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A SEMIGROUP APPROACH TO NONLINEAR LEVY PROCESSES
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ABSTRACT. We study the relation between Lévy processes under nonlinear expecta-
tions, nonlinear semigroups and fully nonlinear PDEs. First, we establish a one-to-
one relation between nonlinear Lévy processes and nonlinear Markovian convolution
semigroups. Second, we provide a condition on a family of infinitesimal generators
(Ax)xea of linear Lévy processes which guarantees the existence of a nonlinear Lévy
process such that the corresponding nonlinear Markovian convolution semigroup is
a viscosity solution of the fully nonlinear PDE 0;u = supyc, Aau. The results are
illustrated with several examples.
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1. INTRODUCTION

In this paper we study the relation between Lévy processes under nonlinear expec-
tations, nonlinear semigroups and fully nonlinear PDEs. Let (X;);>0 be an R%-valued
Lévy process on a probability space (€2, F,P). Then

(S f)(x) :=E(f(z + X4))

for f € BUC(RY), t > 0 and 2 € R?, defines a strongly continuous semigroup on
the space of bounded and uniformly continuous functions BUC(R?) whose infinitesimal
generator A: D(A) ¢ BUC(RY) — BUC(R?) is given by an integro-differential oper-
ator which is uniquely determined by a Lévy triplet, see Applebaum [1] or Sato [26].
Moreover, (S(t)f)i>o is the solution of the abstract Cauchy problem

Juu(t) = Au(t), t>0,

with u(0) = f € BUC(RY). For a detailed discussion on operator semigroups we refer
to Pazy [22] or Engel and Nagel [8].

We first extend the well-known relation between Lévy processes and Markovian con-
volution semigroups of probability measures to a nonlinear setting. Nonlinear Lévy
processes were introduced in [17] as cadlag processes with stationary and independent
increments under a sublinear expectation. The G-Brownian motion due to [23, 24] is a
special case of a nonlinear Lévy process, see also Dolinsky et al. [6] or Denis et al. [4].
For an introduction to nonlinear expectations we refer to [16]. Since we do not re-
quire any path regularity we call a process (X¢);>0 an E-Lévy process with values in an
abelian group G, if it has stationary and independent increments and X; — X in dis-
tribution as ¢ \, 0 with respect to a convex expectation £. We then provide a relation
between £-Lévy processes and convex Markovian convolution semigroups, i.e. strongly
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continuous semigroups (-#(t))¢>0 on BUC(G) such that each .#(t) is a translation in-
variant convex kernel. The proof relies on a version of Kolmogorov’s extension theorem
for nonlinear expectations elaborated in [5].

Our main focus lies on the construction of £-Lévy processes with nonlinear genera-
tors. We start with an arbitrary family A of generators

Ay: D(A,) € BUC(G) — BUC(G)

of Markovian convolution semigroups Sy = (S)(f)):>0 of linear operators. We then
construct the smallest Markovian convolution semigroup (.#(¢));>0 which dominates
each (Sx(t))t>0. The corresponding E£-Lévy process can be viewed as a process with
independent increments whose distribution is uncertain, i.e. any distrubution of the
increments associated to (Sy)aea is taken into account. We basically follow an idea
by Nisio [21] in order to construct a sublinear Markovian convolution semigroup which
results from a given family of linear Markovian convolution semigroups by constant
optimization. In [21] Nisio considers strongly continuous semigroups on the space of all
bounded measurable functions. However, by a theorem of Lotz (see e.g. [2, Corollary
4.3.19]), any strongly continuous semigroup on the space of bounded measurable func-
tions already has a bounded generator, which is not suitable for most applications. We
therefore modify Nisio’s construction to the space BUC(G). Under the condition that
the subspace

{f € ﬂ D(A,) : {Axf: X € A} is bounded and uniformly equicontinuous} (1.1)
AEA

is dense in BUC(G) we construct a (strongly continuous) Markovian convolution semi-
group (- (t))¢>0 on BUC(G) with corresponding £-Lévy process (X;):>0 on a sublinear
expectation space (€2, F, ) such that

u(t,z) == (L) f)(z) =E(fz+ X)), t20,z€G,
is a viscosity solution of the fully nonlinear PDE

Ou =sup Ayu on (0,00) X G
AEA

with «(0) = f for all f € BUC(G). In particular, the generator of the £-Lévy process
(X¢)e>0 is given by supycp Ax. Here, we use a slightly different notion of viscosity
solution which fits to the semigroup setting. However, in many cases, particularly for
the classical case G = R?, this leads to the same class or an even larger class of test
functions. We refer to Crandall et al. [3] for the classical definition and a detailed dis-
cussion of viscosity solutions. Moreover, we give a condition on the generators (Ay)xea
which guarantees that the corresponding £-Lévy process is tight, or equivalently each
Z(t) is continuous from above. Throughout, the state space is an abelian group, which
gives the opportunity to consider certain classes of cylindrical G-Wiener Processes as an
infinite dimensional extension of the G-Brownian motion, or nonlinear Lévy processes
on the d-dimensional Torus.

Nonlinear R%-valued Lévy processes have first been introduced in Hu and Peng [17],
where G-Lévy processes with a decomposition X = X¢ + X9 into a continuous and
a jump part are considered. Under the assumption that X¢ is a G-Brownian motion
and £(]X{|) < ct for some constant c, it is shown that u(t,z) = E(f(x + X)) is
a viscosity solution of duu(t,z) — G(u(t,z + -) — u(t,z)) = 0 and u(0) = f, where
G(g(+)) = limpyo +E(¢(Xp)). The function G is shown to have a Lévy-Khinchine
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representation in terms of a set A of Lévy triplets (b, 3, ) satisfying an integrability
condition, i.e. u(t,z) is the solution of

Omu= sup Apy,u, and u(0)=f, (1.2)
(b,2,m)EA

where Ay x ,, is the generator with the Lévy triplet (b, X, i), see also Example 3.2. Con-
versely, starting from the unique solution of (1.2), Hu and Peng [17] give a construction
of the respective nonlinear Lévy process. In Nutz and Neufeld [19] the authors consider
upper expectations £(-) = supp Ep(+) over a class of all semimartingales with given dif-
ferential characteristics in a set A of Lévy triplets, which in [20] is shown to be analytic.
This allows them to construct conditional nonlinear expectations and nonlinear Lévy
processes with general characteristics whose distributions are defined for all measurable
functions. Under the conditions

sup (]b| + |X| —|—/ ly| A \y|2d,u(y)) <oo and lim sup / |z)2du(z) =0
(b2 )N R¢ N0 (6,3, p)en J|z|<e
(1.3)

it is shown that u(t,z) = E(f(x + X)) is the unique viscosity solution of (1.2). The
conditions in (1.3) are weaker than the integrability condition in [17] and allow for
instance to consider classes of Lévy processes with infinite variation jumps. Our main
condition (1.1) in the context of R%valued processes is guaranteed under

sup (I 11+ [ 1A Iy dto) < . (1.4)
(b,Z,p)EA Rd

which does not exclude any Lévy triplet at all. In particular, Lévy processes with non-
integrable jumps can be considered, see e.g. Example 3.6, and for finite A the condition
(1.4) is always satisfied. In order to obtain uniqueness for the viscosity solution of (1.2)
one additionally needs the second condition in (1.3) and tightness of the family of Lévy
measures {p : (b, X, ) € A}, which is due to [17]. In Hollender [12] the results of [19] are
generalized to upper expectations over state-dependent Lévy triplets, see also Kiithn [15]
for existence results on the respective integro-differential equations under fairly general
conditions. A related concept to nonlinear Lévy processes are second order backward
stochastic differential equation with jumps, see Kazi-Tani et al. [13], [14] and also Soner
et al. [27].

The paper is organized as follows. In Section 2 we introduce the notation and discuss
our main results which are illustrated with several examples in Section 3. The relation
between £-Lévy processes and Markovian convolution semigroups is given in Section
4. Finally, in Section 5 we prove the main result by constructing a version of Nisio
semigroups on BUC(G).

2. MAIN RESULTS

We say that (2, F,E) is a convex expectation space if (£, F) is a measurable space
and £: L>(Q,F) — R is a convex expectation which is continuous from below. As
usual £°(€2, F) denotes the space of all bounded measurable functions Q2 — R. Recall
that a convex expectation on a convex set M with R C M is a functional £: M — R
which satisfies

E(X) <&E(Y) whenever X <Y,
E(a) =a for all @ € R, and
EQAX+(1=NY) <AE(X)+ (1= NEY) for all X € [0,1].
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If in addition £ is positive homogeneous, i.e. E(AX) = AE(X) for all A > 0, then & is
called a sublinear expectation and (2, F, &) is a sublinear expectation space. A convex
expectation is said to be continuous from below if £(X,,) / £(X) for every increasing
sequence (X,,) in £>(2, F) which converges pointwise to X € £>(£, F).

Let (92, F,&) be a convex expectation space, and let G be an abelian group with a
translation invariant metric d such that (G, d) is separable and complete. We denote
by Cp(G) and BUC(G) the spaces of all bounded functions f: G — R which are contin-
uous and uniformly continuous, respectively. For an F-B-measurable random variable
X: Q — G with values in G endowed with the Borel g-algebra B, the functional

EoX1: Cy(G) =R, f—=E(f(X))

defines a convex expectation which is called the distribution of X under £. Given
another random variable Y': 2 — S with values in a Polish space S, for f € Cp(S x G)
the function

S—=R, y—=E(f(y, X))

is bounded and lower semicontinuous. In fact, for g € BUC(S x G), it follows that

1€(9(y, X)) — E(g(z, X)) < gy, -) — 9(z, )0

for y,z € G and therefore, y — E(g(y, X)) is uniformly continuous. Approximating
f € Cy(S x G) from below by a sequence (gn)nen C BUC(S x G), see [5, Remark 5.4
a)], we obtain that y — £(f(y, X)) is lower semicontinuous. Hence, £(f(y, X))| =y is
in £°(Q, F), which shows that £(£(f(y,X))|y=y) is well-defined. Then, X is called
independent of Y if

E(J(V, X)) = E(E(f(y, X))ly=v)
for all f € Cy(S x G).

Definition 2.1. a) Wesay that .#: BUC(G) — BUC(G) is a convex kernel if (.- )(z)
is a convex expectation on BUC(G) for all x € G. It is called continuous from above if
S fn 7 f (pointwise convergence) for every decreasing sequence (f,) in BUC(G)
which converges pointwise to f € BUC(G).

b) A convex kernel .#: BUC(G) — BUC(G) is called a convex Markovian convolution if
S fn /7 f for every increasing sequence (f,) in BUC(G) which converges pointwise
to f € BUC(G) and

(7 1)(@) = (£ £2)(0)
for all f € BUC(G) and = € G, where f,: G — R is given by y — f(z + y).

c) We say that (.7 (t))i>0 is a convex Markovian convolution semigroup on BUC(G) if

(i) () is a convex Markovian convolution for all ¢ > 0,

(ii) £(0)f = f for all f € BUC(G),

(iii) S (s+1t) =.7(s)L(t) for all s,t >0,

(iv) limp g || (t) f — flloo = 0 for all f € BUC(G).
In this case, we say that (7(t))+>0 is continuous from above if each .7 () is so.

d) Let (Q,F,€) be a convex expectation space. Then, (X¢);>o is called an £-Lévy
process if

(i) X¢: Q@ — @ is measurable for all t > 0,
(i) E(f(X0)) = £(0) for all f € Cy(G),

(iit) € o (Xgps — Xs) "' =Eo0 X, ! for all s,¢ >0,

(iv) Xs4¢ — X is independent of (Xy,,..., X)) for all s, >0, n € N, 0 < ¢; <
<ty < s,

(v) E(f(Xy)) — f(0) for all f € Cy(G), i.e. Xy — X in distribution as t N\, 0.
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Remark 2.2. Let . : BUC(G) — BUC(G) be a convex kernel which is continuous from
above. Then, the mapping

&:BUC(G) = R, [ (Zf)(0)

is a convex expectation which is continuous from above. If . is in addition a Markovian
convolution then, by [5, Theorem 3.10] with 2 := G, F the Borel o-algebra on G and
M = BUC(G), there exists a convex expectation space ({2, F, ) and a random variable
X (here the identity on G) such that

(Lf)(@) = E(f(z + X))

for all f € Cy(G) and z € G. By [5, Remark 5.4 ¢)] the convex kernel .# has a unique
extension to a convex kernel . : Cp(G) — Cy(G) which is continuous from above.

Our first result connects convex Markovian convolution semigroups and &£-Lévy pro-
cesses. The proof is given in Section 4.

Theorem 2.3. For every conver Markovian convolution semigroup (.7 (t))i>0 which is
continuous from above, there exists a convex expectation space (Q, F,E) and an E-Lévy
process (Xt)i>0 such that

(L (O f)(z) = E(f(z + X1)) (2.1)

for every f € BUC(G) and x € G.
Conversely, for every E-Lévy process (Xt)i>0 on a convex expectation space (2, F,E),
the family (7 (t))i>0 defined by (2.1) is a convex Markovian convolution semigroup.

In this paper, we use the following definition of a viscosity solution.

Definition 2.4. Let D C BUC(G) and A: D C BUC(G) — BUC(G). Then, we say
that u: [0,00) = BUC(G) is a D-viscosity subsolution of the PDE

w = Au (2.2)
if u: [0,00) — BUC(G) is continuous and for every ¢t > 0 and = € G we have

A (t,x) < (AY(t)) ()

for every differentiable v: (0,00) — BUC(G) which satisfies (¢(¢))(xz) = (u(t))(z),
P(s) > u(s) and ¢ (s) € D for all s > 0. Here and in the following, we use the notation
bit,2) = (0(0) ().

Analogously, u is called a D-viscosity supersolution of (2.2) if u: [0,00) — BUC(G)
is continuous and for every t > 0 and x € G we have

A (t,x) > (AY(t)) ()

for every differentiable ¢: (0,00) — BUC(G) which satisfies (¢(¢))(z) = (u(t))(x),
P(s) < wu(s) and ¢(s) € D for all s > 0.

We say that u is a D-viscosity solution of (2.2) if u is a D-viscosity subsolution and
a D-viscosity supersolution.

Now we are ready to state our main result. Given a family (Ay)xep of generators of
Lévy processes we provide the existence of an £-Lévy process on a sublinear expectation
space with generator sup,c, Ax. The corresponding sublinear Markovian convolution
semigroup is a viscosity solution of the fully nonlinear PDE u; = supycp Axu with
u(0,-) = f € BUC(G). The proof is postponed to Section 5.

Theorem 2.5. Let A # () be an index set. Assume that the following holds:
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(A1) For each A € A let Ax: D(A)) C BUC(G) — BUC(G) be the generator of a
Markovian convolution semigroup (Sx(t)):>0 of linear operators.

(A2) The subspace

D= {f € ﬂ D(A)): {A/\f: AE A} 1s bounded and uniformly equz’continuous}
AEA
is dense in BUC(G).

Then, there exists a sublinear expectation space (Q,F,E) and an E-Lévy process
(Xt)e=0 such that for each f € BUC(G) the function

(u(t)) (z) :=E(f(z+ Xy)), t>0,z€d (2.3)
is a D-viscosity solution of the fully nonlinear PDE
w(t,z) = sup (Au(t))(z), (t,z)€ (0,00) x G, (2.4)
AEA
u(0,z) = f(x), ze€G. (2.5)

Moreover, there exists a set P of probability measures on (2, F) such that E(Y) =
suppep Ep(Y) for all Y € L>(Q, F).

Remark 2.6. In the situation of Theorem 2.5, if each Ay: BUC(G) — BUC(G) is a
bounded linear operator and supycy [|Ax]| < 0o, then the mapping

BUC(G) — BUC(G), wu+ sup Ayu
AEA
is Lipschitz continuous. Therefore, by the Picard-Lindelof theorem, the function w
in (2.3) is a classical solution of the fully nonlinear PDE (2.4)-(2.5), which satisfies
u € C1([0,00); BUC(Q)).

In most applications, the conditions (A1) and (A2) in Theorem 2.5 can be easily ver-
ified as shown in Section 3. For the sake of illustration, we consider the case G = R,
where the Lévy-Khintchine formula characterizes generators of Markovian convolution
semigroups of linear operators by means of so-called Lévy triplets, see e.g. Apple-
baum [1] or Sato [26]. Given a set A of Lévy triplets (b, 3, i), i.e. b € RY, ¥ € RIxd
is a symmetric positive semidefinite matrix and p is a Lévy measure, the condition
(1.4) is sufficient to guarantee (A2) with BUC%(R?) ¢ D. Here, BUC?(R?) denotes the
space of all functions which are twice differentiable with bounded uniformly continuous
derivatives up to order 2. For more details, we refer to Example 3.2 which contains
G = R? as a special case.

Remark 2.7. Let ¢ € 03’3((0, o0) x RY), where Cf"g((O, o0) x RY) stands for the space
of all functions of (t,x) € (0,00) x R for which all partial derivatives up to order 2 in
t and up to order 3 in z exist, are continuous and bounded. Then,

lim sup ¢(t + h,l‘) _ w(tﬂ?)
h—)OxERd h

— 8t1/1(t,.%') =0

for all ¢ > 0 and therefore, ¥: (0,00) — BUC(R?) is differentiable with 1 (s) €
BUC?(RY) for all s > 0 using the identification (1(s))(x) := 9 (s,z). Therefore, the
class of test functions considered in the framework of BUC?(R?)-viscosity solutions in-
cludes the class C’g ’3((0, o0) x R%) of test functions, which is often considered in classical
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viscosity theory, see e.g. Denis et al. [4] or Hu and Peng [17]. Assuming in addition to
(1.4) that for every € > 0 there exists some M > 0 such that
sup ,u(Rd \ B(0, M)) <, (2.6)
(b,3,m)eA

where B(0, M) := {z € R?: |z| < M}, and the second condition in (1.3) one obtains
from [17, Corollary 53] the uniqueness of the viscosity solution of the PDE (1.2).

Let Cy(G) be the closure of the space C.(G) of all continuous functions with compact
support w.r.t. the supremum norm | - ||. Note that the existence of a function in
Co(G) \ {0} already implies that G is locally compact and vice versa since G is a
topological abelian group, which is metrizable. The following additional condition on
the generators (Ay)xea implies that the related Markovian convolution semigroup is
continuous from above.

Proposition 2.8. In addition to the assumptions in Theorem 2.5, suppose:
(A3) For every € > 0 there exists ¢ € [\yea (D(AA) N CO(G)) with 0 < ¢ < 1,
©(0) =1 and supyey [|Axplloo < e

Then, the related Markovian convolution semigroup (% (t)f)(z) = E(f(x+ X)), t >0,
is continuous from above on BUC(G).

The proof is given at the end of Section 5. In line with Remark 2.2, under (A3) the
Markovian convolution semigroup (.(t)):>0 has a unique extension from BUC(G) to
Cy(@G) which is continuous from above. Moreover, continuity from above implies a dual
max-representation for the sublinear expectation £ in terms of probability measures,
see [5, Lemma 2.4, Lemma 3.2]. For instance, in the case G = R%, where the generators
are given by Lévy triplets (b, X, ) € A, the condition (A3) holds if (1.4) is satisfied
and the set of Lévy measures {u : (b, X, u) € A} is tight.

3. EXAMPLES

Let cal (G) be the set of all Borel probability measures on G.

Example 3.1 (Compound Poisson processes). For A > 0 and p € cal (G), let

(Anuf)(@) = A [ o) = f@)anty), 1 € BUC(G), 2 € G.

Then, A, ,: BUC(G) — BUC(G) is a bounded linear operator which satisfies the
positive maximum principle (cf. [11, Definition 4.5.1]), i.e. for f € BUC(G) and zo € G
with f(z0) = maxzeq f(z) > 0 one has (A),f)(zo) < 0. Further, since Ay, is
bounded and linear, it generates the linear uniformly continuous semigroup (etANH)tZO.
Recall that for a bounded linear operator B: BUC(G) — BUC(G) the exponential
eB =377 &£B" of B is again a bounded linear operator BUC(G) — BUC(G). We
first show that Sy ,(t) := e/ satisfies

(Sau®)f) () = E(f(z + J)) = /Gf(w+y)d(IP)th1)(y), f € BUC(G)

for all t > 0, where (J;)i>0 is a compound Poisson process with rate A and jump size

distribution g on a probability space (£, F,P). In particular, (S )\#(t)) />0 18 a linear

Markovian convolution semigroup. Indeed, let J; = Zi\ﬁlYl for an i.i.d. sequence
(Y)ien of random variables Y;: Q@ — G such that Po Y[l = i, and a random variable
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Ny: Q — Ng which is independent of (Y;);ey and satisfies P(N; = n) = e (’\t) for all
n € N. Then, for f € BUC(G) and z € G we have

(A"
n!

— —Atz mn / / flx+y+...+yn)dulyr) - du(yn)

E(f(z+J;)) ZE (z+Yi+...+Y)e

_ —Atz AMJF)‘) f) (@) = M (At 1 ()

- (emwf)@) = (sm )f) (@),

where we used ((Ax, + ) f) (@) =X [o fl@+y) du(y).
Now, assume that A C [0, 00) is bounded and Q C cal (G). Since

{Axpf: (A p) € A x Q} is bounded

and uniformly equicontinuous

{f € BUC(G) : } = BUC(G),

the assumptions (A1) and (A2) are satisfied with D = BUC(G). Hence, by Theorem
2.5 and Remark 2.6 there exists a nonlinear expectation space (2, F, &) and an E-Lévy
process (Xi):>0 such that for all f € BUC(G) the function

u(t,x) = (u(t))(a:) =&(f(r+Xy), t>0,z€a,
is the unique classical solution of the fully nonlinear PIDE
wlta) =  sup (Ayaul®)(@), (te) e (0,00) x G,
(Ap)eAxQ
U(O,Z’) - f(l'), z € G,

with u € C1([0, 00); BUC(Q)).

Example 3.2 (Lévy processes on real separable Hilbert spaces). Let G = H be a real
separable Hilbert space, and consider a set A of Lévy triplets (b, %, u), i.e. b € H,
3. H — H is a symmetric positive semidefinite trace class operator and u is a Lévy
measure on H, i.e. a Borel measure satisfying

p((0) =0 and [ 1ALl du(y) < .

By the Lévy-Khintchine formula (see e.g. [18, Theorem 5.7.3]), for each Lévy triplet
(b, 3, 1) there exists a Markovian convolution semigroup (Syx . (t))i>0 of linear opera-
tors on BUC(H) with generator Ay ,: D(Apyx,,) C BUC(H) — BUC(H). Moreover,
BUC?(H) C D(Apyx,), where BUC?(H) denotes the space of all functions H — R
which are twice differentiable with bounded uniformly continuous derivatives up to
order 2. For f € BUC?(H), the function Ap s uf is given by

(A20) (@) = (. F@) + Ler(2V2 / f@+1) — F@) — (VF(), h(y)) duly)

for x € H. Here, the function h: H — H is defined by h(y) = y for ||y|| < 1, and
h(y) = 0 whenever ||y|| > 1. In particular, (A1) is satisfied. Assume that

Cim sup (\b|r+||zutr+ /| mnyuzdu(y))m, (3.1)

(b,2,n)eA
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where || - |ltr denotes the trace norm. We will verify that (A2) is satisfied under (3.1).
Let

B CA{Asuf - (b,X, 1) € A} is bounded
- {f < ﬂ D(Apz.p) - and uniformly equicontinuous '
(b,Z,n)EA

Since BUC?(H) is dense in BUC(H), it suffices to show that BUC?(H) C D. Let
f € BUC?(H). Then, f € D(Ay s ) for any Lévy triplet (b, 3, 1) € A. In the sequel, we
denote by ||[V2f(z)|| the operator norm of the bounded linear operator V2f(z): H — H
for all z € H and by ||V f||co := supgep [|V2f(2)|. Then, by Taylor’s theorem we have

(Aps0f)@)] < BNV @) + %IIEIItrIIVQf(w)II
+/}f(w+y)— z) — (V (), h(y))| du(y)
H

1
< IV Flle + SISl 92l -+ max {2ufuoo, IV} [ 1A TP )

< 20 max {|| flloo, IV flloos [[V? Flloo }
for all x € H and all (b, X, u) € A, so that

sup [ Apzpuflloe < 2C max {|[flloc, IV flloos [V floc } - (3.2)
(b,2,u)EA

Let ¢ > 0. Since f € BUC?(H) there exists § > 0 such that for all z,2z € H with
|z —2|| <& and 0 € {f,Vf, V2f} it holds

2Csup [|0(z +y) —0(z +y)[| <e.
yeH

Let x,z € H be fixed with ||z — z|| < and g: H — R be defined by

9() = fz+y) - fz+y)
for all y € H, so that g € BUC?*(H) with 2C max {||g||c, [|[V¢lloo: V39|l } < &. By
(3.2) we get
[(Ap ) (@) = (Apzuf)(2)] = | (Abx,9) (0)] < 2C max {||glloc, [ Vlloo, Vgl } <&

for all (b, X, 1) € A, which shows that (A2) is satisfied. Therefore, by Theorem 2.5 there
exists a sublinear expectation space (2, F, &) and an £-Lévy process (X¢):>0 such that
for all f € BUC(H) the function

u(t,z) = (u(t))(x) == E(f(x + X)), ¢>0,z€H,
is a BUC?(H)-viscosity solution of the fully nonlinear PIDE

w(t,z) = sup (Apxpult))(z), (L)€ (0,00) x H,
(b,2,n)EA

u(0,z) = f(x), xe€H.
Example 3.3 (Lévy processes on the d-dimensional Torus Td). Let G = T¢, where T¢
denotes the d-dimensional Torus represented by (—m,7|%. We say that (b, %, i, v) is a

Lévy quadruple if b € R%, ¥ € R¥? is a symmetric positive semidefinite matrix, y is a
positive finite measure on T? and v is a positive measure on T¢ with v({0}) = 0 and

) ly? dv(y) < co.
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This definition is motivated by the Lévy-Ité6 decomposition of a Lévy process in RY,
where the Lévy measure is further decomposed into a measure describing the large
jumps (here: p) and another measure describing the small jumps (here: v). For each
Lévy quadruple (b, %, p, v) we consider

(Avs ) (&) = b- V(&) + L x(SVf (& / f@+y) - f(z) du(y)
+ Tdf(ery)—f(w)—Vf(:v)-de(y)

forz € T and f € D(Ap 5 pu0) == {9 € C(T?) : Ayx g € C(T?)}. Recall that C(T?)
can be identified with the set of all 27-periodic continuous functions on R,

We start by proving that for any Lévy quadruple (b,%, 1, v) the operator Ayx .,
generates a Markovian convolution semigroup (Sp s .., (t))¢>0 of linear operators on Te.
In order to do so, let (b, 3, u,v) be a Lévy quadruple and define

RS BN OL 7O R SR / F(a + 27k) du(y)
(=] kezd\{0} o)
for f € L2(RY), where \;, > 0 for all k € Z%\ {0} and > keza\foy M = 1. Then,

n is a Lévy measure on R%, see e.g. Example 3.2 with H = RY, so that (b,%,n) is a
Lévy triplet. Hence, there exists a Markovian convolution semigroup (Sp s ,(t))i>0 of
linear operators on R? with generator Ap - As the space C(T%) of all 27-periodic
continuous functions is a closed subspace of BUC(R?), which is invariant under Sy s ,(t)
for all ¢ > 0, we obtain that

S(t) = (Sb,E,n(t))|C(Td)7 t>0

defines a Markovian convolution semigroup of linear operators on C(T%). Let A denote
the generator of the semigroup (S(t))i>0. As C(T9) is a closed subspace of BUC(R?)
and ez g0y Ak = 1, we get that

Af =Apsnf = Avsupf
for all f € D(A). In particular, Ay, is the generator of (S(t)):>o-

Now, let A be a set of Lévy quadruples with

sup <|b| + |2+ ,u(’]I‘d) +/ |y\2 dz/(y)) < 00. (3.3)
b,Z,u,v)EA Td

Then, in a similar way as in Example 3.2, one can show that for every f € C?(T%) =
BUC?*(T?), the set {Ap 5, f: (b, 3, u,v) € A} is bounded and equicontinuous. There-
fore, the assumptions (A1) and (A2) are satisfied. Hence, there exists a nonlinear
expectation space (2, F, &) and an E-Lévy process (X;)i>o such that for all f € C(T%)
the function

u(t,z) = (u(t))(z) == E(f(x + Xy)), t>0,2¢€T
is a C?(T%)-viscosity solution of the fully nonlinear PIDE

ut(t)x) = sup (Ab,E,,u,,Vu(t))(l‘)v (t,.T) S (07 OO) X Tdu
(b,2,u,v)EA

u(0,2) = f(z), xe€T%

We also refer to Hunt [10] for a Lévy-Khintchine formula on compact Lie groups.
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Example 3.4. Let A: D(A) C BUC(G) — BUC(G) be the generator of a Markovian
convolution semigroup (S(¢)):>0 and A C [0,00) bounded. For all A € A let Ay := A\A
and Sy (t) := S(At) for t > 0. Then, the assumptions (A1) and (A2) are satisfied with
D = D(A). Hence, there exists a nonlinear expectation space (2, F,€) and an £-Lévy
process (X¢):>0 such that for all ug € BUC(G) the function

u(t,z) =E(fla + X)), t>0,z€G
is a D(A)-viscosity solution of the fully nonlinear PDE
ug(t,z) = sup ()\Au(t))(x), (t,x) € (0,00) x G,
AEA

u(0,2) = f(x), z€Gq.

For instance, if A is the generator of a cylindrical Wiener process on a separable Hilbert
space, one obtains an £-Lévy process which can be viewed as a cylindrical G-Wiener
process.

Example 3.5. For all h > 0 let py := %% and consider A := {(0,0,uh) :h > 0} in
Example 3.2 with d = 1. Then, we have that

1
sup [ 1Al dpn() = sup o [ 1o dou(y) = 1,
h>0JR h>0 R

so that the assumptions (A1) and (A2) are satisfied. However, the second condition
n (1.3) does not hold. By Example 3.2, there exists a sublinear expectation space
(Q,F,€) and an E-Lévy process (X¢)i>0 such that for all f € BUC(R) the function

u(t,:c) = g(f(x+Xt))v t>0,z GRa

is a BUC?(R)-viscosity solution of the fully nonlinear PIDE

w(t,x) = iu]g (Aoopu(t))(z), (t,z) € (0,00) x R,

>

u(0,z) = f(x), zeR
Note that || A0 f — 5/”|| = SUPser ‘f(ﬁh)_];(f)_fl(z)h —3f"(@)] = 0as h \,0
for all f € BUC%(R).
Example 3.6 (Cauchy distributed jumps). For v > 0 let §, be given by

b1 1 b
firy ((—00, b)) = ’Y/ 5 dy = 3 + arctan <>

T ) Y2+ v
for b€ R. Let I' C (0,00). Then, we have that

sup / 1A P dpe (y) < sup o (R) = 1,
vel' JR yel’

so that (Al) and (A2) are satisfied, but the first condition in (1.3) is violated. By
Example 3.1 with G = R (using the notation from Example 3.2), there exists a sublinear
expectation space (2, F, £) and an £-Lévy process (X¢):>0 such that for all f € BUC(R)
the function
u(t,r) = E(f(+ X)), t>0,5€R,

is the unique classical solution of the fully nonlinear PIDE

ut(t7x) = Ssup (AO,O,,LL»yu(t))(w)a (t,l‘) € (Oa OO) x R,

vyel
u(0,z) = f(z), z€R

with u € C*([0,0); BUC(R)).
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4. PROOF OF THEOREM 2.3

Proof. Let ((t))¢>0 be a convex Markovian convolution semigroup which is continuous
from above. By Remark 2.2, every .#(t) has a unique extension to a convex kernel
L(t) : Cp(G) = Cp(G) which is continuous from above. Then the family

Est(z, f) = (L(t—s)f)(x), 0<s<t

of convex kernels on Cy(G) is continuous from above and satisfies the Chapman-
Kolmogorov equations, i.e.

Es,t(xy gt,u(’a f)) = gs,u(xy f)

forall 0 < s <t <u, feCyG) and x € G. Hence, it follows from [5, Theorem 5.6]
that there exists a convex expectation space (€2, F, ) and a family of random variables
X :Q— G, t >0, such that

E(f(Xo)) = £(0)
for all f € Cy(G) and
E(F(Xpy, . X0, X)) = E(Eap (Xar f(Xirs- . X +)))

foral 0 < s<t,neN 0<t <...<t, <s, and f € Cp(G"*!). Recall that
(@tyy - T, Ts) > Esyp (xs, f(x4y, ..., 24, -)) is continuous, see e.g. [5, Proposition 5.5
with § = G and T = G". Next, we verify that (X¢);>0 is an £-Lévy process. For
f € Cy(G) and s,t > 0 one has

E(f(Xy)) = E(&oe(Xo, f)) = E((L (1) f)(Xo)) = (L () £)(0)

and

g(f(XS—i-t - Xs)) = g(f(XS)XS-i-t)) = 5(5875+t(XS= f(X& ))

= E((L (O F(Xs, ))(Xs)) = E((Z(D)(0)) = (L ().1)(0), (4.1)
where f(z,y) := f(y —2) and (L (1) f(z, -))(z) = (L () f-2) (&) = (Z(1) [)(0) because
Z(t) is a Markovian convolution. This shows that the random variables X ¢ — X, and

X; have the same distribution under £. Moreover, for s,t > 0,0 <t < ... <t, <s
and f € Cy(G™*1), it follows by (4.1) that

(L) f(@eys -2y, ))0) = E(f(eys - 20, Xt — X))

for all z4,,...,x, € G and therefore,

E(F(Xuys s Xy Xort — X)) = E(foxs (Xt -+ s Xy X))
= E(Eprt(Xes foxa(Xeyo o, X1y )

=E((SL ) f-x. (X, - X,y ) (X))

= 5((Y(t)f(th,...,th, -))(O))

=E(E(f(@ys s Tty Xogt — X)) lor,=Xe, iy =X, )

which shows that Xsi; — X is independent of (Xy,,...,X;,). It remains to verify
that X; — Xj in distribution as t N\, 0. To that end, fix f € C3(G) and notice that
there exists an increasing sequence (f,) in BUC(G) which converges pointwise to f.
By Dini’s theorem it follows that the continuous functions ¢ — (.#(t)f,)(0) converge
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uniformly on [0, 1] to the continuous function ¢ — (. (t) f)(0). Hence, for every £ > 0
there exists some ng € N such that

E(F (X)) = FO) < [(L()1)(0) = (F (1) fng) O) + 7 () frng = Fro oo
+ 1o (0) = £(0)]
<eg, ast\(0.

Conversely, let (X;)¢>0 be an £-Lévy process on a convex expectation space (£, F,E).
Then, the family (. (¢)):>0 defined by

(O f)(z) = E(f(z + X1))

for f € BUC(G) and = € G is a convex Markovian convolution semigroup. Indeed, for
f € BUC(G), z € G and t > 0, it holds that

(L) f2)(0) = E(f (2 + X)) = (L (1) f) (),
so that .(t) is a convex Markovian convolution which satisfies
(Z0)f) (@) = E(f (2 + Xo)) = E(f2(X0)) = f2(0) = f(2).

Moreover, since E(f(z + (Xiys — X5))) = E(f(z + Xy)) = (L) f)(z) for all s,t > 0,
f € BUC(G), z € G, and X;ys — X, is independent of X we obtain

(L (t+5))(0) = E(f(Xtys)) = Ef(Xs + (Xpps — X))
=E((L ) f)(Xs) = (L ()7 () f)(0).

Since . (s) and . (t) are Markovian convolutions we conclude the semigroup property
Lt +s) = S(s)L(t). It remains to show that limy g ||-7()f — fllc = 0 for all
f € BUC(G). To do so, we first show that for every ¢ > 0 and § > 0 we have that

E(cle\Bo,s) (X)) =0 (4.2)
ast \(0. Let po: G — R be defined by

e(y) = g(d(y,O) A6)

for y € G. Then, ¢ € Cy(G) with ¢ > 0, ¢(0) =0 and ¢(y) = c for all y € G\ B(0,9),
so that

0 < E(claypos) (Xt)) = E(0(X)1a\B(0,s)(Xt)) < E(p(Xy)) =0

as t \, 0. Now, fix ¢ > 0 and f € BUC(G). Then there exists some 6 > 0 such that
|f(x+y) — f(x)] < § forall z,y € G with d(y,0) < §. For each z € G let g, € L>(G)
be given by y + 1p(0,6)()(f(z +y) — f(x)). Then |gz|lc < § for all z € G, and by
(4.2) there exists some to > 0 such that

E 2N ool B(0,6)(X1)) < %
for all 0 < ¢ < tg. Since £: L2(Q, F) — R is 1-Lipschitz continuous, we get
(L0 f) (@) = f(@)] = [E(fla+ Xe) = f(2))] < E(If(z+ Xp) = f(2)])
< E(9(Xt) + 2/ flloo 1\ B(0,6) (X))
< lgzlloe + €2l f lloolay 0,8 (Xt)) < e
for all 0 < ¢ < tg, which shows that ||.7(t)f — fllec < € for all 0 <t < £p.



14 ROBERT DENK, MICHAEL KUPPER, AND MAX NENDEL

5. RANDOMIZING LINEAR SEMIGROUPS AND THE PROOF OF THEOREM 2.5

Throughout this section all Markovian convolutions are defined on BUC(G). We
assume that {Ay : A € A} is a given non-empty family of operators which satisfies
the assumptions (Al) and (A2). Recall that A) generates a Markovian convolution
semigroup (Sx(t))¢>0 of linear operators, and the domain

D= {f € m D(A)): {AAf: A€ A} is bounded and uniformly equicontinuous}
AEA

is dense in BUC(G).

We consider finite partitions P := {w C [0,00) : 0 € 7, 7 finite}. For a partition 7 =
{to,tl, R ,tm} e PwithO=ty <t <...<ty, we set ‘71”00 = Hlan:Lm’m(tj — tj—l)'
The set of partitions with end-point ¢ is denoted by P, i.e. P, := {7 € P : maxm = t}.

For f € BUC(G) and t > 0, we define

(Jef)(x) == sup (Sx(t)f)(x), z€G,
AEA
and for a partition m € P, we set

Inf = Jt—tg " Jty—ti 1 [

where we assume that m = {to,t1,...,tm} With 0 =tg <t1 < ... <ty, and Joy f := f.
Note that J; = Jyo 4 for t > 0. Moreover, since S)(t) is continuous from below for all
A€ A andt >0, it follows that J; is continuous from below for all w € P.

Let f € D. Then, by definition of D, the family (Ayf)aea is bounded and, through-
out the rest of this section, we denote

Ly :=sup ||Axf|leo < 00.
AEA

Lemma 5.1. a) J; is a sublinear Markovian convolution for all m € P.

b) Let f € D. Then,

St f = iy flloo < Lyglts —ta|,  t1,t2 >0, (5.1)

|Jrf — flloo < Lgt, me P, t>0.
Proof. a) Since Sy(t) is a linear Markovian convolution for all A € A, J; is a sublinear
Markovian convolution for all ¢ > 0. As this property is preserved under composi-

tions, the same holds for .J.
b) Let f € D. For t1,t2 > 0, 2 € G, and \yg € A we have that

(Sxo (t1) f) () = (Jeu ) (@) < (Sxg(t1) f) (2) = (Sxg (t2) f) ()
< 1S (t1) f = Sxo (t2) fll oo
< sup [1Sx(t1) f — Sa(t2) flloo

and therefore, taking the supremum over Ay € A,
(Jt1f) (‘T) - (Jtzf) (‘T) < iulpi ||S>\(t1)f - S)\(t2)f”oo
€

By symmetry and taking the supremum over all x € G, we thus get that
1Tt f = Jea flloo < Sup [Sx(t1).f = Sa(t2) flloc-
€
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Let A € A and w.l.o.g. let t; < ta. Then, as f € D(A),), it follows that (see, e.g. [7,
Lemma I1.1.3])

to

t2
HSA(h)f—SA(tz)fHoo:' “sioanras| < / 153 (5) Ar floc ds

< (t2 —t1) sup [[Sr(8)Arflloo < (t2 — t1)[|Ax S0
0<s<t

< Lyt — tof

and g € BUC(G). Taking the supremum over all A € A, we obtain (5.1).

To show (5.2), let m = {0,t1,...,t;m—1,t} € P with 0 < t; < ... <t,—1 <t and
m € N. Note that the case m = {0} is trivial. For m = 1, we have 7 = {0,¢}, and
by (5.1),

for all A € A. Here, we used the fact that ||Sx(5)g]lcc < ||g]lec for all A € A, s >0

[Jxf = flloo = IJef — Joflloo < Lyt
Now let m > 2, and set 7’ := {0, ¢1,...,tm—1}. By induction, we have ||J/ f— f]lco <
Lity—1. As Jp is a sublinear Markovian convolution and therefore 1-Lipschitz
continuous, we obtain
1Jxf = flloo = 1o Jt—tpr f = flloo

< Wity s [ = Tar flloo + 1o f = Flloo

< HJt_tmflf - f”oo + HJw’f - f”oo

< Lf(?f — tm—l) + Lf tm—1 = Lf t.

The following result shows that Jf depends continuously on the partition .

Lemma 5.2. Let m € N, m# = {0,t1,...,t;m} € P with 0 < t1 < ... < ty,, and for
n €N let m, ={0,t},...,th} € P with limy, 00 17 = t; for j =1,...,m. Then

| Jxf — I flloo = 0, asn — oo,
for all f € BUC(G).

Proof. Note that 0 < ¢f < ... < t! for sufficiently large n. Fix f € BUC(G). We have
to show the continuity of the map (t1,...,tm) = Jio4,,..1,,}f+ By definition of Jr, it
is sufficient to show that the map

[0,00) = BUC(G), t+s Jif

is continuous. Let ¢ > 0 and ¢ > 0, and let (¢") be a sequence in [0, 00) such that
t" — t. By assumption (A2) there exists fo € D with ||f — follce < §. Since Js = Jo s
is a sublinear Markovian convolution by Lemma 5.1 a), it is 1-Lipschitz and it follows
that

g
| Jsf = Jsfolloe < |If = folloo < 3

for all s > 0. Hence, it follows from Lemma 5.1 that

| Jef — Jinflloo < |t f — Tefolloo + [Tt fo — Jin folloo + || Jen f — Jin folso
<Ze+Lplt—t"<e

for sufficiently large n € N. O
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The above results allow to consider the limit of J;f when the mesh size of the
partition tends to zero. To that end, we first note that for s,¢ > 0, f € BUC(G) and
x € G, it holds

(Jersf) (@) = sup (Sa(t + s)f) () = sup (Sx(t)Sx(s)f) ()

AEA AEA
< iug (S)\(t)Jsf) (x) = (Jthf) (x).
€
From this, we obtain for 7y, my € P, with m; C w9 the pointwise inequality
I f < Iy J- (5.3)
In particular, for 71,79 € P, we have that
(I )V (Innf) < I, (5.4)
where 7 := w1 Umg € P;. Therefore, we define
(Y(t)f) (z) := Sug (J,rf) (z) (5.5)
TEL:

forallt >0,z € G and f € BUC(G). Note that .(0)f = f for all f € BUC(G).
Lemma 5.3. .(t) is a sublinear Markovian convolution for all t > 0, which satisfies
|7() f = fllo < Lst, fe€D.
Moreover,
li tf — fllo =
lsg |7(0) = flow =0
for all f € BUC(G).

Proof. As J is a sublinear Markovian convolution for all m € P, the same holds for
L(t). For f € D, x € G and ¢ > 0 there exists mg € P; such that

(L@ f) (@) = f@) < (Jn f) (@) = f(2) +e < sup [Tz f = flloo + €

and

f@) = (L Of) (@) < f(@) = (Jno f) (@) < sp [ Jof = fllo-

TI'GPt
By Lemma 5.1 it follows that

Hy(t)f - f”oo < sup ||J7rf - fHoo < Lft.

TeEP;
From this, we obtain that limy o ||7(t)f — flleec = 0 for f € BUC(G) with the same
density argument as in the proof of Lemma 5.2. 0

Lemma 5.4. Fort > 0, let (m,)nen be a sequence in P, such that mw, C w41 for all
n €N, and lim, o |Tn|oo = 0. Then

e f L), asn — o0,
for all f € BUC(G).

Proof. Fix f € BUC(G). For t = 0, the statement is trivial. For ¢ > 0 and x € G we
define

(Joof) (z) := sup (I f) ()

Then, J is a sublinear Markovian convolution. Since m, C 7,41, it follows from (5.3)
that
Jen | " Jsof, asn — oo.
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By definition of #(t), it clearly holds Jof < .#(t)f. As for the other inequality, let
m={to,t1,...,t;m} € P, withm e Nand 0 =ty <t; <...<ty ="t Since [Tl \ 0
as n — 0o, we may w.l.o.g. assume that #m, > m + 1 for all n € N. Moreover, we can
choose 0 = tf <t} < ... <t} =t with ), := {t{,t},...,t} C 7y and lim,, o0 & = ¢;
forall¢=1,...,m — 1. Then, by Lemma 5.2, we have that

|Joxf = Jnr flloo = 0, as n — oo.
Since
Joof > Jﬂ'nf > Jwgf > J?Tf - HJﬂf - Jwngoo
we obtain that Jof > Jrf. Taking the supremum over all 7 € P;, we thus get that
Corollary 5.5. Lett > 0. Then, there exists a sequence (my,) in Py such that
Jenf L) f,  asn — oco.

Moreover,
SL(t)f = sup (Ji)nf = sup (J27nt)2nf = 1i_>m (J27nt)2nf, (5.6)
neN " neN n—oo

for all f € BUC(G), where the supremum is understood pointwise.

Proof. Choose my, := {g—ﬁ : k€{0,...,2"}} in Lemma 5.4 to obtain the first statement.
In particular,

2n : 2n
L) f=L(t)f =supJy, f=sup (J2—nt) f = lim (JQ—nt) f (5.7)
neN neN =0
For 7, :== {& : k € {0,...,n}} it holds 7y» = m, for all n € N. Therefore, by (5.7), it
follows that

S () f =sup Jn, f =sup Jz,, f <sup Jz, f < S (t)f.

neN neN neN
Hence,
L (t)f =sup Jz, f = sup (Ji)nf,
neN neN "
which yields the first equality in (5.6) and therefore the assertion. O

Proposition 5.6 (Dynamic programming principle). (. (t))¢>0 is a Markovian con-
volution semigroup of sublinear operators. In particular, for every s,t > 0 one has

L(s+t)f =L(s)L(t)f (5.8)
for every f € BUC(G).

Proof. Let my € Psyy and 7 := 7y U {s}. Then, 7 € Py, with myp C 7, and by (5.3) we
get that
Jnof < JIxf.

We have already shown all properties of a Markovian convolution semigroup except
the semigroup property (5.8), i.e. the dynamic programming principle.

If s = 0 or t = 0 the statement is trivial. Therefore, let s, > 0. Let m € N and
0=ty <t1 <...<tm=s+twitht; =s for some i € {1,...,m}, and define 7 :=
{to, .. tm} € Psyy. Then, for m := {tg,...,t;} € Psand w9 := {t;—s,...,t;,—S} € P,
we have

Ioy = Jty—to Jti—tiy, and  Jny =Tyt Tty
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and therefore

Jnf =Jon-to Jtm—tmr f = (Ji—to - Jtitic) (Jtica—t: * Jt—tm s f)
:ijﬂzfg Jﬂ1y(t)f§y(8)y(t)f

Taking the supremum over all 7 € Py, we get S (s+1t)f < S (s)L(t)f. Conversely,
by Corollary 5.5 there exists a sequence (m,) in P such that J, f 7 .Z(t)f asn — oc.
For my € Ps and 7, ;= mo U {r + s : 1 € m,} € Psyy it holds Ju = JryJx

continuous from below we have

. Since Jr, is

n

Jno () f = lim JroJr, f= lim Jo f < S (s+1)f.
n—oo n—oo
Taking the supremum over all 7y € Ps, we get that .7 (s).7(t)f < L (s+1t)f. O

The following lemma is a special case of Jensen’s inequality for vector valued func-
tions. For the reader’s convenience we provide a short proof and refer to [9, Section
1.2] for an introduction to Bochner integration.

Lemma 5.7. Let .¥: BUC(G) — BUC(G) be conver and continuous. Let (2, F,v)
be a finite measure space with v # 0. Further, let g: Q@ — BUC(G) be bounded and
F-B(BUC(G))-measurable with separable range g(§2), i.e. g is Bochner integrable, such
that Sg: @ — BUC(G), w — #(g(w)) is again bounded. Then, g is Bochner

integrable and we have that

Y(@/ﬂgdu) Sy(lm/ﬂygdu.

Proof. Since . is continuous, we obtain that g : Q@ — BUC(G) is F-B(BUC(G))-
measurable with separable range (.¢)(€2) and thus Bochner integrable. If ¢ is a simple
function, .#g¢ is a simple function and the assertion follows by convexity of .#. Since g is
F-B(BUC(G))-measurable with separable range ¢g(2), there exists a sequence of simple
functions (gn)nen with lim, o [|gn(w) — g(w)|lec = 0 for all w € Q. By continuity of
&, we obtain lim, o |[|<Zgn(w) — L g(w)||ec = 0 for all w € Q. Hence, by definition of
Bochner’s integral it follows that

(s ) =2 (o )
gq}LH;O]/(lm/S)andyzlj(lmAYgdy.

g

Fix f € D. Since {A)f: A € A} € BUC(G) is bounded and uniformly equicontinu-
ous, it follows that

Af :=sup A,f € BUC(G),
AEA

where the supremum is understood pointwise.

Lemma 5.8. Fiz f € D. Then, for m € P and t > 0 it holds

Jﬂf—fg/omaXﬂY(s)Afds and y(t)f—fg/otf(s).%lfds.
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Proof. Since Af € BUC(G), the mapping [0,00) — BUC(G), s — #(s)Af is con-
tinuous. Therefore, the Bochner integrals are well-defined. Then, for all t,A > 0 we
have

h
Jnf — f = supSa(h)f — f = sup / Sy(s)Axf ds
AEA AeAN JO

h t+h
< / S (s)Afds = (s —1)Af ds. (5.9)
0 t
We prove the first inequality by induction on m = #x. If m = 1, i.e. if 7 = {0}, the
statement is trivial. Hence, assume that

Juf—f< /Omm S(s)Af ds

for all ©# € P with #7' = m for some m € N. Let 7 = {to,t1,...,tn} with 0 = tg <
t1 <...<tpmand 7 :=7\ {t;n}. Then, it follows from (5.9) and Lemma 5.7 that

tm
Jof = Jwf < T (St 1 f — f) < Jﬂ/( P(5 — tm1)AS ds)
tm—1
tm tm
< y(tm,l)( S5 — tm1)AS ds) < S (s)Af ds,
tm—1 tm—1

where the first inequality follows from the sublinearity of J,.. By induction, we thus
get

Inf = f=(Juf = T f) + (Juf = f) < " S (s)Af ds + o S (s)Af ds
0

tm—1
= / 7 (s)Af ds.
0

In particular, for every w € P, it holds

t
Jef— 1< / (s).Af ds.
0
Taking the supremum over all m € F; yields the second assertion. Il
Lemma 5.9. Let M C BUC(G) be bounded and uniformly equicontinuous. Then,

sup sup [[Sx(t)g — glloc = 0, ast 0.
AeAN geM

Proof. Let € > 0 and C' := supyepy ||g/lco- Then, there exists some § > 0 such that

sup [g(xz) —g(y)| < e
geM

for all z,y € G with d(z,y) < §. Let p(y) := %(d(y,O) A 6) for all y € G. Then,
¢ € BUC(G), 0 < ¢ <1, p(0) =0and ¢(y) =1 for all y € G\ B(0,9). Fix A € A,
g € M and z € G. Since g(x + ) — g(z) < e+ 2Cyp, we get

|(Sx(1)g) () — g(@)| = [[Sa(t) (9(z + ) — 9(2)) ] (0)| < e +2C (L (£))(0),
so that

sup sup [|Sx(£)g — glloo < € +2C(F(t)¢)(0).
AEA geM

Since (. (t)¢)(0) — 0 as ¢t \, 0 by Lemma 5.3, we obtain the assertion. O
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Lemma 5.10. For every f € D one has

| f - f _
| 241 ] o

Proof. Let € > 0. Then, by Lemma 5.9 and Lemma 5.3 there exists hg > 0 such that
Sx(h)Arf — Axf > —¢ forall A e A

and
S (WAf—Af <e
for all 0 < h < hg. Then, for every 0 < h < hg and A € A we get

h
SR — = Sa(h)f—f = /O Sa(s)Arfds > (Arf — o)k

so that

y(h)hf_f > Af —e. (5.10)

On the other hand, it follows from Lemma 5.8 that for 0 < h < hg
h h
FWf -1 -1Af < [ F©AFas—1As = [ A ()AF - Asds < e
0 0

which yields

SIS
Together with (5.10), we obtain
B f —
WL
for all 0 < h < hg. O

Proposition 5.11. For f € BUC(G) the function
u(t,z) = (u(t))(z) = (L) f)(z), t>0,z€G,
is a D-viscosity solution of the fully nonlinear PDE
u(t,x) = ilelg (Ayu(t))(z), (t,z) € (0,00) x G,

u(0,z) = f(x), zeG.

Proof. Fix t > 0 and « € G. We first show that u is a D-viscosity subsolution.
Let : (0,00) — BUC(G) differentiable with (¢(t))(z) = (u(t))(z), ¥(s) > u(s) and
¥(s) € D for all s > 0. Then, for every h € (0,t), it follows from Proposition 5.6 that

S (W)L (t—h)f —F 1) f _ S (hult—h) — ult)

0=
h h
o LBl —h) —u(t) _ S ()t~ h) = (1) + L (R)$() - u(t)
< . < )
— 7 (h) <w<t - h})L - w(t)> N ﬂh)w(;) — 9 | ¥ ; u(t)

Let € > 0. Then, by Lemma 5.10 and Lemma 5.3, there exists 0 < hg < t such that for
all 0 < h < hg one has
S (h)p(t) —v(t) e Plt—h)—9(t)

£
. S-Aw(t)"'ga N < —wt(t)‘i‘g,
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and
L (h) (= (1)) < —the(t) + %
Hence, we get

0 <. (h)(— v(t)) + Au(t) + % + w
b(t) —u(t)
h

for all 0 < h < hg. Since (w(t))(:v) = (u(t))(g;) we obtain that
— (1)) (z) + (Ap(t)) (z) +&.

Letting € N\, 0 yields (v¢(¢))(z) < (Ap(t))(z).

To show that u is a D-viscosity supersolution, let 1: (0, 00) — BUC(G) differentiable
with (¢(2))(z) = (u(t))(z), ¥(s) € D and ¥(s) < u(s) for all s > 0. By Proposition
5.6, for all A > 0 with 0 < h < t we get

o SO =SB =D ult) = S (Bult — )

< () + AD(t) + = +

u(t) — S (h)i(t — h)

IN

h h h
_u®) —o®) | ¥(t) = F(hy(t) | LR)p(t) — F(h)y(t = h)
h h h
< ) ; vt) | v() - ij(h)df(t) . y(h)<¢(t) - Z(t - h))

Let € > 0. Then, by Lemma 5.10 and Lemma 5.3 there exists 0 < hg < ¢ such that
¥(t) — L (h)p(t)

< —Ap(t) +

and

for all 0 < h < hg. We thus get

0< "0ty + st + 2 < 2O ) 1 +e

for all 0 < h < hg. Since (w(t))(x) (u(t))(x) we obtain that
—(AD() () + (e(D)) (2) +&.
Letting € N\, 0 yields (¢(t ))( ) > (AY(t)) (). O

In order to complete the proof of Theorem 2.5, it remains to show that there exists a
set P of probability measures and a stochastic process (X;);>o on a measurable space
(Q, F) such that the viscosity solution in Proposition 5.11 is of the form

u(t,x) = sup Ep(f(z + X3))
PeP

fort > 0 and x € G. This is shown in the following proposition for which the assumption
(A2) is not needed.



22 ROBERT DENK, MICHAEL KUPPER, AND MAX NENDEL

Proposition 5.12. There exists a set P of probability measures on a measurable space
(Q,F) and an E-Lévy process (Xi)i>o such that

(O f) (@) =E(f(z + X0)) = sup Ep(f(z + X1))

for all f € BUC(G), t > 0 and x € G, where E(Y) = suppep Ep(Y), Y € L>®(Q, F).

Proof. Let (Qg, Fo,Q) be a probability space such that there exists an independent
family of Lévy processes (X*)xca, where X? is a Lévy process with generator Ay, i.e.

Eg(f(z + X)) = (S\(®)f) (=)
forallz € G,t > 0 and f € BUC(G). We call ¢ = (¢¢)r>0 A-simple if there exist k € N
and 0 =ty < t1 < ... <t} such that

Z ¢ 1(t],t]+1 ) ¢(k tk 00) (t) (511)

where for j € {0,...,k} the mapping
o9 G — A
is measurable with finite range. For such a ¢ we define Xf; = Xg := 0 and inductively,
for j € {0,...,k — 1}, we then define \; := gb(j)(Xf;) and
XP = X0+ X - X,
for all t; < t < t;11. Finally, we define \;, := ¢(¥) (X;i) and
XP =X+ X — X

for t > t;. Then, X¢ = (X¢)t>0 can be interpreted as a stochastic integral w.r.t. the
A-simple process ¢. Let hq, ho > 0. Then,

(Jny Jno f) (x) = sup / flz+ -
neQ
for f € BUC(G), where Q is the set of probability measures of the form

n:B— 10,1, B~ [SAO (h1) <ZlBkSAk h2)13>](0)
k=1

with k € N, A\g, A1,..., A\, € Aand By ..., B, € Bis a measurable partition of G. Here,
we identify Sy(h) for A € A and h > 0 with the unique translation invariant kernel
associated to it. Inductively, we therefore obtain that J, with = = {t¢, ..., t;} admits
a dual representation in terms of distributions of stochastic integrals w.r.t. A-simple
processes of the form (5.11). For t > 0 and f € BUC(G), we thus obtain that

(L) f)(0) = sup Eg(f(X7)).

A-simple
Now, consider © := G0 the product o-algebra F, the canonical process (X¢)e>0 and
P:={Qo (X(b)fl ’ ¢ is A-simple}. (5.12)
Then, for £ := suppep Ep(-) we have that

(L@ f) (@) = E(f(z + Xp)) = sup Ep(f(z + Xt))
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for all ¢ > 0 and f € BUC(G). Then, (X;):>0 satisfies all properties in the definition
of an £-Lévy process. Note that (iii) and (iv) follow immediately from the dual repre-
sentation of the constructed expectation £(-) = suppep Ep(-) and (v) follows as in the
proof of Theorem 2.3. 0

The construction of the last proposition allows us to finish the proof of Theorem 2.5.

Proof of Theorem 2.5. By Proposition 5.12, there exists a sublinear expectation space
(Q,F,€) and an E-Lévy process (X¢)¢>0 such that

(L) f)(x) = E(f(z + Xp))
forallt >0,z € G and f € BUC(G). By Proposition 5.11,

ut, z) == (S (t)f) () = E(f(z + Xy))

is a D-viscosity solution to (2.4) - (2.5). Moreover, by Proposition 5.12 there exists
a set of probability measures P on (£, F) such that £(Y) = suppep Ep(Y) for all
Y € L, F). O

Remark 5.13. a) We note that the set P is constructed in (5.12), based on A-simple
functions. This description is in some sense different from the approach by Neufeld
and Nutz [19] and Kiithn [15], where the set of measures is a priori given in relation
to the family of Lévy triplets. The question of characterizing the set P in the general
situation considered in Theorem 2.5 seems to be hard and is outside the scope of the
present paper.

b) The construction of the nonlinear semigroup is similar to Nisio’s approach [21],
where only equidistant partitions of the time interval are used. As we have shown in
Lemma 5.4, . (t) is the limit of J for any increasing sequence (7, )nen With |7, s — 0.
Taking equidistant partitions, we obtain the analogue of Nisio’s semigroup. However,
in Nisio [21] strongly continuous semigroups on L (G) were considered, and it is now
well known that such semigroups have a bounded generator ([2, Corollary 4.3.19]),
which does not cover the interesting cases. Therefore, we work with BUC(G) as the
basic space. We plan to consider other relevant spaces like LP or the space of bounded
continuous functions in the future.

We finish with the proof of Proposition 2.8 which now follows essentially from
Lemma 5.3.

Proof of Proposition 2.8. Fix t > 0 and ¢ > 0. Let ¢ € (ycp (D(A)) N Co(G)) with
0<¢<1,¢(0)=1andsupyey [|[Arglloc < 57. Since p(0) = Land 1—p € (ycp D(AN)
with Ax(1 — ¢) = —Aygp, it follows from Lemma 5.3 that

(L1 =9)0) < [£B)1—¢) — (1 -9l

g
< tsup | Arglloe < <.
AEA

Note that the estimate in Lemma 5.3 holds for all functions in (3o, D(Ay). Since
¢ € Cp(Q) there exists a compact set K C G such that

lovk (y) <1 —p(y) + % for all y € G.

Hence,

Elenk(X1) < E(L— (X)) + g = (L ®)(1 - 9)(0)] + g <
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In a second step, let (f,) be a decreasing sequence in BUC(G) which converges
pointwise to f. Fix x € G and € > 0. By the first part, there exists a compact K C G
such that €1\ (Xt)) < €/4(1+ | filloo + | flloc). By Dini’s lemma there exists ng € N
such that f,(z+y) — f(r+y) <e/2 for all y € K and n > ng. Hence,

E(fulr+ X)) —E(f(z + Xy))
gé‘((fn(:c +X¢) = flz+ Xt))lK(Xt)) + 5((fn($ + Xi) — flz+ Xt))lG\K(Xt))

g% +2([f1lloc + [1fllo0)E Qi (X2)) < €

for all n > ng. This shows that f +— (.7 (t)f)(z) is continuous from above on BUC(G).

O
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