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Abstract

This paper deals with two-sample tests for functional time series data, which have become widely

available in conjunction with the advent of modern complex observation systems. Here, particular interest

is in evaluating whether two sets of functional time series observations share the shape of their primary

modes of variation as encoded by the eigenfunctions of the respective covariance operators. To this end,

a novel testing approach is introduced that connects with, and extends, existing literature in two main

ways. First, tests are set up in the relevant testing framework, where interest is not in testing an exact

null hypothesis but rather in detecting deviations deemed sufficiently relevant, with relevance determined

by the practitioner and perhaps guided by domain experts. Second, the proposed test statistics rely on

a self-normalization principle that helps to avoid the notoriously difficult task of estimating the long-run

covariance structure of the underlying functional time series. The main theoretical result of this paper is

the derivation of the large-sample behavior of the proposed test statistics. Empirical evidence, indicating

that the proposed procedures work well in finite samples and compare favorably with competing methods,

is provided through a simulation study, and an application to annual temperature data.

Keywords: Functional data; Functional time series; Relevant tests; Self-normalization; Two-sample tests.

1 Introduction

This paper develops testing tools for two independent sets of functional observations, explicitly allowing for

temporal dependence within each set. Functional data analysis has become a mainstay for dealing with those

complex data sets that may conceptually be viewed as being comprised of curves. Monographs detailing

many of the available statistical procedures for functional data are Ramsay and Silverman (2005) and Horváth

and Kokoszka (2012). This type of data naturally arises in various contexts such as environmental data (Aue

et al., 2015), molecular biophysics (Tavakoli and Panaretos, 2016), climate science (Zhang et al., 2011; Aue

et al., 2018a), and economics (Kowal et al., 2019). Most of these examples intrinsically contain a time series
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component as successive curves are expected to depend on each other. Because of this, the literature on

functional time series has grown steadily; see, for example, Hörmann and Kokoszka (2010), Panaretos and

Tavakoli (2013) and the references therein.

The main goal here is towards developing two-sample tests for comparing the second order properties of func-

tional time series data. Two-sample inference and testing methods for curves have been developed extensively

by several authors. Hall and Van Keilegom (2007) were concerned with the effect of pre-processing discrete

data into functions on two-sample testing procedures. Horváth et al. (2013) investigated two-sample tests for

the equality of means of two functional time series taking values in the Hilbert space of square integrable

functions, and Dette et al. (2019) introduced multiplier bootstrap-assisted two-sample tests for functional time

series taking values in the Banach space of continuous functions. Panaretos et al. (2010), Fremdt et al. (2013),

Pigoli et al. (2014), Paparoditis and Sapatinas (2016) and Guo et al. (2016) provided procedures for testing

the equality of covariance operators in functional samples.

While general differences between covariance operators can be attributed to differences in the eigenfunctions

of the operators, eigenvalues of the operators, or perhaps both, we focus here on constructing two sample

tests that take aim only at differences in the eigenfunctions. The eigenfunctions of covariance operators

hold a special place in functional data analysis due to their near ubiquitous use in dimension reduction via

functional principal component analysis (FPCA). FPCA is the basis of the majority of inferential procedures

for functional data. In fact, an assumption common to a number of such procedures is that observations from

different samples/populations share a common eigenbasis generated by their covariance operators; see Benko

et al. (2009) and Pomann et al. (2016). FPCA is arguably even more crucial to the analysis of functional time

series, since it underlies most forecasting and change-point methods, see e.g. Aue et al. (2015), Hyndman

and Shang (2009), and Aston and Kirch (2012). The tests proposed here are useful both for determining

the plausibility that two samples share similar eigenfunctions, or whether or not one should pool together

data observed in different samples for a joint analysis of their principal components. We illustrate these

applications in Section 4 below in an analysis of annual temperature profiles recorded at several locations,

for which the shape of the eigenfunctions can help in the interpretation of geographical differences in the

primary modes of temperature variation over time. A more detailed argument for the usefulness and impact

of such tests on validating climate models is given in the introduction of Zhang and Shao (2015), to which the

interested reader is referred to for details.

The procedures introduced in this paper are noteworthy in at least two respects. First, unlike existing literature,

they are phrased in the relevant testing framework. In this paradigm, deviations from the null are deemed of

interest only if they surpass a minimum threshold set by the practitioner. Classical hypothesis tests are included

in this approach if the threshold is chosen to be equal to zero. There are several advantages coming with the

relevant framework. In general, it avoids Berkson’s consistency problem (Berkson, 1938) that any consistent

test will reject for arbitrarily small differences if the sample size is large enough. More specific to functional

data, the L2-norm sample mean curve differences might not be close to zero even if the underlying population
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mean curves coincide. The adoption of the relevant framework typically comes at the cost of having to invoke

involved theoretical arguments. A recent review of methods for testing relevant hypotheses in two sample

problems with one-dimensional data from a biostatistics perspective can be found in Wellek (2010), while

Section 2 specifies the details important here.

Second, the proposed two-sample tests are built using self-normalization, a recent concept for studentizing test

statistics introduced originally for univariate time series in Shao (2010) and Shao and Zhang (2010). When

conducting inference with time series data, one frequently encounters the problem of having to estimate the

long-run variance in order to scale the fluctuations of test statistics. This is typically done through estimators

relying on tuning parameters that ideally should adjust to the strength of the autocorrelation present in the

data. In practice, the success of such methods can vary widely. As a remedy, self-normalization is a tuning

parameter-free method that achieves standardization, typically through recursive estimates. The advantages of

such an approach for testing relevant hypotheses of parameters of functional time series were recently recog-

nized in Dette et al. (2018). In this paper, we develop a concept of self-normalization for the problem of testing

for relevant differences between the eigenfunctions of two covariance operators in functional data. Zhang and

Shao (2015) is the work most closely related to the results presented below, as it pertains to self-normalized

two-sample tests for eigenfunctions and eigenvalues in functional time series. An important difference to this

work is that the methods proposed here do not require a dimension reduction of the eigenfunctions but com-

pare the functions directly with respect to a norm in the L2-space. A further crucial difference is that their

paper is in the classical testing setup, while ours is in the strictly relevant setting, so that the contributions

are not directly comparable on the same footing—even though we report the outcomes from both tests on the

same simulated curves in Section 3. There, it is found that, despite the fact that the proposed test is constructed

to detect relevant differences, it appears to compare favorably against the test of Zhang and Shao (2015) when

the difference in eigenfunctions is large. In this sense, both tests can be seen as complementing each other.

The rest of the paper is organized as follows. Section 2 introduces the framework, details model assumptions

and gives the two-sample test procedures as well as their theoretical properties. Section 3 reports the results

of a comparative simulation study. Section 4 showcases an application of the proposed tests to Australian

temperature curves obtained at different locations during the past century or so. Section 5 concludes. Finally

some technical details used in the arguments of Section 2.2 are given in Section 6.

2 Testing the similarity of two eigenfunctions

Let L2([0, 1]) denote the common space of square integrable functions f : [0, 1] → R with inner product

〈f1, f2〉 =
∫ 1
0 f1(t)f2(t)dt and norm ‖f‖ =

( ∫ 1
0 f

2(t)dt
)1/2. Consider two independent stationary functional

time series (Xt)t∈Z and (Yt)t∈Z inL2([0, 1]) and assume that eachXt and Yt is centered and square integrable,

that is E[Xt] = 0, E[Yt] = 0 and E[‖Xt‖2] < ∞, E[‖Yt‖2] < ∞, respectively. In practice centering can be
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achieved by subtracting the sample mean function estimate and this will not change our results. Denote by

CX(s, t) =
∞∑
j=1

τXj v
X
j (s)vXj (t), (2.1)

CY (s, t) =

∞∑
j=1

τYj v
Y
j (s)vYj (t) (2.2)

the corresponding covariance operators; see Section 2.1 of Bücher et al. (2019) for a detailed discussion

of expected values in Hilbert spaces. The eigenfunctions of the kernel integral operators with kernels CX

and CY , corresponding to the ordered eigenvalues τX1 ≥ τX2 ≥ · · · and τY1 ≥ τY2 ≥ · · · , are denoted by

vX1 , v
X
2 , . . . and vY1 , v

Y
2 , . . ., respectively. We are interested in testing the similarity of the covariance operators

CX and CY by comparing their eigenfunctions vXj and vYj of order j for some j ∈ N. This is framed as the

relevant hypothesis testing problem

H
(j)
0 : ‖vXj − vYj ‖2 ≤ ∆j versus H

(j)
1 : ‖vXj − vYj ‖2 > ∆j , (2.3)

where ∆j > 0 is a pre-specified constant representing the maximal value for the squared distances ‖vXj −
vYj ‖2 between the eigenfunctions which can be accepted as scientifically insignificant. In order to make the

comparison between the eigenfunctions meaningful, we assume throughout this paper that 〈vXj , vYj 〉 ≥ 0 for

all j ∈ N. The choice of the threshold ∆j > 0 depends on the specific application and is essentially defined by

the change size one is really interested in from a scientific viewpoint. In particular, the choice ∆j = 0 gives

the classical hypotheses Hc
0 : vXj = vYj versus Hc

1 : vXj 6= vYj . We argue, however, that often it is well known

that the eigenfunctions, or other parameters for that matter, from different samples will not precisely coincide.

Further there is frequently no actual interest in arbitrarily small differences between the eigenfunctions. For

this reason, ∆j > 0 is assumed throughout.

Observe also that a similar hypothesis testing problem could be formulated for relevant differences of the

eigenvalues τXj − τYj of the covariance operators. We studied the development of such tests alongside those

presented below for the eigenfunctions, and found, interestingly, that they generally are less powerful empiri-

cally. An elaboration and explanation of this is detailed in Remark 2.1 below. The arguments presented there

are also applicable to tests based on direct long-run variance estimation.

The proposed approach is based on an appropriate estimate, say D̂(j)
m,n, of the squared L2-distance ‖vXj −vYj ‖2

between the eigenfunctions, and the null hypothesis in (2.3) is rejected for large values of this estimate. It turns

out that the (asymptotic) distribution of this distance depends sensitively on all eigenvalues and eigenfunctions

of the covariance operators CX and CY and on the dependence structure of the underlying processes. To

address this problem we propose a self-normalization of the statistic D̂(j)
m,n. Self-normalization is a well-

established concept in the time series literature and was introduced in two seminal papers by Shao (2010) and

Shao and Zhang (2010) for the construction of confidence intervals and change point analysis, respectively.

More recently, it has been developed further for the specific needs of functional data by Zhang et al. (2011)

and Zhang and Shao (2015); see also Shao (2015) for a recent review on self-normalization. In the present

4



context, where one is interested in hypotheses of the form (2.3), a non-standard approach of self-normalization

is necessary to obtain a distribution-free test, which is technically demanding due to the implicit definition of

the eigenvalues and eigenfunctions of the covariance operators. For this reason, we first present the main idea

of our approach in Section 2.1 and defer a detailed discussion to the subsequent Section 2.2.

2.1 Testing for relevant differences between eigenfunctions

If X1, . . . , Xm and Y1, . . . , Yn are the two samples, then

ĈXm (s, t) =
1

m

m∑
i=1

Xi(s)Xi(t), ĈYn (s, t) =
1

n

n∑
i=1

Yi(s)Yi(t) (2.4)

are the common estimates of the covariance operators (Ramsay and Silverman, 2005; Horváth and Kokoszka,

2012). Denote by τ̂Xj , τ̂
Y
j and v̂Xj , v̂

Y
j the corresponding eigenvalues and eigenfunctions. Together, these

define the canonical estimates of the respective population quantities in (2.1) and (2.2). Again, to make the

comparison between the eigenfunctions meaningful, it is assumed throughout this paper that the inner product

of 〈v̂Xj , v̂Yj 〉 is nonnegative for all j, which can be achieved in practice by changing the sign of one of the

eigenfunction estimates if needed. We use the statistic

D̂(j)
m,n = ‖v̂Xj − v̂Yj ‖2 =

∫ 1

0
(v̂Xj (t)− v̂Yj (t))2dt (2.5)

to estimate the squared distance

D(j) = ‖vXj − vYj ‖2 =

∫ 1

0
(vXj (t)− vYj (t))2dt (2.6)

between the jth population eigenfunctions. The null hypothesis will be rejected for large values of D̂(j)
m,n

compared to ∆j . In the following, a self-normalized test statistic based on D̂(j)
m,n will be constructed; see

Dette et al. (2018). To be precise, let λ ∈ [0, 1] and define

ĈXm (s, t, λ) =
1

bmλc

bmλc∑
i=1

Xi(s)Xi(t), ĈYn (s, t, λ) =
1

bnλc

bnλc∑
i=1

Yi(s)Yi(t) (2.7)

as the sequential version of the estimators in (2.4), noting that the sums are defined as 0 if bmλc < 1.

Observe that, under suitable assumptions detailed in Section 2.2, the statistics ĈXm (·, ·, λ) and ĈYn (·, ·, λ)

are consistent estimates of the covariance operators CX and CY , respectively, whenever 0 < λ ≤ 1. The

corresponding sample eigenfunctions of ĈXm (·, ·, λ) and ĈYn (·, ·, λ) are denoted by v̂Xj (t, λ) and v̂Yj (t, λ),

respectively, assuming throughout that 〈v̂Xj , v̂Yj 〉 ≥ 0. Define the stochastic process

D̂(j)
m,n(t, λ) = λ(v̂Xj (t, λ)− v̂Yj (t, λ)), t ∈ [0, 1] , λ ∈ [0, 1], (2.8)

and note that the statistic D̂(j)
m,n in (2.5) can be represented as

D̂(j)
m,n =

∫ 1

0
(D̂(j)

m,n(t, 1))2dt. (2.9)
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Self-normalization is enabled through the statistic

V̂ (j)
m,n =

(∫ 1

0

(∫ 1

0
(D̂(j)

m,n(t, λ))2dt− λ2
∫ 1

0
(D̂(j)

m,n(t, 1))2dt
)2
ν(dλ)

)1/2
, (2.10)

where ν is a probability measure on the interval (0, 1]. Note that, under appropriate assumptions, the statistic

V̂
(j)
m,n converges to 0 in probability. However, it can be proved that its scaled version

√
m+ nV̂

(j)
m,n converges

in distribution to a random variable, which is positive with probability 1. More precisely, it is shown in

Theorem 2.2 below that, under an appropriate set of assumptions,

√
m+ n

(
D̂(j)
m,n −D(j), V̂ (j)

m,n

) D−→
(
ζjB(1),

{
ζ2j

∫ 1

0
λ2(B(λ)− λB(1))2ν(dλ)

}1/2)
(2.11)

as m,n→∞, where D(j) is defined in (2.6). Here {B(λ)}λ∈[0,1] is a Brownian motion on the interval [0, 1]

and ζj ≥ 0 is a constant, which is assumed to be strictly positive if Dj > 0 (the square ζ2j is akin to a long-run

variance parameter). Consider then the test statistic

Ŵ(j)
m,n :=

D̂
(j)
m,n −∆j

V̂
(j)
m,n

. (2.12)

Based on this, the null hypothesis in (2.3) is rejected whenever

Ŵ(j)
m,n > q1−α, (2.13)

where q1−α is the (1− α)-quantile of the distribution of the random variable

W :=
B(1)

{
∫ 1
0 λ

2(B(λ)− λB(1))2ν(dλ)}1/2
. (2.14)

The quantiles of this distribution do not depend on the long-run variance, but on the measure ν in the statistic

V̂
(j)
m,n used for self-normalization. An approximate P -value of the test can be calculated as

p = P(W > Ŵ(j)
m,n). (2.15)

The following theorem shows that the test just constructed keeps a desired level in large samples and has

power increasing to one with the sample sizes.

Theorem 2.1. If the weak convergence in (2.11) holds, then the test (2.13) has asymptotic level α and is

consistent for the relevant hypotheses in (2.3). In particular,

lim
m,n→∞

P(Ŵ(j)
m,n > q1−α) =


0 if D(j) < ∆j .

α if D(j) = ∆j .

1 if D(j) > ∆j .

(2.16)

2
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Proof. If Dj > 0, the continuous mapping theorem and (2.11) imply

D̂
(j)
m,n −D(j)

V̂
(j)
m,n

D−→W , (2.17)

where the random variable W is defined in (2.14). Consequently, the probability of rejecting the null hypoth-

esis is given by

P(Ŵ(j)
m,n > q1−α) = P

(
D̂

(j)
m,n −D(j)

V̂
(j)
m,n

>
∆j −D(j)

V̂
(j)
m,n

+ q1−α

)
. (2.18)

It follows moreover from (2.11) that V̂ (j)
m,n

P→ 0 as m,n → ∞ and therefore (2.17) implies (2.16), thus

completing the proof in the case Dj > 0. If Dj = 0 it follows from the proof of (2.11) (see Proposition 2.2

below) that
√
m+ nD̂

(j)
m,n = oP(1) and

√
m+ nV̂

(j)
m,n = oP(1). Consequently,

P(Ŵ(j)
m,n > q1−α) = P

(√
m+ nD̂(j)

m,n >
√
m+ n∆j +

√
m+ nV̂ (j)

m,nq1−α
)

= o(1),

which completes the proof.

The main difficulty in the proof of Theorem 2.1 is hidden by postulating the weak convergence in (2.11). A

proof of this statement is technically demanding. The precise formulation is given in the following section.

Remark 2.1 (Estimation of the long-run variance, power, and relevant differences in the eigenvalues).

(1) The parameter ζ2j is essentially a long-run variance parameter. Therefore it is worthwhile to mention that

on a first glance the weak convergence in (2.11) provides a very simple test for the hypotheses (2.3) if a

consistent estimator, say ζ̂2n,j , of the long-run variance would be available. To this end, note that in this case

it follows from (2.11) that
√
m+ n(D̂

(j)
m,n −D(j))/ζ̂n,j converges weakly to a standard normal distribution.

Consequently, using the same arguments as in the proof of Theorem 2.1,we obtain that rejecting the null

hypothesis in (2.3), whenever
√
m+ n(D̂(j)

m,n −∆j)/ζ̂n,j > u1−α , (2.19)

yields a consistent and asymptotic level α test. However a careful inspection of the representation of the

long-run variance in equations (6.11)–(6.15) in Section 6 suggests that it would be extremely difficult, if not

impossible, to construct a reliable estimate of the parameter ζj in this context, due to its complicated depen-

dence on the covariance operators CX , CY , and their full complement of eigenvalues and eigenfunctions.

(2) Defining K =
( ∫ 1

0 λ
2(B(λ)− λB(1))2ν(dλ)

)1/2, it follows from (2.18) that

P
(
Ŵ(j)
m,n > q1−α

)
≈ P

(
W >

√
m+ n(∆j −Dj)

ζj ·K
+ q1−α

)
, (2.20)

where the random variable W is defined in (2.14) and ζj is the long-run standard deviation appearing in

Theorem 2.2, which is defined precisely in (6.15). The probability on the right-hand side converges to zero, α,

or 1, depending on ∆j−Dj being negative, zero, or positive, respectively. From this one may also quite easily
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understand how the power of the test depends on ζj . Under the alternative, ∆j −Dj < 0 and the probability

on the right-hand side of (2.20) increases if (Dj−∆j)/ζj increases. Consequently, smaller long-run variances

ζ2j yield more powerful tests. Some values of ζj are calculated via simulation for some of the examples in

Section 3 below.

(3) Alongside the test for relevant differences in the eigenfunctions just developed, one might also consider

the following test for relevant differences in the jth eigenvalues of the covariance operators CX and CY :

H
(j)
0,val : Dj,val := (τXj − τYj )2 ≤ ∆j,val versus H

(j)
1,val : (τXj − τYj )2 > ∆j,val. (2.21)

Following the development of the above test for the eigenfunctions, a test of the hypothesis (2.21) can be

constructed based on the partial sample estimates of the eigenvalues τ̂Xj (λ) and τ̂Yj (λ) of the kernel integral

operators with kernels ĈXm (·, ·, λ) and ĈYn (·, ·, λ) in (2.7). In particular, let

T̂ (j)
m,n(λ) = λ(τ̂Xj (λ)− τ̂Yj (λ)), and

M̂ (j)
m,n =

(∫ 1

0
{[T̂ (j)

m,n(λ)]2 − λ2[T̂ (j)
m,n(λ)]2}2ν(dλ)

)1/2

.

Then one can show, in fact somewhat more simply than in the case of the eigenfunctions, that the test procedure

that rejects the null hypothesis whenever

Q̂(j)
m,n =

T̂
(j)
m,n(1)−∆j,val

M̂
(j)
m,n

> q1−α (2.22)

is a consistent and asymptotic level α test for the hypotheses (2.21). Moreover, the power of this test is

approximately given by

P
(
Q̂(j)
m,n > q1−α

)
≈ P

(
W >

√
m+ n(∆j,val −Dj,val)

ζj,val ·K
+ q1−α

)
, (2.23)

where ζ2j,val is a different long-run variance parameter. Although the tests (2.3) and (2.21) are constructed

for completely different testing problems it might be of interest to compare their power properties. For this

purpose note that the ratios (Dj − ∆j)/ζj and (Dj,val − ∆j,val)/ζj,val, for which the power of each test is

an increasing function of, implicitly depend in a quite complicated way on the dependence structure of the X

and Y samples and on all eigenvalues and eigenfunctions of their corresponding covariance operators.

One might expect intuitively that relevant differences between the eigenvalues would be easier to detect than

differences between the eigenfunctions (as the latter are more difficult to estimate). However, an empirical

analysis shows that, in typical examples, the ratio (Dj,val − ∆j,val)/ζj,val increases extremely slowly with

increasing Dj,val compared to the analogous ratio for the eigenfunction problem. Consequently, we expected

and observed in numerical experiments (not presented for the sake of brevity) that the test (2.22) would be

less powerful than the test (2.13) if in hypotheses (2.21) and (2.3) the thresholds ∆j,val and ∆j are similar.

This observation also applies to the tests based on (intractable) long-run variance estimation. Here the power

is approximately given by 1 − Φ
(√
m+ n(∆j −D)/z + u1−α

)
, where Φ is the cdf of the standard normal

distribution and z (and D) is either ζj (and Dj) for the test (2.19) or ζj,val (and Dj,val) for the corresponding

test regarding the eigenvalues.
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2.2 Justification of weak convergence

For a proof of (2.11) several technical assumptions are required. The first condition is standard in two-sample

inference.

Assumption 2.1. There exists a constant θ ∈ (0, 1) such that limm,n→∞m/(m+ n) = θ.

Next, we specify the dependence structure of the time series {Xi}i∈Z and {Yi}i∈Z. Several mathematical

concepts have been proposed for this purpose (see Bradley, 2005; Bertail et al., 2006, among many others). In

this paper, we use the general framework of Lp-m-approximability for weakly dependent functional data as

put forward in Hörmann and Kokoszka (2010). Following these authors, a time series {Xi}i∈Z in L2([0, 1])

is called Lp-m-approximable for some p > 0 if

(a) There exists a measurable function g : S∞ → L2([0, 1]), where S is a measurable space, and indepen-

dent, identically distributed (iid) innovations {εi}i∈Z taking values in S such that Xi = g(εi, εi−1, . . .)

for i ∈ Z;

(b) Let {ε′i}i∈Z be an independent copy of {εi}i∈Z, and define

Xi,m = g(εi, . . . , εi−m+1, ε
′
i−m, ε

′
i−m−1, . . .). Then,
∞∑
m=0

(
E[‖Xi −Xi,m‖p]

)1/p
<∞.

Assumption 2.2. The sequences {Xi}i∈Z and {Yi}i∈Z are independent, each centered andLp-m-approximable

for some p > 4.

Under Assumption 2.2, there exist covariance operators CX and CY of Xi and Yi. For the corresponding

eigenvalues τX1 ≥ τX2 ≥ · · · and τY1 ≥ τY2 ≥ · · · , we assume the following.

Assumption 2.3. There exists a positive integer d such that τX1 > · · · > τXd > τXd+1 > 0 and τY1 > · · · >
τYd > τYd+1 > 0.

The final assumption needed is a positivity condition on the long-run variance parameter ζ2j appearing in

(2.11). The formal definition of ζj is quite cumbersome, since it depends in a complicated way on expansions

for the differences v̂Xj (·, λ)− vXj and v̂Yj (·, λ)− vYj , but is provided in Section 6; see equations (6.11)–(6.15).

Assumption 2.4. The scalar ζj defined in (6.15) is strictly positive, whenever Dj > 0.

Recall the definition of the sequential processes ĈX(·, ·, λ) and ĈY (·, ·, λ) in (2.7) and their corresponding

eigenfunctions v̂Xj (·, λ) and v̂Yj (·, λ). The first step in the proof of the weak convergence (2.11) is a stochas-

tic expansion of the difference between the sample eigenfunctions v̂Xj (·, λ) and v̂Yj (·, λ) and their respective

population versions vXj and vYj . Similar expansions that do not take into account uniformity in the partial sam-

ple parameter λ have been derived by Kokoszka and Reimherr (2013) and Hall and Hosseini-Nasab (2006),

among others; see also Dauxois et al. (1982) for a general statement in this context. The proof of this result is

postponed to Section 6.1.
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Proposition 2.1. Suppose Assumptions 2.2 and 2.3 hold, then, for any j ≤ d,

sup
λ∈[0,1]

∥∥∥∥λ[v̂Xj (t, λ)− vXj (t)]− 1√
m

∑
k 6=j

vXk (t)

τXj − τXk

∫ 1

0
ẐXm (s1, s2, λ)vXk (s2)v

X
j (s1)ds1ds2

∥∥∥∥ (2.24)

= OP

(
logκ(m)

m

)
,

and

sup
λ∈[0,1]

∥∥∥∥λ[v̂Yj (t, λ)− vYj (t)]− 1√
m

∑
k 6=j

vYk (t)

τYj − τYk

∫ 1

0
ẐYn (s1, s2, λ)vYk (s2)v

Y
j (s1)ds1ds2

∥∥∥∥ (2.25)

= OP

(
logκ(n)

n

)
,

for some κ > 0, where the processes ẐXm and ẐYn are defined by

ẐXm (s1, s2, λ) =
1√
m

bmλc∑
i=1

(
Xi(s1)Xi(s2)− CX(s1, s2)

)
, (2.26)

ẐYn (s1, s2, λ) =
1√
n

bnλc∑
i=1

(
Yi(s1)Yi(s2)− CY (s1, s2)

)
. (2.27)

Moreover,

sup
λ∈[0,1]

√
λ
∥∥v̂Xj (·, λ)− vXj

∥∥ = OP

(
log(1/κ)(m)√

m

)
, (2.28)

sup
λ∈[0,1]

√
λ
∥∥v̂Yj (·, λ)− vYj

∥∥ = OP

(
log(1/κ)(n)√

n

)
. (2.29)

Recalling notation (2.8), Proposition 2.1 motivates the approximation

D̂(j)
m,n(t, λ)− λDj(t) = λ(v̂Xj (t)− v̂Yj (t))− λ(vXj (t)− vYj (t)) ≈ D̃(j)

m,n(t, λ), (2.30)

where the process D̃(j)
m,n is defined by

D̃(j)
m,n(t, λ) =

1√
m

∑
k 6=j

vXk (t)

τXj − τXk

∫ 1

0
ẐXm (s1, s2, λ)vXk (s2)v

X
j (s1)ds1ds

− 1√
n

∑
k 6=j

vYk (t)

τYj − τYk

∫ 1

0
ẐYn (s1, s2, λ)vYk (s2)v

Y
j (s1)ds1, ds2. (2.31)

The next result makes the foregoing heuristic arguments rigorous and shows that the approximation holds in

fact uniformly with respect to λ ∈ [0, 1].

Proposition 2.2. Suppose Assumptions 2.1–2.4 hold, then, for any for j ≤ d,

sup
λ∈[0,1]

∥∥∥D̂(j)
m,n(·, λ)− λDj(·)− D̃(j)

m,n(·, λ)
∥∥∥ = oP

(
1√

m+ n

)
,

10



sup
λ∈[0,1]

∣∣∣∣∥∥∥D̂(j)
m,n(·, λ)− λDj(·)

∥∥∥2 − ∥∥∥D̃(j)
m,n(·, λ)

∥∥∥2∣∣∣∣ = oP

(
1√

m+ n

)
,

and
√
m+ n sup

λ∈[0,1]

∫ 1

0
(D̃(j)

m,n(t, λ))2dt = oP(1). (2.32)

Proof. According to their definitions,

D̂(j)
m,n(t, λ)− λDj(t)− D̃(j)

m,n(t, λ)

= λ[v̂Xj (t, λ)− vXj (t)]− 1√
m

∑
k 6=j

vXk (t)

τXj − τXk

∫ 1

0
ẐXm (s1, s2, λ)vXk (s2)v

X
j (s1)ds1ds2

+ λ[v̂Yj (t, λ)− vYj (t)]− 1√
m

∑
k 6=j

vYk (t)

τYj − τYk

∫ 1

0
ẐYn (s1, s2, λ)vYk (s2)v

Y
j (s1)ds1ds2.

Therefore, by the triangle inequality, Proposition 2.1, and Assumption 2.1,

sup
λ∈[0,1]

∥∥∥D̂(j)
m,n(·, λ)− λDj(·)− D̃(j)

m,n(·, λ)
∥∥∥

≤ sup
λ∈[0,1]

∥∥∥λ[v̂Xj (t, λ)− vXj (t)]− 1√
m

∑
k 6=j

vXk (t)

τXj − τXk

∫ 1

0
ẐXm (s1, s2, λ)vXk (s2)v

X
j (s1)ds1ds2

∥∥∥
+ sup
λ∈[0,1]

∥∥∥λ[v̂Yj (t, λ)− vYj (t)]− 1√
m

∑
k 6=j

vYk (t)

τYj − τYk

∫ 1

0
ẐYn (s1, s2, λ)vYk (s2)v

Y
j (s1)ds1ds2

∥∥∥
= OP

(
logκ(m)

m

)
= oP

(
1√

m+ n

)
.

The second assertion follows immediately from the first and the reverse triangle inequality. With the second

assertion in place, we have, using (2.28) and (2.29), that

√
m+ n sup

λ∈[0,1]

∫ 1

0
(D̃(j)

m,n(t, λ))2dt =
√
m+ n sup

λ∈[0,1]

∫ 1

0
(D̂(j)

m,n(t, λ)− λDj(t))
2dt+ oP(1)

≤ 4
√
m+ n

[
sup
λ∈[0,1]

λ2‖v̂Xj (·, λ)− vXj ‖2 + sup
λ∈[0,1]

λ2‖v̂Yj (·, λ)− vYj ‖2
]

= OP

( log(2/κ)(m)√
m

)
= oP(1)

which completes the proof.

Introduce the process

Ẑ(j)
m,n(λ) =

√
m+ n

∫ 1

0
((D̂(j)

m,n(t, λ))2 − λ2D2
j (t))dt (2.33)

to obtain the following result. The proof is somewhat complicated and therefore deferred to Section 6.2.

Proposition 2.3. Let Ẑ(j)
m,n be defined by (2.33), then, under Assumptions 2.1-2.4 we have for any j ≤ d,

{Ẑ(j)
m,n(λ)}λ∈[0,1]  {λζjB(λ)}λ∈[0,1],

where ζj is a positive constant, {B(λ)}λ∈[0,1] is a Brownian motion and  denotes weak convergence in

Skorokhod topology on D[0, 1].
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Theorem 2.2. If Assumptions 2.1, 2.2 and 2.3 are satisfied, then for any j ≤ d

√
m+ n

(
D̂(j)
m,n −D(j), V̂ (j)

m,n

)
 
(
ζjB(1),

{
ζ2j

∫ 1

0
λ2(B(λ)− λB(1))2ν(dλ)

}1/2)
,

where D̂(j)
m,n and V̂ (j)

m,n are defined by (2.9) and (2.10), respectively, and {B(λ)}λ∈[0,1] is a Brownian motion.

Proof. Observing the definition of D̂(j)
m,n, D(j), Ẑ(j)

m,n and V̂ (j)
m,n in (2.9), (2.6) and (2.33) and (2.10), we have

D̂(j)
m,n −D(j) =

∫ 1

0
(D̂m,n(t, 1))2dt−

∫ 1

0
D2
j (t)dt =

Ẑ
(j)
m,n(1)√
m+ n

,

V̂ (j)
m,n =

{∫ 1

0

(∫ 1

0

[
(D̂(j)

m,n(t, λ))2 − λ2D2
j (t)

]
dt− λ2

∫ 1

0

[
(D̂(j)

m,n(t, 1))2 −D2
j (t)

]
dt
)2
ν(dλ)

}1/2

=
1√

m+ n

{∫ 1

0

(
Ẑ(j)
m,n(λ)− λ2Ẑ(j)

m,n(1)
)2
ν(dλ)

}1/2
.

The assertion now follows directly from Proposition 2.3 and the continuous mapping theorem.

2.3 Testing for relevant differences in multiple eigenfunctions

In this subsection, we are interested in testing if there is no relevant difference between several eigenfunctions

of the covariance operators CX and CY . To be precise, let j1 < . . . < jp denote positive indices defining the

orders of the eigenfunctions to be compared. This leads to testing the hypotheses

H0,p : D(j`) = ‖vXj` − v
Y
j`
‖22 ≤ ∆` for all ` ∈ {1, . . . , p}, (3.1)

versus

H1,p : D(j`) = ‖vXj` − v
Y
j`
‖22 > ∆` for at least one ` ∈ {1, . . . , p}, (3.2)

where ∆1, . . . ,∆p > 0 are pre-specified constants.

After trying a number of methods to perform such a test, including deriving joint asymptotic results for the

vector of pairwise distances D̂m,n =
(
D̂

(j1)
m,n, . . . , D̂

(jp)
m,n

)>
, and using these to perform confidence region-

type tests as described in Aitchison (1964), we ultimately found that the best approach for relatively small p

was to simply apply the marginal tests as proposed above to each eigenfunction, and then control the family-

wise error rate using a Bonferroni correction. Specifically, suppose Pj1 ,. . . ,Pjp are P -values of the marginal

relevant difference in eigenfunction tests calculated from (2.15). Then, under the null hypothesis H0,p in (3.1)

is rejected at level α if Pjk < α/p for some k between 1 and p. This asymptotically controls the overall type

one error to be less than α. A similar approach that we also investigated is the Bonferroni method with Holm

correction; see Holm (1979). These methods are investigated by simulation in Section 3.1 below.

3 Simulation study

A simulation study was conducted to evaluate the finite-sample performance of the tests described in (2.3).

Contained in this section is also a kind of comparison to the self-normalized two-sample test introduced in
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Zhang and Shao (2015), hereafter referred to as the ZS test. However, it should be emphasized that their test

is for the classical hypothesis

H0,class : ‖vXj − vYj ‖2 = 0 versus H
(j)
1,class : ‖vXj − vYj ‖2 > 0, (3.1)

and not for the relevant hypotheses (2.3) studied here. Such a comparison is nevertheless useful to demonstrate

that both procedures behave similarly in the different testing problems. All simulations below were performed

using the R programming language (R Core Team, 2016). Data were generated according to the basic model

proposed and studied in Panaretos et al. (2010) and Zhang and Shao (2015), which is of the form

Xi(t) =
2∑
j=1

{
ξ
(i)
X,j,1

√
2 sin (2πjt+ δj) + ξ

(i)
X,j,2

√
2 cos (2πjt+ δj)

}
, t ∈ [0, 1], (3.2)

for i = 1, . . . ,m, where the coefficients ξX,i = (ξiX,1,1, ξ
i
X,2,1, ξ

i
X,1,2, ξ

i
X,2,2)

′ were taken to follow a vector

autoregressive model

ξX,i = ρξX,i−1 +
√

1− ρ2eX,i,

with ρ = 0.5 and eX,i ∈ R4 a sequence of iid normal random variables with mean zero and covariance matrix

Σe = diag(vX),

with vX = (τX1 , . . . , τ
X
4 ). Note that with this specification, the population level eigenvalues of the covariance

operator of Xi are τX1 , . . . , τ
X
4 . If δ1 = δ2 = 0, the corresponding eigenfunctions are vX1 =

√
2 sin (2π·),

vX2 =
√

2 cos (2π·), vX3 =
√

2 sin (4π·), and vX4 =
√

2 cos (4π·). Each process Xi was produced by evalu-

ating the right-hand side of (3.2) at 1,000 equally spaced points in the unit interval, and then smoothing over

a cubic B-spline basis with 20 equally spaced knots using the fda package; see Ramsay et al. (2009). A

burn-in sample of length 30 was generated and discarded to produce the autoregressive processes. The sample

Yi, i = 1, . . . , n, was generated independently in the same way, always choosing δj = 0, j = 1, 2, in (3.2).

With this setup, one can produce data satisfying either H(j)
0 or H(j)

1 by changing the constants δj .

In order to measure the finite sample properties of the proposed test for the hypotheses H(j)
0 versus H(j)

1 in

(2.3) , data was generated as described above from two scenarios:

• Scenario 1: τX = τY = (8, 4, 0.5, 0.3), δ2 = 0, and δ1 varying from 0 to 0.25.

• Scenario 2: τX = τY = (8, 4, 0.5, 0.3), δ1 = 0, and δ2 varying from 0 to 2.

In both cases, we tested the hypotheses (2.3) with ∆j = 0.1, for j = 1, 2, 3. We took the measure ν, used to

define the self-normalizing sequence in (2.10), to be the uniform probability measure on the interval (0.1, 1).

We also tried other values between 0 and 0.2 for the lower bound of this uniform measure and found that

selecting values above 0.05 tended to yield similar performance. When δ1 ≈ 0.05, ‖vXj − vYj ‖22 ≈ 0.1,

and taking δ1 = 0.25 causes vXj and vYj to be orthogonal, j = 1, 2. Hence the null hypothesis H(j)
0 holds for

δ1 < 0.05, andH(j)
1 holds for δ1 > 0.05 for j = 1, 2. Similarly, in Scenario 2, one has that ‖vXj −vYj ‖22 ≈ 0.1
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when δ2 = 0.3155, j = 3, 4. For this reason, we let δ2 vary from 0 to 2. In reference to Remark 2.1, we

obtained via simulation that the parameter ζj for the largest eigenvalue process is approximately 4 when

δ1 = 0 and approximately 10.5 when δ1 = 0.25.

The percentage of rejections from 1,000 independent simulations when the size of the test is fixed at 0.05 are

reported in Figures 3.1 and 3.2 as power curves that are functions of δ1 and δ2 when n = m = 50 and 100.

These figures also display the number of rejections of the ZS test for the classical hypothesis (3.1) (which

corresponds to H(j)
0 with ∆j = 0). From this, the following conclusions can be drawn.

1. The tests of H(j)
0 based on Ŵ(1)

m,n exhibited the behaviour predicted by (2.16), even for relatively small

values of n and m. Focusing on the tests of H(j)
0 with results displayed in Figure 3.1, we observed

that the empirical rejection rate was less than nominal for ‖vX1 − vY1 ‖2 < ∆1 = 0.1, approximately

nominal when ‖vX1 − vY1 ‖2 = ∆1 = 0.1, and the power increased as ‖vX1 − vY1 ‖2 began to exceed 0.1.

In additional simulations not reported here, these results were improved further by taking larger values

of n and m.

2. Observe that with data generated according to Scenario 2,H(2)
0 is satisfied whileH(3)

0 is not satisfied for

values of δ2 > 0.3155. This scenario is seen in Figure 3.2 where the tests for H(2)
0 exhibited less than

nominal size, as predicated by (2.16), even in the presence of differences in higher-order eigenfunctions.

The tests of H(3)
0 performed similarly to the tests of H(1)

0 .

3. The self-normalized ZS test for the classical hypothesis (3.1), which is based on the bootstrap, per-

formed well in our simulations, and exhibited empirical size approximately equal to the nominal size

when ‖vX1 −vY1 ‖2 = 0, and increasing power as ‖vX1 −vY1 ‖2 increased. For the sample sizem = n = 50

it overestimated the nominal level of 5%. Interestingly, the proposed tests tended to exhibit higher power

than the ZS test for large values of ‖vX1 − vY1 ‖2, even while only testing for relevant differences. Addi-

tionally, the computational time required to perform the proposed test is substantially less than what is

required to perform the ZS test, since it does not need to employ the bootstrap.
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Figure 3.1: Percentage of rejections (out of 1,000 simulations) of the self-normalized statistic of Zhang and
Shao (2015) for the classical hypotheses (3.1) (denoted ZS(1)

n,m) and the new test (2.13) for the relevant hypo-
hteses (2.3) (denoted by W (1)

m,n) as a function of δ1 in Scenario 1. In the left hand panel n = m = 50, and in
the right hand panel n = m = 100. The horizontal green line is at the nominal level 0.05, and the vertical
green line at δ1 = 0.05 indicates the case when ‖vX1 − vY1 ‖2 = ∆1 = 0.1.
.

15



0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4 ZS50,50

(2)

W50,50
(2)

ZS50,50
(3)

W50,50
(3)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6 ZS100,100

(2)

W100,100
(2)

ZS100,100
(3)

W100,100
(3)

Figure 3.2: Percentage of rejections (out of 1,000 simulations) of the self-normalized statistic of Zhang and
Shao (2015) for the classical hypotheses (3.1) (denoted ZS(j)

n,m, j = 2, 3) and the new test (2.13) for the
relevant hypohteses (2.3) (denoted by W (j)

m,n, j = 2, 3) as a function of δ2 in Scenario 2. In the left hand panel
n = m = 50, and in the right hand panel n = m = 100. The horizontal green line is at the nominal level
0.05, and the vertical green line at δ2 = 0.3155 indicates the case when ‖vX3 − vY3 ‖2 = ∆1 = 0.1.

3.1 Multiple comparisons

In order to investigate the multiple testing procedure of Section 2.3, X and Y samples were generated accord-

ing to model (3.2) with n = m = 100 in two situations: one with δ1 = 0.0504915 and δ2 = 0.3155, and

another with δ1 = 0.25 and δ2 = 2. In the former case, ‖vXj −vYj ‖2 ≈ 0.1 for j = 1, . . . , 4, while in the latter

case ‖vXj − vYj ‖2 > 0.1, j = 1, . . . , 4. We then applied tests of H0,p in (3.1) with ∆j = 0.1 for j = 1, . . . , 4

and varied p = 1, . . . , 4. These tests were carried out by combining the marginal tests for relevant differences

of the respective eigenfunctions using the standard Bonferroni correction as well as the Holm–Bonferroni

correction. Empirical size and power calculated from 1,000 simulations with nominal size 0.05 for each value

of p and correction are reported in Table 3.1. It can be seen that these corrections controlled the family-wise

error rate well. The tests still retain similar power when comparing up to four eigenfunctions, although one

may notice the declining power as the number of tests increases.
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δ1 δ2 j = 1 2 3 4

0.0504915 0.3155 B 0.036 0.021 0.018 0.017
HB 0.037 0.036 0.024 0.025

0.25 2 B 0.750 0.678 0.668 0.564
HB 0.750 0.798 0.716 0.594

Table 3.1: Rejection rates from 1,000 simulations of tests H0,j with nominal level 0.05 for j = 1, . . . , 4 and
Bonferroni (B) and Holm–Bonferroni (HB) corrections.

4 Application to Australian annual temperature profiles

To demonstrate the practical use of the tests proposed above, the results of an application to annual minimum

temperature profiles are presented next. These functions were constructed from data collected at various

measuring stations across Australia. The raw data consisted of approximately daily minimum temperature

measurements recorded in degrees Celsius over approximately the last 150 years at six stations, and is available

in the R package fChange, see Sönmez et al. (2017), as well as from www.bom.gov.au. The exact station

locations and time periods considered are summarized in Table 4.1. In addition, Figure 4.1 provides a map of

eastern Australia showing the relative locations of these stations.

Location Years
Sydney, Observatory Hill 1860–2011 (151)
Melbourne, Regional Office 1856–2011 (155)
Boulia, Airport∗ 1900–2009 (107)
Gayndah, Post Office 1905–2008 (103)
Hobart, Ellerslie Road 1896–2011 (115)
Robe 1885–2011 (126)

Table 4.1: Locations and names of six measuring stations at which annual temperature data was recorded,
and respective observation periods. In brackets are the numbers of available annual temperature profiles. The
1932 and 1970 curves were removed from the Boulia series due to missing values.
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Figure 4.1: Map of eastern Australia showing the locations of the six measuring stations whose data were used
in the data analysis. This map was produced using the ggmap package in R; see Kahle and Wickham (2013).

In each year and for each station, 365 (366 in leap years) raw data points were converted into functional data

objects using cubic B-splines at 20 equally spaced knots using the fda package in R; see Ramsay et al. (2009)

for details. We also tried using cubic B-splines with between 20 and 40 equally spaced knots, as well as using

the same numbers of standard Fourier basis elements to smooth the raw data into functional data objects, and

the test results reported below were essentially unchanged. The resulting curves from the stations located in

Sydney and Gayndah are displayed respectively in the left and right hand panels of Figure 4.2 as rainbow

plots, with earlier curves drawn in red and progressing through the color spectrum to later curves drawn in

violet; see Shang and Hyndman (2016). One may notice that the curves appear to generally increase in level

over the years. In order to remove this trend, a linear time trend was estimated for the series of average yearly

minimum temperatures, and then this linear trend was subtracted pointwise from the time series of curves.

The detrended Sydney and Gayndah curves are displayed again as rainbow plots in the left and right-hand

panels of Figure 4.3, which appear to be fairly stationary.
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Figure 4.2: Rainbow plots of minimum temperature profiles based on data collected at the Sydney (left panel)
and Gayndah (right panel) stations constructed using cubic B-splines.
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Figure 4.3: Rainbow plots of detrended minimum temperature profiles from Sydney (left panel) and Ganydah
(right panel). Detrending was carried out by fitting a linear time trend to the series of average yearly minimum
temperatures, and then removing this trend pointwise from the time series of curves.

We took as the goal of the analysis to evaluate whether or not there are relevant differences in the primary

modes of variability of these curves between station locations, as measured by differences in the leading

eigenfunctions of the sample covariance operators. We applied tests of H(1)
0 and H(2)

0 with thresholds ∆1 =
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H
(1)
0 , ∆1 = 0.1

Melbourne Boulia Gayndah Hobart Robe
Sydney 0.2075 0.4545 0.0327 0.2211 0.5614
Melbourne 0.1450 0.0046 0.5007 0.2203
Boulia 0.0466 0.0321 0.5419
Gayndah 0.0002 0.0011
Hobart 0.0885

H
(2)
0 , ∆2 = 0.1

Melbourne Boulia Gayndah Hobart Robe
Sydney 0.1712 0.0708 0.0865 0.1201 0.0785
Melbourne 0.0862 0.0082 0.1502 0.1778
Boulia 0.0542 0.0553 0.1438
Gayndah 0.0371 0.0037
Hobart 0.4430

Table 4.2: Approximate P -values of tests ofH(1)
0 andH(2)

0 with ∆1 = ∆2 = 0.1 for all pairwise comparisons
of the series of curves from each of the six monitoring stations. Values that are less than 0.05 are bolded.

∆2 = 0.1 based on the statistics Ŵ(j)
m,n, j = 1, 2, to each pair of functional time series from the six stations.

The results of these tests are reported in terms of P -values in Table 4.2. Plots of the estimated leading

eigenfunctions from each sample are displayed in Figure 4.4.

One observes in five out of six stations, excluding the Gayndah station, that the leading eigenfunction of the

sample covariances operators is approximately constant, suggesting that the primary mode of variability of

those temperature profiles is essentially level fluctuations around the increasing trend. Pairwise comparisons

based on tests ofH(1)
0 suggest that these functions in general do not exhibit relevant differences to any reason-

able significance. In contrast, the leading eigenfunction calculated from the Gayndah station curves evidently

puts more mass in the winter months than the summer months. This is almost expected given the compari-

son of the detrended curves in Figure 4.3, in which the Gayndah curves evidently exhibit more variability in

the winter months relative to the Sydney curves. Pairwise comparisons of the Gayndah data with the other

stations suggest that this difference is significant, and even that the change is relevant to the level ∆1 = 0.1.

The analysis of the second eigenfunction leads to a similar conclusion here: the stations other than Gayndah

have similar eigenfunction structure, and the curves calculated from the Gayndah station have different eigen-

function structure. However, for the second eigenfunction conclusions about the uniqueness of the Gayndah

station cannot be made with the same level of confidence as for the first eigenfuction.
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Figure 4.4: Left panel: Plot of sample eigenfunctions corresponding to the largest eigenvalue of the sample
covariance operators of the Sydney and Gayndah detrended minimum temperature profiles, v̂Syd1 and v̂Gayn

1 . A
test of H(1)

0 suggests that the squared norm of the difference between these curves is significantly larger than
0.1 (P-value ≈ 0.0327). Right panel: Plots of sample eigenfunctions corresponding to the largest eigenvalues
of the sample covariance operators from the remaining four stations.

5 Conclusions

In this paper, new two-sample tests were introduced to detect relevant differences in the eigenfunctions and

eigenvectors of covariance operators of two independent functional time series. These tests can be applied

both marginally and, with Bonferroni-type corrections, jointly. The tests are constructed utilizing a self-

normalizing strategy, leading to an intricate theoretical analysis to derive the large-sample behavior of the

proposed tests. Finite-sample evaluations, done through a simulation study and an application to annual

minimum temperature data from Australia, highlight that the tests have very good finite sample properties and

exhibit the features predicted by the theory.

6 Technical details

In this section we provide the technical details required for the arguments given in Section 2.2.

6.1 Proof of Proposition 2.1

Below let
∫

:=
∫ 1
0 for brevity. According to the definitions of τ̂Xj (λ), v̂Xj (t, λ), τXj , and vXj , a simple calcu-

lation shows that for almost all t ∈ [0, 1],∫
(CX(t, s) + (ĈXm (t, s, λ)− CX(t, s)))(vXj (s) + (v̂Xj (s, λ)− vXj (s)))ds (6.1)
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= (τXj + (τ̂Xj (λ)− τXj ))(vXj (t) + (v̂Xj (t, λ)− vXj (t))).

The sequence {vXj }i∈N forms an orthonormal basis of L2([0, 1]), and hence there exist coefficients {ξj,λ}j∈N
such that

v̂Xj (t, λ)− vXj (t) =
∞∑
i=1

ξi,λv
X
i (t), (6.2)

for almost every t in [0, 1]. By rearranging terms in (6.1), we see that∫
CX(t, s)(v̂Xj (s, λ)− vXj (s))ds+

∫ (
ĈXm (t, s, λ)− CX(t, s)

)
vXj (s)ds (6.3)

= τXj (v̂Xj (t, λ)− vXj (t)) +
(
τ̂Xj (λ)− τXj

)
vXj (t) +Gj,m(t, λ),

where

Gj,m(t, λ) =

∫
[CX(t, s)− ĈXm (t, s, λ)][v̂Xj (s, λ)− vXj (s)]ds+ [τ̂Xj (λ)− τXj ][v̂Xj (t, λ)− vXj (t)].

Taking the inner product on the left and right hand sides of (6.3) with vk, for k 6= i, and employing (6.2) yields

τXk ξk,λ +

∫∫ (
ĈXm (t, s, λ)− CX(t, s)

)
vXj (s)vXk (t)dsdt = τXj ξk,λ + 〈Gj,m(·, λ), vXk 〉,

which implies that

ξk,λ =
〈ĈXm (·, ·, λ)− CX , vXj ⊗ vXk 〉

τXj − τXk
−
〈Gj,m(·, λ), vXk 〉

τXj − τXk
, (6.4)

for all λ ∈ [0, 1] and k 6= i. Furthermore, by the parallelogram law,

ξi,λ = 〈vXj , v̂Xj (·, λ)− vXj 〉 = −1

2
‖v̂Xj (·, λ)− vXj ‖2. (6.5)

Let Sj,X = min{τXj−1 − τXj , τXj − τXj+1} for j ≥ 2 and S1,X = τX1 − τX2 . By Assumption 2.3 and the fact

that j ≤ d we have Sj,X > 0. Hence, Lemma 2.2 in Horváth and Kokoszka (2012) (see also Section 6.1 of

Gohberg et al. (1990)) implies for all λ ∈ [0, 1],

√
λ‖v̂Xj (·, λ)− vXj ‖ ≤

1

Sj,X

∥∥√λ[ĈXm (·, ·, λ)− CX ]
∥∥. (6.6)

Further,

√
λ[ĈXm (t, s, λ)− CX(t, s)] =

√
λ

bmλc

bmλc∑
i=1

(Xi(t)Xi(s)− CX(t, s))

=
1√
m

√
mλ√
bmλc

1√
bmλc

bmλc∑
i=1

(Xi(t)Xi(s)− CX(t, s)).

It is easy to show using Cauchy–Schwarz inequality that the sequence Xi(·)Xi(·)− CX(·, ·) ∈ L2([0, 1])2 is

L2+κ-m-approximable for some κ > 0 if Xi is Lp-m-approximable for some p > 4. Lemma B.1 from the
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Supplementary Material of Aue et al. (2018a) can be generalized to L2+κ-m-approximable random variables

taking values in L2([0, 1]2), from which it follows that

sup
λ∈[0,1]

1√
bmλc

∥∥∥ bmλc∑
i=1

(Xi(·)Xi(·)− CX(·, ·))
∥∥∥ = OP(log(1/κ)(m)).

Using this and combining with (6.6), we obtain the bound

sup
λ∈[0,1]

∥∥∥√λ[ĈXm (·, ·, λ)− CX ]
∥∥∥OP

(
log(1/κ)(m)

√
m
)
, (6.7)

and the estimate (2.28). Furthermore, using the bound that

|τ̂Xj (λ)− τXj | ≤
∥∥ĈXm (·, ·, λ)− CX

∥∥,
we obtain by similar arguments that

sup
λ∈[0,1]

√
λ|τ̂Xj (λ)− τXj | = OP

( log(1/κ)(m)√
m

)
. (6.8)

Using the triangle inequality, Cauchy–Schwarz inequality, and combining (6.7) and (6.8), it follows

sup
λ∈[0,1]

λ‖Gj,m(·, λ)‖ ≤
√
λ
∥∥∥[ĈXm (·, ·, λ)− CX ]

∥∥∥ sup
λ∈[0,1]

√
λ‖v̂(·, λ)− vXj ‖ (6.9)

+ sup
λ∈[0,1]

√
λ|τ̂Xj (λ)− τXj | sup

λ∈[0,1]

√
λ‖v̂(·, λ)− vXj ‖ = OP

( log(2/κ)(m)

m

)
.

Let

Ri,m(t, λ) =
1√
m

∑
k 6=i

vXk (t)

τXj − τXk

∫ 1

0
ẐXm (s1, s2, λ)vXk (s2)v

X
j (s1)ds1ds2.

Combining (6.2), (6.4) and (6.5), we see that for almost all t ∈ [0, 1] and for all λ ∈ [0, 1],

λ[v̂Xj (·, λ)− vXj (t)] =
mλ

bmλc
Ri,m(t, λ)−

∑
k 6=i

〈λGj,m(·, λ), vXk 〉
τXj − τXk

vXk (t)− 1

2
‖v̂Xj (·, λ)− vXj ‖2vXj (t),

with the convention that (mλ/bmλc)Ri,m(t, λ) = 0 for λ < 1/m. Using this identity and the triangle

inequality, we obtain

sup
λ∈[0,1]

∥∥∥λ[v̂Xj (·, λ)− vXj (t)]− mλ

bmλc
Ri,m(t, λ)

∥∥∥ (6.10)

≤ 1

2
sup
λ∈[0,1]

λ‖v̂Xj (·, λ)− vXj ‖2 + sup
λ∈[0,1]

∥∥∥∑
k 6=i

〈λGj,m(·, λ), vXk 〉
τXj − τXk

vXk (t)
∥∥∥.

The first term on the right-hand side of (6.10) can be bounded by bound (2.28). In order to bound the second

term we have, using the orthonormality of the vXk (Parseval’s identity) and the fact that 1/(τXj − τXk )2 ≤
1/S2

j,X for all k 6= i, that∥∥∥∑
k 6=i

〈λGj,m(·, λ), vXk 〉
τXj − τXk

vXk (·)
∥∥∥ =

(∑
k 6=i

〈λGj,m(·, λ), vXk 〉2

(τXj − τXk )2

)1/2
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≤ 1

Sj,X

(∑
k 6=i
〈λGj,m(·, λ), vXk 〉2

)1/2
≤ 1

Sj,X
‖λGj,m(·, λ)‖.

Therefore

sup
λ∈[0,1]

∥∥∥∑
k 6=i

〈λGj,m(·, λ), vXk 〉
τXj − τXk

vXk (·)
∥∥∥ ≤ sup

λ∈[0,1]

1

Sj,X
‖λGj,m(·, λ)‖ = OP

( log(2/κ)(m)

m

)
,

where the last estimate follows from (6.9). Using these bounds in (6.10), we obtain that

sup
λ∈[0,1]

∥∥∥λ[v̂Xj (·, λ)− vXj (t)]− mλ

bmλc
Ri,m(t, λ)

∥∥∥ = OP

( log(2/κ)(m)

m

)
.

Given the convention that (mλ/bmλc)Ri,m(t, λ) = 0 for 0 ≤ λ < 1/m, the result follows then by showing

that

sup
λ∈[1/m,1]

∣∣∣ mλbmλc − 1
∣∣∣∥∥∥Ri,m(t, λ)

∥∥∥ = OP

( log(2/κ)(m)

m

)
.

This result is a consequence of supλ∈[1/m,1]
∣∣ mλ
bmλc − 1

∣∣ ≤ 1/m, and supλ∈[1/m,1] ‖Ri,m(t, λ)‖ = OP(1).

6.2 Proof of Proposition 2.3

Before proceeding with this proof, we develop some notation as well as a rigorous definition of the constant

ζj . Recall the notations (2.31), (2.26) and (2.27) and define the random variables

X̃i(s1, s2) = Xi(s1)Xi(s2)− CX(s1, s2); Ỹi(s1, s2) = Yi(s1)Yi(s2)− CY (s1, s2). (6.11)

Further let the random variables X(j)
i and Y (j)

i be defined by

X
(j)
i =

∫ 1

0
X̃i(s1, s2)f

X
j (s1, s2)ds1ds2 , Y

(j)
i =

∫ 1

0
Ỹi(s1, s2)f

Y
j (s1, s2)ds1ds2, (6.12)

with the functions fXj , f
Y
j given by

fXj (s1, s2) = −vXj (s1)
∑
k 6=j

vXk (s2)

τXj − τXk

∫ 1

0
vXk (t)vYj (t)dt, (6.13)

fYj (s1, s2) = −vYj (s1)
∑
k 6=j

vYk (s2)

τYj − τYk

∫ 1

0
vYk (t)vXj (t)dt. (6.14)

Firstly, we note that by using the orthonormality of the eigenfunctions vXj and vYj , and Assumption 2.3, we

get that

‖fXj ‖2 =

∫∫
(fXj (s1, s2))

2ds1ds2 = ‖vXj ‖2
∑
k 6=j

(∫ 1
0 v

X
k (t)vYj (t)dt

)2
(τXj − τXk )2

≤ 1/S2
j,X <∞.

Let

σ2X,j =

∞∑
`=−∞

cov(X
(j)
0 , X

(j)
` ), and σ2Y,j =

∞∑
`=−∞

cov(Y
(j)
0 , Y

(j)
` ).
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Based on these quantities, ζj is defined as

ζj = 2

√
σ2X,j
θ

+
σ2Y,j
1− θ

. (6.15)

Proof of Proposition 2.3. We can write

Ẑ(j)
m,n(λ) =

√
m+ n

∫ 1

0
(D̂(j)

m,n(t, λ))2 − λ2D2
j (t))dt (6.16)

=
√
m+ n

{∫ 1

0
(D̂(j)

m,n(t, λ)− λDj(t))
2 + 2λDj(t)(D̂

(j)
m,n(t, λ)− λDj(t))

2dt

=
√
m+ n

∫ 1

0
(D̃(j)

m,n(t, λ))2dt+ 2λ
√
m+ n

∫ 1

0
Dj(t)D̃

(j)
m,n(t, λ)dt+ oP(1)

uniformly with respect to λ ∈ [0, 1], where the process D̃(j)
m,n(t, λ) is defined in (2.31) and Proposition 2.2

was used in the last equation. Observing (2.32) gives

Ẑ(j)
m,n(λ) = Z̃(j)

m,n(λ) + oP(1) (6.17)

uniformly with respect to λ ∈ [0, 1], where the process Z̃(j)
m,n is given by

Z̃(j)
m,n(λ) = 2λ

√
m+ n

∫ 1

0
Dj(t)D̃

(j)
m,n(t, λ)dt. (6.18)

Consequently the assertion of Proposition 2.3 follows from the weak convergence

{Z̃(j)
m,n(λ)}λ∈[0,1]  {λζjB(λ)}λ∈[0,1].

We obtain, using the orthogonality of the eigenfunctions and the notation (2.6), that

Z̃(j)
m,n(λ) = 2λ

√
m+ n

{ 1√
m

∫ 1

0
ẐXm (s1, s2, λ)

∫ 1

0
Dj(t)

∑
k 6=j

vXk (t)

τXj − τXk
dtvXj (s1)v

X
k (s2)ds1ds2

− 1√
n

∫ 1

0
ZYn (s1, s2, λ)

∫ 1

0
Dj(t)

∑
k 6=j

vYk (t)

τYj − τYk
dtvYj (s1)v

Y
k (s2)ds1ds2

}

= 2λ
√
m+ n

{ 1

m

bmλc∑
i=1

X
(j)
i +

1

n

bnλc∑
i=1

Y
(j)
i

}
, (6.19)

where the random variables X(j)
i and Ȳ (j)

i are defined above. We now aim to establish that

{ 1√
m

bmλc∑
i=1

X
(j)
i

}
λ∈[0,1]

 σX,j{BX(λ)}λ∈[0,1], (6.20)

where BX is a standard Brownian motion on the interval [0, 1]. In the following we use the symbol ‖ · ‖
simultaneously for L2-norm on the space L2([0, 1]) and L2([0, 1]2) as the particular meaning is always clear
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from the context. Firstly, we note that by using the orthonormality of the eigenfunctions vXj and vYj , and

Assumption 2.3, we get that

‖fXj ‖2 =

∫∫
(fXj (s1, s2))

2ds1ds2 = ‖vXj ‖2
∑
k 6=j

(∫ 1
0 v

X
k (t)vYj (t)dt

)2
(τXj − τXk )2

≤ 1/S2
j,X <∞.

The following calculation is similar to Lemma A.3 in Aue et al. (2018b). Let

X̃
(m)
i (t, s) = Xi,m(t)Xi,m(s)− EX0(t)X0(s),

where {Xi,m}i∈Z is the mean zero m-dependent sequence used in definition of m-approximability (see As-

sumption 2.2). Moreover, if q = p/2 with p given in Assumption 2.2, then we have by the triangle inequality

and Minkowski’s inequality that{
E‖X̃i − X̃(m)

i ‖q
}1/q ≤ {E(‖Xi(·)(Xi(·)−Xi,m(·))‖+ ‖Xi,m(·)(Xi(·)−Xi,m(·))‖)q

}1/q (6.21)

≤
{
E(‖Xi(·)(Xi(·)−Xi,m(·))‖q

}1/q
+
{
E‖Xi,m(·)(Xi(·)−Xi,m(·))‖q

}1/q
.

Using the definition of the norm in L2([0, 1]), it is clear that

‖Xi(·)(Xi(·)−Xi,m(·))‖ = ‖Xi‖‖Xi −Xi,m‖,

and hence we obtain from the Cauchy–Schwarz inequality applied to the expectation on the concluding line

of (6.21) and stationarity that

(E(‖Xi(·)(Xi(·)−Xi,m(·))‖q)1/q + (E‖Xi,m(·)(Xi(·)−Xi,m(·))‖q)1/q

≤ (E‖X0‖2q)1/2q(E‖X0 −X0,m‖2q)1/2q.

It follows from this and (6.21) that

∞∑
m=1

(E‖X̃i − X̃(m)
i ‖q)1/q ≤ (E‖X0‖p)1/p

∞∑
m=1

(E‖X0 −X0,m‖p)1/p <∞. (6.22)

Now let X(j)
i,m be defined as X(j)

i in (6.12) with Xi replaced by Xi,m. We obtain using the Cauchy–Schwarz

inequality that

(E[X
(j)
i −X

(j)
i,m]q)1/q ≤ ‖fXj ‖(E‖X̃i − X̃(m)

i ‖q)1/q.

By (6.22) it follows that
∞∑
m=1

(E[X
(j)
i −X

(j)
i,m]q)1/q <∞

and therefore the sequence X(j)
i satisfies the assumptions of Theorem 3 in Wu (2005). By this result the weak

convergence in (6.20) follows. By the same arguments it follows that

{ 1√
n

bnλc∑
i=1

Y
(j)
i

}
λ∈[0,1]

 σY,j{BY (λ)}λ∈[0,1], (6.23)
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where BY is a standard Brownian motion on the interval [0, 1] and

σ2Y,j =
∞∑

`=−∞
cov(Y

(j)
0 , Y

(j)
` ).

Since the sequences {Xi}i∈R and {Yi}i∈R are independent, we have that (6.20) and (6.23) may be taken to

hold jointly where the Brownian motions BX and BY are independent. It finally follows from this and (6.19)

that

{Z̃(j)
m,n(λ)}λ∈[0,1]  

{
2λ
(σX,j√

θ
BX(λ) +

σY,j√
1− θ

BY (λ)
)}

λ∈[0,1]

D
=
{
λζjB(λ)

}
λ∈[0,1] ,

which completes the proof of Proposition 2.3.
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Aue, A., Norinho, D. D., and Hörmann, S. (2015). On the prediction of stationary functional time series.

Journal of the American Statistical Association, 110:378–392.

Aue, A., Rice, G., and Sönmez, O. (2018a). Detecting and dating structural breaks in functional data without

dimension reduction. Journal of the Royal Statistical Society, Series B, 80:509–529.

Aue, A., Rice, G., and Sönmez, O. (2018b). Structural break analysis for spectrum and trace of covariance

operators. University of California Davis, Working Paper, URL: https://arxiv.org/abs/1804.03255.

Benko, M., Härdle, W., and Kneip, A. (2009). Common functional principal components. The Annals of

Statistics, 37:1–34.

Berkson, J. (1938). Some difficulties of interpretation encountered in the application of the chi-square test.

Journal of the American Statistical Association, 33:526–536.

Bertail, P., Doukhan, P., and Soulier, P. (2006). Dependence in Probability and Statistics (Lecture Notes in

Statistics 187). Springer, New York.

27



Bradley, R. C. (2005). Basic properties of strong mixing conditions. A survey and some open questions.

Probability Surveys, 2:107–144.
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Hörmann, S. and Kokoszka, P. (2010). Weakly dependent functional data. The Annals of Statistics, 38:1845–

1884.
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