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Abstract

The aim of this paper is to describe a new, fast and robust solver for 3D flow
problems which are described by the incompressible Navier-Stokes equations.
The correspondig simulations are done by a monolithic 3D flow solver, i.e. velocity
and pressure are solved at the same time. During these simulations the convective
part is linearized using two different methods: Fixpoint method and Newton method.
The Fixpoint method is working in a quite robust way, but it has a slow convergence
depending on the Reynolds number. In contrast, if the Newton method does not
fail, the simulations which are done by this linearization converge typically much
faster. In the case of the Newton method quadratical convergence is obtained. The
challenging part is to find a method which unites the stability of the Fixpoint method
and the fast convergence of the Newton method.
For the resulting operator-adaptive Newton method, several numerical examples
are considered: The flow around a sphere and a cylinder is simulated to analyze
the behaviour of the used methods. Since the behaviour of the linearization types
is different between each of them, the results caused by varying Reynolds numbers
and the arised equations are analyzed concerning the efficiency of each method.

Keywords: Navier-Stokes equations, Fixpoint method, Newton method, adaptive
Newton, flow around a sphere, flow around a cylinder

1. Motivation

In this paper we focus on 3D flow problems, which can be described by the non-
stationary Navier-Stokes equations:

ut + u · ∇u+∇p = ν∆u in Ω,

∇ · u = 0 in Ω,

with prescribed boundary values and initial solutions.
Later in this paper we will study the flow around a cylinder and the flow around a
sphere which is, for example, already studied in [5] in a detailed way. As motivation
the important result of that paper is that there is a range in which the flow has a
stationary behaviour: Until Reynolds number 270 the flow has a stationary struc-
ture. Therefore, in the first step we only focus on this stationary region. Then, our
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model reduces to:

u · ∇u+∇p = ν∆u,

∇ · u = 0.

Compared to the unsteady flow simulations until steady state in [5] it seems to be a
more efficient way to solve this system in a coupled way, that means by a monolithic
approach.
The most difficult part of solving these stationary equations is to realize a good
handling of the non-linear part. For small Reynolds numbers the influence of this
part has less influence. So, the treated Reynolds number influences the characteristic
of the equations: If the Reynolds number is small we can neglect the convective part
and the equations are just linear ones. But this region is only a small one and for a
stable and robust 3D solver we cannot neglect the non-linear part.

2. Numerical approach

To solve the stationary NSE we first of all have to discretize the equations.

2.1. Discretization of the occuring equations

This is done by the finite element method using the LBB-stable FEM pair Q2-P1.
For details we refer to [2]. For the stationary NSE it results in the well known
system: (

S̃(uh) B
BT 0

)(
uh
ph

)
=

(
g
0

)
with S̃(uh) = L+K(uh),

where L represents the diffusive part −ν∆u and K(uh) replaces the convective part
u · ∇u.
For unsteady flow problems the non-stationary Navier-Stokes equations are consid-
ered: Then the momentum equation reads as ut + u · ∇u + ∇p = ν∆u and we
additionaly get the mass matrix in the upper left part S̃(uh) = M+θ∆t(L+K(uh))
with θ chosen due to the used time discretization.
To assemble the matrices L, K(uh) and B we can use two concepts: We can take
a linear mapping between the physical and the reference element or a mapping us-
ing the isoparametric concept. The benefit of the isoparametric concept can be
visualized as follows (For simplicity the 2D case is presented.).

Figure 1: 2D Visualization of isoparametric mapping [7]

Since the domains of our numerical tests and applications do not have straight
boundarys the advantage of the isoparametric concept should be significant since
only then, the full convergence order can be observed.
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2.2. Derivation of the used solver

Now we have a discrete system of our problem which ends up in a (non-linear)
algebraic system. In this section we discuss how to solve this system [3]. Therefore
we rewrite our equations:

• Continous problem:

−ν∆u+ u · ∇u+∇p = f,

∇ · u = 0,

• discrete problem:(
L+K(uh) B

BT 0

)(
uh
ph

)
=

(
g
0

)
,

with K(v)w ∼ v · ∇w,

i.e. [Ki,i(u
n−1
h )]m,n =

∫
Ω

[un−1
1 ∂xϕm + un−1

2 ∂yϕm + un−1
3 ∂zϕm]ϕndx

and Ki,j = 0, if i 6= j.

In [5] we have used a an operator splitting based variant which is a good choice for
non-stationary flows [9]. However, since we concentrate on stationary flows, we can
use the gain of a monolithic solver.

2.2.1. Fixpoint method

We apply the Fixpoint method to the discrete problem and write it in a defect-
correction procedure. For simplicity we take a full update, so we can neglect the
step size ω.[

unh
pnh

]
=

[
un−1
h

pn−1
h

]
+

[
L+K(un−1

h ) B
BT 0

]−1([
g
0

]
−
[
L+K(un−1

h ) B
BT 0

] [
un−1
h

pn−1
h

])
.

The non-linear term, which is represented by the convective part, is defined as:

K := [K]m,n := [Ki,i(u
n−1
h )]m,n and Ki,j = 0, if i 6= j.

However, we have further parts which we have to mention: On the one hand, we
have an outer loop which iterates over n until the defect[

g
0

]
−
[
L+K(un−1

h ) B
BT 0

] [
un−1
h

pn−1
h

]
is small enough: This is the non-linear loop. On the other hand, we have the

preconditioning step, i.e. apply

[
L+K(un−1

h ) B
BT 0

]−1

to the defect. Instead of

inverting this matrix we solve these linear ”defect” equations using a direct linear
solver (or in most cases an iterative one) and update the solution n− 1.
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2.3. Newton method

To accelerate the convergence speed we also apply a Newton solver. From theory
we know that we need a Fréchet derivative of our functional. For details we refer to
[8]. In the undamped case, we get the following equations:

−ν∆un + un−1 · ∇un + un · ∇un−1 +∇pn = f − un−1 · ∇un−1

∇ · un = 0.

Again we write this in a defect-correction procedure and get:[
unh
pnh

]
=

[
un−1
h

pn−1
h

]
+

[
L+R(un−1

h ) B
BT 0

]−1([
g
0

]
−
[
L+K(un−1

h ) B
BT 0

] [
un−1
h

pn−1
h

])
with R(un−1

h ) = K(un−1
h ) + αM̄(un−1

h ), α ∈ {0, 1}.

Anew, we have neglected the step size ω.
To get a better understanding of the matrix R we summarize the assembly of this
matrix:

• First we have to mention that the ”convective” part is defined as before.

• The ”reactive” part reads as

M̄i,j(u
n−1
h ) = M(∂ju

n−1
i ), where Mm,n(v) =

∫
Ω

vϕmϕndx.

• Summarizing, the matrix R can be assembled by

R =

K + αM̄1,1 αM̄1,2 αM̄1,3

αM̄2,1 K + αM̄2,2 αM̄2,3

αM̄3,1 αM̄3,2 K + αM̄1,3

 .

Remark 2.1. (Connection of Newton and Fixpoint method)

• If the scalar α is set to 0 the Newton method and the Fixpoint method match.

• We have a ”full”/pure Newton method if we take α = 1.

3. Convergence behaviour of the solver

In this section we want to analyze the derived solvers. Since we are, at this time,
only interested in the convergence of the nonlinear solvers, the linear (sub-)problems
are solved directly [12], i.e. we do not use an iterative scheme.
In the literature one can find several benchmark computations in which nonlinear
flow problems are analyzed. To check the accuracy of our solver we start with
focusing on the 2D flow around a cylinder benchmark [10]. The simulation setting
can be sketched as follows:

• Domain: The simulation domain is given by a two dimensional channel and
a cylindrical obstacle in the first part of the fluid domain (The detailed area
size can be found in [10].).
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Figure 2: Fluid domain and coarse grid

• Boundary conditions: A parabolic inflow boundary condition with mean veloc-
ity 0.2 is prescribed. At the outflow part there is the ”do nothing” boundary
condition and at the other boundaries no slip conditions are prescribed. To-
gether with the viscosity value 1E-3 the flow can be characterized as Re =
20,

Since our described approach has been designed to simulate 3D flow problems, we
need to adjust the geometry: We extrude the 2D area in the third dimension to
have a three dimensional object.
Then, the biggest difference between the Fixpoint and the Newton method is the
convergence speed: For the Fixpoint method there should be linear convergence
and the Newton method should converge quadratically. Doing a simulation of the
benchmark configuration we get the defect behaviour as visualized in figure 3.

Figure 3: Validation of convergence speed

As one can see the Fixpoint method needs more iterations than the Newton method
to achieve the same accuracy in the defect. In this case it needs four times more
iterations than the Newton method.
The described benchmark configuration (see also the FEATFLOW1 webpage for
the details) has only a small range in which the flow has a stationary structure.
This region has an upper bound at Reynolds number lower than 100. Several test
simulations have shown that in this range the Fixpoint and the Netwon method

1www.featflow.de

5

www.featflow.de


converge with their expected convergence order. If we want to increase the nonlinear
effect, meaning increasing the Reynolds number, we have to take another setting:
One option is the flow around a sphere which has been analyzed in [5].
Taking the flow around a sphere problem, the range of stationary flow problems has
an upper bound at Reynolds number 270. In the next test cases we are interested
in the flow with Reynolds numbers 150 and 250. We know that for higher order
of nonlinearity, meaning larger Reynolds numbers, the Fixpoint method needs a lot
of nonlinear iterations. The advantage of the Newton method should stand out, if
the starting solution for the Newton method is close enough to the final solution.
Otherwise the Newton method might diverge.

Re Starting Fixpoint Newton
150 initial zero 29 7
150 150 (level-1) 28 4
250 initial zero 53 div
250 250 (level-1) 45 div

Table 1: Flow around a sphere: High nonlinearity examples

As long as the Newton method converges, it converges much faster than the Fixpoint
method. But if the nonlinearity increases the Newton method diverges, even if the
starting solution should be accurate enough. Consequently, we have to improve the
numerical behaviour of the described Newton solver.

4. Improvement of the solver

4.1. Operator-adaptive Newton method

We are interested in a nonlinear solver which unites the stability of the Fixpoint
method and the fast convergence of the Newton method. We have seen that there
can be situations in which the Newton method fails (see last table 1). To get a first
idea we remind the formulation of the Newton method:[
unh
pnh

]
=

[
un−1
h

pn−1
h

]
+

[
L+K(un−1

h ) + αM̄(un−1
h ) B

BT 0

]−1([
g
0

]
−
[
L+K(un−1

h ) B
BT 0

] [
un−1
h

pn−1
h

])
.

We point out the parameter α which identifies if we use the Fixpoint method or the
Newton method. The above example has shown that the Newton does not converge
all the time whereas the Fixpoint method converges. In a next step we expand
the upper test cases: We do not only solve the problem with each pure method;
additionaly, we take a mixture of these methods, e.g. α = 0.5, and get the results:

Re Starting
Fixpoint mixture Newton
(α = 0) (α = 0.5) (α = 1)

250 initial zero 53 40 div
250 250 (level-1) 45 36 div

Table 2: Mixture of both methods

The results show that the choice of α seems to be important: The mixture converges,
too, and it has a faster convergence than the Fixpoint method. If the pure Newton
method and a large Reynolds number are combined there is no chance of convergence
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because of the ”bad starting” solution. Here, we can directly identify the influence
of the non-linearity: Up to a certain Renolds number the Newton method converges
very fast; after this limit the Newton method gets into trouble to attain convergence.
The goal of the new method is obvious: There is a need for a new method that unites
the benefits of each method and that switches between them or, even better, changes
the influence of the methods in an adaptive way. This method will be based on [6].
Here, we need a criterion how to set α which can be coupled with the nonlinear
defect:

• How to increase the value α?
If the nonlinear defect decreases from iteration n− 1 to n, the solution comes
closer to the final one. This can be the chance that the solver can get a speed
up by a bigger part of the Newton method. So, α can increase.

• Can α also decrease?
In case of an increasing nonlinear defect, the solver may diverge with the
current setting. To enhance the behaviour of the defect, α should go to 0
because of the stability of the Fixpoint method.

If the defect does not change in two following iterations the solver can end up in an
infinite loop. To control this, α should also decrease in that case.
Thus, we need a function which updates the value α, i.e. αn+1 = F(x) αn. The

argument x is obviously defined by the change of the last two defects: x := ||defn||
||defn−1|| .

The definition of the function F is given in [6]: It is described as F(x) = a+ b
c+exp(d x)

.

Remark 4.1. (Update of α)
The value α controls the influence of the Newton method part. Therefore, α is
bounded between 0 and 1: If the above update is used, the lower bound can only be
crossed if the image of the function F can be negative. With the previous definition
the lower bound cannot be crossed. But the upper bound can be crossed. Then we
need to add the condition that if α > 1, then set α := 1.

The function F has 4 free parameters which have to be defined. For example, we
assume the following conditions:

• The maxmimal reduction of α should be bounded, here: a = 0.2.

• F should be ”big” if x is small: F(0) = 3.

• If there is no change in two subsequent defects, α should be decreased:
F(1) = 0.9.

• If ||defn|| is one half of the previous one, increase α by 50%: F(0.5) = 1.5.

Remark 4.2. (Conditions to fit the function)
In the current code version the user can set the values F(0) and lim

x→∞
F(x) by its

own. So the user is able to adapt this method to the given problem.
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Corollary 4.3. (Function F)
With the above assumptions the function
F for the following tests is defined as:

F(x) = 0.20 +
1.43

−0.48 + exp(0.94x)
.

Figure 4: Function F

4.2. Adaptive stopping criterion for the linear solver

The next topic that we have to focus on is the solving of the linear subproblems. In
general we solve these problems using iterative schemes, i.e., the linear equations are
solved until a certain tolerance is reached. Since the linear problems are not solved
exactly, it can influence the convergence order of the nonlinear solver. This order is
dependent on the accuracy of the linear solver: There is a necessary number of digits
that have to be gained by this solver. If this solver does not gain enough digits, the
convergence order can get lost. But there is also a limitation of the convergence
order of the nonlinear solver: If the necessary accuracy is reached there is no need
of further linear solver iterations, because the order of the nonlinear solver cannot
be improved.
We know that the Fixpoint method has a convergence of order 1. So, if we have a
reduction of the nonlinear defect of 0.1 we will only have a reduction of 0.1 in the
next nonlinear iteration, although the linear problems are solved exactly. In this
case we would work more than needed. It is enough to solve these linear problems
with the same precision as the given order of the nonlinear solver. We can do the
analogue argumentation for the Newton method: Here we have a convergence of
order 2, i.e., if we have a reduction of 10−2 we can have a reduction of 10−4 in the
next and 10−8 in the over-next nonlinear iteration because of the given order. This
also holds if we solve the linear problems exactly. Again we would do more work
than needed.
Therefore, we have implemented an ”adaptive stopping criterion” for our linear
solver which depends on the order of convergence. It can be written as:

1. Compute (or read) the nonlinear defect from last iteration: ||defn−1||.
2. Compute the non-linear defect from current iteration: ||defn||.
3. Calculate the digital criterion: p = 2α and asc =

(
||defn||
||defn−1||

)p
, where α = 0

stands for the Fixpoint scheme and α = 1 for the Newton one.

4. In the coming iteration the linear solver needs to gain asc digits.

It should be clear that this adaptive stopping criterion helps us to get the ”optimal”
convergence order of each nonlinear method. We underline this with the following
testproblem: Again we simulate the (pseudo) 3D flow around a cylinder configura-
tion [10]. On the one hand we use the Fixpoint method and on the other hand the
Newton method. In both studies we take 4 different values which the linear solver
should to gain: 1 digit, 2 digits, our new strategy and an exact linear solution. On
the first axis you see the nonlinear iterations and on the second one the nonlinear
defect.
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Figure 5: Fixpoint convergence Figure 6: Newton convergence

Firstly, the convergence behaviour simulated by the exact solver confirms the gen-
eral considerations from above, e.g. the Fixpoint method can only converge linear
although the subproblems are solved exactly, but the exact solution has the ”best”
convergence speed. However, our new strategy is close to that and much better
than the other ones. If we take a look at the nonlinear defect, our strategy needs
approximately the same number of nonlinear iterations as the exact linear one. We
stop the linear solver much earlier: The exact solver would always gain machine
accuracy. So, the benefit of this strategy leaps out.

4.3. Combination of both aspects
Next, we sum up the two improvement topics and combine them into one approach.
This can be described as follows.

• Input: α0, asc

• Compute initial defect def0

• Nonlinear iteration (n = 1, 2, ...)

1. Solve linear sub-problem gaining asc digits.

2. Compute defn.

3. Read defn−1.

4. Set αn+1 = F(x)αn

– If (αn+1 > 1) Then αn+1 = 1

5. Set p = 2αn+1 and asc =
(
||defn||
||defn−1||

)p
– If (asc > 10−1−α) Then asc = 10−1−α

6. Update n→ n+ 1

7. Convergence? or Go back to 1.

Remark 4.4.

• To guarantee convergence the asc-value should not increase to 1 in step 5.
Usually, we take 0.1 for the Fixpoint and 0.2 for the Newton method as minimal
reduction of the linear solver.
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• The adaptive method should be bounded by the pure Fixpoint and Newton
method, so α has an upper bound in step 4.

Using the (pseudo) 3D flow around cylinder problem we want to demonstrate how
this algorithm is working.
In the following, we compare two initial values for α: α = 0.1 and α = 0.5. We set
the asc to 10−1−α so that the following convergence behaviour results.

Figure 7: Adaptive convergence

On the left hand side we see the simulation results for Reynolds number 20 on level
2; on the right one there are the results on level 3 starting with the final results
from level 2. In both cases we see that a ”big” initial α-value accelerates the total
convergence. This should be clear since the pure Newton method is also working
fine. But it is also true that a small value α can be good for the first one or two
iterations since the current solution is ”far” away from the exact solution which can
result in ”convergence problems”.
Now we want to compare our adaptive startegy with the two ”pure” methods. The
representation is the same as above: On the left you can find the level 2 results, on
the right the results of level 3.

Figure 8: Comparison to Fixpoint and Newton
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It seems to be clear that the adaptive method with an initial value 0.5 has the same
convergence speed as the pure Newton method. But this method should be more
stable, because it still uses some benefits from the Fixpoint method. We can also
see that the α series is nearly monotone increasing.

4.4. Application: Flow around a sphere

4.4.1. Solver settings

Coming back to the motivation of this paper we want to see if our code is able to
simulate the flow around a sphere that can be subdivided into different ranges: The
range of axis-symmetric flows ends at Reynolds number approximated 210; until
Reynolds number 270 there is a so called planar-symmetric flow which is a station-
ary one, too [5].
Before we start to simulate these flows and validate our approach, we want to sum-
marize the solver configuration.

• Nonlinear solvers:

– Three different linearization schemes are used: The pure Fixpoint, the
pure Newton and the operator-adaptive Newton method.

– To get suitable simulation results all simulations are started using the
one level coarser grid solution (except for Level 2 in which we start from
scratch).

– Since we only focus on stationary flows we take an absolute stopping
criterion, i.e. the absolute defect should be smaller than 1E-12.

– We limit the number of nonlinear iterations at 100.

• Linear solver - MG:

– The linear problems are solved using the F-cycle and our new adaptive
stopping criterion.

– On each discretization level we prescribe 20 smoothing (pre- and postsmooth-
ing) steps that are done by a damped Vanka method with damping factor
0.2.

– The number of linear solving steps is bounded by 10 MG iterations.

4.4.2. Numerical validation and comparison of the methods

We start with a relative small Reynolds number and perform the test configuration
and the boundary conditions from [5]:

Figure 9: Extract of the simulation area
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Figure 10: Coarse mesh cutplane Figure 11: 3D sketch

We have a constant inflow at the inflow part and Dirichlet data at the lateral surface
of the pipe in flow direction of value 1. We set the viscosity to 0.1, since we want
to calculate the flow for a small Reynolds number, here Re = 10. As a reference we
take the results that arise from a very fine discretized simulation done by our 2.5D
axis-symmetric code. There we have got a drag value of 4.52982 and a zero lift by
definition.

lvl NEL NEQ
linear mapping

edragdrag Fy Fz
2 14176 408994 4.49788 1.50E-6 3.11E-12 0.71%
3 113408 3222974 4.52148 3.90E-7 1.51E-12 0.18%
4 907264 25.5E6 4.52769 6.13E-8 1.53E-11 0.05%

lvl NEL NEQ
isoparametric mapping

edragdrag Fy Fz
2 14176 408994 4.53041 1.44E-6 3.85E-10 0.01%
3 113408 3222974 4.52985 3.92E-7 3.95E-12 0.00%
4 907264 25.5E6 4.52981 6.17E-8 4.03E-11 0.00%

Table 3: Level convergence

We discern level convergence and, of course, the version using a isoparametric map-
ping gives more precise results.
Because we solve the flow reagrding a small Reynolds number, the benefit of the
Newton solver should not be significant. Smaller Reynolds number means that the
(nonlinear) convective part in the Navier Stokes equations should have less influence.
To underline this we tabulate the nonlinear iterations (NL) and also the required
total multigrid steps (TOT MG). (Remark: The solver iterations of both mapping
strategies match.)

lvl
Fixpoint Newton

NL TOT MG NL TOT MG
2 12 18 5 15
3 13 20 3 14
4 14 20 3 14

Table 4: Fixpoint vs. Newton

The nonlinearity is not high enough to see the advantage of the Newton solver
compared to the Fixpoint method, because the linear (sub-)problems are not solved
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exactly - we still use our new strategy. If these problems would be solved exactly we
would see that we need only a few nonlinear iterations since the nonlinearity gets
weaker and the Newton method would almost become an exact solver. Nevertheless,
the Newton configuration still solves the problem faster (66% of MG-steps compared
to Fixpoint); but, if we consider the numerical assembly of this solver, the Newton
method is not advantageous for small Reynolds numbers.
Therefore, we increase the Reynolds number from 10 to 100, i.e., the viscosity has
to decrease by a factor of 10. Now, the nonlinearity should get a bigger influence.
(Again the reference values are taken from our 2.5D axis-symmetric code: Drag =
1.112266, lift = 0.)

lvl NEL NEQ drag lift fz edrag

2 14176 408.994 1.11466 1.46E-4 1.02E-14 0.22%
3 113408 3.222.974 1.11361 2.19E-5 1.11E-14 0.12%
4 907264 25.592.182 1.11275 2.88E-6 1.09E-11 0.04%

Table 5: FAS (Re 100): Level convergence for isoparametric mapping

The level convergence is obvious.

lvl
Fixpoint adaptive 0.1 adaptive 0.5 Newton

NL TOT MG NL TOT MG NL TOT MG NL TOT MG
2 25 94 7 43 7 40 8 46
3 16 31 6 22 4 20 3 18
4 14 25 6 21 4 19 3 16

Table 6: FAS (Re 100): Fixpoint vs. Newton

Since we have increased the Reynolds number the (nonlinear) convective part is the
more dominant one. For the case that we start with a zero solution (level 2) the
adaptive test cases are more competetive: Here we have the benefit of the good
convergence at the beginning of the Fixpoint part and there is the possibility to
increase the Newton part to get better convergence in each iteration. The Fixpoint
method can only convince in the first iteration; the Newton method has its advantage
if the solution is more and more close to the exact one. Since the simulations on
level 3 and 4 start with the one level coarser solutions, the start value for the actual
simulation is close enough to the current one and the Newton method reaches the
fastest convergence.
In our simulations we could also see that we get a more stable level independent
convergence if we use the Newton method instead of the Fixpoint method. This
stable convergence is underlined by the number of total multigrid steps that are
nearly all the same for each problem. Using the adaptive method there is nearly
the same stable convergence, but the convergence speed decreases because there are
still some left-overs of the Fixpoint method.

4.4.3. Multigrid convergence behaviour

In the last section we have seen that there are some benefits regarding convergence
speed, if we use the (adaptive) Newton method. In this section we want to take
a closer look at the multigrid convergence behaviour. Therefore, we concentrate
on the last test case: Flow around a sphere with Reynolds number 100 and space
discretization level 3.
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The first topic which we want to analyze is the decrease of the defect for all 4
methods.

Figure 12: Defect: Fixpoint (blue), adaptive 0.1 (red), adaptive 0.5 (yellow) and Newton (green)

With this analysis we cannot see how the multigrid solver works but we can identify
the convergence speed: As we have seen before, the Fixpoint method has a linear and
the Newton method a quadratical convergence speed. The two adaptive methods
start with linear convergence and end up close to quadratical one.
Since we have implemented a new adaptive stopping criterion we also want to check
how this criterion has influenced the global defect convergence.

Figure 13: Adaptive stopping criterion: Fixpoint (blue), adaptive 0.1 (red), adaptive 0.5 (yellow)
and Newton (green)

If we ignore the Fixpoint method, in which the adaptive stopping criterion is con-
stant by construction, we clearly obtain that a smaller criterion results in faster
convergence (see Fig. 13). It is also obvious that a stopping criterion that is less
than 10−2 may result in quadratical convergence. These stopping criterions, which
are connected to the digits gained by the multigrid solver, have effects to the used
multigrid steps in each nonlinear iteration.
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Figure 14: MG steps: Fixpoint (blue), adaptive 0.1 (red), adaptive 0.5 (yellow) and Newton (green)

Because one multigrid step can only reach a certain accuracy, the number of multi-
grid steps increases if the stopping criterion is relative small. For the Newton and
the adaptive methods there is a need of 8 multigrid steps in the final stage of the
simulation to get the desired accuracy. Compared to that a constant stopping cri-
terion ensues in constant multigrid steps.
To conclude this multigrid analysis we receive the following chain:

small stopping criterion ⇒ more multigrid steps ⇒ less non-linear ierations.

4.4.4. Higher order of nonlinearity

If the nonlinearity increases, for example by increasing the Reynolds number, a
robust and stable (linear) solver is needed. At the moment we are only interested
to see if the adaptive Newton method can improve the Fixpoint method or if it
can help the pure Newton method to converge. Therefore, we only concentrate on
the resulting nonlinear ierations. Hence, we will ignore the multigrid solver and
use the direct solver: MUMPS [12], which is a parallel solver based on UMFPACK
[4],[11]. But because of the parallelism we are not memory limited by one CPU.
MUMPS (MUltifrontal Massively Parallel sparse direct Solver) is built on a LU
decomposition acting in the multifrontal method, which is a version of Gaussian
elimination for large sparse systems of equations, especially those arising from FEM.

Numerical tests.
We start with the simulation of the flow around a sphere on discretization level 1
(NEL: 1772, NEQ: 59048). Our goal is to find a test configuration which cannot
be solved by the Newton method directly. Consequently, we will vary our current
simulation parameters and we will also vary the starting solution. Here, we only
focus on the number of nonlinear iterations.
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Re Starting Fixpoint Newton
adaptive

0.1 0.5 1
140 Re 100 28 6 x x x
150 Re 140 26 7 x x x
200 Re 150 29 7 x x x
200 Re 100 29 7 x x x
200 initial zero 32 div 10 10 div

Table 7: NL with exact linear solver (level 1)

If a simulation result from smaller Reynolds number is used as an initial solution,
the Newton method is working perfectly. So, we are not interested in the adaptive
methods (marked by ”x”). Only if the simulation is starting from a zero solution,
the Newton method is not working and we need the adaptive strategy. With this
method, irrespective of the initial starting value α, we reduce the nonlinear iterations
by a factor of 3. If we start the adaptive Newton method with α = 1 there will be no
convergence because the error in the first iteration cannot be repaired (decreasing
α) in the coming iterations. Surprisingly, it does not matter which old solution has
been used.
As we have seen, level 1 simulations are not interesting enough, because we can only
start from a zero solution or from a solution of the same discretization level. We
have more choices of starting solutions if we simulate on finer grids. Here, we have
an increased number of unknowns and consequently there is a need of more memory.
The goal of our simulation is still the same: Can we find further configurations that
cannot be simulated by the Newton method directly? For completenes we also add
some results from level 1 simulations.

Re 200 Re 250

Starting Level Fixpoint Newton
adaptive

Fixpoint Newton
adaptive

0.1 0.5 0.1 0.5

0 32 div 10 10 60 div 9 8
Stokes L1 31 7 9 7 55 7 9 7
Re 100 L1 29 7 9 7 53 6 10 6

Table 8: Nonlinear iterations (level 1)

The more interesting part is presented by the following tables for the referred levels
2 and 3.

Re 200 Re 250

Starting Level Fixpoint Newton
adaptive

Fixpoint Newton
adaptive

0.1 0.5 0.1 0.5

0 28 div 10 8 53 div 11 9
Stokes L2 26 6 9 6 42 7 9 7
Re 100 L2 25 5 8 5 40 6 8 6
Stokes L1 28 div 9 6 48 div 11 7
Re 100 L1 27 div 9 6 46 div 9 7

Re 200/250 L1 27 div 9 6 45 div 9 7

Table 9: Nonlinear iterations (level 2)
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Re 200 Re 250

Starting Level Fixpoint Newton
adaptive

Fixpoint Newton
adaptive

0.1 0.5 0.1 0.5

0 30 div 9 7 52 div 8 7
Stokes L3 29 6 8 6 50 7 11 7
Re 100 L3 29 5 8 5 49 5 11 5
Stokes L2 30 div 9 6 51 div 11 7
Re 100 L2 30 div 9 5 50 div 11 7

Re 200/250 L2 29 5 8 5 49 6 10 6

Table 10: Nonlinear iterations (level 3)

Evidently, it seems to be better to start from a solution at the same discretization
level. Even the one level coarser solution for the same Reynolds number does not
allow the Newton method to converge. It does not matter which coarser solution is
prolongated and set as a starting solution. But if the discretization in space becomes
really fine, the Newton method can also converge using a prolongated coarser starting
solution, because the differences between the occuring solutions ”vanish” for finer
and finer discretization levels.

Corollary 4.5. (adaptive Newton)

• If the Newton method can solve a certain simulation setting, it typically con-
verges faster than the other presented solvers.

• If the Newton method fails, the adaptive methods can handle these simulation.

• The adaptive Newton method can be taken as an acceleration of the Fixpoint
method.

• A good starting solution for the Newton method is given by the results that are
computed by the Stokes equations, because possible steep gradients, which arise
in the Newton method, will be smoothed.

To guarantee convergence which can be accelerated by the adaptive Newton method
it is useful to start with a relative small value α.

5. Stabilization by artificial diffusion

In the last section we have seen that the code can only converge for high Reynolds
numbers if a direct solver and the Fixpoint method are used. To get results that
are computed in a quick way it is also possible to use the adaptive Newton method;
but also in this case there is a need of a direct solver. At the moment the code can
solve problems with the iterative linear solver until Reynolds number 120. But as
we have seen in [5] there are stationary flow structures until Reynolds number 250.
The goal of the following sections is to find a scheme which allows solving problems
for really high Reynolds numbers by our multigrid solver. One approach can be the
usage of artificial diffusion.

5.1. General idea

Before we describe a working approach based on artificial diffusion stabilization, we
mention an observation: During the solving process of our iterative multigrid solver
the local Reynolds numbers increase on coarser meshes. The first idea is that we
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use a stronger damping of the multigrid smoother which is based on a Vanka-like
approach. This typically leads to an increasement of solver iterations.
Another idea is to add more diffusion on the coarser meshes on which the local
Reynolds numbers increase.
Instead of adding diffusion only on the coarser meshes we could add artificial diffu-
sion to all mesh levels. The benefit is obvious: There should be no problem in the
transfer from level to level.

5.2. Numerical derivation of a working formula

The goal now is to find a setting in which the added (artificial) diffusion is as small
as possible to get convergence and accurate results. The considered equations will
look as follows:(
S̃(uh) B
BT 0

)(
uh
ph

)
=

(
g
0

)
with S̃(uh) = L̃+K(uh), L̃ = L(µ) and µ = ν + C · hγ.

The idea is based on the approach that we add a mesh dependent artificial diffusion
in each element of our finite element approach.
To get a working formula we have tried different parameters for C and γ, i.e. C ∈
{0.1, 0.05} and γ ∈ {1, 2, 3}. As first test cases, if this idea can work, we have
analyzed the flow around a sphere problem with Reynolds number 200 on mesh
level 2. We set γ = 2 and C = 0.1.

FP Adap 0.1 Newton
nonlinear iter 63 9 6

linear iter 411 80 60
∅ linear iter 6.524 8.889 10
fx (drag) 7.939E-01 7.939E-01 7.939E-01
fy (lift) -3.290E-06 -3.289E-06 -3.289E-06
|fz| 2.719E-11 5.036E-16 1.705E-15

Table 11: Differences between nonlinear solvers

We see that all 3 solver combinations converge to the same solution as expected. If
we take a closer look at the table we observe that, again, the Newton method needs
less linear and nonlinear solver iterations than the other ones.

5.2.1. Determination of parameter C

One important part of the artificial diffusion approach is the parameter C. We
compare the influence of this parameter by taking different values for γ. Again we
perform simulations for the flow around a sphere with Renolds number 200, but this
time we consider discretization level 3. For C = 0.1 we get the following results.

γ method nonlin lin fx (drag) fy (lift) |fz|

1
FP 23 54 8.513E-1 6.221E-5 -.954E-11

Adap 0.1 7 29 8.513E-1 6.221E-5 3.154E-14

2
FP 53 196 7.929E-1 2.597E-6 4.874E-12

Adap 0.1 7 41 7.929E-1 2.598E-6 3.181E-16

3
FP 62 233 7.882E-1 -3.147E-6 5.050E-11

Adap 0.1 8 70 7.882E-1 -3.146E-6 1.926E-15
reference values 7.864E-1 ≈ 0 ≈ 0

Table 12: Parameter C = 0.1
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If we halve the parameter the results look as.

γ method nonlin lin fx (drag) fy (lift) |fz|

1
FP 29 76 8.230E-1 4.143E-5 2.959E-11

Adap 0.1 7 29 8.230E-1 4.143E-5 7.333E-16

2
FP 57 203 7.904E-1 -1.305E-7 6.238E-12

Adap 0.1 8 53 7.904E-1 -1.305E-7 1.475E-15

3
FP 62 265 7.881E-1 -3.218E-6 2.796E-11

Adap 0.1 9 82 7.881E-1 -3.218E-6 1.634E-15
reference values 7.864E-1 ≈ 0 ≈ 0

Table 13: Parameter C = 0.05

There are two observations for the smaller choice of C:

• The values for the acting forces are closer to the reference ones [5]. This is
clear since the influence of the added artificial diffusion is not as significant as
before.

• The solver iterations, both nonlinear and linear ones, increase, because the
nonlinearity increases with less artificial diffusion.

If we compare the results for the two different parameters we conclude that a choice
of parameter C = 0.1 should be working fine since there is a chance to get accurate
results if we adapt the parameter γ. This choice can also be underlined by the solver
iterations which are smaller than for C = 0.05.

5.2.2. Determination of γ and damping parameter ω for smoothing

In this part we fix the parameter C to 0.1. The aim is now to find a suitable
combination of γ and the damping parameter of the smoother: We use the two
usual damping parameters 0.5 and 0.7. Since we know that there are convergence
problems because of the nonlinearity we also test the damping 0.1. For γ we take
1, 2 and 3. The reference drag value for the flow around a sphere with Reynolds
number 200 is given by 7.8710E-1 computed by our code with the exact linear solver.
First we start with simulations on discretization level 2.

ω 0.1 0.5 0.7
α nonlin lin drag nonlin lin drag nonlin lin drag
1 7 30 9.0338E-1 7 21 9.0338E-1 6 16 9.0338E-1
2 8 52 8.0781E-1 div div div div div div
3 div div div div div div div div div

Table 14: Level 2

There are a lot of combinations that do not work, i.e. these configurations lead to
divergence. The best choice seems to be ω = 0.1 and γ = 2, because there conver-
gence is obtained and the drag value is the closest one compared to the reference.
But there are also bad news: Small damping parameters and a larger value γ force
more solver iterations. With the same test configurations we simulate the problem
on discretization level 3.
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ω 0.1 0.5 0.7
α nonlin lin drag nonlin lin drag nonlin lin drag
1 7 29 8.5129E-1 7 21 8.5129E-1 7 20 8.5129E-1
2 7 41 7.9286E-1 6 20 7.9286E-1 6 21 7.9286E-1
3 8 70 7.8823E-1 div div div div div div

Table 15: Level 3

On level 3 there are more configurations which lead to convergence. Only a barely
damping in combination with γ = 3 leads to divergence. For level 3 the best choice
regarding efficiency of the solver - meaning only a few solver iterations - and accurate
results is given by ω = 0.5 and γ = 2.
Lastly, we also take a look at the results for level 4.

ω 0.1 0.5 0.7
α nonlin lin drag nonlin lin drag nonlin lin drag
1 7 31 8.1566E-1 7 20 8.1566E-1 7 19 8.1566E-1
2 7 30 7.8894E-1 7 15 7.8894E-1 7 20 7.8894E-1
3 7 30 7.8787E-1 7 15 7.8787E-1 7 20 7.8787E-1

Table 16: Level 4

On level 4 we see that there are no differences in the solver statistics for each damping
parameter. Again ω = 0.5 gives the combination with the lowest expenditure of the
solver.

Corollary 5.1. (Coice of C, α and ω)
An operating combination for the artificial diffusion parameters is given by C = 0.1,
γ = 2 and ω = 0.5.

For a stable configuration, if the upper choice is not working, the damping parameter
can be reduced, e.g. ω = 0.1.

5.3. Application: Time dependent 3D benchmark

We finish this section by giving results of the corresponding time dependent 3D
benchmark simulations. The configuration is described in [1]. Here we only give a
sketch of it:

• Mesh and domain: Flow around a cylinder 3D configuration, discretization
level 2,

Figure 15: 2D cutplane of the coarse mesh

• Inflow boundary condition: Double-parabolic inflow, u(y, z, t) = {9
4
·0.205−4} ·

sin(π
8
t)y(0.41− y)z(0.41− z), v = w = 0,

• Physical parameter: ν = 10−3, i.e. Re = 100 at t = 4,
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• Simulation time: t ∈ [0, 8].

Of course, we need an extension of the previous approach which can solve time
dependent problems. The initial version is able to solve such problems using the
Crank-Nicolson method with all the above described techniques. So we have a strong
solver combination that can be written in a defect correction procedure:[
un,kh
pn,kh

]
=

[
un,k−1
h

pn,k−1
h

]
+

[
M + θ∆t{L+K(un,k−1

h ) + αM̄(un,k−1
h )} ∆tB

BT 0

]−1

([
Mun−1

h − (1− θ)∆t{L+K(un−1
h )

0

]
−
[
M + θ∆t{L+K(un,k−1

h )} ∆tB
BT 0

] [
un,k−1
h

pn,k−1
h

])
,

where n denotes the current time and k the iteration of the nonlinear solver.
The computed drag and lift values which occur at the cylinder can be visualized
over time: In the top there is the drag value and in the bottom you can see the lift
value. Additionally to the global time interval we have picked up some regions in
which we have zoomed in: For the drag there is a zoom around the middle of the
time interval in which the drag value has its maximum; for the lift there is a zoom
to the middle region, too. But there is also a zoom in the more interesting region
at the beginning of the time intervall where a ”saddle point” of the curve can be
found.
We compare the results that are stabilized by our artificial diffusion and the results
without any stabilization with the reference solution given in [1].
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Figure 16: 3D Benchmark: Level 2

We observe that the drag value of the stabilized version is closer to the reference
one. This should be intuitively correct, because a lower Reynolds number leads to
larger drag values. An analogue observation is seen in the case of the lift value:
Here the stabilized version is closer to the zero-lift value, since simulations with
small Reynolds numbers lead into axis-symmetric flow structures that have a zero
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lift. The interesting part is the zoom around T = 1.5: In this region there is
nearly no difference between the considered configurations. For finer meshes we
have similar results except for that we observe level convergence which means that
all three configurations become closer to each other. The level convergence can be
underlined by the Benchmark values.

Level 2 max drag max lift min lift ∅ T=1 T=4 T=6
normal 3.2657 0.002794 -0.010145 14.2|3.7 14|3 13|5 15|4

stabilized 3.2735 0.002773 -0.010090 13.9|3.8 13|3 11|4 15|4
Level 3 max drag max lift min lift ∅ T=1 T=4 T=6
normal 3.2944 0.002776 -0.010960 15.1|3.7 14|3 15|4 15|4

stabilized 3.2963 0.002771 -0.010946 15.0|3.7 13|3 14|4 15|4
Level 4 max drag max lift min lift ∅ T=1 T=4 T=6
normal 3.2977 0.002774 -0.011016 10.9|3.7 10|3 12|5 12|4

stabilized 3.2982 0.002773 -0.011013 10.8|3.7 10|3 11|5 11|4
reference 3.2978 0.002775 -0.010999

Table 17: Benchmark values

The level convergence to the given reference values of [1] leaps out. The unstabilized
version has a faster convergence, since the problem can be solved in an unstabilzed
configuration and the stabilization error is standing out.
We have also tabulated the used linear and nonlinear solver iterations: In ∅ and T
∈ {1, 4, 6} there are the total linear iterations on the left and the nonlinear ones on
the right side. And again we can see that for finer meshes there is a need of less
iterations for both solvers, because we have started the simulations with the solution
of the one level coarser mesh and the difference of both solutions becomes smaller
for finer meshes.

6. Conclusions and Outlook

In this work we have improved our monolithic three dimensional flow solver to have
more accurate results. We have used the isoparametric concept inasmuch as we
have worked with triquadratic functions and curved boundaries. From theory we
know that the Fixpoint method does not have a fast convergence speed, contrary
the Newton method can converge quadratically in a region around the exact so-
lution. That is the reason why we have implemented the Newton solver: We are
interested in fast calculated results needing less multigrid or nonlinear iterations. In
our simulations we have seen that we can achieve the reference results and if we use
the Newton method we do not need a lot of nonlinear iterations and we economize
multigrid iterations. Since the convergence radius of the Newton method is local we
can guarantee global convergence with our adaptive strategy. This strategy can also
be seen as an acceleration of the Fixpoint method.
Finally, we are able to solve (stationary) flow problems in three dimensions described
by nonlinear equations in an efficient way.

We are able to switch between Fixpoint and Newton method. But we still use a
full update. It can be interesting if we also implement a line search technique to
guarantee global convergence.
Regarding the flow around a sphere configuration we obtain unsteady flow problems
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if we increase the Reynolds number. Since the velocity is discretized by order 3 in
space, a high order discretization in time could also be useful.
All above techniques will be important, if we use other equations to describe flows,
e.g. non-Newtonian fluids depicted by the (non-)stationary (Navier-)Stokes equa-
tions which are real life problems.

References

[1] E. Bayraktar, O. Mierka & S. Turek, Benchmark Computations of 3D Laminar
Flow Around a Cylinder with CFX, OpenFOAM and FeatFlow. International
Journal of Computational Science and Engineering, 7, 3, 253-266, 2012.

[2] D. Boffi & L. Gastaldi, On the quadrilateral Q2-P1 element for Stokes problem.
International Journal for numerical methods in fluid, pp 1001-1011, 2002.

[3] H. Damanik, FEM Simulation of Non-isothermal Viscoelastic Fluids. PhD the-
sis, Department of Mathematics, TU Dortmund University, 2011

[4] T. A. Davis, Direct Methods for Sparse Linear Systems. SIAM, Philadelphia,
Sept. 2006.

[5] R. Jendrny, H. Damanik, O. Mierka & S. Turek, Numerical studies for Flow
Around a Sphere regarding different flow regimes caused by various Reynolds
numbers. Ergebnisberichte des Instituts für Angewandte Mathematik Nummer
531, Department of Mathematics, TU Dortmund University, 2015.

[6] S. Mandal, A. Ouazzi & S. Turek, Modified Newton Solver for Yield Stress
Fluids. Numerical Mathematics and Advanced Applications ENUMATH 2015
(pp.481-490), Springer International Publishing, Cham, 2016.
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