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Abstract

We show how to set up a forward rate model in the presence of volatility uncertainty
by using the theory of G-Brownian motion. In order to formulate the model, we extend
the G-framework to integration with respect to two integrators and prove a version of
Fubini’s theorem for stochastic integrals. The evolution of the forward rate in the model
is described by a diffusion process, which is driven by a G-Brownian motion. Within
this framework, we derive a sufficient condition for the absence of arbitrage, known as
the drift condition. In contrast to the traditional model, the drift condition consists of
two equations and two market prices of risk, respectively, uncertainty. Furthermore, we
examine the connection to short rate models and discuss some examples.

Keywords: Robust Finance, Knightian Uncertainty, Interest Rates, No-Arbitrage
JEL subject classification: G12
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1 Introduction

In the literature of financial mathematics, there is a recent trend to investigate volatility un-
certainty in financial markets, commonly called robust finance. In the standard literature, the
volatility is often assumed to be deterministic or even to be constant. This is unrealistic and
leads to the problem of volatility estimation. Therefore, these models always include some
statistical uncertainty. The new approach is to assume that the volatility is uncertain in the
sense of Knightian uncertainty, which is introduced in Knight (2012). Such an assumption is
advantageous, since it only requires the volatility to lie between certain bounds without any
further specification.

The aim of this paper is to construct an arbitrage-free forward rate model in the presence
of volatility uncertainty. The behavior of the forward rate is characterized by a G-Brownian
motion in order to represent the volatility uncertainty. Since the forward rate is a stochastic
process, depending on the current time and the maturity of the related bond, we face some
technical issues. Hence, we construct a space of processes, which depend on two time indices
and for which we can define a stochastic integral with two integrators. Moreover, we prove a
version of Fubini’s theorem for such processes. These processes are afterwards used to model
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the dynamics of the forward rate, ensuring that all quantities regarding the related bond market
are well-defined.

Similar to the traditional model, we derive a drift condition, which implies that the bond
market is arbitrage-free and states that the risk-neutral dynamics of the forward rate are fully
determined by the diffusion coefficient of the forward rate. The drift condition is based on a
certain Girsanov transformation for G-Brownian motion and aims to make the drift terms of
the discounted bonds vanish. In the traditional model, the discounted bond has only one drift
term and the process, which is obtained by the Girsanov transformation and cancels out the
drift, is called the market price of risk, because it measures the instantaneous excess return of
the bond in units of the diffusion term. Since the quadratic variation of the G-Brownian motion
is an uncertain process, we get a certain and an uncertain drift term in this model. Thus, we
need to use a Girsanov transformation, modifying both drift terms. The two related processes
are then called the market prices of risk, respectively, uncertainty.

In the classical framework, without volatility uncertainty, every short rate model corresponds
to a certain forward rate model, since there is a connection between the forward rate and the
short rate. Therefore, we examine the relation in this model and we try to reproduce some
of the classical short rate models in the presence of volatility uncertainty as examples of this
forward rate model. It turns out that this procedure works well for exogenous models and has
some interesting implications.

Regarding the literature, the concept of volatility uncertainty has already been applied
to asset markets, which is carried out in Avellaneda, Levy, and Parás (1995), Lyons (1995),
Epstein and Ji (2013), and Vorbrink (2014). However, most of these models argue about the
absence of arbitrage in a very intuitive way. The notion of arbitrage is a crucial point in this
setting, since volatility uncertainty is usually represented by a nondominated set of measures.
Thus, the fundamental theorem of asset pricing from the classical literature is not suitable for
this setting. The theorem is extended to multiple, possibly nondominated priors by Bouchard
and Nutz (2015) and Burzoni, Riedel, and Soner (2017), for the discrete-time case, and Biagini,
Bouchard, Kardaras, and Nutz (2017), for the continuous-time case. Apart from that, there
are also models dealing with pricing contracts on the interest rate in the presence of volatility
uncertainty. This can be found in Avellaneda and Lewicki (1996), Fadina, Neufeld, and Schmidt
(2018), and Hölzermann (2018), where all of these models correspond to short rate models.

Historically speaking, the evolution of short rate models began with Vasicek (1977) by
adapting the methods from Black and Scholes (1973). Later on, the model was followed by
many other approaches like the one from Cox, Ingersoll Jr, and Ross (1985). Typically, these
models are referred to be endogenous, since the current term structure is an output of the
model. Another approach was introduced by Ho and Lee (1986) and Hull and White (1990),
where the latter extends the previously mentioned models. The novelty was to use the current
term structure as an input, which admits a perfect fit to the observed prices on the market. The
breakthrough of this approach was achieved by the methodology of Heath, Jarrow, and Morton
(1992), which directly models the forward rate starting from an initially observed forward curve.
However, this is still a missing step in the literature of robust finance.

From a mathematical point of view, there are various approaches to represent volatility
uncertainty. First of all, there are quasi-sure approaches like the one from Denis and Martini
(2006). Apart from that, there is the theory of G-Brownian motion and related G-expectation,
which is introduced in Peng (2010). The first approach starts from a probabilistic framework,
whereas the latter is motivated by a nonlinear partial differential equation. However, it holds
a duality between both of them, which is shown in Denis, Hu, and Peng (2011). In fact, we
use the calculus from Peng (2010) in this model, since the literature regarding the G-Brownian
motion is very rich, which equips us with a lot of mathematical tools. In particular, we use the
Itô formula from Li and Peng (2011), the Girsanov transformation from Hu, Ji, Peng, and Song
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(2014), and the results about G-stochastic differential equations from Gao (2009) and Li, Lin,
and Lin (2016). Additionally, the methodology from Heath, Jarrow, and Morton (1992) bears
some issues, since we need to deal with stochastic processes depending on two time indices.
That means we need to extend the stochastic integral from Peng (2010) and derive a version of
Fubini’s theorem, which is very important for this model. Although this can actually be found
in Ibragimov (2013), we do this in a simple manner for the sake of completeness.

The paper is organized as follows. In Section 2, we construct a set of beliefs, representing
the uncertainty about the volatility and leading to a G-expectation and a G-Brownian motion,
which is used to describe the behavior of the forward rate in the succeeding section. Moreover,
we state the results about the previously mentioned extension of stochastic processes. The
details and the derivations of the results can be found in Section B in the appendix. In the
succeeding Section 3, we introduce the forward rate model. We start by defining the forward
rate, which determines the money-market account and the bond prices on the market, and
derive the drift condition afterwards. In Section 4, we examine the relation to short rate
models, which means that we derive the related short rate dynamics for a general forward rate
and for the case where the drift condition is satisfied. After that, in Section 5, we are able
to discuss some examples, including the Ho-Lee model and the Hull and White model with
volatility uncertainty. Section 6 gives a conclusion.

2 Model Framework

This preliminary section is devoted to set up a general framework for the forward rate model.
We start with a probabilistic setting, leading to a sublinear expectation and a G-Brownian
motion. The G-Brownian motion is used to describe the evolution of the forward rate in
Section 3. Before formulating the forward rate model, it is also necessary to deal with processes
depending on two time indices, since the forward rate does. Therefore, we construct a space
of processes, which are suitable for stochastic integration with respect to two integrators and
for which we can prove a version of Fubini’s theorem. However, we only state the main results
in this section. The formal construction of stochastic integrals and the proofs of the remaining
propositions and theorems are collected in Section B in the appendix.

Let (Ω,F , P ) be a probability space such that Ω = C0(R+), F = B(Ω), and P is the Wiener
measure. Furthermore, let (Bt)t be the canonical process, which is a Brownian motion under
P , and denote by (Ft)t the filtration generated by (Bt)t completed by all P -null sets. Now we
define the process (Bσ

t )t by

Bσ
t :=

∫ t

0

σsdBs

for all [σ, σ]-valued, progressively measurable processes σ = (σt)t, where σ ≥ σ > 0, and we
define the measure P σ to be the law of the process (Bσ

t )t, that is,

P σ := P ◦ (Bσ)−1.

Denote by P the closure of all such measures under the topology of weak convergence. Then
we can define the sublinear expectation

Ê[X] := sup
P∈P

EP [X].

By the results from Denis, Hu, and Peng (2011), Ê corresponds to the G-expectation on L1
G(Ω)

and the process (Bt)t is a G-Brownian motion under Ê. Henceforth, all statements should be
understood to hold quasi-surely, that is, P -almost surely for all P ∈ P .
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From now on, we work on the G-expectation space (Ω, L1
G(Ω), Ê), where we fix a terminal

time τ <∞, that is, we restrict our analysis to L1
G(Ωτ ) ⊂ L1

G(Ω). For further insights regarding
the calculus of G-Brownian motion, the reader may refer to Section A in the appendix or to
Peng (2010). It should be noted that the following results and the succeeding forward rate
model could be generalized to the case of a d-dimensional G-Brownian motion. However, we
use a one-dimensional G-Brownian motion to simplify the notation.

Similar to the construction of stochastic integrals in Peng (2010), we start with the space
of simple processes and extend it to its completion under a norm. Denote by M̃p,0

G (0, T ), for
p ≥ 1 and T ≤ τ , the space of all simple processes, i.e., processes φ of the form

φ(t, s) =
N−1∑
i=0

ϕit1[si,si+1)(s)

for a partition 0 = s0 < s1 < ... < sN = τ and processes ϕi ∈ Mp
G(0, T ). Denote by M̃p

G(0, T )
the completion of M̃p,0

G (0, T ) under the norm ‖ · ‖M̃p
G(0,T ), given by

‖ φ ‖p
M̃p

G(0,T )
=

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)
∣∣pdt]ds :=

N−1∑
i=0

Ê
[ ∫ T

0

|ϕit|pdt
]
(si+1 − si).

We clearly have M̃p
G(0, T ) ⊂ M̃ q

G(0, T ) for p ≥ q ≥ 1 and it is easy to show that 1Γφ ∈
M̃p

G(0, t2) for φ ∈ M̃p
G(0, T ) and Γ = [t1, t2]×[s1, s2], where 0 ≤ t1 < t2 ≤ T and 0 ≤ s1 < s2 ≤ τ ,

which also implies that M̃p
G(0, T ′) ⊂ M̃p

G(0, T ) for T ≤ T ′. Apart from that, we can show the
latter for more complex sets Γ.

Proposition 2.1. Let φ ∈ M̃p
G(0, T ) and Γ = {(t, s) ∈ [0, T ] × [0, τ ] : t ≤ s}. Then we have

that 1Γφ ∈ M̃p
G(0, T ).

The space M̃p
G(0, T ) is used as the set of all admissible integrands in the succeeding model and

the results from above allow us to define integrals on all kinds of intervals.
On the space M̃p

G(0, T ), we can introduce the following integral operator in order to define
stochastic integrals.

Theorem 2.1. We can define the linear and continuous integral operator I : M̃p
G(0, T ) →

Mp
G(0, T ) given by

I(φ) :=

∫ τ

0

φ(·, s)ds.

Hence, we are allowed to integrate processes in M̃p
G(0, T ) with respect to the second variable

and, more important, we know that the integral operator maps to Mp
G(0, T ), which allows us

to integrate a second time with respect to the first variable of the process. This enables us to
define the integral ∫ T

0

∫ τ

0

φ(t, s)dsdBt

for φ ∈ M̃2
G(0, T ) and the integrals∫ T

0

∫ τ

0

φ(t, s)dsd〈B〉t and

∫ T

0

∫ τ

0

φ(t, s)dsdt.

for φ ∈ M̃1
G(0, T ).
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Remark 2.1. By Proposition 2.1, we can define integrals like∫ T

0

∫ T

t

φ(t, s)dsdBt

for φ ∈ M̃2
G(0, T ) as well. The same holds true for φ ∈ M̃1

G(0, T ) and the other mentioned
integrators.

Moreover, we are able to define a stochastic integral for the reversed order of integration.

Theorem 2.2. We can define the linear and continuous integral operators J : M̃2
G(0, T ) →

L2
G(ΩT ), J ′ : M̃1

G(0, T )→ L1
G(ΩT ), and J ′′ : M̃1

G(0, T )→ L1
G(ΩT ) given by

J(φ) :=

∫ τ

0

∫ T

0

φ(t, s)dBtds,

J ′(φ) :=

∫ τ

0

∫ T

0

φ(t, s)d〈B〉tds,

J ′′(φ) :=

∫ τ

0

∫ T

0

φ(t, s)dtds.

Additionally, for all φ ∈ M̃2
G(0, T ), it holds

Ê
[ ∫ τ

0

∫ T

0

φ(t, s)dBtds
]

= 0.

Remark 2.2. According to Proposition 2.1, we can also define integrals like∫ T

0

∫ s

0

φ(t, s)dBtds

for φ ∈ M̃2
G(0, T ), which works for φ ∈ M̃1

G(0, T ) and the other integrators too.

Another important tool when dealing with double integrals is the version of Fubini’s theorem
which allows us to interchange the order of integration.

Theorem 2.3. Let φ ∈ M̃2
G(0, T ). Then it holds∫ τ

0

∫ T

0

φ(t, s)dBtds =

∫ T

0

∫ τ

0

φ(t, s)dsdBt.

Furthermore, for ψ ∈ M̃1
G(0, T ), it holds∫ τ

0

∫ T

0

ψ(t, s)d〈B〉tds =

∫ T

0

∫ τ

0

ψ(t, s)dsd〈B〉t

and ∫ τ

0

∫ T

0

ψ(t, s)dtds =

∫ T

0

∫ τ

0

ψ(t, s)dsdt.

Remark 2.3. Here we can again apply Proposition 2.1 to obtain∫ T

0

∫ T

t

φ(t, s)dsdBt =

∫ T

0

∫ s

0

φ(t, s)dBtds

for φ ∈ M̃2
G(0, T ), which holds for φ ∈ M̃1

G(0, T ) and the other integrators as well.
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In fact, the processes in M̃p
G(0, T ) can be related to the classical space Mp

G(0, T ) from Peng
(2010). This is important in order to achieve a certain kind of regularity of the forward rate in
the succeeding model.

Proposition 2.2. Let φ ∈ M̃p
G(0, T ). Then φ(·, s) ∈Mp

G(0, T ) for almost every s ∈ [0, τ ].

So we know that such a process is still a regular process in the classical sense if we fix the
second variable.

In the end, we give some sufficient conditions for processes to lie in the space M̃p
G(0, T ). In

fact, the first condition is satisfied in all of the examples in Section 5. We denote by Lp(S)
for S ⊂ Rd and d ∈ N the space of all B(S)-measurable functions f : S → R such that |f |p is
integrable with respect to the Lebesgue measure on S.

Remark 2.4. (i) Let φ : [0, T ] × [0, τ ] → R be a function such that φ ∈ Lp([0, T ] × [0, τ ]).
Then the norm on M̃p

G(0, T ) corresponds to the classical integral norm on Lp([0, T ] ×
[0, τ ]), since φ is deterministic. Moreover, φ can be approximated by a sequence of simple
functions, which shows that φ belongs to M̃p

G(0, T ).

(ii) Let φ(t, s) = ηtψ(s) for η ∈Mp
G(0, T ) and ψ ∈ Lp([0, τ ]). Hence, we know that there is a

sequence ψn ∈ Lp([0, τ ]) of simple functions, converging to ψ in Lp([0, τ ]). We know that
ηψn ∈ M̃p,0

G (0, T ) and it is possible to show that ηψn converges to ηψ in M̃p
G(0, T ), which

yields φ ∈ M̃p
G(0, T ).

3 Forward Rate Model

After building up the general framework, we are now able to formulate the desired forward rate
model. We start by modeling the forward rate, determining all bond prices and the money-
market account on the market, with the G-Brownian motion and the processes introduced
in Section 2. In order to have an arbitrage-free model, we derive a drift condition, ensuring
that there are no arbitrage opportunities in the bond market. The drift condition is based on
a certain Girsanov transformation, which requires an extension of the sublinear expectation
space.

First of all, we introduce the forward rate f(t, T ), for t ≤ T ≤ τ , which is modeled as a
diffusion process, that is,

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+

∫ t

0

β(s, T )dBs +

∫ t

0

γ(s, T )d〈B〉s

for some initial integrable forward curve T → f(0, T ) and processes α, β, and γ to be deter-
mined. It should be noted that we have an additional drift part in comparison to the classical
case without volatility uncertainty. This is due to the fact that the quadratic variation of the
G-Brownian motion is an uncertain process, which is not equal to t and whose density with
respect to Lebesgue measure is not in M1

G(0, T ) if σ > σ. The latter can be found in Song
(2013). Hence, the forward rate has a certain and uncertain drift term. If σ = σ, we have
〈B〉t = t. Then we could drop the first integral in the dynamics and we would be back in the
classical case.

Now let us consider the related bond market, offering zero-coupon bonds for all maturities
T within the time horizon [0, τ ]. The price at time t ≤ T of such a bond is denoted by P (t, T )
and is defined by

P (t, T ) := exp
(
−
∫ T

t

f(t, s)ds
)
.
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In addition, there is the money-market account (Mt)t, which is given by

Mt := exp
(∫ t

0

rsds
)
,

where (rt)t is the instantaneous spot interest rate, called short rate. The short rate in this
model is represented by the instantaneous forward rate,

rt := f(t, t)

In fact, the money-market account is only used for discounting, i.e., we restrict our analysis to
the discounted bond prices, defined by

P̃ (t, T ) := M−1
t P (t, T ).

In order to have a certain degree of regularity, we henceforth impose the following assump-
tions.

Assumption 1 (Regularity of the Forward Rate and the Short Rate). The drift and diffusion
terms of the forward rate are supposed to be regular, that is,

α, β, γ ∈ M̃2
G(0, τ).

This assumption ensures that the forward rate can be integrated with respect to the second
argument and that we can apply Theorem 2.3, which is essential in this model. By Proposition
2.2, we also have that α(·, T ), β(·, T ), γ(·, T ) ∈M2

G(0, τ) for almost every T ∈ [0, τ ]. Therefore,
the forward rate itself is well-defined for almost every maturity as well as the short rate.

Furthermore, we define the processes a, b, and c by

a(t, T ) :=

∫ T

t

α(t, s)ds,

b(t, T ) :=

∫ T

t

β(t, s)ds,

c(t, T ) :=

∫ T

t

γ(t, s)ds,

for which we have a(·, T ), b(·, T ), c(·, T ) ∈ M2
G(0, τ) for all T ∈ [0, τ ] by Proposition 2.1 and

Theorem 2.1. However, we need to impose some additional regularity.

Assumption 2 (Regularity of the Discounted Bonds). The integral of the diffusion term is
supposed to satisfy some additional regularity with respect to the first argument, that is,

b(·, T )2 ∈M2
G(0, τ) for all T ∈ [0, τ ].

Assumption 2 implies that the discounted bond price is well-defined, which is shown after
Proposition 3.1 below.

As it is the aim to find a no-arbitrage condition for the bond market, we are interested in
the dynamics of the discounted bond prices. For this purpose, we need the following lemma.

Lemma 3.1. The integral of the forward rate with respect to the maturity satisfies the dynamics∫ T

t

f(t, u)du =

∫ T

0

f(0, u)du+

∫ t

0

(
a(u, T )− ru

)
du+

∫ t

0

b(u, T )dBu +

∫ t

0

c(u, T )d〈B〉u

for t ≤ T ≤ τ .
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Proof. The integral of the forward rate with respect to the maturity is given by∫ T

t

f(t, u)du =

∫ T

t

f(0, u)du+

∫ T

t

∫ t

0

α(s, u)dsdu+

∫ T

t

∫ t

0

β(s, u)dBsdu

+

∫ T

t

∫ t

0

γ(s, u)d〈B〉sdu.

If we apply Theorem 2.3 to the double integrals and do some computations, we get∫ T

t

∫ t

0

α(s, u)dsdu+

∫ T

t

∫ t

0

β(s, u)dBsdu+

∫ T

t

∫ t

0

γ(s, u)d〈B〉sdu

=

∫ t

0

∫ T

t

α(s, u)duds+

∫ t

0

∫ T

t

β(s, u)dudBs

∫ t

0

∫ T

t

γ(s, u)dud〈B〉s

=

∫ t

0

∫ T

s

α(s, u)duds+

∫ t

0

∫ T

s

β(s, u)dudBs +

∫ t

0

∫ T

s

γ(s, u)dud〈B〉s

−
∫ t

0

∫ t

s

α(s, u)duds−
∫ t

0

∫ t

s

β(s, u)dudBs −
∫ t

0

∫ t

s

γ(s, u)dud〈B〉s

=

∫ t

0

a(s, T )ds+

∫ t

0

b(s, T )dBs +

∫ t

0

c(s, T )d〈B〉s

−
∫ t

0

∫ u

0

α(s, u)dsdu−
∫ t

0

∫ u

0

β(s, u)dBsdu−
∫ t

0

∫ u

0

γ(s, u)d〈B〉sdu

=

∫ t

0

a(u, T )du+

∫ t

0

b(u, T )dBu +

∫ t

0

c(u, T )d〈B〉u

−
∫ t

0

(∫ u

0

α(s, u)ds+

∫ u

0

β(s, u)dBs +

∫ u

0

γ(s, u)d〈B〉s
)
du.

Hence, it holds∫ T

t

f(t, u)du =

∫ T

0

f(0, u)du+

∫ t

0

a(u, T )du+

∫ t

0

b(u, T )dBu +

∫ t

0

c(u, T )d〈B〉u

−
∫ t

0

(
f(0, u) +

∫ u

0

α(s, u)ds+

∫ u

0

β(s, u)dBs +

∫ u

0

γ(s, u)d〈B〉s
)
du

=

∫ T

0

f(0, u)du+

∫ t

0

(
a(u, T )− ru

)
du+

∫ t

0

b(u, T )dBu +

∫ t

0

c(u, T )d〈B〉u

by the definition of the short rate.

Now we can use the extended Itô’s formula for G-Brownian motion from Li and Peng (2011)
to obtain the dynamics of the discounted bond prices.

Proposition 3.1. The discounted bond price process (P̃ (t, T ))t satisfies the G-stochastic dif-
ferential equation

P̃ (t, T ) =P̃ (0, T )−
∫ t

0

a(u, T )P̃ (u, T )du−
∫ t

0

b(u, T )P̃ (u, T )dBu

−
∫ t

0

(
c(u, T )− 1

2
b(u, T )2

)
P̃ (u, T )d〈B〉u

for t ≤ T ≤ τ .
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Proof. By applying Lemma 3.1, we get∫ T

t

f(t, u)du+

∫ t

0

rudu =

∫ T

0

f(0, u)du+

∫ t

0

a(u, T )du+

∫ t

0

b(u, T )dBu

+

∫ t

0

c(u, T )d〈B〉u.

If we then apply Itô’s formula to the discounted bond price

P̃ (t, T ) = exp
(
−
∫ T

t

f(t, u)du−
∫ t

0

rudu
)
,

we get

P̃ (t, T ) =P̃ (0, T )−
∫ t

0

a(u, T )P̃ (u, T )du−
∫ t

0

b(u, T )P̃ (u, T )dBu

−
∫ t

0

(
c(u, T )− 1

2
b(u, T )2

)
P̃ (u, T )d〈B〉u,

for the dynamics of (P̃ (t, T ))t.

As it is mentioned above, we can explain why the discounted bond price is well-defined. We
notice that the drift and diffusion terms in the dynamics of the discounted bond are lin-
ear in P̃ (t, T ). Furthermore, Assumption 1 and Assumption 2 ensure that the coefficients
a(·, T ), b(·, T ), (c(·, T ) − 1

2
b(·, T )2) ∈ M2

G(0, τ). Hence, by the results from Li, Lin, and Lin
(2016), which are based on the method from Gao (2009), we know that the G-stochastic dif-
ferential equation in Proposition 3.1 has a unique solution in M2

G(0, τ). Indeed, the solution is
given by the discounted bond price (P̃ (t, T ))t.

After examining the traded quantities on the market, we introduce the set of admissible
market strategies and the notion of arbitrage. Since we can define the integral of a process
with an additional time dependence with respect to two integrators, we are able to allow
for continuous trading within the set of all maturities, which is inspired by Björk, Di Masi,
Kabanov, and Runggaldier (1997).

Definition 3.1. An admissible market strategy is a process π ∈ M̃2
G(0, τ) such that πaP̃ ∈

M̃1
G(0, τ), πbP̃ ∈ M̃2

G(0, τ), and π(c − 1
2
b2)P̃ ∈ M̃1

G(0, τ). The corresponding portfolio value
process (ṽt(π))t is given by

ṽt(π) =

∫ τ

0

∫ t∧T

0

π(s, T )dP̃ (s, T )dT.

The integral in the above representation of the portfolio value is well-defined, since we can
replace the integrator dP̃ (t, T ) with the dynamics from Proposition 3.1.

Furthermore, we use the following notion of arbitrage, which corresponds to the one from
Vorbrink (2014).

Definition 3.2. An admissible market strategy π is called arbitrage strategy if it holds

ṽτ (π) ≥ 0 quasi-surely and P
(
ṽτ (π) > 0

)
> 0 for at least one P ∈ P .

The next step in the model is to derive a drift condition ensuring the absence of arbitrage.
Similar to the classical model, we use a certain Girsanov transformation to achieve this. Indeed,
we use the one from Hu, Ji, Peng, and Song (2014), since it enables us to modify the certain
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and the uncertain part of the drift of the discounted bond, i.e., the dt- and the d〈B〉t-term.
However, we need to extend the sublinear expectation space for this purpose.

In the following, we consider the extended G̃-expectation space (Ω̃τ , L
1
G̃

(Ω̃τ ), ÊG̃) with the

canonical process (Bt, B̃t)t, where Ω̃τ = C0([0, τ ],R2) and the sublinear function G̃ is given by

G̃(A) = 1
2

sup
ϑ∈[σ2,σ2]

tr
(
A

(
ϑ 1
1 ϑ−1

))
for some symmetric 2× 2 matrix A. Then we have

ÊG̃[X] = Ê[X]

for X ∈ L1
G(Ωτ ). Furthermore, we can define the sublinear expectation Ẽ by

Ẽ[X] := ÊG̃[EX]

for X ∈ LβG(Ωτ ), where β > 1 and

E = exp
(∫ τ

0

λtdBt +

∫ τ

0

κtdB̃t − 1
2

∫ τ

0

λ2
td〈B〉t

−
∫ τ

0

λtκtdt− 1
2

∫ τ

0

κ2
td〈B̃〉t

)
for bounded processes κ, λ ∈Mβ

G(0, τ). Then, by Hu, Ji, Peng, and Song (2014), we know that

B̄t := Bt −
∫ t

0

κsds−
∫ t

0

λsd〈B〉s

is a G-Brownian motion under Ẽ.
Now we can introduce the drift condition. Similar to the traditional model, the processes

κ and λ are used to make the drift terms vanish. Since we have a certain and uncertain drift
term in this case, the processes κ and λ can be interpreted as the market price of risk and
uncertainty, respectively. Moreover, we show that the dynamics of the forward rate under the
“risk-neutral” sublinear expectation Ẽ only depend on its diffusion coefficient.

Theorem 3.1. Suppose that the processes κ and λ satisfy the drift condition

a(t, T ) + b(t, T )κt = 0,

c(t, T )− 1
2
b(t, T )2 + b(t, T )λt = 0

for all t ≤ T for all T ∈ [0, τ ]. Then the discounted bond price process (P̃ (t, T ))t is a symmetric
G-martingale under Ẽ and the forward rate satisfies

f(t, T ) = f(0, T ) +

∫ t

0

β(s, T )dB̄s +

∫ t

0

(
β(s, T )

∫ T

s

β(s, u)du
)
d〈B〉s.

Proof. By Proposition 3.1, we have

P̃ (t, T ) =P̃ (0, T )−
∫ t

0

a(u, T )P̃ (u, T )du−
∫ t

0

b(u, T )P̃ (u, T )dBu

−
∫ t

0

(
c(u, T )− 1

2
b(u, T )2

)
P̃ (u, T )d〈B〉u

=P̃ (0, T )−
∫ t

0

(
a(u, T ) + b(u, T )κu

)
P̃ (u, T )du−

∫ t

0

b(u, T )P̃ (u, T )dB̄u

−
∫ t

0

(
c(u, T )− 1

2
b(u, T )2 + b(u, T )λu

)
P̃ (u, T )d〈B〉u

=P̃ (0, T )−
∫ t

0

b(u, T )P̃ (u, T )dB̄u.
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Thus, since (B̄t)t is a G-Brownian motion under Ẽ, we know that (P̃ (t, T ))t is a symmetric
G-martingale. Apart from that, we can differentiate the drift condition with respect to T to
get

α(t, T ) + β(t, T )κt = 0,

γ(t, T )− β(t, T )

∫ T

t

β(t, u)du+ β(t, T )λt = 0.

Hence, the forward rate is given by

f(t, T ) =f(0, T ) +

∫ t

0

α(s, T )ds+

∫ t

0

β(s, T )dBs +

∫ t

0

γ(s, T )d〈B〉s

=f(0, T ) +

∫ t

0

(
α(s, T ) + β(s, T )κs

)
ds+

∫ t

0

β(s, T )dB̄s

+

∫ t

0

(
γ(s, T ) + β(s, T )λs

)
d〈B〉s

=f(0, T ) +

∫ t

0

β(s, T )dB̄s +

∫ t

0

(
β(s, T )

∫ T

s

β(s, u)du
)
d〈B〉s,

as it is claimed.

The drift condition corresponds exactly to the classical one if there is no volatility uncertainty,
i.e., if σ = σ. In that case, we would have 〈B〉t = t and the process α would vanish, which
means that the first equation of the drift condition becomes redundant. Then we would be
back in the classical case.

Since the drift condition implies that the discounted bond is a symmetric G-martingale
under a somehow “equivalent” sublinear expectation, we get the following result.

Corollary 3.1. If the drift condition from Theorem 3.1 is satisfied, then the market is arbitrage-
free, i.e., there is no arbitrage strategy.

Proof. Suppose there exists an arbitrage strategy π. Hence, we know that

ṽτ (π) ≥ 0 quasi-surely and P
(
ṽτ (π) > 0

)
> 0 for at least one P ∈ P ,

which implies

ÊG̃[ṽτ (π)] = Ê[ṽτ (π)] > 0.

Furthermore, it holds

Ẽ[ṽτ (π)] = ÊG̃[E ṽτ (π)] > 0,

since the exponential E is strictly positive. Now we can use Theorem 3.1 and the property of
the double integral which was introduced in Theorem 2.2 to show the contradiction.

Ẽ[ṽτ (π)] =Ẽ
[ ∫ τ

0

∫ T

0

π(t, T )dP̃ (t, T )dT
]

=Ẽ
[ ∫ τ

0

∫ T

0

π(t, T )
(
− b(t, T )P̃ (t, T )

)
dB̄tdT

]
= 0.

Therefore, there is no arbitrage strategy.
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4 Short Rate Dynamics

Since every forward rate model corresponds to a related short rate model, we want to examine
this relation closer. This is especially interesting for examining examples, which is the content of
Section 5. There we determine the volatility structure of the forward rate in order to reproduce
certain short rate models.

Indeed, if we impose more assumptions on the drift and the diffusion, it is possible to show
the relation between the forward rate and the short rate for a general setup, i.e., without
specifying α, β, and γ.

Lemma 4.1. Suppose that T → f(0, T ), T → α(t, T ), T → β(t, T ), and T → γ(t, T ) are
differentiable such that ∂Tα, ∂Tγ ∈ M̃1

G(0, τ) and ∂Tβ ∈ M̃2
G(0, τ). Then the short rate process

satisfies the dynamics

rt = r0 +

∫ t

0

(
ψ(u) + α(u, u)

)
du+

∫ t

0

β(u, u)dBu +

∫ t

0

γ(u, u)d〈B〉u,

where

ψ(u) = ∂uf(0, u) +

∫ u

0

∂uα(s, u)ds+

∫ u

0

∂uβ(s, u)dBs +

∫ u

0

∂uγ(s, u)d〈B〉s.

Proof. The short rate is given by

rt = f(t, t) = f(0, t) +

∫ t

0

α(s, t)ds+

∫ t

0

β(s, t)dBs +

∫ t

0

γ(s, t)d〈B〉s.

Using differentiability, we have

f(0, t) = f(0, 0) +

∫ t

0

∂uf(0, u)du = r0 +

∫ t

0

∂uf(0, u)du

and ∫ t

0

α(s, t)ds =

∫ t

0

α(s, s)ds+

∫ t

0

(
α(s, t)− α(s, s)

)
ds

=

∫ t

0

α(s, s)ds+

∫ t

0

∫ t

s

∂uα(s, u)duds

=

∫ t

0

α(s, s)ds+

∫ t

0

∫ u

0

∂uα(s, u)dsdu.

Analogously to the last step, it follows∫ t

0

β(s, t)dBs =

∫ t

0

β(s, s)dBs +

∫ t

0

∫ u

0

∂uβ(s, u)dBsdu

and ∫ t

0

γ(s, t)d〈B〉s =

∫ t

0

γ(s, s)d〈B〉s +

∫ t

0

∫ u

0

∂uγ(s, u)d〈B〉sdu.

Substituting all terms in the first equality of the proof yields the assertion.

If we now assume that the drift condition holds, we get the corresponding dynamics of the
short rate under the risk-neutral sublinear expectation Ẽ.
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Proposition 4.1. Assume that the requirements of Lemma 4.1 are fulfilled and that the drift
condition from Theorem 3.1 is satisfied. Then the short rate process satisfies the dynamics

rt = r0 +

∫ t

0

ψ(u)du+

∫ t

0

β(u, u)dB̄u,

where

ψ(u) = ∂uf(0, u) +

∫ u

0

∂uβ(s, u)dB̄s +

∫ u

0

(
∂uβ(s, u)b(s, u) + β(s, u)2

)
d〈B〉s.

Proof. If we differentiate the drift condition with respect to T , we get

α(t, T ) + β(t, T )κt = 0,

γ(t, T )− β(t, T )b(t, T ) + β(t, T )λt = 0.

By setting T = t, we know that it holds

α(t, t) + β(t, t)κt = 0,

γ(t, t) + β(t, t)λt = 0.

Furthermore, we can differentiate the drift condition a second time with respect to T to obtain

∂Tα(t, T ) + ∂Tβ(t, T )κt = 0,

∂Tγ(t, T )− ∂Tβ(t, T )b(t, T )− β(t, T )2 + ∂Tβ(t, T )λt = 0.

Now we can use Lemma 4.1 and write the dynamics in terms of (B̄t)t to apply the conditions
from above, i.e.,

rt =r0 +

∫ t

0

(
ψ(u) + α(u, u)

)
du+

∫ t

0

β(u, u)dBu +

∫ t

0

γ(u, u)d〈B〉u

=r0 +

∫ t

0

(
ψ(u) + α(u, u) + β(u, u)κu

)
du+

∫ t

0

β(u, u)dB̄u

+

∫ t

0

(
γ(u, u) + β(u, u)λu

)
d〈B〉u

=r0 +

∫ t

0

ψ(u)du+

∫ t

0

β(u, u)dB̄u,

where

ψ(u) =∂uf(0, u) +

∫ u

0

∂uα(s, u)ds+

∫ u

0

∂uβ(s, u)dBs +

∫ u

0

∂uγ(s, u)d〈B〉s

=∂uf(0, u) +

∫ u

0

(
∂uα(s, u) + ∂uβ(s, u)κs

)
ds+

∫ u

0

∂uβ(s, u)dB̄s

+

∫ u

0

(
∂uγ(s, u) + ∂uβ(s, u)λs

)
d〈B〉s

=∂uf(0, u) +

∫ u

0

∂uβ(s, u)dB̄s +

∫ u

0

(
∂uβ(s, u)b(s, u) + β(s, u)2

)
d〈B〉s,

as it is claimed.

Similar to Theorem 3.1, we see that the dynamics of the short rate only depend on the diffusion
coefficient.
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5 Examples

The Ho-Lee model and the Hull and White extended Vasicek model are probably the most
famous short rate models allowing for a perfect fit to the initial term structure. Therefore, they
are often used as examples in the HJM framework. In the following, we want to see if we are
also able to reproduce these short rate models in this framework and how the related model
differs from the one without volatility uncertainty. Apart from that, the Hull and White model
is actually a good example to show why the classical Vasicek model cannot be embedded into
this framework.

5.1 Ho-Lee Model

Let us suppose that the diffusion coefficient of the forward rate is a constant σ > 0, i.e.,

β(t, T ) = σ

for all t ≤ T ≤ τ . Then, by Theorem 3.1, we know that the forward rate satisfies

f(t, T ) = f(0, T ) + σB̄t + σ2

∫ t

0

(T − s)d〈B〉s

under the risk-neutral sublinear expectation and Proposition 4.1 tells us that the short rate is
given by

rt = r0 +

∫ t

0

(
∂uf(0, u) + σ2〈B〉u

)
du+ σB̄t.

Hence, we can see that this corresponds exactly to the (fitted) Ho-Lee model1 if there is no
volatility uncertainty, i.e., if σ = 1 = σ.

Furthermore, we can calculate the bond prices

P (t, T ) = exp
(
−
∫ T

t

f(t, u)du
)
.

If we perform some computations, we get∫ T

t

f(t, u)du =

∫ T

t

(
f(0, u) + σB̄t + σ2

∫ t

0

(u− s)d〈B〉s
)
du

=

∫ T

t

f(0, u)du+ (T − t)σB̄t + σ2

∫ T

t

∫ t

0

(u− t)d〈B〉sdu

+ σ2

∫ T

t

∫ T

0

(t− s)d〈B〉sdu

=

∫ T

t

f(0, u)du− (T − t)f(0, t) + (T − t)f(0, t) + (T − t)σB̄t

+ σ2

2
〈B〉t(T − t)2 + (T − t)σ2

∫ t

0

(t− s)d〈B〉s

=

∫ T

t

f(0, u)du− (T − t)f(0, t) + σ2

2
〈B〉t(T − t)2

+ (T − t)
(
f(0, t) + σB̄t + σ2

∫ t

0

(t− s)d〈B〉s
)
,

1See Subsection 5.4.4 in Filipovic (2009).
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where the term in the large brackets corresponds to the short rate. Thus, we have

P (t, T ) = exp
(
−
∫ T

t

f(0, u)du+ (T − t)f(0, t)− σ2

2
〈B〉t(T − t)2 − (T − t)rt

)
,

which is again the same expression as in the traditional model if 〈B〉t = t.
So the main difference is the appearance of the quadratic variation process in the drift of

the short rate and in the bond prices. This means that, in contrast to the traditional affine
models, the bond price does not only depend on the initial term structure and the current value
of the short rate, but also on the current value of the quadratic variation of the short rate.

5.2 Hull and White Model

In order to reproduce the Hull and White extended Vasicek model, we assume that

β(t, T ) = σe−θ(T−t)

for constants σ, θ > 0. Hence, we get the forward rate

f(t, T ) = f(0, T ) +

∫ t

0

σe−θ(T−s)dB̄s +

∫ t

0

σ2

θ
e−θ(T−s)

(
1− e−θ(T−s)

)
d〈B〉s

and the short rate

rt = r0 +

∫ t

0

ψ(u)du+ σB̄t,

where

ψ(u) =∂uf(0, u)− θ
∫ u

0

σe−θ(u−s)dBs

+

∫ u

0

(
σ2e−θ(u−s)

(
1− e−θ(u−s)

)
+ σ2e−2θ(u−s)

)
d〈B〉s

=∂uf(0, u) + θf(0, u) + σ2

∫ u

0

e−2θ(u−s)d〈B〉s

− θ
(
f(0, u) +

∫ u

0

σe−θ(u−s)dB̄s +

∫ u

0

σ2

θ
e−θ(u−s)

(
1− e−θ(u−s)

)
d〈B〉s

)
=∂uf(0, u) + θf(0, u) + σ2

∫ u

0

e−2θ(u−s)d〈B〉s − θru.

Similar to the previous example, these are the same dynamics than the ones in the classical
(fitted) Hull and White model2 if 〈B〉t = t.

To obtain the bond prices

P (t, T ) = exp
(
−
∫ T

t

f(t, u)du
)
,

we need to do some computations on the integral of the forward rate,∫ T

t

f(t, u)du =

∫ T

t

f(0, u)du+

∫ T

t

∫ t

0

σe−θ(u−s)dB̄sdu

+

∫ T

t

∫ t

0

σ2

θ
e−θ(u−s)

(
1− e−θ(u−s)

)
d〈B〉sdu,

2See Subsection 3.3.1 in Brigo and Mercurio (2007).
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where ∫ T

t

∫ t

0

σe−θ(u−s)dB̄sdu =
(∫ T

t

e−θ(u−t)du
)(∫ t

0

σe−θ(t−s)dB̄s

)
=1
θ

(
1− e−θ(T−t)

) ∫ t

0

σe−θ(t−s)dB̄s

and ∫ T

t

∫ t

0

σ2

θ
e−θ(u−s)

(
1− e−θ(u−s)

)
d〈B〉sdu

=

∫ T

t

∫ t

0

σ2

θ
e−θ(u−s)

(
1− e−θ(t−s)

)
d〈B〉sdu

+

∫ T

t

∫ t

0

σ2

θ
e−θ(u−s)

(
e−θ(t−s) − e−θ(u−s)

)
d〈B〉sdu

=
(∫ T

t

e−θ(u−t)du
)(∫ t

0

σ2

θ
e−θ(t−s)

(
1− e−θ(t−s)

)
d〈B〉s

)
+
(∫ T

t

σ2

θ
e−θ(u−t)

(
1− e−θ(u−t)

)
du
)(∫ t

0

e−2θ(t−s)d〈B〉s
)

=1
θ

(
1− e−θ(T−t)

) ∫ t

0

σ2

θ
e−θ(t−s)

(
1− e−θ(t−s)

)
d〈B〉s

+ σ2

2θ2

(
1− e−θ(T−t)

)2
∫ t

0

e−2θ(t−s)d〈B〉s.

Thus, it holds ∫ T

t

f(t, u)du =

∫ T

t

f(0, u)du− 1
θ

(
1− e−θ(T−t)

)
f(0, t)

+ σ2

2θ2

(
1− e−θ(T−t)

)2
∫ t

0

e−2θ(t−s)d〈B〉s

+ 1
θ

(
1− e−θ(T−t)

)
rt

and

P (t, T ) = exp
(
−
∫ T

t

f(0, u)du+ 1
θ

(
1− e−θ(T−t)

)
f(0, t)

− σ2

2θ2

(
1− e−θ(T−t)

)2
∫ t

0

e−2θ(t−s)d〈B〉s

− 1
θ

(
1− e−θ(T−t)

)
rt

)
,

which is the expression from the traditional Hull and White model3 if we have 〈B〉t = t.
As in the preceeding example, we notice the appearance of the quadratic variation process

in the drift of the short rate and in the bond prices. Indeed, this dependence is very important
for the model in order to be arbitrage-free and slightly complicates the application of the model.
The reason is that the quadratic variation process is not that easy to specify, since it is not
directly observable. However, in the examples from above the quadratic variation of the G-
Brownian motion is the same than the quadratic variation of the short rate, which can be
estimated.

3See Subsection 3.3.2 in Brigo and Mercurio (2007).
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5.3 Vasicek Model

After examining the Hull and White model, we can argue why it is not possible to treat the
Vasicek model in this framework. In fact, the forward rate in the Vasicek model has the same
volatility structure as in the Hull and White model,

β(t, T ) = σe−θ(T−t),

which, by the previous example, leads to the short rate dynamics

rt = r0 +

∫ t

0

(
∂uf(0, u) + θf(0, u) + σ2

∫ u

0

e−2θ(u−s)d〈B〉s − θru
)
du+ σB̄t.

Hence, it is clear that the Vasicek model cannot be fitted to any initial term structure,
since this requires a time dependent mean reversion level, which is a constant µ in that model.
However, the bond prices in the Vasicek model have a certain structure such that the related
forward rates satisfy

∂tf(0, t) + θf(0, t) + σ2

∫ t

0

e−2θ(t−s)d〈B〉s = µ

if 〈B〉t = t. Unfortunately, this cannot hold if we have volatility uncertainty. The reason is
that, if we look at the equivalent representation of the equation from above

σ2

∫ t

0

e−2θ(t−s)d〈B〉s = µ− ∂tf(0, t)− θf(0, t),

we see that the left-hand side is uncertain and thus only observable at time t, whereas the initial
forward curve t→ f(0, t) on the right-hand side is already observable at time 0. Therefore, the
above equation contradicts to the assumptions of the model.

This shows that it is not possible to reproduce the short rate dynamics of the Vasicek
model, since the drift has to include an uncertain process. In general, the examples in this
section show that there always has to be an uncertain process in the drift of the short rate,
somehow depending on the quadratic variation of the G-Brownian motion, if we want to exclude
arbitrage by the drift condition. However, this is usually not part of the assumptions in the
classical models without volatility uncertainty. Another way how to deal with a short rate model
under volatility uncertainty would be to achieve the certain structure of the drift by modifying
the dynamics with a Grisanov transformation, which is actually the strategy in Hölzermann
(2018).

6 Conclusion

The paper extends the stochastic integral from Peng (2010) to integrands depending on two
time indices, which are integrable with respect to two integrators, in order to set up a forward
rate model under volatility uncertainty. Within this framework, we obtain a drift condition,
which is sufficient for the absence of arbitrage on the related bond market. In particular, the
drift condition implies that the dynamics of the forward rate under the risk-neutral sublinear
expectation only depend on the diffusion coefficient as in the classical case.

Furthermore, we investigate the connection to short rate models in order to discuss some
examples. In the end, it turns out that exogenous models like the Ho-Lee model or the Hull
and White model can be reproduced very well in this model. However, those models have
some implications that differ from the classical models. This leads to the deduction that other
classical models like the Vasicek model have to be suitably modified in order to fit into this
framework.
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Appendix

A Sublinear Expectations and G-Brownian Motion

In this section, we give a short introduction to the calculus of G-Brownian motion, including the
construction of stochastic integrals. The definition and construction of a G-Brownian motion
requires knowledge in the theory of sublinear expectation spaces and distributions on them.
The G-normal distribution is essential to describe the behavior of the G-Brownian motion.
Further results can be found in Peng (2010) as well as the proofs, which are not given in this
section.

A.1 Sublinear Expectation Spaces

Let Ω be a given space and H is a space of real valued functions defined on Ω. H is supposed
to satisfy

ϕ(X1, ..., Xn) ∈ H if X1, ..., Xn ∈ H

for all ϕ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) is the linear space of functions ϕ satisfying

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y|

for all x, y ∈ Rn for some C > 0 and m ∈ N, both depending on ϕ. X = (X1, ..., Xn) is called
n-dimensional random vector, denoted by X ∈ Hn.

Definition A.1. A sublinear expectation Ê is a functional Ê : H → R satisfying, for all
X, Y ∈ H,

(i) Monotonicity:

Ê[X] ≥ Ê[Y ] if X ≥ Y,

(ii) Constant preserving:

Ê[c] = c for c ∈ R,

(iii) Sub-additivity:

Ê[X + Y ] ≤ Ê[X] + Ê[Y ],

(iv) Positive homogeneity:

Ê[λX] = λÊ[X] for λ ≥ 0.

The tripel (Ω,H, Ê) is called a sublinear expectation space.
Similar to the classical case, it is possible to show the following useful inequalities, which

enable us to take the completion of a sublinear expectation space.

Proposition A.1. For X, Y ∈ H and 1 < p, q <∞ such that 1
p

+ 1
q

= 1, we have

Ê[|XY |] ≤ Ê[|X|p]
1
p Ê[|Y |q]

1
q

and

Ê[|X + Y |p]
1
p ≤ Ê[|X|p]

1
p + Ê[|Y |p]

1
p .

In particular, for 1 ≤ p < p′, we have

Ê[|X|p]
1
p ≤ Ê[|X|p′ ]

1
p′ .
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For a fixed p ≥ 1, we can take Hp
0 = {X ∈ H : Ê[|X|p] = 0} as our null-space, which is a

linear subspace of H, and introduce the quotient space H/Hp
0. For every {X} ∈ H/Hp

0 with
a representation X ∈ H, we can define the sublinear expectation Ê[{X}] := Ê[X]. If we set

||X||p := Ê[|X|p]
1
p , we get that || · ||p is a norm on H/Hp

0 by Proposition A.1. Hence, we can

extend H/Hp
0 to its completion Ĥp under this norm.

Furthermore, we introduce the mapping + : H → H, defined by X+ := max{X, 0}, which
can be continuously extended to Ĥp, since it is a contraction mapping by the inequality

|X+ − Y +| ≤ |X − Y |.

Thus, we can define a partial order ≥ on Ĥp, that is, we write X ≥ Y if X − Y = (X − Y )+.
Since it holds

|Ê[X]− Ê[Y ]| ≤ Ê[|X − Y |] ≤ ||X − Y ||p,

for X, Y ∈ H, the sublinear expectation Ê can be continuously extended to Ĥp as well, on
which it is still a sublinear expectation.

A.2 G-Normal Distribution

First of all, we introduce the notion of distributions and independence on sublinear expectation
spaces.

Definition A.2. Let X and Y be two random variables defined on a sublinear expectation space

(Ω,H, Ê). They are called identically distributed, denoted by X
d
= Y , if

Ê[ϕ(X)] = Ê[ϕ(Y )]

for all ϕ ∈ Cl,Lip(R).

Definition A.3. In a sublinear expectation space (Ω,H, Ê) a random vector Y ∈ Hn is said
to be independent from another random vector X ∈ Hm under Ê(·) if for each test function
ϕ ∈ Cl,Lip(Rm+n) it holds

Ê[ϕ(X, Y )] = Ê[Ê[ϕ(x, Y )]x=X ].

The previous definitions allow us to define the G-normal distribution, which is a generaliza-
tion of the centralized normal distribution. It can be used to represent the variance uncertainty
of a random variable.

Definition A.4. A random variable X on a sublinear expectation space (Ω,H, Ê) is called
G-normal distributed if

aX + bX̄
d
=
√
a2 + b2X

for a, b ≥ 0, where X̄ is an independent copy of X.

In order to characterize the distribution of G-normal distributed random variables, we define
the sublinear, monotonic function G : R→ R by

G(a) := 1
2
Ê[X2a].
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Since G is also continuous, it can be shown that there exists a bounded, convex, and closed
subset [σ2, σ2] ⊂ R such that

G(a) = 1
2

sup
σ∈[σ2,σ2]

{σa}.

In this case, we say that the random variable is N ({0}, [σ2, σ2])-distributed.
Conversely, it can also be shown that for an arbitrary sublinear, monotonic, and continu-

ous function there exists a G-normal distributed random variable, satisfying the same G. In
particular, this proves the existence of G-normal distributed random variables.

Proposition A.2. Let G : R→ R be a given sublinear, monotonic function, which is continu-
ous. Then there exists a G-normal distributed random variable X on some sublinear expectation
space (Ω,H, Ê) satisfying

G(a) = 1
2
Ê[X2a].

Similar to the standard normal distribution, the expectation of a G-normal distributed
random variable can be described by a partial differential equation, which is in this case called
the G-heat equation.

Proposition A.3. For a G-normal distributed random variable X and a function ϕ ∈ Cl,Lip(R),
we define

u(t, x) := Ê[ϕ(x+
√
tX)]

for (t, x) ∈ [0,∞)× R. Then u is the unique viscosity solution of

∂tu−G(∂2
xu) = 0

with boundary condition u|t=0 = ϕ.

A.3 G-Brownian Motion

Before introducing the G-Brownian motion, we determine what is meant by a stochastic process.

Definition A.5. Let (Ω,H, Ê) be a sublinear expectation space. (Xt)t is called stochastic process
if Xt is a random variable in H for all t ≥ 0.

The definition of a G-Brownian motion is similar to the one of the standard Brownian motion
with the difference that the increments are now G-normal distributed.

Definition A.6. A stochastic process (Bt)t on a sublinear expectation space (Ω,H, Ê) is called
a G-Brownian motion if

(i) B0(ω) = 0,

(ii) For each t, s ≥ 0, the increment Bt+s−Bt is N ({0}, s[σ2, σ2])-distributed and is indepen-
dent from (Bt1 , ..., Btn) for each n ∈ N and 0 ≤ t1 ≤ ... ≤ tn ≤ t.

In order to construct a G-Brownian motion, we set Ω := C0(R+) and ΩT := {ω·∧T : ω ∈ Ω}
for a fixed T ∈ R+. Moreover, we define the canonical process Bt(ω) := ωt and the spaces

Lip(ΩT ) := {ϕ(Bt1∧T , ..., Btn∧T ) : n ∈ N, t1, ..., tn ∈ R+, ϕ ∈ Cl,Lip(Rn)}
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and

Lip(Ω) :=
∞⋃
n=1

Lip(Ωn).

Now we construct a sublinear expectation on (Ω, Lip(Ω)) such that the canonical process (Bt)t
is a G-Brownian motion. Let {ξi}∞i=1 be a sequence of N ({0},Σ)-distributed random variables
on a sublinear expectation space (Ω̃, H̃, Ẽ) such that ξi+1 is independent from (ξ1, ..., ξi) for
all i ∈ N. Then we can introduce a sublinear expectation Ê on (Ω, Lip(Ω)) by the following
procedure. For each X ∈ Lip(Ω) with

X = ϕ(Bt1 −Bt0 , ..., Btn −Btn−1)

for some ϕ ∈ Cl,Lip(R) and 0 = t0 < t1 < ... < tn <∞, we set

Ê[ϕ(Bt1 −Bt0 , ..., Btn −Btn−1)] := Ẽ[ϕ(
√
t1 − t0ξ1, ...,

√
tn − tn−1ξn)].

Then we get that Ê is a sublinear expectation on (Ω, Lip(Ω)) and (Bt)t is a G-Brownian motion

under Ê. In particular, Ê is called G-expectation.
Furthermore, we denote by LpG(Ω) and LpG(ΩT ), for p ≥ 1, the completions of Lip(Ω) and

Lip(ΩT ) under the norm ||X||p := Ê[|X|p]
1
p , respectively. According to Subsection A.1, the

G-expectation Ê can be continuously extended to a sublinear expectation on (Ω, LpG(Ω)) still

denoted by Ê.

A.4 Stochastic Integrals

For the purpose of defining integrals with respect to a G-Brownian motion, we start by con-
structing the space of simple processes. For fixed p ≥ 1 and T ∈ R+, we denote by Mp,0

G (0, T )
the collection of processes of the form

ηt(ω) =
N−1∑
k=0

ξk(ω)1[tk,tk+1)(t),

where ξk ∈ LpG(Ωtk) and 0 = t0 < t1 < ... < tN = T . For η ∈ Mp,0
G (0, T ), the related Bochner

integral is defined by ∫ T

0

ηt(ω)dt :=
N−1∑
k=0

ξk(ω)(tk+1 − tk).

We denote by Mp
G(0, T ) the completion of Mp,0

G (0, T ) under the norm

||η||Mp
G(0,T ) := Ê

[ ∫ T

0

|ηt|pdt
] 1

p
.

In particular, we can define the stochastic integral
∫ T

0
ηtdBt ∈ L2

G(ΩT ) for all η ∈M2
G(0, T )

and we have the following result.

Lemma A.1. For η ∈M2
G(0, T ), we have

Ê
[ ∫ T

0

ηtdBt

]
= 0

and

Ê
[∣∣ ∫ T

0

ηtdBt

∣∣2] ≤ σ2Ê
[ ∫ T

0

|ηt|2dt
]
.
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A.5 Quadratic Variation Process

First of all, we denote by πN a sequence of partitions of [0, t] such that

lim
N→∞

max
tk∈πN

{|tk+1 − tk|} = 0.

Then we define the quadratic variation of the G-Brownian motion by

〈B〉t := lim
N→∞

∑
tk∈πN

(Btk+1
−Btk)2.

In fact, we know that the limit is well-defined, since we have the identity∑
tk∈πN

(Btk+1
−Btk)2 = B2

t −
∑
tk∈πN

2Btk(Btk+1
−Btk),

where the sum on the right-hand side converges to 2
∫ t

0
BsdBs in L2

G(Ω). The quadratic variation
process is an increasing process with 〈B〉0 = 0, which, in contrast to the classical case, is not
deterministic but uncertain.

In addition, it is possible to define the integral
∫ T

0
ηtd〈B〉t ∈ L1

G(ΩT ) for all η ∈ M1
G(0, T )

and to show the following inequality.

Lemma A.2. For η ∈M1
G(0, T ), we have

Ê
[∣∣ ∫ T

0

ηtd〈B〉t
∣∣] ≤ σ2Ê

[ ∫ T

0

|ηt|dt
]
.

B Processes in M̃ p
G(0, T ) and Corresponding Properties

Let (Bt)t be a one-dimensional G-Brownian motion on the G-expectation space (Ω, L1
G(Ω), Ê)

and fix a terminal time τ , that is, we focus on L1
G(Ωτ ) ⊂ L1

G(Ω). Denote by M̃p,0
G (0, T ), for

p ≥ 1 and T ≤ τ , the space of all simple processes, i.e., processes φ of the form

φ(t, s) =
N−1∑
i=0

ϕit1[si,si+1)(s)

for a partition 0 = s0 < s1 < ... < sN = τ and processes ϕi ∈ Mp
G(0, T ). Denote by M̃p

G(0, T )
the completion of M̃p,0

G (0, T ) under the norm ‖ · ‖M̃p
G(0,T ), given by

‖ φ ‖p
M̃p

G(0,T )
=

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)
∣∣pdt]ds :=

N−1∑
i=0

Ê
[ ∫ T

0

|ϕit|pdt
]
(si+1 − si).

We clearly have M̃p
G(0, T ) ⊂ M̃ q

G(0, T ) for p ≥ q ≥ 1 and it is easy to show that 1Γφ ∈
M̃p

G(0, t2) for φ ∈ M̃p
G(0, T ) and Γ = [t1, t2]×[s1, s2], where 0 ≤ t1 < t2 ≤ T and 0 ≤ s1 < s2 ≤ τ ,

which also implies that M̃p
G(0, T ′) ⊂ M̃p

G(0, T ) for T ≤ T ′. Apart from that, we can show the
latter for more complex sets Γ.

Proposition B.1. Let φ ∈ M̃p
G(0, T ) and Γ = {(t, s) ∈ [0, T ] × [0, τ ] : t ≤ s}. Then we have

that 1Γφ ∈ M̃p
G(0, T ).
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Proof. Let φ ∈ M̃p
G(0, T ). Then there exists a sequence φn ∈ M̃p,0

G (0, T ) such that

lim
n→∞

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φn(t, s)
∣∣pdt]ds = 0.

Hence, we get

lim
n→∞

∫ τ

0

Ê
[ ∫ T

0

∣∣1Γ(t, s)φ(t, s)− 1Γ(t, s)φn(t, s)
∣∣pdt]ds

= lim
n→∞

∫ τ

0

Ê
[ ∫ T

0

1Γ(t, s)
∣∣φ(t, s)− φn(t, s)

∣∣pdt]ds
≤ lim

n→∞

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φn(t, s)
∣∣pdt]ds = 0.

However, it is not obvious that 1Γφn ∈ M̃p
G(0, T ), since 1Γφn is not a simple process. Therefore,

the rest of the proof is dedicated to show that 1Γφ ∈ M̃p
G(0, T ) if φ ∈ M̃p,0

G (0, T ).
Let φ ∈ M̃p,0

G (0, T ), that is,

φ(t, s) =
N−1∑
i=0

ϕit1[si,si+1)(s)

for a partition 0 = s0 < s1 < ... < sN = τ and processes ϕi ∈Mp
G(0, T ). First of all, we consider

the case where φ is bounded, i.e., ϕi is a bounded process for all i. For each i we construct a
sequence of partitions {snij}nj=0 such that si = sni0 < sni1 < ... < snin = si+1 and

lim
n→∞

max
j=0,1,...,n−1

{|snij+1 − snij|} = 0.

Now we define φn by

φn(t, s) :=
N−1∑
i=0

n−1∑
j=0

ϕit1[0,snij ](t)1[snij ,s
n
ij+1)(s).

Then we get φn ∈ M̃p,0
G (0, T ), since {snij}i,j is again a partition of [0, τ ] and ϕi1[0,snij ] ∈Mp

G(0, T )
for all i and j. Apart from that, we have

1Γ(t, s)φ(t, s)− φn(t, s) =1[0,s](t)
N−1∑
i=0

ϕit1[si,si+1)(s)−
N−1∑
i=0

n−1∑
j=0

ϕit1[0,snij ](t)1[snij ,s
n
ij+1)(s)

=
N−1∑
i=0

n−1∑
j=0

ϕit1[0,s](t)1[snij ,s
n
ij+1)(s)−

N−1∑
i=0

n−1∑
j=0

ϕit1[0,snij ](t)1[snij ,s
n
ij+1)(s)

=
N−1∑
i=0

n−1∑
j=0

ϕit1(snij ,s]
(t)1[snij ,s

n
ij+1)(s).

By using the boundedness of ϕi, we obtain

∣∣1Γ(t, s)φ(t, s)− φn(t, s)
∣∣p =

N−1∑
i=0

n−1∑
j=0

|ϕit|p1(snij ,s]
(t)1[snij ,s

n
ij+1)(s)

≤C
N−1∑
i=0

n−1∑
j=0

1[snij ,s
n
ij+1](t)1[snij ,s

n
ij+1)(s)
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for some constant C > 0. After all, this yields

lim
n→∞

∫ τ

0

Ê
[ ∫ T

0

∣∣1Γ(t, s)φ(t, s)− φn(t, s)
∣∣pdt]ds

≤ lim
n→∞

C

N−1∑
i=0

n−1∑
j=0

(snij+1 − snij)2

≤ lim
n→∞

C
N−1∑
i=0

max
j=0,1,...,n−1

{|snij+1 − snij|}(si+1 − si) = 0,

since the maximum converges to 0 for all i. Thus, we get 1Γφ ∈ M̃p
G(0, T ).

Now we consider the case where the processes ϕi are not bounded. For n ∈ N, we define

ϕi,n := (ϕi ∨ −n) ∧ n

for i = 0, 1, ..., N − 1 and

φn(t, s) :=
N−1∑
i=0

ϕi,nt 1[si,si+1)(s).

Then we know that 1Γφn ∈ M̃p
G(0, T ), since φn is bounded, and

lim
n→∞

∫ τ

0

Ê
[ ∫ T

0

∣∣1Γ(t, s)φ(t, s)− 1Γ(t, s)φn(t, s)
∣∣pdt]ds

≤ lim
n→∞

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φn(t, s)
∣∣pdt]ds

= lim
n→∞

N−1∑
i=0

Ê
[ ∫ T

0

|ϕit − ϕ
i,n
t |pdt

]
(si+1 − si)

= lim
n→∞

N−1∑
i=0

Ê
[ ∫ T

0

∣∣ϕit1{|ϕi|>n}(t)
∣∣pdt](si+1 − si) = 0,

since each of the summands converges to 0 by the characterization of the space Mp
G(0, T ) from

Hu, Wang, and Zheng (2016). So we have 1Γφ ∈ M̃p
G(0, T ), which completes the proof.

B.1 Construction of Stochastic Integrals

On the space of simple processes we can define the integral operator I : M̃p,0
G (0, T )→Mp

G(0, T )
by

I(φ) =

∫ τ

0

φ(·, s)ds :=
N−1∑
i=0

ϕi(si+1 − si),

which is clearly linear. Additionally, we have the following inequality.

Lemma B.1. Let φ ∈ M̃p,0
G (0, T ). Then it holds

Ê
[ ∫ T

0

∣∣ ∫ τ

0

φ(t, s)ds
∣∣pdt] ≤ τ p−1

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)
∣∣pdt]ds.

24



Proof. By applying Hölder’s inequality, we get

Ê
[ ∫ T

0

∣∣ ∫ τ

0

φ(t, s)ds
∣∣pdt] ≤τ p−1Ê

[ ∫ T

0

∫ τ

0

∣∣φ(t, s)
∣∣pdsdt]

≤τ p−1

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)
∣∣pdt]ds,

where the last inequality follows from the sublinearity of Ê.

The inequality implies that the operator I is continuous. Thus, I can be continuously extended
to I : M̃p

G(0, T ) → Mp
G(0, T ) and we know that Lemma B.1 also holds for φ ∈ M̃p

G(0, T ). In
particular, this enables us to define the integral∫ T

0

∫ τ

0

φ(t, s)dsdBt

for φ ∈ M̃2
G(0, T ) and the integrals∫ T

0

∫ τ

0

φ(t, s)dsd〈B〉t and

∫ T

0

∫ τ

0

φ(t, s)dsdt.

for φ ∈ M̃1
G(0, T ).

For simple processes we can also define the linear integral operator J : M̃2,0
G (0, T )→ L2

G(ΩT )
by

J(φ) =

∫ τ

0

∫ T

0

φ(t, s)dBtds :=
N−1∑
i=0

(∫ T

0

ϕitdBt

)
(si+1 − si).

Similar to the construction of the stochastic integral in Peng (2010), we have the following
properties. The isometry is of particular interest, since it allows us to extend the operator.

Lemma B.2. Let φ ∈ M̃2,0
G (0, T ). Then it holds

Ê
[ ∫ τ

0

∫ T

0

φ(t, s)dBtds
]

= 0.

and we have the estimate

Ê
[∣∣ ∫ τ

0

∫ T

0

φ(t, s)dBtds
∣∣2] ≤ σ2τ

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)
∣∣2dt]ds.

Proof. Let φ ∈ M̃2,0
G (0, T ). Then we can interchange the order of integration for simple pro-

cesses, since the integral with respect to a G-Brownian motion is linear, and we know that∫ τ
0
φ(·, s)ds ∈M2

G(0, T ). Thus, we get

Ê
[ ∫ τ

0

∫ T

0

φ(t, s)dBtds
]

= Ê
[ ∫ T

0

∫ τ

0

φ(t, s)dsdBt

]
= 0.

By Hölder’s inequality and the sublinearity of Ê, we additionally get

Ê
[∣∣ ∫ τ

0

∫ T

0

φ(t, s)dBtds
∣∣2] ≤τ ∫ τ

0

Ê
[∣∣ ∫ T

0

φ(t, s)dBt

∣∣2]ds
≤σ2τ

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)
∣∣2dt]ds,

where the last step uses the classical isometry from Peng (2010).4

4See Lemma A.1.
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Hence, the operator J can be continuously extended to J : M̃2
G(0, T ) → L2

G(ΩT ) and Lemma
B.2 still holds for φ ∈ M̃2

G(0, T ).
In a similar fashion, we define J ′ : M̃1,0

G (0, T )→ L1
G(ΩT ) and J ′′ : M̃1,0

G (0, T )→ L1
G(ΩT ) by

J ′(φ) =

∫ τ

0

∫ T

0

φ(t, s)d〈B〉tds :=
N−1∑
i=0

(∫ T

0

ϕitd〈B〉t
)

(si+1 − si)

and

J ′′(φ) =

∫ τ

0

∫ T

0

φ(t, s)dtds :=
N−1∑
i=0

(∫ T

0

ϕitdt
)

(si+1 − si),

for which we can show the following inequalities.

Lemma B.3. Let φ ∈ M̃1,0
G (0, T ). Then it holds

Ê
[∣∣ ∫ τ

0

∫ T

0

φ(t, s)d〈B〉tds
∣∣] ≤ σ2

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)
∣∣dt]ds

and

Ê
[∣∣ ∫ τ

0

∫ T

0

φ(t, s)dtds
∣∣] ≤ ∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)
∣∣dt]ds.

Proof. Let φ ∈ M̃1,0
G (0, T ). As in the previous proof, we use the sublinearity of Ê and a standard

result from Peng (2010)5 to get

Ê
[∣∣ ∫ τ

0

∫ T

0

φ(t, s)d〈B〉tds
∣∣] ≤∫ τ

0

Ê
[∣∣ ∫ T

0

φ(t, s)d〈B〉t
∣∣]ds

≤σ2

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)
∣∣dt]ds.

The second assertion can be deduced by just using the sublinearity of Ê.

Therefore, the operators J ′ and J ′′ can be continuously extended to J ′ : M̃1
G(0, T ) → L1

G(ΩT )
and J ′′ : M̃1

G(0, T )→ L1
G(ΩT ) and we still have Lemma B.3 for φ ∈ M̃1

G(0, T ).

B.2 Fubini’s Theorem

Apart from defining integrals for processes in M̃p
G(0, T ), we can also show the following version

of Fubini’s theorem.

Theorem B.1. Let φ ∈ M̃2
G(0, T ). Then it holds∫ τ

0

∫ T

0

φ(t, s)dBtds =

∫ T

0

∫ τ

0

φ(t, s)dsdBt.

Proof. Let φ ∈ M̃2
G(0, T ). Then there exists a sequence φn ∈ M̃2,0

G (0, T ) such that

lim
n→∞

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φn(t, s)
∣∣2dt]ds = 0.

5See Lemma A.2.
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It clearly holds ∫ τ

0

∫ T

0

φn(t, s)dBtds =

∫ T

0

∫ τ

0

φn(t, s)dsdBt,

since φn is a simple process. Additionally, we can apply Lemma B.2 to get

lim
n→∞

Ê
[∣∣ ∫ τ

0

∫ T

0

φ(t, s)dBtds−
∫ τ

0

∫ T

0

φn(t, s)dBtds
∣∣2]

= lim
n→∞

Ê
[∣∣ ∫ τ

0

∫ T

0

(
φ(t, s)− φn(t, s)

)
dBtds

∣∣2]
≤ lim

n→∞
σ2τ

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φn(t, s)
∣∣2dt]ds = 0

and, by the isometry property from Peng (2010) and Lemma B.1, it holds

lim
n→∞

Ê
[∣∣ ∫ T

0

∫ τ

0

φ(t, s)dsdBt −
∫ T

0

∫ τ

0

φn(t, s)dsdBt

∣∣2]
= lim

n→∞
Ê
[∣∣ ∫ T

0

∫ τ

0

(
φ(t, s)− φn(t, s)

)
dsdBt

∣∣2]
≤ lim

n→∞
σ2τ

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φn(t, s)
∣∣2dt]ds = 0.

Hence, we have ∫ τ

0

∫ T

0

φ(t, s)dBtds =

∫ T

0

∫ τ

0

φ(t, s)dsdBt,

as desired.

Moreover, we can prove the same statement for the other integrals we defined.

Theorem B.2. Let φ ∈ M̃1
G(0, T ). Then it holds∫ τ

0

∫ T

0

φ(t, s)d〈B〉tds =

∫ T

0

∫ τ

0

φ(t, s)dsd〈B〉t

and ∫ τ

0

∫ T

0

φ(t, s)dtds =

∫ T

0

∫ τ

0

φ(t, s)dsdt.

Proof. Let φ ∈ M̃1
G(0, T ). Then there exists a sequence φn ∈ M̃1,0

G (0, T ) such that

lim
n→∞

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φn(t, s)
∣∣dt]ds = 0.

For the simple processes φn it clearly holds∫ τ

0

∫ T

0

φn(t, s)d〈B〉tds =

∫ T

0

∫ τ

0

φn(t, s)dsd〈B〉t

and ∫ τ

0

∫ T

0

φn(t, s)dtds =

∫ T

0

∫ τ

0

φn(t, s)dsdt.
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By applying Lemma B.3, we have

lim
n→∞

Ê
[∣∣ ∫ τ

0

∫ T

0

φ(t, s)d〈B〉tds−
∫ τ

0

∫ T

0

φn(t, s)d〈B〉tds
∣∣]

= lim
n→∞

Ê
[∣∣ ∫ τ

0

∫ T

0

(
φ(t, s)− φn(t, s)

)
d〈B〉tds

∣∣]
≤ lim

n→∞
σ2

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φn(t, s)
∣∣dt]ds = 0

and

lim
n→∞

Ê
[∣∣ ∫ τ

0

∫ T

0

φ(t, s)dtds−
∫ τ

0

∫ T

0

φn(t, s)dtds
∣∣]

= lim
n→∞

Ê
[∣∣ ∫ τ

0

∫ T

0

(
φ(t, s)− φn(t, s)

)
dtds

∣∣]
≤ lim

n→∞

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φn(t, s)
∣∣dt]ds = 0.

Similar to the proof of Theorem B.1, we can use the inequality from Lemma B.1 to get

lim
n→∞

Ê
[∣∣ ∫ T

0

∫ τ

0

φ(t, s)dsd〈B〉t −
∫ T

0

∫ τ

0

φn(t, s)dsd〈B〉t
∣∣]

= lim
n→∞

Ê
[∣∣ ∫ T

0

∫ τ

0

(
φ(t, s)− φn(t, s)

)
dsd〈B〉t

∣∣]
≤ lim

n→∞
σ2

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φn(t, s)
∣∣dt]ds = 0

and

lim
n→∞

Ê
[∣∣ ∫ T

0

∫ τ

0

φ(t, s)dsdt−
∫ T

0

∫ τ

0

φn(t, s)dsdt
∣∣]

= lim
n→∞

Ê
[∣∣ ∫ T

0

∫ τ

0

(
φ(t, s)− φn(t, s)

)
dsdt

∣∣]
≤ lim

n→∞

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φn(t, s)
∣∣dt]ds = 0,

which completes the proof.

B.3 Relation to the Space Mp
G(0, T )

It can be shown that processes in M̃p
G(0, T ) belong to the space Mp

G(0, T ) with respect to the
first variable in a certain sense. The following lemma is essential to show this relation. We
denote by Lp(S) for S ⊂ Rd and d ∈ N the space of all B(S)-measurable functions f : S → R
such that |f |p is integrable with respect to the Lebesgue measure on S.

Lemma B.4. Let φ ∈ M̃p
G(0, T ). Then Ê[

∫ T
0
|φ(t, ·)|pdt] ∈ L1([0, τ ]).

Proof. Let φ ∈ M̃p,0
G (0, T ). Then

Ê
[ ∫ T

0

∣∣φ(t, s)
∣∣pdt] =

N−1∑
i=0

Ê
[ ∫ T

0

|ϕit|pdt
]
1[si,si+1)(s),
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where Ê[
∫ T

0
|ϕit|pdt] <∞ for all i. Hence, Ê[

∫ T
0
|φ(t, ·)|pdt] ∈ L1([0, τ ]). Now let φ ∈ M̃p

G(0, T ).

Thus, there exists a sequence φn ∈ M̃p,0
G (0, T ) such that

lim
n→∞

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φn(t, s)
∣∣pdt]ds = 0.

Furthermore, we know that Ê[
∫ T

0
|φn(t, ·)|pdt] ∈ L1([0, τ ]) for all n and

lim
n→∞

∫ τ

0

∣∣∣Ê[ ∫ T

0

∣∣φ(t, s)
∣∣pdt]− Ê

[ ∫ T

0

∣∣φn(t, s)
∣∣pdt]∣∣∣ds

≤ lim
n→∞

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φn(t, s)
∣∣pdt]ds = 0.

This means that Ê[
∫ T

0
|φ(t, ·)|pdt] ∈ L1([0, τ ]) as well, since the space L1([0, τ ]) is complete.

Now, since we have the above integrability, we can use a standard argument to show the
succeeding proposition.

Proposition B.2. Let φ ∈ M̃p
G(0, T ). Then φ(·, s) ∈Mp

G(0, T ) for almost every s ∈ [0, τ ].

Proof. Let φ ∈ M̃p
G(0, T ). Thus, there exists a sequence φn ∈ M̃p,0

G (0, T ) such that

lim
n→∞

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φn(t, s)
∣∣pdt]ds = 0.

Then we can find a subsequence nk such that∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φnk
(t, s)

∣∣pdt]ds ≤ 2−k.

Since Ê[
∫ T

0
|φ(t, ·)− φnk

(t, ·)|pdt] is measurable by Lemma B.4, we can use the monotone con-
vergence theorem to obtain∫ τ

0

∞∑
k=1

Ê
[ ∫ T

0

∣∣φ(t, s)− φnk
(t, s)

∣∣pdt]ds =
∞∑
k=1

∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)− φnk
(t, s)

∣∣pdt]ds
≤
∞∑
k=1

2−k = 1 <∞,

where
∑∞

k=1 Ê[
∫ T

0
|φ(t, ·)− φnk

(t, ·)|pdt] is again measurable. In particular, this implies

∞∑
k=1

Ê
[ ∫ T

0

∣∣φ(t, s)− φnk
(t, s)

∣∣pdt] <∞
for almost every s, which means that

lim
k→∞

Ê
[ ∫ T

0

∣∣φ(t, s)− φnk
(t, s)

∣∣pdt] = 0

for almost every s. Since φnk
(·, s) ∈ Mp

G(0, T ) for a fixed s and Mp
G(0, T ) is complete, we get

φ(·, s) ∈Mp
G(0, T ) for almost every s.
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