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Universitätsstraße 25
D-33615 Bielefeld · Germany

e-mail: imw@uni-bielefeld.de
http://www.imw.uni-bielefeld.de/wp/
ISSN: 0931-6558

mailto:imw@uni-bielefeld.de
http://www.imw.uni-bielefeld.de/wp/


A SEMIGROUP APPROACH TO NONLINEAR LÉVY PROCESSES

ROBERT DENK, MICHAEL KUPPER, AND MAX NENDEL

Abstract. We study the relation between Lévy processes under nonlinear expecta-
tions, nonlinear semigroups and fully nonlinear PDEs. First, we establish a one-to-
one relation between nonlinear Lévy processes and nonlinear Markovian convolution
semigroups. Second, we provide a condition on a family of infinitesimal generators
(Aλ)λ∈Λ of linear Lévy processes which guarantees the existence of a nonlinear Lévy
process such that the corresponding nonlinear Markovian convolution semigroup is
a viscosity solution of the fully nonlinear PDE ∂tu = supλ∈Λ Aλu. The results are
illustrated with several examples.
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1. Introduction

In this paper we study the relation between Lévy processes under nonlinear expec-
tations, nonlinear semigroups and fully nonlinear PDEs. Let (Xt)t≥0 be an Rd-valued
Lévy process on a probability space (Ω,F ,P). Then

(S(t)f)(x) := E(f(x+Xt))

for f ∈ BUC(Rd), t ≥ 0 and x ∈ Rd, defines a strongly continuous semigroup on
the space of bounded and uniformly continuous functions BUC(Rd) whose infinitesimal
generator A : D(A) ⊂ BUC(Rd) → BUC(Rd) is given by an integro-differential oper-
ator which is uniquely determined by a Lévy triplet, see Applebaum [1] or Sato [26].
Moreover, (S(t)f)t≥0 is the solution of the abstract Cauchy problem

∂tu(t) = Au(t), t > 0,

with u(0) = f ∈ BUC(Rd). For a detailed discussion on operator semigroups we refer
to Pazy [22] or Engel and Nagel [8].

We first extend the well-known relation between Lévy processes and Markovian con-
volution semigroups of probability measures to a nonlinear setting. Nonlinear Lévy
processes were introduced in [17] as càdlàg processes with stationary and independent
increments under a sublinear expectation. The G-Brownian motion due to [23, 24] is a
special case of a nonlinear Lévy process, see also Dolinsky et al. [6] or Denis et al. [4].
For an introduction to nonlinear expectations we refer to [16]. Since we do not re-
quire any path regularity we call a process (Xt)t≥0 an E-Lévy process with values in an
abelian group G, if it has stationary and independent increments and Xt → X0 in dis-
tribution as t↘ 0 with respect to a convex expectation E . We then provide a relation
between E-Lévy processes and convex Markovian convolution semigroups, i.e. strongly
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continuous semigroups (S (t))t≥0 on BUC(G) such that each S (t) is a translation in-
variant convex kernel. The proof relies on a version of Kolmogorov’s extension theorem
for nonlinear expectations elaborated in [5].

Our main focus lies on the construction of E-Lévy processes with nonlinear genera-
tors. We start with an arbitrary family Λ of generators

Aλ : D(Aλ) ⊂ BUC(G)→ BUC(G)

of Markovian convolution semigroups Sλ = (Sλ(t))t≥0 of linear operators. We then
construct the smallest Markovian convolution semigroup (S (t))t≥0 which dominates
each (Sλ(t))t≥0. The corresponding E-Lévy process can be viewed as a process with
independent increments whose distribution is uncertain, i.e. any distrubution of the
increments associated to (Sλ)λ∈Λ is taken into account. We basically follow an idea
by Nisio [21] in order to construct a sublinear Markovian convolution semigroup which
results from a given family of linear Markovian convolution semigroups by constant
optimization. In [21] Nisio considers strongly continuous semigroups on the space of all
bounded measurable functions. However, by a theorem of Lotz (see e.g. [2, Corollary
4.3.19]), any strongly continuous semigroup on the space of bounded measurable func-
tions already has a bounded generator, which is not suitable for most applications. We
therefore modify Nisio’s construction to the space BUC(G). Under the condition that
the subspace{

f ∈
⋂
λ∈Λ

D(Aλ) :
{
Aλf : λ ∈ Λ

}
is bounded and uniformly equicontinuous

}
(1.1)

is dense in BUC(G) we construct a (strongly continuous) Markovian convolution semi-
group (S (t))t≥0 on BUC(G) with corresponding E-Lévy process (Xt)t≥0 on a sublinear
expectation space (Ω,F , E) such that

u(t, x) := (S (t)f)(x) = E(f(x+Xt)), t ≥ 0, x ∈ G,

is a viscosity solution of the fully nonlinear PDE

∂tu = sup
λ∈Λ

Aλu on (0,∞)×G

with u(0) = f for all f ∈ BUC(G). In particular, the generator of the E-Lévy process
(Xt)t≥0 is given by supλ∈ΛAλ. Here, we use a slightly different notion of viscosity
solution which fits to the semigroup setting. However, in many cases, particularly for
the classical case G = Rd, this leads to the same class or an even larger class of test
functions. We refer to Crandall et al. [3] for the classical definition and a detailed dis-
cussion of viscosity solutions. Moreover, we give a condition on the generators (Aλ)λ∈Λ

which guarantees that the corresponding E-Lévy process is tight, or equivalently each
S (t) is continuous from above. Throughout, the state space is an abelian group, which
gives the opportunity to consider certain classes of cylindrical G-Wiener Processes as an
infinite dimensional extension of the G-Brownian motion, or nonlinear Lévy processes
on the d-dimensional Torus.

Nonlinear Rd-valued Lévy processes have first been introduced in Hu and Peng [17],
where G-Lévy processes with a decomposition X = Xc + Xd into a continuous and
a jump part are considered. Under the assumption that Xc is a G-Brownian motion
and E(|Xd

t |) ≤ ct for some constant c, it is shown that u(t, x) = E(f(x + Xt)) is
a viscosity solution of ∂tu(t, x) − G(u(t, x + ·) − u(t, x)) = 0 and u(0) = f , where
G(ϕ(·)) := limh↓0

1
hE(ϕ(Xh)). The function G is shown to have a Lévy-Khinchine
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representation in terms of a set Λ of Lévy triplets (b,Σ, µ) satisfying an integrability
condition, i.e. u(t, x) is the solution of

∂tu = sup
(b,Σ,µ)∈Λ

Ab,Σ,µu, and u(0) = f, (1.2)

where Ab,Σ,µ is the generator with the Lévy triplet (b,Σ, µ), see also Example 3.2. Con-
versely, starting from the unique solution of (1.2), Hu and Peng [17] give a construction
of the respective nonlinear Lévy process. In Nutz and Neufeld [19] the authors consider
upper expectations E(·) = supP EP(·) over a class of all semimartingales with given dif-
ferential characteristics in a set Λ of Lévy triplets, which in [20] is shown to be analytic.
This allows them to construct conditional nonlinear expectations and nonlinear Lévy
processes with general characteristics whose distributions are defined for all measurable
functions. Under the conditions

sup
(b,Σ,µ)∈Λ

(
|b|+ |Σ|+

∫
Rd
|y| ∧ |y|2 dµ(y)

)
<∞ and lim

ε↘0
sup

(b,Σ,µ)∈Λ

∫
|z|≤ε
|z|2 dµ(z) = 0

(1.3)
it is shown that u(t, x) = E(f(x + Xt)) is the unique viscosity solution of (1.2). The
conditions in (1.3) are weaker than the integrability condition in [17] and allow for
instance to consider classes of Lévy processes with infinite variation jumps. Our main
condition (1.1) in the context of Rd-valued processes is guaranteed under

sup
(b,Σ,µ)∈Λ

(
|b|+ |Σ|+

∫
Rd

1 ∧ |y|2 dµ(y)
)
<∞, (1.4)

which does not exclude any Lévy triplet at all. In particular, Lévy processes with non-
integrable jumps can be considered, see e.g. Example 3.6, and for finite Λ the condition
(1.4) is always satisfied. In order to obtain uniqueness for the viscosity solution of (1.2)
one additionally needs the second condition in (1.3) and tightness of the family of Lévy
measures {µ : (b,Σ, µ) ∈ Λ}, which is due to [17]. In Hollender [12] the results of [19] are
generalized to upper expectations over state-dependent Lévy triplets, see also Kühn [15]
for existence results on the respective integro-differential equations under fairly general
conditions. A related concept to nonlinear Lévy processes are second order backward
stochastic differential equation with jumps, see Kazi-Tani et al. [13], [14] and also Soner
et al. [27].

The paper is organized as follows. In Section 2 we introduce the notation and discuss
our main results which are illustrated with several examples in Section 3. The relation
between E-Lévy processes and Markovian convolution semigroups is given in Section
4. Finally, in Section 5 we prove the main result by constructing a version of Nisio
semigroups on BUC(G).

2. Main results

We say that (Ω,F , E) is a convex expectation space if (Ω,F) is a measurable space
and E : L∞(Ω,F) → R is a convex expectation which is continuous from below. As
usual L∞(Ω,F) denotes the space of all bounded measurable functions Ω→ R. Recall
that a convex expectation on a convex set M with R ⊂ M is a functional E : M → R
which satisfies

E(X) ≤ E(Y ) whenever X ≤ Y ,
E(α) = α for all α ∈ R, and
E
(
λX + (1− λ)Y

)
≤ λE(X) + (1− λ)E(Y ) for all λ ∈ [0, 1].
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If in addition E is positive homogeneous, i.e. E(λX) = λE(X) for all λ > 0, then E is
called a sublinear expectation and (Ω,F , E) is a sublinear expectation space. A convex
expectation is said to be continuous from below if E(Xn)↗ E(X) for every increasing
sequence (Xn) in L∞(Ω,F) which converges pointwise to X ∈ L∞(Ω,F).

Let (Ω,F , E) be a convex expectation space, and let G be an abelian group with a
translation invariant metric d such that (G, d) is separable and complete. We denote
by Cb(G) and BUC(G) the spaces of all bounded functions f : G→ R which are contin-
uous and uniformly continuous, respectively. For an F-B-measurable random variable
X : Ω→ G with values in G endowed with the Borel σ-algebra B, the functional

E ◦X−1 : Cb(G)→ R, f 7→ E(f(X))

defines a convex expectation which is called the distribution of X under E . Given
another random variable Y : Ω→ S with values in a Polish space S, for f ∈ Cb(S ×G)
the function

S → R, y 7→ E(f(y,X))

is bounded and lower semicontinuous. In fact, for g ∈ BUC(S ×G), it follows that

|E(g(y,X))− E(g(z,X))| ≤ ‖g(y, · )− g(z, · )‖∞
for y, z ∈ G and therefore, y 7→ E(g(y,X)) is uniformly continuous. Approximating
f ∈ Cb(S × G) from below by a sequence (gn)n∈N ⊂ BUC(S × G), see [5, Remark 5.4
a)], we obtain that y 7→ E(f(y,X)) is lower semicontinuous. Hence, E(f(y,X))|y=Y is
in L∞(Ω,F), which shows that E

(
E(f(y,X))|y=Y

)
is well-defined. Then, X is called

independent of Y if

E(f(Y,X)) = E
(
E(f(y,X))|y=Y

)
for all f ∈ Cb(S ×G).

Definition 2.1. a) We say that S : BUC(G)→ BUC(G) is a convex kernel if (S · )(x)
is a convex expectation on BUC(G) for all x ∈ G. It is called continuous from above if
S fn ↘ S f (pointwise convergence) for every decreasing sequence (fn) in BUC(G)
which converges pointwise to f ∈ BUC(G).

b) A convex kernel S : BUC(G)→ BUC(G) is called a convex Markovian convolution if
S fn ↗ S f for every increasing sequence (fn) in BUC(G) which converges pointwise
to f ∈ BUC(G) and (

S f
)
(x) =

(
S fx

)
(0)

for all f ∈ BUC(G) and x ∈ G, where fx : G→ R is given by y 7→ f(x+ y).
c) We say that (S (t))t≥0 is a convex Markovian convolution semigroup on BUC(G) if

(i) S (t) is a convex Markovian convolution for all t ≥ 0,
(ii) S (0)f = f for all f ∈ BUC(G),

(iii) S (s+ t) = S (s)S (t) for all s, t ≥ 0,
(iv) limt↘0 ‖S (t)f − f‖∞ = 0 for all f ∈ BUC(G).
In this case, we say that (S (t))t≥0 is continuous from above if each S (t) is so.

d) Let (Ω,F , E) be a convex expectation space. Then, (Xt)t≥0 is called an E-Lévy
process if

(i) Xt : Ω→ G is measurable for all t ≥ 0,
(ii) E(f(X0)) = f(0) for all f ∈ Cb(G),

(iii) E ◦ (Xs+t −Xs)
−1 = E ◦X−1

t for all s, t ≥ 0,
(iv) Xs+t − Xs is independent of (Xt1 , . . . , Xtn) for all s, t ≥ 0, n ∈ N, 0 ≤ t1 <

. . . < tn ≤ s,
(v) E(f(Xt))→ f(0) for all f ∈ Cb(G), i.e. Xt → X0 in distribution as t↘ 0.
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Remark 2.2. Let S : BUC(G)→ BUC(G) be a convex kernel which is continuous from
above. Then, the mapping

E0 : BUC(G)→ R, f 7→
(
S f

)
(0)

is a convex expectation which is continuous from above. If S is in addition a Markovian
convolution then, by [5, Theorem 3.10] with Ω := G, F the Borel σ-algebra on G and
M = BUC(G), there exists a convex expectation space (Ω,F , E) and a random variable
X (here the identity on G) such that(

S f
)
(x) = E(f(x+X))

for all f ∈ Cb(G) and x ∈ G. By [5, Remark 5.4 c)] the convex kernel S has a unique
extension to a convex kernel S : Cb(G)→ Cb(G) which is continuous from above.

Our first result connects convex Markovian convolution semigroups and E-Lévy pro-
cesses. The proof is given in Section 4.

Theorem 2.3. For every convex Markovian convolution semigroup (S (t))t≥0 which is
continuous from above, there exists a convex expectation space (Ω,F , E) and an E-Lévy
process (Xt)t≥0 such that (

S (t)f
)
(x) = E(f(x+Xt)) (2.1)

for every f ∈ BUC(G) and x ∈ G.
Conversely, for every E-Lévy process (Xt)t≥0 on a convex expectation space (Ω,F , E),

the family (S (t))t≥0 defined by (2.1) is a convex Markovian convolution semigroup.

In this paper, we use the following definition of a viscosity solution.

Definition 2.4. Let D ⊂ BUC(G) and A : D ⊂ BUC(G) → BUC(G). Then, we say
that u : [0,∞)→ BUC(G) is a D-viscosity subsolution of the PDE

ut = Au (2.2)

if u : [0,∞)→ BUC(G) is continuous and for every t > 0 and x ∈ G we have

∂tψ(t, x) ≤
(
Aψ(t)

)
(x)

for every differentiable ψ : (0,∞) → BUC(G) which satisfies (ψ(t))(x) = (u(t))(x),
ψ(s) ≥ u(s) and ψ(s) ∈ D for all s > 0. Here and in the following, we use the notation
ψ(t, x) := (ψ(t))(x).

Analogously, u is called a D-viscosity supersolution of (2.2) if u : [0,∞)→ BUC(G)
is continuous and for every t > 0 and x ∈ G we have

∂tψ(t, x) ≥
(
Aψ(t)

)
(x)

for every differentiable ψ : (0,∞) → BUC(G) which satisfies (ψ(t))(x) = (u(t))(x),
ψ(s) ≤ u(s) and ψ(s) ∈ D for all s > 0.

We say that u is a D-viscosity solution of (2.2) if u is a D-viscosity subsolution and
a D-viscosity supersolution.

Now we are ready to state our main result. Given a family (Aλ)λ∈Λ of generators of
Lévy processes we provide the existence of an E-Lévy process on a sublinear expectation
space with generator supλ∈ΛAλ. The corresponding sublinear Markovian convolution
semigroup is a viscosity solution of the fully nonlinear PDE ut = supλ∈ΛAλu with
u(0, ·) = f ∈ BUC(G). The proof is postponed to Section 5.

Theorem 2.5. Let Λ 6= ∅ be an index set. Assume that the following holds:



6 ROBERT DENK, MICHAEL KUPPER, AND MAX NENDEL

(A1) For each λ ∈ Λ let Aλ : D(Aλ) ⊂ BUC(G) → BUC(G) be the generator of a
Markovian convolution semigroup (Sλ(t))t≥0 of linear operators.

(A2) The subspace

D :=

{
f ∈

⋂
λ∈Λ

D(Aλ) :
{
Aλf : λ ∈ Λ

}
is bounded and uniformly equicontinuous

}
is dense in BUC(G).

Then, there exists a sublinear expectation space (Ω,F , E) and an E-Lévy process
(Xt)t≥0 such that for each f ∈ BUC(G) the function

(u(t)) (x) := E(f(x+Xt)), t ≥ 0, x ∈ G (2.3)

is a D-viscosity solution of the fully nonlinear PDE

ut(t, x) = sup
λ∈Λ

(
Aλu(t)

)
(x), (t, x) ∈ (0,∞)×G, (2.4)

u(0, x) = f(x), x ∈ G. (2.5)

Moreover, there exists a set P of probability measures on (Ω,F) such that E(Y ) =
supP∈P EP(Y ) for all Y ∈ L∞(Ω,F).

Remark 2.6. In the situation of Theorem 2.5, if each Aλ : BUC(G) → BUC(G) is a
bounded linear operator and supλ∈Λ ‖Aλ‖ <∞, then the mapping

BUC(G)→ BUC(G), u 7→ sup
λ∈Λ

Aλu

is Lipschitz continuous. Therefore, by the Picard-Lindelöf theorem, the function u
in (2.3) is a classical solution of the fully nonlinear PDE (2.4)-(2.5), which satisfies
u ∈ C1([0,∞); BUC(G)).

In most applications, the conditions (A1) and (A2) in Theorem 2.5 can be easily ver-
ified as shown in Section 3. For the sake of illustration, we consider the case G = Rd,
where the Lévy-Khintchine formula characterizes generators of Markovian convolution
semigroups of linear operators by means of so-called Lévy triplets, see e.g. Apple-
baum [1] or Sato [26]. Given a set Λ of Lévy triplets (b,Σ, µ), i.e. b ∈ Rd, Σ ∈ Rd×d
is a symmetric positive semidefinite matrix and µ is a Lévy measure, the condition
(1.4) is sufficient to guarantee (A2) with BUC2(Rd) ⊂ D. Here, BUC2(Rd) denotes the
space of all functions which are twice differentiable with bounded uniformly continuous
derivatives up to order 2. For more details, we refer to Example 3.2 which contains
G = Rd as a special case.

Remark 2.7. Let ψ ∈ C2,3
b ((0,∞)× Rd), where C2,3

b ((0,∞)× Rd) stands for the space

of all functions of (t, x) ∈ (0,∞)×Rd for which all partial derivatives up to order 2 in
t and up to order 3 in x exist, are continuous and bounded. Then,

lim
h→0

sup
x∈Rd

∣∣∣∣ψ(t+ h, x)− ψ(t, x)

h
− ∂tψ(t, x)

∣∣∣∣ = 0

for all t > 0 and therefore, ψ : (0,∞) → BUC(Rd) is differentiable with ψ(s) ∈
BUC2(Rd) for all s > 0 using the identification (ψ(s))(x) := ψ(s, x). Therefore, the
class of test functions considered in the framework of BUC2(Rd)-viscosity solutions in-

cludes the class C2,3
b ((0,∞)×Rd) of test functions, which is often considered in classical
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viscosity theory, see e.g. Denis et al. [4] or Hu and Peng [17]. Assuming in addition to
(1.4) that for every ε > 0 there exists some M > 0 such that

sup
(b,Σ,µ)∈Λ

µ
(
Rd \B(0,M)

)
< ε, (2.6)

where B(0,M) := {x ∈ Rd : |x| ≤ M}, and the second condition in (1.3) one obtains
from [17, Corollary 53] the uniqueness of the viscosity solution of the PDE (1.2).

Let C0(G) be the closure of the space Cc(G) of all continuous functions with compact
support w.r.t. the supremum norm ‖ · ‖∞. Note that the existence of a function in
C0(G) \ {0} already implies that G is locally compact and vice versa since G is a
topological abelian group, which is metrizable. The following additional condition on
the generators (Aλ)λ∈Λ implies that the related Markovian convolution semigroup is
continuous from above.

Proposition 2.8. In addition to the assumptions in Theorem 2.5, suppose:

(A3) For every ε > 0 there exists ϕ ∈
⋂
λ∈Λ

(
D(Aλ) ∩ C0(G)

)
with 0 ≤ ϕ ≤ 1,

ϕ(0) = 1 and supλ∈Λ ‖Aλϕ‖∞ ≤ ε.
Then, the related Markovian convolution semigroup (S (t)f)(x) = E(f(x+Xt)), t ≥ 0,
is continuous from above on BUC(G).

The proof is given at the end of Section 5. In line with Remark 2.2, under (A3) the
Markovian convolution semigroup (S (t))t≥0 has a unique extension from BUC(G) to
Cb(G) which is continuous from above. Moreover, continuity from above implies a dual
max-representation for the sublinear expectation E in terms of probability measures,
see [5, Lemma 2.4, Lemma 3.2]. For instance, in the case G = Rd, where the generators
are given by Lévy triplets (b,Σ, µ) ∈ Λ, the condition (A3) holds if (1.4) is satisfied
and the set of Lévy measures {µ : (b,Σ, µ) ∈ Λ} is tight.

3. Examples

Let ca1
+(G) be the set of all Borel probability measures on G.

Example 3.1 (Compound Poisson processes). For λ ≥ 0 and µ ∈ ca1
+(G), let(

Aλ,µf
)
(x) := λ

∫
G
f(x+ y)− f(x) dµ(y), f ∈ BUC(G), x ∈ G.

Then, Aλ,µ : BUC(G) → BUC(G) is a bounded linear operator which satisfies the
positive maximum principle (cf. [11, Definition 4.5.1]), i.e. for f ∈ BUC(G) and x0 ∈ G
with f(x0) = maxx∈G f(x) ≥ 0 one has

(
Aλ,µf

)
(x0) ≤ 0. Further, since Aλ,µ is

bounded and linear, it generates the linear uniformly continuous semigroup (etAλ,µ)t≥0.
Recall that for a bounded linear operator B : BUC(G) → BUC(G) the exponential
eB :=

∑∞
k=0

1
k!B

k of B is again a bounded linear operator BUC(G) → BUC(G). We

first show that Sλ,µ(t) := etAλ,µ satisfies(
Sλ,µ(t)f

)
(x) = E(f(x+ Jt)) =

∫
G
f(x+ y) d

(
P ◦ J−1

t

)
(y), f ∈ BUC(G)

for all t ≥ 0, where (Jt)t≥0 is a compound Poisson process with rate λ and jump size
distribution µ on a probability space (Ω,F ,P). In particular,

(
Sλ,µ(t)

)
t≥0

is a linear

Markovian convolution semigroup. Indeed, let Jt =
∑Nt

i=1 Yi for an i.i.d. sequence

(Yi)i∈N of random variables Yi : Ω→ G such that P ◦ Y −1
i = µ, and a random variable
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Nt : Ω→ N0 which is independent of (Yi)i∈N and satisfies P(Nt = n) = e−λt (λt)n

n! for all
n ∈ N. Then, for f ∈ BUC(G) and x ∈ G we have

E(f(x+ Jt)) =

∞∑
n=0

E(f(x+ Y1 + . . .+ Yn))e−λt
(λt)n

n!

= e−λt
∞∑
n=0

tnλn

n!

∫
G
· · ·
∫
G
f(x+ y1 + . . .+ yn) dµ(y1) · · · dµ(yn)

= e−λt
∞∑
n=0

(
tn(Aλ,µ + λ)nf

)
(x)

n!
= e−λt

(
et(Aλ,µ+λ)f

)
(x)

=
(
etAλ,µf

)
(x) =

(
Sλ,µ(t)f

)
(x),

where we used
(
(Aλ,µ + λ)f

)
(x) = λ

∫
G f(x+ y) dµ(y).

Now, assume that Λ ⊂ [0,∞) is bounded and Q ⊂ ca1
+(G). Since{

f ∈ BUC(G) :
{Aλ,µf : (λ, µ) ∈ Λ×Q} is bounded
and uniformly equicontinuous

}
= BUC(G),

the assumptions (A1) and (A2) are satisfied with D = BUC(G). Hence, by Theorem
2.5 and Remark 2.6 there exists a nonlinear expectation space (Ω,F , E) and an E-Lévy
process (Xt)t≥0 such that for all f ∈ BUC(G) the function

u(t, x) :=
(
u(t)

)
(x) := E(f(x+Xt)), t ≥ 0, x ∈ G,

is the unique classical solution of the fully nonlinear PIDE

ut(t, x) = sup
(λ,µ)∈Λ×Q

(
Aλ,µu(t)

)
(x), (t, x) ∈ (0,∞)×G,

u(0, x) = f(x), x ∈ G,

with u ∈ C1([0,∞); BUC(G)).

Example 3.2 (Lévy processes on real separable Hilbert spaces). Let G = H be a real
separable Hilbert space, and consider a set Λ of Lévy triplets (b,Σ, µ), i.e. b ∈ H,
Σ: H → H is a symmetric positive semidefinite trace class operator and µ is a Lévy
measure on H, i.e. a Borel measure satisfying

µ({0}) = 0 and

∫
H

1 ∧ ‖y‖2 dµ(y) <∞.

By the Lévy-Khintchine formula (see e.g. [18, Theorem 5.7.3]), for each Lévy triplet
(b,Σ, µ) there exists a Markovian convolution semigroup (Sb,Σ,µ(t))t≥0 of linear opera-
tors on BUC(H) with generator Ab,Σ,µ : D(Ab,Σ,µ) ⊂ BUC(H)→ BUC(H). Moreover,

BUC2(H) ⊂ D(Ab,Σ,µ), where BUC2(H) denotes the space of all functions H → R
which are twice differentiable with bounded uniformly continuous derivatives up to
order 2. For f ∈ BUC2(H), the function Ab,Σ,µf is given by(
Ab,Σ,µf

)
(x) = 〈b,∇f(x)〉+ 1

2
tr
(
Σ∇2f(x)

)
+

∫
H
f(x+ y)− f(x)− 〈∇f(x), h(y)〉dµ(y)

for x ∈ H. Here, the function h : H → H is defined by h(y) = y for ‖y‖ ≤ 1, and
h(y) = 0 whenever ‖y‖ > 1. In particular, (A1) is satisfied. Assume that

C := sup
(b,Σ,µ)∈Λ

(
‖b‖+ ‖Σ‖tr +

∫
H

1 ∧ ‖y‖2 dµ(y)

)
<∞, (3.1)
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where ‖ · ‖tr denotes the trace norm. We will verify that (A2) is satisfied under (3.1).
Let

D :=

{
f ∈

⋂
(b,Σ,µ)∈Λ

D(Ab,Σ,µ) :
{Ab,Σ,µf : (b,Σ, µ) ∈ Λ} is bounded
and uniformly equicontinuous

}
.

Since BUC2(H) is dense in BUC(H), it suffices to show that BUC2(H) ⊂ D. Let
f ∈ BUC2(H). Then, f ∈ D(Ab,Σ,µ) for any Lévy triplet (b,Σ, µ) ∈ Λ. In the sequel, we
denote by ‖∇2f(x)‖ the operator norm of the bounded linear operator∇2f(x) : H → H
for all x ∈ H and by ‖∇2f‖∞ := supx∈H ‖∇2f(x)‖. Then, by Taylor’s theorem we have∣∣(Ab,Σ,µf)(x)

∣∣ ≤ ‖b‖‖∇f(x)‖+ 1
2‖Σ‖tr‖∇

2f(x)‖

+

∫
H

∣∣f(x+ y)− f(x)− 〈∇f(x), h(y)〉
∣∣dµ(y)

≤ ‖b‖‖∇f‖∞ + 1
2‖Σ‖tr‖∇

2f‖∞ + max

{
2‖f‖∞,

1

2
‖∇2f‖∞

}∫
H

1 ∧ ‖y‖2 dµ(y)

≤ 2C max
{
‖f‖∞, ‖∇f‖∞, ‖∇2f‖∞

}
for all x ∈ H and all (b,Σ, µ) ∈ Λ, so that

sup
(b,Σ,µ)∈Λ

‖Ab,Σ,µf‖∞ ≤ 2C max
{
‖f‖∞, ‖∇f‖∞, ‖∇2f‖∞

}
. (3.2)

Let ε > 0. Since f ∈ BUC2(H) there exists δ > 0 such that for all x, z ∈ H with
‖x− z‖ ≤ δ and θ ∈ {f,∇f,∇2f} it holds

2C sup
y∈H
‖θ(x+ y)− θ(z + y)‖ ≤ ε.

Let x, z ∈ H be fixed with ‖x− z‖ ≤ δ and g : H → R be defined by

g(y) := f(x+ y)− f(z + y)

for all y ∈ H, so that g ∈ BUC2(H) with 2C max
{
‖g‖∞, ‖∇g‖∞, ‖∇2g‖∞

}
≤ ε. By

(3.2) we get∣∣(Ab,Σ,µf)(x)−
(
Ab,Σ,µf

)
(z)
∣∣ =

∣∣(Ab,Σ,µg)(0)
∣∣ ≤ 2C max

{
‖g‖∞, ‖∇g‖∞, ‖∇2g‖∞

}
≤ ε

for all (b,Σ, µ) ∈ Λ, which shows that (A2) is satisfied. Therefore, by Theorem 2.5 there
exists a sublinear expectation space (Ω,F , E) and an E-Lévy process (Xt)t≥0 such that
for all f ∈ BUC(H) the function

u(t, x) :=
(
u(t)

)
(x) := E(f(x+Xt)), t ≥ 0, x ∈ H,

is a BUC2(H)-viscosity solution of the fully nonlinear PIDE

ut(t, x) = sup
(b,Σ,µ)∈Λ

(
Ab,Σ,µu(t)

)
(x), (t, x) ∈ (0,∞)×H,

u(0, x) = f(x), x ∈ H.

Example 3.3 (Lévy processes on the d-dimensional Torus Td). Let G = Td, where Td
denotes the d-dimensional Torus represented by (−π, π]d. We say that (b,Σ, µ, ν) is a
Lévy quadruple if b ∈ Rd, Σ ∈ Rd×d is a symmetric positive semidefinite matrix, µ is a
positive finite measure on Td and ν is a positive measure on Td with ν({0}) = 0 and∫

Td
|y|2 dν(y) <∞.
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This definition is motivated by the Lévy-Itô decomposition of a Lévy process in Rd,
where the Lévy measure is further decomposed into a measure describing the large
jumps (here: µ) and another measure describing the small jumps (here: ν). For each
Lévy quadruple (b,Σ, µ, ν) we consider(

Ab,Σ,µ,νf
)
(x) := b · ∇f(x) +

1

2
tr
(
Σ∇2f(x)

)
+

∫
Td
f(x+ y)− f(x) dµ(y)

+

∫
Td
f(x+ y)− f(x)−∇f(x) · y dν(y)

for x ∈ Td and f ∈ D(Ab,Σ,µ,ν) :=
{
g ∈ C(Td) : Ab,Σ,µ,νg ∈ C(Td)

}
. Recall that C(Td)

can be identified with the set of all 2π-periodic continuous functions on Rd.
We start by proving that for any Lévy quadruple (b,Σ, µ, ν) the operator Ab,Σ,µ,ν

generates a Markovian convolution semigroup (Sb,Σ,µ,ν(t))t≥0 of linear operators on Td.
In order to do so, let (b,Σ, µ, ν) be a Lévy quadruple and define

ηf :=

∫
(−π,π]d

f(y) dν(y) +
∑

k∈Zd\{0}

λk

∫
(−π,π]d

f(x+ 2πk) dµ(y)

for f ∈ L∞(Rd), where λk ≥ 0 for all k ∈ Zd \ {0} and
∑

k∈Zd\{0} λk = 1. Then,

η is a Lévy measure on Rd, see e.g. Example 3.2 with H = Rd, so that (b,Σ, η) is a
Lévy triplet. Hence, there exists a Markovian convolution semigroup (Sb,Σ,η(t))t≥0 of

linear operators on Rd with generator Ab,Σ,η. As the space C(Td) of all 2π-periodic

continuous functions is a closed subspace of BUC(Rd), which is invariant under Sb,Σ,η(t)
for all t ≥ 0, we obtain that

S(t) :=
(
Sb,Σ,η(t)

)
|C(Td), t ≥ 0

defines a Markovian convolution semigroup of linear operators on C(Td). Let A denote
the generator of the semigroup (S(t))t≥0. As C(Td) is a closed subspace of BUC(Rd)
and

∑
k∈Zd\{0} λk = 1, we get that

Af = Ab,Σ,ηf = Ab,Σ,µ,νf

for all f ∈ D(A). In particular, Ab,Σ,µ,ν is the generator of (S(t))t≥0.

Now, let Λ be a set of Lévy quadruples with

sup
(b,Σ,µ,ν)∈Λ

(
|b|+ |Σ|+ µ(Td) +

∫
Td
|y|2 dν(y)

)
<∞. (3.3)

Then, in a similar way as in Example 3.2, one can show that for every f ∈ C2(Td) =
BUC2(Td), the set {Ab,Σ,µ,νf : (b,Σ, µ, ν) ∈ Λ} is bounded and equicontinuous. There-
fore, the assumptions (A1) and (A2) are satisfied. Hence, there exists a nonlinear
expectation space (Ω,F , E) and an E-Lévy process (Xt)t≥0 such that for all f ∈ C(Td)
the function

u(t, x) :=
(
u(t)

)
(x) := E(f(x+Xt)), t ≥ 0, x ∈ Td,

is a C2(Td)-viscosity solution of the fully nonlinear PIDE

ut(t, x) = sup
(b,Σ,µ,ν)∈Λ

(
Ab,Σ,µ,νu(t)

)
(x), (t, x) ∈ (0,∞)× Td,

u(0, x) = f(x), x ∈ Td.

We also refer to Hunt [10] for a Lévy-Khintchine formula on compact Lie groups.
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Example 3.4. Let A : D(A) ⊂ BUC(G)→ BUC(G) be the generator of a Markovian
convolution semigroup (S(t))t≥0 and Λ ⊂ [0,∞) bounded. For all λ ∈ Λ let Aλ := λA
and Sλ(t) := S(λt) for t ≥ 0. Then, the assumptions (A1) and (A2) are satisfied with
D = D(A). Hence, there exists a nonlinear expectation space (Ω,F , E) and an E-Lévy
process (Xt)t≥0 such that for all u0 ∈ BUC(G) the function

u(t, x) := E(f(x+Xt)), t ≥ 0, x ∈ G
is a D(A)-viscosity solution of the fully nonlinear PDE

ut(t, x) = sup
λ∈Λ

(
λAu(t)

)
(x), (t, x) ∈ (0,∞)×G,

u(0, x) = f(x), x ∈ G.
For instance, if A is the generator of a cylindrical Wiener process on a separable Hilbert
space, one obtains an E-Lévy process which can be viewed as a cylindrical G-Wiener
process.

Example 3.5. For all h > 0 let µh := 1
h2 δh and consider Λ :=

{
(0, 0, µh) : h > 0

}
in

Example 3.2 with d = 1. Then, we have that

sup
h>0

∫
R

1 ∧ |y|2 dµh(y) = sup
h>0

1

h2

∫
R
|y|2 dδh(y) = 1,

so that the assumptions (A1) and (A2) are satisfied. However, the second condition
in (1.3) does not hold. By Example 3.2, there exists a sublinear expectation space
(Ω,F , E) and an E-Lévy process (Xt)t≥0 such that for all f ∈ BUC(R) the function

u(t, x) := E(f(x+Xt)), t ≥ 0, x ∈ R,
is a BUC2(R)-viscosity solution of the fully nonlinear PIDE

ut(t, x) = sup
h>0

(
A0,0,µhu(t)

)
(x), (t, x) ∈ (0,∞)× R,

u(0, x) = f(x), x ∈ R.

Note that
∥∥A(0,0,µh)f − 1

2f
′′∥∥
∞ = supx∈R

∣∣f(x+h)−f(x)−f ′(x)h
h2 − 1

2f
′′(x)

∣∣ → 0 as h ↘ 0

for all f ∈ BUC2(R).

Example 3.6 (Cauchy distributed jumps). For γ > 0 let δγ be given by

µγ
(
(−∞, b)

)
:=

γ

π

∫ b

−∞

1

y2 + γ2
dy =

1

2
+ arctan

(
b

γ

)
for b ∈ R. Let Γ ⊂ (0,∞). Then, we have that

sup
γ∈Γ

∫
R

1 ∧ |y|2 dµγ(y) ≤ sup
γ∈Γ

µγ(R) = 1,

so that (A1) and (A2) are satisfied, but the first condition in (1.3) is violated. By
Example 3.1 with G = R (using the notation from Example 3.2), there exists a sublinear
expectation space (Ω,F , E) and an E-Lévy process (Xt)t≥0 such that for all f ∈ BUC(R)
the function

u(t, x) := E(f(x+Xt)), t ≥ 0, x ∈ R,
is the unique classical solution of the fully nonlinear PIDE

ut(t, x) = sup
γ∈Γ

(
A0,0,µγu(t)

)
(x), (t, x) ∈ (0,∞)× R,

u(0, x) = f(x), x ∈ R
with u ∈ C1([0,∞); BUC(R)).
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4. Proof of Theorem 2.3

Proof. Let (S (t))t≥0 be a convex Markovian convolution semigroup which is continuous
from above. By Remark 2.2, every S (t) has a unique extension to a convex kernel
S (t) : Cb(G)→ Cb(G) which is continuous from above. Then the family

Es,t(x, f) := (S (t− s)f)(x), 0 ≤ s < t

of convex kernels on Cb(G) is continuous from above and satisfies the Chapman-
Kolmogorov equations, i.e.

Es,t(x, Et,u(·, f)) = Es,u(x, f)

for all 0 ≤ s < t < u, f ∈ Cb(G) and x ∈ G. Hence, it follows from [5, Theorem 5.6]
that there exists a convex expectation space (Ω,F , E) and a family of random variables
Xt : Ω→ G, t ≥ 0, such that

E(f(X0)) = f(0)

for all f ∈ Cb(G) and

E
(
f(Xt1 , . . . , Xtn , Xt)

)
= E

(
Es,t (Xs, f(Xt1 , . . . , Xtn , · ))

)
for all 0 ≤ s < t, n ∈ N, 0 ≤ t1 < . . . < tn ≤ s, and f ∈ Cb(G

n+1). Recall that
(xt1 , . . . xtn , xs) 7→ Es,t (xs, f(xt1 , . . . , xtn , · )) is continuous, see e.g. [5, Proposition 5.5]
with S = G and T = Gn. Next, we verify that (Xt)t≥0 is an E-Lévy process. For
f ∈ Cb(G) and s, t ≥ 0 one has

E
(
f(Xt)

)
= E

(
E0,t(X0, f)

)
= E

(
(S (t)f)(X0)

)
= (S (t)f)(0)

and

E
(
f(Xs+t −Xs)

)
= E

(
f̃(Xs, Xs+t)

)
= E

(
Es,s+t(Xs, f̃(Xs, · )

)
= E

(
(S (t)f̃(Xs, · ))(Xs)

)
= E

(
(S (t)f)(0)

)
= (S (t)f)(0), (4.1)

where f̃(x, y) := f(y− x) and (S (t)f̃(x, · ))(x) = (S (t)f−x)(x) = (S (t)f)(0) because
S (t) is a Markovian convolution. This shows that the random variables Xs+t−Xs and
Xt have the same distribution under E . Moreover, for s, t ≥ 0, 0 ≤ t1 < . . . < tn ≤ s
and f ∈ Cb(Gn+1), it follows by (4.1) that

(S (t)f(xt1 , . . . , xtn , · ))(0) = E
(
f(xt1 , . . . , xtn , Xs+t −Xs)

)
for all xt1 , . . . , xtn ∈ G and therefore,

E
(
f(Xt1 , . . . , Xtn , Xs+t −Xs)

)
= E

(
f−Xs(Xt1 , . . . , Xtn , Xs+t)

)
= E

(
Es,s+t

(
Xs, f−Xs(Xt1 , . . . , Xtn , · )

))
= E

((
S (t)f−Xs(Xt1 , . . . , Xtn , · )

)
(Xs)

)
= E

((
S (t)f(Xt1 , . . . , Xtn , · )

)
(0)
)

= E
(
E
(
f(xt1 , . . . , xtn , Xs+t −Xs)

)
|xt1=Xt1 ,...,xtn=Xtn

)
which shows that Xs+t − Xs is independent of (Xt1 , . . . , Xtn). It remains to verify
that Xt → X0 in distribution as t ↘ 0. To that end, fix f ∈ Cb(G) and notice that
there exists an increasing sequence (fn) in BUC(G) which converges pointwise to f .
By Dini’s theorem it follows that the continuous functions t 7→

(
S (t)fn

)
(0) converge
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uniformly on [0, 1] to the continuous function t 7→
(
S (t)f

)
(0). Hence, for every ε > 0

there exists some n0 ∈ N such that

|E(f(Xt))− f(0)| ≤
∣∣(S (t)f

)
(0)−

(
S (t)fn0

)
(0)
∣∣+ ‖S (t)fn0 − fn0‖∞

+ |fn0(0)− f(0)|
≤ ε, as t↘ 0.

Conversely, let (Xt)t≥0 be an E-Lévy process on a convex expectation space (Ω,F , E).
Then, the family (S (t))t≥0 defined by(

S (t)f
)
(x) := E(f(x+Xt))

for f ∈ BUC(G) and x ∈ G is a convex Markovian convolution semigroup. Indeed, for
f ∈ BUC(G), x ∈ G and t ≥ 0, it holds that(

S (t)fx
)
(0) = E(f(x+Xt)) =

(
S (t)f

)
(x),

so that S (t) is a convex Markovian convolution which satisfies(
S (0)f

)
(x) = E(f(x+X0)) = E(fx(X0)) = fx(0) = f(x).

Moreover, since E(f(x + (Xt+s −Xs))) = E(f(x + Xt)) =
(
S (t)f

)
(x) for all s, t ≥ 0,

f ∈ BUC(G), x ∈ G, and Xt+s −Xs is independent of Xs we obtain(
S (t+ s)f

)
(0) = E(f(Xt+s)) = E(f(Xs + (Xt+s −Xs)))

= E
((

S (t)f
)
(Xs)

)
=
(
S (s)S (t)f

)
(0).

Since S (s) and S (t) are Markovian convolutions we conclude the semigroup property
S (t + s) = S (s)S (t). It remains to show that limt↘0 ‖S (t)f − f‖∞ = 0 for all
f ∈ BUC(G). To do so, we first show that for every c ≥ 0 and δ > 0 we have that

E
(
c1G\B(0,δ)(Xt)

)
→ 0 (4.2)

as t↘ 0. Let ϕ : G→ R be defined by

ϕ(y) :=
c

δ

(
d(y, 0) ∧ δ

)
for y ∈ G. Then, ϕ ∈ Cb(G) with ϕ ≥ 0, ϕ(0) = 0 and ϕ(y) = c for all y ∈ G \B(0, δ),
so that

0 ≤ E
(
c1G\B(0,δ)(Xt)

)
= E

(
ϕ(Xt)1G\B(0,δ)(Xt)

)
≤ E(ϕ(Xt))→ 0

as t ↘ 0. Now, fix ε > 0 and f ∈ BUC(G). Then there exists some δ > 0 such that
|f(x+ y)− f(x)| < ε

2 for all x, y ∈ G with d(y, 0) < δ. For each x ∈ G let gx ∈ L∞(G)
be given by y 7→ 1B(0,δ)(y)(f(x + y) − f(x)). Then ‖gx‖∞ ≤ ε

2 for all x ∈ G, and by
(4.2) there exists some t0 > 0 such that

E
(
2‖f‖∞1G\B(0,δ)(Xt)

)
≤ ε

2

for all 0 < t < t0. Since E : L∞(Ω,F)→ R is 1-Lipschitz continuous, we get∣∣(S (t)f
)
(x)− f(x)

∣∣ =
∣∣E(f(x+Xt)− f(x)

)∣∣ ≤ E( |f(x+Xt)− f(x)|
)

≤ E
(
gx(Xt) + 2‖f‖∞1G\B(0,δ)(Xt)

)
≤ ‖gx‖∞ + E

(
2‖f‖∞1G\B(0,δ)(Xt)

)
≤ ε

for all 0 < t < t0, which shows that ‖S (t)f − f‖∞ ≤ ε for all 0 < t < t0.
�
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5. Randomizing linear semigroups and the proof of Theorem 2.5

Throughout this section all Markovian convolutions are defined on BUC(G). We
assume that {Aλ : λ ∈ Λ} is a given non-empty family of operators which satisfies
the assumptions (A1) and (A2). Recall that Aλ generates a Markovian convolution
semigroup (Sλ(t))t≥0 of linear operators, and the domain

D =

{
f ∈

⋂
λ∈Λ

D(Aλ) :
{
Aλf : λ ∈ Λ

}
is bounded and uniformly equicontinuous

}
is dense in BUC(G).

We consider finite partitions P := {π ⊂ [0,∞) : 0 ∈ π, π finite}. For a partition π =
{t0, t1, . . . , tm} ∈ P with 0 = t0 < t1 < . . . < tm we set |π|∞ := maxj=1,...,m(tj − tj−1).
The set of partitions with end-point t is denoted by Pt, i.e. Pt := {π ∈ P : maxπ = t}.

For f ∈ BUC(G) and t ≥ 0, we define(
Jtf
)
(x) := sup

λ∈Λ

(
Sλ(t)f

)
(x), x ∈ G,

and for a partition π ∈ P , we set

Jπf := Jt1−t0 · · · Jtm−tm−1f,

where we assume that π = {t0, t1, . . . , tm} with 0 = t0 < t1 < . . . < tm, and J{0}f := f .
Note that Jt = J{0,t} for t > 0. Moreover, since Sλ(t) is continuous from below for all
λ ∈ Λ and t ≥ 0, it follows that Jπ is continuous from below for all π ∈ P .

Let f ∈ D. Then, by definition of D, the family (Aλf)λ∈Λ is bounded and, through-
out the rest of this section, we denote

Lf := sup
λ∈Λ
‖Aλf‖∞ <∞.

Lemma 5.1. a) Jπ is a sublinear Markovian convolution for all π ∈ P .
b) Let f ∈ D. Then,

‖Jt1f − Jt2f‖∞ ≤ Lf |t1 − t2|, t1, t2 ≥ 0, (5.1)

‖Jπf − f‖∞ ≤ Lf t, π ∈ Pt, t > 0. (5.2)

Proof. a) Since Sλ(t) is a linear Markovian convolution for all λ ∈ Λ, Jt is a sublinear
Markovian convolution for all t ≥ 0. As this property is preserved under composi-
tions, the same holds for Jπ.

b) Let f ∈ D. For t1, t2 ≥ 0, x ∈ G, and λ0 ∈ Λ we have that(
Sλ0(t1)f

)
(x)−

(
Jt2f

)
(x) ≤

(
Sλ0(t1)f

)
(x)−

(
Sλ0(t2)f

)
(x)

≤ ‖Sλ0(t1)f − Sλ0(t2)f‖∞
≤ sup

λ∈Λ
‖Sλ(t1)f − Sλ(t2)f‖∞

and therefore, taking the supremum over λ0 ∈ Λ,(
Jt1f

)
(x)−

(
Jt2f

)
(x) ≤ sup

λ∈Λ
‖Sλ(t1)f − Sλ(t2)f‖∞.

By symmetry and taking the supremum over all x ∈ G, we thus get that

‖Jt1f − Jt2f‖∞ ≤ sup
λ∈Λ
‖Sλ(t1)f − Sλ(t2)f‖∞.
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Let λ ∈ Λ and w.l.o.g. let t1 < t2. Then, as f ∈ D(Aλ), it follows that (see, e.g. [7,
Lemma II.1.3])

‖Sλ(t1)f − Sλ(t2)f‖∞ =

∥∥∥∥∫ t2

t1

Sλ(s)Aλf ds

∥∥∥∥
∞
≤
∫ t2

t1

‖Sλ(s)Aλf‖∞ ds

≤ (t2 − t1) sup
0≤s≤t

‖Sλ(s)Aλf‖∞ ≤ (t2 − t1)‖Aλf‖∞

≤ Lf |t1 − t2|

for all λ ∈ Λ. Here, we used the fact that ‖Sλ(s)g‖∞ ≤ ‖g‖∞ for all λ ∈ Λ, s ≥ 0
and g ∈ BUC(G). Taking the supremum over all λ ∈ Λ, we obtain (5.1).

To show (5.2), let π = {0, t1, . . . , tm−1, t} ∈ Pt with 0 < t1 < . . . < tm−1 < t and
m ∈ N. Note that the case π = {0} is trivial. For m = 1, we have π = {0, t}, and
by (5.1),

‖Jπf − f‖∞ = ‖Jtf − J0f‖∞ ≤ Lf t.
Now let m ≥ 2, and set π′ := {0, t1, . . . , tm−1}. By induction, we have ‖Jπ′f−f‖∞ ≤
Lf tm−1. As Jπ′ is a sublinear Markovian convolution and therefore 1-Lipschitz
continuous, we obtain

‖Jπf − f‖∞ = ‖Jπ′Jt−tm−1f − f‖∞
≤ ‖Jπ′Jt−tm−1f − Jπ′f‖∞ + ‖Jπ′f − f‖∞
≤ ‖Jt−tm−1f − f‖∞ + ‖Jπ′f − f‖∞
≤ Lf (t− tm−1) + Lf tm−1 = Lf t.

�

The following result shows that Jπf depends continuously on the partition π.

Lemma 5.2. Let m ∈ N, π = {0, t1, . . . , tm} ∈ P with 0 < t1 < . . . < tm, and for
n ∈ N let πn = {0, tn1 , . . . , tnm} ∈ P with limn→∞ t

n
j = tj for j = 1, . . . ,m. Then

‖Jπf − Jπnf‖∞ → 0, as n→∞,

for all f ∈ BUC(G).

Proof. Note that 0 < tn1 < . . . < tnm for sufficiently large n. Fix f ∈ BUC(G). We have
to show the continuity of the map (t1, . . . , tm) 7→ J{0,t1,...,tm}f . By definition of Jπ, it
is sufficient to show that the map

[0,∞)→ BUC(G), t 7→ Jtf

is continuous. Let ε > 0 and t ≥ 0, and let (tn) be a sequence in [0,∞) such that
tn → t. By assumption (A2) there exists f0 ∈ D with ‖f − f0‖∞ ≤ ε

3 . Since Js = J0,s

is a sublinear Markovian convolution by Lemma 5.1 a), it is 1-Lipschitz and it follows
that

‖Jsf − Jsf0‖∞ ≤ ‖f − f0‖∞ <
ε

3

for all s ≥ 0. Hence, it follows from Lemma 5.1 that

‖Jtf − Jtnf‖∞ ≤ ‖Jtf − Jtf0‖∞ + ‖Jtf0 − Jtnf0‖∞ + ‖Jtnf − Jtnf0‖∞
≤ 2

3ε+ Lf0 |t− tn| < ε

for sufficiently large n ∈ N. �
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The above results allow to consider the limit of Jπf when the mesh size of the
partition tends to zero. To that end, we first note that for s, t ≥ 0, f ∈ BUC(G) and
x ∈ G, it holds(

Jt+sf
)
(x) = sup

λ∈Λ

(
Sλ(t+ s)f

)
(x) = sup

λ∈Λ

(
Sλ(t)Sλ(s)f

)
(x)

≤ sup
λ∈Λ

(
Sλ(t)Jsf

)
(x) =

(
JtJsf

)
(x).

From this, we obtain for π1, π2 ∈ Pt with π1 ⊂ π2 the pointwise inequality

Jπ1f ≤ Jπ2f. (5.3)

In particular, for π1, π2 ∈ Pt we have that(
Jπ1f

)
∨
(
Jπ2f

)
≤ Jπf, (5.4)

where π := π1 ∪ π2 ∈ Pt. Therefore, we define(
S (t)f

)
(x) := sup

π∈Pt

(
Jπf

)
(x) (5.5)

for all t ≥ 0, x ∈ G and f ∈ BUC(G). Note that S (0)f = f for all f ∈ BUC(G).

Lemma 5.3. S (t) is a sublinear Markovian convolution for all t ≥ 0, which satisfies

‖S (t)f − f‖∞ ≤ Lf t, f ∈ D.
Moreover,

lim
t↘0
‖S (t)f − f‖∞ = 0

for all f ∈ BUC(G).

Proof. As Jπ is a sublinear Markovian convolution for all π ∈ Pt, the same holds for
S (t). For f ∈ D, x ∈ G and ε > 0 there exists π0 ∈ Pt such that(

S (t)f
)
(x)− f(x) ≤

(
Jπ0f

)
(x)− f(x) + ε ≤ sup

π∈Pt
‖Jπf − f‖∞ + ε

and
f(x)−

(
S (t)f

)
(x) ≤ f(x)−

(
Jπ0f

)
(x) ≤ sup

π∈Pt
‖Jπf − f‖∞.

By Lemma 5.1 it follows that

‖S (t)f − f‖∞ ≤ sup
π∈Pt
‖Jπf − f‖∞ ≤ Lf t.

From this, we obtain that limt↘0 ‖S (t)f − f‖∞ = 0 for f ∈ BUC(G) with the same
density argument as in the proof of Lemma 5.2. �

Lemma 5.4. For t ≥ 0, let (πn)n∈N be a sequence in Pt such that πn ⊂ πn+1 for all
n ∈ N, and limn→∞ |πn|∞ = 0. Then

Jπnf ↗ S (t)f, as n→∞,
for all f ∈ BUC(G).

Proof. Fix f ∈ BUC(G). For t = 0, the statement is trivial. For t > 0 and x ∈ G we
define (

J∞f
)
(x) := sup

n∈N

(
Jπnf

)
(x)

Then, J∞ is a sublinear Markovian convolution. Since πn ⊂ πn+1, it follows from (5.3)
that

Jπnf ↗ J∞f, as n→∞.
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By definition of S (t), it clearly holds J∞f ≤ S (t)f . As for the other inequality, let
π = {t0, t1, . . . , tm} ∈ Pt with m ∈ N and 0 = t0 < t1 < . . . < tm = t. Since |πn|∞ ↘ 0
as n→∞, we may w.l.o.g. assume that #πn ≥ m+ 1 for all n ∈ N. Moreover, we can
choose 0 = tn0 < tn1 < . . . < tnm = t with π′n := {tn0 , tn1 , . . . , tnm} ⊂ πn and limn→∞ t

n
i = ti

for all i = 1, . . . ,m− 1. Then, by Lemma 5.2, we have that

‖Jπf − Jπ′nf‖∞ → 0, as n→∞.

Since

J∞f ≥ Jπnf ≥ Jπ′nf ≥ Jπf − ‖Jπf − Jπ′nf‖∞
we obtain that J∞f ≥ Jπf . Taking the supremum over all π ∈ Pt, we thus get that
J∞f = S (t)f . �

Corollary 5.5. Let t ≥ 0. Then, there exists a sequence (πn) in Pt such that

Jπnf ↗ S (t)f, as n→∞.

Moreover,

S (t)f = sup
n∈N

(
J t
n

)n
f = sup

n∈N

(
J2−nt

)2n
f = lim

n→∞

(
J2−nt

)2n
f, (5.6)

for all f ∈ BUC(G), where the supremum is understood pointwise.

Proof. Choose πn :=
{
kt
2n : k ∈ {0, . . . , 2n}

}
in Lemma 5.4 to obtain the first statement.

In particular,

S (t)f = S (t)f = sup
n∈N

Jπnf = sup
n∈N

(
J2−nt

)2n
f = lim

n→∞

(
J2−nt

)2n
f. (5.7)

For π̃n :=
{
kt
n : k ∈ {0, . . . , n}

}
it holds π̃2n = πn for all n ∈ N. Therefore, by (5.7), it

follows that

S (t)f = sup
n∈N

Jπnf = sup
n∈N

Jπ̃2n
f ≤ sup

n∈N
Jπ̃nf ≤ S (t)f.

Hence,

S (t)f = sup
n∈N

Jπ̃nf = sup
n∈N

(
J t
n

)n
f,

which yields the first equality in (5.6) and therefore the assertion. �

Proposition 5.6 (Dynamic programming principle). (S (t))t≥0 is a Markovian con-
volution semigroup of sublinear operators. In particular, for every s, t ≥ 0 one has

S (s+ t)f = S (s)S (t)f (5.8)

for every f ∈ BUC(G).

Proof. Let π0 ∈ Ps+t and π := π0 ∪ {s}. Then, π ∈ Ps+t with π0 ⊂ π, and by (5.3) we
get that

Jπ0f ≤ Jπf.
We have already shown all properties of a Markovian convolution semigroup except

the semigroup property (5.8), i.e. the dynamic programming principle.
If s = 0 or t = 0 the statement is trivial. Therefore, let s, t > 0. Let m ∈ N and

0 = t0 < t1 < . . . < tm = s + t with ti = s for some i ∈ {1, . . . ,m}, and define π :=
{t0, . . . , tm} ∈ Ps+t. Then, for π1 := {t0, . . . , ti} ∈ Ps and π2 := {ti−s, . . . , tm−s} ∈ Pt
we have

Jπ1 = Jt1−t0 · · · Jti−ti−1 , and Jπ2 = Jti+1−ti · · · Jtm−tm−1 ,
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and therefore

Jπf = Jt1−t0 · · · Jtm−tm−1f =
(
Jt1−t0 · · · Jti−ti−1

)(
Jti+1−ti · · · Jtm−tm−1f

)
= Jπ1Jπ2f ≤ Jπ1S (t)f ≤ S (s)S (t)f.

Taking the supremum over all π ∈ Ps+t, we get S (s+ t)f ≤ S (s)S (t)f . Conversely,
by Corollary 5.5 there exists a sequence (πn) in Pt such that Jπnf ↗ S (t)f as n→∞.
For π0 ∈ Ps and π′n := π0 ∪ {r + s : r ∈ πn} ∈ Ps+t it holds Jπ′n = Jπ0Jπn . Since Jπ0 is
continuous from below we have

Jπ0S (t)f = lim
n→∞

Jπ0Jπnf = lim
n→∞

Jπ′nf ≤ S (s+ t)f.

Taking the supremum over all π0 ∈ Ps, we get that S (s)S (t)f ≤ S (s+ t)f . �

The following lemma is a special case of Jensen’s inequality for vector valued func-
tions. For the reader’s convenience we provide a short proof and refer to [9, Section
1.2.] for an introduction to Bochner integration.

Lemma 5.7. Let S : BUC(G) → BUC(G) be convex and continuous. Let (Ω,F , ν)
be a finite measure space with ν 6= 0. Further, let g : Ω → BUC(G) be bounded and
F-B(BUC(G))-measurable with separable range g(Ω), i.e. g is Bochner integrable, such
that S g : Ω → BUC(G), ω 7→ S

(
g(ω)

)
is again bounded. Then, S g is Bochner

integrable and we have that

S

(
1

ν(Ω)

∫
Ω
g dν

)
≤ 1

ν(Ω)

∫
Ω

S g dν.

Proof. Since S is continuous, we obtain that S g : Ω → BUC(G) is F-B(BUC(G))-
measurable with separable range (S g)(Ω) and thus Bochner integrable. If g is a simple
function, S g is a simple function and the assertion follows by convexity of S . Since g is
F-B(BUC(G))-measurable with separable range g(Ω), there exists a sequence of simple
functions (gn)n∈N with limn→∞ ‖gn(ω) − g(ω)‖∞ = 0 for all ω ∈ Ω. By continuity of
S , we obtain limn→∞ ‖S gn(ω)−S g(ω)‖∞ = 0 for all ω ∈ Ω. Hence, by definition of
Bochner’s integral it follows that

S

(
1

ν(Ω)

∫
Ω
g dν

)
= lim

n→∞
S

(
1

ν(Ω)

∫
Ω
gn dν

)
≤ lim

n→∞

1

ν(Ω)

∫
Ω

S gn dν =
1

ν(Ω)

∫
Ω

S g dν.

�

Fix f ∈ D. Since {Aλf : λ ∈ Λ} ⊂ BUC(G) is bounded and uniformly equicontinu-
ous, it follows that

Af := sup
λ∈Λ

Aλf ∈ BUC(G),

where the supremum is understood pointwise.

Lemma 5.8. Fix f ∈ D. Then, for π ∈ P and t > 0 it holds

Jπf − f ≤
∫ maxπ

0
S (s)Af ds and S (t)f − f ≤

∫ t

0
S (s)Af ds.
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Proof. Since Af ∈ BUC(G), the mapping [0,∞) → BUC(G), s 7→ S (s)Af is con-
tinuous. Therefore, the Bochner integrals are well-defined. Then, for all t, h > 0 we
have

Jhf − f = sup
λ∈Λ

Sλ(h)f − f = sup
λ∈Λ

∫ h

0
Sλ(s)Aλf ds

≤
∫ h

0
S (s)Af ds =

∫ t+h

t
S (s− t)Af ds. (5.9)

We prove the first inequality by induction on m = #π. If m = 1, i.e. if π = {0}, the
statement is trivial. Hence, assume that

Jπ′f − f ≤
∫ maxπ′

0
S (s)Af ds

for all π′ ∈ P with #π′ = m for some m ∈ N. Let π = {t0, t1, . . . , tm} with 0 = t0 <
t1 < . . . < tm and π′ := π \ {tm}. Then, it follows from (5.9) and Lemma 5.7 that

Jπf − Jπ′f ≤ Jπ′
(
Jtm−tm−1f − f

)
≤ Jπ′

(∫ tm

tm−1

S (s− tm−1)Af ds
)

≤ S (tm−1)
(∫ tm

tm−1

S (s− tm−1)Af ds
)
≤
∫ tm

tm−1

S (s)Af ds,

where the first inequality follows from the sublinearity of Jπ′ . By induction, we thus
get

Jπf − f =
(
Jπf − Jπ′f

)
+
(
Jπ′f − f

)
≤
∫ tm

tm−1

S (s)Af ds+

∫ tm−1

0
S (s)Af ds

=

∫ maxπ

0
S (s)Af ds.

In particular, for every π ∈ Pt it holds

Jπf − f ≤
∫ t

0
S (s)Af ds.

Taking the supremum over all π ∈ Pt yields the second assertion. �

Lemma 5.9. Let M ⊂ BUC(G) be bounded and uniformly equicontinuous. Then,

sup
λ∈Λ

sup
g∈M
‖Sλ(t)g − g‖∞ → 0, as t↘ 0.

Proof. Let ε > 0 and C := supg∈M ‖g‖∞. Then, there exists some δ > 0 such that

sup
g∈M
|g(x)− g(y)| ≤ ε

for all x, y ∈ G with d(x, y) ≤ δ. Let ϕ(y) := 1
δ

(
d(y, 0) ∧ δ

)
for all y ∈ G. Then,

ϕ ∈ BUC(G), 0 ≤ ϕ ≤ 1, ϕ(0) = 0 and ϕ(y) = 1 for all y ∈ G \ B(0, δ). Fix λ ∈ Λ,
g ∈M and x ∈ G. Since g(x+ ·)− g(x) ≤ ε+ 2Cϕ, we get∣∣(Sλ(t)g

)
(x)− g(x)

∣∣ =
∣∣[Sλ(t)

(
g(x+ ·)− g(x)

)]
(0)
∣∣ ≤ ε+ 2C

(
S (t)ϕ

)
(0),

so that

sup
λ∈Λ

sup
g∈M
‖Sλ(t)g − g‖∞ ≤ ε+ 2C

(
S (t)ϕ

)
(0).

Since
(
S (t)ϕ

)
(0)→ 0 as t↘ 0 by Lemma 5.3, we obtain the assertion. �
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Lemma 5.10. For every f ∈ D one has

lim
h↘0

∥∥∥∥S (h)f − f
h

−Af
∥∥∥∥
∞

= 0.

Proof. Let ε > 0. Then, by Lemma 5.9 and Lemma 5.3 there exists h0 > 0 such that

Sλ(h)Aλf −Aλf ≥ −ε for all λ ∈ Λ

and
S (h)Af −Af ≤ ε

for all 0 < h ≤ h0. Then, for every 0 < h ≤ h0 and λ ∈ Λ we get

S (h)f − f ≥ Sλ(h)f − f =

∫ h

0
Sλ(s)Aλf ds ≥

(
Aλf − ε

)
h

so that
S (h)f − f

h
≥ Af − ε. (5.10)

On the other hand, it follows from Lemma 5.8 that for 0 < h ≤ h0

S (h)f − f − hAf ≤
∫ h

0
S (s)Af ds− hAf =

∫ h

0
S (s)Af −Af ds ≤ hε,

which yields
S (h)f − f

h
−Af ≤ ε.

Together with (5.10), we obtain∥∥∥∥S (h)f − f
h

−Af
∥∥∥∥
∞
≤ ε

for all 0 < h ≤ h0. �

Proposition 5.11. For f ∈ BUC(G) the function

u(t, x) =
(
u(t)

)
(x) =

(
S (t)f

)
(x), t ≥ 0, x ∈ G,

is a D-viscosity solution of the fully nonlinear PDE

ut(t, x) = sup
λ∈Λ

(
Aλu(t)

)
(x), (t, x) ∈ (0,∞)×G,

u(0, x) = f(x), x ∈ G.

Proof. Fix t > 0 and x ∈ G. We first show that u is a D-viscosity subsolution.
Let ψ : (0,∞) → BUC(G) differentiable with

(
ψ(t)

)
(x) =

(
u(t)

)
(x), ψ(s) ≥ u(s) and

ψ(s) ∈ D for all s > 0. Then, for every h ∈ (0, t), it follows from Proposition 5.6 that

0 =
S (h)S (t− h)f −S (t)f

h
=

S (h)u(t− h)− u(t)

h

≤ S (h)ψ(t− h)− u(t)

h
≤

S (h)
(
ψ(t− h)− ψ(t)

)
+ S (h)ψ(t)− u(t)

h

= S (h)

(
ψ(t− h)− ψ(t)

h

)
+

S (h)ψ(t)− ψ(t)

h
+
ψ(t)− u(t)

h
.

Let ε > 0. Then, by Lemma 5.10 and Lemma 5.3, there exists 0 < h0 < t such that for
all 0 < h < h0 one has

S (h)ψ(t)− ψ(t)

h
≤ Aψ(t) +

ε

3
,

ψ(t− h)− ψ(t)

h
≤ −ψt(t) +

ε

3
,
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and

S (h)
(
− ψt(t)

)
≤ −ψt(t) +

ε

3
.

Hence, we get

0 ≤ S (h)
(
− ψt(t)

)
+Aψ(t) +

2ε

3
+
ψ(t)− u(t)

h

≤ −ψt(t) +Aψ(t) + ε+
ψ(t)− u(t)

h

for all 0 < h < h0. Since
(
ψ(t)

)
(x) =

(
u(t)

)
(x) we obtain that

0 ≤ −
(
ψt(t)

)
(x) +

(
Aψ(t)

)
(x) + ε.

Letting ε↘ 0 yields
(
ψt(t)

)
(x) ≤

(
Aψ(t)

)
(x).

To show that u is a D-viscosity supersolution, let ψ : (0,∞)→ BUC(G) differentiable
with

(
ψ(t)

)
(x) =

(
u(t)

)
(x), ψ(s) ∈ D and ψ(s) ≤ u(s) for all s > 0. By Proposition

5.6, for all h > 0 with 0 < h < t we get

0 =
S (t)f −S (h)S (t− h)f

h
=
u(t)−S (h)u(t− h)

h
≤ u(t)−S (h)ψ(t− h)

h

=
u(t)− ψ(t)

h
+
ψ(t)−S (h)ψ(t)

h
+

S (h)ψ(t)−S (h)ψ(t− h)

h

≤ u(t)− ψ(t)

h
+
ψ(t)−S (h)ψ(t)

h
+ S (h)

(
ψ(t)− ψ(t− h)

h

)
Let ε > 0. Then, by Lemma 5.10 and Lemma 5.3 there exists 0 < h0 < t such that

ψ(t)−S (h)ψ(t)

h
≤ −Aψ(t) +

ε

3
,

ψ(t)− ψ(t− h)

h
≤ ψt(t) +

ε

3
,

and

S (h)
(
ψt(t)

)
≤ ψt(t) +

ε

3

for all 0 < h < h0. We thus get

0 ≤ u(t)− ψ(t)

h
−Aψ(t) + S (h)ψt(t) +

2ε

3
≤ u(t)− ψ(t)

h
−Aψ(t) + ψt(t) + ε

for all 0 < h < h0. Since
(
ψ(t)

)
(x) =

(
u(t)

)
(x) we obtain that

0 ≤ −
(
Aψ(t)

)
(x) +

(
ψt(t)

)
(x) + ε.

Letting ε↘ 0 yields
(
ψt(t)

)
(x) ≥

(
Aψ(t)

)
(x). �

In order to complete the proof of Theorem 2.5, it remains to show that there exists a
set P of probability measures and a stochastic process (Xt)t≥0 on a measurable space
(Ω,F) such that the viscosity solution in Proposition 5.11 is of the form

u(t, x) = sup
P∈P

EP(f(x+Xt))

for t ≥ 0 and x ∈ G. This is shown in the following proposition for which the assumption
(A2) is not needed.
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Proposition 5.12. There exists a set P of probability measures on a measurable space
(Ω,F) and an E-Lévy process (Xt)t≥0 such that(

S (t)f
)
(x) = E(f(x+Xt)) = sup

P∈P
EP(f(x+Xt))

for all f ∈ BUC(G), t ≥ 0 and x ∈ G, where E(Y ) = supP∈P EP(Y ), Y ∈ L∞(Ω,F).

Proof. Let (Ω0,F0,Q) be a probability space such that there exists an independent
family of Lévy processes (Xλ)λ∈Λ, where Xλ is a Lévy process with generator Aλ, i.e.

EQ(f(x+Xλ
t )) =

(
Sλ(t)f

)
(x)

for all x ∈ G, t ≥ 0 and f ∈ BUC(G). We call φ = (φt)t≥0 Λ-simple if there exist k ∈ N
and 0 = t0 < t1 < . . . < tk such that

φt =

k−1∑
j=0

φ(j)1(tj ,tj+1](t) + φ(k)1(tk,∞)(t), (5.11)

where for j ∈ {0, . . . , k} the mapping

φ(j) : G→ Λ

is measurable with finite range. For such a φ we define Xφ
t0

= Xφ
0 := 0 and inductively,

for j ∈ {0, . . . , k − 1}, we then define λj := φ(j)(Xφ
tj

) and

Xφ
t := Xφ

tj
+X

λj
t −X

λj
tj

for all tj < t ≤ tj+1. Finally, we define λk := φ(k)(Xφ
tk

) and

Xφ
t := Xφ

tk
+Xλk

t −X
λk
tk

for t > tk. Then, Xφ = (Xφ
t )t≥0 can be interpreted as a stochastic integral w.r.t. the

Λ-simple process φ. Let h1, h2 > 0. Then,(
Jh1Jh2f

)
(x) = sup

η∈Q

∫
G
f(x+ · ) dη

for f ∈ BUC(G), where Q is the set of probability measures of the form

η : B → [0, 1], B 7→
[
Sλ0(h1)

( n∑
k=1

1BkSλk(h2)1B

)]
(0)

with k ∈ N, λ0, λ1, . . . , λn ∈ Λ and B1 . . . , Bn ∈ B is a measurable partition of G. Here,
we identify Sλ(h) for λ ∈ Λ and h > 0 with the unique translation invariant kernel
associated to it. Inductively, we therefore obtain that Jπ with π = {t0, . . . , tk} admits
a dual representation in terms of distributions of stochastic integrals w.r.t. Λ-simple
processes of the form (5.11). For t ≥ 0 and f ∈ BUC(G), we thus obtain that(

S (t)f
)
(0) = sup

φ Λ-simple
EQ(f(Xφ

t )).

Now, consider Ω := G[0,∞), the product σ-algebra F , the canonical process (Xt)t≥0 and

P :=
{
Q ◦

(
Xφ
)−1 ∣∣φ is Λ-simple

}
. (5.12)

Then, for E := supP∈P EP( · ) we have that(
S (t)f

)
(x) = E(f(x+Xt)) = sup

P∈P
EP(f(x+Xt))
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for all t ≥ 0 and f ∈ BUC(G). Then, (Xt)t≥0 satisfies all properties in the definition
of an E-Lévy process. Note that (iii) and (iv) follow immediately from the dual repre-
sentation of the constructed expectation E(·) = supP∈P EP(·) and (v) follows as in the
proof of Theorem 2.3. �

The construction of the last proposition allows us to finish the proof of Theorem 2.5.

Proof of Theorem 2.5. By Proposition 5.12, there exists a sublinear expectation space
(Ω,F , E) and an E-Lévy process (Xt)t≥0 such that(

S (t)f
)
(x) = E(f(x+Xt))

for all t ≥ 0, x ∈ G and f ∈ BUC(G). By Proposition 5.11,

u(t, x) :=
(
S (t)f

)
(x) = E(f(x+Xt))

is a D-viscosity solution to (2.4) - (2.5). Moreover, by Proposition 5.12 there exists
a set of probability measures P on (Ω,F) such that E(Y ) = supP∈P EP(Y ) for all
Y ∈ L∞(Ω,F). �

Remark 5.13. a) We note that the set P is constructed in (5.12), based on Λ-simple
functions. This description is in some sense different from the approach by Neufeld
and Nutz [19] and Kühn [15], where the set of measures is a priori given in relation
to the family of Lévy triplets. The question of characterizing the set P in the general
situation considered in Theorem 2.5 seems to be hard and is outside the scope of the
present paper.

b) The construction of the nonlinear semigroup is similar to Nisio’s approach [21],
where only equidistant partitions of the time interval are used. As we have shown in
Lemma 5.4, S (t) is the limit of Jπn for any increasing sequence (πn)n∈N with |πn|∞ → 0.
Taking equidistant partitions, we obtain the analogue of Nisio’s semigroup. However,
in Nisio [21] strongly continuous semigroups on L∞(G) were considered, and it is now
well known that such semigroups have a bounded generator ([2, Corollary 4.3.19]),
which does not cover the interesting cases. Therefore, we work with BUC(G) as the
basic space. We plan to consider other relevant spaces like Lp or the space of bounded
continuous functions in the future.

We finish with the proof of Proposition 2.8 which now follows essentially from
Lemma 5.3.

Proof of Proposition 2.8. Fix t > 0 and ε > 0. Let ϕ ∈
⋂
λ∈Λ

(
D(Aλ) ∩ C0(G)

)
with

0 ≤ ϕ ≤ 1, ϕ(0) = 1 and supλ∈Λ ‖Aλϕ‖∞ ≤ ε
2t . Since ϕ(0) = 1 and 1−ϕ ∈

⋂
λ∈ΛD(Aλ)

with Aλ(1− ϕ) = −Aλϕ, it follows from Lemma 5.3 that∣∣(S (t)(1− ϕ)
)
(0)
∣∣ ≤ ‖S (t)(1− ϕ)− (1− ϕ)‖∞

≤ t sup
λ∈Λ
‖Aλϕ‖∞ ≤

ε

2
.

Note that the estimate in Lemma 5.3 holds for all functions in
⋂
λ∈ΛD(Aλ). Since

ϕ ∈ C0(G) there exists a compact set K ⊂ G such that

1G\K(y) ≤ 1− ϕ(y) +
ε

2
for all y ∈ G.

Hence,

E(1G\K(Xt)) ≤ E(1− ϕ(Xt)) +
ε

2
= |
(
S (t)(1− ϕ)

)
(0)|+ ε

2
≤ ε.
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In a second step, let (fn) be a decreasing sequence in BUC(G) which converges
pointwise to f . Fix x ∈ G and ε > 0. By the first part, there exists a compact K ⊂ G
such that E(1G\K(Xt)) ≤ ε/4(1+‖f1‖∞+‖f‖∞). By Dini’s lemma there exists n0 ∈ N
such that fn(x+ y)− f(x+ y) ≤ ε/2 for all y ∈ K and n ≥ n0. Hence,

E
(
fn(x+Xt)

)
− E

(
f(x+Xt)

)
≤E
(
(fn(x+Xt)− f(x+Xt))1K(Xt)

)
+ E

(
(fn(x+Xt)− f(x+Xt))1G\K(Xt)

)
≤ε

2
+ 2(‖f1‖∞ + ‖f‖∞)E(1G\K(Xt)) ≤ ε

for all n ≥ n0. This shows that f 7→
(
S (t)f

)
(x) is continuous from above on BUC(G).

�
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