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Abstract

This paper introduces a (coherent) risk measure that describes the
uncertainty of the model (represented by a probability measure P0) by
a set Pλ of probability measures each of which has a Radon-Nikodym’s
derivative (with respect to P0) that lies within the interval [λ, 1

λ
] for some

constant λ ∈ (0, 1]. Economic considerations are discussed and an explicit
representation is obtained that gives a connection to both the expected
loss of the financial position and its average value-at-risk. Optimal port-
folio analysis is performed – different optimization criteria lead to Merton
portfolio. Comparison with related problems reveals examples of extreme
sensitivity of optimal portfolios to model parameters and the choice of
risk measure.
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1 Introduction
The theory of (coherent) risk measures1 allows one to describe the risk of a
financial position in monetary terms: the value of a risk measure of a certain
position is the amount of numeraire that needs to be added to the position to
make it safe. As the future value of a financial position is not deterministic it is
classically modelled by a random variable on a probability space that is assumed
to be given, the implicit assumption being that one is somehow able to deduce
the “correct” probability measure that drives the prices of the underlying assets.
In practice, there is always going to be some model uncertainty – one can never
be sure that the measure in use is the one that really drives the world.

Ideally, a risk measure should “take into account” both the model uncertainty
and the “genuine” uncertainty (due to the randomness of the world). Arguably,
coherent risk measures achieve just that: the well known result on robust rep-
resentations of coherent risk measures proves that each coherent risk measure
ρ can be completely characterized by a set P of probability measures2. The
characterization allows the (monetary) risk of any financial position X to be
calculated as the maximal expected loss of the said position with respect to
measures that belong to P:

ρ(X) = max
P∈P

EP [−X]. (1)

Unsurprisingly, sets of measures that represent many of the well known co-
herent risk measures have been characterized explicitly. It is however worth
noting that coherent risk measures are usually not defined via the set of proba-
bility measures that represents them, but rather via an explicit expression that
is somehow economically motivated.

In this paper we take the opposite approach: we introduce a coherent risk
measure, the Locally Constant Model Uncertainty (LCMUλ), via the set of
measures that represents it. We will impose conditions on the set of priors so
that the risk measure LCMUλ describes the uncertainty of the model (described
by a given probability measure P0) in a way that is, in a sense that will soon
become clear, locally constant and quantified by the constant λ ∈ (0, 1]3.

In order to formalize the idea of locally constant model uncertainty we will
use ideas that are closely related to ambiguity theory, and, in particular, maxmin
expected utility theory4. We assume that we are given a probability measure P0

1The literature begins with Artzner et al. (1999). A serious introduction to coherent and
convex risk measures can be found in Föllmer and Schied (2011). Although we will point out
some important results, for further details we refer the reader to that text and the references
offered therein.

2Generally, the probability measures in the set P are finitely additive, but under reasonable
technical assumptions they are sigma-additive. For details see chapters 4.2 and 4.3 in Föllmer
and Schied (2011).

3This approach somewhat resembles the definition of a risk measure known as the super-
hedging price, but the choice of the set of measures that appear in its robust characterization
is completely different, both formally and in motivation.

4The theory was introduced in the seminal paper Gilboa and Schmeidler (1989). For a
recent review of ambiguity theory and the place of maxmin expected utility theory within it
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on the event space that, for now, we assume is a subset of the real line. One
might assume that the measure describes the randomness of the world well, but
not ideally. More precisely, we assume that for each “small” interval/event [a, b]
its probability p prescribed by the measure P0 could be wrong, but still a good
approximation – the “true probability” of the event lies within an interval that
contains p. The first approach would be to consider the interval (p−ε, p+ε); this
resembles the ε-contamination model of Maccheroni et al. (2006) in ambiguity
theory. Possible reservations when it comes to this approach would be that
we are immediately limited to situations where ε < 1. Arguably even more
important than that, when one considers an event’s probability one does not
necessarily think in terms of whether something is more or less likely for a
certain amount of percents; it may be more natural to think in terms of how
many more (or less) times something is more (or less) likely to happen. For
example, for a quite bad model, one may decide that the prescribed probability
p could be wrong in either direction: it could be up to twice as likely, or up to
two times overestimated.

We choose to describe the model uncertainty by the interval [pλ, p/λ] for
some constant λ ∈ (0, 1]. One can think of λ as the model uncertainty level : the
greater the value, the lower the model uncertainty. In order to be able to use
this idea more generally, we would have to consider “infinitesimaly small events”.
This is the reason why we introduce the set Pλ, that defines the risk measure
LCMUλ, via Radon-Nikodym derivatives: it will contain all the measures P
such that λ ≤ dP/dP0 ≤ 1/λ.

One of the main results of this paper is a representation theorem: the
LCMUλ of a financial position can be represented as a convex combination of
its expected future loss (with respect to the given measure P0) and its average
value-at-risk calculated at an appropriately chosen level.

Value-at-risk at level λ (V aRλ) of a financial position is simply a negative
value of its λ-quantile; it is a risk measure that is not coherent and has several
undesirable properties. Average value-at-risk at level λ (AV aRλ) is an average
of all the values of value-at-risk at levels between zero and λ. It is a coherent risk
measure with technical and economic properties superior to V aR. Given the
difference in motivations for introducing LCMU and AV aR it is quite curious
that there is a deeper connection between the two measures. The connection
is due to the resemblance of the set Pλ to the set that appears in the the
representation of (AV aRλ)5. An agent estimating their risk using LCMU ends
up with an estimation that is, in a very precise sense, a mixture of estimations
of a risk-neutral agent and an agent utilizing AV aR.

Once the LCMUλ risk measure is introduced, optimal portfolio analysis is
performed. We consider a continuous-time frictionless financial market with a
numeraire the value of which evolves deterministically, and several risky assets.
Risky assets are assumed to be a “time dependent version” of geometrical Brow-
nian motion: the drift coefficient and the diffusion matrix are not constants,

see Gilboa and Marinacci (2016).
5See, for example, chapter 4.4 in Föllmer and Schied (2011).
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but rather deterministic functions. This admittedly simple model has already
been studied in the context of risk measures6.

Problems of choosing the optimal portfolio that minimizes risk (possibly
under constraints) or maximizes expected reward under a risk constraint have
been solved for AV aR. In Gambrah and Pirvu (2014) it was proven that it is
optimal to distribute ones wealth between a numeraire and what is essentially
a Merton portfolio (Merton (1969)). We prove the same result for LCMU , and
give an example where the optimal portfolios for AVaR and LCMU coincide.

We also analyze a surprising example where optimizing with respect to the
two risk measures leads to completely different optimal portfolios: optimizing
with respect to AVaR leads to a portfolio without risky assets, and optimizing
with respect to LCMU gives a portfolio with only risky assets! We offer both
technical and theoretical explanation as to why this happens7.

In the next section we formally introduce the risk measure LCMUλ and
provide its representation that connects it to AV aRλ. We also identify the
minimizing measure for each financial position. We conclude the section with
some numerical examples and simple comparisons between the two measures.
In the third section we introduce the model of the financial market, formulate
the results on optimal portfolios and perform the sensitivity analysis. A review
of relevant facts about coherent risk measures, a corollary of a generalized ver-
sion of the Neyman-Pearson lemma, proofs of theorems and additional relevant
details are in the appendices.

2 Representation of the LCAN Risk Measure

2.1 Definition
Let (Ω,F , P0) be a given probability space, where P0 is a probability mea-
sure support of which is the whole set Ω. We denote the set of probability
measures defined on (Ω,F) with M. For any P ∈ M and a random variable
X ∈ L∞(Ω,F , P0) we denote the expectation of the random variable X with
respect to probability measure P with EP [X], and, particularly, we write E[X]
for EP0 [X]. We define a set of probability measures using Radon-Nikodym
derivatives:

Pλ =

{
P ∈M

∣∣∣∣ 0 < λ ≤ dP

dP0
≤ 1

λ

}
, (2)

where λ ∈ (0, 1] is a given constant. As was mentioned earlier, one can think
of λ as the level of model uncertainty: the closer the value of λ is to one there
is less model uncertainty, i.e. we have greater confidence that the model is
“good”. Note that, due to the definition of the set Pλ, all the measures in Pλ
are equivalent to P0.

6See Gambrah and Pirvu (2014) and references offered therein.
7See the discussion after theorem 3.
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We can now define the locally constant model uncertainty risk measure:

LCMUλ(X) = sup
P∈Pλ

EP [−X]. (3)

Clearly8, this is a coherent risk measure.

2.2 Connection with Average Value-at-Risk
In this subsection we will relate the coherent measure LCMU to the well known
average value-at-risk (AVaR), also known as expected shortfall :

AV aRλ(X) =
1

λ

∫ λ

0

V aRt(X) dt = − 1

λ

∫ λ

0

q+
X(t) dt

where q+
X(t) = inf{x | P0(X ≤ x) > t} = −V aRt(X) is the upper quantile

function of the random variable X with respect to the measure P0 that appears
in the definition of value-at-risk.

Theorem 1. The coherent risk measure LCMUλ allows the following repre-
sentation:

LCMUλ(X) = λE[−X] + (1− λ)AV aR λ
1+λ

(X). (4)

The proof of the theorem is along the lines of the proof of robust represen-
tation for AV aR9. It relies on using the generalized version of the well known
Neyman-Pearson lemma which we reformulate to fit our context in appendix A.
The proof of the theorem can be found in appendix B.

We note that if the distribution of the random variable X has density then
LCMUλ(X) can be written as follows:

LCMUλ(X) = −E
[
λE[X] + (1− λ)X

∣∣∣X < V aR λ
1+λ

(X)

]
;

this is due to the representation of AV aRλ for random variables with density
(AV aRλ(X) = E[−X|X < V aRλ(X)]; Theorem 4.49 in Föllmer and Schied
(2011)). Hence, an agent estimating the risk of a financial position using LCMU
calculates an expectation of a mixture of the position and its expected value,
conditioned on the fact that there will be losses. The value obtained is the
amount of numeraire that makes the position safe.

2.3 Maximizing Measure
Careful reading of the proof of the theorem 1 shows that the supremum in the
definition (3) of LCMUλ is attained. In particular, if q is a λ

1+λ -quantile of X
with respect to P0 and

ψX = 1{X<q} + k1{X=q},

8Due to representation theorems for coherent risk measures; see (1).
9See also theorem 4.47 in Föllmer and Schied (2011).
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one can write:

LCMUλ(X) =

∫
−X

(
λ+ (1− λ)

1 + λ

λ
ψX

)
dP0.

The measure QX defined via its Radon-Nikodym’s derivative:
dQX
dP0

= λ+ (1− λ)
1 + λ

λ
ψX (5)

belongs to the set Pλ and is the maximizing measure in (3); we record this fact
in the following theorem:

Theorem 2. For any random variable X ∈ L∞(Ω,F , P0), the measure QX ∈
Pλ as defined in (5) is the maximizing measure in the defintion (3) of the risk
measure LCMUλ, i.e.:

LCMUλ(X) = EQX [−X].

The proof follows from the preceding theorem and we comment on it briefly
in appendix B.

2.4 Comparison with Average Value at Risk
Once the connection between AVaR and LCMU have been established it is
worthwhile to explore (numerical) similarities and differences between the two
measures. First, one easily notes that both measures satisfy:

LCMU1[X] = AV aR1[X] = E[−X],

lim
λ→0+

LCMUλ(X) = lim
λ→0+

AV aRλ(X) = ess sup−X.

Furthermore, due to the fact that the set Pλ that represents LCMUλ is
clearly a subset of the set that gives the robust representation of AV aRλ the
inequality AV aRλ(X) ≥ LCMUλ(X) holds for any financial position X. This
means that, from a regulatory point of view, LCMU is the less conservative of
the two measures.

To get a clearer insight into the way that the different risk measures value
risk differently we will focus on two simple examples with positions distributed
uniformly and log-normally.

2.4.1 Uniform distribution

Suppose a random variable X is uniformly distributed on the interval [a, b].
Straightforward computations yield:

V aRλ(X) = AV aRλ(X) = −a− λ

2
(b− a)

LCMUλ(X) = −a− λ

1 + λ
(b− a).

Figure 1a contains the graphs of AV aRλ(X) and LCMUλ(X) as functions
of λ. The figure confirms that, indeed, LCMU prescribes substantially lower
values of numeraire than AVaR.
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Figure 1: The full line represents the function AV aRλ(X), while the dashed
line represents LCMUλ(X) (as functions of λ).

2.4.2 Log-normal distribution

Suppose now that the random variable X ∼ lnN (µ, σ2) is log-normally dis-
tributed. After some computations one can see that:

V aRλ(X) = − exp(µ+ σΦ−1(λ)),

AV aRλ(X) = − 1

λ

∫ λ

0

exp(µ+ σΦ−1(t)) dt = − exp

(
µ+

σ2

2

)
Φ(Φ−1(λ)− σ)

λ

LCMUλ(X) = −λ exp

(
µ+

σ2

2

)
− (1− λ)

(λ+ 1)

λ

∫ λ
λ+1

0

exp(µ+ σΦ−1(t)) dt

= − exp

(
µ+

σ2

2

)(
λ+

1− λ2

λ
Φ
(
Φ−1

(
λ+1
λ

)
− σ

))
.

The second equality for AV aR is the only one that is slightly more involved; we
prove it in appendix C.

Figure 1b contains the graphs of AV aRλ(X) and LCMUλ(X) as functions
of λ. As can be seen, the less conservative LCMU can prescribe substantially
lower values.

3 Optimal Portfolio Analysis

3.1 Model
Let (Ω, {Ft}0≤t≤T ,F , P ) be a filtered probability space which accommodates
a standard m-dimensional Brownian motion W (t) = (W j(t))j=1,...,m. We con-
sider a financial market with a numeraire S0 and m risky assets Si which are
traded continuously over a finite time horizon [0, T ] in a frictionless market. The
dynamics of the assets are:

dS0(t) = r(t) dt,

dSi(t) = Si(t)

bi(t) dt+

m∑
j=1

σij(t) dW
j(t)

 , i = 1, . . . ,m,
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where r(t) is the deterministic interest rate, the functions bi(t) are deterministic
and denote the drift of the stock, and the volatility matrix σ(t) = (σij(t))i,j=1,...,m

is deterministic and invertible. We assume that functions r, bi and σij are square
integrable and that the inequalities 0 < r(t) < b(t) are satisfied for each t.

Self financing strategies are described by a deterministic vector π(t) =
(π1(t), . . . , πm(t)) ∈ Rm such that

m∑
i=1

πi(t) ≤ 1, and πi(t) ≥ 0, i = 1, . . . ,m. (6)

An agent following the strategy π invests a fraction πi of their wealth in the
risky stock Si, while the remainder is invested in the bond (represented by the
numeraire S0). As can be seen, no borrowing or short selling is allowed. Hence,
if we denote the wealth at time t by Xπ(t) and the number of shares of the asset
i held in portfolio by Ni(t), we have

πi(t) = Ni(t)Si(t)/X
π(t), i ≥ 1, and Xπ(t) =

m∑
i=0

Ni(t)Si(t).

Dynamics of Si imply that the agent’s wealth satisfies:

dXπ(t) = Xπ(t) ((r(t) +B(t)′π(t)) dt+ σ(t)′π(t) dW (t)) ,

where B(t) = (b1(t)− r(t), . . . , bm(t)− r(t)) and ′ is the transposition operator.
Using Ito’s lemma, direct calculations yield:

Xπ(T ) = Xπ(0) exp

(∫ T

0

r(s) +B(s)′π(s)− 1

2
||σ(s)′π(s)||2 ds

+

∫ T

0

||σ(s)′π(s)|| dW (s)

)
.

If we introduce the following notation:

R = exp

(∫ T

0

r(s) ds

)
, xπ = Xπ(0),

µ(π) =

∫ T

0

B(s)′π(s) ds, ψ(π) =

∫ T

0

||σ(s)′π(s)||2 ds

then
E[Xπ(T )] = xπR exp (µ(π)) . (7)

3.2 Loss and Risk Measures
We define loss as L(π) = Xπ(T ) − Xπ(0); it is simply a difference between
the wealth at the end and at the beginning of the time period. This is the
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quantity that will be involved in different optimization problems that we solve.
In particular, we will consider the quantity LCMUλ(L(π)) and, for comparison
purposes, AV aRλ(L(π)). Considering a risk measure of a random variable that
depends only on the final and, possibly, initial value of the stochastic process
is standard in literature (see Schied and Wu (2005)). It is also in the spirit
of the classical stochastic control problem in financial mathematics – Merton’s
portfolio problem (Merton (1969)) where the utility of the terminal wealth is
considered.

We note that, although the dynamics of the process in question are acknowl-
edged, this approach can be considered static, as we only consider two points
in time and do not impose constraints on the financial positions in between the
two time endpoints. An alternative would be to consider dynamic versions of
risk measures; this is, on a technical level, significantly more involved. Rea-
sons for the complications include having to do with the time consistency of
dynamic risk measures and the non-time consistency of AVaR (Cheridito and
Stadje (2009)). Considering only deterministic (instead of predictable) trading
strategies, as we do here, somewhat offsets the need for dynamic measures as the
agent effectively makes a decision about trading throughout the whole period.
In any case, when analyzing the results of models that only involve the final
time point, one should be aware of the limitations of models of this kind and
therefore careful in the interpretations.

It can be shown10 that:

AV aRλ(L(π)) = xπ

(
1− R

λ
Φ
(

Φ−1(λ)−
√
ψ(π)

)
exp(µ(π))

)
.

Combining the expressions for E[Xπ(T )] and AV aRλ(L(π)), and using the rep-
resentation of LCMU from theorem 1, we obtain:

LCMUλ(L(π)) =

xπ

(
1−R

(
λ+ 1−λ2

λ Φ
(

Φ−1
(

λ
1+λ

)
−
√
ψ(π)

)))
exp(µ(π)).

3.3 Optimization Problems and Merton portfolio
Let Q be the set of all the trading strategies π which are Borel measurable,
deterministic and satisfy the conditions of equation (6). We will consider three
problems that lead to different optimal portfolios in Q.

First we consider the unconstrained problem of choosing the portfolio for
which the risk measure LCMU prescribes the lowest risk:

(P1) min
π∈Q

LCMUλ(L(π)).

10The derivation is quite similar to the derivation in appendix C for AV aRλ(X) for a
log-normally distributed position X. For more details see the proof of proposition 3.1.2.1 in
Gambrah and Pirvu (2014).
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The second problem we consider is finding the lowest risk portfolio among
all the portfolios with fixed expected return:

(P2) min
π∈Q

LCMUλ(L(π)) such that E[Xπ(T )] = M.

Finally, we consider the problem of maximizing the expected returns while
requiring the risk to be above some positive boundary C:

(P3) max
π∈Q

E[Xπ(T )] such that LCMUλ(L(π)) ≥ C.

All three problems have been explicitly solved for risk measures V aR and
AV aR in Gambrah and Pirvu (2014). Optimal portfolios for both risk measures
and for all three problems are closely related to the trading strategy:

πM (t) = (σ(t)σ(t)′)−1B(t); (8)

in each case the optimal portfolio is just a multiple of πM , the well known
Merton portfolio from Merton (1969) and numerous related problems11. Fur-
thermore, due to the strength of the constraint in the problem (P2), the optimal
portfolios for both risk measures coincide for that problem. This leads to an
interpretation similar to the well known mutual fund theorem: if there is a hedge
fund with portfolio πM it is optimal for the agent to distribute their wealth be-
tween the hedge fund and the bonds no matter what the optimization criterion
is. However, different optimization criteria can lead to different proportions of
investments between the hedge fund and the bond.

It turns out that the solutions for problems (P1-P3) are also multiples of
πM .

Theorem 3. For each of the problems (P1), (P2) and (P3) there are constants
c1, c2, c3 such that the solutions to the problems are:

π∗1 = c1πM , π∗2 = c2πM , π∗3 = c3πM .

Furthermore, the same portfolio solves the, appropriately reformulated, op-
timization problem (P2) for the risk measures LCMU, AVaR, and VaR; see
theorem 4 in appendix D.

The fact that optimal portfolios when one optimizes with respect to risk
measures (as the theorems 3 and 4 show) and with respect to utility functions
(as the classical literature Merton (1969) shows) is in some ways surprising. We
offer some comments that explain why this is the case in this model, but we
also comment on the modelling approach to optimal portfolios in general.

On a technical level this result is driven by strong assumptions: log-normally
distributed returns or risky assets, deterministic trading strategies, a frictionless
market, and constraints on borrowing and short selling. In a sense, if the market
conditions are close to ideal then the conclusions of the classical theory remain
valid.

11See, for example, Rogers (2013).
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However, the theory of risk measures was developed because, among other
things, the markets are not ideal: the returns of investments are not distributed
log-normally and tails of the “actual distributions” driving the world are heavy.
Thus, while the analysis offered in Gambrah and Pirvu (2014) and in our work
sheds valuable insight into the optimal portfolio choice with respect to risk
measures, it could be considered a mere first step in optimization problems
of this kind and further investigation into more robust and realistic models is
needed.

The derivations in the proof of theorem 3 are closely related to the ones
offered in Gambrah and Pirvu (2014); details are in Appendix D.

3.4 Sensitivity of Optimal Portfolios to the Choice of Risk
Measures

Let us consider problems (P1-3) for the risk measures AV aRλ and LCMUλ.
We have already seen that the solutions of the optimization problems for both
risk measures belong to the same class. In this subsection we further explore
how does the choice of risk measure influence the optimal allocation between
the numeraire and Merton porfolio πM .

We begin by analyzing optimal portfolios for problem (P1). Due to the close
connection between the risk measures AV aR and LCMU (as established by
theorem 1) and similarity of results in theorems 3 and 4 it would be expected
that the optimal portfolios when optimizing with respect to the two measures
behave similarly. Somewhat surprisingly, this is not the case, as we demonstrate
below.

If we solve the problem (P1) for AV aRλ and LCMUλ the optimal portfolios
are:

AV aRλ : πA = cAπM , LCMUλ : πL = cLπM ,

for some constants cA and cL; see theorem 4. The analysis in subsection 2.4
shows that LCMUλ(L(π) ≥ AV aRλ(L(π)). This implies that cA ≤ cB : con-
stants cA and cL determine the amount of numeraire to be kept in the optimal
portfolio, hence AV aR, being the less risky of the two risk measures, prescribes
less risky assets in the optimal portfolio and more numeraire.

The proof reveals how the constants cA and cL are calculated. Let us intro-
duce functions:

gλ(ε) := GAλ (Θε, ε2) = Θε+ ln(ϕλ(ε2)),

fλ(ε) := GLλ (Θε, ε2) = Θε+ ln(λ+ (1− λ)ϕ λ
1+λ

(ε2)),

where

ϕλ(y) =
1

λ
Φ(Φ−1(λ)−√y) and Θ =

√∫ T

0

||σ(s)−1B(s)||2 ds.

Let εA and εL be the solutions of optimization problems

(εP ) max
ε∈I

gλ(ε) and max
ε∈I

fλ(ε),

11



where

I =

[
0,

∫ T

0

||σ(s)||2 ds

]
.

Then cA = εA/Θ and cL = εL/Θ.
For different values of the parameters the solutions cA and cL can be on

the boundaries of the interval I. In general, the equality cA = cL does not
hold. Furthermore, there are examples where cA = 0 and cL = I. This means
that for certain reasonable values of the parameters of the model it can happen
that optimal portfolios with respect to closely related risk measures AV aR and
LCMU are completely different: it is optimal with respect to AV aR to not
invest in the risky assets, while with respect to LCMU it is optimal to invest
only in risky assets!

To illustrate that this can indeed be the case we will consider a simple special
case of the model we introduced: a market with one risky asset in which the
risk rate, the drift coefficient and the diffusion coefficient are all constant. For
simplicity we also assume that the time horizon satisfies T = 1. Even in this sim-
plified setting, solving optimization problems (εP ) is technically cumbersome.
We will avoid the complications by making appropriate approximations.

Direct calculations show that under the simplified assumptions the interval
I becomes [0, σ2]. Thus for σ < 1 the interval I becomes “small”. Once one
notices that fλ(0) = gλ(0) = 0, we can approximate the functions fλ and gλ
with their tangents at 0:

fλ(ε) ≈ εf ′λ(0), gλ(ε) ≈ εg′λ(0).

As we are demonstrating that the solutions of problems (εP ) are on the bound-
ary of the interval I these approximations will suffice. Indeed, it is sufficient to
establish “opposite” monotonicities of the functions fλ and gλ on the interval I.

Direct calculations show:

ϕ′λ(ε) = − 1

λ
Φ′(Φ(λ)− ε),

g′λ(ε) = Θ +
ϕ′λ(ε)

ϕλ(ε)
,

f ′λ(ε) = Θ +
(1− λ)ϕ′λ/(1+λ)(ε)

λ+ (1− λ)ϕλ/(1+λ)(ε)
.

It follows that:

g′λ(0) = Θ + ϕ′λ(0) and f ′λ(0) = Θ + (1− λ)ϕ′λ/(1+λ)(0).

For example, if we choose λ = 0.2, µ− r = 0.4 and σ = 0.32 then θ = 1.25,
I = [0, 1.5625] and g′λ(0) < 0 and f ′λ(0) > 0. The approximations we introduced
are good enough; see figure 2. Indeed, fλ(ε) achieves its maximum on the right
hand side of the interval, and gλ(ε) achieves its maximum on the left hand side
of the interval I; this implies cA = 0 and cL = 1.5625.
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Figure 2: Graphs of functions
f0.2(ε) (dashed) and g0.2(ε) (full) for
ε ∈ I and µ− r = 0.4, σ = 0.32.
The vertical line denotes the end of
interval I.
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Figure 3: Graph of the function
f ′λ(0)− g′λ(0) (as a function of λ).

Furthermore, figure 3 shows that the difference f ′λ(0)− g′λ(0) (as a function
of λ) is always positive. Thus, for any value of λ we can always choose a value
of Θ such that g′λ(0) < 0 and f ′λ(0) > 0. This can be achieved by choosing the
appropriate values of µ, r, and σ such that Θ ∈ [g′λ(0), f ′λ(0)], and that interval
I is “small enough”.

We conclude this section by briefly turning to the problems (P2) and (P3).
We note that optimal portfolios with respect to both measures coincide for

the problem (P2) (see the solution of (ρP2) in the proof of theorem 4 in appendix
D).

As for the problem (P3), the situation is quite similar to sensitivity analysis
performed for the problem (P1): there are situations in which optimizing with
respect to different measures prescribes radically different optimal behavior.
This is due to the similarities of problems (εP ) and the optimization problem
that the problems (P3) and (ρP3) are reduced to; see the part of the proof of
theorem 4 related to the problems (P3) and (ρP3).

4 Conclusion
Motivated by ideas from ambiguity theory we have introduced a new coherent
risk measure: locally constant model uncertainty (LCMU). It is explicitly de-
fined via its set of probability measures in a way that makes uncertainty about
the probabilities of “small” events constant – the Radon-Nikodym derivative lies
within a fixed interval.

We have derived a representation of LCMU as a convex combination of the
expected loss of the position and its average value-at-risk (AVaR) calculated at
an appropriately chosen interval. We have thus demonstrated a viable connec-
tion between ambiguity theory and well established risk measures.

We have considered and solved optimal investment problems in continuous
time related to LCMU in a frictionless market with m-assets that evolve fol-
lowing a time dependent version of the multi-dimensional geometric Brownian

13



motion with no-borrowing and no-short-selling constraints. We have proven
a version of a mutual fund theorem: choosing portfolios that minimize risk or
maximize profit with a risk constraint both lead to Merton portfolios; this result
was already known for value-at-risk and AVaR in this setting.

We have demonstrated that optimal portfolios can be radically different when
optimizing with respect to LCMU and AVaR. This surprising conclusion raises
questions about dynamic models of optimal investment in continuous time that
deal with risk measures. Our results also demonstrated the fragility of the
solutions of optimization problems involving risk measures in dynamic settings,
even in mathematically simple contexts.

A Corollary of the Generalized Version of Neyman-
Pearson Lemma

Lemma that follows is a direct corollary of the generalized Neyman-Pearson
Lemma as formulated in theorem A.30 in Föllmer and Schied (2011).

Lemma 1. If P and Q are given equivalent measures and α ∈ [0, 1] is a given
constant then:

max

{∫
ψ dQ

∣∣∣∣ 0 ≤ ψ ≤ 1,

∫
ψ dP = α

}
= α =

∫
ψX dQ (9)

for
ψX = 1{ dQdP >c}

+ k1{ dQdP =c} (10)

where c is a 1− α-quantile of dQdP with respect to P and

k =


0, P

(
dQ
dP = c

)
= 0

α− P
(
dQ
dP > c

)
P
(
dQ
dP = c

) , P
(
dQ
dP = c

)
> 0.

(11)

B Proofs of theorems 1 and 2
Proof. We begin by rewriting the left hand side of the equation (3) for a fixed
random variable X < 0:

sup
P∈Pλ

EP [−X] = sup

{
EP [−X]

∣∣∣∣P ∈M, λ ≤ dP

dP0
≤ 1/λ

}
= sup

{
−
∫
X
dP

dP0
dP0

∣∣∣∣P ∈M, λ ≤ dP

dP0
≤ 1/λ

}
= sup

{
−
∫
XϕdP0

∣∣∣∣ ∫ ϕdP0 = 1, λ ≤ ϕ ≤ 1/λ

}
= sup

{
−E[X]

∫
X

E[X]
ϕdP0

∣∣∣∣ ∫ ϕdP0 = 1, λ ≤ ϕ ≤ 1/λ

}
.

14



So far we have only used the definitions of the set Pλ and basic proper-
ties of the expectation operator and Radon-Nikodym derivatives. We notice

that
∫

X

E[X]
dP0 = 1, so the random variable

X

E[X]
> 0 is a Radon-Nikodym

derivative for some measure Q that is equivalent to P0. Hence, using the last
expression above and the inequality E[−X] > 0, we have:

sup
P∈Pλ

EP [−X] = sup

{
−E[X]

∫
ϕ
dQ

dP0
dP0

∣∣∣∣ ∫ ϕdP0 = 1, λ ≤ ϕ ≤ 1/λ

}
=E[−X] sup

{
−E[X]

∫
ϕdQ

∣∣∣∣ ∫ ϕdP0 = 1, λ ≤ ϕ ≤ 1/λ

}
.

(12)

The following equivalence of inequalities:

λ ≤ ϕ ≤ 1/λ⇔ 0 ≤ λ

1− λ2
(ϕ− λ) ≤ 1 (13)

allows one to rewrite the right hand side of the equation (12) in terms of a new
variable ψ := λ

1−λ2 (ϕ− λ):

sup
P∈Pλ

EP [−X] =

= E[−X] sup

{∫ (
ψ 1−λ2

λ + λ
)
dQ

∣∣∣∣ ∫ (ψ 1−λ2

λ + λ
)
dP0 = 1, 0 ≤ ψ ≤ 1

}
= E[−X]

(
λ+ 1−λ2

λ · sup

{∫
ψ dQ

∣∣∣∣ ∫ ψ dP0 = λ
1+λ , 0 ≤ ψ ≤ 1

})
.

(14)

Applying lemma 1 one obtains:

sup

{∫
ψ dQ

∣∣∣∣ ∫ ψ dP0 = λ
1+λ , 0 ≤ ψ ≤ 1

}
=

∫
ψX dQ, (15)

where
ψX = 1{ dQdP0

>c} + k1{ dQdP0
=c},

for

k =


0, P

(
dQ
dP0

= c
)

= 0

α− P
(
dQ
dP0

> c
)

P
(
dQ
dP0

= c
) , P

(
dQ
dP0

= c
)
> 0,

and c a 1− λ
1+λ -quantile of

dQ

dP0
=

X

E[X]
with respect to P0. Keeping in mind
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that X < 0, the inequality
dQ

dP0
> c can be written as:

X < E[X] · c =E[X] · inf

{
t

∣∣∣∣P0

(
dQ

dP0
< t

)
> 1− λ

1 + λ

}
= sup

{
tE[X] | P0 (X > tE[X])− 1 > − λ

1 + λ

}
= sup

{
t | 1− P0 (X > t) <

λ

1 + λ

}
= sup

{
t | P0 (X ≤ t) < λ

1 + λ

}
=: q.

We can see that q is a λ
1+λ -quantile of X with respect to P0 and that inequalities

dQ
dP0

> c and X < q are equivalent. Similarly, the equality dQ
dP0

= c holds if and
olny if X = q holds. Hence:

ψX = 1{X<q} + k1{X=q}. (16)

Combining (14) and (15) one obtains:

sup
P∈Pλ

EP [−X] = E[−X]

(
λ+

1− λ2

λ

∫
ψX dQ

)
= E[−X]

(
λ+

1− λ2

λ

∫
ψX

dQ

dP0
dP0

)
= E[−X]

(
λ+

1− λ2

λ

∫
ψX

X

E[X]
dP0

)
= λE[−X]− 1− λ2

λ

∫
XψX dP0. (17)

The integral that appears in the last expression can be rewritten (using 16) as
follows:∫

XψX dP0 =

∫
{X<q}

X dP0 + k

∫
{X=q}

X dP0

= −
∫
{X<q}

(q −X) dP0 + q

∫
{X<q}

dP0 + k

∫
{X=q}

q dP0

= −
∫

(q −X)+ dP0 + q (P0(X < q) + kP0(X = q)) . (18)

If P
(
dQ
dP0

= c
)

= P0(X = q) = 0 then clearly

P0(X < q) + kP0(X = q) = P0(X < q) =
λ

1 + λ
; (19)

we used the definition of q in the last equality. If P0(X = q) > 0 then, using
the definition of k, we have

P0(X < q)+kP0(X = q) = P0(X < q)+

(
λ

1 + λ
− P0(X < q)

)
=

λ

1 + λ
. (20)
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Thus, in any case, combining (19) and (20) with (18), we obtain:∫
XψX dP0 = −

∫
(q −X)+ dP0 + q

λ

1 + λ
.

Plugging this into (17), after some simplification, we obtain:

sup
P∈Pλ

EP [−X] = λE[−X] +
1− λ2

λ

∫
(q −X)+ dP0 − q(1− λ)

= λE[−X] + (1− λ)

(
1 + λ

λ
E[(q −X)+]− q

)
(21)

Finally, given that AV aRλ = 1
λE[(q − X)+] − q (lemma 4.46 in Föllmer and

Schied 2011), the last expression is equal to the one from the formulation of the
theorem.

It remains to note that the case when the inequality X < 0 is not satisfied
follows directly from the boundedness of X, and cash invariance of AV aR, risk
measure defined in the theorem, and E[−X].

The proof of theorem 2 is a consequence of the preceding proof. Indeed, the
assertion is clear for random variables X < 0. If, however, the inequality is not
satisfied one only has to note that the equality ψX = ψY holds for all random
variables X and Y such that X − Y = c ∈ R a.e. (see equation (16)); and the
claim now follows from the cash invariance of LCMUλ.

C Calculations for AVaR and LCMU for a Log-
Normally Distributed Position

We first introduce a new variable y = Φ−1(t). We note that:

dt =
1√
2π

exp

(
−y

2

2

)
dy,

which implies

AV aRλ(X) = −e
µ

λ

∫ λ

0

exp(σΦ−1(t)) dt

= −e
µ

λ

∫ Φ−1(λ)

−∞

1√
2π

exp(σy) exp

(
−y

2

2

)
dy
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Now, completing the squares and introducing a new variable z = y − σ we get:

AV aRλ(X) = −
exp

(
µ+ σ2

2

)
λ

∫ Φ−1(λ)

−∞

1√
2π

exp

(
− (y − σ)2

2

)
dy

= −
exp

(
µ+ σ2

2

)
λ

∫ Φ−1(λ)−σ

−∞

1√
2π

exp

(
−z

2

2

)
dz

= −
exp

(
µ+ σ2

2

)
λ

Φ(Φ−1(λ)− σ).

D Details on Optimal Portfolios
Problems (P1-3) have been solved for risk measures VaR and AVaR in theorems
3.2.1, 3.3.1 and 3.4.1 in Gambrah and Pirvu (2014). Careful reading of the
proofs reveals technical conditions under which their techniques can be used
for other risk measures. We offer slightly more general formulations of the
aforementioned theorems from Gambrah and Pirvu (2014) that will allow us to
solve problems (P1-3) for LCMU .

Let us consider versions of problems (P1-3) where the risk measure LCMU is
replaced with a risk measure ρ: we will refer to those problems as (ρP1), (ρP1)
and (ρP3). We will give sufficient conditions under which the solutions of the
more general problems are multiples of πM defined in (8). The key assumption
is the following:

Assumption (A): There are measurable functions functions G :
R2 → R and h : R2 → R such that:

1. G(·, y) is increasing and G(x, ·) is decreasing

2. h(x) is decreasing.

3. ρ(L(π)) = h (G (µ(π), ψ(π))) .

Measures AV aRλ and LCMUλ satisfy the assumption. Indeed, if we intro-
duce a function

ϕλ(y) =
1

λ
Φ(Φ−1(λ)−√y)

it can easily be confirmed that:

AV ARλ(L(π)) = xπ − xπR exp(GAλ (µ(π), ψ(π)),

where GAλ (x, y) = x+ ln(ϕλ(y));

LCMUλ(L(π)) = xπ − xπR exp(GLλ (µ(π), ψ(π)),

where GLλ (x, y) = x+ ln(λ+ (1− λ)ϕ λ
1+λ

(y)).
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Theorem 4. If the risk measure ρ satisfies the assumption (A) above, there are
constants c1, c2 and c3 such that strategies π∗1 = c1πM , π

∗
2 = c2πM , π

∗
3 = c3πM

solve problems (ρP1), (ρP2) and (ρP3).

For the sake of completeness we offer the proof of the theorem; it is essentially
the proof offered in Gambrah and Pirvu (2014) with several small imprecisions
and errors rectified.

We begin with proving two auxiliary results:

Lemma 2. For a fixed κ < 0 the strategy

πλ(t) = − 1

2κ
(σ(t)σ(t)′)−1B(t) = − 1

2κ
πM (t)

solves the maximization problem:

max
π∈Q

µ(π) + κψ(π).

Proof. Note that for any vectors π,B ∈ Rm\{(0, . . . , 0)} and any invertible
matrix σ ∈ Rm×m we have:

||σ′π||2 +
1

κ
B′π = ||σ′π +

1

2κ
σ−1B||2 − 1

4κ2
||σ−1B||2.

Indeed, by completing the squares:

||σ′π||2 +
1

κ
B′π = π′σσ′π +

2

2κ
(σ−1B)′σ′π

= π′σσ′π +
1

2κ
π′σσ−1B +

1

2κ
(σ−1B)′σ′π +

1

4κ2
(σ−1B)′σ−1B

− 1

4κ2
(σ−1B)′σ−1B

= π′σ(σ′π +
1

2κ
σ−1B) +

1

2κ
(σ−1B)′(σ′π +

1

2κ
σ−1B)

− 1

4κ2
(σ−1B)′σ−1B

= (σ′π +
1

2κ
σ−1B)′(σ′π +

1

2κ
σ−1B)− 1

4κ2
(σ−1B)′σ−1B.

Hence:

µ(π) + κψ(π) = κ

(∫ T

0

1

κ
B(s)′π(s) + ||σ(s)′π(s)||2 ds

)

= κ

(∫ T

0

||σ(s)′π(s) +
1

2κ
σ−1(s)B(s)||2 ds

)

− 1

4κ2

∫ T

0

||σ−1(s)B(s)||2 ds.
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Note that only the first term in the last expression contains π. Thus, since
κ < 0, the maximization problem from the formulation of the lemma reduces
to:

min
π∈Q

∫ T

0

||σ(s)′π(s) +
1

2κ
σ−1(s)B(s)||2 ds.

The last integral is non-negative. Furthermore, direct calculations show that it
is equal to zero for πκ, which proves the claim.

Lemma 3. Maximization problem:

max
π∈Q

µ(π) subject to ψ(π) = ε2

is solved by
πε =

ε

Θ
(σ(t)σ(t)′)−1B(t) =

ε

Θ
πM (t),

where

Θ =

√∫ T

0

||σ(s)−1B(s)||2 ds.

Proof. Direct calculations show that indeed ψ(πε) = ε2.
Previous lemma established a mapping κ → πκ. Note that, by choosing

κε = −Θ(2ε)−1 < 0 we have πε = πκε . The claim now follows directly by
considering the Lagrangian: L(π, κ) = µ(π) + κ(ψ(π) − ε2). Indeed, for any
strategy π satisfying the constraint ψ(π) = ε2 we have:

µ(π) = L(π, κε) ≤ L(πε, κε) = µ(πε),

where the inequality is the consequence of the previous lemma and the fact that,
for a fixed κ < 0, the strategy πκ maximizes L(π, κ).

Before we turn to proving the theorem we introduce some notation. For
nonnegative ε we denote by Qε the set of all the strategies π ∈ Q such that
ψ(π) = ε2. Note that, due to the definition of ψ and the assumptions on σ we
have ε ∈ I where:

I =

[
0,

∫ T

0

||σ(s)||2 ds

]
,

and for every ε within that interval Qε 6= ∅.
Clearly: ⋃

ε∈I
Qε = Q.

Proof of 4 - (ρP1) . Due to monotonicity of h we can reduce the problem to:

min
π∈Q

G(µ(π, ψ(π)).

20



We first solve the problem for a fixed ε ∈ I:

min
π∈Qε

G(µ(π), ε2).

Due to monotonicity of G(·, x) this reduces to:

min
π∈Qε

µ(π).

By lemma 3 the solution is: πε = ε
Θ (σ(t)σ(t)′)−1B(t). Clearly, the problem

(ρP1) is now equivalent to:

min
ε∈I

G(µ(πε), ε
2).

Direct calculations show that µ(πM (t)) = Θ2, hence the continuous function:

g(ε) = G(µ(πε), ε
2) = G(

ε

Θ
µ(πM (t)), ε2) = G(Θε, ε2)

is defined on a closed interval and thus attains its maximum. This implies that
there is a ε1 ∈ I such that π1 = πε1 = solves the prolem (ρP1). In that case
c1 = ε1/Θ.

Proof of 4 - (ρP2) . Similarly as in the proof regarding the problem (ρP1) the
minimization problem immediately reduces to:

max
π∈Q

G(µ(π, ψ(π)) such that E[Xπ(T )] = M

The condition E[Xπ(T )] = M is, due to (7), equivalent to:

µ(π) = ln

(
M

xπR

)
=: ζ. (22)

Hence, the optimization problem can be rewritten as:

max
π∈Q

G(ζ, ψ(π)) such that µ(π) = ζ,

which, due to monotonicity of G, further reduces to:

min
π∈Q

ψ(π) such that µ(π) = ζ.

We can now use lemma 2 to solve this problem. Indeed, for a fixed κ < 0, the
maximization problem in the formulation of 2 is equivalent to the problem of
minimizing ψ(π) + 1

κµ(π): the strategy πκ solves both problems. Hence, for a
fixed κ < 0, π1/κ solves the problem of minimizing ψ(π) + κµ(π), and thus also
the equivalent problem:

(Pζ) min
π∈Q

ψ(π) + κ(µ(π)− ζ).
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Thus, the solution of the initial optimization problem is:

π∗2 =
Θ2

ζ
(σ(t)σ(t)′)−1B(t) = π1/κ∗2

for κ∗2 = −Θ2(2ζ)−1

Indeed, direct calculations show that µ(π∗2) = ζ and, for any π that satisfies
µ(π) = ζ, we have

ψ(π) = ψ(π) + κ∗2(µ(π)− ζ) ≥ ψ(π∗2) + κ∗2(µ(π∗2)− ζ) = ψ(π∗2),

where the inequality is due to the fact that π∗2 solves the problem (Pζ) for
κ = κ∗2.

In this case c2 = Θ2/ζ.

Proof of 4 - (ρP3) . We introduce the set Q′ ⊂ Q of all the strategies π satis-
fying the condition ρ(L(π)) > C, where C is the constant related to problems
(P3) and (ρP3). We define Q′ε = Qε ∩Q′ and note that:

Q′ε =
{
π ∈ Q | ψ(π) = ε2, ρ(L(π)) ≤ C

}
and

⋃
ε∈I
Q′ε = Q′.

Due to (7) the problem (ρP3) reduces to

max
π∈Q′

µ(π).

Let us consider a simpler problem:

(P ′ε) max
π∈Q′ε

µ(π).

For a strategy π ∈ Q′ε the constraint ρ(L(π)) > C can be rewritten as:

ln
xπ − C
xπR

≤ G(µ(π), ε2).

The function G(·, ε2) is increasing, hence it has an inverse that we denote with
G−1
ε . Thus the constraint can be rewritten as:

µ(π) ≥ G−1
ε

(
xπ − C
xπR

)
=: h(ε). (23)

Let us consider the strategy πε from 3 that maximizes µ(π) over Qε. Solving
the problem P ′ε relies on noticing that the set Q′ε is non-empty if and only if πε
belongs to it. Indeed, if π ∈ Q′ε then:

µ(πε) ≥ µ(π) ≥ h(ε);

the first inequality is due to Q′ε ⊂ Qε and the second one is due to 3. This
allows us to rewrite the problem (ρP3) as follows:

max
ε∈I

µ(πε) such that µ(πε) ≥ h(ε).
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Due to the definition of µ, the value µ(πε) is increasing in ε and the problem
reduces further to:

max
ε∈I

ε such that µ(πε) ≥ h(ε).

Continuity of µ(πε) as a function of ε and monotonicity of g(ε) ensure that the
problem has a solution that we denote by ε3.

This proves that π∗3 = πε3 solves the optimization problem, in which case
c3 = ε3/Θ
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