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Abstract

We consider the surplus process of a life insurer who is able to buy a securitisa-
tion product to hedge mortality in a discrete time framework. Two cohorts are
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1 Introduction

The basic idea behind insurance is to diversify and share risks. If a portfolio consists
of many independent and identical risks, the law of large numbers implies that each
customer will have to cover approximately the expected value of a single risk. The
insured then pays a security loading together with the expected loss, the insurer
pays the loss and takes the risk of extraordinary losses. In the average, the insurer
will make a profit that plays the rôle of a compensation for overtaking the risk.

If a systematic risk is involved, the idea behind insurance does not work well any
more. For example, severe hurricanes will apply to all the customers of a certain
region. Since such a loss can be enormous, it may threaten the whole industry. In
such a scenario the loss might be even too large for reinsurers. It was observed that
financial markets easily could bare such an extreme risk. So the idea arose to transfer
the insurance risk to the financial markets. Even though not perfectly matching the
own portfolio, these securitisation products work similarly to a reinsurance contract.
For an investor, the products yield a possibility to diversify an investment portfolio.
Also insurers may act as an investor and in this way diversify their own risk to
regions where they have not underwritten contracts and to hedge parts of their own
portfolio via the securitisation product.

The literature on securitisation products either considers the point of view of an
investor and/or a change to a risk neutral measure (e.g. [1, 6, 9, 12, 16, 17, 20, 22]),
or the product is used to perform a Markovitz optimisation (e.g. [5, 7, 10, 15]).
From the point of view of an insurer, this only partially answers the question how
to choose a securitisation portfolio. The liability of an insurer is mainly determined
by his own portfolio and therefore not completely matched by an index covering the
losses of many companies. We will here use utility theory to determine the optimal
portfolio, also taking consideration of the insurance risk. In order to simplify the
presentation, we consider the case of a longevity securitisation product. Similar
considerations would also apply for other securitisation products.

Let us start by a (non-comprehensive) overview on the literature on securitisa-
tion. One of the first products of this kind were the so called CAT Futures, see
[12, 16]. This was a future on an index built of catastrophic losses of certain insur-
ance companies from catastrophes in a determined period reported to the insurer
until a given deadline. Because of conceptual problems, they never became popu-
lar. The product was then replaced by PCS options. PCS, an agent working for
the insurance industry, publishes regularly an index of the estimates of catastrophic
losses. The indices are available for six different regions. Further, there are three
national indices. The options are traded as spreads on the index. PCS options are
treated in [1, 9, 20, 23].

Another possibility are securitisation bonds (SB). These are bonds where the
interest and/or the principal are at risk. The reduction of the interest is triggered
by well-defined events. Examples are the USAA hurricane bonds, the Winterthur
Hail-Storm-Bonds, Swiss Re California Earthquake bonds, see [10, 11, 22].
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The idea was also used for the securitisation of life insurance contracts. A first
product were the Swiss Re mortality catastrophe bonds. The trigger for this bond
was a weighted average of mortality rates over five countries. A second product was
the EIB/BNP Paribas Longevity Bond. The trigger was a cohort of English and
Welsh males. These products are described in [6].

As in the two examples mentioned above, mortality bonds are usually based on
a mortality index. For example, J.P. Morgan developed their own mortality in-
dex called LifeMetrics. Later, many companies unified and founded the Life and
Longevity Markets Association (LLMA) to share their knowledge and data in order
to create a standardized foundation for the market. Among others AXA, Deutsche
Bank, J.P. Morgan, Munich Re, Morgan Stanley, Swiss Re and UBS where members
of the association. It aims at building a liquid trading market by developing a mor-
tality index. For a specification of recently traded volume see e.g. the introduction
of [18].

The financial engineering of these contracts is an involved issue, and can have
non-trivial payoff structures. Here, we decided to assume a simple payoff structure
being a one time payment at maturity n, which can be seen as building block for
more complicated payoffs. We follow the same principle on the insurance side: we
do not consider annuities, but insurance contracts with one time payoffs. Also the
premium for the insurance is assumed to be a one time payment that is already
included in the initial wealth. However, in a large portfolio the incoming premium
is (almost) deterministic and in the case of a defined contribution pension plan,
the liability at terminal wealth can be seen as the bookkeeping value of the future
liabilities.

The SB can be issued by an insurer or reinsurer, as the Swiss Re mortality
catastrophe bond. On the other hand, it can be issued by a financial market player
as the EIB/BNP Paribas Longevity Bond. A further possibility is a Special Purpose
Vehicle, often placed offshore by legal reasons, that issues the product for an insurer
or reinsurer. In this paper, we will assume that the SB is issued by a financial
institution and provides a hedge for the insurance industry. In this framework, we
show that there exist a unique trading strategy maximizing the utility of terminal
wealth. Then, we consider the case of an insurer, who faces liabilities from a pure
endowment insurance, and who wants to hedge against catastrophic mortality risk.

In the literature, the modelling of mortality, as well as pricing and hedging
of securitisation products gained a lot of attention, see e.g. [2, 4, 5, 13, 14] and
the references therein. In contrast, we decided here to follow a stochastic control
approach. The insurer wants to hedge against systematic mortality risk, but by
maximizing expected utility of the wealth at terminal time, that is at maturity of
the insurance contracts. Related control problems in life insurance are concerned
with the management of pension funds, which are essentially problems of asset
allocation see e.g. [3, 7, 15]. Mostly, it is only allowed to trade into a risky asset and
a riskless asset, but not into a securitisation product. Exceptions are [17] and [18].
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We would like to mention another stream of literature, that factorizes insurance risk
into risk factors as systematic and unsystematic risk, see [8, 19].

The rest of the paper is organised as follows: we will first introduce a simple
model in discrete time for a securitisation index and losses for the insurance portfolio.
We then show that a unique optimal strategy for the investment in a securitisation
product exists. A very simple example illustrates the theoretical findings in the
framework of pure endowment life insurance and catastrophic mortality risk.

2 The model and the main result

2.1 Setting and problem formulation

Let {It} be an index modelling the portfolio of an insurer and {Lt} be an external
index underlying the securitisation product. In our context, the index describes the
relative number of survivors in the reference portfolio. At time n, the insurer has
the liability fI(In). One unit of the securitisation product will give a reward Ln.
More specifically, Lt models the number of survivors in the reference portfolio at
time t. We have chosen this type of option to simplify the model. A reward 1ILn>κ

for some κ would work analogously but with less explicit expressions. At each time
0, 1, . . . , n− 1, the insurer can decide, how many units of the securitisation product
he will have in his portfolio. The preferences of the insurer are determined by a
utility function u(w) that is strictly increasing and strictly concave. We assume
that infw u

′(w) = limw→∞ u
′(w) = 0.

We now work on a probability space (Ω,F, IIP). The information up to time t is
determined by a filtration {Ft}. The processes {Ik} and {Lk} are adapted to this
filtration. We assume that the reference portfolio consists of a homogeneous cohort
of the same age, x say, for example of females or males of age x at time zero. The
probability conditioned on Ft of an individual in the reference portfolio who is y
year old at time t to survive for at least m years is denoted by mpy(t). Because
our estimates should be best estimates of the survival probabilities and therefore
should not be biased, we must have IIE[mpy(s) | Ft] = mpy(t) for all s ≥ t. Note
that a mortality improvement like in a (non-stochastic) Lee–Carter model is already
included in our basic mortality rates. The stochastic behaviour comes from future
fluctuations of the mortality rates. We further assume that the interest rate r is
constant, that is the discounting factor for m years is (1 + r)m. We assume that the
price of a unit of the index is given by the conditional expectation of the discounted
payoff. Conditional on Ft, the number of survivors in the reference portfolio, Ln is
binomially distributed with parameters Lt and n−tpx+t(t). Thus the price of a unit
of the index at time t ≤ n is n−tpx+t(t)(1 + r)−(n−t)Lt. In particular, this implies
that mpy(t) is the survival probability under the pricing measure.

If L0 = 0, then there will not be a possibility to invest in the mortality bond,
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and no decision has to be taken. We therefore assume that L0 6= 0, and that L1 is
not deterministic.

The insurer starts with a wealth W0 = w. At time k, the insurer buys θk units
of the mortality bond. Thus the wealth at time k + 1 is then given by

Wk+1 =
(
Wk − θk n−k

px+k(k)Lk
(1 + r)n−k

)
(1 + r) + θk

n−k−1px+k+1(k + 1)Lk+1

(1 + r)n−k−1

= Wk(1 + r) + θk
n−k−1px+k+1(k + 1)Lk+1 − n−kpx+k(k)Lk

(1 + r)n−k−1
.

Denote by
Vn(w, x, I0, L0) = sup

θk

IIE[u(Wn − fI(In))]

the maximal expected utility for a time horizon of length n. The variable x denotes
the underlying cohort. For the simplicity of the notation we let V0(w, x, I0, L0) =
u(w − fI(I0)). Then V0 is a strictly increasing strictly concave function in the first
argument.

Recursively, we get

Vn+1(w, x, I0, L0) = sup
θ

IIE
[
Vn

(
w(1+r)+θ

npx+1(1)L1 − n+1px(0)L0

(1 + r)n
, x+1, I1, L1

)]
.

This is the Bellman equation connected to our problem. For more literature on
optimisation in insurance see for example [21] and the references therein.

2.2 Existence and uniqueness of an optimal control

In the following theorem we address existence and uniqueness of a solution to the
just stated optimization problem. In particular, it turns out that we need to assume
a condition of Inada type on the first derivative of Vn. In Proposition 1 we then
show that in the above defined recursion, we stay in the class of functions that we
consider. Thus, we show that there exists a unique trading strategy θk, k = 1, . . . , n.
Note that we have assumed that the condition on the first derivative holds for the
utility function.

Theorem 1. Suppose that Vn(w, x, I, L) is a strictly increasing and strictly concave
function in w, and that limw→∞ V

′
n(w, x, I, L) = 0. Then there is a unique θ0 ∈ IR

such that

Vn+1(w, x, I0, L0) = IIE
[
Vn

(
w(1 + r) + θ0

npx+1(1)L1 − n+1px(0)L0

(1 + r)n
, x+ 1, I1, L1

)]
.
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Proof. We first show that the function

θ 7→ IIE
[
Vn

(
w(1 + r) + θ

npx+1(1)L1 − n+1px(0)L0

(1 + r)n
, x+ 1, I1, L1

)]
is strictly concave in θ. Let θ1, θ2 ∈ IR, θ1 6= θ2, and α ∈ (0, 1). Then for θ0 =
αθ1 + (1− α)θ2

IIE
[
Vn

(
w(1 + r) + θ0

npx+1(1)L1 − n+1px(0)L0

(1 + r)n
, x+ 1, I1, L1

)]
= IIE

[
Vn

(
α
{
w(1 + r) + θ1

npx+1(1)L1 − n+1px(0)L0

(1 + r)n

}
+ (1− α)

{
w(1 + r) + θ2

npx+1(1)L1 − n+1px(0)L0

(1 + r)n

}
, x+ 1, I1, L1

)]
> αIIE

[
Vn

(
w(1 + r) + θ1

npx+1(1)L1 − n+1px(0)L0

(1 + r)n
, x+ 1, I1, L1

)]
+ (1− α)IIE

[
Vn

(
w(1 + r) + θ2

npx+1(1)L1 − n+1px(0)L0

(1 + r)n
, x+ 1, I1, L1

)]
.

Note that a concave function is differentiable almost everywhere. We thus need to
find the zero of

IIE
[
{npx+1(1)L1−n+1px(0)L0}V ′n

(
w(1+r)+θ

npx+1(1)L1 − n+1px(0)L0

(1 + r)n
, x+1, I1, L1

)]
,

where we interpret the derivative as one possible value between the derivative from
the right and the derivative from the left at points where the function is not dif-
ferentiable. In order to show that the optimal value is in the interior, we take the
limits as θ → ±∞.

We write for W1 = W1(θ)

IIE[(npx+1(1)L1 − n+1px(0)L0)V
′
n(W1, x+ 1, I1, L1)]

= IIE[(npx+1(1)L1 − n+1px(0)L0)V
′
n(W1, x+ 1, I1, L1)1Inpx+1(1)L1>n+1px(0)L0 ]

+ IIE[(npx+1(1)L1 − n+1px(0)L0)V
′
n(W1, x+ 1, I1, L1)1Inpx+1(1)L1<n+1px(0)L0 ] .

By monotone convergence, we can interchange limit and integration. Thus

lim
θ→∞

IIE[(npx+1(1)L1 − n+1px(0)L0)V
′
n(W1, x+ 1, I1, L1)]

= IIE[(npx+1(1)L1 − n+1px(0)L0) inf
w
V ′n(w, x+ 1, I1, L1)1Inpx+1(1)L1>n+1px(0)L0 ]

+ IIE[(npx+1(1)L1 − n+1px(0)L0) sup
w
V ′n(w, x+ 1, I1, L1)1Inpx+1(1)L1<n+1px(0)L0 ]

= IIE[(npx+1(1)L1 − n+1px(0)L0) sup
w
V ′n(w, x+ 1, I1, L1)1Inpx+1(1)L1<n+1px(0)L0 ]

< 0 .
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It is no problem that the left hand side may become −∞. In the same way,

lim
θ→−∞

IIE[(npx+1(1)L1 − n+1px(0)L0)V
′
n(W1, x+ 1, I1, L1)]

= IIE[(npx+1(1)L1 − n+1px(0)L0) sup
w
V ′n(w, x+ 1, I1, L1)1Inpx+1(1)L1>n+1px(0)L0 ]

+ IIE[(npx+1(1)L1 − n+1px(0)L0) inf
w
V ′n(w, x+ 1, I1, L1)1Inpx+1(1)L1<n+1px(0)L0 ]

= IIE[(npx+1(1)L1 − n+1px(0)L0) sup
w
V ′n(w, x+ 1, I1, L1)1Inpx+1(1)L1>n+1px(0)L0 ]

> 0 .

Since the derivative is monotone there must be a point where the derivative changes
from positive to negative. At this point the maximum is attained.

In the following proposition we show that the recursively defined value functions
stay in the class of strictly increasing and strictly concave functions with a first
derivative tending to zero in the first argument. While the first two properties
are more or less inherited, we have to circumvent some technical problems for the
condition on the derivative.

Proposition 1. Suppose Vn(w, x, I, L) is a strictly increasing and strictly concave
function in w, and that limw→∞ V

′
n(w, x, I, L) = 0. Then Vn+1(w, x, I0, L0) is strictly

increasing and strictly concave in w, and limw→∞ V
′
n(w, x, I, L) = 0 for all I and L.

Proof. That Vn+1(w, x, I0, L0) is strictly increasing follows readily.

Let w1, w2 ∈ IR, w1 6= w2. There exist θ1, θ2, such that

Vn+1(wi, x, I0, L0) = IIE
[
Vn

(
wi(1 + r) + θi

npx+1(1)L1 − n+1px(0)L0

(1 + r)n
, x+ 1, I1, L1

)]
.

Let w0 = αw1 + (1− α)w2 for α ∈ (0, 1), and θ0 = αθ1 + (1− α)θ2. We find

Vn+1(w0, x, I0, L0) ≥ IIE
[
Vn

(
w0(1 + r) + θ0

npx+1(1)L1 − n+1px(0)L0

(1 + r)n
, x+ 1, I1, L1

)]
> αIIE

[
Vn

(
w1(1 + r) + θ1

npx+1(1)L1 − n+1px(0)L0

(1 + r)n
, x+ 1, I1, L1

)]
+ (1− α)IIE

[
Vn

(
w2(1 + r) + θ2

npx+1(1)L1 − n+1px(0)L0

(1 + r)n
, x+ 1, I1, L1

)]
= αVn+1(w1, x, I0, L0) + (1− α)Vn+1(w2, x, I0, L0) .

This proves the concavity.

It remains to prove that the derivative tends to zero. Denote by θ(w) the argu-
ment for which the supremum for initial capital w is attained. Let wm be a sequence
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tending to infinity and θm = θ(wm). Suppose there are infinitely many θm ≥ 0. By
considering a subsequence, we can assume that θm ≥ 0 for all m. Choose κ < 0,
such that

IIP[npx+1(1)L1 − n+1px(0)L0 < κ] > 0 .

Let
γn = npx+1(1)L1 − n+1px(0)L0 .

We have

0 = IIE
[
γnV

′
n

(
wm(1 + r) + θm

γn
(1 + r)n

, x+ 1, I1, L1

)]
= IIE

[
1Iγn≥0γnV

′
n

(
wm(1 + r) + θm

γn
(1 + r)n

, x+ 1, I1, L1

)]
+ IIE

[
1Iκ<γn<0γnV

′
n

(
wm(1 + r) + θm

γn
(1 + r)n

, x+ 1, I1, L1

)]
+ IIE

[
1Iγn≤κγnV

′
n

(
wm(1 + r) + θm

γn
(1 + r)n

, x+ 1, I1, L1

)]
.

By monotone convergence we find

0 ≤ lim
m→∞

IIE
[
1Iγn≥0γnV

′
n

(
wm(1 + r) + θm

γn
(1 + r)n

, x+ 1, I1, L1

)]
≤ lim

m→∞
IIE
[
1Iγn≥0γnV

′
n

(
wm(1 + r), x+ 1, I1, L1

)]
= 0 .

Thus the other two terms also have to converge to zero. Clearly,

lim
m→∞

IIE
[
1Iγn≥0V

′
n

(
wm(1 + r) + θm

γn
(1 + r)n

, x+ 1, I1, L1

)]
= 0 .

Further,

0 ≤ lim
m→∞

IIE
[
1Iγn≤κV

′
n

(
wm(1 + r) + θm

γn
(1 + r)n

, x+ 1, I1, L1

)]
≤ κ−1 lim

m→∞
IIE
[
1Iγn≤κγnV

′
n

(
wm(1 + r) + θm

γn
(1 + r)n

, x+ 1, I1, L1

)]
= 0 .

This implies also

0 ≤ lim
m→∞

IIE
[
1Iγn≤κV

′
n

(
wm(1 + r) + θm

κ

(1 + r)n
, x+ 1, I1, L1

)]
≤ lim

m→∞
IIE
[
1Iγn≤κV

′
n

(
wm(1 + r) + θm

γn
(1 + r)n

, x+ 1, I1, L1

)]
= 0 ,

and therefore lim inf wm(1 + r) + θm
γn

(1+r)n
> −∞. This implies, that also

0 ≤ lim
m→∞

IIE
[
1Iκ<γn<0V

′
n

(
wm(1 + r) + θm

γn
(1 + r)n

, x+ 1, I1, L1

)]
≤ lim

m→∞
IIE
[
1Iκ<γn<0V

′
n

(
wm(1 + r) + θm

κ

(1 + r)n
, x+ 1, I1, L1

)]
= 0 .

Putting the limits together, shows that limw→∞ V
′
n+1(w) = 0. An analogous proof

applies if there are infinitely many θm < 0.
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3 An example: catastrophe mortality risk

In order to illustrate our theory, we consider a very simple model for future mortality.
Our goal is not to have a realistic behaviour, but to be able to calculate the strategy
easily. We will also propose a linear approximation. The simple model allows
us easily to compare approximations to the complete model. For more realistic
mortality models, the approach would be the same, but the numerical calculations
will be more elaborate.

In this example, we consider a pure endowment life insurance. That is, each
individual receives a payout of 1 if it survives until final time n. The liability of the
insurer is then fI(I) = I, as In denotes the number of survivors in the portfolio of
the insurer. Furthermore, we have to model the development of the indices. In order
to keep the model simple, we do not consider longevity risk, but aim at modelling
some sort of ‘catastrophic’ mortality events. One could think for example of an
epidemic (influenza, cholera, ...) or on extreme weather conditions: during a very
hot summer or a very cold winter, more people die. On the other hand, also an
improvement of the mortality is possible for one year. We will assume that these
events happen independently from each other: e.g., a hot summer last year does
not influence the weather conditions of this year. To obtain a simple model, the
events do not influence future mortality, so that our initial assumptions are not
updated. The shock in period n, thus, influences the number of survivors in period
n, only, and not the future mortality rates. For example, our mortalities may take
the possibility of an influenza pandemic into account. But before period n we do
not know whether the pandemic took place or not.

At time s < t the best prior estimate of the probability of death for a member
of the cohort in the period (t − 1, t] is 1qx+t−1(0). At time t, the realised death
probability is 1qx+t−1(t) = 1qx+t−1(0)Zt, where {Zt} are iid positive variables with
expected value 1. We assume in addition that 1qx+t−1(t) ≤ 1. That means that the
variables Zt are bounded and that the mortalities 1qx+t−1(0) are bounded away from
1. The filtration is the natural filtration of the variables {Zt}, Ft = σ(Zk : 1 ≤
k ≤ t). We have IIE[1qx+t−1(t) | Ft−1] = 1qx+t−1(0), and therefore also IIE[1px+t−1(t) |
Ft−1] = 1px+t−1(0) is the best estimate for the survival probability at time t − 1.
Looking at the period (0, n], the expected value for survival for n years is npx(0),
the best estimate at time 0. The liability of the insurer is fI(I) = I. That is, In
denotes the number of survivors in the portfolio of the insurer. The calculations
below could be simplified if we had chosen the model 1px+t−1(t) = 1px+t−1(0)Zt, but
then in our setup we had to choose 1px+t−1(0) ≤ 2

3
(see below). This would lead to a

very high mortality rate. Since pure endowment life insurance is more appropriate
for not very old individuals, the assumption 1qx+t−1(0) ≤ 2

3
seems more reasonable.

Consider the probability n−s+1px+s(.) that an individual survives the time interval
[s, n+ 1]. Before the period starts, for t ≤ s, we assume that the best estimates are

n−s+1px+s(t) = n−s+1px+s(0). After the start of the interval, for t > s, we adjust the
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Period 0 1 2
Age x x+ 1 x+ 2

n+1px(·) n+1px(0) 1− (1− n+1px(0))Z1 1− ((1− n+1px(0))Z1)Z2

npx+1(·) npx+1(0) npx+1(0) 1− (1− npx+1(0))Z2

n−1px+2(·) n−1px+2(0) n−1px+2(0) n−1px+2(0)

Table 1: Best estimates for the mortalities

estimates for the realized number of dead individuals through the iid shocks Zi. In
Table 1 we have written down the corresponding expressions for s = 0, 1, 2.

Suppose the value function Vn(w, x, I, L) is known. We consider now a securi-
tisation product with payoff in n + 1. The value of the wealth process at time 1
reads

W1 = W0(1 + r) + θ0
npx+1(1)L1 − n+1px(0)L0

(1 + r)n
.

Consider the index L. Because we assume a large portfolio, we can model the index
as Ln+1 = Ln 1px+n(n+ 1) = Ln(1− (1− 1px+n(0))Zn+1). This yields in particular

L1 = 1px(1)L0 = (1− (1− 1px(0))Z1)L0 .

Thus

npx+1(1)L1 − n+1px(0)L0 = npx+1(0)(1− (1− 1px(0))Z1)L0 − n+1px(0)L0

= (1− Z1)(npx+1(0)− n+1px(0))L0 ,

where we used that npx+1(1) = npx+1(0) since the left hand side is the best estimate
for the future. Because npx+1 here models a survival probability when the cohort is
x+ 1 years old (that is from time 1 on), we get the first information on the realised
mortality in period 2, see also Table 1. Note that npx+1(0) > n+1px(0). We assume
that In+1 = In(1 − (1 − 1px+n(0))Z̃n+1), also assuming a large portfolio. Then the
process I behaves in the same way as L but with different random variables.

Consider the exponential utility function u(x) = −e−αx for some α > 0. We
claim that Vn(w, x, I, L) = − exp{−αnw + fn(x, I, L)} for some function fn and
αn = α(1 + r)n. We find by induction

Vn+1(w, x, I, L)eαnw(1+r)

= sup
θ
− IIE

[
exp
{
−αnθ

(1− Z1)(npx+1(0)− n+1px(0))L

(1 + r)n
+ fn(x+ 1, I1, L1)

}]
= − inf

θ
IIE
[
exp
{
−αnθ

(1− Z1)(npx+1(0)− n+1px(0))L

(1 + r)n
+ fn(x+ 1, I1, L1)

}]
.

We have αn+1 = αn(1 + r) = α(1 + r)n+1 and, with I1 = (1− (1− 1px(0))Z̃1)I and

10



L1 = (1− (1− 1px(0))Z1)L,

fn+1(x, I, L)

= inf
θ

log IIE
[
exp
{
−αnθ

(1− Z1)(npx+1(0)− n+1px(0))L

(1 + r)n
+ fn(x+ 1, I1, L1)

}]
= inf

θ
log IIE

[
exp
{
−αθ(1− Z1)(npx+1(0)− n+1px(0))L+ fn(x+ 1, I1, L1)

}]
. (1)

Since V0(x) = −e−α(w−I0), the form is proven. Thus, the initial wealth is not relevant
for the optimal strategy in this modelling framework, which is to be expected for
the exponential utility function.

As a specific model, assume that

Z̃1 = γU1 + (1− γ)Z1 , (2)

where Z1, U1 ∼ U [1
2
, 3
2
] are independent and γ ∈ (0, 1). As we assume a linear

dependence between Z̃ and Z, its dependence structure is determined by its corre-
lation coefficient being equal to 1− γ. Then also the dependence structure between
I1 and L1 is described by its correlation, being 1− γ as well. Note that we allow for
positive dependence only.

3.1 One time step before maturity of the contracts

After stating the relevant modelling assumptions, we use the relation (1) to calculate
the optimal strategy and optimal function f1(x, I, L). That is, the insurer is one
time step before maturity of the insurance contract. We get α0 = α and f0(I) = αI.
Noting 0px+1(0) = 1, we obtain

f1(x, I, L)

= inf
θ

log IIE
[
exp{−αθ(1− Z)(0px+1(0)− 1px(0))L+ f0(1− (1− 1px(0))Z̃)I)}

]
= inf

θ
log IIE

[
exp{−αθ(1− Z)(1− 1px(0))L+ α(1− (1− 1px(0))Z̃)I}

]
= α 1px(0)I + inf

θ
log IIE

[
exp{α(1− 1px(0))[θL− (1− γ)I](Z − 1)}

]}
+ log IIE

[
exp{α(1− 1px(0))γI(1− U)}

]
= α 1px(0)I + log

sinh(1
2
α(1− 1px(0))γI)

1
2
α(1− 1px(0))γI

+ inf
θ

log
sinh(1

2
α(1− 1px(0))[θL− (1− γ)I])

1
2
α(1− 1px(0))[θL− (1− γ)I]

.

Now, g(x) = 1
x

sinh(x) takes its unique minimum in x = 0 with g(0) = 1. Thus,

θ∗ := (1− γ)
I

L
, (3)

11



and

f1(x, I, L) = α 1px(0)I + log
sinh(1

2
α(1− 1px(0))γI)

1
2
α(1− 1px(0))γI

.

Note that f1 does not depend on L. Because part of the mortality in the reference
portfolio changes as the mortality in the own portfolio, the strategy is to hedge this
dependent part of possible survivors with the securitisation product. Therefore,
the form of our optimal portfolio is due to the simple model we use. Note that, if
we replace L by ζL, we can get the same value by choosing θ/ζ. Therefore, a θ
proportional to 1/L is to be expected.

3.2 Two time steps before maturity of the contracts

Taking into account that f1 does not depend on L we have that

f2(x, I, L) = inf
θ

log IIE [exp{−αθ(1− Z)(1px+1(0)− 2px(0))L+ f1(x+ 1, I1, 0)}]

= inf
θ

log IIE
[
exp{−αθ(1− Z)(1px+1(0)− 2px(0))L

+α 1px+1(0)I1}
sinh(1

2
α(1− 1px+1(0))γI1)

1
2
α(1− 1px+1(0))γI1

]
.

where we have used the relation (1) and I1 = (1 − (1 − 1px(0))Z̃)I, where again

Z̃ = (1 − γ)Z + γU and Z, U ∼ U [1
2
, 3
2
]. Note that the expectation on the right

hand side does not have an explicit analytical representation. Nevertheless, we would
like to illustrate its behaviour numerically.

3.2.1 Numerical evaluation of the optimal position in the securitisation
product two time steps before maturity of the insurance contract

In the above expectation, we would have to evaluate numerically the expectation
over three random variables, so a threefold integral. To simplify the numerical
evaluation, we note first that

f2(x, I, L) = inf
θ

log IIE
[
exp{−αθ(1− Z)(1px+1(0)− 2px(0))L

+ α[1px+1(0) + (1− 1px+1(0))γ(1− Ũ)]I1

}]
,

for a random variable Ũ ∼ U [1
2
, 3
2
] being independent of Z and U . Note that we can

write

I1 = [1px(0) + (1− γ)(1− 1px(0))(1− Z) + γ(1− 1px(0))(1− U)]I .

12



Then

f2(x, I, L) = inf
θ

log IIE
[

exp
{
−αθ(1px+1(0)− 2px(0))(1− Z)L

+ α(1− γ)(1− 1px(0))
[
1px+1(0) + (1− 1px+1(0))γ(1− Ũ)

]
(1− Z)I

+ αγ(1− 1px(0))
[
1px+1(0) + (1− 1px+1(0))γ(1− Ũ)

]
(1− U)I

+ α 1px(0)
[
1px+1(0) + (1− 1px+1(0))γ(1− Ũ)

]
I
}]

.

Evaluating the expectation of the independent random variables 1 − Z and 1 − U
results in

f2(x, I, L) = α 1px(0) 1px+1(0)I + inf
θ
f θ2 (x, I, L) , (4)

where

f θ2 (x, I, L) = log IIE

[
sinh(1

2
rZ(θ, I, L, 1− Ũ))

1
2
rZ(θ, I, L, 1− Ũ)

sinh(1
2
rU(I, 1− Ũ))

1
2
rU(I, 1− Ũ)

× exp{α 1px(0)(1− 1px+1(0))γ(1− Ũ)I}
]
,

and

rZ(θ, I, L, 1− Ũ) = α(1− γ)(1− 1px(0))[1px+1(0) + (1− 1px+1(0))γ(1− Ũ)]I

− αθ(1px+1− 2px(0))L , (5)

rU(I, 1− Ũ) = αγ(1− 1px(0))[1px+1(0) + (1− 1px+1(0))γ(1− Ũ)]I .

Here we have to evaluate only the expectation of the random variable 1− Ũ .

This is illustrated in Figures 1 and 2, where we determine f2 and θ∗ numer-
ically for the parameters γ = 0.5, 1px(0) = 0.99, 1px+1(0) = 0.95, 2px(0) =

1px(0) 1px+1(0) = 0.9405 and α = 0.5. The four panels of Figure 1 show the function
θ 7→ f θ2 (I, L) for L = 8, . . . , 11. In each panel, we plot one curve for I = 1, . . . , 11. It
illustrates the location of the θ∗ minimizing f θ2 (I, L), being increasing if I increases.

The first panel in Figure 2 shows the resulting optimal function f2(I, L). As in
the first time step, it is independent of L. For comparison we have added f1(I, L)
(dashed line). Note that we have added the subscripts to the θ if we want to
emphasize that θ2 is a position to hold if two time steps are left, and θ1 is the
position to hold if only one time step is left. The last panel shows θ∗2 as a function
of I, note the rather linear shape. Again for comparison, we have added the optimal
strategy θ∗1 (dashed line) if only one unit of time is left before the insurance product
is paid out. The lines seem to be identical.

The optimal strategy seems to be still quite linear in I, but one can show that it
is not. In the next section, we approximate the expression in the expectation of (4),
such that the minimum can be found analytically and such that the approximated
optimal strategy is indeed linear in I.

13



-1 -0.5 0 0.5 1 1.5 2

θ

1

1.0001

1.0002

1.0003

1.0004

1.0005

1.0006

1.0007

1.0008

1.0009

1.001

f
θ 2
(I
,L

)

L=8

I=1
I=2
I=3
I=4
I=5
I=6
I=7
I=8
I=9
I=10
I=11

-1 -0.5 0 0.5 1 1.5 2

θ

1

1.0001

1.0002

1.0003

1.0004

1.0005

1.0006

1.0007

1.0008

1.0009

1.001

f
θ 2
(I
,L

)

L=9

I=1
I=2
I=3
I=4
I=5
I=6
I=7
I=8
I=9
I=10
I=11

-1 -0.5 0 0.5 1 1.5 2

θ

1

1.0002

1.0004

1.0006

1.0008

1.001

1.0012

f
θ 2
(I
,L

)

L=10

I=1
I=2
I=3
I=4
I=5
I=6
I=7
I=8
I=9
I=10
I=11

-1 -0.5 0 0.5 1 1.5 2

θ

1

1.0002

1.0004

1.0006

1.0008

1.001

1.0012

f
θ 2
(I
,L

)

L=11

I=1
I=2
I=3
I=4
I=5
I=6
I=7
I=8
I=9
I=10
I=11

Figure 1: The function f θ2 (I, L) which has to be minimized over θ for L = 8, . . . , 11
and I = 1, . . . , 11.
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Figure 2: Left: The optimal functions f2(I, L) (solid line) and f1(I, L) (dashed).
Right: The optimal strategies θ∗2 (solid line) and θ∗1 (dashed) if there are two and
one time step left before maturity of the products.
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3.2.2 Approximation of the optimal strategy two time steps before ma-
turity

Consider

f2(x, I, L) = α 1px(0) 1px+1(0)I + inf
θ
f θ2 (x, I, L)

as defined in (4). Then

f θ2 (x, I, L) = log IIE[g(θ, Ũ)] ,

where

g(θ, u) =
sinh(1

2
rZ(θ, I, L, 1− u))

1
2
rZ(θ, I, L, 1− u)

sinh(1
2
rU(I, 1− u))

1
2
rU(I, 1− u)

× exp{αγ 1px+1(0)(1− 1px(0))(1− u)I} .

The random variable Ũ is uniformly distributed with IIE[Ũ ] = 1. Thus, motivated
by Figure 2, linearising g by a first order Taylor expansion around u = 1 yields

g(θ, u) ≈ g(θ, 1) + gu(θ, 1)(u− 1) .

Then

f θ2 (x, I, L) ≈ g(θ, 1) + gu(θ, 1)IIE[Ũ − 1] = g(θ, 1) .

Now, g(θ, 1) attains the minimum in rZ(θ, I, L, 0) = 0, that is

θ∗appr = (1− γ)
1px+1(0)(1− 1px(0))

1px+1(0)− 2px(0)

I

L
.

As 1px+1(0) 1px(0) = 2px(0) we have that 1px+1(0)(1 − 1px(0)) = 1px+1(0) − 2px(0)
and thus

θ∗appr = (1− γ)
I

L
,

being equal to (2). In Figure 3 the numerical optimal strategy θ∗2 is shown, as well
the approximated strategy θ∗appr above (circles). The approximation seems to be
amazingly exact.

4 Conclusion

If systematic risk is involved, the classical principle of insurance does not work any
more. Nevertheless, it is possible to transfer parts of this systematic insurance risk
to the financial market using so-called securitisation products. In this paper, we
take the view of a life insurance company, that can hedge its claims by trading
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Figure 3: The numerically determined optimal strategy θ∗2 (straight line) and its
approximation θ∗appr being linear in I (circles).

in discrete time into a longevity securitisation product. The goal is to maximize
the expected utility of terminal wealth. Using the Bellman principle, we show in
a rather general framework that a unique optimal strategy exists and that it is
unique. It turns out that we have to make some assumptions on the value function,
which we show are fulfilled in each step of our defined recursion. In an toy example
we illustrate how to calculate the optimal strategy recursively for a short term
horizon. In the same way, realistic models for the stochastic behaviour of mortality
can be treated. The method would also work for other lines of business and the
corresponding securitisation products.
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