slip
Systems and for Arbitrary Crystal Heights

As presented in Section 4.4.3, we can obtain the solution for arbitrary non-symmetric active
slip systems by employing a finite element approximation to solve for the plastic distortion
in the general case. This can also be applied to the problem of uniaxial extension. Here,
the dimensionless energy at zero dissipation may be written in the form (using the same
dimensionless definitions as before)

E = E(βi, ll, lu), (4.138)

where ll and lu are the unknown boundary layer thicknesses in the lower and upper crystal,
respectively, and βi is the plastic distortion at node i. For a uniaxial extension strain ε the
energy functional reads

E =
ε2H

2κ
− εH〈β sin 2ϕ〉+

H

2
〈β cos 2ϕ〉2 +

H

2
κ〈β sin 2ϕ〉2

+
H

2
(1− κ)〈β2 sin2 2ϕ〉+ kR1 + kR2, (4.139)

where the same average values may be used as in Section 4.4.3. Analogously to the constrained-
shear problem we assume that for the uniaxial extension problem at zero dissipation there
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Figure 4.21: Evolution of β(ξ) for uniaxial extension at zero dissipation with non-symmetric
slip system orientations, for a) ε = 0.01, b) ε = 0.04, c) ε = 0.08.

is a constant part in the middle of each crystal whereas at non-zero dissipation there is none
(see Section 4.4.3 for details).

Figure 4.21 shows the evolution of the plastic distortion β(ξ) during a uniaxial extension
test at zero dissipation with non-symmetric active slip systems, ϕl = −60◦ and ϕu = 20◦,
with increasing overall extension strain ε = 0.01, 0.04, 0.08. Figure 4.22 illustrates the
evolution of β(ξ) during uniaxial extension at non-zero dissipation with ϕl = −20◦ and
ϕu = 60◦, for strains of εr = 0.001, 0.005, 0.01, and exemplarily the dimensionless dis-
location density α(ξ) for εr = 0.01 only (for clarity). Both Figures make use of the same
material parameters presented before.

Finally, for completeness Figure 4.23 illustrates the influence of changing crystal heights
on the present results. Figure 4.23 shows the plastic distortion β at fixed uniaxial extension
strain εr = 0.01 at non-zero dissipation for symmetric active slip systems, ϕu = −ϕl = 30◦,
but for changing crystal heights. The total height H = hbρs = 0.349 remains constant while
the interface changes its position in the illustrated manner, where hu/hl denotes the ratio of
the heights of upper to lower crystal.

Figure 4.22: Evolution of β(ξ) for uniaxial extension at zero dissipation with non-symmetric
slip system orientations, for a) εr = 0.001, b) εr = 0.005, c) εr = 0.01, and the
dimensionless dislocation density α(ξ) at εr = 0.01.
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Figure 4.23: Plastic distortion β(ξ) for uniaxial extension at non-zero dissipation with sym-
metric slip system orientations for changing ratio of the crystal heights.

4.6 Combined Shear and Extension of Single-Slip Bicrystals

Now that we have obtained analytical solutions for the particular problems of shear and
extension of the bicrystal, let us investigate the combined loading situation already sketched
in Figure 4.2. Loading the bicrystal in a hard device with the prescribed displacement δh
applied under an angle θ as sketched in Figure 4.2, we can decompose any such deformation
into tensile and shear strains by

ε = δ sin θ, γ = δ cos θ, (4.140)

respectively. The energetic threshold for this combined case was already presented in Secti-
on 4.3. It would be useful to conclude a general solution for β, which is based on previous
results obtained for the independent cases of shear and extension. To do so, we will de-
compose the plastic distortion β as shown in Figure 4.24, i.e. we write β as the sum of a
symmetric and an antisymmetric function. To demonstrate the benefit, we will focus on the
plastic deformation at non-zero dissipation first, where this decomposition can be applied
successfully, and later show the solution at zero dissipation.

4.6.1 Combined Shear and Extension at Non-Zero Dissipation

Any arbitrary admissible solution β(ξ) in the bicrystal can be decomposed into a symmetric
function βs(ξ) and an antisymmetric function βa(ξ) (see Figure 4.24), i.e. we write

β(ξ) =

{
βs(ξ) + βa(ξ) for 0 < ξ < H/2,

βs(ξ)− βa(ξ) for H/2 < ξ < H.
(4.141)



140 4 Modeling Microstructures via Continuum Dislocation Theory

Figure 4.24: Additive decomposition of the plastic distortion β into a symmetric function βs
and an antisymmetric function βa.

In this case, it is easy to verify that the average quantities follow for symmetric slip system
orientations (i.e. −ϕl = ϕu = ϕ) as

〈β sin 2ϕ〉 = 〈βa sin 2ϕ〉 = − 2

H
sin 2ϕ

∫ H/2

0

βa dξ, (4.142)

〈β cos 2ϕ〉 = 〈βs cos 2ϕ〉 =
2

H
cos 2ϕ

∫ H/2

0

βs dξ, (4.143)

〈β sin 2ϕ〉2 =
4

H2
sin2 2ϕ

[∫ H/2

0

βa dξ

]2

, (4.144)

〈β cos 2ϕ〉2 =
4

H2
cos2 2ϕ

[∫ H/2

0

βs dξ

]2

, (4.145)

〈β2 sin2 2ϕ〉 = 〈(β2
a + β2

s ) sin2 2ϕ〉 =
2

H
sin2 2ϕ

∫ H/2

0

(β2
s + β2

a) dξ. (4.146)

Now, we apply the same flow rule as before, now generalized to combined loading, i.e.

∂∆

∂β̇
= −δε,γΨ

δβ
with ∆ = τcrit(ξ)|β̇|. (4.147)

Varying the energy functional (4.43) with respect to β, we obtain the flow condition in
the lower layer∣∣(1− κ)β sin2 2ϕ+ sin 2ϕ (ε− κ 〈β sin 2ϕ〉)− cos 2ϕ (γ − 〈β cos 2ϕ〉)

−k2β′′ sin2 ϕ
∣∣ = τcrit/µ. (4.148)

Initially, β is zero and hence we obtain the critical condition for the onset of plastic flow
for 0 < ϕ < 45◦,

ε sin 2ϕ+ γ cos 2ϕ = τcrit/µ. (4.149)

Now, let us decompose the critical resolved shear stress into τcrit = τε + τγ with

τε =
τcrit

1 + cot 2ϕ cot θ
, τγ =

τcrit

1 + tan 2ϕ tan θ
. (4.150)
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Figure 4.25: Graphs of β1(ξ) for combined loading of a bicrystal at non-zero dissipation, for
ϕ = 30◦

As a consequence, we can decompose our flow condition into separate conditions involving
βs and βa. We employ the above definitions and again make use of the deviation of both ε
and γ from the critical values,

εr = ε− εcr, γr = γ−γcr, with εcr = τε/µ sin 2ϕ, γcr = τγ/µ cos 2ϕ, (4.151)

so that we finally arrive at the differential equations during positive loading (valid in the
lower layer only, to allow for a comparison with previous results)

(1− κ)βa sin2 2ϕ+ sin 2ϕ(εr − κ〈βa sin 2ϕ〉)− kβ′′a sin2 ϕ = 0, (4.152)
(1− κ)βs sin2 2ϕ− cos 2ϕ(γr − 〈βs cos 2ϕ〉)− kβ′′s sin2 ϕ = 0. (4.153)

Like in previous Sections, the analogous conditions for the upper layer are identical except
for a changed sign in front of the second term in the first equation due to the definition of
ϕ = −ϕl = ϕu. We will limit our analysis to investigating only the lower layer because the
solution in the upper layer is obtained automatically via antisymmetry.

A comparison with the corresponding conditions obtained for uniaxial extension (4.128)
and for constrained shear (4.86) reveals that βs = βshear and βa = βextension with τcrit = τγ
or τcrit = τε, respectively. Therefore, the general solution for the combined deformation at
non-zero dissipation can be obtained from a linear superposition of the solutions for the two
particular cases treated before. Note that the solution for each of the two deformation cases
was linear with respect to the applied load so that we obtain the general solution in the form

β(ξ) = εrβa,1(ξ) + γrβs,1(ξ) = δr [βa,1(ξ) sin θ + βs,1(ξ) cos θ] , (4.154)

with δr = δ − δcr and βa,1 = β1 from (4.129) and βs,1 = β1 from (4.89). Exemplary graphs
of β1 are illustrated in Figure 4.25 for different angles θ (computed with material properties
from Table 4.1 and H = hbρs = 0.349) for ϕ = 30◦. Dislocation density, stress-strain
curves etc. can be obtained analogously via superposition.

For a combined loading case the stress-strain curve should be replaced by a plot of the
principal stresses as there are normal and shear stresses present in the bicrystal. For these
examples we can plot all three average principal stresses σ1, σ2 and σ3 and the angle of the
principal stresses in the x-y-plane, which be denoted by ϕ̂. Figures 4.26 and 4.27 illustrate
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Figure 4.26: Principal stresses and angle of the in-plane principal stresses for ϕ = 10◦ and
θ = 60◦ with material parameters as before.
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Figure 4.27: Principal stresses and angle of the in-plane principal stresses for ϕ = 30◦ and
θ = 30◦ with material parameters as before.

two examples with different slip system orientations and loading directions. Graphics pre-
sent the principal stresses (note the change from elastic to plastic deformation at δcr) and the
changing in-plane principal stress angle versus the overall applied deformation δ.

To complete this Section, Figure 4.28 gives an overview of the evolution of both the pla-
stic distortion β and the dimensionless dislocation density α for increasing strain δr (shear
and extension with θ = 60◦) at non-zero dissipation with symmetric slip system orientations
(ϕu = −ϕl = ϕ = 30◦).

4.6.2 Combined Shear and Extension at Zero Dissipation

In Section 4.4.3 we discussed a numerical routine to compute the evolution of the plastic
distortion and the dislocation density at zero and non-zero dissipation for arbitrary non-
symmetric active slip systems, first for the case of plane-constrained shear and later, in
Section 4.5.3, for plane uniaxial extension. We can easily modify the numerical procedure
outlined above to cases of general loading.

Analyzing the combined deformation of the bicrystal at zero dissipation, we notice that a
decomposition of β into symmetric and antisymmetric part is feasible but does not provide a
neat closed-form analytical solution in terms of superposed solutions of the single deforma-
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Figure 4.28: Evolution of the plastic distortion β(ξ) and the dimensionless dislocation den-
sity α(ξ) for plane-constrained shear of a bicrystal at non-zero dissipation, for
γr = 0.001, 0.005, 0.01 0.02.
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tion states as before. However, we can easily obtain a numerical solution. The total energy
now reads

E =
ε2H

2κ
+
γ2H

2
− γH〈β cos 2ϕ〉 − εH〈β sin 2ϕ〉+

H

2
〈β cos 2ϕ〉2

+
H

2
κ〈β sin 2ϕ〉2 +

H

2
(1− κ)〈β2 sin2 2ϕ〉+ kR1 + kR2, (4.155)

with the same average values and abbreviations presented in Section 4.4.3. Minimizing the
energy functional numerically, we obtain the sought solution for combined loading at zero
dissipation.

Figure 4.29 exemplarily compares the plastic distortion β at fixed load δ = 0.05 and ϕ =
30◦ for different angles θ, with material properties from Table 4.1 and H = hbρs = 0.349.
The evolution of the dislocation density as well as the stress-strain curve can be obtained
analogously for arbitrary loading and arbitrary slip system orientations.

Figure 4.29: Plastic distortion β at zero dissipation and at fixed strain δ = 0.05 for ϕ = 30◦

for a bicrystal under combined loading

4.7 Size Effects of the Bicrystal Problem

Many of the results in previous Sections exhibit a size effect typical of problems of crystal
plasticity. In particular, the energetic threshold for the onset of plastic flow depends inversely
proportional on the crystal height, see e.g. (4.51) and (4.55) for pure shear and uniaxial
extension. This type of size effect does not correspond to the Hall-Petch relation but matches
well the deviating law observed for small specimen sizes. Furthermore, all results indicate a
dependence of the hardening rate on the crystal height both at zero and non-zero dissipation.
Both effects become apparent in Figure 4.30 where the stress-strain curve (for constant
ϕ = 30◦ and all other parameters as before) is plotted for different heights h of the bicrystal.
With decreasing crystal size the yield stress increases as well as the hardening rate.

This macroscopic observation corresponds, of course, to a microscopic effect: With de-
creasing crystal height the mean free length for dislocation pile-ups also decreases, which
results in higher dislocation densities at the boundaries. Due to the chosen form of the dislo-
cation energy and its saturation effect, the local dislocation concentration is bounded so that
dislocation pile-ups are forced to extend more and more into the crystal interior with decre-
asing crystal height, which considerably effects – among others – the inner back-stresses of
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Figure 4.30: Normalized average tensile stress versus strain curve for the uniaxial extension
test of a bicrystal at zero dissipation with changing crystal height
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Figure 4.31: Normalized plastic distortion β1 in a bicrystal with decreasing crystal height h
(the abscissa is normalized with respect to h) for plane-strain uniaxial extension
at non-zero dissipation with ϕ = 30◦ and the common material parameters.

dislocations. Figure 4.31 illustrates the normalized plastic distortion of a bicrystal in a ten-
sion test with decreasing crystal height (normalized to its height), and the aforementioned
effect becomes obvious.
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4.8 Variational Formulation

4.8.1 Finite Element Formulation at Zero Dissipation

We will now derive a variational formulation for a general 2D boundary value problem,
which can be solved numerically by the finite element method. To this end, we discretize
the material body under consideration and derive a set of equations to be solved numeri-
cally. We follow notations introduced in Section 2.3.5 and in (Cook et al., 2002). In this
Section we limit our analysis to plane-strain deformations only. The extension of the pre-
sent formulation to three-dimensional problems is a rather technical issue and can easily be
obtained by some modifications to the model presented here. In a state of plane strain we
only consider deformation in the x-y-plane. The total energy of a homogeneous, isotropic,
linear elasto-plastic body is given by the sum of the elastic strain energy and the energy of
the microstructure, i.e. here of the dislocation network,

Ψ(ε,β) = 1
2
(ε− εp)

T : C : (ε− εp) + Ψρ(β). (4.156)

For numerical computations it is easier to introduce vectors for the elastic and plastic strain
(Cook et al., 2002). We therefore formulate the total energy as

Ψ̃(ε̃,β) = 1
2
(ε̃− ε̃p)

T ·E · (ε̃− ε̃p) + Ψρ(β) (4.157)

where, due to the assumption of plane strain, we can reduce the components of the elastic
and plastic strain vectors in Voigt notation to

ε̃ = (εxx, εyy, γxy)
T , ε̃p = (εxx,p, εyy,p, γxy,p)

T . (4.158)

Analogously, the stress tensor is written as a stress vector in Voigt notation as

σ̃ = (σxx, σyy, σxy)
T . (4.159)

For isotropic plane strain the elasticity tensor in the above formulation reads

E =
E

(1 + ν)(1− 2ν)

 1− ν ν 0
ν 1− ν 0
0 0 1

2
(1− 2ν)

 , (4.160)

where E denotes Young’s modulus and ν Poisson’s ratio. The stress component σzz can ea-
sily be obtained from the resultant stress vector σ̃ via the equation (obtained from requiring
that εzz = 0)

σzz = ν(σxx + σyy). (4.161)

Furthermore, the in-plane components of the displacement field at a given point can be
arranged in a vector of the form

u = (u, v)T . (4.162)

The energy of the dislocation network is assumed to be of the type

Ψρ(ρ) = kµ ln
1

1− ρ/ρs
, (4.163)
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with k being a material constant and ρs denoting the saturated dislocation density which
results from the discrete nature of the atomic lattice. Plastic slip is assumed to occur only
along one given slip system (infinite latent hardening) characterized by the slip direction
s = (cosϕ, sinϕ, 0)T and the slip plane unit normalm = (− sinϕ, cosϕ, 0)T so that

β = β s⊗m = β

(
− sinϕ cosϕ cos2 ϕ
− sin2 ϕ sinϕ cosϕ

)
(4.164)

and

εp = sym β =
1

2
β

(
− sin 2ϕ cos 2ϕ
cos 2ϕ sin 2ϕ

)
. (4.165)

Comparison with the above Voigt notation of the elastic strain vector ε̃ leads to

ε̃p =

 εp,xx

εp,xy

γp,xy

 =
1

2
β

 − sin 2ϕ
sin 2ϕ

2 cos 2ϕ

 . (4.166)

Now, let us compute the scalar dislocation density which is obtained from Nye’s dislocation
density tensor

α = curl β (4.167)

with the only non-zero components

αxz = β,y sinϕ cosϕ+ β,x cos2 ϕ, (4.168)
αyz = β,y sin2 ϕ+ β,x sinϕ cosϕ. (4.169)

The scalar dislocation density hence yields

ρ =
1

b

√
α2
xz + α2

yz =
1

b
|β,x cosϕ+ β,y sinϕ| , (4.170)

where b is Burgers’ vector. If translational invariance may be assumed, i.e. β = β(y), the
dislocation density reduces to (4.34).

Consider the boundary conditions

σ · n = f t on Γt, (4.171)
u = u0 on Γu. (4.172)

Following Section 2.3.5, we transform the given boundary value problem into a minimi-
zation problem by first calculating the total energy potential whose minimum can then be
obtained from variational calculus (for the related energy principles, see Section 2.5.1):

I =

∫
Ω

[
1
2
(ε̃− ε̃p)

T ·E · (ε̃− ε̃p) + Ψρ(β)
]

dv−
∫

Γt

u ·f t ds−
∫

Γu

t · (u−u0) ds.

(4.173)

Note that for plane problems I represents the energy per thickness. In order to numerical-
ly treat this variational problem, let us discretize the body Ω and the unknown continuously
distributed quantities u and β. The body Ω is subdivided into a finite number ne of bilinear
quadrilateral elements of volume Ωe (e = 1 . . . ne), which allows for a transition from the
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Figure 4.32: Discretization of the material body Ω into bilinear isoparametric elements. The
vector and scalar quantities ûk and b̂k are defined at each node k. The magni-
fications show exemplarily one element in the physical space and then mapped
into the ξ-η-space with the definition of the node numbering order.

continuously distributed vector field u and the scalar field β to a discrete set of nodal va-
riables ûk and β̂k at each node k. Each element Ωe is mapped form the physical space in
the x-y-plane onto an auxiliary or reference coordinate system in the ξ-η-plane where each
element has the shape of a square. Shape functions are introduced to interpolate both the dis-
placement field u, the plastic distortion β and the element geometry throughout the element
while values of these quantities are only stored and updated at nodes. For each element we
hence have a local displacement vector with displacements ûei at node i and a local vector
for the plastic distortion β̂ei at node i, so

ûe = (ûe1, v̂
e
1, û

e
2, v̂

e
2, û

e
3, v̂

e
3, û

e
4, v̂

e
4) , (4.174)

b̂
e

=
(
β̂e1, β̂

e
2, β̂

e
3, β̂

e
4

)
. (4.175)

We interpolate the displacement field ue and the scalar plastic distortion field βe across the
entire element Ωe from their nodal values ûe and b̂

e
, respectively. Therefore, we have the

interpolation rules

ue =
4∑
i=1

N e
i û

e
i = N e · ûe, βe =

4∑
i=1

Ñ e
i b̂
e
i = Ñ

e
· b̂

e
, (4.176)

which must ensure that ue = (ûei , v̂
e
i ) and βe = β̂ei at each node i. The choice of shape

functions N e and Ñ
e

determines the order of interpolation of the node data across the
element; they do not necessarily have to be of the same type. Here and in the following, we
linearly interpolate both ue and βe, using the shape functions

N e =

(
N e

1 0 N e
2 0 N e

3 0 N e
4 0

0 N e
1 0 N e

2 0 N e
3 0 N e

4

)
(4.177)

and

Ñ
e

= (N e
1 , N

e
2 , N

e
3 , N

e
4 )T (4.178)
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Figure 4.33: Shape functionsN e
i in one element e, whereN e

i equals 1 at node i and 0 at all
other nodes.

with

N e
1 = 1

4
(1− ξ)(1− η), N e

2 = 1
4
(1 + ξ)(1− η), (4.179)

N e
3 = 1

4
(1 + ξ)(1 + η), N e

4 = 1
4
(1− ξ)(1 + η), (4.180)

for plane isoparametric, bilinear (quadrilateral) elements. These shape functions are desi-
gned such that (4.176) is fulfilled automatically. Shape function N e

i equals 1 at node i and 0
at all three other nodes (see Figure 4.33).

As we map the current configuration of the bilinear element isoparametrically from the
physical space onto the square element, there is a difference between the actual position
of points of the element in the physical space (xei , y

e
i ) and of those in the mapped square

element. Due to this mapping and the functional dependence x = x(ξ, η) and y = y(ξ, η)
spatial derivatives also require a transformation, governed by the Jacobian matrix J e defined
for element e by

J e =

(
xe,ξ ye,η
xe,η ye,η

)
=

1

4

(
−(1− η) (1− η) (1 + η) −(1 + η)
−(1− ξ) −(1 + ξ) (1 + ξ) (1− ξ)

)
·


xe1 ye1
xe2 ye2
xe3 ye3
xe4 ye4

 ,

(4.181)

where (xei , y
e
i ) are the coordinates of the four nodes of the quadrilateral element in the phy-

sical space, listed in the common order (beginning with the left bottom node and proceeding
counterclockwise). We denote the determinant of the Jacobian by Je = detJ e and its inver-
se by Γe = (J e)−1.

With all of the above definitions we can write the elastic strain vector in an element e in
its discrete version as

ε̃e = Be · ûe (4.182)
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with

Be = ∂N =

 1 0 0 0
0 0 0 1
0 1 1 0

 ·


Γe11 Γe12 0 0
Γe21 Γe22 0 0
0 0 Γe11 Γe12

0 0 Γe21 Γe22



·


N e

1,ξ 0 N e
2,ξ 0 N e

3,ξ 0 N e
4,ξ 0

N e
1,η 0 N e

2,η 0 N e
3,η 0 N e

4,η 0
0 N e

1,ξ 0 N e
2,ξ 0 N e

3,ξ 0 N e
4,ξ

0 N e
1,η 0 N e

2,η 0 N e
3,η 0 N e

4,η.

 . (4.183)

Accordingly, we can discretize the plastic strain ε̃ep within element e by introducing

ε̃ep =
1

2

 − sin 2ϕ
sin 2ϕ

2 cos 2ϕ

 (Ñ
e
· b̂

e
) =

1

2

 − sin 2ϕ
sin 2ϕ

2 cos 2ϕ

⊗ Ñ e

 · b̂e = Qe · b̂
e

(4.184)

with

Qe =
1

2

 −N e
1 sin 2ϕ −N e

2 sin 2ϕ −N e
3 sin 2ϕ −N e

4 sin 2ϕ
N e

1 sin 2ϕ N e
2 sin 2ϕ N e

3 sin 2ϕ N e
4 sin 2ϕ

2N e
1 cos 2ϕ 2N e

2 cos 2ϕ 2N e
3 cos 2ϕ 2N e

4 cos 2ϕ

 . (4.185)

Having discretized all field variables, we can write for the total energy of a single element e

Πe(ûe, b̂
e
) =

∫
Ωe

[
1
2
(ûe,TBe,T − b̂

e,T
Qe,T )Ee(Beûe −Qeb̂

e
) + Ψρ(ρ̂

e)
]

dv

−
∫

Γe
t

ûe,T ·N e,Tf et ds −
∫

Γe
u

t · (N eûe − u0) ds. (4.186)

To deal with the energy of the dislocation network Ψρ, we write the scalar dislocation
density within an element e in terms of the discretization defined above, i.e.

ρ̂e =
1

b

∣∣βe,x cosϕ+ βe,y sinϕ
∣∣ =

1

b

∣∣∣(cosϕ Ñ ,x + sinϕ Ñ ,y) · b̂
e
∣∣∣ =

1

b

∣∣∣N e∗ · b̂
e
∣∣∣ , (4.187)

withN e∗ resulting as

N e∗ =

(
cosϕ
sinϕ

)
· Γe ·

(
N e

1,ξ N e
2,ξ N e

3,ξ N e
4,ξ

N e
1,η N e

2,η N e
3,η N e

4,η

)
. (4.188)

In special cases we may want to reduce complexity by employing specific elements only.
In particular, it might be helpful to employ rectangular elements only because then x = x(ξ)
and y = y(η) and as a consequence J and Γ are diagonal. In this case, we obtain the simple
form

N e∗ =
cosϕ

Je11


N e

1,ξ

N e
2,ξ

N e
3,ξ

N e
4,ξ

+
sinϕ

Je22


N e

1,η

N e
2,η

N e
3,η

N e
4,η

 . (4.189)

In order to formulate the boundary value problem for the entire body, which comprises
ne elements and nn nodes, we need to deal with the global node variables ûk, v̂k and β̂k
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(at nodes k = 1 . . . nn) instead of the local node variables ûe, v̂e and β̂e (defined in every
element e = 1 . . . ne). Let us introduce the global vectors of all nodal values

û = (û1, v̂1, . . . , ûk, ûk)
T , (4.190)

b̂ =
(
β̂1, . . . , β̂k

)T
. (4.191)

These global vectors û and b̂ are obtained from the local vectors ûe and b̂
e

via an assembly

operator
ne

A
e=1

(Hughes, 1987):

û =
ne

A
e=1

(ûe), b̂ =
ne

A
e=1

(b̂
e
). (4.192)

The total energy of a body Ω can be written as the sum of the energies of each element
Ωe, i.e.

Î(û, b̂) = Π(û, b̂) =
ne∑
e=1

Πe(ûe, b̂
e
). (4.193)

As a consequence, the discretized total energy follows as

Î(û, b̂) =

∫
Ω

[
1
2
(ûTBT − b̂

T
QT )E(Bû−Qb̂) + Ψρ(b̂)

]
dv

−
∫

Γt

ûT ·NTf t ds −
∫

Γu

t · (Nû − u0) ds, (4.194)

where the global matricesE,B andQ are obtained from the local matricesEe,Be andQe

via the same assembly operator
ne

A
e=1

:

E =
ne

A
e=1

(Ee), B =
ne

A
e=1

(Be), Q =
ne

A
e=1

(Qe). (4.195)

The minimum of the energy potential is attained when δÎ(û, b̂) = 0, where the first
variation of the above energy potential yields∫

Ω

[
δûTBTE(Bû−Qb̂)− δb̂

T
QTE(Bû−Qb̂) + δb̂

T
· ∂Ψρ

∂b̂

]
dv

−
∫

Γt

δûT ·NTf t ds−
∫

Γu

δt · (Nû− u0) ds = 0, (4.196)

from which we obtain the equilibrium condition∫
Ω

BTE(Bû−Qb̂) dv −
∫

Γt

NTf t ds = 0 (4.197)

and the microstructural equilibrium condition

−
∫

Ω

QTE(Bû−Qb̂) dv +

∫
Ω

∂Ψρ

∂b̂
dv = 0 (4.198)
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along with the boundary conditions

N · û = u0 on Γu, Ñ · b̂ = β0 on Γβ. (4.199)

For solving the problem numerically we introduce the global matrices

KBB =

∫
Ω

BTEB dv, KBQ =

∫
Ω

BTEQ dv, (4.200)

KQQ =

∫
Ω

QTEQ dv, (4.201)

and the vector of internal microstructural forces

f int(b̂) =

∫
Ω

∂Ψρ

∂b̂
dv. (4.202)

As all matricesE,B andQ are obtained from an assembly of the corresponding element
matrices Ee, Be and Qe, the above defined global matrices KBB, KBQ and KQQ can be
obtained in the same manner, i.e. via

KBB =
ne

A
e=1

(Ke
BB), KBQ =

ne

A
e=1

(Ke
BQ), (4.203)

KQQ =
ne

A
e=1

(Ke
QQ), (4.204)

and the element matrices are defined by

Ke
BB =

∫ 1

−1

∫ 1

−1

Be,TEeBe t Je dξ dη, Ke
BQ =

∫ 1

−1

∫ 1

−1

Be,TEeQe t Je dξ dη,

Ke
QQ =

∫ 1

−1

∫ 1

−1

Qe,TEeQe t Je dξ dη, (4.205)

where t is the constant thickness of the body Ω. Note that due to the choice of the finite
element interpolation (linear with respect to u and b), matrix dimensions follow asKe

BB ∈
R8×8, Ke

BQ ∈ R4×8 and Ke
QQ ∈ R4×4. As a consequence, the dimensions of the global

matrices must have dimensions 2nn × 2nn for KBB, nn × 2nn for KBQ, and nn × nn for
KQQ.

Analogously, we can obtain the vector of external forces and the vector of internal mi-
crostructural forces via assembly, i.e.

f int(b̂) =
ne

A
e=1

(
f eint(b̂

e)
)
, f ext =

ne

A
e=1

(f eext) , (4.206)

where

f eint(b̂
e) =

∫ 1

−1

∫ 1

−1

∂Ψρ

∂b̂e
t Je dξ dη. (4.207)

The vector of external forces follows analogously as

f eext =

∫
Γe

t

N e,Tf t ds. (4.208)
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Then, we can arrange the set of equations to be solved numerically for the unknown vector
of all discrete nodal values

Û = (û, b̂)T (4.209)

in the following manner:(
KBB −KBQ

−KT
BQ KQQ

)
·
(
û

b̂

)
=

(
f ext

−f int(b̂)

)
, N · û = u0 on Γu, (4.210)

In the sequel, we employ the abbreviations

K =

(
KBB −KBQ

−KT
BQ KQQ

)
, f(Û) =

(
f ext

−f int(b̂)

)
, (4.211)

such that we arrive at the concise form

K · Û = f(Û). (4.212)

Within each element integration of all Kab-matrices can be accomplished exactly by a
2× 2 point Gauß quadrature rule since all integrands are of polynomial order ξ2η2 or lower,
i.e. ∫ 1

−1

∫ 1

−1

φ(ξ, η) dξ dη =
2∑
i=1

2∑
j=1

φ(Wi,Wj) (4.213)

with Gauß integration points located at Wi = ±1/
√

3. The same holds true for the vector of
external forces. Unfortunately, the integration of the vector of internal forces f int(b̂) cannot
be performed as simply due to the occurrence of sign and absolute value functions rendering
the integrand non-polynomious and hard to integrate. Therefore, a numerical integration
scheme with a large number of Gauß points is employed to obtain a force vector as accurate
as possible, i.e.

f int(b) =

∫ 1

−1

∫ 1

−1

∂Ψρ

∂b
tJ dξ dη ∼=

N∑
i=1

N∑
j=1

wiwj tJ
∂Ψρ

∂b

∣∣∣∣
ξ=zi,η=zj

, (4.214)

where zi and zj are the Gauß points (obtained from solving the appropriate Legendre equati-
ons, see e.g. Hughes (1987)) and wi and wj the corresponding weight factors. In subsequent
computations we commonly use N = 25.

Having assembled all matrices and forces, we account for boundary conditions of the two
types

(ûk, v̂k) = u0, β̂k = β0. (4.215)

The first condition is a pure displacement boundary condition, arising automatically from
the equilibrium equations. The second condition arises from artificially fixing the plastic
distortion, e.g. at grain boundaries or surfaces where an obstacle impedes penetration by
dislocations. When numerically solving Eq. (4.212), we must ensure the boundary conditi-
ons (4.215), which can be achieved by replacing entries in K and f such that the equation
for the corresponding nodal parameter ûk or β̂k is replaced by ûk = uk,0 or β̂k = βk,0,
respectively. Also, vector f must be modified accordingly, see e.g. (Cook et al., 2002).
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For solving Eq. (4.212) it is convenient to write the problem as

G(Û) = K · Û − f(Û) (4.216)

and employ a damped Newton-Raphson iteration scheme, which updates the current solution
vector Û at each iteration step by

Ûn+1 = Ûn − α T−1
n (Ûn) ·G(Ûn), (4.217)

where

T n(Ûn) =
∂G

∂Û

∣∣∣∣
Ûn

= K − ∂f(Û )

∂Û

∣∣∣∣∣
Ûn

(4.218)

is the tangent stiffness matrix at time step n, and α is a numerical damping parameter. This
damping parameter is very important as the absolute value and sign functions in the internal
force vector indeed impede a fast and unproblematic convergence. It is therefore convenient
to choose a high numerical damping parameter (e.g. α = 1) during the first few iterations
and then decrease α to values below 1%. The progress of each iteration step is measured by
means of the norm of the residue, i.e.

∆Ûn =‖K · Ûn − f(Ûn) ‖ . (4.219)

The numerical procedure can be automated as to adjust the damping parameter α according
to the quality of each iteration step. If the norm decreases, α can be kept constant (or even
be increased); if the norm increases or hardly decreases, α should be decreased.

In order to avoid numerical problems arising from the (numerically) inconvenient sign
and absolute value functions in the internal force vector f int, we consider the following
representation of the sign function

sign(x) = lim
υ→∞

2

1 + e−υx
− 1, (4.220)

from which we reduce a numerical approximation of the sign function, the sigmoid function
sigυ(x),

sign(x) ∼= sigυ(x) =
2

1 + e−υx
− 1, (4.221)

with υ ∈ R being sufficiently big (and positive). Hence, it follows that the derivative of the
sign function can be approximated by

sign′(x) ∼= sig′υ(x) = sigυ(x) (1− sigυ(x)) . (4.222)

Besides, the sigmoid function can be employed to numerically approximate the absolute
value function:

|x| ∼= absυ(x) = x · sigυ(x). (4.223)

The quality of the approximate functions with increasing υ is demonstrated in Figure 4.34.
Computational results in subsequent Sections were usually obtained from a value of υ =
2.5 · 105.
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Figure 4.34: Quality of the approximate functions for sign and absolute value functions with
varying parameter υ.

The logarithmic energy form proposed by Berdichevsky (2006a) is well suited for the
analytical treatment. For a numerical solution scheme, however, this type of energy is rather
uncomfortable as it is not defined for ρ > ρs. A simple change by introducing the absolute
value so that Ψρ = kµ ln 1/ |1− ρ/ρs| will overcome this difficulty but bears a new and
even more risky disadvantage for numerical computations. The driving force Ψ,ρ is now de-
fined for ρ > ρs but it points into the wrong direction – once ρ > ρs, the driving force Ψ,ρ

will favor an even higher increase of ρ, which should be prohibited to grow larger than ρs.
For all these reasons let us introduce a new type of the energy of the dislocation network,
which is very similar to that of Berdichevsky (2006a) but allows for a safe numerical treat-
ment. We choose an energy which is identical to that of Berdichevsky (2006a) for small ρ
and only deviates as ρ approaches ρs:

Ψρ(ρ) = kµ

[
n∑
i=1

1

i

(
ρ

ρs

)i
+ ec(ρ/χρs−1) − e−c

]
(4.224)

or in the discrete version

Ψ̂ρ(b̂) = kµ

 n∑
i=1

1

i


∣∣∣1bN ∗ · b̂∣∣∣

ρs

i

+ e
c
(∣∣∣1bN∗·b̂

∣∣∣/χρs−1
)
− e−c

 , (4.225)

where n can be chosen according to the sought precision, c and χ are constants with c being
large and χ close to 1 but less than 1 (we commonly use n = 3, c = 90 and χ = 0.95),
and the last term simply ensures that Ψ̂ρ(0) = 0. Figure 4.35 illustrates the deviation of
the above approximation as compared to the exact energy form proposed by Berdichevsky
(2006a), Eq. (4.163). Graphics demonstrate the influence of all three parameters: the number
of Taylor terms n, and the two constant parameters c and χ.

To compute the vector of internal forces and the tangent stiffness matrix for the Newton-
Raphson iteration, we need the first and second derivative of the energy of the dislocation
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Figure 4.35: Approximate energy (4.224) with varying parameter c (while χ = 0.95 and
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compared to the exact form (4.163).

network which can easily be obtained as

∂Ψ̂ρ

∂b̂
=
kµ

bρs

 n∑
i=1


∣∣∣1bN ∗ · b̂∣∣∣

ρs

i−1

+
c

χ
e
c
(∣∣∣1bN∗·b̂

∣∣∣/χρs−1
) · sig(1

b
N ∗ · b̂)N ∗,

(4.226)

∂2Ψ̂ρ

(∂b̂)2
=

kµ

(bρs)2

ρs
 n∑
i=1


∣∣∣1bN ∗ · b̂∣∣∣

ρs

i−1

+
c

χ
e
c
(∣∣∣1bN∗·b̂

∣∣∣/χρs−1
) · sig′(1

b
N ∗ · b̂)

+

 n∑
i=2

(i− 1)


∣∣∣1bN ∗ · b̂∣∣∣

ρs

i−2

+
c2

χ2
e
c
(∣∣∣1bN∗·b̂

∣∣∣/χρs−1
) · sig2(1

b
N ∗ · b̂)

N ∗ ⊗N ∗.
(4.227)

The latter derivative is required for the tangent stiffness matrix during the Newton-Raphson
iteration.

With all above definitions we can finally employ the algorithm summarized in Algorithm
3 to compute the solution of Û .
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Algorithm 3: Numerical scheme to compute displacements and plastic distortion.

(a) compute the global stiffness matrixK

(b) for each load step, update the applied boundary conditions

(c) enforce boundary conditions by modifyingK and f

(d) for each iteration n

• compute the force vector f(Un)

• compute the tangent stiffness matrix T (Un)

• compute the residue ∆Un and its norm ‖∆Un‖
• if ‖∆Un‖ < ‖∆Un−1‖ then Un+1 = Un − αT−1f(Un), else α← 0.9α

• if ‖∆Un‖ < δtol then Un+1 = Un − αT−1 · f(Un), exit

4.8.2 Finite Element Formulation at Non-Zero Dissipation

In case dissipation due to dislocation motion is no longer negligible, the minimization of the
free energy is replaced by a flow rule. For classical plasticity theories Biot’s equation may
be employed. For gradient-type plasticity we must modify Biot’s equation like in previous
Sections and solve the variational flow rule

δΨ

δβ
+
∂∆

∂β̇
= 0. (4.228)

Let us show that this differential equation can be replaced by a minimization problem for
small time increments, similarly to the derivation shown in Chapter 2.5.1 for the evolution
of microstructures in finite plasticity by following Ortiz and Repetto (1999) and Carstensen
et al. (2002). We assume that the above variational form of Biot’s equation may again be
replaced by the minimization problem∫

Ω

[
Ψ̇ + ∆

]
dv → min, (4.229)

where in rate-independent plasticity we can write

∆(β̇) = τcrit|β̇|. (4.230)

τcrit is the critical resolved shear stress and β̇ simply represents the rate of change of the
plastic distortion. In general, we have

∆ = ∆(β, β̇). (4.231)

Let us define the incremental energy

W (εn+1) = inf
βn+1

∫ tn+1

tn

∫
Ω

(
Ψ̇ + ∆

)
dv dt. (4.232)

so that the stress at time tn+1 is defined by

σn+1 =
∂W (εn+1)

∂ε
. (4.233)
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We rewrite Eq. (4.232) as

W (εn+1) = inf
β(x,t)

[∫
Ω

Ψ(ε, β,∇β)dv

∣∣∣∣tn+1

tn

+

∫
Ω

∫ tn+1

tn

∆(β, β̇) dt dv

]
, (4.234)

and minimize the term in brackets by computing the first variation which must vanish:∫
Ω

(
∂Ψ

∂β
δβ +

∂Ψ

∂∇β
· δ∇β

)
dv

∣∣∣∣tn+1

tn

+

∫
Ω

∫ tn+1

tn

(
∂∆

∂β̇
δβ̇ +

∂∆

∂β
δβ

)
dv dt = 0.

(4.235)

Integration by parts finally yields∫
Ω

(
∂Ψ

∂β
+ ∇ · ∂Ψ

∂∇β

)
δβ dv

∣∣∣∣tn+1

tn

+

∫
∂Ω

∂Ψ

∂∇β
· n δβ da

∣∣∣∣tn+1

tn

(4.236)

+

∫
Ω

∂∆

∂β̇
δβ dv

∣∣∣∣tn+1

tn

+

∫ tn+1

tn

∫
Ω

[
− d

dt

∂∆

∂β̇
+
∂∆

∂β

]
· δβ dv dt = 0

or ∫
Ω

(
δΨ

δβ
+
∂∆

∂β̇

)
δβ dv

∣∣∣∣tn+1

tn

+

∫
∂Ω

qβ δβ da

∣∣∣∣tn+1

tn

(4.237)

+

∫ tn+1

tn

∫
Ω

[
− d

dt

∂∆

∂β̇
+
∂∆

∂β

]
δβ dv dt = 0,

where

qβ =
∂Ψ

∂∇β
· n (4.238)

is a driving force of the plastic distortion on the boundary ∂Ω. There are two distinct cases
where the integral involving qβ vanishes (and these are the only ones considered in the
sequel). Firstly, if the value of β is known on the entire boundary ∂Ω (as e.g. in a grain whose
boundaries do not allow dislocation transmission) then δβ vanishes on the boundary and the
integral term drops. Secondly, if β is not generally known on the boundary, but if periodic
boundary conditions are enforced (e.g. for homogenization problems), the plastic distortion
and hence its variation is periodic on the boundary whereas forces qβ are antiperiodic on the
boundary. Therefore, the boundary integral also vanishes. In both cases the above equation
reduces to∫

Ω

(
δΨ

δβ
+
∂∆

∂β̇

)
δβ dv

∣∣∣∣tn+1

tn

+

∫ tn+1

tn

∫
Ω

[
− d

dt

∂∆

∂β̇
+
∂∆

∂β

]
δβ dv dt = 0. (4.239)

As this equation must hold for arbitrary variations δβ, we see that, in the limit of an
infinitesimal time increment ∆t = tn+1 − tn and with δβ(tn) = 0, the state of the internal
variable field β at time t = tn+1 is obtained from

δΨ

δβ
+
∂∆

∂β̇
= 0. (4.240)

This is equivalent to Biot’s equation (4.228). The minimizing path β(x, t) inside the time
interval must satisfy the Euler equation

− d

dt

∂∆

∂β̇
+
∂∆

∂β
= 0, (4.241)
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which is identically fulfilled for homogeneous dissipation potentials ∆ of degree 1 as those
considered here.

For the specific problem considered here, the minimum principle then requires that∫
Ω

(
Ψ̇ + ∆

)
dv → min (4.242)

where minimization with respect to the rate of the internal (plastic) variables is implied.

Based on the finite element discretization, we know that the plastic distortion and displa-
cement field are approximated by

u(x) = N (x) · û, β(x) = Ñ (x) · b̂, (4.243)

so that (4.242) transforms into∫
Ω

(
δΨ

δb̂
· ˙̂
b+ τcrit|Ñ ·

˙̂
b|
)

dv → min . (4.244)

Furthermore, in a time-discrete setting we approximate the rate for a small incremental time
step ∆t in an explicit manner by

˙̂
b ≈ 1

∆t
(b̂n+1 − b̂n), (4.245)

which allows for the formulation∫
Ω

(
δΨ

δb̂
· (b̂n+1 − b̂n) + τcrit|Ñ · (b̂n+1 − b̂n|)

)
dv → min . (4.246)

Variation with respect to the unknown vector b̂n+1 yields∫
Ω

(
δΨ

δb̂
+ τcrit sign

[
Ñ · (b̂n+1 − b̂n)

]
Ñ

)
dv · δb̂n+1 = 0. (4.247)

By including the elastic variables also (displacements discretized at nodes), the total va-
riational problem reduces to a set of two equilibrium conditions, one macroscopic condition
from minimizing the total energy potential with respect to the elastic variables and one mi-
crostructural equilibrium condition for the evolution of the internal variables:∫

Ω

δΨ

δd
dv = 0, (4.248)

∫
Ω

[
δΨ

δb
+ τcrit sign

[
Ñ · (bn+1 − bn)

]]
dv = 0, (4.249)

where the last term in the latter condition is different from the formulation at zero dissipa-
tion. The first macroscopic equilibrium condition is the same as in (4.197). Replacing the
microstructural equilibrium condition (4.198) by (4.249), one can again solve the minimi-
zation problem numerically by employing Algorithm 3.
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Figure 4.36: Equilibrium configuration of the plastic distortion and the dislocation density
in a plane-constrained simple shear test of a square single crystal (side length
200µm) at γ = 3% with a single active slip system under (a) ϕ = 30◦, (b)
ϕ = 60◦, (c) ϕ = 20◦, (d) ϕ = 140◦.
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Figure 4.37: Equilibrium configuration of the plastic distortion and the dislocation density
in a plane-constrained compression test of a square single crystal (side length
200µm) at γ = 1% with a single active slip system under (a) ϕ = 30◦, (b)
ϕ = 60◦, (c) ϕ = 160◦.
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4.9 Numerical Examples

All computations in this Section are for aluminum with the material parameters summarized
in Table 4.2. For better visibility of the deformed shape, deformations in all graphics are ma-
gnified by a factor of 2. Graphics illustrate the plastic distortion β, the stress distribution and
the dislocation density ρ (usually on a logarithmic scale to display the dislocation density
over a wider range). All computations were carried out using the finite element code FEAP
(Zienkiewicz and Taylor, 2005).

Figure 4.36 illustrates the plastic distortion β and the dislocation density ρ in a single
crystal of square shape during a plane-constrained simple shear test (shear strain γ = 3%).
Figure 4.37 shows analogous images for a constrained compression test of a square sin-
gle crystal. In both Figures the crystal is assumed to be rigidly constrained, i.e. the plastic
distortion must vanish on the boundary (β = 0 on the entire boundary) and displacements
on all boundaries are prescribed as well (with L the width and h the height of the crys-
tal): u(x, y = 0) = v(x, y = 0) = 0, u(x, y = h) = γh, v(x, y = h) = εh, and
v(x = 0, y) = v(x = L, y) = 0, u(x = 0, y) = u(x = L, y) = γy. Graphics demon-
strate results for different slip system orientations (defined by the in-plane angle ϕ of the
slip direction s with the x-axis). Dislocations pile up at the impenetrable boundaries but, as
an interesting issue, do not leave the central part of the crystal completely dislocation-free:
In the interior of the crystal dislocations arrange in specific patterns depending on the slip
system orientation and on the crystal geometry, giving rise to substructures of dislocations
within grains. The formation of such substructures can also be interpreted as the formation
of subgrain boundaries as has been observed in polycrystalline aluminum and iron, see e.g.
(Liu et al., 2002; Hansen et al., 2001, 2008). It has been argued (Liu et al., 2002) that such
subgrains can – under continued plastic deformation – transform into smaller grains yiel-
ding a collective grain refinement. Severe plastic deformation as e.g. during equal channel
angular pressing (Le and Kochmann, 2009) can hence be utilized to produce smaller grains
which, in turn, give rise to excellent yield strength. Here, dislocations arrange within the
grain to accommodate a state of lowest energy and yield subgrain structures. Note that the
specific form of the substructure considerably depends on the choice of material parame-
ters, the active slip system and the particular type of the chosen defect energy. It becomes
apparent from these examples here and many other numerical experiments on single- and
polycrystals that the orientation of these subgrain dislocation walls almost always coincides
with the directions s andm of the active slip system.

As the dislocation density requires spatial derivatives of discretized field variables, it is
important to check the mesh-independence of solutions. Figure 4.38 compares the plastic
distortion in a square single crystal during a simple shear test as obtained from the present
approach with meshes of 900, 3600 and 6400 elements. The results indicate that, of course,
the mesh refinement affects the correct resolution of β (in particular at the boundaries where
dislocations pile up in thin boundaries whose resolution is constrained by the element size),
but the qualitative solution remains almost unaltered and appears mesh-independent.

material E (GPa) ν b (Å) ρs (m−2) k

aluminum 70.0 0.3 2.5 4 · 1014 4 · 10−4

Table 4.2: Material characteristics
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Figure 4.38: Comparison of β obtained from different meshes (900, 3600 and 6400 bilinear
elements) for a square single crystal (side length 200µm) with a single active
slip system (ϕ = 30◦) at overall strain γ = 3%.

Having outlined the numerical method for general two-dimensional problems, we can
check the accuracy of the analytical solutions for the one-dimensional bicrystal problems
presented in Sections 4.1-4.6 as well as in the literature (Le and Sembiring, 2008a) for
single crystals. Figure 4.39 illustrates numerical results for the plastic distortion in a single
crystal deformed in shear (shear strain γ) and extension (tensile strain ε) for various slip
system orientations. The crystal’s horizontal in-plane extension is assumed very large such
that periodic boundary conditions are enforced on the side boundaries: u(x = 0, y) =
u(L, y) and β(x = 0, y) = β(x = L, y) where L is the horizontal width of the body
under investigation. The top and bottom boundaries rigidly prescribe displacements and are
impenetrable for dislocations: u(x, y = 0) = 0, β(x, y = 0) = 0, u(x, y = h) = γh,
v(x, y = h) = εh, β(x, y = h) = 0, with h the height of the crystal. The corresponding
curves compare the plastic distortion in the central cross-section of the displayed crystal
to the analytical solution (Le and Sembiring, 2008a). Figure 4.40 displays the analogous
results for a deformed bicrystal with symmetric active slip systems in comparison with the
results from Sections 4.1-4.6. Both the plastic distortion and the boundary layer thickness
show a high degree of coincidence in all examples.

Having outlined the accuracy of the numerical results and the mesh-independence of the
present method, we can investigate several examples to illustrate the specific effects of the
continuum-dislocation approach chosen here. One of the crucial differences from classical
plasticity theories is the model-inherent length scale which is characterized in particular by
the saturated dislocation density and which gives rise to observable size effects typical of
problems of crystal plasticity. Figure 4.42 illustrates the plastic distortion and the distributi-
on of the shear stress σ12 in a square single crystal during a plane-constrained simple shear
test (as before, fixed strain γ = 1%) for a given active slip system and with varying crystal
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Figure 4.39: Equilibrium configuration of the plastic distortion in a long thin strip (height
40µm) under uniaxial extension (ε = 0.5%) or simple shear (γ = 0.5%) with
different active slip systems; comparison of β in the middle cross-section from
numerics (dotted line) and from Chapter 4.1 (solid line).
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Figure 4.40: Equilibrium configuration of the plastic distortion in a long thin strip (height
40µm) under uniaxial extension (ε = 1.0%) or simple shear (γ = 1.0%) with
different active slip systems; comparison of β in the middle cross-section from
numerics (dotted line) and from Chapter 4.1 (solid line).

size (for comparison all crystals are magnified to appear of the same final size). Except for
the crystal size all other parameters remain unaltered. As the side length a of the crystal de-
creases from 2 cm to 30µm, dislocations are forced to concentrate in a smaller volume and
hence more rapidly reach the saturation state. With decreasing crystal size, the relative size
of the boundary layers of dislocations increases, the plastic distortion is more severely cons-
trained and, as a consequence, the shear stress increases due to dislocation back-stresses.

Recording the shear stress in the center of the crystal at different crystal sizes (represented
by the side length a) results in Figure 4.41, which clearly indicates a size-dependence of the
shear stress of the type

σ12 = σ0 +
cσ
a
, (4.250)

where σ0 and cσ are constant parameters. Curve-fitting reveals that σ0 agrees well with
the solution of an unconstrained (infinitely extended) single crystal with the given material
properties. For large dimensions the second term in (4.250) is negligible: the difference of
the shear stress e.g. for a = 2 mm and for a = 2 cm vanishes. With decreasing size the
second term in (4.250) dominates giving rise to the size effect.

The size effect is not only observed for completely constrained single crystals. In the
following we investigate results from models for infinitely extended thin strips as well as for
(simple) polycrystals. Figure 4.43 illustrates the model of an infinitely extended thin film of
homogeneous material. Periodic boundary conditions are enforced as u(x = 0, y) = u(x =
a, y) and β(x = 0, y) = β(x = a, y). The top and bottom displacement boundary conditions
are rigidly enforced. First, we investigate the thin strip subject to a simple shear deformation
(u(x, y = 0) = 0, u(x, y = h) = γh, v(x, y = h) = 0). For a total strain of γ = 2% we
measure the shear force F at the top boundary and normalize F with respect to the out-of-
plane thickness t of the strip and the width a of the part under investigation. F/ta can also
be interpreted as the mean shear stress σxy in the crystal. Then we analyze the compressive
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Figure 4.41: Relation between the size of a constrained single crystal under simple shear
and the shear stress in the central part of the crystal (for ϕ = 30◦ and γ =
1%). Triangles result from FE results of specimens with varying dimensions;
the fitted curve (dashed line) is (200.9878 MPa + 0.4160 MPa/mm · a−1). The
analytical solution of the shear stress for an unconstrained single-slip crystal is
201.92 MPa.

behavior of the thin strip by prescribing u(x, y = 0) = 0, v(x, y = h) = 0, v(x, y = h) =
εh. For a total strain of ε = −2%, the compressive force F at the top boundary is normalized
as before so that F/ta represents the average compressive strain σyy in the crystal. Results
for the mean stresses vs. the film height are summarized in Figures 4.47. To illustrate the
behavior of Eq. (4.250), the normalized force is plotted versus the inverse crystal height in
all plots in Figures 4.47 and 4.48.

Figure 4.44 exemplarily explains the microstructural differences giving rise to the incre-
ased stresses on smaller scales. As the size decreases, the gradient of the plastic distortion,
hence the dislocation density and as a consequence the microstructure energy rapidly incre-
ase. Consequently, dislocations can no longer be confined to relatively thin boundary layers
at the crystal boundaries but pile up, extending more and more into the crystal interior. Fi-
gure 4.44 illustrates the distribution of the dislocation density in the thin film of Figure 4.43
with changing crystal height. As the crystal height decreases, the (relative) boundary layer
thickness as well as the dislocation density in the crystal interior increase.

Figure 4.45 illustrates another example of a thin strip but with non-uniform slip systems.
The (periodically continued) strip consists of three grains with equal dimensions (d = h and
a = 3h) but different active slip systems characterized by the anglesϕi. Grain boundaries are
again assumed mobile but impenetrable for dislocations. The strip is subjected to a simple
shear deformation (γ = 1%) and the mean shear force F/ta is recorded. Figure 4.48a shows
the curve of F/ta vs. the inverse crystal height h.

Finally, Figure 4.46 sketches a rough model of a polycrystal. We assume grains of a sym-
metric hexagonal shape which are arranged in a periodic manner. Considering a thin strip,
we now enforce periodic boundary conditions of the type u(x, y = 0) = 0, u(x, y = h) =
γh, v(x, y = 0) = v(x, y = h) = 0, β(x, y = 0) = β(x, y = h) = 0, u(0, y) = u(a, y),
β(0, y) = β(a, y). The model consists of four different grains with different orientations of
the active slip systems as indicated in Figure 4.46. We record the total shear force F at the
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Figure 4.42: Equilibrium configuration of the plastic distortion and corresponding shear
stress distribution under simple shear (γ = 1%) in a square crystal with ϕ =
30◦ and different crystal sizes (side length a): (a) a = 2 cm, (b) a = 0.15 mm,
(c) a = 40µm, (d) a = 30µm.
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Figure 4.43: Model of a single-crystal thin strip with one active slip system. Periodic boun-
dary conditions are enforced as u(x = 0, y) = u(x = a, y) and β(x = 0, y) =
β(x = a, y).
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Figure 4.44: Dislocation distribution in a sheared thin strip (periodic boundary conditions)
at strain γ = 3% with ϕ = 35◦ for various heights of the crystal.

top boundary and normalize F with respect to the thickness t and the height h = a. The
resulting curve F/ta versus the side length h is plotted in Figure 4.48b.

The summary of all results obtained from the infinitely extended thin films and the hexagonal-
grain polycrystal model are compared in Figures 4.47 and 4.48. Curves are fitted to a law
of the type f(σ) = σ0 + cσ/h

n. Table 4.3 provides the fitted values of constants σ0, cσ and
n for all four examples. Interestingly, both thin film curves (Figures 4.47a and b) as well as
the three-grain thin film curve (Figure 4.48a) display an approximately linear behavior with
0.998 ≤ n ≤ 1.083. This inverse relation has already been observed in Section 4.2-4.6.2
(see the brief summary in Section 4.7). The curve of results from the polycrystal model
with hexagonal grains follows – to a very high accuracy – a law with n = 0.639, which
considerably deviates from the typical inverse law observed before. This result is of parti-
cular interest as the well-known Hall-Petch relation (for not too small grain sizes) predicts
n = 0.5. The change from the single to a polycrystal with a large number of grains and ran-
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Figure 4.45: Model of a simple polycrystalline thin strip with one active slip system within
each of the three grains. Periodic boundary conditions are enforced as u(x =
0, y) = u(x = a, y) and β(x = 0, y) = β(x = a, y). Results are computed
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active slip system within each grain. Periodic boundary conditions require that
u(x = 0, y) = u(x = a, y) and β(x = 0, y) = β(x = a, y).

domly distributed slip system orientations might be responsible for the decreasing value of
n. Present research investigates values of n as the number of grains and hence of represented
slip system orientations in the representative unit cell is increased.

4.10 Discussion and Conclusions

In this Chapter a continuum dislocation theory was applied in order to model the plastic
deformation of crystalline solids and to determine the dislocation distribution in strained
crystals. We adopted the formulation proposed by Berdichevsky (2006a,b) for the energy of
the microstructure, which exhibits a saturation behavior by penalizing dislocation densities
higher than a material constant (the saturated dislocation density ρs). This particular form
of the dislocation energy gives rise to size effects which became obvious throughout all
analyses presented in the present Chapter.
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Figure 4.47: Normalized force per thickness and unit length versus inverse size of the body
under investigation (ϕ = 35◦). Corresponding values for the fitted curves are
summarized in Table 4.3. The analytical solution for an unconstrained crystal
for F/ta yields a) −1409.14 MPa, b) 475.47 MPa.

First, the simple model of a thin-strip bicrystal consisting of two perfectly bonded sin-
gle crystals was investigated with both crystals deforming in single-slip with different slip
system orientations. Analytical solutions for the cases of plane-constrained shear and un-
iaxial extension were presented both for zero and for non-zero dissipation, assuming sym-
metric active slip systems. A combination of shear and extension at non-zero dissipation
was shown to result in a linear superposition of results from independent loading cases. The
general case of unsymmetric slip systems as well as of mixed shear and extension at zero
and non-zero dissipation was studied by employing a numerical approach. For all examp-
les, solutions comprised the evolution of the plastic distortion, the dislocation density and
the stress-strain curve. In particular, we quantitatively described the pile-up of dislocations
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Figure 4.48: Normalized force per thickness and unit length versus inverse size of polycry-
stalline models. Corresponding values for the fitted curves are summarized in
Table 4.3.

at the boundaries and interfaces of the crystals and the resulting stress-strain behavior. Of
course, these analytical examples presented here are simplistic and only take into account a
few characteristics of actual material behavior. However, an analytical solution is a rare find
in the field of highly non-linear dislocation mechanics and the present model allows for neat
closed-form analytical solutions in all of the fundamental problems investigated (despite its
high degree of non-linearity and its complex formulation). Therefore, these basic problems
were reported first, where many characteristics could be discussed.

These analytical examples indicate that there exists an energetic threshold for the nuclea-
tion of dislocations, which depends on the orientation of the slip system and is inversely
proportional to the height of the bicrystal. Thus, a size effect becomes apparent as the yield
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example Figure σ0 (MPa) cσ (MPa/mm) n

compression Fig. 4.47a 1412.84 0.10817 1.08228
shear Fig. 4.47b 475.97 0.04078 1.03664

shear (3 grains) Fig. 4.48a 381.75 0.22939 0.99884
shear (polycrystal) Fig. 4.48b 57.35 12.04603 0.63879

Table 4.3: Curve-fitting parameters from Figures 4.47 and 4.47.

stress of the bicrystal (in tension, shear, and a combination of both) shows an inverse propor-
tionality to the height of the bicrystal. Above this threshold stress dislocations are nucleated
and pile up at the crystal boundaries, forming thin layers of concentrated dislocations at the
boundaries and leaving the central part of the single crystals dislocation free. This behavior
has also been reported from discrete dislocation dynamics. Indeed, a comparison of results
from this approach with those from discrete dislocation dynamics for a single crystal strip –
both qualitatively and quantitatively – shows good agreement (Le and Sembiring, 2008a,b).
With decreasing crystal size dislocation boundary layers grow into the crystal, thus resul-
ting in higher stresses as well. Furthermore, we observed a work-hardening section of the
stress-strain curve which also depends on the orientation of the slip system and the height of
the bicrystal. At non-zero dissipation the stress-strain curve turns into a classical hysteresis
loop exhibiting the Bauschinger effect.

Then, the simple model was enhanced by deriving a variational formulation to be solved
by a finite element approach. At zero dissipation this method numerically minimizes the
total stored energy with respect to the unknown displacement field as well as the field of the
plastic distortion. At non-zero dissipation the variational formulation originally proposed
by Ortiz and Repetto (1999) was extended to allow for an analogous description for strain-
gradient models. As a consequence, we can analyze the distribution of dislocations, of the
plastic distortion and of the stresses in plane-strain crystals with one active slip system with
arbitrary two-dimensional loading at zero and non-zero dissipation. A comparison of nume-
rical results with the analytical solution for infinitely extended single crystals and bicrystals
shows a very good agreement of the solutions. Interesting features of the numerical results
predominantly comprise two important observations:

As a first important result, we again observe underlying size effects of solutions. With
decreasing crystal size dislocation pile-ups at the grain boundaries extend more into the cry-
stal interior, resulting in higher stresses. For single crystals the same inverse proportionality
as before was observed. The well-known Hall-Petch relation predicts a dependence of the
type σ ∝ 1/d0.5 where d is the grain diameter. Results presented here deviate from this law.
This difference might be overcome by admitting the penetration of grain boundaries by dis-
locations at sufficiently high stress concentrations. Also, size effects of the present inverse
type have been reported for various problems involving thin metal strips, see e.g. (Nicola et
al., 2003). Interestingly, simple models of a polycrystal (consisting of periodically repeated
hexagonal grains) show a dependence of σ ∝ 1/dn where n ranges between 0.5 and 1, i.e.
between the Hall-Petch law and the inverse proportionality observed for single crystals. It
is theorized that with increasing number of grains considered (and hence with increasing
number of slip system orientations represented in the polycrystal) the size effect may tend
towards the Hall-Petch law.

The second interesting observation from numerical simulations is the formation of dislo-
cation subgrain structures as energy minimizers. Depending on the grain geometry, the ap-
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plied loads, the slip system orientation and the material properties, dislocations do not only
pile up at grain boundaries (where the plastic distortion is forced to vanish) but may also
form particular structures within single crystals. In most examples dislocations concentrate
along bands of higher plastic slip within crystals. Note that the formation of such dislocati-
on substructures is not the result of a loss of convexity (as in this case the energy clearly is
convex) and would not occur as a homogeneous laminate pattern in an infinitely extended or
periodically repeated crystal. Instead, these dislocation substructures form heterogeneously
as a consequence of the given boundary conditions of vanishing plastic distortion on the
grain boundaries. Therefore, the observed subgrain structures highly depend on the grain
geometry and also the size of the grain. Hansen et al. (2001, 2008) argued that the formati-
on of such subgrain dislocation structures is an important mechanism for grain refinement
during severe plastic deformation. The subgrains can – under continued plastic deformation
– transform into independent smaller grains with commonly low-angle boundaries. Intere-
stingly, substructures tend to form in grains of medium size whereas small grains highly
prohibit the formation of such subgrain boundaries. This is in good qualitative agreement
with experimental results, which indicate the formation of such subgrain cell structures to
achieve fine-grained materials where, in turn, fine grain interiors are almost dislocation-free.
The present investigation hints at a possible mechanism for the initiation of such subgrain
structures.

Of course, the present model is subject to several limitations to be addressed in the fu-
ture. In particular, the numerical procedure can easily be generalized to three-dimensional
problems, and it can be modified to account for two active slip systems. In the latter case
it is important to specify the interaction of dislocations on different slip systems (Le and
Sembiring, 2008b; Kochmann and Le, 2009b). Furthermore, the examples considered here
accounted for impenetrable grain boundaries. As a next step, dislocations can be allowed to
travel through grain boundaries if the stress concentration at the boundary due to the dislo-
cation pile-up reaches a critical value. Alternatively, grain boundaries can be understood as
low-angle boundaries whose energy can be accounted for e.g. in terms of a Read-Shockley
formulation. This way the defect energy must be expanded by the energy of the grain boun-
daries while the plastic distortion is no longer restricted on the grain boundaries. In this
context, it is also important to analyze the influence of free surfaces where the surface ener-
gy should limit the number of dislocations leaving the crystal. Finally, the present model
is restricted to small strains. An extension to finite strains would allow for the computati-
on of practical examples with higher strains, e.g. indentation experiments which exhibit a
size effect as well, or equal channel angular extrusion processes which result in ultrafine-
grained materials. As the free energy in finite elasto-plasticity can no longer be presumed
to be convex (see Section 3), minimizers can be modeled as laminate microstructures whe-
re the influence of dislocations (in particular at the laminate phase boundaries) is of major
importance and can now, at least in principle, be modeled.
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5 A Continuum Model for the Initiation and Evolution of
Deformation Twins

5.1 Introduction

Slip and twinning are the major deformation modes which accommodate a change of sha-
pe under the action of applied tractions or displacements. Deformation twins have been
reported to occur especially in b.c.c., h.c.p. and lower symmetry metals and alloys but al-
so in many f.c.c. metals and alloys with low stacking-fault energy, or other intermetallic
compounds as well as in geological materials such as calcite or quartz. Twinning becomes
particularly important in metals with only a limited number of slip systems, as it can operate
to provide the five slip systems required to satisfy the criterion for a general slip deforma-
tion. Deformation twinning basically divides the originally uniform single crystal into two
volumetric parts – a parent phase (with unaltered crystal lattice) and a twin phase (with
a different crystal lattice orientation). Both phases normally occur in the form of lamellar
structures where a bicrystal consisting of neighboring parent and twin phase is commonly
referred to as a twin. The twin lattice can be generated either by a rotation of the original
crystal lattice by 180◦ about some axis (mode I) or by reflection in some plane (mode II)
so that in both cases – when joint with the undistorted parent phase – an unfaulted single
crystal is formed, which exhibits a twin boundary with coincident lattice positions at the
interface. This topic is closely related to martensitic phase transformations and the observed
effect of transformation induced plasticity (TRIP). In this Chapter, however, we will limit
our analysis to the effects of twinning induced plasticity (TWIP).

The formation of deformation twins has a significant impact on the macroscopic stress-
strain response. The evolution of twins provides TWIP alloys with excellent hardening beha-
vior (Allain et al., 2004), allowing for higher stresses and larger strains than in common f.c.c.
or b.c.c. metals. As a special characteristic, the onset of twinning, i.e. the rapid nucleation of
deformation twins, often gives rise to a load drop in the stress-strain behavior (Christian and
Mahajan, 1995). The increase of strength and work hardening during microstructure refine-
ment by twinning in manganese steels or other TWIP-alloys is theorized to result from the
dislocation pile-ups near the twin boundaries (raising the boundary energy) and the related
size-effects. Experiments on single crystals have shown that particularly f.c.c. metals nor-
mally do not twin before appreciable plastic deformation by dislocation slip has occurred,
while e.g. b.c.c. metals often exhibit deformation twinning even in the elastic region before
the onset of macroscopic yielding. It is, however, well accepted that twinning in metals is
often accompanied or preceded by microslip and that the formation of deformation twins
is initiated by pre-existing dislocation configurations which dissociate into twin boundary
structures. Furthermore, it is believed that the finite boundary energies accompanying the
pile-up of dislocations limit the refinement of microstructure and hence are responsible for
the formation of discrete twin patterns.

In this Chapter we develop a micro-mechanical model to describe the initiation and evo-
lution of deformation twins in metals and alloys by employing a continuum dislocation
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Figure 5.1: Microstructural twin patterns form under applied loads.

approach. We follow the strategy presented in the preceding Chapter, and we adopt the
logarithmic energy formulation for the continuum dislocation theory, as proposed by Ber-
dichevsky (2006b). A new ingredient of this theory compared to the previous Chapter is
the so-called twinning shear produced by the existing dislocations in the already active slip
system, which plays a similar role as Bain’s strain in the theory of martensitic phase transfor-
mations, see e.g. (Bhattacharya, 2003). This twinning shear followed by a rotation enables
the initially homogeneous crystal to form the twin phase from the parent phase. The un-
derlying mechanism of twin formation is closely related to that of Bullough (1957), who
employed a decomposition of the deformation into shear and rotation. The introduction of
the twinning shear into the energy of the twin renders the energy multi-welled and non-
convex. It can be shown by standard variational calculus that, in a certain range of straining,
a mixing of parent and twin phase is energetically more preferable and the volume frac-
tion of the twin phase has a finite value at the onset of deformation twinning. This finite
jump provides space (or mean free path) for the subsequent dislocation pile-up within the
twin phase. In spite of the dislocation pile-up in the twin phase and in the parent phase,
the formation of the twin phase does not lead to hardening of the material but rather to a
load drop in the stress-strain curve, until the transition from parent to twin phase is com-
pleted and the material hardens again. The load-drop can be explained by the spontaneous
formation and subsequent increase of the volume fraction of the twin phase near the second
minimum of the energy which considerably lowers the total energy of the material. We also
consider the evolution of deformation twins when dissipation cannot be neglected. In this
case the dissipation potential should also include the dissipation due to the motion of twin
boundaries. The stress-strain curve is shown to be irreversible and exhibits the hysteresis be-
havior typically characterizing dissipative systems. The influence of temperature, strain-rate
or microstructural characteristics such as grain size or stacking fault energy on the onset of
twinning were investigated e.g. by Meyers et al. (1995). In this Chapter, however, we limit
ourselves to a rate-independent, isothermal, dislocation-based description of the origin and
evolution of deformation twins.

5.2 Plane-Constrained Shear of Twins

Without going into detail about the lamellar twin structure, let us first consider a single
crystal under plane-constrained shear. This problem is closely related to that presented in
Section 4.4 where the plane-constrained shear problem of a bicrystal was investigated. In
contrast to that analysis, we here assume varying volume fractions of twin and parent phase,
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Figure 5.2: Schematic of the model crystal with one active slip system (s,m) and the forma-
tion of deformation twin by a twinning shear through movement of dislocations
to the twin boundary followed by a rigid rotation.

which is modeled as a varying height ratio of the two perfectly-bonded single crystals. The
analysis will hence follow the same line of reasoning outlined in Section 4.4.

Our model in this Chapter consists of a homogeneous crystal in form of a thin strip. Let
the cross-section of the strip be the same as before, i.e. a rectangle of width a and height h,
0 ≤ x ≤ a, 0 ≤ y ≤ h. The crystal is subject to a plane-constrained shear deformation in a
hard device enforcing on its upper and lower sides the displacements

u(0) = 0, v(0) = 0, u(h) = γh, v(h) = 0, (5.1)

where u(y) and v(y) are the longitudinal and transverse displacements, respectively, with
γ being the overall shear strain. First, we assume that the thickness of the strip in the z-
direction L is large and the width a is much greater than the height h (L � a � h) to
neglect end effects and to have the stresses and strains depending only on one variable y in
the central part of the strip.

For the plane-strain state, the in-plane components of the strain tensor read

εxx = 0, εxy = εyx =
1

2
u,y, εyy = v,y. (5.2)

If the overall shear strain γ is sufficiently small, then the crystal deforms elastically and
u = γy, v = 0 everywhere in the strip.

If γ exceeds some critical threshold, then edge dislocations may appear to reduce the cry-
stal’s energy. We assume that the crystal is initially uniform with only one active slip system,
with the slip direction (or the direction of the Burgers vector) s = (cosϕ, sinϕ, 0)T perpen-
dicular to the z-axis and inclined at an angle ϕ with the x-axis, and the dislocation lines par-
allel to the z-axis. The normal vector to the slip plane is given bym = (− sinϕ, cosϕ, 0)T .
Of course, one may wish to account for at least two independent slip systems to model the
physical reality, especially as twinning and cross-slip are very well-known to be interacting
mechanisms. However, to further simplify the analysis we shall limit our consideration to
only one active slip system. Therefore, we have for the plastic distortion βij = βsimj , and
we may assume that β also depends on y only: β = β(y) (translational invariance).
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When loading the initially uniform single crystal, edge dislocations are nucleated along
the given slip lines and accumulate upon further straining. As γ increases further, it might
by energetically more preferable to form the twin phase by a twinning shear followed by
a rigid rotation as depicted in Figure 5.2. Let the volume fraction of the twin phase be
s, while the volume fraction of the parent phase be 1 − s. For simplicity, we first limit our
analysis to only one twin with the parent phase in the lower portion and the twin phase in the
upper portion of the crystal (the order of phases does not qualitatively change results). The
twinning shear is realized by the motion of already existing edge dislocations along slip lines
to the twin boundary leaving the crystal again dislocation- and stress-free. The subsequent
rigid rotation of the twin phase does not change the energy of the crystal but changes the
existing slip system of the parent phase (sl,ml) with angle ϕl into the new slip system
(su,mu) of the twin phase with angle ϕu. From symmetry it follows that ϕu = −ϕl = ϕ.

Upon further straining the plastic distortion can be additively decomposed into

βij(y) =

{
βslim

l
j for 0 < y < h(1− s),

βsuim
u
j + βts

l
im

l
j + ωij for h(1− s) < y < h,

(5.3)

with βt denoting the constant twinning shear and ωij being the constant skew-symmetric
rotation tensor. This additive split of the plastic distortion is a good approximation for small
twinning shear and small rotation.

Because of the prescribed displacements (5.1) dislocations cannot penetrate the bounda-
ries y = 0 and y = h, therefore

β(0) = β(h) = 0. (5.4)

Furthermore, dislocations cannot penetrate the twin boundary either because the neighbo-
ring crystal does not admit the same slip system, so

β (h(1− s)) = 0. (5.5)

This assumption, again, is a simplification as effects such as dislocation emission, boundary
sliding or boundary diffusion are not accounted for.

The in-plane components of the plastic strain tensor εpij = 1
2
(βij + βji) read

εpxx = −1

2
β sin 2ϕ− 1

2
βT sin 2ϕl, εpxy =

1

2
β cos 2ϕ+

1

2
βT cos 2ϕl,

εpyy =
1

2
β sin 2ϕ+

1

2
βT sin 2ϕl, (5.6)

with the following piecewise-defined functions defined in the upper and lower part of the
crystal:

[β(y), ϕ, βT ] =

{
[βu(y), ϕu, βt] , for h(1− s) < y < h,

[βl(y), ϕl, 0] , for 0 < y < h(1− s).
(5.7)

As we intend to investigate deformation twinning, we assume the rotation of the upper part
such that the active slip systems after rotation are symmetric with respect to the interface
(ϕu = −ϕl = ϕ). A rather simple geometric analysis shows that in this case the twinning
shear is given by

βt = −2 cotϕ. (5.8)
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The described mechanism of twin formation is closely related to that of Bullough (1957),
who proposed to accommodate deformation twinning by the same mechanism but with the
restriction that βt produces a shear of the parent crystal lattice by multiples of the Burgers’
vector in each slip plane onto a stress-free reflected twin lattice. This description was argued
to have only little physical significance due to the rather unrealistically high amount of
dislocations required to form the high-angle tilt boundary. Here, we adopt Bullough’s formal
decomposition but assume only a minor rotation by a few degrees to create a low-angle
phase boundary and to produce twin structures with alternating slip orientations deviating
only by a small angle. This leads to a small twinning shear as observed e.g. by Reed-Hill
and Abbashian (1994).

With (5.2) and (5.6) we obtain the in-plane components of the elastic strain tensor which
follows from εeij = εij − εpij ,

εexx =
1

2
(β sin 2ϕ+ βT sin 2ϕl), εexy =

1

2
(u,y − β cos 2ϕ− βT cos 2ϕl),

εeyy = v,y −
1

2
(β sin 2ϕ+ βT sin 2ϕl). (5.9)

As β depends only on y, there are two non-zero components of Nye’s dislocation den-
sity tensor αij = εjklβil,k (Nye, 1953), with εjkl the permutation symbol, namely, αxz =
β,y sinϕ cosϕ and αyz = β,y sin2 ϕ (see also the previous Chapter). Thus, the resultant
Burgers’ vector of all dislocations, whose lines cut the area perpendicular to the z-axis, is
parallel to the slip direction s. The scalar dislocation density equals

ρ =
1

b
|β,y sinϕ|, (5.10)

where b is the magnitude of the Burgers’ vector. Note that we do not include a contribution
to the dislocation density from the twinning shear βt as well as from the rigid rotation due
to the following reason. The gradient of piecewise constant βT and the piecewise constant
rotation do not produce a non-zero dislocation density within each part of the crystal but
may produce a surface dislocation density arising from their jumps at the twin boundary,
which would enter a surface energy. However, we consider metals and alloys exhibiting a
low stacking fault energy (hence favoring deformation twinning) so that we may neglect this
surface energy contribution.

Assuming that the crystal is elastically isotropic with equal elastic moduli, we write for
the energy per unit volume (Berdichevsky, 2006a,b)

Ψ(εeij, αij) =
1

2
λ (εeii)

2 + µεeijε
e
ij + µk ln

1

1− |β,y sinϕ|
bρs

, (5.11)

where µ and λ are the Lamé elastic moduli, ρs is the saturated dislocation density and k
a material constant. The logarithmic nature of the energy of the dislocation network was
extensively discussed in Section 4.1.3. Note that the constant rigid rotation ωij does not
influence the bulk energy of the lattice with dislocations.

The first and second term of (5.11) describe the elastic energy, the last term represents the
energy of the dislocation network. With (5.7), (5.9) and (5.11) the total energy functional
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becomes

I(u, v, β, s) = aL

∫ h

0

[
1
2
λv2

,y + 1
2
µ(u,y − β cos 2ϕ− βT cos 2ϕl)

2

+ 1
4
µ(β sin 2ϕ+ βT sin 2ϕl)

2 + µ(v,y − 1
2
β sin 2ϕ− 1

2
βT sin 2ϕl)

2

+ µk ln
1

1− |β,y sinϕ|
bρs

]
dy. (5.12)

As already mentioned, TWIP-alloys have rather low stacking fault energies, so the contri-
bution of surface energy to this functional can be neglected.

With this total stored energy at hand, we can apply those thermodynamic principles out-
lined in Section 2.5.1 in order to model the evolution of all variables involved for a given
deformation path. First, functional (5.12) can be reduced to a functional depending on β(y)
and s only by application of the principle of minimum potential energy. Indeed, by first
fixing β(y) and s and taking the variation of (5.12) with respect to u and v (i.e. by minimi-
zation with respect to the displacement field), we derive the equilibrium equations

µ (u,y − β cos 2ϕ− βT cos 2ϕl),y = 0,

[(λ+ 2µ) v,y − µ (β sin 2ϕ+ βT sin 2ϕl)],y = 0.
(5.13)

Integrating these equations and applying boundary conditions (5.1) as well as continuity of
displacements and tractions at the twin boundary y = h(1− s), we obtain

u,y = γ + β cos 2ϕ− 〈β cos 2ϕ〉+ βT cos 2ϕl − sβt cos 2ϕl,

v,y = κ (β sin 2ϕ− 〈β sin 2ϕ〉+ βT sin 2ϕl − sβt sin 2ϕl),
(5.14)

where, as before, κ = µ
λ+2µ

and 〈·〉 = 1
h

∫ h
0
· dy.

Substitution of (5.14) into (5.12) leads to the energy functional in terms of β and s

I(β, s) = aLµ

∫ h

0

[
1
2
(1−κ) (β sin 2ϕ+ βT sin 2ϕl)

2+ 1
2
κ (〈β sin 2ϕ〉+ sβt sin 2ϕl)

2

+ 1
2

(γ − 〈β cos 2ϕ〉 − sβt cos 2ϕl)
2 + k ln

1

1− |β,y sinϕ|
bρs

]
dy. (5.15)

For small up to moderate dislocation densities the logarithmic term in (5.15) may be
approximated by keeping the leading two terms of a Taylor expansion only, i.e.

ln
1

1− |β,y sinϕ|
bρs

∼=
|β,y sinϕ|

bρs
+

1

2

β2
,y sin2 ϕ

(bρs)2
, (5.16)

so that

I(β, s) = aLµ

∫ h

0

[
1
2
(1−κ) (β sin 2ϕ+ βT sin 2ϕl)

2+ 1
2
κ (〈β sin 2ϕ〉+ sβt sin 2ϕl)

2

+ 1
2

(γ − 〈β cos 2ϕ〉 − sβt cos 2ϕl)
2 + k

(
|β,y sinϕ|

bρs
+

1

2

β2
,y sin2 ϕ

(bρs)2

)]
dy. (5.17)

We shall further deal with this functional only.
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Next, we need to provide a framework for the determination of the internal (plastic varia-
bles), i.e. the plastic distortion β. If dissipation is negligible, then, following the principle of
minimum potential energy (2.222), the plastic distortion β and the volume fraction s mini-
mize (5.17) under the constraints (5.4) and (5.5) as well as 0 ≤ s ≤ 1. As before, the overall
shear strain γ is regarded as a given function of time (control parameter), so one can study
the evolution of the dislocation network and also of volume fractions, which accompany the
change of γ.

If the resistance to dislocation and twin boundary motion cannot be neglected, then the
energy minimization must be replaced by the Biot equation (2.246), modified for the parti-
cular situation here, viz. dissipation does not only occur due to changes of the plastic slips
(γ̇ 6= 0) but also as a consequence of twin boundary motion (ṡ 6= 0). Thus, we arrive at the
variational equation (Sedov, 1968; Carstensen et al., 2002)

δI + aL

∫ h

0

∂∆p

∂β̇
δβ dy + aL

∂∆t

∂ṡ
δs = 0, (5.18)

where in case of rate-independent plasticity

∆p = τcrit|β̇|, ∆t = µ εt|ṡ|. (5.19)

These functions are the dissipation potentials due to plastic slip and motion of the twin
boundary, respectively, with τcrit denoting the critical resolved shear stress, εt a material
constant related to motion of the twin boundary, and the dot above a scalar function denoting
its time derivative. Note that unlike for the energy minimization, where we neglected the
surface energy of the twin boundary due to a low stacking fault energy, we here account for
dissipation due to twin boundary motion because every such motion is accompanied by the
collective motion of accumulated dislocations giving rise to dissipation.

Thus, from Eq. (5.18) we derive the evolution equations for β̇ 6= 0 and ṡ 6= 0

∂∆p

∂β̇
= −δγΨ

δβ
,

∂∆t

∂ṡ
= −δγΨ

δs
. (5.20)

Note that the first equation corresponds exactly to (2.246) while the second is the correspon-
ding counterpart for twin boundary motion. The right hand side of the flow rule (5.20)1 is
the negative variational derivative of the energy with respect to β

κ = −δγΨ
δβ

= −∂Ψ

∂β
− ∂

∂y

∂Ψ

∂β,y
. (5.21)

Similarly, the right hand side of (5.20)2 is the negative variational derivative of the energy
with respect to s, which we denote by κs. Its computation will be presented in subsequent
Sections. For β̇ = 0, the flow rule (5.20)1 does not have to be satisfied: It is replaced by the
equation β̇ = 0. Analogously, for ṡ = 0 we have instead of (5.20)2 the evolution equation
ṡ = 0. This execption is often formulated in terms of differential inclusions, see e.g. Section
2.5.1.

5.3 Energy Minimizers and the Initiation of Slip and Twinning

5.3.1 Deformation of the Crystal at Zero Dissipation

First, we investigate the plastic deformation of the model twin at zero dissipation and thereby
estimate the onset of plastic flow and of twinning. The crystal is initially uniform and beha-
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ves elastically. From experimental evidence and also from the problem formulation above
we conclude two competing mechanisms of the microstructure to reduce the crystal’s energy
upon further straining. On the one hand, macroscopic plastic slip may occur throughout the
entire crystal along the principal slip system (s,m) and we should find a distinct threshold
for the first occurrence of β 6= 0 (onset of plastic flow). On the other hand, we can expect a
twinning threshold where deformation twins begin to grow into the material, characterized
by s > 0. Both thresholds will be determined from energy minimization.

If the resistance to dislocation and twin boundary motion can be neglected (and hence the
energy dissipation is zero), the determination of β(y) and s reduces to the minimization of
the total energy (5.17). Let us make use of the same dimensionless quantities introduced in
the previous Chapter, i.e.

E =
bρs
aLµ
I, ξ = bρsy. (5.22)

The dimensionless variable ξ changes on the interval (0, H) where H = bρsh. Functional
(5.17) reduces to

E(β, s) =

∫ H

0

[
1
2
(1− κ) (β sin 2ϕ+ βT sin 2ϕl)

2 + 1
2
κ (〈β sin 2ϕ〉+ sβt sin 2ϕl)

2

+ 1
2

(γ − 〈β cos 2ϕ〉 − sβt cos 2ϕl)
2 + k(|β′ sinϕ|+ 1

2
β′2 sin2 ϕ)

]
dξ, (5.23)

where the prime denotes differentiation with respect to ξ. We minimize functional (5.23)
among functions satisfying the boundary conditions

β(0) = β(h(1− s)) = β(h) = 0. (5.24)

The results obtained in (Berdichevsky and Le, 2007; Le and Sembiring, 2008a,b) and
in the previous Chapter, as well as from discrete dislocation simulations (Needleman and
Van der Giessen, 2001; Shu et al., 2001), suggest to seek the minimizer in the form of
thin boundary layers of concentrated dislocations, leaving the central part of each crystal
dislocation-free. Thus, we write

β(ξ) =



βl(ξ), for ξ ∈ (0, ll),

βlm, for ξ ∈ (ll, H(1− s)− ll),
βl(H(1− s)− ξ), for ξ ∈ (H(1− s)− ll, H(1− s)),
βu(ξ), for ξ ∈ (H(1− s), H(1− s) + lu),

βum, for ξ ∈ (H(1− s) + lu, H − lu),
βu(H(2− s)− ξ), for ξ ∈ (H − lu, H),

(5.25)

where βlm and βum are constants, ll and lu are unknown constant boundary layer thicknesses
with 0 ≤ ll ≤ 1

2
H(1 − s) and 0 ≤ lu ≤ 1

2
Hs, and βl(ll) = βlm and accordingly βu(H(1 −

s) + lu) = βum. We must find functions βl(ξ), βu(ξ) and constants βlm, βum, ll and lu.

Varying the above energy functional (5.23) with respect to βl and βu from (5.25), we
arrive at the following set of differential equations:

(1− κ)βl sin
2 2ϕl + κ (〈β sin 2ϕ〉+ sβt sin 2ϕl) sin 2ϕl

− (γ − 〈β cos 2ϕ〉 − sβt cos 2ϕl) cos 2ϕl − kβ′′l sin2 ϕl = 0, (5.26)
(1− κ) (βu sin 2ϕu + βt sin 2ϕl) sin 2ϕu + κ (〈β sin 2ϕ〉+ sβt sin 2ϕl) sin 2ϕu

− (γ − 〈β cos 2ϕ〉 − sβt cos 2ϕl) cos 2ϕu − kβ′′u sin2 ϕu = 0. (5.27)
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on (0, ll) and (H(1− s), H(1− s) + lu), respectively, where βl(ξ) and βu(ξ) are subject to
the boundary conditions

βl(0) = 0, βl(ll) = βlm, βu(H(1− s)) = 0, βu(H(1− s) + lu) = βum. (5.28)

Variation of (5.23) with respect to ll and lu from (5.25) gives two additional boundary con-
ditions at ξ = ll and ξ = H(1− s) + lu, respectively,

β′l(ll) = 0, β′u(H(1− s) + lu) = 0, (5.29)

which means that the dislocation density must be continuous. Varying the energy functional
with respect to βlm and βum from (5.25) and applying ϕu = −ϕl = ϕ, we obtain conditions
for βlm at ξ = ll and βum at ξ = H(1− s) + lu,

2k |sinϕ| sign(βl) + (H(1− s)− 2ll)
[
−γ cos 2ϕ+ (1− κ)βlm sin2 2ϕ

−κ sin 2ϕ (〈β sin 2ϕ〉 − sβt sin 2ϕ) + cos 2ϕ (〈β cos 2ϕ〉+ sβt cos 2ϕ)] = 0 (5.30)

and

2k |sinϕ| sign(βu) + (Hs− 2lu)
[
−γ cos 2ϕ+ (1− κ) sin2 2ϕ(βum − βt)

+κ sin 2ϕ (〈β sin 2ϕ〉 − sβt sin 2ϕ) + cos 2ϕ (〈β cos 2ϕ〉+ sβt cos 2ϕ)] = 0,
(5.31)

respectively. Finally, variation of (5.23) with respect to s yields the following additional
condition to determine s

βt [cos 2ϕ (〈β cos 2ϕ〉 − γ)− κ sin 2ϕ〈β sin 2ϕ〉] + 1
2
(1− κ)β2

t sin2 2ϕ

+ sβ2
t (cos2 2ϕ+ κ sin2 2ϕ)− 1

2
k sin2 ϕ

[
β′2u (H(1− s))− β′2l (H(1− s))

]
= 0,
(5.32)

where the latter term stems from the Weierstrass-Erdmann corner condition (Gelfand and
Fomin, 2000) and characterizes the jump of the dislocation density at the moving interface.

Eqs. (5.26), (5.28) and (5.29) yield the solution

βl(ξ) = βlp [1− cosh ηξ + tanh ηll sinh ηξ] , (5.33)
βu(ξ) = βup [1− cosh η(ξ −H(1− s)) + tanh ηlu sinh η(ξ −H(1− s))] , (5.34)

with

η = 2

√
1− κ
k
|cosϕ| (5.35)

and

βlp =
cos 2ϕ (γ − 〈β cos 2ϕ〉) + κ sin 2ϕ〈β sin 2ϕ〉 − sβt(cos2 2ϕ+ κ sin2 2ϕ)

(1− κ) sin2 2ϕ
,

βup =
cos 2ϕ (γ − 〈β cos 2ϕ〉)− κ sin 2ϕ〈β sin 2ϕ〉 − sβt(cos2 2ϕ− κ sin2 2ϕ)

(1− κ) sin2 2ϕ
+βt

(5.36)
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Figure 5.3: Condensed energy Econd(s, γ) = minE(βl, βu, ll, lu) versus overall shear strain
γ for various volume fractions s (left) with a magnification (right) for small va-
lues of s and small strains (clearly indicating that s = 0 minimizes the energy in
that region). The actual energy with evolving s follows the path of least energy;
computed with ϕ = 87◦, h = 100µm and material parameters from Table 5.1.

along with βim = βip(1− 1/ cosh ηli), i = l, u. The average quantities can be obtained as

〈β sin 2ϕ〉 =
sin 2ϕ

H
[−2βlp(ll − tanh(ηll)/η)− βlm (H(1− s)− 2ll)

2βup(lu − tanh(ηlu)/η) + βum (Hs− 2ll)] , (5.37)

〈β cos 2ϕ〉 =
cos 2ϕ

H
[2βlp(ll − tanh(ηll)/η) + βlm (H(1− s)− 2ll)

+2βup(lu − tanh(ηlu)/η) + βum (Hs− 2ll)] . (5.38)

Applying solutions (5.33) and (5.34) together with (5.36) and (5.37) to the energy functional
(5.23), we can write the total energy of the crystal as (not written out here for brevity)

E = E(βlp, βup, ll, lu, s). (5.39)

To find the solution, we must find the global minimum of the total energy with respect to
these quantities with additional constraints

0 ≤ s ≤ 1, 0 ≤ ll ≤ 1
2
H(1− s), 0 ≤ lu ≤ 1

2
Hs. (5.40)

5.3.2 Onset of Twinning and Number of Twins

As we intend to model the origin of twinning and the evolution of deformation twins, one
of the key objectives is to find the onset and the evolution of the volume fraction s > 0
in the present model. Figure 5.3 illustrates the total energy as a function of the shear strain
γ for fixed values of 0 ≤ s ≤ 1 and the minimizing path, along which s changes from

Material µ (GPa) ν b (Å) ρs (m−2) k

Aluminum 26.3 0.33 2.5 1.834 · 1015 0.000156

Table 5.1: Material characteristics
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0 to 1. Note that s does not increase continuously from 0 but eventually jumps from 0 to
some finite value as soon as the twinning threshold is reached. The right image shows a
magnification for small strains, which clearly indicates that s = 0 (untwinned parent phase)
exhibits minimal energy for considerable strains.

Figure 5.4 shows the evolution of all model parameters obtained from numerical minimi-
zation of (5.39) as functions of the shear strain γ. Results show that plastic slip occurs first
at a rather small strain (in this example γen ≈ 6.83 · 10−5) and dislocations are nucleated
and accumulate in the uniform crystal. Since this threshold occurs before the onset of twin-
ning, the threshold value is the same as for a single crystal, which was presented by Le and
Sembiring (2008a):

γen =
2k sinϕ

hbρs |cos 2ϕ|
. (5.41)

Upon further straining twinning becomes energetically favorable and s jumps to some
finite value (here at γtw ≈ 0.030). From this point on, all existing dislocations are consu-
med by the newly created twin phase, the parent part of the crystal remains elastic whereas
the twin crystal starts to nucleate and accumulate dislocations. Note that these results are
only valid if no dissipation due to dislocation motion occurs. In physical reality, dislocation
motion is required to nucleate and arrange the twin boundary such that not all dislocations
are consumed by the newly created twin phase, but both phases exhibit plastic deformation.
This behavior can be observed in Section 5.4 where the dissipation is no longer neglected.
Thanks to the finite jump of s, free space (or mean free path) is provided for the immedia-
te dislocation pile-up in the twin phase. Further straining results in a steady increase of s,
until finally s = 1, i.e. the parent phase vanishes, and the whole crystal exhibits dislocation
pile-up along the twin slip system.

So far, we have only considered the volume fractions of parent and twin phases but never
specified the number of twins in the crystal. Now, let us qualitatively estimate the number
of twins that arise during deformation twinning in the present model. Assuming n twins of
equal height and volume ratio within each crystal, a rather simple analysis shows that, with
the constraints

β(0) = β(H(i− s)/n) = β(Hi/n) = 0, i = 1, · · · , n, (5.42)

and the ansatz

β(ξ) = β(ξ−H(i−1)/n), for H(i−1)/n ≤ ξ ≤ Hi/n, i = 1, · · · , n, (5.43)

we arrive at the very same solution for β given in (5.33), (5.34) if we replace H by H/n,
i.e. we obtain a periodic deformation of the crystal where each single twin exhibits the same
deformation computed above.

To estimate the number of twins, we extend the total energy of the crystal by also taking
into account the energy stored at the side surfaces of the crystal (i.e. at x = 0 and x = a),
where the following (rigid) boundary conditions are assumed

u(0, ξ) = u(a, ξ) = γξ, v(0, ξ) = v(a, ξ) = 0. (5.44)

Prescribing displacements on these surfaces in a hard device is equivalent to placing the
model crystal between ideally rigid neighboring grains of a polycrystal. Thus, these surfaces
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Figure 5.4: Results from minimizing the total energy functional: (a) total energy, (b) volume
fraction s, (c) βlp, (d) βup, (e) ll and (f) lu, as functions of the overall shear strain
γ. Computed with ϕ = 87◦, h = 100µm and material properties from Table 5.1.

cannot deform in the twin-like zig-zag pattern resulting from the above model. At each of the
two surfaces a thin boundary layer of thickness d is deformed elastically to accommodate the
rigid boundaries (see Figure 5.5). Furthermore, we can divide the inner energy of the crystal
into energy of the strained layers Elay = µ(a − 2d)L E/bρs (with E the dimensionless
energy calculated above) and surface energy of the twin boundaries Esf . Before, we did
not account for this surface energy due to the low stacking fault energy. Here, however,
as the number of twins and hence the number of twin boundaries may become quite high,
we include this surface energy simply as Esf = 2nΓ(a − 2d)L with Γ as the constant
surface energy of the twin boundaries. Now, we have two competing contributions to the
total crystal energy which consists of inner energy Ein = Esf + Elay stored in the central
part of the crystal, as described above, and the total elastic energy of the side boundary
layers Ebd (grey boundary regions in Figure 5.5).

As the number of twins n increases, Ein increases due to the rising number of twin boun-
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Figure 5.5: Schematic illustrating the boundary regions (thickness δ) with stored elastic
energy to accommodate rigid side boundaries (for n = 4 and n = 8).

daries with stress concentrations, and simultaneously Ebd decreases with decreasing zig-
zagging of the boundary. For a rather qualitative picture, let us take the evolution of volume
ratio s as from Figure 5.4, obtain the boundary zig-zag patterns as a function of n and fi-
nally minimize the normalized total energy Etot = Ein + Ebd with respect to the number
of twins n. We thereby need to make an assumption about the boundary layer thickness d,
which we assume to be of the same order of magnitude as the depth of the zig-zag structure;
the exact value is unimportant for a qualitative estimate. Numerical results for evolving n
as a function of γ via the outlined method are shown in Figure 5.6 with Γ = 0.044J/m2

which is the coherent twin boundaries energy of copper (Hirth and Lothe, 1982). At the
onset of twinning the number of twins to minimize the total energy exhibits a rather high
value (here, n ≈ 100), then decreases and increases again to a local maximum towards the
middle of twin formation, and finally moderately decreasing until n approaches 1 as the
crystal detwins and s approaches 1. Note, however, that this result is sensitive to changes of
the surface energy of the twin boundary and other parameters.

0.025 0.05 0.075 0.125 0.15 0.175 0.20.01
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Figure 5.6: Evolution of the number of twins n with increasing overall shear strain γ. For
computations we used ϕ = 87◦, h = 100µm, a = h, Γ = 0.044 J/m2 and mate-
rial properties from Table 5.1; d is the triangle thickness of the side boundaries.
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merical values as above). Note the change of slope upon the onset of plastic
flow (point A) and the sharp load drop at the initiation of deformation twins
(point B). At point C the entire crystal has adopted the twin lattice and the again
uniform single crystal exhibits further hardening.

5.3.3 Stress-Strain Behavior at Zero Dissipation

To complete this Section, let us calculate the shear stress τ which is a measurable quantity.
The normalized shear stress becomes (with γen from (5.41))

τ

µ
=

{
γ, γ ≤ γen,

γ − (〈β〉+ sβt) cos 2ϕ, γ > γen.
(5.45)

Below the energetic threshold for the onset of plastic slip, the crystal behaves elastically.
Above this yield stress (point A in Figure 5.7) the crystal exhibits plastic flow. The second
term of (5.45) for γ > γen causes hardening due to dislocation pile-up. The same term is
also responsible for a load drop upon the initiation of deformation twinning at point B, and
a subsequent softening during the evolution of phases up to point C, as can clearly be seen
in Figure 5.7. The load drop and the subsequent softening behavior can be explained by the
spontaneous formation and subsequent increase of the volume fraction of the twin phase near
the second minimum of the energy, which considerably lowers the total energy of the crystal.
Since the stress is derivable from the energy of the crystal, the load drop and the softening
behavior become obvious. Note that upon unloading the crystal recovers reversibly along
the same stress-strain path, and all nucleated dislocation annihilate and deformation twins
vanish due to the absence of dissipation.

5.4 Plastic Deformation at Non-Zero Dissipation

5.4.1 Evolution of Plastic Distortion and Volume Fractions

Now that we have shown the existence of energetic thresholds for both plastic flow and
deformation twinning, we analyze the deformation of the model crystal at non-zero dissipa-
tion which gives a more realistic picture. If the resistance to dislocation motion (and hence
the dissipation of energy) cannot be neglected, the plastic distortion may evolve only if the
yield condition |κ| = τcrit is satisfied, the volume ratio s may only change if the condition
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|κs| = εsµ holds. If |κ| < τcrit or |κs| < εsµ, then β or s, respectively, is frozen and remains
unaltered.

Computing the variational derivative of (5.23), we derive from (5.20) the dimensionless
yield conditions for β in the parent and twin part of the crystal

|Ξl(γ)| =
∣∣(1− κ)βl sin

2 2ϕ− cos 2ϕ(γ − 〈β cos 2ϕ〉) (5.46)

−κ sin 2ϕ〈β sin 2ϕ〉+ sβt(cos2 2ϕ+ κ sin2 2ϕ)− kβ′′l sin2 ϕ
∣∣ = τcrit,l/µ,

|Ξu(γ)| =
∣∣(1− κ)(βu − βt) sin2 2ϕ− cos 2ϕ(γ − 〈β cos 2ϕ〉) (5.47)

+κ sin 2ϕ〈β sin 2ϕ〉+ sβt(cos2 2ϕ− κ sin2 2ϕ)− kβ′′u sin2 ϕ
∣∣ = τcrit,u/µ,

and the evolution equation for s

|Ξε(γ)| =
∣∣βt (cos 2ϕ(〈β cos 2ϕ〉 − γ)− κ〈β sin 2ϕ〉 sin 2ϕ) + 1

2
(1− κ)β2

t sin2 2ϕ

+ sβ2
t (cos2 2ϕ+ κ sin2 2ϕ)− 1

2
k sin2 ϕ

(
β′2u (H(1− s))− β′2l (H(1− s))

)∣∣ = εt.
(5.48)

We first analyze the behavior upon loading: Thanks to the symmetry of the slip systems
we may assume that τcrit,l = τcrit,u = τcrit. Let us introduce the critical shear strain for the
onset of plastic flow

γcr = τcrit/µ cos 2ϕ (5.49)

and the deviation of γ(t) from the critical strain,

γr = γ − γcr (5.50)

Furthermore, we must have ṡ ≥ 0, and β ≈ 0 at the beginning of loading. We hence simplify
(5.46), (5.47) and (5.48) to the set of evolution equations

Ξl(γr) = 0, Ξu(γr) = 0, Ξε(γ) = εt. (5.51)

The analogous problems solved in Chapter 4 suggest that the solution for βl and βu is
symmetric within each part, i.e.

βl(ξ) = βl(H(1− s)− ξ) forξ ∈ (1
2
H(1− s), H(1− s)), (5.52)

βu(ξ) = βu(H(2− s)− ξ) forξ ∈ (H − 1
2
Hs,H).

Functions βl(ξ) and βu(ξ) are determined from Eqs. (5.51)1,2 and the boundary conditions

βl(0) = 0, βu(H(1− s)) = 0, β′l(
1
2
H(1− s)) = 0, β′u(H − 1

2
Hs) = 0. (5.53)

The first and second conditions mean that dislocations cannot reach the boundary of the
regions because of the prescribed displacements. The third and fourth conditions follow
from the continuity of plastic distortion and the symmetry properties (5.52).

Eqs. (5.51) and (5.53) admit the solution

βl(ξ) = βlp
[
1− cosh ηξ + tanh(1

2
ηH(1− s)) sinh ηξ

]
, (5.54)

βu(ξ) = βup
[
1− cosh η(ξ −H(1− s)) + tanh(1

2
ηHs) sinh η(ξ −H(1− s))

]
,
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Figure 5.8: Qualitative solution for the plastic distortion β throughout the crystal.

with

η = 2

√
1− κ
k
|cosϕ| (5.55)

and

βlp =
cos 2ϕ (γr − 〈β cos 2ϕ〉) + κ sin 2ϕ〈β sin 2ϕ〉 − sβt(cos2 2ϕ+ κ sin2 2ϕ)

(1− κ) sin2 2ϕ
,

βup =
cos 2ϕ (γr − 〈β cos 2ϕ〉)− κ sin 2ϕ〈β sin 2ϕ〉 − sβt(cos2 2ϕ− κ sin2 2ϕ)

(1− κ) sin2 2ϕ
+βt.

(5.56)

The average quantities read

〈β sin 2ϕ〉 =
2 sin 2ϕ

H

[
−βlp(1

2
H(1− s)− tanh(1

2
ηH(1− s))/η)

+βup(
1
2
Hs− tanh(1

2
ηHs)/η)

]
, (5.57)

〈β cos 2ϕ〉 =
2 cos 2ϕ

H

[
βlp(

1
2
H(1− s)− tanh(1

2
ηH(1− s))/η)

+βup(
1
2
Hs− tanh(1

2
ηHs)/η)

]
. (5.58)

Figure 5.8 qualitatively sketches the plastic distortion within each part of the crystal,
which is of the same type as the solutions presented in Section 4.

Solving the above evolution equations is numerically cumbersome. Instead, we transform
the problem into a minimization problem, which can easily be solved by using standard ener-
gy minimization techniques. Therefore, we modify the total energy functional by removing
the linear term in β′ and adding an artificial term to obtain

E∗(β, s) =

∫ H

0

[
1
2
(1− κ) (β sin 2ϕ+ βT sin 2ϕl)

2 + 1
2
κ (〈β sin 2ϕ〉+ sβt sin 2ϕl)

2

+ 1
2

(γr − 〈β cos 2ϕ〉 − sβt cos 2ϕl)
2 + 1

2
kβ′2 sin2 ϕ + sεt

]
dξ. (5.59)

E∗(β, s) can be regarded as an accumulated energy functional for standard dissipative so-
lids, and it is simple to verify that the minimizer of E∗ automatically satisfies the evolution
equations, as they are the exact Euler equations thereof.



5.4 Plastic Deformation at Non-Zero Dissipation 191

0.1

-0.1

-0.2

0.2 0.30.1-0.1

�
up

�

B

F

G

C

D

H

0.3

t

�

-0.1
�*

�
*

B

F

G

C

D

-0.1 0.1 0.2 0.3

0.2

0.4

0.6

0.8

1
s

�
H

-0.1 0.1 0.2 0.3

-0.05

-0.025

0.05

0.075

0.1

�
lp

�A

B

D

C

F

G

H

D

H

(a) (b)

(c) (d)

Figure 5.9: Results from minimizing the total energy functional: (a) loading path γ(t), (b)
volume fraction s, (c) βlp, (d) βup as functions of the overall shear strain γ.
Computed with ϕ = 87◦, h = 100µm, εt = 5 · 10−5 and remaining material
properties from Table 5.1.

Applying solution (5.54) together with (5.56) and (5.57) to the energy functional (5.59),
we may write the total energy of the crystal as (again not written out here for brevity)

E∗ = E∗(βlp, βup, s). (5.60)

To find the solution, we must minimize the modified energy (5.60) with respect to these
quantities with the additional constraint 0 ≤ s ≤ 1.

After reaching γ∗ > γcr, we unload the crystal by decreasing γ. Since κ becomes smaller
than τcrit, βlp and βup do not change until, respectively,

−Ξl(γ) = γcr cos 2ϕ, −Ξu(γ) = γcr cos 2ϕ (5.61)

Analogously, the volume fraction s is frozen until

Ξε(γ) = −εt. (5.62)

From (5.61) we can see that plastic slip in both parts of the crystal begins when γ− (γ∗−
γcr) = −γcr, i.e. for γ = γ∗ − 2γcr. From that value of γ, the yield condition for β reads
κ = −τcrit (and accordingly for s) leading to the set of evolution equations

Ξl(γl) = 0, Ξu(γl) = 0, Ξε(γ) = −εt, (5.63)

where we use

γl = γ + γcr. (5.64)
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Comparing Eqs. (5.51) to (5.63), it becomes apparent that the solution during unloading can
be obtained in exactly the same manner as before, i.e. by minimizing (5.60) if we replace γr
by γl and εt by −εt in (5.59).

Figure 5.9 illustrates the results from numerical minimization. Graphs illustrate the evo-
lution of βlp and βup as well as s as functions of the overall shear strain γ for the closed
loading path shown (with γcr = γen from energy minimization, γ∗ = 0.3 and γ∗ = −0.1).
As for zero dissipation, the onset of twinning (point B) appears at higher strains than the
onset of plastic flow A, and it comes along with a finite jump of the twin phase volume
fraction. Note that here, in contrast to the case of zero dissipation, a large amount of existing
dislocations is consumed by the newly created twin phase (the plastic distortion βlp in the
parent phase exhibits an abrupt decrease at point B) but there are dislocations remaining in
the parent phase such that both parent and twin phase deform plastically. Eventually, the pla-
stic distortion and hence the dislocation density in the parent phase decrease to zero (point
C) as the parent phase vanishes. During unloading of the crystal we observe a similar beha-
vior: After initial elastic loading (section D-E) the crystal exhibits plastic flow until at point
F the crystal starts to detwin. Detwinning has completed at point G, which is followed by
further plastic flow of the now uniform parent phase. Finally, re-loading the crystal closes
the loading path.

5.4.2 Stress-Strain Behavior

It is interesting to calculate the shear stress τ which is a measurable quantity. During positive
loading beyond the critical shear strain we have for the normalized shear stress

τ

µ
= γcr + γr − (〈β〉+ sβt) cos 2ϕ. (5.65)

The second term of (5.65) causes hardening due to dislocation pile-up and a load drop at the
initiation of deformation twinning. Note that this stress-strain behavior also highly depends
on the number of twins n and the choice of εt.

During inverse loading when the yield conditions κ = −τcrit and κs = −Ks hold true,
Eq. (5.65) changes into

τ

µ
= −γcr + γl − (〈β〉+ sβt) cos 2ϕ, (5.66)

with the deviation γl = γ + γcr used instead of γr = γ − γcr.

Figure 5.10 shows the normalized shear stress versus shear strain curve for the given
straining path of Figure 5.9. The straight line O −A corresponds to purely elastic loading
with γ increasing from zero to γcr. Section A − B corresponds to plastic flow without
deformation twinning with κ = τcrit. Yielding begins at point A with the yield stress σy =
τcrit, and we can observe a work hardening section due to dislocation pile-up. The initiation
of twinning at point B is indicated by the characteristic sharp load drop (Christian and
Mahajan, 1995). During further straining volume fractions of parent and twin phases evolve
and the load remains almost constant (see the plateau in section B − C). Finally, at point
C we again observe a uniform crystal with s = 1, i.e. deformation twinning has ended and
the common hardening by dislocation pile-up occurs in the single crystal which has now
completely adopted the twin lattice. During unloading as γ decreases from γ∗ to γ∗ − 2γcr
(line D − E), the plastic distortion β and volume fraction s are frozen. As γ decreases
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Figure 5.10: Normalized shear stress versus shear strain curve for the loading path of Figu-
re 5.9. The onset of twinning upon loading is at point B and during unloading
at point F. Computed with ϕ = 87◦, h = 100µm, εt = 5 · 10−5 and remaining
material properties from Table 5.1.

further to γ∗, plastic yielding occurs with κ = −τcrit (section E − F) and further on with
κs = −Ks. The onset of detwinning during inverse loading is clearly indicated in the cycle
by the beginning stress plateau at point F, and detwinning ends at point G, where we observe
another minor load drop as soon as the twin phase vanishes. This stress plateau during
unloading is followed by hardening of the now uniform single crystal (section G − H).
Re-loading the uniform crystal closes the hysteresis loop.

5.5 Discussion and Conclusions

In this Chapter, we present a micro-mechanical model for the initiation and evolution of de-
formation twins, which exhibits several interesting features that need discussion in the con-
text of physical reality. The model is based on the accommodation of deformation twinning
by a combined mechanism of rotation and plastic twinning shear, comparable to Bullough’s
formal theory. Bullough introduced the idea of combining shear and rotation to form twins,
and he proposed to shear the parent lattice such that each slip system is rotated onto ano-
ther existing slip system, hence normally requiring a rather large rotation in f.c.c. and b.c.c.
metals. This large rotation can only be accommodated by very high dislocation concentra-
tions at the twin boundary, whose occurrence is physically doubtful. The twin boundary in
our model (where we adopt Bullough’s formal decomposition) is low-angle such that a few
dislocations along the boundary are sufficient to accommodate the rotation. Experimental
observations have shown that deformation twins (and also dislocation laminate structures)
indeed often arise with low boundary tilt angles (Baihe et al., 1990; Skaland et al., 1993),
which justifies the present approach.

Of course, the present model is simplistic in some sense and can be generalized in se-
veral directions, most of which are rather technical issues to be addressed at present and
in the future. First, multiple slip systems can be accounted for (Le and Sembiring, 2008a)
since cross-slip and dislocation pinning are important mechanisms in the context of twin
initiation. Then, the present model is limited to small rotation and small twinning shear
βt. A more general approach should formulate the problem using finite deformations and
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Figure 5.11: Twin formation during a closed loading cycle (part 1).
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Figure 5.14: Twin formation during a closed loading cycle (part 4). Graphics illustrate the
deformation of the overall crystal (with a rough sketch of the number of twins;
in some cases the number of twins is too high to be shown accurately), the
deformation of a single twin (parent phase below twin phase), the plastic dis-
tortion β and the normalized dislocation density α throughout the height of the
twin.

hence employing the usual multiplicative split of the deformation gradient as F = FeFp

and Fp = FβRFβt in the twin phase where Fβ = I + βs ⊗m and Fβt = I + βtsl ⊗ml

contain finite β and βt (which may be of the order of magnitude 1) and R performs the
rigid rotation. First results from this approach show a qualitatively good agreement of those
results presented here for small rotation ϕ (Homayonifar and Mosler, 2009). Finally, the
present model needs generalization to loading in three dimensions and can then be imple-
mented in modeling polycrystals. However, any such addition to this model will render the
solution very cumbersome and no longer allow for an analytical treatment like in the present
analysis.

Despite these shortcomings the present model exhibits several interesting qualitative fea-
tures to review in the following. We showed that there exist distinct energetic thresholds for
the onset of plastic flow and for the origin of deformation twinning (the so-called twinning
stress). The present analysis showed that (for those material properties chosen) plastic flow
can be expected to occur at rather low strains far before deformation twins arise (dependent
on the choice of ϕ and βt, among others). This is in good agreement with experimental evi-
dence showing that dislocations have to be nucleated first (see Mahajan (1972, 1975) and
Christian and Mahajan (1995)). Furthermore, we presented the evolution of the twin phase
volume fraction, which arises from a uniform single crystal and increases until finally the
entire crystal exhibits the twin lattice structure (i.e. the original slip system has been rotated
by a small angle 2(90◦ − ϕ)). Then, we investigated the stress-strain behavior of the model
crystal during twinning and observed, after an initial plastic hardening section, a large load
drop in the stress-strain curve as soon as the twin phase originates from the parent crystal.
Such load drops (followed by a stress plateau) have quite often been observed in experi-
ments in particular on single crystals and have been reported e.g. by Botta et al. (1988)
or Farrell and Evans (1965). In polycrystals such strong load drops are rather uncommon,
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which can be explained by the different grain orientations causing different twinning stres-
ses and hence resulting in a stress-strain behavior which is based on a homogenization of
the single crystal responses. The resultant stress-strain response can be considered to show
multiple small load drops during general hardening, as observed e.g. by Siedersleben and
Taylor (1989). Note that the changing number of twins n (as sketched in Section 5.3) will
also show an impact on the stress-strain behavior. We also showed a basic estimate of the
actual number of twins during deformation twinning. These results are only of qualitative
nature (in particular as they depend on many unknown parameters such as the twin boun-
dary surface energy or the thickness of the elastic side boundaries) but sketch a reasonable
picture of a large number of small twins upon the onset of deformation twinning, which then
coalesce to gradually decrease the number of twins. Finally, we presented the evolution of
deformation twins at non-zero dissipation clearly showing similar effects and in particular
a broad stress-strain hysteresis with sharp load drops at the onset of twinning and at the
end of detwinning. Note that the present model is based on ideal assumptions which allow
the crystal to form deformation twins during loading and to detwin upon unloading. This,
however, cannot always be observed experimentally.

Although most results show a very good qualitative agreement with experimental evi-
dence, a quantitative comparison cannot be presented at the present stage since many ma-
terial parameters in this model are still unknown. In the future, we will attack the problem
of generalizing this model to a more complex formulation and compare results to expe-
rimental findings. However, the qualitative results presented above justify the formulation
of the micro-mechanical model which is not based on phenomenological but on energetic
considerations.
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6 Conclusions and Outlook

In this thesis we investigated the origin and evolution of microstructures in crystalline so-
lids during elasto-plastic deformation. A review of the thermo-mechanical fundamentals
revealed the underlying thermodynamic principles which have been applied to predict the
formation and subsequent evolution of material microstructures and to model the resulting
mechanical behavior. Based upon these principles, we analyzed two major aspects of mi-
crostructure modeling, for each of which we then presented novel modeling techniques and
thereby determined microstructures which can indeed be observed experimentally.

Before leaving the field of classical plasticity theory, we investigated the origin of mi-
crostructures in finite elasto-plasticity. For a Neo-Hookean material we showed that the
non-(quasi)convexity of the free energy gives rise to small-scale fluctuations as minimizers
of the variational problem of minimum potential energy. Relaxing the energy and replacing
the energy density by an approximation of its rank-one-convex hull, we outlined an incre-
mental approach and a corresponding numerical algorithm to solve the variational problem.
As a result we observed the formation of laminate microstructures of first order, whose
characteristics depend on the choice of the active slip system and the material parameters
chosen. We investigated the influence of material hardening, of the slip system orientation,
of cyclic loading and of a second active slip system. In particular, we stressed the import-
ance of an incremental strategy which captures the already existing microstructure at the
beginning of each time step and the exact resultant amount of dissipation, as compared to
the solution obtained from the condensed energy for a single time step as often employed
in the scientific literature. Results comprised an extensive overview of the characteristics of
the resulting laminate microstructures in homogeneously deformed crystals.

Another important aspect of microstructure modeling arises from the necessity to account
for lattice defects in the constitutive framework since these defects, and here predominantly
dislocations, accommodate plastic deformation of the crystalline solid. Therefore, we left the
terrain of classical plasticity theory and outlined a formulation of a continuum dislocation
theory. The free energy density was extended by a term capturing the microstructural defect
energy where we adopted a logarithmic formulation: this form ensures a saturation effect
of dislocations, i.e. dislocations cannot appear at arbitrarily high local concentration in the
crystal, but the material exhibits a saturation density which must not be overcome. Based
on the continuum dislocation approach, we investigated several benchmark problems, now
employing a small-strain formulation to allow for analytical solutions for some of the highly
non-linear problems. First, we presented closed-form analytical solutions for the problems
of shear, extension and a combination of shear and extension at the example of thin film
bicrystals with one active slip system in each single crystal. The assumption of impenetrable
grain boundaries results in the pile-up of dislocations at the barriers and leads to related
stress concentrations. In particular, a size effect became apparent due to the limitations of
dislocation storage in the material, i.e. the yield stress and the hardening rate exhibit an
inverse proportionality to the height of the bicrystal.

We then demonstrated a variational formulation for the continuum dislocation model,
which allows for a numerical solution based on finite element techniques. Results from this
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approach comprised dislocation structures and related effects in single- and polycrystals.
First, numerical results confirmed the analytical solutions derived. Next, the inspection of
simple grain geometries with fully constrained grain boundaries revealed the origin of dis-
location substructures within single-crystal grains (depending on the grain size and forming
heterogeneously due to stress concentrations e.g. at boundaries). The formation of such
substructures during plastic deformation has often been argued to be responsible for the ex-
perimentally observed refinement of grains. Besides, we again reported obvious size effects
since stresses and other characteristics highly depend on the grain geometry. In particular,
we observed an inverse proportionality of the stresses to the characteristic grain side length.
For simple models of polycrystals, results deviated from the aforementioned inverse propor-
tionality and showed a dependence closer to the well-known Hall-Petch relation.

Finally, the continuum dislocation approach was modified to model the mechanism of
deformation twinning in a simple setting. The energy minimum of a strained single-crystal
is achieved by forming a lamellar structure with alternating symmetric lattice rotations. In
contrast to earlier analytical approaches to model deformation twinning, we enhanced the
theory by accounting for the dislocation structures within the lamellae: dislocations pile up
first in the untwinned single crystal, are then consumed to a major part by the forming twin
boundary and finally pile up within each parent- and twin-phase single crystal. The pile-up
at twin boundaries exhibits a typical size effect and hence limits the refinement of twins, i.e.
the actual number of twins is bounded. We determined energetic thresholds both for plastic
flow and for the onset of deformation twinning. Partially analytical solutions both for zero
and non-zero dissipation elucidated the typical mechanical behavior of TWIP crystals and
gave insight into some of the experimentally observed specifics. In particular, the stress-
strain hysteresis shows a characteristic sharp load drop at the onset of twinning, followed
by a stress plateau, during which the crystal gradually transforms from the original parent
lattice into the twin phase.

The models presented, of course, bear room for improvement. In particular, we would
like to draw the attention to the following issues which will be addressed in the future or are
subject of present research already. The incremental approach to model first-order laminates
at finite strains can be modified to include second-order laminates. The analytical set-up
is analogous and unproblematic. Unfortunately, the relaxation can no longer be performed
analytically such that the numerical effort will rise considerably. Further generalizations
include multiple general slip systems and compressible material behavior. Also, the outlined
method at the material point will be implemented into a finite element code to model actual
macroscopic problems and hence to allow for a comparison with experimental results.

The continuum dislocation approach is limited in terms of its modeling assumptions (most
of them made to allow for neat solutions since this is, to our knowledge, the first attempt
to make use of this type of energy formulation in modeling these specific dislocation struc-
tures). A refined model will consider multiple active slip systems to accommodate plastic
flow. Furthermore, we assumed the interfaces and boundaries of the crystals to be impe-
netrable for dislocations, which is a strong assumption. The transmission of dislocations
through grain and twin boundaries or the absorption of dislocations into the boundaries oc-
cur if the applied stress is sufficient to overcome the imposed energetic barrier. In a next
step, we will weaken the condition at the grain boundaries but not imposing any constraints
on the plastic slip but incorporating the energy of the low-angle grain boundaries into the
energetic framework. Our analysis was furthermore limited to plane problems. The outlined
variational formulation can easily be modified to three-dimensional problems. Also, this ap-
proach can be extended to finite deformations, a rather technical issue to be addressed in the
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future as well. As it is based on the same formulation, the same issues apply to the model
for deformation twinning. There, it would furthermore be beneficial to develop a variational
formulation to treat general macroscopic problems by employing a finite element approach.

Finally, the most auspicious possible generalization of those methods presented here con-
sists of a combination of both approaches. The extension of the continuum dislocation model
to finite strains will inevitably encounter a non-convex free energy, which can be relaxed so
that the energy minimum is accommodated by e.g. lamellar microstructures. The outlined
incremental formulation for the description of these microstructures can be employed but
must now be coupled to the continuum dislocation approach to account for the pile-up of
dislocations at interfaces of the lamellar structure. As a first step, the relaxation-based mo-
del presented here can be modified to account for dislocation energies at the boundaries
(as a function of the plastic slip at the boundary), which results in anisotropic hardening.
Research in this direction is already under way.

In conclusion, this thesis presented progress in several research directions of modeling
microstructures in solid mechanics. Unlike in many phenomenological plasticity theories,
the formation of lamellar patterns, of dislocation substructures and of deformation twins
was investigated based on thermo-mechanical considerations and micro-mechanical energe-
tic principles. Results comprise the prediction of microstructures and of the resulting me-
chanical behavior, which qualitatively match experimental observations very well.
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