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Abstract

This thesis deals in particular with the concept and application of the multiscale finite element method,
resulting from a combination of the homogenization theory and the theory of the finite elements. The
method is used to simulate the behavior of a macroscopic body with material properties defined by the
geometry and structure of a representative volume element and is suitable for cases where the ratio of
the characteristic lengths of the scales tends to zero. Accordingly, the terminology “macro” relates to the
problem of the real body simulation and “micro” to the problem considering the representative volume
element. The property making this method attractive, is that it can be applied to nonlinear composite
materials and finite deformations without greater difficulties. The work examines materials with periodic
and random microstructure, explaining three examples in detail: the calculation of the effective material
parameters of microporous media, the studying of deformations caused by solution-precipitation creep
and the simulation of the behavior of cancellous bone under ultrasonic excitation.

Zusammenfassung

Diese Arbeit behandelt insbesondere das Konzept und die Anwendung der Multiskalen Finite Elemente
Methode, welche eine Verbindung der Homogenisierungsmethode und der Theorie der Finiten Elemente
darstellt. Diese Methode wird benutzt, um das Verhalten eines makroskopischen Kérpers zu simulieren.
Dessen Materialeigenschaften werden durch Geometrie und Struktur eines repriisentativen Volumenele-
mentes bestimmt. Die Methode ist fiir die Fiille geeignet, in welchen das Verhiiltnis der charakteristischen
Liingen der Skalen gegen Null geht. Daher bezieht sich der Ausdruck “makro” auf das Problem der Simu-
lation des wirklichen Koérpers und "mikro™ auf das Problem, welches das repriisentative Volumenelement
betrifft. Die Vorteile dieser Methode liegen in der effizienten Anwendung fiir nichtlineare Verbundma-
terialien und finite Verformungen. Diese Arbeit behandelt Materialien mit periodischer bzw. zufilliger
Mikrostruktur. Hierbei werden drei Beispiele ausfithrlich erklirt: die Berechnung der effektiven Ma-
terialparameter fiir mikroporose Medien, die Analyse der Verformungen, die durch Losungs-Fillungs-
Kriechen verursacht werden, sowie die Simulation des Verhaltens einer schwammartigen Knochenstruk-
tur unter dem Einfluss von Ultraschallwellen.
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1 Introduction

In contrast to linear composite materials, which have already been well explored using many different
modeling methods, the modeling of nonlinear composite materials is a relatively new subject. Analytical
approaches to such materials are based on determining the bounds of the effective material parameters
using the energy functional of a comparison material, consisting of linear homogeneous material in the
simpler cases, and linear composite in more precise models. However, both of these approximations yield
solutions which are too complicated and only suitable for materials with a simple microstructure, so that
numerical methods often have to be used as a necessary alternative.

This thesis will mainly look at the concept and application of the multiscale finite element method, which
is used to simulate the behavior of a macroscopic body with material properties defined by the geometry
and structure of a representative volume element. The method is suitable for cases in which the ratio of
the characteristic lengths of the scales tends to zero, with the advantage that it can be used for nonlinear
materials and finite deformations without greater difficulties. The multiscale method and the alternative
solutions are presented in the thesis as follows.

e After a brief overview, the second chapter formulates the problem for different types of composite
materials with a detailed description of the most important solution procedures. All of the methods dis-
cussed here are based on the assumption of small deformations.

e The concept of the multiscale homogenization method is presented in the third chapter. A summary of
the basic quantities characteristic for the theory of finite deformations is followed by a definition of the
macroquantities dependent on the microquantities acting on the boundary of the representative volume
element using the concept of the volume average. Finally, an explanation for the transformation of Hill’s
macrohomogeneity condition and the derivation of the boundary conditions for the representative volume
element is provided.

¢ The fourth chapter considers a combination of the homogenization method and FEM. It compares the
singlescale and the multiscale formulation pointing out the differences in the interest of a clear presen-
tation. This is illustrated choosing two types of potential energy: the standard type dependent only on
deformation, and the mixed type dependent on deformation, pressure and effective volume change.

e The simulation of a microporous material is presented as a first example of applying multiscale FEM.
To this end, a representative volume element of square shape containing an elliptical pore is chosen; the
random structure is simulated by assuming that the orientation of the pores is different at each point of
the macrostructure. The matrix material is described by a mixed form of the energy potential and free
energy corresponding to the Neo-Hook material. The idea of the simulation is to follow the change in
effective material parameters with growing pore size.

o The sixth chapter looks at modeling solution-precipitation creep, which is a deformation process based
on the diffusion of the material particles within intercrystalline space. Although very slow, this process
can cause large deformation over an extended time period. Together with the preliminary results obtained
from the Taylor particle model, an explanation is provided for the simulation of polycrystals based on
FEM application, estimating the effective material parameters with multiscale FEM.

e The last example models the representative volume element of cancellous bone. These investigations
are motivated by the observation that during the process of osteoporosis the bone structure and its strength
may change significantly. As the representative volume element of this material contains a liquid phase,
a dynamic investigation of the sample and a problem formulation in the complex domain will be consid-
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ered.

e The thesis closes with a brief discussion of the results and conclusions.

The previous overview indicates that together with a presentation of the concept and the results of one
particular method the objective of this thesis is to provide information about the alternative procedures.
The intention is also to illustrate the importance of modeling composite materials. To this end, elucidating
examples typical for different research fields are elaborated.



2 Modeling of composite materials

Composite materials consist of material phases whose type, disposition and kind of bonding can differ
greatly. Even a small change in the type or concentration of constituent materials can yield a significant
improvement in overall properties, thus making this sort of materials especially attractive for investiga-
tion.

The first results in this field were obtained by Voigt [87] and Reuss [77] who proposed different expres-
sions for calculating the effective elasticity tensor of linear composites. These solutions are often used
even today, although introducing the idea of bounds, Hill [40] showed that these are just limiting cases
of possible effective elasticity tensors. Furthermore, Hashin and Shtrikman [36])-[38] developed a pro-
cedure providing more precise solutions. Their method is based on transforming the energy functional
of the original material for which the energy functional of a homogeneous comparison material is used.
Together with better results, this formulation provides a simpler calculation procedure than the standard
variational approach. Other significant work looking at the behavior of linear composite materials has
been contributed by Hill {41, 42], Budianski [15], Kroner [54], Beran [9], Mori-Tanaka [68], Willis [92].

The study of nonlinear composite materials started later, through the work of Talbot and Willis [84]. The
method proposed by these two authors is an extension of Hashin-Shtrikman's procedure, but with the
disadvantage of a duality gap between the bounds obtained using the principles of minimum potential
energy and minimum complementary energy. This problem is overcome in the work by Castaneda pre-
senting the so-called new variational principle [16, 17], but here the construction of the upper bound is
still an open issue.

Finally, recent intensive use of computers has prompted swift development of numerical methods, solving
the problems with different ratios of characteristic lengths and simulating materials with different types
and geometry of phases. The following methods are worth mentioning in particular: Voronoi cell method
[30, 31], secant methods {69, 83], partitioning methods [46]-[48], adaptive hierarchical modeling meth-
ods [74, 98], micro-macro domain decomposition methods [99, 100], multiscale method [60]-[64],[79].
Although convenient for a wide range of materials, it is apparent that numerical methods are often time-
consuming and demanding in terms of computer capacity.

Comprehensive overviews of important methods for simulating composite materials are provided by
Willis [93]-[95], Nemat-Nasser and Hori [72], Mura [70], Torquato [86], Zohdi and Wriggers [101].

2.1 Linear composite materials

2.1.1 Homogenization concept

In order to explain the concept behind the theory of homogenization, first the behavior of a body B is
considered, consisting of a linear composite material with perfect bonding of phases (Fig. 2.1).

The state of deformations and stresses of such a body is governed by the system of equations
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Figure 2.1: A body consisting of a composite material.

V:o+f=0, (2.1)
og=C e, (2.2)
= -;—(Vu+uV), (2.3)
u=u" on JB,, o-n=t on JB,, (2.4)

where the equilibrium equation (2.1) is followed by the constitutive law (2.2), definition of strain (2.3),
kinematic boundary conditions on a boundary part 98, and static boundary conditions on a boundary part
OB, (2.4), According to the standard notation, o represents the stress tensor, € is the strain tensor, u the
displacement field, f the vector of volume forces, ¢ denotes the tractions, u” the prescribed displacements
and n the normal vector on the boundary. The only property to distinguish the system (2.1)-(2.4) from
one describing the behavior of a homogeneous body is the elasticity tensor C, which for a heterogeneous
material becomes dependent on coordinates due to different material properties of the phases. This can
be written

= 1 is inside phase i,
CClamim ; fil=)Ci, fil=) = { 0 a is not inside phase 7, (2.5)
where f; represents the indicator function, and a material with n different phases is taken as an example.
The specific form of the elasticity tensor (2.5) causes many difficulties in solving the system (2.1)-(2.4)
so that the idea of the homogenization method is to replace the original constitutive law (2.2) by the
constitutive law corresponding to the homogeneous material whose behavior is equivalent or most similar
to the behavior of the original material. The properties of such a material are called effective or overall

properties and the replacing constitutive law

o=C:e€ (2.6)

depends on the effective elasticity tensor C. Already an intuitive guess indicates that the described substi-
tution does not always apply. The homogenization procedure is only admissible in the case of statistically
uniform materials with the specific attribute of having a volume element whose examination yields the
same effective material properties, independent of position and shape. This element is called the repre-
sentative volume element (RVE) and in the rest of this chapter it will be denoted by €2 in contrast to the
macroscopic body B. The condition for applicability of the homogenization method is that the ratio of
characteristic lengths corresponding to the size of heterogeneities and to the size of the real specimen
must tend to zero. This is usually written as

l

where L represents a characteristic size at the structural and / at microstructural level. In this limiting
case it is reasonable to expect that the type of the boundary conditions used for the analysis of an RVE
should not have any influence on the calculated effective values [16, 41].



2.1 Linear composite materials b)

2.1.2 Volume average concept

Apart from the RVE concept, another important point of the homogenization method is to define the
effective properties, which necessitates the volume or ensemble average concept. The volume average,
shown in the example of an arbitrary quantity a, is defired as

d=(a)g= % /,, adV @2.8)

where it is important to remember that the overbar symbol is used only for volume average over the RVE
and not over an arbitrary volume. Such notation is valid for all quantities except the elasticity tensor C
and the compliance tensor M where C and M represent effective values, whose definition can be given
in two different ways. According to a mechanical formulation, the effective elasticity tensor C is defined
as the tensor relating the volume averages of stress & and strain &

ad=C:Eg, 2.9)

whereas, assuming the energetic formulation, the effective elasticity tensor allows for a relation between
the average of potential energy 1/ (€) and the volume average of strain &

€:C: & (2.10)

This definition is more general than the previous one with the possibility of determining bounds, which
will be explained in chapters 2.2.2 and 2.2.3. If the effective compliance tensor is required, definitions
analogous to (2.9) and (2.10) are valid

e=M:é, 0(&):%&:1\4:&, (2.11)
where U(o) is the conjugate energy with respect to W(e). Comparing (2.9) and (2.10) with (2.11) it
becomes clear that the effective elasticity and compliance tensors must be the inverses of each other
M=¢"". Finally, two definitions are required to eliminate any ambiguity concerning the idea of volume

average and effective values of material tensors. The volume average of the elasticity tensor

=7 [c@iz=3cC,  My=(cr) @12)
f i=1

is known as the Voigt elasticity tensor, while the volume average of the compliance tensor is the Reuss
compliance tensor whose inverse is the Reuss elasticity tensor

Mp=y [ M@de=Y oM,  Ca=(Mn)". @.13)

i=l

Here c; represents the volume fraction of a phase { defined as ¢; = V;/V and V/ is the volume of phase
i in an RVE of volume V. The difference between the effective and the Voigt elasticity tensor is more
obvious from the formulation of the average stress

G=Cy:&+(C:¢)=C:¢ (2.14)

where the quantities with a prime symbol denote the fluctuations around the corresponding volume aver-
age.
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2.1.3 Ensemble average concept

Elementary relations needed for working with the statistical average will be shown in the example of an
arbitrary quantity p(x), depending on the indicator function f;

n

p(@) = prfrl(). (2.15)

r=1

The statistical average of such quantity (p(z)) has the form

(p(@) = _ o P.(x) (2.16)

where function P,(z) is the probability of finding a phase r at a chosen point . It can be shown that it
is equal to the volume fraction of the corresponding phase P.(x) =c,. The statistical average can also be
calculated for the product of functions of the type (2.15)

{p(z)p(x')) = Z Zprpspra(‘na '), .17

r=1 s=1

Here P..(x,z') is a two-point probability function, representing the probability that phase r is at the
point & and phase s is at the point 2'. Function (p(x)p(x’)} is called a two-point correlation or co-
herence function. Correlation and probability functions involving more than two points are difficult to
estimate and only some special simple cases can be studied analytically (8]. Definitions of the effective
values according to the concept of ensemble average are analogous to those ones based on the concept of
volume average and will therefore only be looked at briefly:

e mechanical formulation
(6)=2C: (e), (€) = M : (o), (2.18)

¢ energetic formulation

1 N 1 .
(W)=§ (e}:C: (e), {U) =3 (o): M: (o). (2.19)
To distinguish the type of the applied concept, the effective values are denoted by symbol with overhat

and not with overbar.

2.1.4 Hili's macrohomogeneity condition

In order to check if the mechanical and the energetic definition provide the same effective values, which
is quite natural to expect, the average of strain energy is written using the mechanical formulation of the
effective values

W=%(e:a-)=-1-¢‘-::&+ (e':a']=%é:é:é+%(e':a’). (2.20)

This is also compared with the energetic definition (2.10), yielding the conclusion that the volume average
of the product of stress and strain fluctuations is equal to zero

(¢ : o) = (¢:0)=0 2.21)

N —

€:C: e+

N =

€:C:e=

N =
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so that (2.20) reduces to the expression known as Hill’s condition [41]

(c:e)=6:¢c. (2.22)

This condition means that the mean value of internal work must be equal to the product of mean stress
and strain and the same result could be obtained starting from the dual formulation or using the concept of
the statistical average. Condition (2.22) is automatically satisfied in the case of several types of boundary
conditions intensively used in the investigation of RVEs. The first type of such boundary conditions are
the kinematic ones

u=¢-x, x€I (2.23)

where € is a prescribed value on the boundary and where Gauss’ theorem can be used to show that the
volume average of strain tensor € has exactly the same value as that prescribed on the boundary é = €".
The other type of boundary conditions assuring that Hill’s condition is satisfied are the static ones

oc-n=0"-n, x€if, (2.24)

where o is prescribed stress on the boundary of RVE. Here again, Gauss' theorem can be used to show
that & = o*. In the case of periodic boundary conditions, Hill’s condition is also automatically satisfied,
which will be explained in greater detail in chapter 3.3.2.

2.2 Calculation of effective material properties of linear composites

The calculation of the effective material properties, which is the essential step in the homogenization
theory, can be achieved in many ways but this thesis briefly considers only the most important ones:

o perturbation method,
o standard vanational method,

o Hashin-Shtrikman variational principle,

methods based on the application of the strain concentration tensor: dilute dispersion, self-consistent
and Mori-Tanaka method.

2.2.1 Perturbation method

The perturbation method is convenient for solving problems which in fact cannot be solved exactly, but
their approximative solution can be expressed dependent on the exact solution of an auxiliary problem.
This only applies if the original problem can be expressed by adding a small perturbation term to the
formulation of the auxiliary problem. Accordingly, for the purposes of the theory of homogenization, it
is assumed that the elasticity tensor of a heterogeneous material C can be written as

C=Cy+46C (2.25)

where 6C represents a small perturbation and C, is the material tensor of a homogeneous comparison
material. Using such assumption and choosing pure kinematic boundary conditions, the original problem
(2.1)-(2.4) becomes
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V. (Co:€)+V-(0C:€)+ f=0, z€Q,
€= %(Vu-i—uV), (2.26)

u=1uy &€
while the corresponding auxiliary problem is obtained from (2.26) for 6C = 0
V(Co:€)+f=0, =€,

€= %(Vu + uV), 2.27)

u=1uy <€ON.

The previous system corresponds to the boundary value problem describing the behavior of a homoge-
neous body and can be solved by any of the standard methods for this kind of problems. In the following,
the Green function method is used, which leads to the final solution of (2.26) in the form

e=¢ —I'dCe (2.28)

where T represents a linear operator dependent on the Green function and €, is a solution of (2.27). De-
tails about derivations will be left out as they are of purely mathematical nature [93]. The transformation
of solution (2.28) permits the calculation of the mean stress and strain, using the concept of the statistical
average firstly

e=[I+TdCl'ea = (e&)=(I+T4C|™")e. (2.29)
Furthermore, starting with the definition
o= (Co+08C): €= (Co+6C): [I+T6C| ' (2.30)

the statistical average of the stress is obtained in the form

() = {(Co+6C): (I +T6C™) (I+T8C)™) (e). 2.31)

A comparison of the assembling average counterpart of (2.9) and (2.3 1) indicates that the multiplier in
front of (€) in (2.31) represents the statistical effective elasticity tensor C

¢ =Co+ (6C: [I+T6C]™) (I +T s (2.32)
which can also be written as an expansion
C=Co + (6C) + {6C):T(8C) — (6C:T8C) +--- . (2.33)

Assuming the concept of mean strain, which means that {€) = &, a similar procedure yields the effective
elasticity tensor based on the concept of volume average

C= Co + ((SC) - ((SC r, JC) + . (2.34)
and consideration of the dual problem provides the effective compliance tensor
M =M, + (M) — (§M: ASM) +--. . (2.35)

Operators I'y in (2.34) and A, in (2.35) are again the linear operators dependent on the Green function
[93]. As shown further on, the truncation of an expansion obtained using solution (2.28) is an initial
assumption of some other methods.
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2.2.2 Standard variational method

The standard variational method is based on applying the principles of minimum potential and conjugate
energy, which state that actual deformations and stresses minimize the corresponding energy functional.
A direct consequence of such principles is that for each admissible approximation of strain €® or stress
o° the energy potential is greater than the actual solution

€:C:e<— | €:C: ede, (2.36)
o : o< — a. ot .
.M 6‘21/ ch M : o%dzx, .37

where the term “admissible” means that approximative strains and stresses have to belong to the corre-
sponding sets

e€E, E={c|le= %(Vu+uV) in Q, and u=€"x on IN}, (2.38)

0'cS, S={6|V.-e=0inQ, ando-n=0"n on d0}. 2.39)

In these expressions volume forces are neglected and specific boundary conditions are chosen so that
Hill’s condition (2.22) is satisfied. The method is illustrated firstly by choosing the simplest approxima-
tion in the form €® = €*, €* € E where €" is the strain prescribed on the boundary (2.23). As in this case
it applies that € = €*, the approximation becomes equal to the mean strain value, € = €* = &, and the
corresponding energy potential is

! [ oo pagn 1 2 ce=lz.c, - e
W/ge :C:€ dm—QVe./nC(m)da:.e—2e.Cv.e. (2.40)

Having in mind (2.36), this means that the Voigt elasticity tensor Cy is just the upper bound of the actual
effective elasticity tensor

EZCZESEZCV:E, CV=ZC,'C,‘. (241)
i=1

The similar can be shown for uniform static boundary conditions (2.24) where, using the volume average
of stress & = o*, an adequate assumption for the approximative solution becomes ¢* = o* = &, leading
to the volume average of the conjugate energy

1 a . . 0 _.___1_-. =
W/s;a ‘Mo dm-QVa'./nMd:c.a

and to the conclusion that the Reuss effective elasticity tensor represents the lower bound for the actual
effective elasticity tensor

[ =1

6 Mygzg:0o (2.42)

n -1
&:M:&S&:]\IIR:&, CR=(MR)-I=|:Z:C,'M; . (243)
i=]

The idea of bounds (2.41),(2.43) was first introduced by Hill [40], but as the approximations € = €" and
o® = o* can be very distinct from the exact solution these bounds are often not sufficiently accurate.
The procedure mostly used for their improvement is to apply the perturbation and variational method
together, taking the truncated solution from the perturbation method as the approximative solution in
the variational method. For example, using the fact that for boundary conditions (2.23) it is valid that
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€ = € = € where ¢ is the solution of system (2.27) corresponding to the homogeneous body, a
reformulation of (2.28) yields the series

e=) (-TdC)e, (2.44)

k=0

whose truncation after m terms is an admissible approximation

e =B.& B,=) (-TiC) (2.45)
k=0

In such a case the upper bound C becomes
C=Cy + (6CByy,). (2.46)

This solution coincides with that obtained by the perturbation method (2.34) if the first 2m + 1 terms are
considered, but it must also be recalled that this requires a (2m + 1)-point correlation function.

2.2.3 Hashin-Shtrikman variational method

The Hashin-Shtrikman method resolves the main difficulty of the standard variational method, which
is the problem of finding an admissible approximation for the construction of the bounds. The method
considers initially a standard boundary value problem for a heterogeneous RVE 2

V.-o=0,
€= -;—(Vu +uV), (2.47)

u=u', =€,

where the kinematic boundary conditions dependent on displacements are prescribed. In order to com-
plete the problem description, the potential energy of the heterogenecus material is assumed in the form

Wi(e) = %e :C:e. (2.48)

The same boundary value problem (2.47) is considered, assuming that the RVE 2 consists of the arbi-
trarily chosen homogeneous comparison material with elasticity tensor Cy and with the potential energy
in the form

1
Wo(eo) = 3 € :Co: € (2.49)
where the subscript 0" emphasizes the use of a simplified type of material. A comparison of the defined

problems leads to the alternative form of the energy functional of the original material (2.48), which is
the main result of the work of Hashin and Shtrikman

W(e) = Wy(e,p) = Wy — %/(p :0C" :p—p:€ - 2p:eg)dV. (2.50)

Here v/, €, p represent displacement, strain and stress perturbation defined by
u=u-—-uy € =¢€—e¢, 2.51)

o=Cy:e+p (2.52)
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and 4C" is a fourth-order tensor defined by the relation §C* : 6C = I. Expression (2.50) applies if the
following subsidiary conditions are satisfied

V- (Co:€ +p)=0,

(2.53)
'=0 zed
and it can be shown that (2.50) is stationary in the case that
P=(C-Cp):e=6C:e. (2.54)

A useful property of the new formulation of the energy density (2.50) is that the stress polarization p
can be assumed without any limitations, in contrast to the standard method where approximations must
belong to sets E or S defined by (2.38) and (2.39). An approximation for € is not necessary as it can
be calculated from (2.53) dependent on the approximation for p. A further advantage of expression
(2.50) is that depending on the choice of the comparison homogeneous material, this functional can have
an absolute minimum or absolute maximum which means that the same expression can be used for the
upper and lower bound. Furthermore, it can be shown that if:

0C is positive definite = W, (€', p) has an absolute maximum,

0C is negative definite =  W,,(¢’, p) has an absolute minimum.

The application of this method can again be illustrated by using results of the perturbation method. It has
already been shown that truncation of series (2.44) after m terms represents a possible approximation of
strain

€e=) (-T'éCye=B,¢ (2.55)

k=0
Using this and (2.54), the approximation of the stress polarization can be written as

p"=46C) (-TéC)'e, (2.56)
k=0

which finally yields the expression for the bounds of the effective elasticity tensor

C=Cy + (CBom_,) (2.57)

where C is the upper bound if 4C is negative definite and it is the lower bound if 6C is positive definite.
Bounds (2.57) can be obtained from expression (2.34) by assuming only its first 2m terms of the pertur-
bation series. In the simplest case, this procedure leads to the so-called second-order estimates in contrast
to the values obtained by Voigt and Reuss, which are first order estimates.

2.2.4 Methods based on applying the straln concentration tensor

This group of methods is often used because of their simplicity, but the range of application is limited
by the requirement that the concentration of inclusions and consequently their interactions have to be
small. For their study it is convenient to analyze a composite material with n different kinds of inclusions
embedded in a matrix which is itself treated as a phase with index n + 1. Here, the stress inside phase r
and the effective stress have the form

n+1

c.=C, ¢, g = ZC,C, L€, (2.58)
r=1
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and the contribution of strain in the matrix to the mean strain can be explicitly expressed as

n+l n
E=) G = Cnp1€ns1 =E— )_Crer (2.59)
r=1 r=1

yielding the effective stress in the form

6=Cpn41: €+ Zc, (Cr — Chs1) i €. (2.60)

r=1

This can be further transformed by introducing the concept of the strain concentration tensor A, which
relates the strain in a phase r and the mean strain

e,=A € = 06=C,,:€+ Zc,(c, — Cuy1): A, 1 E 2.61)

r=1

so that by comparison with the definition & = C : &, the effective elasticity tensor becomes

C=Cnni + D _c(Cr — Cny1) : Ar. (2.62)

r=1

There are many concepts for calculating the strain concentration tensor A,, but only two will be men-
tioned here. According to the dilute distribution theory, specifying that the interaction of inclusions is
completely excluded, this tensor has the form

A‘r{“ = [I+ Sr : Mn+l : (cr - cn+l)]_1 ’ r= la sy T (263)

where S, represents the Eshelby tensor for an inclusion of type r in a matrix [25]. For materials with a
greater concentration of inclusions, it is more convenient to apply the self-consistent method where the
strain concentration tensor

A:C = [I + Sr : M H (cr '—é)]-1 ) r= 19 ey N, (2‘64)

depends on S, which is the Eshelby tensor of an inclusion of type r embedded in the effective material
and no longer in the original matrix. Here, one needs to use tensors corresponding to the effective material
instead of tensors corresponding to the matrix. Introduction of (2.63) or (2.64) in (2.62) yields the final
expression for the effective elasticity tensor C. An important difference is that the dilute dispersion
method leads to the explicit expression and the self-consistent method to the implicit expression for
effective elasticity tensor so that the latter requires an iterative procedure.

In the end, a mention is given to the idea of the mean field method proposed by Mori and Tanaka. In
contrast to (2.61)a, this proposes that strain in the inclusions depends on strain in the matrix, while the
strain in the matrix itself depends on the effective strain

=AM e"=AM. (A™:¥, i=1,.,n (2.65)
A% s already defined by (2.63) and the formulation used most for the matrix strain concentration tensor
is the one proposed by Benveniste [7]

A" =[al+q A‘,’“]-l , a+c=1. (2.66)
This applies to a two-phase material where inclusions are denoted by index 1" and the matrix is denoted

by index "2”. The other different assumptions for strain concentration tensor are proposed by Hill [42],
Budianski [15] and Kréner [54].
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2.3 Nonlinear composite materials

2.3.1 Problem formulation

At the beginning of this section, it must be emphasized that here consideration will be given only to the
material nonlinearity while geometrical nonlinearity will be the topic in some of the later chapters. The
study of this kind of composites is based on estimating the bounds of effective energy functionals, for
which the potential or conjugate energy has to be minimized, depending on the type of the boundary
conditions. In the case of kinematic boundary conditions it is more convenient to consider the strain
energy density which for the original composite has the form

W(e,x) = i fr(2)W,(€), (2.67)

where W, (¢€) represents the strain potential of phase r and at least one of all of the potentials W, (¢), r =
1,...,n corresponds to the nonlirear material. The potential energy of the effective material in this case
is defined as a result of a minimization problem

= 1

V(E)=min — [ W ‘ .

W (&) min - Q“ (z, €)dz, (2.68)

E={c|le= %(Vu +uV)in Q, and u = €™z on N}, (2.69)
and it is the stress potential at the same time

oW
5 = ). 2.7
o T (e) (2.70)

Analogous relations are valid for the dual formulation considering the conjugate energy

Ulo,z) =) _ fi(z)Ur(o), @.7)
r=1

where the conjugate energy of effective material

- .1

Ug) = miy V/f;U(m,a) dz, .72)

S={c|V-c=0inQ, and c-n=0"n on 90}, (2.73)
can be used to calculate the effective strain

. a0,

= %(a). (2.74)

Concerning the primary and dual formulations presented here, two remarks must be made. Firstly, the
boundary conditions in (2.69) and (2.73) are chosen to coincide with those explained in section 2.1.4 as
Hill’s condition keeps its form (2.22) due to the geometrical linearity. The relations € = €* for kinematic
and & = o for static boundary conditions also remain valid. Secondly, expressions (2.68) and (2.72) are
not independent but related to each other by the Legendre-Fenchel transformation

(&) = W*(&) = sup {e L& - W(e)} @2.75)

where the different boundary conditions in (2.69) and (2.73) mean that the Legendre-Fenchel transfor-
mation is valid only if the influence of the boundary conditions can be neglected. As the following



14 2 Modeling of composite materials

discussions concern exclusively the RVE, this requirement is automatically satisfied in accordance with
the properties described in section 2.1.1. In his work [96], Willis showed that the complete dualism
(2.75) requires the condition that the average stress is equal to the prescribed value, & = o, instead of
the uniform boundary conditions given in (2.73).

Due to the complexity of the described minimization problems the approximative solutions have an im-
portant role in their study. For example, using the same principles as in chapter 2.2.4, the following
inequalities can be written

W(e) < L / W (x, €)de, (2.76)
Va

U(e) < 1 / U(z, 0°) de, (2.77)
VJa

where o° € S and €* € E are admissible approximative solutions. This means that the standard
variational method can be applied here as in the case of linear composite materials, but this time the
problem of determining admissible approximations is even more proncunced and a reformulation of
bounds is again necessary.

2.3.2 Willis-Talbot variational formulation

Alternative forms of bounds for the energy of nonlinear composite materials were first discussed in the
work of Willis and Talbot [84]. The primary problem considered here is the minimization of a functional
F(u) where u € V and V is a closed linear subspace of the Banach space B. This problem is denoted by
P so that it can be written

P: 12% F(u), infP = F(a) (2.78)

where the latter expression means that # € V' is a minimizer. Maximization of the negative conjugate
functional —F*(u*) is taken to be the dual problem

P*: sup {-F*(u")}, supP* = F*(a") (2.79)
u* Vo
where V} is a set of annihilators of V, which means that foru € V and u* € Vit applies that (u, u*) = 0.
The conjugate functional is defined in the standard way

F*(u") = sup {{(v.u*) — F(u)} (2.80)

with the symbol (-) representing the inner product. The latter expression in (2.79) means that @* € V0 is
the solution of the dual problem. Comparison of the solutions of the described problems also shows that

—F*(u") <supP’ <infP < F(u) 2.81)

where u €V and u* € V; are admissible approximations. The sign of equality is valid if u* € F (u) or if
u* = F'(u) for a differentiable functional. In this case there is no duality gap, and the primary and dual
problem have the same solution. Recall that 9F (u) represents the subdifferential of a functional F(u).

Relation (2.81) corresponds to the bounds obtained by standard variational principles (2.76) and (2.77),
but as stated before, they are not easy to calculate. However, Willis and Talbot proposed alternative
bounds depending on the comparison functionals F(u) and F(x) which can be chosen arbitrarily. In
their model, the first step is to form the differences

f(u) = F(u) = E(u), (2.82)
f(u) = F(u) - F(u) (2.83)



2.3 Nonlinear composite materials 15

and to subject them to the Legendre-Fenchel transformation
1.0 = jnf {(u,0") - fw)}, (2.84)
[ = sup {(u,v*) = f(u)}. (2.85)

Functionals (2.84),(2.85) depend on the new variable v* € B* where B* is the dual space of the Banach
space B. The final shape of the bounds for the primary problem is

uigfv {{u,v*) + E(u)} — £ (v") <infP < “igt;, {{w,v") + F(u)} = T.(v") (2.86)

where the minimization has to be carried out with respect to u € V and the comparison functionals F'(u),
F(u) are chosen in the form which simplifies the minimization procedure. Additional optimization with
respect to v* gives the best possible bounds for the chosen comparison functionals.

In the same way, for the dual problem based on the comparison functionals G(u*) and G(u*) where
u* € B*, the needed differences become

g(v*) = F*(u") — G(u"), (2.87)
g(u') = F*(x") - G(u"), (2.88)

the new conjugate functionals dependent on variables v € B are

g.(v) = inf {(v,u") -g(u")}, (2.89)
g'(v) = sup {{v,u") — g(u")}, (2.90)
sup

and the bounds for the dual problem have the form

- 12{/0 {(v,v*) +Gu*)} + F.(v) <supP* < _.,.ilelﬁzo {{v,u*) + G(u*)} + g"(v). (2.91)

u.
Remarks valid for (2.86) can be repeated here: G(u*) and G(u*) have to be chosen in such a way that the
process of minimization is simplified and additional optimization with respect to v is also possible.

The following two application examples present the method of Willis and Talbot. Firstly, it will be shown
that the Hashin-Shtrikman procedure for a linear composite material can be derived using this procedure.
This considers a homogeneous body with an elasticity tensor Cy and the same boundary conditions as
for the composite body. The strain inside the body is € and the stress g = Cp : €. If the strain of
the heterogeneous body is expressed as € = €g + €', where €' is strain perturbation, the primary problem
consists of minimizing the energy functional of the heterogeneous body

1
. N = ; 'O en— € 2l €
P.e'lélf F(e)_e}gf n{e.C.eu e.a'g+26.c.e}dw (2.92)

where instead to some general set V, € belongs to E’ which is
1
E’={e|e=§[Vu+(Vu)T] in, and =0 on 69}. (2.93)
The comparison functional has to be assumed in the form

F(e) = % / €:Cy:€ede (2.94)
0
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and dependent on the choice of Cy it can be used to calculate the upper or lower bound. Further details
of derivation will be left out as the results were already given in chapter 2.2.3.

The second example is the model for nonlinear composite materials proposed by Castaneda and Willis
[18). This looks at a heterogeneous body with kinematic boundary conditions, while the analogous
analysis is available for the dual problem. In order to complete the definition of the total potential energy
(2.67), the potential corresponding to the nonlinear phases is chosen in the form

2( on, L9
Wile) = 3 (n 1 1) pren ™ 4 Shrc (2.95)

Here ¢,, = jtre represents the mean strain, €, = 1/3/2e : e is the effective strain, e = € — ¢,,1 is the de-
viatoric strain tensor, g, is the shear modulus, and &, is the compression modulus of phase r. Dependent
on the material, the creep exponent n, lies in the range 1 < n, < oo so that the exponent has the value
1+ 1/n, < 2 and the functional (2.95) grows slower than the quadratic one. The limiting case n, = 1

corresponds to the linear phase.

In order to construct the bounds defined by (2.86), the idea is to introduce a comparison quadratic func-
tional which corresponds to the linear homogeneous material.

The first part of the problem is to construct the upper bound, which entails the following expressions

Flu) o W¢)= %ﬂo €+ gh‘o €y (2.96)
f.v) o Vpx)= inf {p:e~Wie,x)+We)} (2.97)

with the new variable p representing stress polarization similarly as in the Hashin-Shtrikman method.
Using (2.96) and (2.97), the upper bound becomes

i Lo 1 170 i _1 0
W(e) < jnf v /V [Woe)+p:€]dx 7 /V Vp,z)dz (2.98)

where E is defined by (2.69). The second part of the problem is to construct the lower bound, which has
to consider the expression

f(v") <« Vo(p,z) =sup{p:e—W(e,zx)+ Wo(e)}. (2.99)

there is only one quadratic functional Wy(€) so that the difference Wy(e) — W(e, ) has a maximum.
This functional is 1¥(€) = 0 and for such a simple assumption, the lower bound of Willis and Talbot is
reduced to the classical Reuss bound.

Keeping in mind that W (e, ) depends on (2.95), where the exponent satisfies the relation 1 + 1/n, < 2,

In general, the Willis-Talbot model can only construct one bound which will be a lower or upper bound
depending on whether the difference Wy(€) — W (e, &) is convex or concave. Another disadvantage of
this model is that the primary and dual formulations do not yield the same bounds, but this problem has
already been resolved in the method proposed by Castaiieda.

2.3.3 Ponte Castaneda’s new variational formulation

This method is based on transforming the energy functional of the composite material by using the energy
functional of the comparison linear composite. The derivations will be shown in the example of static
boundary conditions and a convex strain potential, with the nonlinearity stronger than quadratic. For the
purpose of derivation, firstly, the strain potential of the comparison linear composite will be written in the
form



2.3 Nonlinear composite materials 17

0 — 5 0 — 1 2 1 2
Uo,x) = ; @) U7(0) = 55759 + 500z (2.100)

where o, = %tra represents mean stress, o, = \/%ad : @4 is effective stress, o0g = o — 0,,I is
deviatoric stress tensor and material parameters are defined as follows

1o x) = z": fe(2)id > 0, K(x) = ifr(m)nff > 0. (2.101)
1

r=1

r=
After introducing the auxiliary notation p = {z5, 53} and s = {02,0%,}, the strain potential of one
phase can be written as

I SN S
Udo) = T + 2:0%m = (p, s) (2.102)
and the following Legendre-Fenchel transformation can be applied
V. (62, 52) = sup((p, 8) — U, (8)) = sup {U (o) - Us(0)} (2.103)
L -4

where obviously the material parameters 1° and <2 become variables of the dual problem. If all of the
phases are taken into account, the analogous expression has the form

V(u® x% = i:fr(a:]Vr(p‘,’, %) = sup {U%,z) - U(o, )} (2.104)
r=1 e

which yields the inequality

Uo,x) = U0, x) — V(i 5°) (2.105)
and the expression for the lower bound

U(3) > U°(&) - V(1 £°). (2.106)

Apart from the definition (2.72), the following notation is used in this inequality

0%&) = nf_ 0°o), (2.107)
V%) =) e Vi(ul, £D). (2.108)
r=1

As before, ¢, is the concentration of phase r and the overbar symbolizes the volume average over the

RVE. Lower bound (2.106) can be further optimized with respect to the new variables 2, k%

0@) 2 0-(5), U_(&)= sup {00(&)—V(,u",n°)}. (2.109)

p2, K950

For the dual case, the comparison strain functional is assumed to be
n 3 9
4 = q ,0 = - 0 2 —_— 0 2 .
We, z) ,E=1 Sfe(x) Wo(e) Sh (z)e; + 5" (x)er, (2.110)

and the final result is the optimized upper boundary in the form

W(E) < We(e), W@ = o {W“(a) + V(2 ,\-0)} Q.111)
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where W (€) is defined by (2.68) and the used notation is
Vo) = inf TW°
W(e) elg%” (€), (2.112)

V(® x°) = sup {W(e,x) - W'(e.x)}. (2.113)

Bounds obtained by consideration of these two dual problems are conjugate of each other
J_(6) = sup {a : z:+ﬁ/+(e)} @.114)
[4

which proves that there is no duality gap between them. Note that here both dual problems are observed
and not the upper and lower bound of the same formulation. Note also that, in most cases, U°(&) in
(2.109) and W0(&€) in (2.111) cannot be calculated exactly, but some of the bounds or estimates for linear
materials already explained in section 2.2 have to be used.

2.4 Numerical procedures

Because of the complexity of analytical solutions, the numerical modeling of composite materials has
recently become particularly intensive. The following methods will be explained to illustrate the main
tendencies in this field:

e Huet’s partitioning method,

¢ domain decomposition method,

¢ adaptive hierarchical modeling method,
o secant method.

2.4.1 Huet's partitioning method

Huet’s method is appropriate for cases where data for the complete RVE are not available so that con-
sideration has to be given to a smaller domain D, or its uniform partition D, instead. Recall that the
uniform partition D, of a domain D) is a set of its non-overlapping subdomains, which are all of the
same form and whose union again builds the domain Dy. In the notation D, index a represents the
number of segments of uniform partition while each particular segment will be denoted by s;.

Huet’s work first generalizes the standard mechanical formulation of the elasticity tensor
§=C:g O=f ()dz, D, = RVE (2.115)
Do

by introducing new definitions observing the arbitrary domain D, instead of the RVE
(@), =C™: (€], O, = /Do(-) dz, VD (2.116)

A similar definition is also introduced for the apparent compliance tensor

(€)p, = M : (o), oo = | ()=, VDy. @2.117)

In both cases superscript "app” symbolizes the “apparent” value in contrast to the effective values C, M
and one should recall that C*P, M°P can be different for different domains Dy, even with the same
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measure. Furthermore, four types of test are proposed for calculating the apparent values. The first kind
of test assumes the kinematic boundary conditions over the complete domain D,

u=¢ .2, €D (2.118)
and such a test yields apparent values C3}? and M P defined as follows
(@) p, = C&” : (€) py» = (cam). (2.119)

The second type of test prescribes the same kinematic boundary conditions, but this time over the bound-
ary of each segment of uniform partition, which will be written

u=¢-x, x€ib,. (2.120)

These tests yield values C;?7 and MZFP such that

cr=(cw)y, , (0),=CP:(e), M»F=(cur)’ @2.121)

€

Here the symbol (), represents the statistical average of the results obtained for individual segments.
Two groups of tests still have to be carried out, but in this case for the static boundary conditions over the
boundary of the domain D, and over the boundary of its uniform partition D,, respectively

oc-n=0c'-n, on 8D, and o-n=0c"-n, on 8D,. (2.122)

According to the definitions analogous to those given by (2.119) and (2.121), such tests yield apparent
values C,5F, MOIP, C4PP and MSPP. Note that the previous expressions use indices "¢” and "¢” in order
to distinguish the type of boundary conditions, and "0” and "a” in order to emphasize if the complete
domain D or its partition D, is considered.

The relation between the results obtained using these four different tests represents the essential conclu-
sion of Huet’s model, called partitioning theorem

CPP < WP < CUP < CYP, VD,

-_ «0 - e !

M < MY < M < MZP, VD,

(2.123)

There are two important remarks concerning this relation. Firstly, the results obtained for the uniform
partition are less precise than for the complete domain D, so that they give broader bounds for the
actual values. Secondly, the results obtained for the elasticity tensor from the tests with static boundary
conditions give the lower bound, and the upper bound with kinematic boundary conditions. The opposite
situation applies to the compliance tensor.

The following section makes some interesting observations. Firstly, it should be emphasized that the
effective values are obtained instead of the apparent values if the domain Dy coincides with the RVE. By
the definition of the RVE, the effective values are independent of the boundary conditions which means
that

CoP = CoP = e, M = M = M (2.124)

and consequently the partition theorem reduces to

cr < & < o Do = RVE,

-— € ?

(2.125)

M < M < M Do = RVE.

aa ’

A further observation is that if the tests are carried out for some other uniform partition with greater
number of subdomains 3, (8 > a), the partition theorem obtains the extended form
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Cai < Cof < CF < & [ s

MP < MPF < Mg’ < Mg’ s M < Mg

—

(2.126)

If the process of increasing the number of segments is continued, in the limiting case the size of subdo-
mains becomes smaller than the size of inhomogeneities. This leads to the well-known Voigt (Cy) and
Reuss (M p) bounds and the partitioning theorem in the form

IA

(Mg)™ < CJF S CF < Cf < CF < C€F < CF < Cv,

Cv)™ < MZPP < M < M@’ < MO < MJT < MJF < Mg
Note that the previous approach does not precisely state how to calculate the apparent material parameters
for domain D, or segment s,. Laboratory tests and analytical or numerical procedures can be used to this
end. The following sections look at the connection with the numerical procedures.

2.4.2 Domain decomposition method

Both of the methods based on application of the FEM which will be presented here are appropriate for
linear heterogeneous materials, where the weak form of the problem for mixed boundary conditions is to
determine displacements u satisfying the following conditions

/V&u:C:Vud:n:ff-dud:c+[ t-duds, ulop, = u". (2.127)
B 8 a8,

Note that this expression looks at a body B and not at the RVE (). As stated at the very beginning, the
boundary JB consists of two parts, one with prescribed displacements (0B,,) and one with prescribed
tractions (GB3;). For these two parts of the boundary, it is valid that 98, N 9B, = @ and 8B, UdB, = 9B.
u’ are displacements prescribed on the boundary and expression (2.127) must be satisfied for any test
function d2 such that du|pp, = 0.

To understand the concept of the domain decomposition method, firstly it will be recalled that the main
difficulty concerning the application of FEM in modeling heterogeneous materials is the process of dis-
cretization. Namely, it is easy to imagine that very fine meshing is required for materials with highly
oscillatory microstructure, yielding a great number of DOFs, and huge systems of equations. Conse-
quently, the main idea of this method is to replace the complex problem (2.127) by a few easily solvable
problems. In more detail, the procedure can be described as follows.

e The original problem (P1) is determined by equation (2.127). This defines the exact boundary
conditions and material structure. In most cases this problem cannot be solved because of the sheer
extent involved.

e The regularized problem (P2) keeps the boundary conditions from the original problem, but as-
sumes a regularized structure instead of the exact material structure. Linear or nonlinear material
can be said to replace original material. It can be shown hat the optimal choice is a material with

—_— =1
Reuss stiffness so that R = (C" ) . The problem to be solved, is defined by the conditions

/ Véu: R(Vu®)dz = / fdudz + f t-duds, uf|pp, =vu". (2.128)
B B o8,

Here, already a coarse discretization yields good results thanks to the simplicity of this problem.
This is important as the results of this step are used as the boundary conditions in the next stage.
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e In the decoupled problem (73), the initial structure has to be divided into N partitions By.. The
process of partitioning sees the formation of the new boundaries which are named internal bound-
aries, in contrast to external boundaries already defined in the original problem (P/). The problem
to be solved for each of the partitions is

Vou :C: V'uf"m de = fduy de + / t-duyds,
Bi By OB, NIB,

RID R
u," " |aBn(BUBB,) = U

This retains the material structure and external boundary conditions from the original problem but
includes internal boundary conditions depending on the results of the regularized problem. The test
function has to fulfill homogeneous boundary conditions dur|s5,.~suos,) = 0.

e The final solution is a superposition of the solutions of problems (72) and (P3) and has the form

RID nip R
- RID _ o) (2.129)

uHJDZu”"i‘(u] uﬁl)lsl +__.+(u

where the expressions in parenthesis have to be understood as a local perturbation of the regular-
ized solution w”. If the obtained result is not satisfactory, it is advisable to improve partitioning
or discretization of partitions while the discretization of the regularized problem should not sig-
nificantly influence the quality of results. The proof of convergence is given in the original works
[99, 100] and is based on Huet’s partitioning method.

The previously explained procedure is called the initial displacement approach (superscript "/ D") as
the weak form of the problem depending on the potential energy is used. The analogous procedure is
available for the dual formulation for which it can be shown that optimal choice of regularizing material
is a material with Voigt stiffness R = C. This procedure is called the internal traction approach. Figure
2.2 shows the idea behind the domain decomposition method, in the example of the cantilever beam with
heterogeneous structure.

(PH

(F2)

Y e A e W P
Jol el Tl T B R R E R

Figure 2.2: Concept of the domain decomposition method.

(P3)

The advantages of solving regularized and decoupled problems (P2) and (P3) instead of the original
problem (P1) are obvious. To solve the regularized problem (72), a coarse mesh is already satisfactory
while the fluctuation of the elasticity tensor is picked up by solving many small problems instead of
the one large (P3). This procedure requires less time and computer capacity and is suitable for the
application of parallel computing.

The domain decomposition method is practically an extension of Huet's partitioning method, with the
possibility of calculating deformations of a structural element for any boundary conditions, while Huet's
method is limited only to uniform external loading and estimation of the effective elasticity tensor.
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2.4.3 Adaptive hierarchical modeling method

Another numerical method based on the application of FEM is the adaptive hierarchical modeling method.
Its starting point is to look at a substitution system with an approximative, simple material structure di-
vided into a set of non-overlapping partitions. The modeling error due to simplifying the material is
calculated in each of the partitions. If it exceeds the permitted tolerance, this partition is divided into
a set of subpartitions where more accurate material parameters have to be calculated. These material
parameters replace the old ones and the procedure is repeated with an increasing number of subpartitions
until the error tolerance is met everywhere. The number of partitions stays constant during the process.

Figure 2.3: Partitioning of an arbitrary curvilinear body.

In order to explain the method in more detail, firstly, a closer look is given to the partitioning process
(Fig. 2.3). Here one bounding box G is circumscribed around the body B and divided into N partitions

o
G=JG (2.130)
k=1

Usually, the partition boundaries do not follow the boundary of the body B as the body can have an
arbitrary curvilinear shape. This means that apart from the partitions Gy, the cells ©, have to be defined
in the following way

N
e.=8BngG, B=|Je. (2.131)
k=1
If the error bound in some partition % is higher than the permitted limit, this partition has to be divided
into N subpartitions G.; and accordingly there will be N} cells ©;.; so that
NP

NP
Gy = U Gei: Ori=BNGr, ©Or= U Ok, (2.132)
1=1 I=1

where superscript m represents the level of partitioning. If N[ subpartitions still do not provide satisfac-
tory results in the next level, their number has to be increased.
The problem to be solved with respect to displacement u™ in each level of the partitioning is

/V(‘iu:C"':Vu’” rf;c:/f-éud:n—i—/ t-Suds, u|p, =u’. (2.133)
B B Iy

Here C™ is the elasticity tensor of the substitution material on the level m; and for i = 0, C™ mostly
corresponds to the homogeneous isotropic material, but in the later stages it becomes dependent on the
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coordinates. For an arbitrary domain D € B, the quality of the approximation is estimated according to
the condition

0 < ||u—-u"lgw < ¥p(Vu™) (2.134)

where the symbol || - ||§’3(D) represents the energy norm, which is defined in the following manner for an
arbitrary vector function w

||w||25(1,) = LVw : € : Vwdz. (2.135)

The term ||u — w™||g(p) is the exact error due to simplifying the material properties but it cannot be
calculated as the exact solution u is not known. Instead, its bound ¥3(Vu™) can be calculated

Vg(Vu™) = /(I -CIC™)Vu™ : (I - C~'C™)Vu"de. (2.136)
B
The important steps of the procedure can be reviewed as follows.

e Step 1. Error tolerance & is prescribed so that it should be [|u — u™||g@) < 4.
e Step 2. After defining the partitions, the error tolerance is distributed to the specific partitions
according to the expression
6k=6||e_l;i| Vk=12,...,N. (2.137)
o Step 3. The initial material parameters have to be chosen for the substitution material. The most
frequent assumption here is that this is homogeneous isotropic material with material parameters
calculated using the volume average

=), '~
K =— | ndx = — dx. (2.138)
18] /s T Ay

o Step 4. Solution of the problem (2.133) provides approximative displacements u™.
o Step 5. Error bound We, ,(Vu™) is calculated and compared with tolerance 6.
Ve, ,(Vu™) <& VE=1,2,...,N. (2.139)

e Step 6. Subpartitioning is necessary with the calculation of new parameters in the partitions where
condition (2.139) is not satisfied
1

Iek.ll [>T}

Here the symbol (-)|e,, means inside the partition G ;. New material parameters are introduced
in the elasticity tensor, which becomes

C"™(@)lo,, =C)y « €64y (2.141)

e Step 7. Steps 4-6 have to be repeated for the new elasticity tensor until the error tolerance has been
met everywhere (Fig. 2.4, 2.5). If this is achieved in stage M, the final parameters are

” 1
h:mlek“ = K dm, H llek.l = m o H dz. (2.[40)
E ket

1 1
M M
Koy, = = K dx e, = =— pdz (2.142)
o Iek,ll O k- Iek»ll O
and the final elasticity tensor becomes
cM(x)le,, =C¥ x €Oy (2.143)

The disadvantage of this method is that in spite of constructing higher-level partitions, it cannot catch the
influences of a fine microstructure. Consequently, it is mostly used only as a preprocessing procedure, for
example in combination with the domain decomposition method. In this case, the adaptive hierarchical
modeling method is used to solve the auxiliary problem (72) and the obtained results are introduced as
a boundary condition in problem (P3).
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Figure 2.4: Reaverage of each high error cell.

Figure 2.5: Refinement of individual cells with high error.

2.4.4 Secant method of Moulinec and Suquet

The last method to be mentioned here, is appropriate for nonlinear composites and is based on the secant
theory, according to which the constitutive law for homogeneous materials has the form

o =Cge€) : €, (2.144)

Ci(€) = 3kJ + 2u°(e.) K, (2.145)
1 1

Jijkt = gfsijékh Kiju = 5(55;.-5_-,‘1 + 0abjn) — Jiju, (2.146)

where the nonlinearity of the problem is caused by the dependence of the secant shear modulus ;° on
strains. In the case of heterogeneous materials with n-phases, the elasticity tensor becomes dependent on
coordinates, which is written

o(x) = C'x) : e(x), (2.147)

Ci(x) = 3k(z) J + 2u'(z) K, (2.148)

k(@) =) frl@k,  p(@) =) fo(@pi(e(x)): (2.149)
r=1 r=1

For modeling such materials, Moulinec and Suquet [69] proposed an iterative procedure which uses the
strain from the previous step to calculate the elasticity tensor C in the current step. Consequently, the
material can be treated in each of the steps as a linear composite with an infinite number of phases as € is
different in each point. In order to avoid this difficulty, Moulinec and Suquet assumed that the elasticity
tensor does not depend on the exact strain, but rather on the effective strain of each phase

W=p"E.); Cp=CUE,). (2.150)

In this way, a linear composite material with a finite number of phases becomes the comparison material,
and the methods described in section 2.2 can be applied to solve the problem. Different variants of the
Moulinec-Suquet procedure are developed depending on the definition of E..

The classic secant theory is based on the assumption that the effective strain of phase r is the volume
average of the strain over that phase
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E, = (&) (2.151)

where, as usual, notation (~),,) represents the volume average over a phase r. The illustration of this
method assumes that overall strain € is prescribed and that the strain concentration tensor A(x) is applied
for the calculation of the strain in each point

e(z) = A(x) : & (2.152)
Here the volume average over one phase yields

E,=A g A.=(A) (2.153)
so that the whole procedure consists of three steps:

o the linear theory provides the expressions for the effective elasticity tensor = C(C; |i = 1, ..., n)
and the strain concentration tensor A, = A,(C;|i =1, ...,n),

e the nonlinear system of equations has to be solved

C,=C)(E,). E.=A,:e& A =A(Cli=1,.n), (2.154)

o the effective stiffness tensor C = C(C; |i = 1,...,n) and the stress & = C : & have to be calculated
forfinal C;, i =1,...,n.

There are significant disadvantages regarding the classic secant method, as the volume average of strain
cannot include the influence of shear fluctuations which are responsible for the nonlinear behavior. Con-
sequently, the modified secant method defines the effective strain as a second-order moment of strain

=(r 2\1/2
E =& = (&) (2.155)
and the properties of the comparison material become

pt=p(€0), €. =CLED). (2.156)

Besides better results, one further useful property of this method is that effective strains in particular
phases can be calculated directly from the expression for the effective elasticity tensor C which is, as
before, taken from the linear theory

ié_aé
3¢, Ou,

& = (@) = (k) : & (2.157)

This method obviously does not need the strain concentration tensors but expression (2.157) can be used
instead. Once again, the procedure consists of three steps:

e the expression for the effective elasticity tensor C = C(C;|i = 1,...,n) is taken from the linear
theory,

e the subsequent nonlinear system has to be solved

A _ A | o= (e 1 _ ac \1/2
C= C(C, | 1= 1,...,".), C, = C,(E,(_,,,)), EJ(EQ) = (g €: a(k,}l) : G) s

o the effective stiffness tensor C and the stress & = C : & have to be calculated.
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One important aspect of the modified secant method is that it has a variational structure, which means
that the constitutive law of the effective material obtained in this way can be derived from a potential
functional. This functional coincides with the potential based on the linear heterogeneous comparison
composite proposed by Castanieda (Ch. 2.3.3).

In the end it can be summed up that the previous chapter has looked at some of the main methods for
simulating heterogeneous material. They are classified into three groups: analytical procedures related
to linear heterogeneous materials, analytical solutions in the case of material nonlinearity, and numerical
solutions. In the last group, two of the methods are based on FEM, but they are appropriate for modeling
heterogeneous materials where the size of inhomogeneities is finite compared to the size of a simulated
body. This thesis will proceed to present a numerical method which applies when the ratio of the char-
acteristic lengths of the scale tends to zero and influences of finite deformations have to be taken into
consideration.



3 Theory of the multiscale method

3.1 Introduction

Following the overview of alternative methods, the rest of the work will focus on simulating the behav-
ior of composite materials, using multiscale FEM in particular. As this is a homogenization method its
application is limited to the group of materials whose microstructure can be satisfactorily described by
an RVE. In this context, "micro/macro” expressions are often used with "micro” referring to the RVE
problem while "macro” relates to the simulation of the real body (Fig. 3.1). The method requires con-
sidering of both scales simultaneously, so that the thesis introduces a notation where the overbar symbol
distinguishes quantities related to macroscale from those related to microscale:

B.X.z. F. P, & - macrocontinuum,

B, X, =z, F, P, o - microcontinuum.

Figure 3.1: Connection of the scales.

The described setting of the problem permits the definition of two coupled boundary value problems,
which is the essential property of the method. For the boundary value problem related to macroscale
geometry, load and boundary conditions are prescribed while the constitutive law

- L
P=—

JF

is not available. For the microscale on the other hand, material parameters are known, the boundary
conditions are derived from Hill's condition and micro- and macrostress tensors P, P can be calculated

for the deformation taken from the macroscale, as a substitution for the missing constitutive law (3.1).
The complete procedure can be summarized as follows:

3.1

e macrolevel computation provides macrodeformation tensor F,
e for the provided F', microscale calculations yield stress tensors P and P,
e the solution of the problem can be continued at macrolevel.

The following sections look initially at the main quantities in the theory of finite deformations, together
with further definitions of the effective values and an explanation for the transformation of Hill’s macro-
homogeneity condition. For additional reading see Miehe and Schroder [60]-[64],[79].
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3.2 Basic quantities in the theory of finite deformations

Considering the finite deformations starts with the observation of the body motion shown in the Figure
3.2. Here B ¢ R represents the body at some moment ¢, usually taken to be the initial moment {5 =0
and B, € R* represents the body at some other time ¢ > 0. These configurations are called reference and
current configuration respectively and for the purpose of this short overview it is assumed that they are
presented in an unique coordinate system (system E; E; E5 coincides with eye9e4).

Figure 3.2: Reference and current configuration of the body B.

According to standard notation, quantities describing the state of deformations or forces in the reference
configuration are denoted by capital letters, and quantities related to the current configuration are de-
noted by lowercase letters. For example, X, V, B, T represent position-vector, volume, body forces and
tractions related to the reference configuration and @, v, b, t are the corresponding quantities related to
the current configuration. Exceptions are especially pronounced. The same principle of notation is valid
for operators. These begin with a capital letter if defined in the reference coordinate system (Div, Grad),
while the corresponding operators in the current system begin with a lowercase letter (div, grad). For
more concise notation, in some cases the symbols ” V" and " V." can be used for the reference and the
current configuration, respectively.

The choice of a configuration does not influence the results, but rather how the problem is described.
Considering the reference configuration leads to the Lagrangian description and considering the current
configuration leads to the Eulerian description, which can also be called the material and spatial descrip-
tion, depending on whether consideration is given to the motion of a material point or the spatial position.

The mathematical description of the body motion is given by the deformation ¢ (X, t) such that
¢(X.t): B— B. (3.2)

This mapping relates the points of the reference configuration X € B with the points of the current
configuration & € B, according to

z=¢(X,t). (3.3)
The same can be expressed using the displacement function u(X ):
z=X+u(X,t)=X+u (3.4)

which further yields the following definition of the deformation gradient F’
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_ _oz(X,t) _
F—Vm——ax =I+Vu. (3.5)

This gradient, among others, enables transformations of quantities corresponding to the different con-
figurations called push-forward and pull-back transformations. The illustration considers the change in
geometry during the deformation process, where the transformation of material and spatial vectors d. X
and dx can be written as

de = F-dX, (3.6)
the deformation of the element area dA with normal IV is given by Nanson’s formula,

da=JFT.dA, dA=dAN, da=dan (3.7
and the volume change can be calculated according to

dv = JdV, J=detF >0 3.8)

with J representing the Jacobian. The other quantities describing deformations are the right and left
Cauchy deformation tensors C and b

C=FT.F, b=F.FT 3.9
and the Green and Almansi strain tensors E and e
1
2
relating the undeformed and deformed line elements d X, dX», dx,, dx, in the following way:

(C-I1, e= %(I -b™), (3.10)

dz, - dx; = dX,-C-dX., dX,-dX, = dzx, - (b™")-dx,,

%(da:l . dwz - dX]dXQ) = Xm-E-ng, %(dm, . d.’Bg - dX] . ng) = dm,-e-dmg.

The extension of the analysis to the time-dependent processes requires the introduction of at least two
types of time derivatives: the material time derivative, where reference coordinates are kept constant, and
the spatial derivative, where current coordinates are fixed

D, = Q , material time derivative, @a.11)
at X =const

o = 2 , spatial time derivative. 3.12)
at T=const

Bearing in mind that the material time derivative of a quantity related to the reference configuration can
also be denoted by the dot symbol, the basic time derivatives, velocity V' (X, t) and acceleration A(X, ),
become

V(X,t) = ¢(X,t) = v(¢™'(,1),1), (3.13)

A(X,t) = ¢(X,t) = a(¢™ (z, 1), 1), 3.14)

while the material strain rate D and the rate of deformation tensor d are defined by the expressions
. . o 1
D=E= %(FT-F+ F'.F), d=FT.D.F'= §(zT+z). (3.15)

Here the last term depends on the so-called spatial velocity gradient {

l=divv=F.F! (3.16)
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Finally, the stress can also be described using several quantities. The stress state in the current configu-
ration is represented by the true Cauchy stress tensor o whose multiplication by the Jacobian yields the
Kirchhoff stress tensor

T=Jo. 3.17)

The derivation based on the assumption that the force dp acting on the surface element before and af-
ter deformation must remain unchanged, yields the definition of the two-point unsymmetric first Piola
Kirchhoff stress tensor P

dp=0-da=Jo-FT.dA, (3.18)

P=Jo-FT, (3.19)
whose symmetric counterpart is the second Piola Kirchhoff stress tensor S

S=JF'.g.FT=F1.P (3.20)

The described kinematic and kinetic quantities form the following power conjugate pairs
E=P:F=S:E=1:d (3.21)

where £ represents elastic power. Note that in this short overview, only the most important definitions and
relations needed for the formulation of multiscale FEM are presented, while for further reading Ciarlet
[19], Ogden [73] and Marsden and Hughes [58] are recommended.

3.3 Main characteristics of the multiscale method

3.3.1 Definition of the macrovariables

The relationship between the quantities characteristic for the different scales of the multiscale method are
established according to Hill’s assumption that macroquantities have to be expressed dependent on the
microquantities acting on the boundary of RVE. This is motivated by the observation that, if laboratory
tests are carried out, all quantities necessary for calculation of the effective material properties must be
measured on the surface and not inside the sample. A further advantage is that such formulation yields a
simple connection of the scales.

Initially, the definition of the relations requires considering an arbitrary RVE B with one or more cavities
and singular surfaces. Such an RVE is shown in Figure 3.3 where the boundaries of the cavities are
denoted by G and the singular surfaces by I,

As the multiscale method is based on the concept of the volume average, two general relations are used
to define the macrovariables. Firstly, the following is valid for any vector field A defined in the described
domain B

/GradAdV: A®NdA+/A®NdA—/[A]®NdA. (3.22)
B G r

aB

Here N is normal to the surface, ® represents the dyadic product and [A] in X € T is the jump of vector
field A on the singular surface. Secondly, for tensor fields M and @ such that

DivM = 0 in B,
[M]-N = 0 on T,

(3.23)
M.-N = 0 on G,

Q = (Grad R)"
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B

Figure 3.3: An arbitrary RVE with cavities and singular surfaces.

where R is a vector field, the volume average of the product can be directly transformed into a surface
integral

(M-Q) = %LM-Q:IV = %fm (M-N)® RdA. (3.24)
Using the fact that the first Piola Kirchhoff stress tensor satisfies the expressions (3.23)

DivP = 0 in B,

[PFN = 0 on T, (3.25)

P-N = 0 on G,

and that unit tensor I = Grad X can be observed instead of an arbitrary tensor @, the first Piola Kirchhoff
macrostress tensor can be defined as

_ 1
P:=l/PdV=l/ (P-N)® XdA = — T XdA, T=P-N (3.26)
V /s V' Jos V Jos
and the Kirchhoff macro-stress tensor becomes
1 f -
T = —/ P.-FTqv = i]rdi/ = —1— T@xdA. (3.27)
Vs V /g V' Jog
Furthermore using the following definition for the Jacobian,
5 1
J = —_f JdV = i dv =v/V, (3.28)
Vs V Js,
the Cauchy macro-stress tensor can be expressed as
Er::i_/‘rdVZE/ t ® ada, t=0- n. (3.29)
J JB v o,

Finally, the definition of the macrodeformation gradient F' has to be discussed. The microdeformation
gradient F itself does not fulfill conditions (3.23) but is defined as F' = Grad x. Consequently, relation
(3.22) can be directly applied to calculate its volume average

l, f FdV = —1- {f @ NdA+ / x® NdA - / [z] ® Nd:\] ; (3.30)
Vg V Jas G r

Given that macroquantities depend only on values on the boundary of the RVE and assuming that there
are no singular surfaces, [z] = 0, the first term in the right-hand side of (3.30) will be chosen as the
definition of the macrodeformation gradient

F;:l,/ a:-E-NdAzi/[/F{H"’—/&:@Nd.ﬁl}. (3.31)
V Jos Vs G

Clearly, the macrodeformation gradient only coincides with the volume average of the microdeformation
gradient for an RVE without cavities or singular surfaces.
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3.3.2 Transformation of Hill's macrohomogenelty condition

In order to equate the mechanical and energetic formulation in addition to the definitions explained in
the last section, micro- and macroquantities also have to satisfy Hill's macrohomogeneity condition
(Ch. 2.1.4). In the case of geometrical nonlinearity, the initial form of this condition states that macrop-
ower has to be equal to the volume average of micropower [43]:

P:F:lfpzﬁ'dv. (3.32)
Vs

However, this expression needs to be reformulated as it does not tell us much about the state of the
microdeformations. To this end, firstly, Gauss' theorem is applied to transform the right-hand side of
(3.32) into a surface integral

1/ : 1/ :
= | P:FdV=c | T-&dA (3.33)
Vs V Jos

and the substitution of (3.33) into (3.32) then yields an expression which can still be extended by adding
and subtracting the same term P : F

L) 1. 3dA-P.F_P.F+P . F=0 (3.34)
V Jos

Additionally, the transformations depending on boundary integrals
P:F = P:3f, 2@NdA = L[ (PN)-&dA,
P.F = L[, T®XdA:F = L[ T (FX)dA, (3.35)
P:F = PL[ (GradX)TdVF = & [ (PN)-(FX)dA,

have to be used for derivation of the alternative form of Hill’s condition

L[ @-PNy)-(z-FX)dA=0. (3.36)
V Jos

Two solutions of this condition are obvious; they are obtained if the expressions in parenthesis are equal
to zero. This directly defines the static and kinematic type of boundary conditions for the RVE

T=P.-N ondB -staticbc. (3.37)

z=F.-X ondB - kinematic b.c. (3.38)

An additional solution of (3.36) is valid only in the case of a periodic microstructure, with the specific
property that each boundary part 8B* of the RVE with normal N'* has its counterpart 33~ with normal
N~, sothat N* = — N~ (Fig. 3.4).

For such a solution, deformation has to be assumed in the form dependent on microfluctuations w
z=FX+w (3.39)

so that introducing this assumption in (3.33) yields

p.r=1[ 7 (Fx)da+

1 T*-ai:+dA+—l- T - w dA. (3.40)
V Jos

V Jop+ o8-
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Figure 3.4: Various RVEs of a material with periodic microstructure.

Here w™*, T represent microfluctuations and tractions in a point X € 98*, and w~, T~ microfluctu-
ations and tractions in a corresponding point X~ € dB~. Assuming periodic deformations and antiperi-
odic tractions on the boundary (Fig. 3.5)

wt=w =w, T =-T, on 83, (3.41)

it can be shown that the sum of the last two terms in (3.40) is equal to zero

1 Lok i 1 :

— T -wrdA+ l T -w dA= —,/ (T"‘ - T") cwdA = 0. (3.42)
V' Jos+ V' Jai- V' S

The remaining part of (3.40) is the second expression in (3.35), which means that Hill's condition is
identically satisfied.

Figure 3.5: Deformation of RVE with periodic boundary conditions.

An important consequence of the assumption (3.39) is that the microdeformation gradient can be written
as a sum of the macrodeformation gradient F' and the microfluctuations gradient F

F=CGradz = F+Gradw=F + F. (3.43)

In the remaining part of the thesis, analysis will focus primarily on materials with a periodic microstruc-
ture or consisting of parts with a periodic structure, making intensive use of the latter type of boundary
conditions.
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4 Coupling of the homogenization theory and FEM

The previous chapter explained the concept of the multiscale FEM, emphasizing that, typical for that
method, one boundary value problem has to be solved on each of the levels. The relations between macro-
and microquantities are assumed in accordance with the concept of the volume average, and the boundary
conditions at microlevel are derived from Hill's macrohomogeneity condition. The only point which has
not been considered yet, is the method of solving the mentioned boundary value problems. The FEM is
used to this end in the framework of this thesis. Later on, various examples will show that this particular
choice makes possible to model a wide spectrum of materials with very different microstructures.

For a simple explanation of how the methods are coupled, the main tdea in this chapter is to stress the
differences between standard and multiscale formulation. To this end, two cases are chosen: the standard
form of the energy and the mixed formulation applicable to nearly incompressible materials. The chapter
is organized as follows:

o the first part presents the standard FEM formulation for both types of the energy potential,
e the second part extends this formulation to the case where both scales are included.

4.1 FEM application for modeling of nonlinear elastic materials

4.1.1 Standard varlational principle

In this introductory example, it is assumed that the body consists of a hyperelastic material with the free
energy U(F) depending only on the deformation F', so that the total potential of the body II has the form

H=/\IJ(F)dV+H”‘, u=u" on JIB, 4.1)
B

where IT1*** represents the potential of the external load, and the kinematic boundary conditions are pre-
scribed on B,. As the actual deformation minimizes the potential, displacements can be calculated from
the condition that the first variation of potential (4.1) is equal to zero

6H(u,6u)=/6F:PdV—/6u-BdV— du-TdA =0, 4.2)
B B a8,
u=u', du=0, ondlb,.

The previous problem is nonlinear and in the frame of this work for its solution the Newton-Raphson
iteration procedure is used. According to this method a new displacement increment Au is calculated in
each step so that the following condition is satisfied

Lin 81T (u€, du, Au) = 611 (uf, du) + AT (uf, du, Au) =0. 4.3)

This expression represents the linearization of (4.2) where u° is the current value of displacement, up-
dated at the end of each step according to

u — u+ Au. 4.4)
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The whole proceeding is continued untit the prescribed error tolerance for a criterion mostly based on
applying the energy norm is reached. The first term in (4.3) can be calculated using (4.2), but the second
variation of the potential

A (u, fu, Au) = A [/ OF . PdV — / bu - BdV — ou- TdA] (4.5)
B B8 D8,

still has 1o be determined. For that purpose it should be emphasized that only the conservative Joads are
considered in the following and that in such a case the increment of the last two terms in (4.5) is equal
to 7cro, as this type of load is deformation independent. Based on this assumption. the reduction of (4.5)
yields

ASIT (u, Su, Au) = /

A(SF : P) dV=/cSF:APdV (4.6)
B 5]

and applving the ransformalion

oP  d*(F)
AP =C:AF, C=oe=——5—, 4.7
oF — QF? “.n
where C represents the clasticity tensor, the second variation of the polential becomes
AST (w, Su, D) = /(SF :C: AFdV. 4.8)
3
Finally, after introducing (4.2) and (4.8) into (4.3). the linearized problem 1akes the form
Lin §[1 (u°, du. du) =
/JF : Pdv —/o‘w Bav —/ du-TdA+ /6F C:AFJdV =0, (4.9)
J 3 48, U )

Jl'llefkdu) ASM(w dudu)
which is also appropriate for introducing FEM approximation [6, 49, 53]. To illustrate the complele
procedure. a four-node discretization and isoparametric bilinear shape functions are assumed:
o1 :
:\"=I(1+£§;)(1+171);), 1=1,.,4 (4.10)

with £, n being natura) coordinates such that € € [~ 1, 1] and 5 € [—1, L]. &, »; are coordinates of node 7
in the natural coordinate system (€, n). which is shown in Figure 4.1.

5_4
4

Figure 4.1: Physical and natural coordinate system.

Shape functions (4.10) permit 1o express the coordinates in both configurations dependent on the nodal
coordinates X, and x, as follows

4 B
X=Y NENX, amy N(En 4.11)
i=] =1
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and in the same way, the quantities related to the displacements become

4

4 a
u= ZN‘ &, Mu;, du=x ZN‘ & n)du;, Au= Z N (&) Au,. 4.12)

i=1 i=1 i=]

Here u;, du; and Awu; represent again the nodal values. Relations (4.11) and (4.12) can also be written
in the matrix notation

X=N- X*, T~ N-z°, (4.13)

ux N u®, éu = N . ju, Aux N . Auf, (4.14)

where the vector u° consists of the nodal vectors

c

uT={ ol ul uf o}, uf ={ul u o }. 4.15)

In the notation uf the lower index represents the node and the upper index represents the degree of
freedom. The vectors X°, x¢, du®, Au® are defined analogous to u<, and the terms of matrix N are
shape functions ordered as follows

_ N0 0
N={N' N> N* N'}, N={ 0 N 0 ). (4.16)
0 0 N

(4.15) and (4.16) are presumed to describe a 3D problem. Substituting (4.13), (4.14) into (4.9) together
with the assembling process yield the approximation

/6F:PdV—/6u~BdV—- Su -TdA =~ 6UT-R 4.17)
B 8 0B:

/6F:C:AFdV ~ UT. K AU (4.18)
B
so that problem (4.9) obtains the new form

SUT{K-AU + R} =0 (4.19)

where K is the stiffness matrix, R is the residual vector, and AU is a vector of unknown displacement
increments for the whole system. As the values of the test function U can be arbitrary, the expression
in parenthesis must be equal to zero, yielding an algebraic system of equations in the unknown AU

K-AU+R=0. (4.20)
The new current value of the displacements of all nodal points U has to be calculated by superposition

U—U-+AU. 4.2

4.1.2 The mixed variational principle and the derivation of the P0Q1 element

In the case of incompressible or nearly incompressible materials, the standard variational formulation
shows the effect of volume locking which is manifested by obtaining the results corresponding to the
behavior of a much stiffer material than is actually the case. To improve the results, a few mixed methods
are developed with the three-field variational description proposed by Simo, Taylor and Pister [80] being
presented here. In this method, in addition to the displacements, two new variables, hydrostatic pressure
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p and volume change O, are introduced to decouple the volumetric and deviatoric parts of the potential.
Accordingly, the total potential has the form

(u,0,p) = /" ) [¥0ot () + Vueo(C () + p(J(us) — ©)] dV + I, 4.22)

where C is the right Cauchy Green deformation tensor corresponding to a pure distortion as its determi-
nant is equal to one

C=J3iCc, detC=1. (4.23)
Analogous expressions for the deformation gradient F° are often necessary, too,
F=J%F, deF=1 (4.24)

The minimization of (4.22) yields three conditions

_ int ext __ aq’dcv 6_.] ext __
Sull = 8, IT™ + 6,117 = /V [(_a 5 +P5g)6C() | dV + 81" =0, (4.25)
boll = / [ Mot _ p)ae] dv =0, (4.26)
5,11 = / ((J — ©)dp]dV =0 427)
lf

which can be additionally reformulated. Firstly, for the transformation of (4.25), it is convenient to
introduce the following brief notation

all’df:v a'] _ -
30 Sval 3C = ])JC (4.28)

and to write the variation of the Cauchy Green deformation tensor in the form

Sdev =

6C = FT . Grad §u + Grad"6u - F. (4.29)
In this way, the variation of internal potential becomes

Sull™" = /V [(Grad™6u - F) : (Sueo + Svat)] dV (4.30)
and the linearization of condition (4.25) reads

Grad éu : [GradAu - (Sgey + Svat)|dV

v

+ / (Grad$u - F) : (265 dev 4+ 295 "°‘) : (FT . Grad Au)dV
v

aC aC
+ | (GradTéu - F) : (62"' Ap) dV + AS T = —§T1"*(u) @31)
‘f

where SI17°*(u) represents the value of the variation of potential (4.22) for the current w. Furthermore,
expressions (4.26) and (4.27) can be reformulated in the following way

_ a'bvol - 32%01
p= %‘ = AP="mg

A, 4.32)

o= v (v A9=% JC': (FT - Grad Au)dV 4.33)
‘f
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where the latter is obtained using the assumption that the volume change O is the volume average of the
Jacobian J instead of the strong form J = ©. The implementation of the obtained increments in (4.31)
results in the alternative form of the linearized problem

Grad 6u : [GradAu - (Sgey + Sea)|dV
‘f

+ / (GradTéu - F): C : (FT - Grad Au)dV
v

2
+ / (GradTéu - F) : JC™! 10V JC' : (FT.GradAu)dV | dV
v v ge? v
+A8 1 = — 611" (us) (4.34)
where it applies that
asvol — Jc—l (4.35)
dp
and the elasticity tensor C is calculated as the following superposition
— _ 9S dev _ 0S vt
C= cdzu + Cvl)h cdeu =2 acC ' cvol =2 acC - (4.36)

Finally, introducing the FEM-approximation (Sec. 4.1.2) into (4.34) yields the system of algebraic equa-
tions

K-AU+R=0 (4.37)

with a stiffness matrix of the form

K= | G"-(S4v+ Sux) GdV
Ve

+/ (BT - F):¢: (F'.B)dV

+ / (BT-F):JC™! 19V f JC™' . (FT.B)dV| dV. (4.38)
e ) Vv 0e? Ve ’ ) )
Here the following notation is used
GradAu = B - Au®, Graddu = B §u°, B =Grad N, 4.39)

and the matrix G consists of derivatives of shape functions so that the following condition is satisfted
Graddu : [GradAu + (Sdev + Svd)]dV =du - [GT  (Sder + Svat) - G]dV -Au. (4.40)
Ve Ve

Expressions (4.38) and (4.40) depend on the integral over a volume of an element V¢, Except in the
case of incompressible materials, the principle of decoupling of deformation into a volumetric and a
deviatoric part is often used in plastic deformation modes as they are exclusively deviatoric. In the scope
of the FEM, the described derivation corresponds to the so called P0QI element.

4.2 Muitiscale FEM for modeling of materials with nonlinear microstructure

4.2.1 The standard variational principle

In order to achieve a clear representation of the connection between the homogenization theory and FEM,
the strong and the variational form of the problem in the case of the standard form of potential will be
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considered separately for each of the scales.

The explanation starts with the strong form of the boundary value problem on the macroscale consisting
of the equilibrium equation and the boundary conditions

DivP(F)+B=0 in B,
T=PN on 8B, (4.41)
o= 1y on 9B,
where the parts of the boundary still have to satisfy the usual conditions
0B=0B,U0B, 9B,Nn8B,=0. (4.42)

System (4.41) is equal to the problem formulation of any singlescale method except that P cannot be
calculated directly, but rather using microscale results. The FEM solution of (4.41) has already been
studied in section 4.1.1 showing that the weak form comresponding to this system is given by

= / Y(F)dV + 1, @=a; on 0B, 4.43)
B
and that its second variation has the form

Linéﬁ:/&F:PdV—/Jﬁ-BdV— 6&-Tdﬁ+/6F:é:AF‘dV=0.
B B . J8 ,

ol
ST, 0%) ASMI(aSi,A6)

The primary variable at this level is the displacement @ and its approximation

oo

4 4
2= LN En %, Sa=3 N i, As=3 N () A, (4.44)

i=1 i=1
yields a linear system of equations in the unknown increment AU
K.-AU+R=0, (4.45)
U=U, on 0B, (4.46)

where U is the vector of displacements of all nodes in 8/8B, and U, are the prescribed displacements
on the boundary part 88,,.

The microscale problem is slightly different. Assuming periodic boundary conditions derived from Hill’s
condition, the strong form of the microscale problem becomes

DivP(F)=0 in B,

4.47)
wt =w", on aB,
where the connection between stresses and microfluctuations is given according to
P=P(F), F=Crade=F+F, z=FX+w. (4.48)

As the body forces are neglected and kinematic boundary conditions are prescribed over the entire bound-
ary, the potential at the microscale has only one term

II= / ¥ (F) (4.49)
B
and its first and second variations are

STI(4, §) = f SF:PdV,  ASll(w,éw, Aw) = f 6F:C:AFdV (4.50)
B B
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so that the linearized problem can be described by

Lin5n=/5i-":Pdv+/6ﬁ':c;Aﬁ‘dV=o. 4.51)
\8 r B ]

~ ~
$11(w,6b) AN, Adv)

The approximation of the unknown microfluctuations

W= ZN‘ (€, n) i, ow= ZN' (£, n)6t;, AW = ZN‘ (£, n) Aw; (4.52)

i=1

yields the system of algebraic equations

K -AW+ R=0, (4.53)
W =W~ ondB. (4.54)

Here W™ and W~ are vectors of microfluctuations in nodes lying on &B* and OB~ respectively. Note
that the residual R depends on the macrodeformation gradient F* and microfluctuations @ and not, as
usual, on external loads and displacements. The final result at this level is the first Piola Kirchhoff stress
tensor whose volume average (3.26) is the macrostress tensor P. This result enables further calculations
at the macrolevel.

4.2.2 The mixed variational principle

As a comprehensive derivation for the standard form of the potential has already been given in4.2.1, here,
only the final expressions and the differences between the scales will be pointed out. At the beginning, it
can be pointed out that the linearized formulation for the mixed form of the potential presented in chapter
4.1.2 completely corresponds to the macroscale problem, where applying the overbar notation yields the
expression

[ Grad 6 : [Grad At - (Saew + Sout)|dV
v

/ (Grad'§iz - F) : (Cuew + Co) : (F" - GradAG)AV
‘/

L -1 a ‘I’uol
+[_/(Grad su-F): JC™ dV (Tf- 75?

+ASG I = -5 (4.55)

=1y 6=0 Az=0 on 9B;; t=1£ on 08,.

) JE . (F - GradAw)dV
1Y

In contrast to the smglescale formulation, here, the stress tensors Spu, Sey and the second derivatives of
potential €, Cacus —-—’;ﬂ cannot be calculated without using the data obtained from the microscale. At
microlevel, the vanatnonal formulation has a similar form as (4.55), but depends on the microfluctuations
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1i» and the residual part is a function of the macrodeformation gradient F and microfluctuations b:
/ Grad dw : [Grad A - (S ey + Seat)]dV
v

+ / (Grad"si - F) : (Cger + Coot) : (F - GradAin)dV
Vv

laquvol

V 002

= I (4.56)

@t =w", Sw=0, Aw=0 on 9B, OII"* = 6II"*(F,w).

+ / (Grad'"é%w - F) : JC~'dV ( ) JC™! : (F" - GradAw)dV
v v

The boundary value problem (4.56) is completely solvable as the material structure of the RVE is known.
Details about the FEM approximation and derivation of the stiffness matrix and the residual vector on
both scales can be left out because similar procedures have already been shown in 4.1.2 and 4.2.1.

To summarize, this and the previous chapter present the theoretical background of multiscale FEM,
while the rest of the thesis will concentrate on applying this method to the different fields of mechan-
ics. Thereby, we will use especially the formulation explained in the last section, either directly (Ch. 5)
or in the extended form (Ch. 6).
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5 Numerical results for nearly incompressible porous materials

The simulation of microporous, nearly incompressible materials is chosen as a first example of applying
multiscale FEM [50]. This kind of material requires the mixed variational principle, so that the problem
corresponds unambiguously to the situation considered in section 4.2.2.

5.1 The effective behavior of microporous media
5.1.1 Tension test for a plate with random microporous structure

The effective material parameters of the microporous media are estimated by simulating a tension test
for a square plate with a side length of 40cm. The vertical uniform load p = 1 kN/cm is applied along
the horizontal boundaries of the plate. Thanks to double symmetry, it is sufficient to simulate only one
fourth of the plate. In that case, the vertical displacements on the lower boundary and the horizontal
displacements on the left boundary are constrained (Fig. 5.1).
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Figure 5.1: Tension test of a plate with random microporous structure.

A periodic microstructure is assumed in the surrounding area of each Gauss point, while the RVEs with
different orientations correspond to distinct Gauss points. This simulates a random microporous structure.
The RVE is chosen to be a unit square with an elliptical pore and its geometry is shown in Figure 5.2a.
Here the side length is denoted by 2d=1mm, the major axis of the pore by 2a and its minor axis by 2b.

\ /
, \ [/
N v
z - N~
/ N
2d 7 / \
a) b) c) d)

Figure 5.2: a) RVE with an elliptical pore. Three groups of tests with fixed major axis are simulated:
b) a = d/4, ¢) a = 2d/4, d) a = 3d/4. Ellipticity b/atakes values in the interval [0,1] for
each group of tests.



44 5 Numerical results for nearly incompressible porous materials

The material behavior at microscale is described by the relalions

[(w,©,p) = / [*I'...,z((-)) + W g (C)) + p( T (1) = (—))] dV + 17, (5.1)
1%
U= Yoy + Wy = %p(lr C* =3+ K(JInd = J+1), 3.2)
I ll/\:ﬂl

where a multi-field description of the potential and the stored cnergy density of Neo-Hookean material
can be recognized. The assumed material parameters are £ = 1000N/mm?, v = 0.3 in all of the
examples. Note that due to (5.1). the formulation presented in section 4.2.2 corresponds directly to the
problem of simulating this kind of materials.

The following seclion discusses the results of three groups of Lests with different lengths of the major axis
(Fig. 5.2b-d). In the first case. the major axis is fixed as @ = d/4. @ = 2d/4 in the second, and ¢ = 3d/4
in the last case. Ellipticity b/a changes in each group of tests. taking values from O (o 1. Ellipticity 0
means that a pore has just appcared and jits width is equal to zero. ellipticity 1 corresponds to circular
voids. Some of the intermediate results at microscale are shown in Figure 5.3, just as a siall illustration.
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Figure 5.3: Plot of the microftuctuations and of the | I-term of the first Piola Kirchhoff siress tensor.
These are intermediale results of a tension lest for a plate with random orientation of RVEs.

The final results. the macromaterial parameters £ and v, are calculated using displacements on the bound-
ary of 1he plate al macrolevel. These results are shown in Figure 5.4, where both of the parameters are
seen (0 decrease with the appearance of pores. while Young's modotus decreases and Poisson’s ratio in-
creases with their growth. Naturally the pores with the bigger major axis have more significant influence.
The change in parameters is regular.
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Figure 5.4: Changes in Young’s modulus and Poisson's ratio for differcnt pore sizes.
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Similar tests are carried out in order to calculate the shear modulus. This time a square plate with
side length 20 cm is observed under a horizontal load p = 1 kN/em. Because of horizontal symmelry,
simulation suffices with one half of the plate having constrained horizontal and vertical displacements on
the lower horizontal boundary. In order to avoid the effects of buckling, vertical displacements are also
constrained along all remaining boundaries (Fig. 5.5a). As in the case of the tension test, three groups of
tests are simulated for fixed major axis a and changeable ellipticity b/a. Figure 5.5b shows that the shear
modulus g behaves similarly to Young’s modulus (Fig. 5.4a). With the appearance of pores it decreases
at once and with growing pore size it decreases gradually. The change is regular. The values of the
shear modulus obtained by the shear test are compared with the shear modulus calculated with Young’s
modulus £ and Poisson’s ratio v from the tension test. This comparison shows that the departure is
almost negligible, for the smallest major axis it is 0.4% and for the longest one 1.5%.
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Figure 5.5: a) Plate for the shear test. b) Changes of the shear modulus for the three test groups.

5.1.2 Comparison with Hashin-Shtrikman bounds

In order to check the quality of the simulations, the results shown in Figures 5.4 and 5.5b are compared
with the analytical Hashin-Shtrikman bounds. Here it should be pointed out that the load and the param-
eters in previously described tests were chosen in such a way that the behavior of the structural element
stays in the domain of small deformations. In such a case, the results can be compared with analytical
solutions for linear materials which are much simpler than those for nonlinear materials.

In contrast to the general form presented in the section 2.2.3, the Hashin-Shtrikman bounds take an ex-
plicit form for two-phase materials:

- - Ca ; . (&
K=K, +—; T K=K+ — 5= (5.3)
Ka—-Ky + 3K+ Ki—-K2 T AR a+4pa
Ca (]
R i 6K 142y )ey ! Hu = 2+ 1 6(Ka+2ug)en {54}
Hr— Sp1 (3K +4) m—pz o Spa(3Ka+dug)

Here, subscripts [, u denote the lower and upper bound respectively, and phases are chosen so that Ky >
Ky and pty > py. Their volume concentrations are denoted by ¢, and ¢;. The microporous material
represents a two-phase material so that the expressions above can be applied directly. However, as the
material parameters of voids are equal to zero, the lower bounds (5.3)a and (5.4)a reduce to zero and only
the upper bounds remain. Figure 5.6 shows the change in bulk modulus A" and shear modulus g with
respect to the porosity p which is equal to the volume faction of voids p = ¢ = lTL The diagrams show
that the values obtained by the homogenization procedure really lie beneath the upper Hashin-Shtrikman
bound, endorsing that the results are in the allowed domain.
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Figure 5.6: Comparison with Hashin-Shtrikman upper bound for the bulk and shear modulus.

In each of the diagrams, the line representing the data obtained by the multiscale method has three
branches. one for each group of tests where the major axis a is fixed. The branch on the top corresponds
to the RVE with a pore of the width @ = d/4, the middle one to the RVE with a pore of the widtha = d/2,
and the last one correspond to the case @ = 3d/4. This shows that materials with the same porosity
but different shapes of micropores have different material parameters. More precisely, the strength of
materials with the same porosity decreases more significantly for elongated voids than for circular voids.

Young's modulus [Nimm ']

L] -8} (] LR ] -] (1]

Figure 5.7: Comparison with Hashin-Shtrikman upper bound for the Young modulus.

A diagram for Young’s modulus is shown in Figure 5.7, where the lower bound also reduces to zero.
Using the Hashin-Shtrikman method, a check only fails in the case of Poisson’s ratio, as the standard
constraint 0 < v < 0.5 is stricter than the Hashin-Shtrikman bounds.

5.2 Overview of the results concerning the model for microporous media

This section uses multiscale FEM for the estimation of material parameters of microporous media. The
results show that, with the appearance of pores with a still negligible width, all material parameters
decrease at once. Furthermore, with the growth of the pores Young's modulus and bulk modulus decrease
but Poisson’s ratio increases. The change in parameters is regular. Tests also show that the elongated
narrow pores result in a more significant decrease in the strength of material than for circular voids, even

if the porosity is the same. Finally, a comparison with Hashin-Shtrikman bounds shows that the results
are inside the permitted domain.
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6 Solution-precipitation creep — a deformation process in
geomechanics

The model presented in this chapter was developed for the purposes of project D8 of the Collaborative
Research Center 526 "Rheology of the Earth — from the Upper Crust to the Subduction Zone.” Part of the
results has already been published in [34, 51, 52].

6.1 Introduction

6.1.1 Solution-precipitation creep in polycrystalline rocks

In the context of this thesis, solution-precipitation creep is considered to be a geomechanical process
occurring in polycrystalline rocks, and it is worth mentioning that similar phenomena also occur in the
field of metallurgy. The process has a diffusional character and is based on the particle migration from the
compressive to the tensile zone according to the established interpretation. The precipitation phase leads
to the extension of existing crystals or to the formation of completely new ones, mostly with a fibrous
habit. Frequently, such crystals or crystal parts are full of inclusions and interleaved with thin layers of
white mica and chlorite.

Figure 6.1: Examples of new crystals formed by solution-precipitation creep [23].

One typical example of deformations caused by solution-precipitation creep is shown in Figure 6.1a,
where the pressure zone is denoted by P and the tensile zone by D. The active particles are presolved
from the P-zone and precipitated outside the boundary of zone D, forming a new crystal. The same la-
beling is kept in Figure 6.1b, where a new crystal consisting of quartz and white mica is formed outside
the D-zone. Both figures were taken from the work of D. Elliott [23].

One of the important properties of solution-precipitation creep is that considered alone it is a "self-
exhausting™ process. That means that on observing an extended period of time, the grains always become
more elongated, which causes a significant decrease in strain rate. Consequently, this deformation type
is always accompanied by rotation of the individual grains.
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It should be also pointed out that this process is often mistaken for the process of grain boundary migra-
tion, although they have a quite distinct nature. While the driving force of solution-precipitation creep is
the normal stress gradient, grain migration is a result of the tendency to minimize elastic strain energy
stored in the crystal or to minimize the surface energy. In addition, grain boundary migration can never
cause the development of the new crystals.

Finally, it is worthy mentioning that this problem has a long history. The investigation of diffusional
flows in geology started in the nineteenth century with Sorby [81, 82], but still remains the subject of
many new publications [21, 22, 23, 28, 29, 75, 76].

6.1.2 Correns’ equation and corresponding expressions customary in metallurgy

The solution-precipitation creep and similar diffusional processes depend on the number of particles, so
that some specific quantities need to be introduced for their description. The many models in this field
start by defining the partial molar volume v; of the phase i which at constant temperature T and number
of moles n; can be written as

_ Op;
ne (B_P) T,n; ‘ (61)

Here P is pressure and y; is the chemical potential of the component 7 and it has to be understood as a
force which, when unbalanced, pushes an exchange of particles, either with the surroundings or between
the phases in the system. The expression for chemical potential can be obtained by integrating (6.1) in
the form

uf = p? +uP 6.2)

where the integration constant 4 represents the chemical potential at the reference pressure P = 0, so
that for two points with different pressure it can be written

plt — ul* = vi(P - Py). 6.3)

Solution (6.2) is valid for material transport inside the crystals, while along the diffusional path it can be
transformed into an expression dependent on the concentration ¢, gas constant R and temperature T’

nl =p,+ RTInc’ (6.4)
which again can be used in order to pose the condition for two different points
RTIneM — RTIncl = v = )2 (6.5)

Finally, as the equilibrium between material transport inside the crystal and through the intercrystalline
space must hold, equating relations (6.3) and (6.5), it can be written:
ch

uh — yf? = y(P, - P) = RTIn (—',,;) . (6.6)

¢

This expression is known as Correns’ equation having a simplified form in the case of a single component
material and for the specific choice P, =0

s — g =vo,=RTIn (é) . 6.7)

Here 1. and ¢y are the chemical potential and concentration corresponding to the reference state (P, =
0), and P, is assumed to be equal to the normal stress o,,. Equations (6.6) and (6.7) are basic expressions
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for treating diffusional flows in geological problems, but only a few steps based on the application of the
first Fick’s law of diffusion and on the approximation of logarithmic function yield an expression analog
to those which are customary in metallurgy

KD Q

~xuT”
Here é is the strain rate, X represents a proportionality coefficient between the normal stress gradient on
the local scale and the macroscopic stress o acting on the polycrystalline sample, D is the diffusion co-
efficient, (2 the atomic volume, k the Bolzman’s constant and X is the diameter of a representative grain.
Expression (6.8) can be compared with Nabarro-Herring’s equation [39, 71] describing the diffusion
process through the bulk crystal lattice

. _ KD,Q

€n = X2p2k2T g
or with Coble’s equation [20] corresponding to the diffusion process taking place along the crystal bound-
ary

6.8

6.9)

] kxD.hQ
€ = W ag. (6.]0)

In the last two equations, é,, and é, are strain rates, D,, and D, diffusion coefficients, 7 is the ratio of the
longest to the shortest dimension of the grain, and 4 is the width of the boundary region of a crystal.

6.2 Continuum mechanical model and numerical solutions

It has already been mentioned that according to the established interpretation, the normal stress gradient is
the driving force of the process, but recent investigations [57] show that the process actually occurs in the
regions of discontinuous stresses (triple points), while no changes occur in the parts with homogeneous
stress state. This chapter continues by presenting a continuum mechanical model corresponding to the
new interpretation of the process and numerical results, obtained using standard and multiscale FEM.

6.2.1 Continuum mechanical modeling

For the explanation of the model an RVE §2 consisting of disjoint grains Q; (Fig. 6.2a) is considered. For

' m Q; matcrial transfer
velocity
.- A~ G

3) N v? normal velocity
periodic boundary b) of boundary

Figure 6.2: a) Representative volume element of polycrystalline material consisting of disjoint grains §2;
with boundaries 99;. b) Types of motion along the boundary of a grain.

each grain €); it is assumed that the deformation has to be decomposed into an elastic and an inelastic part

¢ = ¢F o ¢! (6.11)
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leading to a corresponding multiplicative decomposition of the deformation gradients
F=F}.F. (6.12)

Note that the inelastic deformation is compatible within individual grains but incompatible at grain-
boundaries. Of course ¢! has physical meaning at the grain-boundaries only. In the interior of Q; it is
just a mathematical tool to describe the change of shape of the grain and does not correspond to an actual
deformation.

The material formulation of the problem relies on the functional of total power given as

L=E+A (6.13)

where E denotes stored elastic energy and A dissipation [33], [65]-[67]. The stored elastic energy can
be expressed via the integral of energy density ¥(FF) as

E=Y [ wr@E) ) o7 =3 [ vy av 614

Here ; = ¢}(€) is the volume of the inelastically deformed grain. With respect to this configuration the
material laws have to be formulated. However it turns out to be convenient to transform all expressions
to the reference volume Q;.
Dissipation is assumed to be caused by two different processes (Fig. 6.2b). Material transport within the
grain-interfaces is considered as a major source of dissipation. This can be described by a term of the form
}Q?. where Q; denotes the velocity of material transport within the grain-boundaries. As a secondary
source of dissipation precipitation and solution of material are viewed. They lead to an expression of the
form § (v')?. Here

v = %qb! X (6.15)
is the normal velocity of grain boundary-movement and #2; is the unit-normal to the grain surface in
the inelastically deformed configuration. Two constitutive parameters <y and « are related to the specific
mechanism of dissipation. Experimental evidence suggests that x/y << d?, where d corresponds to a
characteristic dimension of a grain.
The formulation above leads to a total dissipation of the form

ST
=5 [ [Fer+ 5 @] diEhm as, (6.16)

Here, J! = det F! denotes the Jacobian and IN; the unit-normal to the grain surface in the undeformed
configuration.

It is important to note that the two types of motion within the grain-interfaces are coupled via balance of
mass which takes the form

r=V.Q, 6.17)

along grain-interfaces and

}:Q=0 (6.18)

at interface-junctions (triple-points), i.e. points where several grains meet. Here V refers to differentia-
tion in the inelastically deformed configuration.
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The material formulation is now based on a common assumption in continuum mechanics, namely min-
imization of energy locally in time. Hence the Lagrangian L introduced above has to be minimized by
%dag, v!' and Q; under the constraint (6.17) and (6.18) for fixed ¢ and ¢!. This leads afer the substitution
of equations (6.14)-(6.17) in (6.13) to a Lagrangian of the form

=% (5 [ v[FEy ]
+ /an [%Q? + % @) + o (v -—FV—-Q,-)] J! |(F§)T'1-N.-| dS] : (6.19)

where the constraint (6.17) is included using Lagrange-parameters o;. It should be noted that, contrary
to %¢!. v} and Q;, the variable a; is continuous across interface-junctions.

Variation of L with respect to the variables £ ¢}, v? and Q; (for constant ¢} using the standard procedures
of partial integration) gives the following Euler-Lagrange equations of the system:

Vb =0 in Q;, a)
Kl + o = B on a0, b) (6.20)
1Q;+Va; = 0 on  Of, c)

where V and V denote differentiation with respect to the reference and the inelastically deformed con-
figuration.
The equations involve the Eshelby-tensor given by

b= —%(J} U)(F)T =Ji I~ F'.P, (6.21)

where P = 0—“’5:(.],‘I W) is the Piola-stress-tensor, and the normal component of the Eshelby-tensor pushed-
forward to the inelastically deformed configuration

Bi =7y - (FIYTb-(F)T -5, 6.22)

Equation {(6.22) essentially identifies the normal component of the Eshelby-tensor 3; as the thermodynam-
ical driving-force for solution-precipitation creep. This is consistent with the observation made in con-
tinuum mechanics, that the Eshelby-tensor is generally responsible for configurational changes, [24, 59].
Note that for small elastic deformations, i.e. if FF is close to a rotation, 3; is well approximated by
the normal component of Cauchy-stress, justifying formulations common in geophysics, see for example
[28].

Equation (6.20)a can be interpreted as a condition ensuring, that the deformation in the interior of a grain
is purely elastic, or otherwise stated, that the material model is independent of the particular choice of
¢!; remember that ¢! has physical meaning only at the surface of the grain.

Finally substitution of equation (6.17) into (6.20)b,c leads to the governing differential equations of the
deformation process at the grain boundaries

_S Ac; + i = B;, (6.23)

==V T =

v v

The obtained material model allows some interesting interpretations. Equation (6.24) introduces an im-
portant modification of the point of view stated above. Not §; is the actual driving force but rather §; — ;.
Whereas g is discontinuous at corners and bifurcation-points of the grain-boundaries, equation (6.23) de-
fines a; as a smooth approximation of §; (Fig. 6.3). This implies the occurrence of boundary-layer effects

at such points which have a strong influence on the mechanical behavior.

Boy = = (B~ au). 6.24)
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Figure 6.3: a; is a smooth approximation of ;.
6.2.2 Single crystal under uniform pressure

The physical meaning of the governing equations is illustrated by considering an idealized case. It is as-
sumed that along the horizontal boundary of a rectangular crystal, the normal component of the Eshelby
tensor has a constant value 3 = 0.1kN/mm?. The vertical sides of the crystal are not loaded, so that
along them { is equal to zero. The ratio of inelastic constants is taken to be = = 0.002 mm? and the
length of the loaded side is I = 2mm. The solution of differential equation (6.23) for such parameters
represents the values of o over the loaded side. Figure 6.4 shows that a is the smooth transition between
# = 0.1kN/mm? and 3 = 0kN/mm? in the edge zones, while elsewhere « and 3 have the same value.
According to the second governing equation (6.24), it means that material motion will occur only at the
places where o and 3 differ. Such expectations have already been proved by the experimental obser-
vations. Namely, the results of the test presented in [57] show that homogeneous stress really does not
initiate solution-precipitation creep.

| )

A ] 3; = const
0.1
0.08
0.06 /
0.04 Qi
.02
>
0.5 1 L5 2
boundary layer boundary layer

Figure 6.4: Change of o, and 3; over the loaded side.

The experimental interrogation used a two-part test based on the method of phase shift interference
microscope. At the beginning, (first 17 days), a halite crystal (Fig. 6.5A) was observed without any
load. The Figure 6.5B shows that no changes occurred in this phase. In the continuation, the same crystal
was observed under pressure of 1MPa. This part of the experiment took additional 17 days and the final
results showed that the edges of the crystals moved by 1.7 um (Fig. 6.5C). There was no change at all in
the rest of the sample. The experiment was carried out in saturated NaCl solution and under low stresses
so that dislocation creep is avoided.
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220 nm

Draufaicn

10 nE S
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Figure 6.5: Halite crystallite at the beginning of test (A), showing the situation after 17 days without load
(B) and 17 days with load (C). Load has caused the crystal edge to move by 1.7 um. The
figure is taken from the work of Lochimper et al. [57].

6.2.3 Micromechanical model

A numerical implementation of the full model presented in the previous section appears to be quite
demanding due to its nature of a coupled volumetric and interface problem. Because of that first a
simplified model will be observed in order to predict the evolution of the grain shapes and size for
moderatory large deformations.

The formulation will be two-dimensional and assume that the polycrystalline material is composed of a
set of rectangular particles with aspects a;, b; and orientation y; (Fig. 6.6a).

a) b)

Figure 6.6: a) Single grain in Taylor model. b) Quadratic expression for ;.

It will be assumed that there is an effective macroscopical inelastic deformation F'!; such that there exists
a macroscopical stored energy density in the form W(F(F';)~"), where F denotes the macroscopical
total deformation gradient.

Stored energy density will be specified as that one of a compressible Neo-Hookean material

¥ =U(JJZ) + g- (Cc)': C, (6.25)
Jor = det Fp, Cig = (Fig)"-Fiy
where U(JJ3') is a functional representing influence of volume deformations. Individual grains are
anisotropic of course. Here it is assumed that the macroscopical energy of the polycrystal has to be
isotropic, i.e. the possible influence of texture is disregarded. The specific form of W is of minor im-
portance since only small elastic deformations are envisaged. The expression above turns out to be
convenient for calculations.
Next a Taylor’s hypothesis is introduced by assuming that the macroscopic Cauchy-stress, given by

]. 8‘{’ o o °)r|_-ﬂ' s
o= 2}F-55-F‘ =U'(JIF)I+ e F(Cl)t T, (6.26)
is also the average Cauchy-stress acting on all grain-interfaces. This implies that the elastic deformation

gradient is in an average sense constant on all grains, hence
FE=F(F)" = P(F™ (6.27)
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Using (6.21) and (6.22) the average value of the normal component of the Eshelby stress-tensor depending
only on J! and macroscopical quantities can be obtained

ﬂi.nvg = "'J [\I’ J UI(J )— H ﬁ.(F )T_ -C- (Fl )_l n ] . (628)

The grain-shapes are assumed to remain rectangular which means that the v} are spatially constant.
From equation (6.24) follows then that Aq; = af is constant and thus a;, §; have to be quadratic in z;
and y; respectively, (Fig. 6.6b). In the following only af and 3f, appearing on one face of the grain ¢,
will be considered (Fig. 6.6a). The case of a? and (! is analogous. The function a2 has the following
general form

b. 2
of =¢; [(3") - Y?] +d;, (6.29)

where ¢, and d; are constants. According to (6.23) 3¢ follows in the form

2
B =af (a")" ¢ [(%) - y?] +di +2 s ¢, (6.30)

and from its volume average

ravg = / Bl dy; =c; ( 7) +d; (6.31)

-b. /2
¢; can be expressed and introduced in (6.24) what yields the velocity

“———(a“)"—)\—gc-—.\-—-—h‘—ﬁ—,\ (6.32)
v Lbi+r )
Here a Lagrange-parameter A is introduced which represents a constant field of precipitation/solution

over all grains. This parameter is determined via the volume constraint

Z a,b; = const = V} (6.33)
i

which has to be added to the Lagrangian (6.19). This takes care of the obvious fact, that no creep should
take place under hydrostatic stress conditions. An analogous expression is valid for the other face of the
particle

Y 6}) avg dl'
b,' = m - A (634)
Finally the effective velocity gradient can be expressed as the average of the inelastic velocity gradients

of the single grains, which closes the system
FoFy = 2 S i (FY) = ZRT “'b ° \.R (6.35)
eff cff V() i i i a,b, '

where R; is the rotation tensor corresponding to a rotation by the angle ;.

The complete micromechanical model requires the solution of the system of equations (6.28), (6.32)—(6.35).
It allows to calculate the evolution of the distributions of the aspects a; and b; as well as macroscopic de-
formations or stresses respectively, provided stresses or macroscopic deformations respectively are given
as functions of time. Initial distributions have to be defined for the variables a;, b;, ¢; and d;, where the
d; can be interpreted as eigenstress inherent in the polycrystal.
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Numerical results for a displacement controlled tension test using a sample of 200 grains are shown in
Figures 6.7 and 6.8. In Fig. 6.7 the stress-strain behavior is displayed using two different time-scales in
order to resolve all features. One can see that the test starts with a transitory regime where the stress rises
essentially elastically, i.e. there is only very little creep. Then there is a softening regime, which is due
to the fact that the distribution of grain aspects adjusts to the given macroscopical deformation. Finally

the system settles into stationary creep.

Figure 6.8 shows the evolution of the distribution of the aspects of the grains. One observes that the
grains tend to become more prolongated. Also a certain grain coarsening can be seen due to the fact that

small grains are resolved completely.
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Figure 6.7: Stress-strain behavior for tension test.

b, b,
10 10
a .
o |
F] 3
2 1 XA M
7
X :
2 ] [ LY 0w a, 2 4 3 [y 1 a,
b
b, d
10
10 *
. K
s 2
L4 "|
1 }'
1 -
.
. R
1psS, .
J MO
S 3
W23 bt
2|t L
(SN 3
AL -
W, ek e, sk e R .. .
NG Sl e kN . . bl
? ) . . 10 a5, 2 4 3 » 10 a,

Figure 6.8: Evolution of the grain aspects (values in mm).
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6.2.4 Application of FEM for simulating the behavior of polycrystals

The previously described micromechanical model is a simplified version convenient for predicting the
behavior of a group of crystals with assumed neglected interaction, while FEM is necessary for a more
realistic simulation. This method starts with a Lagrangian functional (6.19) which after introduction of
(6.15) and (6.20) becomes

IR R
+ [ [ e+ 56w o ey v as

The previous expression depends on total deformation ¢, inelastic deformations ¢! and Lagrange param-
eter a; and with respect to these, the variational of the total potential I1 = L + I1°* has to be calculated:

Sl = 0

fV6¢:PdV=/6¢-FdV+/ é¢ - TdS, (6.37)
Q Q o

Jélln =90

Z / SoiJ; |(F})T_1'Ni|('€¢l ‘i +ay) -7 dS =

i an,

-y / 5¢)-(FY)T-.(JlpI — F . P). N,dS, (6.38)
i n,

Su =0

2 /Jaf(&-l ) |(FDT' N[ dS+
i o, 1. )
+(-;vm - Véei)JH|(F)T-'.N;| dS = 0. (6.39)

In Lagrangean (6.36), just the general form of free energy ¥(F°) is used. For a more precise specifica-
tion, an elastic potential appropriate for nearly incompressible materials is assumed (Ch. 4.1.2). In that
case equation (6.37) has the particular form

Gradé¢ : [Grad A - (Syev + Seat)]dV
‘I

+ / (Grad™0¢p - F) : (Cier + Cuat) : (F' - GradAg)dV
v

2
+ / (Grad'6gp- F) : JC-1av L2 %eat f JC-! : (F" - GradAg)dV
v voer J J,

+ASH = —§TTe* (6.40)
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Figure 6.9: Flow chart of the SPC element.
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which is identical to (4.34) except that here the second Piola Kirchhoff stress tensor S and elasticity
tensor C depend on elastic deformations

8 (1'¥(C-CY))

& (J'y(C-Cc'Y)
ac '

§=2 3C?

: C=2 (6.41)

Such formulation is more general, and the purely elastic case can be derived from it for C' = I.

Equations (6.37)-(6.40) are used as the basis for formulating the solution-precipitation creep element
(SPC element) whose most important characteristics are presented in the flow chart (Fig. 6.9). Here it
can be seen that in the first time step, inelastic deformations are assumed to be zero, and the total de-
formations are calculated for such a state. In the further steps, crystal geometry is checked in order to
calculate the normal vector on the inelastically deformed surface 7i. The inelastic deformations on the
boundary of the crystals are calculated by solving the linear problem defined by (6.38) and (6.39) while a
nonlinear procedure (POQ1 element) is applied for calculating inelastic deformations inside the crystals
and of the total deformations. Note that total deformations and Lagrange parameter must be compatible
everywhere, while the inelastic ones are compatible inside the crystals but not on their boundaries. The
total number of DOFs per node in the 2D case is five, and seven in the 3D case which has to give addi-
tional consideration to the total and inelastic deformation in the third direction of coordinate system.

In the continuation three examples of applying the model are presented. Each time, it is assumed that the
stored energy density ¥ corresponds to Neo-Hook material (5.2).

The first example was chosen to permit comparison with an analytical solution (Fig. 6.10). The observed
sample is a rectangular crystal whose upper horizontal boundary is loaded by pressure, with vertical dis-
placements constrained on the lower horizontal boundary. Pressure is chosen to be p = 0.1 kN/mm?
for the sample of unit thickness d = 1 mm. The material parameters £ = 23kN/mm?, v = 0.16 are
assumed, corresponding to the characteristics of halite crystal. As the real values of inelastic parameters
are unknown, they are chosen arbitrarily in such way that inelastic and total displacements can be mon-
itored in a few time steps. Discretization of the crystal is made by a mesh with 40x20 elements (Fig.
6.10a). Figure 6.10b shows that along the loaded boundary, a = 0.1kN/mm?2. On the vertical sides,
a = 0 as these sides are not loaded. In the edge zones there is a smooth transition of a between 0.1 and
0. These results agree with the analytical ones discussed in section 6.2.2, repeated here in Figure 6.10g.
Inelastic deformations ¢' (Fig. 6.10c,d) are concentrated in the edges, which agrees with the physical
interpretation of the second governing equation (6.24). Finally, Figures 6.10e,f show total displacements
after 50 time steps, where one time step is taken as one second. Note that subscripts in ¢' and a can be
omitted as the single crystal is observed.

The second example simulates the behavior of a polycrystal consisting of 9 crystals (Fig. 6.11). Each
of the crystals is discretized by a mesh with 14x14 elements. A test similar to the one before is carried
out. Pressure p = 0.1 kN/mm? is applied on the upper boundary, and vertical displacements on the lower
boundary are suppressed. An important observation, not apparent in the case of single crystal is that here
total displacements ¢ and Lagrange parameter a; are continuous everywhere, but inelastic deformations
¢! are discontinuous on the boundaries of the crystals.

Finally, the third example (Fig. 6.12) studies the behavior of a polycrystal consisting of five crystals.
Some of these crystals have an arbitrary and not a four-node form, which was a characteristic of previous
examples. This ability of the program will be used intensively in the further examples, which simulate
some more realistic shapes of crystals.
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Figure 6.11: Simulation for polycrystal consisting of four-node crystals. a) Geometry, discretization and
applied load. b)-f) Diagrams of DOFs after 50 time steps At = 1s.
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6.2.5 Using multiscale FEM to estimate the change in elastic material parameters over time

One further step in modeling solution-precipitation creep is to simulate its influence on the deformation
of a macroscopic body. To this end, the effective material properties have to be estimated, using the
concept described in chapter 3. In contrast to the case of purely elastic material, here the material at
macroscale behaves as Neo-Hook nearly incompressible material, while at microscale, the model derived
for solution—precipitation creep has to be applied. At microlevel, the problem is time dependent, so
that consequently, the calculated effective material parameters are too. The problem to be solved is
described by the following system where the overbar symbol in (6.42) denotes macroscale and in (6.45)
the operators related to the inelasticaly deformed configuration:

e macroscale:
Gradd¢ : [Grad A - (Sgew + Set)]dV
‘I

+ / (Grad™63 - F) : (Caeo + Cog) : (F" - GradAB)dV
0%

- - —— 2— — - - - - — -
+ / [(Gr"ad'aqs-F) : JC! (lg—‘?‘%") Jc . (FT-GradAd))dV] dv
v V 38 {
+AGI = ~ 811, (6.42)

¢ =¢, on 9B t=1%, on 9B,
e microscale:
/ Grad 6 : [Grad A - (Sueo + Soat)|dV
|4

+ / (Grad'é - F) : (Caew + Cout) : (F" - GradAdb)dV’
‘/'

2
+ / (Grad'sip - F) : Jo-* £ Lo / JC' : (F"-GradAm)dV | dV
v v oe: ) J,

= —§lIIr, (6.43)

W] =w; on 9B,

811 = I (F, , @', a),

Z/aﬁ;:J: (FY)T1 N (kb - s + ) - 72 dS =
o > f st (FNT-'.(JlpI = FT. P). N,dS, (6.44)
o,
S [ seutio] - A \ET Nl s+
o ) / (=L1%a - §60)J1 [(FHT-1.Ni| dS = 0. (6.45)
i o 7
The simplified flow chart of the element corresponding to the problem defined by (6.42)-(6.45) is shown
in Figure 6.13. From the diagram it is obvious that the first phase of calculation at macroscale yields

the macrodeformation gradient F°, but the terms Saev, Suots Cers Coots 0%5“ in (6.42) must be obtained
using the microscale (SPC element). At this level the variables are total microfluctuations w which have
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to be calculated according to (6.43), and inelastic microfluctuations and Lagrange parameter @', a which
have to be calculated from (6.44) and (6.45). As the last two equations are defined only on the boundary,
inside the crystals ' are calculated according to the expression (6.42), where macrodeformations ¢
are replaced by ' and the solution of (6.44) and (6.45) is taken as the boundary condition (Fig. 6.9).
Similarly to the standard formulation, % and o have to be continuous everywhere, but @' is discontinuous
on the crystal boundaries. Additionally, due to the Hill transfer condition, total deformations must be
periodic on the periodic boundaries of the RVE. Once the microscale results have been obtained, the
calculation can be continued on the macrolevel, also with calculation of the macrodeformations and

macrostresses.
PCQ1-SPC element
Start

|
» is1,n |

|

First phase of POQ1 element yields
macrodeformation gradient F.

SPC.element is used for calculation of:

-§,.. 5., second Piola Kirchhoff
macrostress tensors,

- (-‘,,,. C-' ., effective elasticity tensors,
a‘{.; derivative of volumetric part

of free energy w.r.t. volume change.

Second phase of POQ1 element yields
macrodeformations & .

Loop over n steps of Newton-Raphson ileration

( End )

Figure 6.13: Flow chart of the POQ1-SPC element.

Applying calculations at macroscale is illustrated by studying the change of material parameters over
time for three different types of microstructure. Firstly, the tension test is simulated for a square plate
similar to the one in section 5. Because of double symmetry, only one fourth of the plate is considered.
Again, to simulate the random structure, the orientation of RVE (Fig. 6.14a,b) is taken to be arbitrary in
each Gauss' point. The vertical displacements on the upper boundary () and horizontal displacements on
the left vertical boundary (&) are calculated and shown in Figure 6.14c. Corresponding elastic material
parameters are shown in Figures 6.14d-g. Inelastic microparameters are arbitrarily chosen so that the
change in macromaterial parameters can be obvious in a few time steps.
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Randomly orienicd RVE consisting of four nade crysals
E = 24kN/mm’ v =0.16
« = 50000 kNvYmm® ~ = 1000 kN</mm?

TRy A & TR R |
E 1 7 07
' B AR ot
T T ’_'_____-‘—-'""-‘
> - 03 v—""'"-.-__'-_-..
. E e
3 5 B £ ot
.. - §
4 .- E
N S ik ioa
F B |- , 3
0.2
| < o ot et
N DY g ——
N = 8
- B
0 ? 1 3 8 0
trea 3]
a) b) c)
25
P
E o
22
é . —
@ 3 ——
E W
-
o
E
a
210
4] 2 & & 14 10
Ume (3]
03
/l
o 025
= _/_,_.—‘”
e e
()] £ oz /
8
2 [
& 015
[«
Qa 2 4 6 3 10
tme 3]
10
“; “\\.\
E
50 .
2 ] \.H"‘“‘I-K
3 ;
i 1
}
ﬁ &
b 2z 4 & ] 10
time (3]
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RVE - single erystal with 2 kinked vertical side
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RVE - palyerysial consising of sexazonal crystals
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The second case also observes a plate under tension, but this time the orientation of the RVE in Gauss
points is laken to be constant. At microscale, one single crystal with kinked vertical side is assumed (Fig.
6.15a,b). Two different sets of inelastic parameters are chosen and the results show that displacements
are greater for the smaller inelastic material parameters (Fig. 6.15¢). The change in the resulting effective
parameters is shown in Figures 6.15d-g.

In the last example, an RVE is chosen to consists of hexagonal crystals, which is actually the most appro-
priate and consequently the mostly used approximation for the crystal form. The resulting displacements
and change of parameters in this case are presented in Figure 6.16d-g, indicating finally that material
parameters in all of the three examples behave similarly: Young’s modulus and shear modulus decrease
over time while Poisson’s ratio increases.

6.2.6 Estimation of the inelastic parameters

The previous explanations already mentioned that the method proposed here depends on two inelastic
constants x and y whose values are not known. The investigation of these constants is the next task in
the frame of work in project D8 of the SFB 526 "Rheology of the Earth - from the Upper Crust to the
Subduction Zone”. To this end, experimental results obtained by an indentation test will be combined
with some of the methods for parameter identification. Parameter identification belongs to the group of
inverse problems where four different spaces have to be considered:

P — space of all admissible parameters p,

F — space of all input variables f,

U — space of all output variables u,

-~

U — space of all experimental results .

So, for example, the direct problem for the process presented in this chapter is

find « € Y, suchthat g(p, f,u) =0 forgiven fe Fand pe P (6.46)
and its corresponding inverse problem has the form

find p* € P, suchthat u(p*, f) = i, forgiven f € F and @ € Y. (6.47)

Bearing in mind that according to Hadamard [35], all problems are classified as well- or ill-posed, thereby
the conditions for classification are the existence, the stability and the uniqueness of the solution, it can be
easily recognized that the problem of parameter identification is ill-posed. Namely, given that typically
there are more experimental data available than unknown parameters, the problem is overdetermined
and in general the single solution does not exist. In order to overcome this difficulty, the most often
used approach is the least square minimization method where (6.47) is transformed into an optimization
problem

find p* € P, such that for given f € F and & € U

1
p* = argmin {x*(p) = 31} — @, P} (648)

This also can be solved using some of the standard minimization procedures [4]. As (6.48) is not satisfac-
tory in some cases, many modified procedures are developed, such as the weighted least square functional
and the Levenberg-Marquardt method.
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6.3 Overview of the resuits concerning the model for solution-precipitation creep

This chapter presented a continuum-mechanical model for solution—precipitation creep. In contrast to
the other models where the well-posedness of the problem requires continuous stress in triple points, in
this model stress is discontinuous at these points, which is expected as being more natural. The driving
force of the process is the difference between the normal component of the Eshelby stress tensor and its
smooth approximation, which agrees with experimental results showing that solution-precipitation creep
does not occur at the places with homogeneous stress but at the places with a jump of stresses.

Preliminary results obtained by observing a set of mutually independent crystals show that the process
of solution-precipitation creep yields the elongation of crystal shape, but a more precise study of realistic
polycrystals was possible when just using the FEM. For a comparison with the analytical solution, the
FEM was used initially to simulate a single crystal behavior. Subsequently the same method was used
for simulating polycrystals with four-node and arbitrarily shaped crystals. Furthermore, the model is
included in multiscale FEM which made it possible to study the change in the material parameters over
time. The results obtained in this way show that Young's and shear modulus decrease gradually while
Poisson'’s ratio increases.

At the end of the chapter, attention is drawn to two inelastic parameters ~ and v. Their real physical
values are not known but they should be the subject of the future research work in the scope of subproject
D8 of SFB 526 "Rheology of the Earth - from the Upper Crust to the Subduction Zone™.
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7 Cancellous bone - effective behavior and ultrasonic test

The mode] presented in this chapter was produced in the collaboration with Professor Roben Gilbert
from the Universily of Delaware who has has worked on this field for a long time (2, 13, 14, 26, 27]. In
contrast to the previous examples, the model considers small deformations caused by dynamic excitation.

7.1 Properties of cancellous bone

Cancellous bone is a lwo-component structure consisting of the bone frame and interstitial blood marrow.
The study of its properties has recently become particularly intensive as it can lead 1o early detection of
osteoparosis which is mainly manifested by a weakening of the bone through increased resorption and
decreased production of solid phase. In other words, the general indications of this disease are that bone
frame gets thinner and partially disappears, with increasing spacing between the remaining solid parts.
Malterial porosily can increase from the normal value of 72% vp to 95%. Figure 7.1 shows samples of
healthy bone and of bone in the late slage of osteoporosis. The decrease in solid volume and even the
disappearance of complete walls due to the process of osteoporosis are guite obvious.

Figure 7.1: A) Healthy bone. B) Bone in the late stage of osteoporosis.

As the simulation of laboratory interrogation of the bone structure will be one of the major topics of
the further work. onc cxample will be briefly described here. This example considers an experiment
based on the ultrasonic techmique, carried out by A. Hosokawa and T. Otani [45]. In this test (Fig. 7.2),
transmitter and hydrophone are submerged in distilled water at 23 + 0.5°C and bone specimen is placed
between them. The chosen frequency bandwidth of excitation waves is 0.5-5 MHz. The test uses samples
measuring 20-30mm with two different thicknesses ¢,=9mm and d>=7mm. The samples are chosen to
represent the different lypes of cancellous bone whose densities vary in the range 1120-1200 kg/m?.
Before the experiments. the samples are saturated with water in order to remove air bubbles formed
in the process of preparation. The final results of the ultrasonic test are wave speed v and attenuation
a. Using the properties of waves emilted through the samples of different thicknesses these have to be



70 7 Cancellous bone — effective behavior and vitrasonic test

calculated according to the expressions

JAY?) LA
T Ad- (Ad g’ (-H
o = (In AV)/Ad. (7.2)

Here Ad represents the difference in thickness Ad = d, — dy, v is the propagating speed of (he wave
in water. Ag is the phase difference, o' the frequency of initial signals and AV is the ratio of amplitude
spectra. Together with the diagran of the experiment in Figure 7.2, the original appearance of a similar
setup in the laboratory at Rubr University Bochum can be seen in Figure 7.3.
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Figure 7.2: Laboralory test of A. Hosokawa and T. Otani [45].

Figure 7.3: Experimental sctup of the ultrasonic test. (Inslilute of High Frequency Enginecring, Ruhr
University Bochum).

7.2 Biot’s model

Biot's model [ 10, 11]is used mostly for sludying of cancellous bone, although it was originally developed
for saturated porous sails and rocks in gecomechanics. The constitutive equalions proposed by this author
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are those of linear elastic material, extended to include the influence of the interaction of solid and fluid

o;i = 2ue; + e + Qe,
g = 2uey, i # J, (7.3)
s = Qe+ Re.

Here o represents stress in the solid phase while s denotes stress in the fluid phase. Strain in solid part is
defined in the classic manner

_ 1 6u,~ Buj
€ = 5 (‘B?J' + 3_17,) (7.4

and the volumetric part of the deformation is denoted by
e=V - u, e=V.U. (7.5)

Note that in the previous expressions, « and U are used to denote displacements in the solid and the
fluid phase respectively. One particular property of this model consists in the so-called Biot’s constants
A, R, Q, which have to be calculated according to the expressions

2 (K= K)? = 28K, (K, — K) + B2
A=Ky -Zu+ Dok, (7.6)
_ BK?
R—D_m 1.7
_BK,(Q-8) K, - K}
Q= K, (7.8)
D=K,(1+8(K./K;—1)) (7.9)

and which depend on the material and structural parameters listed in the following table:

Symbol | Parameter

Py Density of the pore fluid

Ps Density of the frame material
K, Complex frame bulk modulus
u Complex frame shear modulus
Ky Fluid bulk modulus

K, Frame material bulk modulus
B Porosity

n Viscosity of pore fluid

k Permeability

« Structure constant

a Pore size parameters

Table 7.1: Parameters in the Biot model

To study dynamic problems, the model is extended by introducing kinetic energy E; and dissipation D
in the form

2E; =p||ﬁ-ﬁ+2p|2ﬁ'U+pQQU°U, (7.10)
2D =b(4 - U)-(u - U), (7.11)

where p); and gy, are density parameters of the solid and fluid, p,; is the density coupling parameter,
b is a dissipation parameter, and all of them again depend on the parameters given in Table (7.1). Their
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exact definitions will not be given here, but can be found in standard literature [10, 11]. Finally, using the
principles of Lagrangean mechanics,

o (0E.\ oD _

&(_37) +a—ﬁ—v o (7.12)
o (OE; oD

% (6U) + 30 s (7.13)

equations of motion describing the behavior of saturated porous media and here in particular of cancellous
bone become

pV2u+ VA +p)e+ Qg = (Puﬁ‘FPlzf]) +b(ﬂ—U) )

(Pm'i + p”t'f) —b (,-, _ U) _ (7.14)

V(Qe+ Re] =

For sound excitation, which is often the considered case, using the fact that excitation and deformations
are time harmonic functions,

u(zx,t) = u(x)e ™, U(z,t)=U(z)e ™ (7.15)
equations of motion (7.14) acquire the simpler from,
pViu+V[A+p)e+ Qe = -w?(pnu+ppU) - ib(u-U), 16
VIQe+ Re] = —u?(prou+ pnuU) +ib(u - U).

The serious disadvantage of Biot's method and simultaneously a good reason to look for another solution
is the fact that this method depends on a large number of material and structural parameters (Tab. 7.1),
only some of which can be determined precisely (Tab. 7.2). Here, one additional remark must be made:
even in the case of the parameters listed in Table 7.2, the various authors still do not agree. The cited
values are taken from the work of Williams and Johnson [90].

Parameter Symbol | Value Unity
Pore fluid density Py 950 kg m™
Fluid bulk modulus K; 2.00 x 10° | Pa
Pore fluid viscosity 7 1.5 Ns m~—2
Frame material density Ps 1960 kg m™
Frame material Young's modulus | E, 2.20 x 10" | Pa
Frame material Poisson’s ratio 7 0.32 -

Table 7.2: Parameters for cancellous bone according to Williams and Johnson [90].

7.3 Some characteristics of modeling the fluid phase

7.3.1 Constitutive law of the Newtconian fluid

Concerning a constitutive law of a fluid, firstly it must be recalled that in the static case, by this sort of
materials, the stress tensor o depends on hydrostatic pressure py and it has the diagonal form

o0 = —pol (7.17)
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while the shear stresses are activated only in the dynamic case and they depend on strain rate € and
indirectly on velocity v

€= %(Vv +2V). (7.18)

The simplest relation between stress and strain rate corresponds to Newtonian fluids where deviatoric
stress depends linearly on deviatoric strain rate

a'““”za'—%tra1=2n (e—%uu) (7.19)

and proportion coefficient 7 represents the shear viscosity. The volumetric stress depends on volumetric
strain rate and hydrostatic pressure. Using the coefficient of volumetric viscosity «, this can be written

p= .,‘_"3_‘1 = —KIrE+ po. (7.20)

According to (7.19) and (7.20), the expression for the total stress obtained by superposing the deviatoric
and volumetric part becomes

oc=0% —pl=22¢+ (rz—gq) trel —pI (7.21)

where the term inside parentheses is often taken to be a new viscosity coefficient . Given the requirement
for original material parameters n > 0, ~ > 0, this must satisfy the condition

g S _%_ (7.22)

Omitting the zero index in term py constitutive law of Newtonian fluid obtains the form
o=2ne+&wel —pl (7.23)

where it is important to distinguish one part due to velocities (o) and one part due to pressure p
o=0c"—pl. (7.24)

Note that in the case of more complicated constitutive laws, viscosity coefficients become dependent on
strain rates, which correspond to the nonlinear or non-Newtonian fluids, but such kinds of materials will
not be considered in this thesis.

7.3.2 Conservative and nonconservative form of the balance laws

The application of balance laws in Eulerian description is typical for fluid mechanics. Here, for the
purposes of our model, only continuity equation, dynamic equilibrium and energy balance will be recalled

Gp+V-(pv) =0, a)
pDv-V-a-pb=0, b) (7.25)
pDey+V . -q—-V-(oc-v)—pb-v—pr=0, <).

In these equations, p represents the material density, g is the heat flux, r the heat source and ¢, is the
total energy defined as the sum of internal energy e and kinetic energy ex =3 v-v. Note that elementary
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rules of differentiation and the continuity equation (7.25)a can be used to reformulate the material time
derivatives in equation (7.25)b and (7.25)c in such way that the previous system becomes

6¢p+V-(pv)=0, a)
S (pv)+(pr®v) - V-V.-0-pb=0, b) (7.26)
A(pe)+V-(pre) +V-q-V: -(oc-v)—pb-v—pr=0. c).

In the context of fluid mechanics, the first system (7.25) is referred to as the nonconservative and the
second one (7.26) as the conservative description of the problem, but due to the fact that they can be
derived from each other, in most cases it is irrelevant which formulation is used. The only exception is the
propagation of shock waves through compressible fluids, where it is advisable to consider conservative
formulation [89, 97]. The difference in the physical interpretation of these two descriptions is shown in
Figure 7.4. Here the nonconservative formulation is seen to correspond to the case of the control volume
moving together with the fluid (Fig. 7.4a), while the conservative formulation corresponds to observing
the fluid motion through the fixed control volume (Fig. 7.4b). Systems (7.25) and (7.26) are often referred
to in the literature as Navier-Stockes equation. For perfect fluids where viscosity becomes equal to zero,
these equations reduces to the Euler equation.

L —

a) _~— — by —m

Figure 7.4: a) Moving control volume. b) Fixed control volume.

It is also worth mentioning that systems (7.25) and (7.26) can be reduced in some special cases. The
illustration considers the balance of momentum (7.26)b in the case of a Newtonian fluid (7.24)

A(pv) +(pv®vV)-V-V-6"+Vp-pb=0. (7.27)
This equation alone represents an under-determined system so that it cannot be solved independently of

the rest of the problem. Another obligatory condition that also has to be considered is the state equation
relating density p, pressure p and temperature T

p=p(pT). (7.28)
The shape of the state equation significantly influences the solution method, because if it really depends

on all three variables (p, p, T), then continuity equation and energy balance also have to be considered as
well as (7.27), while in the event that only density and pressure are related to each other,

p=p(p) (7.29

the balance of energy must not be considered. Note that this special case when temperature is not included
in the state equation corresponds to so-called barotropic fluids.
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7.3.3 Nearly iIncompressible flow

Nearly incompressible flows are observed as the isothermal processes where the change of density p with
pressure p is very small, so that in their product terms, the latter can be treated as a constant. Due to the
first assumption (isothermal process), the state equation becomes dependent only on pressure and density,
and can be expressed in the form

dp = dp (7.30)

where ¢ = /K/p is a sound wave velocity dependent on elastic bulk modulus /. Such a state equation
obviously corresponds to a barotropic fluid, and its time derivative can be used for transformation of the
balance of mass

O 18p 1dp  Ou

_—= === +p—=0 .

o - 2o~ 2o, (73D
which also yields the expression for the pressure p depending on displacements and not on velocities

p= —czp% =—cpV-u=-KV-u. (7.32)

Using this, the constitutive law (7.23) becomes:

o=cpVul +Mmé+Etrel. (7.33)

Due to the second assumption for modeling incompressible fluids (the change in pressure causes a small
change in density), the conservation of momentum (7.26)b can be written as

6¢v+(v®'v)-V—‘lDV~a'—b=0. (7.34)

while the nonconservative formulation apparently stays unchanged:
pDv—-V.e-pb=0. (7.35)

It should not be forgotten that in both equations (7.34) and (7.35), density has to be treated as a constant.
Final observation is that the constitutive law (7.33) depends only on displacements and velocities so that
the conservation of momentum (7.34) or (7.35) followed by boundary and initial conditions completely
defines the problem of the motion of a Newtonian incompressible fluid.

7.4 RVE for cancellous bone

7.4.1 Concept of the model

As the RVE for cancellous bone contains a fluid phase for the activation of the viscous phenomena in it,
consideration is given to the behavior of a sample under sound excitation. Due to the small velocities,
it is assumed that the linearized form of the equation of motion (7.34) or (7.35) describes the state in a
point of the RVE. This can be written

pu—V.0=pb(t) (7.36)
where term b(t) denotes harmonic excitation force with frequency w

b(t) = be™". (737
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The steady state solution of equation (7.36) is a complex time harmonic function
u = u(z)e™ = (ul(x) + iu!(x)) e, (7.38)

so that due to the standard properties of the exponential function for time derivatives of this function, it
applies that

it = —wlu, o = iwu. (7.39)

Bearing in mind that the equation of motion (7.36) requires a complementary constitutive law, the fol-
lowing section describes both of the phases of RVE separately. Starting with the solid phase §2,, it can be
pointed out that the state of deformations and stresses in it is determined by the system

~wpu —V-o, = p,b(zx), (7.40)
o,=C:¢ (7.41)

where the index s is used to denote the solid phase and the constitutive law (7.41) is written in the general
form dependent on the complex elasticity tensor C which will be defined precisely later in section 7.4.4.
In contrast to the solid phase, the state of deformation and stress inside the fluid €2y is defined by

—uppu - V-0, = psb(z), (7.42)

og;=pyV-ul +2ivne+iwEVoul, (7.43)

where the constitutive law (7.33) is applied and index f denotes the fluid phase. Furthermore, the de-
formations in different phases must satisfy a coupling condition which requires that there is no jump of
displacements on the interface of phases

u,=uy on ['=Q,NQ,. (7.44)

Together with the material behavior, one additional property important for modeling the RVE is the
geometry of the microstructure. This property particularly influences the choice of the type of elements
needed for FE simulation. The following chapter uses shell elements to simulate the solid walls of
cancellous bone, due to their thin structure, while the eight-node cubic element is applied for modeling
the fluid phase. For an analysis in the complex domain, the standard formulation of these elements has to
be extended and the number of DOFs has to be doubled.

7.4.2 Formulation of the shell element

In order to develop an element appropriate to simulating the solid phase of the RVE, the standard shell
element of the finite element program FEAP is taken as a starting point [5, 88, 97].

The formulation of this element is based on the theory of small deformations for shallow shells, where
the complete structure is treated as an assembly of the plate elements simultaneously loaded by bending
load and load in their own plane. If the elements are flat, different load cases are completely decoupled
problems, while elements with curvature need additional corrections causing the coupling.

Figure 7.5 shows a shell element and its local coordinate system zyz. In each node of the element six
DOFs are needed for approximation of deformation: three displacements in the directions of coordi-

nate axis u;, v;, w; and three rotations around these axis 0,;,0,;,0.;. System ZjZ represents the global
coordinate system.

For a precise description of the used element, firstly it is pointed out that the formulation is based on
discrete Kirchhoff theory where shear deformations -« are neglected due to the thin structure of plate
elements

4=0. (7.45)
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\
=g
Y

Figure 7.5: Shell element and its DOFs.

This assumption viclds the following relation between the deflection w and vector of rotations 8’
"
Vw=26' 8 =16, — 0.} (7.46)

and consequently (he expression for the polential of an plate clement in the form

oy v ].

l—I- l—[ t n et
Z Lm Z(.z 5
- 4&

0" L] -Cy-Ly-Oda+ ME" (7.47)

Note that liverature focusing only on the plate theory often uses different nowation for the rotations so that
condition (7.46) is wrillen in a slightly different form [97]. In expression (7.47), the superscript e denotes
that an element is considered and the index b denotes the bending case. Imegration is carried out over
the middle surface of element A¢, L, represents the differcntial operator and Cy, is the bending stiffness
matrix dependent on the thickness of plate ¢, Young’s modulus £ and Poisson’s ratio ». The matrix C,
and the operator L; are defined by

0 -2

Et3 | v 0 ) Jr
0= le 0 0=v))2 ]
x v

Potential (7.47) depends on the vector of rotations 6 = {6.0,}" which can be approximated using nodal
values of deflection w and rotations 4, 0,

W
6=NIrar, 8= {Zf} Cat =8y, ayc = Acap. (7.49)
v 6

yi

- L pal 213

Here the vector @, “ is a vector of DOFs of an element consisting of the vectors of nadal DOFs ag;, and
the index m means thal 2 mixed or modified approximation is applied. The notation A" is introduced for
the elenient assembling operator. Using (7.49) and (7.47). the vanation of the polental of the plate vnder
bending load becomes

oN¢ = (6a)"- ( / (N Ll .Cy-Ly-NY da) @y + g

= (sa5)T- (/ (B .Cy- B da) Y | Pk (7.50)

03
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In the opposite case, if the plate is loaded only in its own plane from the standard form of the potential

1
H=—/6:C:edv, (7.51)
2 Jq
an alternative expression can easily be obtained using the relation between strains and displacements
; 1
I = M + T = 5 / ] u"-Ll-Cp-Ly-uda + TS, (7.52)
i
e [ty o = 0
— = a8
C,, = m v 1 0 ’ Lp =0 3y (753)
00 (1-v)/2 8 2
dy Oz
Relation (7.52) depends only on the displacements in the plane of plate u, = {z v}”. In the context of
FEM, again a mixed approximation is used
u &i
weNpar, w={th an-{at. ar-wap, 1.5
ozi

where the reasons for introducing drilling DOF 8.; have a purely numerical character [85]. The approxi-
mation (7.54) leads to the variation of the potential (7.52) in the form

8T = (dap)" - ( / (N?Y.LT-CpoL,-NT da) -are + ST
Ae
= (6ar)T. ( L (Bm".c,-B™ da) L@y + S (1.55)

so that when using (7.50) and (7.55), the final expression for the variation of the potential of the flat shell
element becomes

ot = ™)™ ([ (N™"-LT-€-L-N da)-a" + oo
_Ae
= (da™e)T- ( / (B™7".c.B™ da) @™ + §IIo°, (7.56)
Ae

Here the separated approximations (7.49) and (7.54) are replaced by the unique one

u™ = N™.a™,

w"={u v 6, 9 }T, al={ & o 0. w 0, 0, }T, (757
and the following notation is introduced
N™ = [N;:' 0 ] , L= [L" 0] : (7.58)
0 N} 0 L,
B™ = [B;’" 0 ] C= [c,, O]. (7.59)
0 B 0 G
Expression (7.56) yields the system of equations customary in FEM
Ke.a"* = f°. (7.60)
where the stiffress matrix is defined as the integral
K= / (B™T.c.B™ da (7.61)

and the vector of external load is obtained from I1¢** in the form
fo={ Fui Fuy My Fy My M} . (7.62)
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7.4.3 Dynamic excitation

In order to extend the formulation of the shell element to the case where dynamic excitation occurs, it is
necessary to consider the full Lagrangean

L = E — 1™ — 11+ (7.63)

whose minimization yields the equation of motion
J/Ldt = Jf(Ek — ™ — 1) dt = 0. (7.64)
t ¢

In the general case, the kinetic energy E;. = E\(q,¢) depends on some arbitrary variable ¢ and its time
derivative ¢ so that using partial integration it can be shown that its variation has the form

N 9 (OE; 0E;
J[Ek(q,q)dt = ‘[Jq( T ( r ) + 74 ) dt (7.65)
while for the standard type of kinetic energy and its derivatives
_ ]. T . 6 aEk _/ . aEk _
E;. = 2/9/)11 udv, T (6’&) = qudv, S =0, (7.66)

variation (7.65) becomes

5 / Ei(a)dt = - / / pouT iidvdt = w? / / pou” udvdt. (7.67)
¢ tJQ tJQ

Note that in the case of harmonic excitation, which only will be considered in the rest of the work, each of
the terms of (7.64) contains the exponential function e*! as a multiplier. Consequently this function and
the complete time integration in (7.64) can be canceled. Assuming that kinetic energy depends only on
translatory and not on angular velocities, a reduced approximation can be used instead of approximation
(7.57)

u=N_&me’ u={u v w}T’

) . (7.68)
&:n = { ﬂl ﬁl th u‘)i 011 Byt }
After substitution in (7.67) this yields
f p(0u)?-it° dv = —u?(6a°)"- ( / pNT-Ndv) ‘@°, (7.69)
e Qe

where ¢ is the volume of an element, and the integral expression represents a consistent mass matrix
M= / pNT.Ndv. (7.70)

Taking into account the results from section 7.4.2 considering the potential energy, the equation of motion
for one shell element becomes

(—w?M® + K°).a™¢ = f*. (7.71)
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7.4.4 Exienslon to the complex domaln

Chapter 7.4.1 already mentioned the need for analysis in the complex domain due to the periodic exci-
tation and the influence of damping. It has also already been mentioned that the solution (7.38) belongs
to this domain so that, in the scope of FEM, instead of (7.57) and (7.68), an extended approximation is
needed

~me — oy ool
uy = NT-al¢, u. = u™" +iu"™, (7.72)

u.= N-a.'", u. = ul + iu!, (7.73)

Here the index c is taken to emphasize that the search is now for the complex solution, and the following
notation is introduced

am [NT0 N |V O 78
<~ o Nm| ‘" lo N ’
arc={ @™’ i@nHr})’, (1.75)
al e a, (@R = {aR of 6 wf OF 6R}, 2176)

al e al, @) = {af of 0L @ O &)

Another important observation is that the parameters of viscoelastic materials also belong to the complex
domain (Ch.7.2), and that they can be written in the form

K=KRr+iK!, pu=p+iy (7.77)

where the imaginary parts in the case of bone material have to be calculated dependent on logarithmic
decrement § according to

]

K'= - uk, (7.78)

6
R r_ 2
K", no=—

Using standard relations between the material parameters and the previous definitions of bulk and shear
modulus, it is easy to show that similar expressions are valid for Young’s modulus

]

E=ER4+iF', E'= ;E" (7.79)

while in this special case, Poisson’s ratio only has the real part » = v®. The complex form of the material
parameters also yields the complex form of the elasticity tensor

ch !
C.= [ ic! ¢t ] (7.80)

whose submatrices CR,C' have to be calculated using (7.48)a, (7.53)a, (7.59)b
ch=c(E™"v), cf=cE ). (7.81)

Bearing in mind (7.72)-(7.81), a procedure similar to that described in the previous sections leads to the
equation of motion

(M + K5)-67¢ = £, (1.82)
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where consistent mass matrix M ¢ and stiffness mainx K¢ are
C c

: - M 0
M :/ pN! N, dv= { . } , (7.83)

e 0 M

. cR  -podd

K =/ (B™)".C.B" da = [ 5{" ’Ilfu,{ } (7.84)

and where the extended operator B is used

B'Il 0

B!" = o Bl (7.85)

Interchanging the position of rows and columins, DOFs belonging to the same node can be merged so that
the element vector of DOFs @™ consists of nodal vectors

a ={ (@™’ a7}’ . (7.86)
@h" ={a oft of 6% o) 65}, (@ = (¢ of &f ol b, &%)

This is the standard way of arranging DOFs of an element, in which case (7.82) becomes
(—u?I\/I"" + K*¥)-ac = f, (7.87)

and the process of assembling over all of the elements leads to the complele system of algebraic equations

(-'M" + K*)-a" = f" (7.88)

7.4.5 Modellng of the fluld phase

In contrast 1o the solid part of the RVE where the application of shell elements was appropriate due to the
the thin-wall structure, a cubic element with eight nodes is assumed for modeling the fluid phase (Fig.
7.6).

Figure 7.6: Standard cight-node cubic clement.

The standard DOFs of this element are displacements in the directions of the axis of (he local coordinate
system z2yz, and the FEM approximation is defined in the form

u=N-a, u={u v w}'r, a; = {l; o 2&,}7', (7.89)
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where N is a matrix dependent on shape functions of the cubic element [6, 49, 53]. As this again requires
an analysis in the complex domain, the approximation (7.89) has to be extended. Assuming that the real
and imaginary DOFs of an element are grouped together, this can be done as follows

u.= N_.a¢, ue = ull +iu!, (7.90)
N 0
Nc=[0 Nl a={ @M @)y, (7.91)
al € &, al = {af of @f)",
! (7.92)
al e a, a = {a o @of}".

Furthermore, if the constitutive law (7.43) is written in the matrix form
o.=C. € (7.93)

where C, denotes complex elasticity matrix of the type (7.80) with submatrices

[ ¢2p c2p c2p 0 0 0]
22T
R_|cp cp cp 000
=19 o 0 o000 (7.94)
0 0 0 000
| 0 0 0 00 0
[ 2w + wE w€ w€ 0 0 0]
wé 2wn + wé wé 0 0 0
I _ wg wé 2wnp+w€é 0 0 0O
=1 o 0 0 wyp 0 0 (7.93)
0 0 0 0 wn O
| 0 0 0 0 0 wnp|
the Lagrangean of the cubic element becomes
1 T . 1 ext
L=- [ pu,-u.dv— - [ €-C.-€.dv—11 (7.96)
2 Ja 2Ja
and its minimization (see chapter 7.4.3) yields the equation
—wZ/pGuZ-ucdv-f/6uZ-LZ-Cc-LC-uc dv + §I1* = 0, (7.97)
Q Q

where L, represents the differential operator for the three-dimensional case

L 0 & 0 0 8 0 a]"
Lc=[ L] ’ L= 0 ay 0 a.r a: a.r . (7.98)
0 0 006, 040
The relation (7.97) for one element and after introduction of approximation (7.90) becomes
-wz(aag)T.( / pNZ-chu)-ang(aa:)"-( N,,T-LI-CC-LC-NCdv)-&§+61'l""‘ =0
Qe Qe
yielding complex equation of motion

(-’ Me+ KS) a8 = f¢ (7.99)
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with mass and stiffness matrix of the form

M§=/(; chT-chv=[Ag 1&] (7.100)
o KeR in
Kt = A NIT.LY.C.-L.-N.dv = [ K KR ] (7.101)

By rearranging the order of DOFs and by the process of assembling, the final system of equations be-
comes

(-w*M*+ K*)-a" = f° (7.102)
where the real and imaginary DOFs of one node are grouped together
ajea, a={af o @f ial o iwf)". (7.103)

In the end it is important to stress that although this section partly uses the same notation as before, the
meaning of the symbols for cubic elements differs mostly from those for shell elements.

For the sake of clarity the equations (7.88) and (7.102), necessary for later work, will be written in the
form

(-w’M; + K3)-a; = f3, (7.104)
(-w*M7} + K})-a; = f}, (7.105)

where indices s and f are taken to distinguish expressions related to the solid and fluid phases respec-
tively.

7.4.6 Problem formulation at microlevel

Typically for a homogenization method, the purpose of the computations at microscale is to determine
effective material tensor of heterogeneous material C in which case the effective constitutive law can be
written as follows

g=C:¢ (7.106)
In the comparison with standard formulation described in the previous chapters, the difference is that
equations defining the problem at microlevel depend on microfluctuations . and consequently on nodal
microvariables @°, and that the residual depends on strain tensor € calculated at macrolevel

(-w’M; + K;)-&; = f3(e), (7.107)

(-*Mj + K})-@; = f}(&). (7.108)
The coupling condition on the interface of materials affects the microfluctuations

[@ =0 on I'=9Q,UQ (7.109)

and on the surface of RVE additionally periodic boundary conditions on the periodic boundary 92 have
to be satisfied

wt=u" on ON. (7.110)
Recall that all of the previous equations deal with complex quantities. The final results at microscale are
stresses whose average over the volume of RVE yields macroscopic stress & necessary for the numerical
calculation of elasticity tensor defined by the expression

¢ = (7.111)

°E
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7.5 Ettective behavior of cancellous bone

7.5.1 Calculation of the effective elasticily tensors

The imerrogation of the material properties of the cancellous bone assumes the RVE shown in Figure
7.7. lis size is in the order of millimeters and its geometry is determined by three parameters: side length
a, wall width b and wall thickness d presented in Figure 7.7a, Figures 7.7b,c show thc geometry and
discretizalion of the fluid phase and of the complete RVE.

Figure 7.7: Geomelry and discretizalion of: a) solid phase, b) fluid phase, c¢) complete RVE.

The material behavior of both phases is determined by the paramelers given in Table 7.2 and by the
constilutive laws explained in chapter 7.4.1. Additionally. the logarithmic decrement § = 0.1 is chosen
corresponding to the motion of sound through the bone material. As the volume stmin rate of the fluid
can be neglected, the viscosity coefficient £ is taken as zero. In this stage for all of the calculations, it is
assumed that sound excitation has a frequency w = 100kHz.

As (he process of osteoporosis manifests itself through the loss of solid material, the idea of the analysis
is to study the change in effective material tensor of cancellous bone dependent on change in the width
and thickncss of the solid wall. To this end, Iwo series of tests are carried out for the RVE in the form of
unit cube. [n one series, the thickness of (he solid wall is fixed at d = 0.lmm, and in the second onc at
d = 0.05mm. In both serics, the width of the wall decreases from 0.25 o 0.125mm. According (o the
procedure summarized in 7.4.G. the effective elasticity tensors for materials with different microstructures
are calculated and somg¢ illustrative examples are lisied below,
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a=lmm ded, lrm b=a/4
fmaterial tensor [W/mm2)
5162.17 1674.21 1674.21
1874,21  %162,17 1872t
8n.21 1873.21 5162.17
.00 0.00 0.00
.00 0.00 Q.00
0.00 .00 Q.00
17,244 12,644 13.64%
13.644 117.244 13.641
13.644 13.641 117.243%
9.004 0.o04 0.001
0.004 0.001 0.004
0.004 0.001 0.00%
a=icm d=0.1lem b=al%
saterial tensor [MN/em2)
4470.27 1753.46  1753.46
17153.46 4470,27 1753.46
1743.46 1753.46  3$470.27
0.00 0.00 0.00
0.00 0.00 0.C0
0.00 0.00 0.00
93,624 7.821 7.824
7.824 93.624 7.824
7.824 7.828 93.624
0,004 0.00 G.004
0.0014 0.00 ¢.004
0.004 0.0 0.001
a=lrn d=0, loa bealé
material tensor [H/iem®2)
4939,0% 1717.16 1717.16
17.7.16 4039.085 1717.16
17.7.16 1717.16  4039.85
.00 0,00 a9.00
0.00 0.00 0.00
2.00 0.00 0.00
18.881 5,344 5.344
5,044 10.6484 &.348
$.044 5,344 78.884
0.00t 0.001 0.00i
9.00¢ 0.00¢ 0.00%
a.004 0,001 0.001
A=l d=0.1=m beas7
natergal tenser {i/em®2)
343,16 1706.47 1706.47
1706.47 3NL1.16 1706.47
1706.47 1706.47 3T41.16
0.00 0.00 0.00
.00 0.00 0.00
0.00 0.00 0.00
68.421 3.864 3.86%
.86 68,424 3,863
J.86¢ 3.864 68.32¢
0.004 Q.00 0.00%
0.004 0.001 0.001
0.004 0.004 0.004
a=lem d=0., trm b-a/
matarial tonsor [Nimm2]
521,68 1708.14 1708.14
1768.14 3821.68 1708.14
17¢8.14 1708.34 352%.48
0.00 0.40 Q.00
0,00 0.00 0.00
0.00 0.90 Qa.00
60,382 2.944 2,941
2.941 60.58% 2,944
.94 2.944 63.58¢
0.001 0.004 0.204¢
0,001 0.001 Q.308
0.001 0.004 0.30:

Figure 7.8: Effective elasticity tensors for the RVE with unity side length and wall thickness O0.lmm. The
width of the wall is in the range 0.25-0.125mm.

Vel 48003

.00
0.00
0.00
q477.82
.00
0.00
0.001
9.001
0.004
15,204
0.001
0.00%

V=1.384em"3

0.00
0.00
0.00
261.28
0.00
0.00
0.004
0.004
0.00%
8.464
0.004
0.004

v=1.3333zm"1

6.00
.00
2.00
160.92
g.00
.00
0.00%
0.00%
0.008
5.33t
€¢.001
0.00t

Yel.294:2"3

0.00
Q.0
9.00
110.42
9.00
49.900
¢.00
0.004
¢.001
3.768
0.90%
9.001

V=1.262rm"3

0.00
0.00
0.00
a1.842
0.00
0.60
0.002
0.00:
0.00L
2.87¢
0.00%
6.00%

0.0¢
0.0¢
0.0C
¢.0C
177.02
¢.0C
9.0C1
0.904
0,004
0.00s
15,204
0.001

0.0¢
0.00
0.00
0.00
261.28
0.00
0.00%
0.004
0.001
0.004
8.464
0.004

0.0Q
0.0
0.00
0.00
160.92
0.00
0.004
0.004
9.001
0.0C4
5.3
0.00

9.00
0.00
9.00
0.00
110.41
0.00
0.001
9.001
0.004
0.00§
3,768
0.001

0.00
0.00
0.00
0.00
81.84
0.00
©.004
0.001
0.00¢
0.4001
2.07:
0.00:

0.00
0.00
0.00
0.00
0.00
477.82
0.004
0,004
0.004
0.004
0.001
15.201

.00
0.00
.00
¢.00
¢.00
261.28
0.00%
0.001
0.004
0.00s
0.001
8,464

Q.00
0.00
0.00
0.00
0.00
160.92
0.001
0.001
0.001
0.601
0.001
$.331

0.00
0.00
0.00
0.00
0.00
110.41
0.004
0.004
0.004
0.004
¢.004
3,764

9.00
9.00
9.00
0.00
Q.00
8l.84
0.001
0.001
0.00¢
0.004
0.004
2.87

117.244
13.6444

13.644
0.001
0.004
0,004

aléz.17
1874.21
1874.21
0.00
0,09
0.0

93.624
T.02¢
7.02¢
0.608
0.004
9.001

4470.27
178346
1783.4¢
0.00
0.00
0.00

78,881
S
9.3414
0.004
0.001
0.004

4039.85
1717.16
1717.18
0.00
0.00
0.00

68.42¢
3.861
3.864
0.001
0,004
0,004
INLL6
1706.47
1706.47
0.00
8.00
0.00

60,584
2,94t
2.948
9.001
0.004
9.004

1521.68
1708.14
1708.14
0.00
0.00
0.00

13.644
117,244
13,644
0.004
¢.008
0.003
1874.21
5162.17
1874.21
0.00
9.00
0.00

7.821
93.62¢
7.821
0.001
0.004
0.004
178346
4470.27
1753.46
0.00
0.00
0.00

5.344
Je.884
5.344
0,004
0,001
0.004
1717.16
4039.0%
1717.16
0.00
9.00
0.00

3.064
68.422
3.863
0.003%
0.00:
0.004
1706.47
3741.16
1706.47
0,00
0.00
0.00

2,941
60.584
2.944
0.008
0,004
0.00¢
1708.14
3321.é8
108.14
0.40
0.00
0.00

13,644
13.644
117,243
0,004
0.001
0.001
1874.21
1874.21
S5162.17
0.00
0.90
0.00

7.821
7.821
93.62§
0.004
0.004
0.00%
1753.46
1753.46
4470.27
0.00
0.00
0.00

$.348
5.344
70.88¢
.093
0.00%
0.00t
1717.16
1711.1%
4034.09%
0.00
0.00
0.90

3,864
3.861
68.521
0,008
¢.001
0,001
1706. 47
1706.47
INL.L6
0.00
a.00
0.00

2,944
2.934
60.564
0.004
0.00:
0.00%
1708.13
1708.14
3521.¢68
4.00
Q.00
0.00

0.004
0.004
Q.00
15.204
0.004
0.004
0.0
0.00
0.00
§77.82
0.00
6.00

0.00%
0.00¢
¢.00¢
8.46%
9.00s
8.00%
0.00
¢.00
0.00
261.28
0.00
0.00

d.00
0.001
g.004
$.231
0.004
0.004
0.00
0.00
0.0
160,92
.00
¢.00

0.004
0.00¢
0.004
3,764
0.004
0.004
0.00
0.00
0.00
110.41
0.00
0.00

4.001
0.00%
0.001
2.87%
0.004
©.001
.00
0.00
0.6
81.84
0.0Q
0.0¢

0.001
90.004
0.00¢
0.004
15.204
0.001
0.00
0.00
0.00
0.00
477.82
0.00

0.001
0.001
0.00%
0.00¢
8.361
0.00s
0.00
0.00
0.00
4.00
263,28
0.00

0.004
9.004
0.004
0.001
$.30
0.001
0.00
0.00
0.00
0.00
160.92
0.0¢

0.004
0.004
0.004
0.004
3.764
0.004
0.00
0.00
.00
0.00
110,41
0.00

9.004
9.001
Q.00
0.004
2.871
a.004
0.0¢0
0,90
0.00
0.¢0
B8l1.84
9.00

©.004
¢.001
0.001
.00
¢.004
15.201
0.00
0.00
0.00
0.00
0.00
471.82

0.004
0.004
0.001
0.001
9.001
8,462
.00
0.00
0.00
0.00
9.00
261.28

¢.001
€. 004
¢.004
¢.001
€.004
.33
€. 00
¢.00
c.00
C.00
€.00
16¢.92

0.004
0.601
0.001
0.004
0.004
3.764
0.00
0.00
0.00
0.00
0.00
110.41

¢.001
0.004
0.002
0.004
¢.001
2.87)
0.09
0.40
0.00
0.00
0.00
81.84



86

7 Cancellous bone — effective behavior and ultrasonic test

a=tra de0.05m b=a/4
material tensor [N/mn*2)
3927.95 19%9.50 1955.%0
1939,50 927,95 1959.50
1959.50 1959.50  3927.95
0.00 0.00 0.00
0.00 0.00 0,00
0.00 0.00 0.00
70.001 8.494 8.494
8.491 70.00% 8.494
8,494 8.49% 70.004
0.004 0.00¢ 0.008
0,004 0.00% 0.00%
0.001 0.00¢ 0.00¢
aslrm 4=0.0%en b=a/s
asterial tensor [N/en"2)
3343.07 1889.9) 188%.93
1389.93  3483.07 1889.93
1389.9)  1889.93  3483.07
0.00 0.00 0.00
0.00 0.90 0.00
0.00 .00 0.00
54.6841 4.85¢ 4.85%
4.65¢8 54.844 4,854
4,058 4.851 54.84%
0.001 0.001 0.004
9.001 0.004 0.00%
0.001 0.004 0.004
a=irn de0.0Smn beass
nmaterial tensor [#/em*2)
3203.35 1865.10 1865.10
186%,10  3203.35 1B65.10
1865.10 1065.10  3203.3%
0.00 0.00 0.900
0.00 0.00 ¢.00
0.00 0.00 €.00
45.434 3.251 3.251
.25 45.438 2.251
3.2%4 3.251 45431
0.601 0.004 €.00L
0.004 0.001 [N 33
0.001 0.00¢ €.004
a=irem d=0.05cm bea/?
naterial tensor [N/en‘2i
3011.2¢ 1858.72 1855.72
1255.72  2011.36  18S85.72
1855.72  1835.72 3011.36
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
38,884 2.314 2.314
2.311 36.88% 2.314
2,314 2.311 38.684
0.001 0.004 0.00s
0.008 0.004 0.001
0.001 0.001 0.004
aelrn de0.05> bea/8
nacertal tensor {it/=m2)
2872.28  18%4.35 1854.45
1854.45  2872.28  1854.45
1334.4% 18%3.3% 2872.28
4.00 .00 0.00
a.00 0.00 0.00
0.00 0.00 0.00
33.051 1.744 1.741
1.744 34.051 1.744
1.744 1.744 34.054
0.004 0.004 0.004
0.001 0.004 0.004
0.004 ©.001 0.004

Figure 7.9: Effective elasticity tensors for the RVE with unity side length and wall thickness 0.05mm.
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The calculated material tensors belong 1o the complex domain (7.80), which means that they correspond
10 the effective viscoelastic behavior. Figure 7.10 shows the change in 1wo lerins of ¢lasticity 1ensor (C),
C1») with respect 10 porosity 3 = V;/V where V; represents the volume of fluid and V' the 1o01al volurne
of RVE. A comparison of the same type is carried out for two terms of imaginary block of elaslicity
tensor which is shown in Figure 7.11. Similac behavior is noled in all cases: the terms of elasticity tensor
gradually decrcase wilh increasing porosity.
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Figure 7.10: Change in the real terms Cy; and C,; of the elasticity tensor with respect 1o increasing poros-
ity. The solid wall thickness takes the values 0.1 and 0.05mm.
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Figure 7.1): Change in the imaginary terms of the elasticity tensor C7y and Cyy with respect to the in-
creasing porosity for different thicknesses of the solid wall.

To digress slightly. it is reculled that an intermediate result of the calculations at microlevel is a disto-
bulion of the microfluctuations caused by macrostrain tensor €. Sevcral examples of that distrtbution are
shown in Figure 7.12, where it 1s inleresting to note that Hill's periodic boundary conditions and coupling
conditions between the phases are satisfied.
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Figure 7.12: Distribution of the microfluctuations - examples of resulting calculations at microscale.

Coupling conditions on the interface of phases and Hill's conditions on the boundary are
satisfied.
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Together with the already considered cases assuming that only the change in thickness and width of the
wall influence the effective bone behavior, recent laboratory investigations have shown that one of the
main reasons for decreasing bone strength is the disappearance of the complete solid walls (Fig. 7.13).
This process automatically leads to increasing spans between the remaining walls, so that instead of
a porosity of 72% and an average span of 0.47 mm, typical for the healthy bone, in the late stage of
osteoporosis, the corresponding values reach 95% for porosity and 2.2 mm for average span.

b %Y

Figure 7.13: Strong bone resorption causes some walls to disappear, while increasing the span between
remaining walls.

When interrogating the influence of the size of average span on the strength of the bone, a cubic RVE is
again observed, but this time its side length is variable and has values in the range 0.47-2.2mm. The wall
thickness is fixed at d = (.05 mm and two cases of the wall width are considered. In one case its relation
with the side length is given by b = a/6, and in the other case by b = a/T.

The change in two terms of elasticity tensor over side length and porosity is shown in Figure 7.14. Here,
obviously, Cy, gradually decreases and Cy» gradually increases, but both of these values tend to the value
C1y = Cy» = 2000N/mm?, which exactly corresponds to the case of pure marrow.
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Figure 7.14: Change in terms Cy; and C;» with increasing spans and corresponding porosity. The width
of solid wall b = a/6.

The following section lists the effective elasticity tensors as the main results of calculations at microscale
and for the case of increase in the side length of RVE.
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Figure 7.15: Effective elasticity tensors for the RVE with the width of the solid wall b=a/6 and constant
wall thickness 0.1mm. The side length of the RVE is in the range 0.47-2.2mm.
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Figure 7.16: Effective elasticity tensors for the RVE with the width of the solid wall b=a/7 and constant
wall thickness 0.1mm. The side length of the RVE is in the range 0.47-2.2mm.
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7.5.2 Effective material properties

The effective elasticity tensors obtained as the results of macroscale calculations yield some additional
information about the bone material. Although the obtained results have the same form as the elasticity
tensors of an isotropic material, due to the missing connection between the shear modulus and Young's
modulus and Poisson’s ratio (G=£;), they correspond to the group of orthotropic materials which char-

acteristically have three mutually orthogonal symmetry planes and the compliance matrix in the form

5 —;'gfx - 0 0 0
Lm0 o 0
= o
N=| B "E 5 0 00 (7.112)
0 0 o0& 0 o0 '
0 0 0 0Z& o0
0 0 0 0 0 &

The concrete examples listed in chapter 7.5.1 can be taken to show that for bone material with the RVE
presented in Figure 7.7, material parameters in all of the directions have the same values £} = F, =
Ey = E; Go3 = Gy = Go = G g1 = V31 = 13 = V3 = V3 = Iy = i, and that their values can be
directly calculated from the terms Ny, Nyo, Nyy. The change in material parameters dependent on the
geometry of RVE is shown in Figures 7.17 and 7.18.

Figure 7.17: Change in the real and imaginary parts of Young's and bulk modulus versus porosity.
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Figure 7.18: Change in the real and imaginary parts of Poisson’s ratio and shear modulus with respect to
the porosity.

Each of the diagrams presented in Figures 7.17 and 7.18 have two branches corresponding to the cases
where the thickness of the solid wall is fixed. The analysis presumes that the volume fraction of the solid
phase decreases due to the change in thickness and width of the solid wall, while the case of increasing
wall spans is not considered; however, this can be analyzed in the same way. Results show that imaginary
material parameters have the same behavior as the real ones, except in the case of Poisson's ratio where
the real parameter increases with increasing porosity but the imaginary part decreases.

7.5.3 Results concerning the dry skeleton

Standard literature [1, 2, 3, 78, 90, 102, 103, 44] mostly investigates the effective elasticity parameters of
the pure solid phase. For the purpose of comparison, the calculations described in 7.4 are repeated for the
RVE without marrow core (Fig. 7.7a). In this case, the problem is determined by the equation of motion
for the solid phase and Hill’s condition

(M + K?*)-a. = f(e), (7.113)

at =4 on 0F, (7.114)

while in the comparison with the system (7.107)-(7.110), the equation of motion for the fluid phase and
coupling condition are left out.
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As in the case of interrogating the complete RVE, the final results at microlevel are effective elasticity
tensors and material parameters but here only the change in Young's modulus with respect to the porosity
will be considered in more detail (Fig. 7.19).

AENE

Young's medulus [N/mm?]

g

—— 1 =0.1)
—m—F (:=0085)

g

a @
&

0.7 0.75 08 0.85 0.9
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Figure 7.19: Change in Young's modulus over porosity for the dry skeleton.

The calculations show that for the case of wall thickness of 0.1mm, the effective Young’s modulus takes
the values 3576-1883 N/mm? while for a wall thickness of 0.05mm, the values are between 2114-1050
N/mm?. These results agree well with the results obtained by Ashman [3], who found using the ultrasonic
tests that the structural elasticity modulus of cancellous bone has the values in the interval 2110-985
N/mm?. A consideration of the pure solid phase yields the small values of Poisson’s ratio, leading to the
conclusion that the fluid phase has a significant influence on this material parameter.

7.6 Simulation of the ultrasonic test

7.6.1 Problem formulation at macroscale

The effective elasticity tensor and material parameters calculated at microlevel also permit a definition of
the problem at macroscale with a simulation of the behavior of the complete bone or some of its parts.
The problem at macroscale is described by the equation of motion followed by the constitutive law and
the boundary and initial conditions

pu—V-6=pb, (7.115)
=012, (7.116)
w=u on OB, g-n=t on IB. (7.117)
#(z,t=0)=0, w(E,t=0)=0, (7.118)

where the body is chosen to be initially undeformed and at rest (7.118). The constitutive law (7.116)
depends on the effective elasticity tensor C whose form corresponds to the viscoelastic material behavior,
according to the results shown in chapter 7.5.1.

For the special case where the body forces are neglected and periodic excitation p = p(x)e™" is assumed,
the problem becomes dependent on periodic displacements @(x, t) = w(x)e™" and indirectly only on
the amplitudes u(x)

—?pa—V- =0, (7.119)
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d=C:& (7.120)
w=1u" on OB, g-n=p on 9B, (7.121)

Note that for further work, the formulation (7.119)-(7.121) is of the interest, as consideration is only
given to the sound excitation on the bone sample.

7.6.2 FEM model of the ultrasonic test

An example of the calculations at macroscale consists in simulating the ultrasonic test already described
in 7.1. To this end, it should be recalled that during the experiment the bone specimen is immersed in the
water in the middle between the piezoelectric pulser and hydrophone. The pulser emits the sound signal
which is received by the hydrophone after propagation through the water and the specimen. According to
the difference between the original and recorded signal, the attenuation coefficient can be calculated. Its
value regularly depends on the excitation frequency and microstructure of the sample. As the sound wave
is of the longitudinal type, particles of the water and of the sample oscillate in the same direction as the
wave propagates. The amplitudes of oscillations are of the small order and they cause the small change
in the pressure in the surrounding medium. These two quantities are related to each other according to
the expression

=2 =P
e Ay o (7.122)

where u and v are the displacement and velocity of the particle, f and c are the frequency and velocity of
the wave propagating through the medium of the density p and p is the change in pressure.

The previously described properties of the real laboratory test significantly influence the choice of con-
venient FE model and enable the introduction of a few important simplifications. Firstly, as the water
in the original test is used only as a transmitter whose attenuation can be neglected in the FEM model,
consideration only has to be given to the behavior of the sample. Secondly, as the sound wave is longi-
tudinal, the whole simulation can be considered as a 2D problem of wave propagation through the thin
slice of the sample (Fig. 7.20). Moreover, the displacements in the y direction in all of the points have to
be suppressed, while the results will show that displacements in the 2 direction are of the order smaller
than those in the z direction, which fits in with the nature of sound waves.

The remaining properties of the model can be described and motivated as follows. The dimension of the
sample transversal to the direction of the wave propagation is assumed to be 50 mm, which in any case
is greater than the wavelength of the excitation sound waves (see Ch. 7.6.3). Two kinds of boundary
conditions are simulated on the top and the bottom of the specimen. In the first case, it is presumed
that all the displacements in all the points on these two boundaries are constrained. In the second case,
only the middle points on the top and bottom boundary are supported. The results show that the type of
boundary conditions on these two boundaries does not influence the results, which can be expected as
they are only responsible for suppression of the rigid body motion.

The size of the specimen in the direction of wave propagation is chosen as 30mm. This dimension
does not correspond to the size of the specimens used in the real tests, but it is more appropriate for
the necessary calculations and in some cases it permits a simulation of the wave propagation until its
complete attenuation.

The discretization of the sample and applied load are shown in Figure 7.20. Here the number of elements
is 100x50. The thickness in the direction *2” is 0.5mm. The sound pressure p=8kPa acts on the left
boundary of the sample. The diameter of the pulser is assumed to be 10mm. The last few parameters
(thickness, pressure and diameter) are chosen arbitrarily as they do not have any qualitative influence on
the simulation.
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Figure 7.20: Model for FEM simulation of wave propagation through cancellous bone.
7.6.3 Expected properties of wave propagation through the homogenized medium

The main properties characterizing wave propagation through a medium are velocity, frequency and
wavelength, and all are dependent on the properties of the particle oscillations mentioned in the previous
section. Wave velocity is a particularly important quality in the laboratory tests as it is easily measured.
It can be observed as a material property of the medium through which the wave propagates, but in the
case of solid materials it also depends on the shape and especially on the dimensions of the body affected
by the wave. For example, in the case of bounded medium, the wave moves with so-called bar velocity
defined by the expression which depends on the Young’s modulus

ce=c(E) = /E/p. (7.123)

In the practical sense, the term “"bounded™ means that cross-sectional dimensions of the sample, transverse
to the direction of wave motion, have to be smaller than the wavelength. On the other hand. if the
unbounded medium is considered, the wave velocity becomes greater and it can be calculated according
to the expression dependent on plane wave modulus A

T 7. Bt Y (7.124)

m = Cld = 1 y M=Lr— :
s l—v—202

Bearing in mind that the excitation frequency is the same with the wave frequency and frequency of the
particle oscillations, and taking into account that properties of the medium are known, including the wave
velocity, the wavelength can be calculated according to the expression

A= c/f (7.125)

where obviously, for the same velocity a shorter wavelength corresponds to the higher frequency.

In the case of the laboratory interrogation of Young’s modulus, experiments are mostly carried out so that
the expression (7.123) is valid and E can be calculated directly. For example, in the work of Ashman
[3], a cylinder with radius Smm and length 15mm is tested for estimating the structural effective Young's
modulus. This uses sound excitation with frequency 50 kHz and expected wavelength of 20 mm. By
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contrast, estimating the elasticity modulus of an individual trabecula with a radius of 0.1-0.5mm uses
excitation of 2.25 MHz and a wavelength of approximately Imm. The attenuation tests mostly use higher
frequencies, so that it is more realistic to expect the case of "unbounded” medium.

Regarding the numerical model of cancellous bone proposed in this chapter, the previous discussion
means that the wave velocities for that material can be calculated, because its effective material pa-
rameters are known (Ch. 7.5.2). The values obtained in this way are presented in the following table.
Assuming that excitation frequency is in the range 0.5-2MHz, wavelengths for unbounded medium are
calculated with the values 4.04-0.82mm, and with 3.63-0.58mm for bounded medium. The values pre-
sented here, can also be used to check the results obtained numerically, using FEM.

a=1mm, d=0.1mm
Quantity 6=0.250mm | $=0.200mm | 6=0.167mm | 5=0.143mm | $=0.125mm
E | N/mm* 4163.74 3482.24 3015.49 2672.06 2405.87
M | N/mm? 5162.17 4470.27 4039.85 3741.16 3521.68
p | kg/m® 1263.00 1230.00 1202.00 1179.00 1160.00
c. | m/s 1815.68 1682.58 1583.90 1504.81 1440.15
m | Mm/s 2021.69 1906.40 1833.29 1781.04 1742.39
a=1lmm, d=0.05mm
Quantity =0.250mm | 5=0.200mm | $=0.167mm | b=0.143mm | 4=0.125mm
E | N/mm? 2623.00 2153.50 1830.70 1596.00 1417.17
M | N/ 'mm* 3927.95 3483.07 3203.35 3011.36 2872.28
p kg/ m® 1136.00 1113.00 1094.00 1097.00 1067.00
c. | m/s 1520.74 1391.00 1293.60 1216.30 1152.46
Cm | m/s 1859.49 1769.02 1711.17 1670.59 1640.71

Figure 7.21: Material parameters and corresponding wave velocities for different types of cancellous
bone.

7.6.4 Check of the results at the macrolevel

Two examples will be shown to illustrate simulation of the wave propagation and to check the results.
Firstly, consideration is given to the wave propagation through the homogenized bone with an RVE
geometry determined by the parameters a=1mm, d=0.1mm and b=0.25mm. The model shown in Figure
7.20 corresponds to the case of unbounded medium, so that the expected wave velocity amounts to
¢m = 2021.69 m/s. For an arbitrarily chosen excitation frequency f=0.6 MHz, the expected wavelength
is 3.37mm. The results of the FEM simulation shown in Figure 7.22a endorse such expectations as the
resulting wavelength is approximately 3.24mm (9.25 wavelengths on the length of sample which amounts
to 30mm). An additional check looks at the magnitude of particle displacements. Namely, relation
(7.122) can be used to calculate that approximate particle displacement for the problem discussed here
has the value 8.32 - 10~“mm, which agrees with the displacement values shown in Figure 7.22a.

Wave propagation through water is simulated as a second example, to illustrate that the developed proce-
dure also applies to the case of pure fluid. For this medium, wave velocity has to be calculated according
to the expression

e = oK) = VK]/p (7.126)

where K represents the standard bulk modulus. The properties of water are well known and they amount
to K=2.2 GPa, p=1000kg/m®, n = 10~3Pas, so that the bulk wave velocity has the value c,=1481m/s.
If the excitation frequency is assumed to be 0.1 MHz, the expected wavelength becomes 14.83mm. The
results of the FEM simulation are shown in Figure 7.22b, where it is easy to see that there are two full
wavelengths on the length of 30mm.



98 7 Cancellous bone — effective behavior and ultrasonic test

DISPLACEMENT 1 DISPLACEMENT 1
-B.TIE-07 -2 20E-04

2 _5.96E-07 . .1 59E-04

i -4 21E-07 4 .9.74AE-05
=1 .1.46E.07 -3 55E-05
1.20E-07 2.56E-05

—t 4 04E-07 BT1E-05
579E-07 1 40E-04
954E07 2 10E-04

Figure 7.22: a) Wave propagation through cancellous bone with an RVE geometry determined by the pa-
rameters a=lmm, d=0.1mm, b=0.25mm. Assumed excitation frequency 0.6MHz. b) Wave
propagation through water. Assumed excitation frequency 0.1MHz,

7.6.5 Dependence of the attenuation on the excitation frequency and material density

The results of the laboratory attenuation tests show that increasing excitation frequencies and increasing
bone material density (BMD) lead to an increase in wave attenuation. Using the information about emit-
ted and received signal, this permits a non-destructive estimate of the internal structure of the cancellous
bone. The same principle apply to numerical tests. The results of simulated attenuation tests should show
if the assumed bone structure corresponds to the real one.

In order to check if the numerical simulations are adequate substitution of the real attenuation tests, firstly
consideration is given to the influence of increasing excitation frequency on bone behavior. To this end
the type of material microstructure in the simulations is fixed, and sound excitation of different frequen-
cies is applied. As the influence of attenuation is more noticeable in the case of higher frequencies,
excitation is simulated in the domain 0.9-1.7 MHz. The microstructure is chosen corresponding to the
geometry of the RVE determined by the parameters a=1mm, b=0.25mm and d=0.05mm. The results of
the simulations are shown in Figure 7.23, where the stronger attenuation obviously corresponds to the
higher frequencies.

The study of the relationship between attenuation and BMD is a rather more complicated than the influ-
ence of the excitation frequency. This can be expected, as the change in density is a consequence of the
change in RVE geometry, which mostly depends on many parameters. In the case of the model proposed
in chapter 7.4, the RVE geometry is determined by three parameters (wall thickness d, wall width b and
side length a) so that three different types of tests are carried out in order to study the influence of BMD
on attenuation. In each group of tests, two of the geometrical parameters previously mentioned are kept
constant and the remaining one is observed as a variable.



99

7.6 Simulation of the ultrasonic test
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geometry of RVE is determined by the parameters a=1mm, b=0.25mm and d=0.05mm.
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Figure 7.24: Wave propagation of the wave of frequency IMHz through the material whose microstruc-

ture is determined by the parameters a=1mm, 5=0.25mm. The thickness of the solid wall is

variable and it takes the values 0.15, 0.1, 0.08 and 0.05mm.
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is determined by the parameters a=Imm and d=0.05mm. The width of the solid wall is
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by the parameter d=0.05mm and relation b=0.167a. The side length of the cube is variable
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The influence of wall thickness on attenuation is examined on the basis of the effective elasticity tensors
of the materials with RVE which is a unity cube and with wall width 4=0.25mm. The wall thickness is
assumed to be 0.15, 0.1, 0.08 and 0.05mm respectively. Wave propagation through the macrosample is
shown in Figure 7.24. The influence of the width of the wall is investigated using materials with RVE
which is a unity cube and thickness of the wall 0.05Sm. The results for this case are shown in Figure
7.25, where the width of the wall takes the values 0.25-0.125mm. Finally, the influence of the side length
is studied by simulating wave propagation through the sample with material structure determined by the
parameters d=0.05mm and relation b = a/6 (Fig. 7.26). In the examples, the side length increases from
0.47 up to 1.50mm.

The results presented in Figures 7.23-7.26 show that numerical simulations similar to those in laboratory
yield the conclusion that increasing frequency and density cause an increase in attenuation; but it also
transpires that numerical values obtained in this way are much smaller than those obtained by the labo-
ratory tests. Note that for calculating the attenuation expression (7.2) and amplitudes of the oscillations
of particles whose distance is the integer number of wavelengths (n)) were used. The obtained values
amount on average to 1-2 bB/(MHz cm), so that it can be supposed that the model presented here leads
to an attenuation coefficient originating mainly from attenuation of the solid phase, while the laboratory
tests show that homogenized material has far greater attenuation than its component materials. A value
of 20 bB/(MHz cm) is often taken for the illustration.

At the moment, there are two main proposals for resolving the problem of calculating the attenuation
coefficient: reconsidering the geometry of RVE, and introducing wave scattering. With regard to the
geometry of RVE, one possible alternative to the model presented here is to observe such RVE where
the thin wall structure is replaced by the beam structure, or a combination of both is used [$0]. The
idea of studying wave scattering on the interface of the solid and fluid phases is motivated by the labo-
ratory results obtained by Laugier [S5, 56] indicating a very strong influence of this phenomenon on the
cancellous bone attenuation.

7.7 Conclusions concerning the model of cancellous bone

This chapter looked at calculating the material parameters for cancellous bone using a procedure based
on the multiscale FEM. Its main advantages compared to Biot’s theory are its simplicity and the smaller
number of material parameters required. At microscale, the method yields effective elasticity tensor and
material parameters, so that changing the RVE geometry is used to study the influence of increasing
porosity on the strength of material. At macroscale, the ultrasonic laboratory test is simulated as an
elucidating example. These results agree well with the real values except in the domain of attenuation, so
that a reconsideration of the model is being envisaged. Some possible improvements include changing
the RVE geometry, or introducing the influence of scattering the sound waves on the interface of the solid
and fluid phases.






105

8 Conclusions

The multiscale FEM is a numerical method based on the theory of homogenization, with the specific
principle that real material properties have to be replaced by effective ones obtained by the examination
of a RVE. The terminology “macro” relates to the examined body, while "micro” relates to the RVE
describing the material structure thereby the macroquantities are defined using the concept of the vol-
ume average and the coupling of the scales requires Hill’s macrchomogeneity condition to be satisfied.
Transformation of the latter condition leads to the definition of the boundary conditions at microscale
and in that way to the closed formulation of the boundary value problem related to this level. The work
examines materials with periodic and random microstructure, explaining three examples in detail.

The first example simulates the behavior of microporous nonlinear material. Here, a tension test of a plate
is considered at macroscale, while a square RVE with an elliptical pore is chosen to describe the material
properties. Given a random microstructure, the RVE is assumed to have a different orientation in each
Gauss’ point. The material investigation is illustrated by three groups of tests with different lengths of the
semi-major axis of the pore. Each time, ellipticity is changed in an interval [0, 1] where the lower limit
corresponds to pores with zero thickness and the upper limit to circular ones. The results show that in the
moment when pores appear, even if their thickness can be neglected, the material parameters decrease at
once; furthermore, with pore growth, Young's and bulk modulus undergo a monotonous decrease while
Poisson’s ratio increases. Calculations also show that voids with elongated shape have a more significant
influence on material weakening than voids whose shape is close to the circular one.

The second example looks at modeling solution-precipitation creep, which is a diffusional process oc-
curring in polycrystals if pressure and temperature are in the specific range. For this problem, firstly a
continuum-mechanical model is proposed where the deformation is decomposed into an elastic and an
inelastic part and the total power is written as a superposition of total elastic power and dissipation. The
elastic energy is chosen in the standard form, dependent on the Helmholtz free energy, while the dissi-
pated energy is formulated particularly for the process of solution-precipitation creep. It depends on the
normal velocity of the crystal boundary due to precipitation or solution of material and on the velocity
of material transport within the crystal interfaces. One of the main properties of this model is that the
difference between the normal component of the Eshelby stress tensor and its smooth approximation be-
comes the driving force of the process. Such behavior is already endorsed by the experiments showing
that under homogeneous pressure acting on one side of a rectangular crystal, solution-precipitation creep
occurs only in edge zones of the sample. Another advantage of the proposed model is that in contrast to
other procedures, continuity of stress in triple points is not required. Preliminary results for the behavior
of polycrystals are obtained using the Taylor model and show that solution-precipitation creep leads to
the elongation of the crystal shape. FEM-based methods are used for more realistic simulations and to
estimate the change in effective material parameters over time. Here the most important simulations are
those concerning materials with completely random structure and materials with regular structure con-
sisting of hexagonal crystals.

The motivation behind developing the model for the RVE of cancellous bone, which is the last example
presented in this work, is to investigate the process of osteoporosis, whose main indicators are the de-
crease and partial disappearance of the solid phase. The important feature of the model is that the presence
of the fluid phase necessitates dynamic interrogation and analysis in the complex domain. According to
the geometry of the microstructure it is assumed that the RVE has a cubic form and that it consists of the
solid frame and of viscous blood marrow filling the core of the frame. The effective elasticity tensor and
the parameters of materials with different microstructure are calculated as the final results at microscale.
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Comparison of the real parts of material parameters with the experimental results shows good agreement.
The calculations at macrolevel are illustrated by simulating the ultrasonic test where the attenuation co-
efficient is calculated as a final result, using the ratio of amplitudes of particle oscillations. The obtained
numerical values are much smaller than the experimental ones so that an improvement of the model of
the RVE is envisaged. Two main ideas for overcoming the problem consist of assuming a new geometry
of the solid phase of the RVE, and introducing wave scattering on the interface of the phases.

From the previous overview it can be seen that, although limited by the requirements concerning the size
of the RVE, the multiscale FEM can still be applied to modeling composite materials with very diverse
microstructures. The examples presented here confirm in particular that the method can be applied ef-
ficiently in modeling nonlinear materials with a regular structure and a random structure, which mostly
exceeds the abilities of analytical solutions and other numerical methods.
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Raoul Costamagna:
Globale Materialbeziehungen fiir das gekliiftete Gebirge (Juli 2004)

Markus Bol:
Numerische Simulation von Polymemetzwerken mit Hilfe der Finite-
Elemente-Methode (Januar 2005)

Gregor Kotucha:
Regularisierung von Problemen der Topologieoptimierung unter Ein-
beziehung von Dichtegradienten (August 2005)

Michael Steiner:
Deformations- und Versagensverhalten innendruckbeanspruchter Stahlrohre
durch StoBbelastung (Februar 2006)

Dirk Bergmannshoff:
Das Instabilitiitsverhalten zug-/scherbeanspruchter Risse bei Variation des
Belastungspfades (Dezember 2006)

Olaf Schilling:
Uber eine implizite Partikelmethode zur Simulation von Umformprozessen
(Januar 2007)

Jorn Mosler:
On the numerical modeling of localized material failure at finite strains by
means of variational mesh adaption and cohesive elements (Mai 2007)

Rainer Fechte-Heinen:
Mikromechanische Modellierung von Formgedichtnismaterialien (Juni 2007)

Christian Grabe:
Experimental testing and parameter identification on the multidimensional
material behavior of shape memory alloys (Juni 2007)

Markus Peters:
Modellierung von Rissausbreitung unter Verwendung der p-Version der
XFEM mit einer adaptiven Integrationsmethode (Juli 2007)

Claus Oberste-Brandenburg:

Thermomechanical modeling of shape memory alloys at different length
scales (Juli 2007)

Stefan Reichling:

Das inverse Problem der quantitativen Ultraschallelastografie unter
Beriicksichtigung groBer Deformationen (Juli 2007)

Kianoush Molla-Abbasi:

A Consistent Anisotropic Brittle Damage Model Based on the Concept of
Growing Elliptical Cracks (Januar 2008)

Sandra llic:

Application of the multiscale FEM to the modeling of composite materials
(August 2008)
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