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UPPER ENVELOPES OF FAMILIES OF FELLER SEMIGROUPS
AND VISCOSITY SOLUTIONS TO A CLASS OF NONLINEAR

CAUCHY PROBLEMS

MAX NENDEL1and MICHAEL RÖCKNER2

Abstract. In this paper we construct the smallest semigroup S that dom-
inates a given family of linear Feller semigroups. The semigroup S will be
referred to as the semigroup envelope or Nisio semigroup. In a second step we
investigate strong continuity properties of the semigroup envelope and show
that it is a viscosity solution to a nonlinear abstract Cauchy problem. We
derive a condition for the existence of a Markov process under a nonlinear ex-
pectation for the case where the state space of the Feller processes is locally
compact. The procedure is then applied to numerous examples, in particu-
lar nonlinear PDEs that arise from control problems for infinite dimensional
Ornstein-Uhlenbeck processes and infinite dimensional Lévy processes.

Key words: Nisio semigroup, fully nonlinear PDE, viscosity solution, Feller
process, nonlinear expectation

AMS 2010 Subject Classification: 47H20; 49L25; 60G20

1. Introduction and main results

For two (possibly nonlinear) semigroups S =
(
S(t)

)
t≥0

and T =
(
T (t)

)
t≥0

on

a Banach lattice X we write S ≤ T if S(t)x ≤ T (t)x for all t ≥ 0 and x ∈ X.
For a nonempty index set Λ and a family (Sλ)λ∈Λ of semigroups on X we call
a semigroup T an upper bound of S if T ≥ Sλ for all λ ∈ Λ. We call S a
least upper bound of (Sλ)λ∈Λ if S is an upper bound of (Sλ)λ∈Λ and S ≤ T for
any other upper bound T of (Sλ)λ∈Λ. Then, the very interesting question arises
under which conditions the family (Sλ)λ∈Λ has a least upper bound. To the best
of our knowledge this question has first been adressed by Nisio [11] for strongly
continuous semigroups on the space of all bounded measurable functions, which
is why we call the least upper bound S of (Sλ)λ∈Λ the Nisio semigroup or the
semigroup envelope of (Sλ)λ∈Λ. Due to a Theorem of Lotz [8] it is known that
strongly continuous semigroups on the space of all bounded measurable functions
always have a bounded generator, which is why the result of Nisio is not applica-
ble for most semigroups related to partial differential equations. However, using
a similar approach to the one by Nisio on the space of bounded and uniformly
continuous functions, Denk et al. [3] proved the existence of a least upper bound
for semigroups related to Lévy processes. In [9] the approach by Nisio has been
used to characterize the generators of Markov chains with finite state space under
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nonlinear expectations. In the present paper, we use the idea of Nisio in a more
general framework than Denk et al. in order to go beyond Lévy processes. Main
examples will be Ornstein-Uhlenbeck processes on real separable Hilbert spaces,
Geometric Brownian Motions, Lévy processes on real separable Hilbert spaces
and Koopman semigroups with semiflows in real separable Banach spaces.

A fundamental result from semigroup theory is the fact that for a strongly
continuous semigroup S =

(
S(t)

)
t≥0

of linear operators with generator A the

function u(t) := S(t)x is a solution to the abstract Cauchy problem

u′(t) = Au(t) for t ≥ 0, u(0) = u0.

Similar as in the work by Denk et al. [3] we show that the Nisio semigroup yields
a viscosity solution to the nonlinear Cauchy problem

u′(t) = Au(t) for t ≥ 0, u(0) = u0,

where Au := supλ∈ΛAλu is the pointwise supremum of the generators of the
family of semigroups (Sλ)λ∈Λ. On one hand, this is interesting from a structural
point of view since it shows that there is still a relation between the least upper
bound of a family of semigroups and the least upper bound of their generators.
On the other hand, this shows that Nisio semigroups are closely related to solu-
tions to optimal control problems in Mathematical Finance. Examples include
solutions to BSDEs (see e.g. Coquet et al. [1]), 2BSDEs or the G-heat equation
(cf. Peng [12],[13], Soner et al. [14],[15]), semigroups related to the geometric
G-Brownian Motion (cf. Epstein and Ji [5], Vorbrink [16]) and G-Lévy processes
(cf. Hu and Peng [6], Neufeld and Nutz [10], Denk et al. [3]). Against this back-
ground, under certain conditions, we derive a stochasic representation of Nisio
semigroup via stochastic processes under a nonlinear expectation, which gives a
link to robust finance and the pricing of contingent claims under ambiguity.

Throughout, we consider a nonempty index set Λ, a fixed separable metric
space (M,d) and a fixed weight function κ : M → (0,∞), which is assumed to be
continuous and bounded. Let C = C(M) be the space of all continuous functions
M → R. We denote the space of all u ∈ C with norm

‖u‖∞ := sup
x∈M
|u(x)| <∞

by Cb and the space of all u ∈ C with seminorm

‖u‖Lip := inf
{
L ≥ 0 | ∀x, y ∈M : |u(x)− u(y)| ≤ Ld(x, y)

}
<∞

by Lip. Finally, we denote the space of all u ∈ C with norm

‖u‖κ := ‖κu‖∞ <∞
by Cκ and the closure of Lipb := Lip∩Cb in the space Cκ by UCκ. If κ is bounded
below by some positive constant, then Cκ = Cb and ‖ · ‖κ is equivalent to ‖ · ‖∞.
In this case, UCκ is the closure of Lip w.r.t. ‖·‖∞, which in most examples will be
the space UCb of all bounded and uniformly continuous functions M → R. For a
sequence (un)n∈N ⊂ UCκ and u ∈ UCκ we write un ↗ u as n → ∞ if un ≤ un+1
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for all n ∈ N and un(x)→ u(x) as n→∞ for all x ∈ M . Analogously, we write
un ↘ u as n→∞ if un ≥ un+1 for all n ∈ N and un(x)→ u(x) as n→∞ for all
x ∈M .

Definition 1.1.

a) We call a family S = (S (t))t≥0 of possibly nonlinear operators a Feller
semigroup if the following conditions are satisfied:
(i) S (t) : UCκ → UCκ is continuous for all t ≥ 0,

(ii) S (0)u = u and S (s+t)u = S (s)S (t)u for all s, t ≥ 0 and u ∈ UCκ,
(iii) S (t) is monotone and continuous from below for all t ≥ 0, i.e. for

any sequence (un)n∈N ⊂ UCκ and u ∈ UCκ with un ↗ u as n → ∞
it holds S (t)un ↗ S (t)u as n→∞.

b) Let D ⊂ UCκ. We then say that a Feller semigroup S is strongly contin-
uous on D if the map

[0,∞)→ UCκ, t 7→ S (t)u

is continuous for all u ∈ D. If D = UCκ, we say that S is strongly
continuous.

Remark 1.2. Let S be a Feller semigroup and D ⊂ UCκ the set of all u ∈ UCκ

such that
[0,∞)→ UCκ, t 7→ S (t)u

is continuous. Then, by the semigroup property (ii), the set D is invariant under
S , i.e. S (t)u ∈ D for all u ∈ D and all t ≥ 0.

Throughout this work, we assume the following setup:

(A1) For all λ ∈ Λ let Sλ be a Feller semigroup of linear operators.
(A2) There exist constants α, β ∈ R such that

‖Sλ(t)u‖κ ≤ eαt‖u‖κ and ‖Sλ(t)u‖Lip ≤ eβt‖u‖Lip

for all u ∈ Lipb, λ ∈ Λ and t ≥ 0.

The paper is structured as follows. In Section 2 we show the existence of the
semigroup envelope S of the family S = (Sλ)λ∈Λ under the assumptions (A1)
and (A2). The main result of this section is Theorem 2.6. In Section 3 we first
derive three conditions that guarantee the strong continuity of the semigroup
envelope, which in turn yields viscosity solutions to a nonlinear abstract Cauchy
problem. The main result of this section is Theorem 3.12. In Section 4 we derive
some approximation results for the Nisio semigroup. In Section 5, we give a
stochastic representation of the semigroup envelope via a stochastic process under
a sublinear expectation. In Section 6 we apply the results from the sections 2, 3
and 5 to several examples.

2. Construction of the semigroup envelope

Throughout, we assume that the conditions (A1) and (A2) are satisfied. Let
u ∈ UCκ, λ ∈ Λ and t ≥ 0. Then, since Sλ(t) : UCκ → UCκ is continuous, we
have that

‖Sλ(t)u‖κ ≤ eαt‖u‖κ.
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Hence, (
Ehu
)
(x) := sup

λ∈Λ

(
Sλ(h)u

)
(x)

is well-defined for all x ∈M and h ≥ 0. Moreover, we have the following:

Lemma 2.1. Let h ≥ 0.

a) For all u, v ∈ UCκ,

‖Ehu− Ehv‖κ ≤ eαh‖u− v‖κ.
In particular, ‖Ehu‖κ ≤ eαh‖u‖κ for all u ∈ UCκ.

b) ‖Ehu‖Lip ≤ eβh‖u‖Lip for all u ∈ Lipb.
c) The map Eh : UCκ → UCκ is well-defined and Lipschitz continuous with

Lipschitz constant eαh.
d) Eh is sublinear, monotone and continuous from below for all h ≥ 0.

Proof.

a) Let u, v ∈ UCκ and h ≥ 0.

κ
(
Sλ(h)u− Ehv

)
≤ κ

(
Sλ(h)u− Sλ(h)v

)
= κSλ(h)(u− v)

≤ ‖Sλ(h)(u− v)‖κ ≤ eαh‖u− v‖κ
for all λ ∈ Λ. Taking the supremum over all λ ∈ Λ, we obtain that

κ
(
Ehu− Ehv

)
≤ eαh‖u− v‖κ

and therefore, by a symmetry argument,

‖Ehu− Ehv‖κ ≤ eαh‖u− v‖κ.
b) Let u ∈ Lipb and x, y ∈M . Then,

(Sλ(h)u
)
(x)−

(
Ehu
)
(y) ≤ (Sλ(h)u

)
(x)− (Sλ(h)u

)
(y) ≤ eβh‖u‖Lipd(x, y).

Taking the supremum over all λ ∈ Λ, we obtain that(
Ehu
)
(x)−

(
Ehu
)
(y) ≤ eβh‖u‖Lipd(x, y)

and therefore, by a symmetry argument,∣∣(Ehu)(x)−
(
Ehu
)
(y)
∣∣ ≤ eβh‖u‖Lipd(x, y).

This shows that ‖Ehu‖Lip ≤ eβh‖u‖Lip.
c) By part b), we have that Ehu ∈ UCκ for all u ∈ Lipb. Since Lipb is dense

in UCκ, part a) implies that Eh : UCκ → UCκ is well-defined and Lipschitz
continuous with Lipschitz constant eαh.

d) All these properties diretly carry over to the supremum.

�

In the sequel, we consider finite partitions P := {π ⊂ [0,∞) : 0 ∈ π, |π| <∞}
of the positive half line. The set of partitions with end-point t will be denoted
by Pt, i.e. Pt := {π ∈ P : maxπ = t}. Note that

P =
⋃
t≥0

Pt.
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Let u ∈ UCκ and π ∈ P \
{
{0}
}

. Then, there exist 0 = t0 < t1 < . . . < tm such
that π = {t0, t1, . . . , tm} and we set

Eπu := Et1−t0 . . . Etm−tm−1u.

Moreover, we set E{0}u := u. Note that, by definition, Eh = E{0,h} for h > 0.
Since Eh : UCκ → UCκ is well-defined, the map Eπ : UCκ → UCκ is well-defined,
too.

Lemma 2.2. Let π ∈ P .

a) Eπ is a sublinear, monotone and continuous from below.
b) For all u, v ∈ UCκ,

‖Eπu− Eπv‖κ ≤ eαmaxπ‖u− v‖κ.
In particular, Eπ : UCκ → UCκ is well-defined and Lipschitz continuous
with Lipschitz constant eαmaxπ. Moreover,

‖Eπu‖Lip ≤ eβmaxπ‖u‖Lip

for all u ∈ Lipb.

Proof.

a) Since Eh is a sublinear, monotone and continuous from below for all h ≥ 0,
the same holds for Eπ as these properties are preserved under compositions.

b) This follows from Lemma 2.1 and the behaviour of Lipschitz constants
under composition.

�

Let u ∈ UCκ. In the following, we consider the limit of Eπu when the mesh
size of the partition π ∈ P tends to zero. For this, first note that for h1, h2 ≥ 0
and x ∈M we have that(

Eh1+h2u
)
(x) = sup

λ∈Λ

(
Sλ(h1 + h2)u

)
(x) = sup

λ∈Λ

(
Sλ(h1)Sλ(h2)u

)
(x)

≤ sup
λ∈Λ

(
Sλ(h1)Eh2u

)
(x) =

(
Eh1Eh2u

)
(x),

which implies the pointwise inequality

Eπ1u ≤ Eπ2u (2.1)

for π1, π2 ∈ P with π1 ⊂ π2. In particular, for π1, π2 ∈ P and π := π1 ∪ π2 we
have that π ∈ P with (

Eπ1u
)
∨
(
Eπ2u

)
≤ Eπu. (2.2)

Recall that we denote by Pt the set of all finite partitions with end point t ≥ 0.
For t ≥ 0, x ∈M and u ∈ UCκ we define(

S (t)u
)
(x) := sup

π∈Pt

(
Eπu
)
(x).

Note that S (0)u = u for all u ∈ UCκ. The family S =
(
S (t)

)
t≥0

is called the

semigroup envelope or Nisio semigroup of the family (Sλ)λ∈Λ. Let t ≥ 0. Then,

‖S (t)u−S (t)v‖κ ≤ eαt‖u− v‖κ
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for all u, v ∈ UCκ and

‖S (t)‖Lip ≤ eβt‖u‖Lip

due to Lemma 2.2. Therefore, the map S (t) : UCκ → UCκ is well-defined and
Lipschitz continuous with Lipschitz constant eαt. Moreover, S (t) is sublinear,
monotone and continuous from below. In the following, we show that the Nisio
semigroup S is in fact a semigroup. We start with the following lemma.

Lemma 2.3. Let u ∈ UCκ and t > 0. Then, there exists a sequence (πn)n∈N ⊂ Pt
with

Eπnu↗ S (t)u as n→∞.

Proof. Let (xk)k∈N ⊂ M such that the set {xk | k ∈ N} is dense in M . Then, for
every k ∈ N, there exists a sequence (πkn)n∈N ⊂ Pt with πkn ⊂ πkn+1 for all n ∈ N
and (

Eπk
n
u
)
(xk)↗

(
S (t)u

)
(xk) as n→∞.

Now, let

πn :=
n⋃
k=1

πkn

for all n ∈ N. Then, πkn ⊂ πn ⊂ πn+1 for all n ∈ N and k ∈ {1, . . . , n}. Hence,

Eπk
n
≤ Eπnu ≤ Eπn+1 (2.3)

for all n ∈ N and k ∈ {1, . . . , n}. Let(
E∞v

)
(x) := sup

n∈N

(
Eπnv

)
(x)

for all v ∈ UCκ and x ∈ M . Then, by Lemma 2.2, the map E∞ : UCκ → UCκ is
well-defined. In particular, E∞u : M → R is continuous and, by (2.3),

Eπnu↗ E∞u as n→∞.

Again, by (2.3),(
S (t)u

)
(xk) = lim

n→∞

(
Eπk

n
u
)
(xk) ≤ lim

n→∞

(
Eπnu

)
(xk) =

(
E∞u

)
(xk) ≤

(
S (t)u

)
(xk)

for all k ∈ N. Since, S (t)u and E∞u are both continuous and the set {xk | k ∈ N}
is dense in M , it follows that S (t)u = E∞u, which shows that

Eπnu↗ S (t)u as n→∞.

�

Proposition 2.4 (Dynamic programming principle). For all s, t ≥ 0 we have
that

S (s+ t) = S (s)S (t). (2.4)

Proof. Let u ∈ UCκ. If s = 0 or t = 0 the statement is trivial. Therefore, let
s, t > 0, π0 ∈ Ps+t and π := π0 ∪ {s}. Then, we have that π ∈ Ps+t with π0 ⊂ π.
Hence, by (2.1), we get that

Eπ0u ≤ Eπu.
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Let m ∈ N and 0 = t0 < t1 < . . . tm = s + t with π = {t0, . . . , tm} and i ∈
{1, . . . ,m} with ti = s. Then, we have that π1 := {t0, . . . , ti} ∈ Ps and π2 :=
{ti − s, . . . , tn − s} ∈ Pt with

Eπ1 = Et1−t0 · · · Eti−ti−1

and

Eπ2 = Eti+1−ti · · · Etm−tm−1 .

We thus get that

Eπ0u ≤ Eπu = Et1−t0 · · · Etm−tm−1u =
(
Et1−t0 · · · Eti−ti−1

)(
Eti+1−ti · · · Etm−tm−1u

)
= Eπ1Eπ2u ≤ Eπ1

(
S (t)u

)
≤ S (s)S (t)u.

Taking the supremum over all π0 ∈ Ps+t, we get that S (s+ t)u ≤ S (s)S (t)u.

Now, let (πn)n∈N ⊂ Pt with Eπnu ↗ S (t)u as n → ∞ (see Lemma 2.3) and
fix π0 ∈ Ps. Then, for all n ∈ N we have that

π′n := π0 ∪ {s+ τ : τ ∈ πn} ∈ Ps+t
with Eπ′n = Eπ0Eπn . As Eπ0 is continuous from below, we get that

Eπ0
(
S (t)u

)
= lim

n→∞
Eπ0Eπnu = lim

n→∞
Eπ′nu ≤ S (s+ t)u.

Taking the supremum over all π0 ∈ Ps, we get that S (s)S (t)f ≤ S (s+ t)f . �

Remark 2.5. The semigroup S is the least upper bound of the family S =
(Sλ)λ∈Λ. In fact, let T be an upper bound of the family S, i.e.(

Sλ(t)u
)
(x) ≤

(
T (t)u

)
(x)

for all λ ∈ Λ, u ∈ UCκ, t ≥ 0 and x ∈M . Then, we have that(
Sλ(h)u

)
(x) ≤

(
Ehu
)
(x) ≤

(
T (h)u

)
(x)

for all λ ∈ Λ, u ∈ UCκ, h ≥ 0 and x ∈M . Consequently(
Sλ(t)u

)
(x) ≤

(
Eπu
)
(x) ≤

(
T (t)u

)
(x)

for all λ ∈ Λ, u ∈ UCκ, t ≥ 0, π ∈ Pt and x ∈M . Taking the supremum over all
π ∈ Pt, we obtain that(

Sλ(t)u
)
(x) ≤

(
S (t)u

)
(x) ≤

(
T (t)u

)
(x)

for all λ ∈ Λ, u ∈ UCκ, t ≥ 0 and x ∈M .

We conclude this section with the following main theorem.

Theorem 2.6. The family S is a Feller semigroup of sublinear operators and
the least upper bound of the family S = (Sλ)λ∈Λ.

Proof. All properties except for the semigroup property follow directly from the
definition of S before Lemma 2.3. The semigroup property is exactly (2.4). The
fact that S is the least upper bound of the family S has been shown in the
previous remark. �
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3. Strong continuity and viscosity solutions

Let S be the Feller semigroup from the previous section, i.e. the semigroup
envelope of the family (Sλ)λ∈Λ.

Lemma 3.1. Let u ∈ UCκ. Then, the following statements are equivalent:

(i) limh→0 ‖S (h)u− u‖κ = 0.
(ii) The map

[0,∞)→ UCκ, t 7→ S (t)u

is continuous.

Proof. Clearly, (ii) implies (i). Therefore, assume that limh→0 ‖S (h)u−u‖κ = 0.
Let t ≥ 0 and ε > 0. W.l.o.g. we may assume that in (A2) we have α ≥ 0. By
assumption, there exists some δ > 0 such that

‖S (h)u− u‖κ < e−α(t+1)ε

for all h ∈ [0, δ). Now, let s ∈ [0, t+ 1] with |t− s| < δ. Then,

‖S (t)u−S (s)u‖κ =
∥∥S (t ∧ s)S

(
|t− s|

)
u−S (t ∧ s)u

∥∥
κ

≤ eα(t+1)
∥∥S (|t− s|)u− u∥∥

κ
< ε.

�

Remark 3.2. Let D ⊂ UCκ and assume that S is stongly continuous on D.
Then, S is also strongly continuous on the closure D of D. In order to see
this, let (un)n∈N ⊂ D and u ∈ UCκ with ‖un − u‖κ → 0 as n → ∞. W.l.o.g.
we may assume that α ≥ 0. Let ε > 0. Then, there exists some n0 ∈ N such
that ‖un0 − u‖κ ≤ ε

3
e−α. Since un0 ∈ D, there exists some δ ∈ (0, 1] such that

‖S (h)un0 − un0‖κ < ε
3

for all h ∈ [0, δ). Hence, for h ∈ [0, δ), it follows that

‖S (h)u− u‖κ ≤
2ε

3
+ ‖S (h)un0 − un0‖κ < ε.

By the previous lemma, it follows that the map [0,∞) → UCκ, t 7→ S (t)u is
continuous.

In the sequel, we will give three conditions that imply the strong continuity of
the semigroup S .

Proposition 3.3. Assume that for every δ > 0 there exists a family of functions
(ϕx)x∈M ⊂ UCκ satisfying the following:

(i) 0 ≤ ϕx(y) ≤ 1 for all y ∈ M , ϕx(x) = 1, and ϕx(y) = 0 for all y ∈ M
with d(x, y) ≥ δ,

(ii) There exists some h0 > 0 and a continuous function f : [0, h0) → [0,∞)
with f(0) = 0 such that, for all h ∈ [0, h0) and x ∈M ,(

S (h)(1− ϕx)
)
(x) ≤ f(h)

κ(x)
.

If, additionally, Sλ(t)1 = 1 for all λ ∈ Λ and t ≥ 0, where 1 denotes the constant
1-function, then S is strongly continuous.
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Proof. Let u ∈ Lipb \ {0} and ε > 0. Then, there exists some δ′ > 0 such that

|u(x)− u(y)| ≤ ε
2‖κ‖∞ for all x, y ∈M with d(x, y) < δ′.

By assumption, there exists a family (ϕx)x∈M ⊂ UCκ satisfying (i) and (ii) for
δ = δ′. Since f : [0, h0) → [0,∞) is continuous, there exists some h1 ∈ (0, h0)
such that

f(h) <
ε

4‖u‖∞
for all h ∈ [0, h1). Hence, for all x ∈M and all h ∈ [0, h1),∣∣(S (h)u

)
(x)− u(x)

∣∣ =
∣∣(S (h)(u− u(x))

)
(x)
∣∣ ≤ (S (h)|u− u(x)|

)
(x)

≤
(
S (h)(ϕx|u− u(x)|

))
(x) +

(
S (h)(1− ϕx)|u− u(x)|

)
(x)

≤ ε

2‖κ‖∞
+ 2‖u‖∞

(
S (h)(1− ϕx)

)
(x)

<
ε

κ(x)
.

This shows that
‖S (h)u− u

∥∥
κ
< ε

for all h ∈ [0, h1) and therefore, S is strongly continuous on Lipb. Since Lipb is
dense in UCκ, Remark 3.2 imples that S is strongly continuous. �

Throughout the rest of this section, we denote by DΛ ⊂ UCκ the subspace of
all u ∈ UCκ for which there exist Lu ≥ 0 and hu > 0 such that

sup
λ∈Λ
‖Sλ(h)u− u‖κ ≤ Luh

for all h ∈ [0, hu).

Proposition 3.4. The semigroup S is strongly continuous on DΛ. If DΛ is
dense in UCκ, then S is strongly continuous.

Proof. Let u ∈ DΛ and 0 ≤ h1 < h2 with h2 − h1 < hu. Then, for all x ∈M and
λ0 ∈ Λ, we have that(

Sλ0(h1)u
)
(x)−

(
Eh2u

)
(x) ≤

(
Sλ0(h1)u

)
(x)−

(
Sλ0(h2)u

)
(x).

Taking the supremum over λ0 ∈ Λ, we get that(
Eh1u

)
(x)−

(
Eh2u

)
(x) ≤ sup

λ∈Λ

∣∣(Sλ(h1)u
)
(x)−

(
Sλ(h2)u

)
(x)
∣∣

for all x ∈ M . By a symmetry argument, multiplying by κ(x) and taking the
supremum over all x ∈M , we thus get that

‖Eh1u− Eh2u‖κ ≤ sup
λ∈Λ
‖Sλ(h1)u− Sλ(h2)u‖κ.

Further, by assumption (A3),

‖Sλ(h1)u− Sλ(h2)u‖κ ≤ eαh1‖Sλ(h2 − h1)u− u‖κ ≤ Lue
αh1(h2 − h1).

Taking the supremum over all λ ∈ Λ, we obtain that

‖Eh1u− Eh2u‖κ ≤ Lue
αh1(h2 − h1). (3.1)
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Next, we show that

‖Eπu− u‖κ ≤ Lue
αmaxπ maxπ (3.2)

for all π ∈ P with maxπ ∈ [0, hu) by an induction on #π ∈ N. First, let π ∈ P
with #π = 1, i.e. π = {0}. Then, we have that

‖Eπu− u‖κ = ‖E{0}u− u‖κ = 0 = Lue
αmaxπ maxπ.

Now, let m ∈ N and assume that (3.2) holds for all π ∈ P with max π ∈ [0, hu)
and #π = m. Let π ∈ P with #π = m + 1 and tm := maxπ ∈ [0, hu). Then
π′ := π \ {tm} ∈ P with #π′ = m and tm−1 := max π′ ∈ [0, tm). We thus have
that

Eπu = Eπ′Etm−tm−1u (3.3)

and therefore, by induction hypothesis, (3.3) and (3.1), we get that

‖Eπu− u‖κ ≤ ‖Eπu− Eπ′u‖κ + ‖Eπ′u− u‖κ
= ‖Eπ′Etm−tm−1u− Eπ′u‖κ + ‖Eπ′u− u‖κ
≤ eαtm−1‖Etm−tm−1u− u‖κ + ‖Eπ′u− u‖κ
≤ Lue

αtm−1(tm − tm−1) + Lue
αtm−1tm−1

= Lue
αtm−1tm ≤ Lue

αmaxπ maxπ.

By definition of the semigroup S we thus obtain that

‖S (h)u− u‖κ ≤ Lue
αhh→ 0 as h→ 0.

�

Proposition 3.5. Assume that for every δ > 0 there exists a family of functions
(ϕx)x∈M ⊂ UCκ satisfying the following:

(i) 0 ≤ ϕx(y) ≤ 1 for all y ∈ M , ϕx(x) = 1, and ϕx(y) = 0 for all y ∈ M
with d(x, y) ≥ δ,

(ii’) There exist L ≥ 0 and h0 > 0 such that

sup
λ∈Λ
‖Sλ(h)ϕx − ϕx‖κ ≤ Lh

for all h ∈ [0, h0) and x ∈M .

If, additionally, Sλ(t)1 = 1 for all λ ∈ Λ and t ≥ 0, where 1 denotes the constant
1-function, then S is strongly continuous.

Proof. By assumption the family (ϕx)x∈M satisfies condition (i) from Proposition
3.3. We now verify that (ii’) implies condition (ii) from Proposition 3.3. Observe
that (

Eh(1− ϕx)
)
(y) ≤ 1− ϕx(y) +

∣∣(Ehϕx)(y)− ϕx(y)
∣∣
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for all h ∈ [0, h0) and x, y ∈ M . W.l.o.g. we assume that α ≥ 0 in (A2). Then,
by (3.1), we thus obtain that(

EπEh(1− ϕx)
)
(x) ≤

(
Eπ(1− ϕx)

(
x) +

(
Eπ
∣∣Ehϕx − ϕx∣∣)(x)

≤
(
Eπ(1− ϕx)

)
(x) +

eαδ

κ(x)
‖Ehϕx − ϕx‖κ

≤
(
Eπ(1− ϕx)

)
(x) +

Leαδh

κ(x)

for all π ∈ P with max π ∈ [0, h0) and h ∈ [0, h0). Inductively, it follows that(
Eπ(1− ϕx)

(
x) ≤ 1− ϕx(x) +

Leαδ maxπ

κ(x)
=
Leαδ maxπ

κ(x)

for all π ∈ P with maxπ ∈ [0, h0). Taking the supremum over all π ∈ Ph for
h ∈ [0, h0) yields that (

S (h)(1− ϕx)
)
(x) ≤ Leαδh

κ(x)
.

Therefore, setting f(h) := Leαδh for h ∈ [0, h0), condition (ii) from Proposition
3.3 is satisfied and the strong continuity of S follows. �

Let λ ∈ Λ. Then, we denote by Dλ ⊂ UCκ the space of all u ∈ UCκ such that

[0,∞)→ UCκ, t 7→ Sλ(t)u

is continuous. We further denote by D(Aλ) the space of all u ∈ UCκ for which

Aλu := lim
h↘0

Sλ(h)u− u
h

∈ UCκ

exists. Notice that, by definition, D(Aλ) ⊂ Dλ.

Remark 3.6. Let u ∈
⋂
λ∈ΛD(Aλ) with

Cu := sup
λ∈Λ
‖Aλu‖κ <∞.

Then, it follows that (see e.g. [4, Lemma II.1.3])

‖Sλ(h)u− u‖κ ≤
∫ h

0

‖Sλ(s)Aλu‖κ ds ≤ Cue
αhh

for all λ ∈ Λ. This shows that u ∈ DΛ. Moreover, since supλ∈Λ ‖Aλu‖κ < ∞, it
follows that (

Au
)
(x) := sup

λ∈Λ

(
Aλu

)
(x)

is well-defined for all x ∈M .

Lemma 3.7. Let u ∈
⋂
λ∈ΛD(Aλ) with

sup
λ∈Λ
‖Aλu‖κ <∞ and sup

λ∈Λ
‖Sλ(h)Aλu− Aλu‖κ → 0 as h→ 0.

Then,

lim
h↘0

∥∥∥∥Ehu− uh
−Au

∥∥∥∥
κ

= 0.
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In particular, Au ∈ UCκ.

Proof. Let ε > 0. Then, by assumption, there exists some h0 > 0 such that

sup
λ∈Λ
‖Sλ(s)Aλu− Aλu‖κ ≤ ε

for all s ∈ [0, h0]. Hence, for all h ∈ (0, h0] it follows that∥∥∥∥Ehu− uh
−Au

∥∥∥∥
κ

≤ sup
λ∈Λ

∥∥∥∥Sλ(h)u− u
h

− Aλu
∥∥∥∥
κ

= sup
λ∈Λ

1

h

∥∥∥∥∫ h

0

Sλ(s)Aλu− Aλu ds

∥∥∥∥
κ

≤ sup
λ∈Λ

1

h

∫ h

0

‖Sλ(s)Aλu− Aλu‖κ ds

≤ ε.

�

Lemma 3.8. Let T : UCκ → UCκ be sublinear and Lipschitz continuous. Fur-
ther, let v : [0,∞)→ UCκ be continuous. Then, Tv : [0,∞)→ UCκ, t 7→ T

(
v(t)

)
is again continuous and

T

(∫ t

0

v(s) ds

)
≤
∫ t

0

Tv(s) ds for all t ≥ 0.

Proof. It is clear that Tv : [0,∞)→ UCκ is continuous. Let t ≥ 0 and u : [0, t]→
UCκ be a step function, then Tu : [0, t] → UCκ, s 7→ T

(
u(s)

)
is a step function

and it follows that

T

(∫ t

0

u(s) ds

)
≤
∫ t

0

Tu(s) ds,

where we used the fact that T is sublinear. Now, let (vn)n∈N be a sequence of step
functions with limn→∞ sups∈[0,t] ‖vn(s)− v(s)‖κ = 0. The continuity of T implies
that limn→∞ sups∈[0,t] ‖Tvn(s)− Tv(s)‖κ = 0 and therefore,

T

(∫ t

0

v(s) ds

)
= lim

n→∞
T

(∫ t

0

vn(s) ds

)
≤ lim

n→∞

∫ t

0

Tvn(s) ds =

∫ t

0

Tv(s) ds.

�

Proposition 3.9. Let u ∈
⋂
λ∈ΛD(Aλ) with

sup
λ∈Λ
‖Aλu‖κ <∞ and sup

λ∈Λ
‖Sλ(h)Aλu− Aλu‖κ → 0 as h→ 0.

Then, Au ∈ UCκ and the following statements are equivalent:

(i) The map [0,∞)→ UCκ, t 7→ S (t)Au is continuous,

(ii) limh↘0

∥∥S (h)u−u
h

−Au
∥∥
κ

= 0.

Proof. By Lemma 3.7, we already know that Au ∈ UCκ. Let D denote the set
of all v ∈ UCκ such that the map [0,∞) → UCκ, t 7→ S (t)v is continuous. By
Remark 3.6, u ∈ DΛ. Therefore, by Proposition 3.4, u ∈ D and, by Remark
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1.2, S (t)u ∈ D for all t ≥ 0. Therefore, by Remark 3.2, statement (ii) implies
statement (i). Therefore, assume that (i) is satisfied. By Lemma 3.7,

Au− S (h)u− u
h

≤ Au− Ehu− u
h

→ 0, as h↘ 0

Since the map [0,∞)→ UCκ, t 7→ S (t)Au is continuous, it follows that∥∥∥∥1

h

∫ h

0

S (s)Au ds−Au
∥∥∥∥
κ

→ 0, as h↘ 0.

Hence, it is sufficient to show that

S (t)u− u ≤
∫ t

0

S (s)Au ds (3.4)

for all t ≥ 0. Let t ≥ 0 and h > 0. Then,

Ehu− u = sup
λ∈Λ

Sλ(h)u− u = sup
λ∈Λ

∫ h

0

Sλ(s)Aλu ds

≤
∫ h

0

S (s)Au ds =

∫ t+h

t

S (s− t)Au ds. (3.5)

Next, we prove that

Eπu− u ≤
∫ maxπ

0

S (s)Au ds

for all π ∈ P by an induction on m = #π. If m = 1, i.e. if π = {0}, the statement
is trivial. Hence, assume that

Eπ′u− u ≤
∫ maxπ′

0

S (s)Au ds

for all π′ ∈ P with #π′ = m for some m ∈ N. Let π = {t0, t1, . . . , tm} with
0 = t0 < t1 < . . . < tm and π′ := π \ {tm}. Then, it follows from (3.5) that

Eπu− Eπ′u ≤ S (tm−1)
(
Etm−tm−1u− u

)
≤ S (tm−1)

(∫ tm

tm−1

S (s− tm−1)Au ds

)
≤
∫ tm

tm−1

S (s)Au ds,

where the last inequality follows from Lemma 3.8. By the induction hypothesis,
we thus get that

Eπu− u =
(
Eπu− Eπ′u

)
+
(
Eπ′u− u

)
≤
∫ tm

tm−1

S (s)Au ds+

∫ tm−1

0

S (s)Au ds

=

∫ maxπ

0

S (s)Au ds.

In particular, for every π ∈ Pt,

Eπu− u ≤
∫ t

0

S (s)Au ds.
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Taking the supremum over all π ∈ Pt yields the assertion. �

Let D denote the set of all u ∈
⋂
λ∈ΛD(Aλ) with

sup
λ∈Λ
‖Aλu‖κ <∞ and

∥∥∥∥S (h)u− u
h

−Au
∥∥∥∥
κ

→ 0 as h→ 0.

In the sequel, we are interested in viscosity solutions to the abstract differential
equation

u′(t) = Au(t), for t > 0,

where we use the following notion of a viscosity solution.

Definition 3.10. We say that u is a viscosity subsolution of the abstract differ-
ential equation

u′(t) = Au(t), for t > 0, (3.6)

if u : [0,∞)→ UCκ is continuous and for every t > 0 and x ∈M we have(
ψ′(t)

)
(x) ≤

(
Aψ(t)

)
(x)

for every differentiable ψ : (0,∞) → UCκ which satisfies ψ(t) ∈ D,
(
ψ(t)

)
(x) =(

u(t)
)
(x) and ψ(s) ≤ u(s) for all s > 0.

Analogously, u is called a viscosity supersolution of (3.6) if u : [0,∞) → UCκ

is continuous and for every t > 0 and x ∈M we have(
ψ′(t)

)
(x) ≥

(
Aψ(t)

)
(x)

for every differentiable ψ : (0,∞) → UCκ which satisfies ψ(t) ∈ D,
(
ψ(t)

)
(x) =(

u(t)
)
(x) and ψ(s) ≤ u(s) for all s > 0.

We say that u is a viscosity solution of (3.6) if u is a viscosity subsolution and
a viscosity supersolution.

Remark 3.11. In general it is not clear how rich the class of test functions for a
viscosity solution from the previous definition is. However, in the examples in
Section 6, we will see that often Lipkb ⊂ D with k ∈ {0, 1, 2}. For ψ : (0,∞)×M →
R differentiable w.r.t. t and ∂tψ : (0,∞) ×M → R uniformly w.r.t. x Lipschitz
continuous in t with Lipschitz constant L ≥ 0, we have

sup
x∈M

∣∣∣∣ψ(t+ h, x)− ψ(t, x)

h
− ∂tψ(t, x)

∣∣∣∣ ≤ Lh→ 0 as h↘ 0

for all t > 0. Hence, if Lipkb ⊂ D for some k ∈ N0, then every function ψ ∈
Lip1,k

b

(
(0,∞)×M

)
is differentiable as a map (0,∞)→ UCκ and satisfies ψ(t) ∈ D

for all t > 0. In most applications the class Lip1,k
b

(
(0,∞)×M

)
of test functions

is sufficiently large in order to obtain uniqueness of a viscosity solution.

We conclude this section with the following main theorem.

Theorem 3.12. Assume that S is strongly continuous. Then, for every u0 ∈
UCκ, the function

u(t) := S (t)u0, for t ≥ 0,
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is a viscosity solution to the abstract initial value problem

u′(t) = Au(t), for t > 0,

u(0) = u0.

Proof. Fix t > 0 and x ∈ M . We first show that u is a viscosity subsolution.
Let ψ : (0,∞) → UCκ differentiable with ψ(t) ∈ D,

(
ψ(t)

)
(x) =

(
u(t)

)
(x) and

ψ(s) ≤ u(s) for all s > 0. Then, for every h ∈ (0, t), it follows from Theorem 2.4
that

0 =
S (h)S (t− h)u0 −S (t)u0

h
=

S (h)u(t− h)− u(t)

h

≤ S (h)ψ(t− h)− u(t)

h
≤

S (h)
(
ψ(t− h)− ψ(t)

)
+ S (h)ψ(t)− u(t)

h

= S (h)

(
ψ(t− h)− ψ(t)

h

)
+

S (h)ψ(t)− ψ(t)

h
+
ψ(t)− u(t)

h
.

Let ε > 0. Then,

lim
h↘0

∥∥∥∥S (h)

(
ψ(t− h)− ψ(t)

h

)
+ ψ′(t)

∥∥∥∥
κ

and

lim
h↘0

∥∥∥∥S (h)ψ(t)ψ(t)

h
−Aψ(t)

∥∥∥∥
κ

.

Since
(
u(t)

)
(x) =

(
ψ(t)

)
(x), it follows that

0 ≤ −
(
ψ′(t)

)
(x) +

(
Aψ(t)

)
(x).

To show that u is a viscosity supersolution, let ψ : (0,∞) → UCκ differentiable
with ψ(t) ∈ D,

(
ψ(t)

)
(x) =

(
u(t)

)
(x) and ψ(s) ≤ u(s) for all s > 0. By Theorem

2.4, for all h > 0 with 0 < h < t we get

0 =
S (t)u0 −S (h)S (t− h)u0

h
=
u(t)−S (h)u(t− h)

h
≤ u(t)−S (h)ψ(t− h)

h

=
u(t)− ψ(t)

h
+
ψ(t)−S (h)ψ(t)

h
+

S (h)ψ(t)−S (h)ψ(t− h)

h

≤ u(t)− ψ(t)

h
+
ψ(t)−S (h)ψ(t)

h
+ S (h)

(
ψ(t)− ψ(t− h)

h

)
.

Let ε > 0. Then,

lim
h↘0

∥∥∥∥S (h)

(
ψ(t)− ψ(t− h)

h

)
− ψ′(t)

∥∥∥∥
κ

and

lim
h↘0

∥∥∥∥ψ(t)−S (h)ψ(t)

h
+Aψ(t)

∥∥∥∥
κ

.

Since
(
u(t)

)
(x) =

(
ψ(t)

)
(x), we obtain that

0 ≤ −
(
Aψ(t)

)
(x) +

(
ψ′(t)

)
(x).

�
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4. Approximation of the semigroup envelope

Throughout this section, we assume that the map

[0,∞)→ UCκ, h 7→ Ehu
is continuous for all u ∈ UCκ. Note that this assumption is, for example, implied
by the condition that

sup
λ∈Λ
‖Sλ(h)u− u‖κ → 0 as h→ 0,

for all u ∈ Lipb, which, in most applications, is satisfied. The following lemma
shows that Eπ depends continuously on the partition π ∈ P .

Lemma 4.1. Let m ∈ N and π = {t0, t1, . . . , tm} ∈ P with 0 = t0 < . . . < tm.
For each n ∈ N let πn = {tn0 , tn1 , . . . , tnm} ∈ P with 0 = tn0 < tn1 < . . . < tnm and
tni → ti as n→∞ for all i ∈ {1, . . . ,m}. Then, for all u ∈ UCκ we have that

‖Eπu− Eπnu‖∞ → 0, n→∞.

Proof. First note that the set of all partitions with cardinality m + 1 can be
identified with the set

Sm :=
{

(s1, . . . , sm) ∈ Rm
∣∣ 0 < s1 < . . . < sm

}
⊂ Rm.

Therefore, the assertion is equivalent to the continuity of the map

Sm → UCκ, (s1, . . . , sm)→ E{0,s1,...,sm}u. (4.1)

Since the mapping
[0,∞)→ UCκ, h 7→ Ehu

is continuous for all u ∈ UCκ and ‖Ehu− Ehv‖κ ≤ eαh‖u− v‖κ for all h ≥ 0 and
u, v ∈ UCκ, it follows that (4.1) is continuous. �

Let u ∈ UCκ. In the following, we now consider the limit of Eπu when the
mesh size

|π|∞ := max
j=1,...,m

(tj − tj−1)

of the partition π = {t0, t1, . . . , tm} ∈ P with 0 = t0 < t1 < . . . < tm tends to
zero. For the sake of completeness, we define |{0}|∞ := 0. The following lemma
shows that S (t)u can be obtained by a pointwise monotone approximation with
finite partitions letting the mesh size tend to zero.

Lemma 4.2. Let t ≥ 0 and (πn)n∈N ⊂ Pt with πn ⊂ πn+1 for all n ∈ N and
|πn|∞ ↘ 0 as n→∞. Then, for all u ∈ UCκ,

Eπnu↗ S (t)u as n→∞.

Proof. For t = 0 the statement is trivial. Therefore, assume that t > 0 and let(
E∞u

)
(x) := sup

n∈N

(
Eπnu

)
(x)

for u ∈ UCκ and x ∈M . As in the proof of Lemma 2.3, the map E∞ : UCκ → UCκ

is well-defined. Let u ∈ UCκ. Since πn ⊂ πn+1 for all n ∈ N, it follows

Eπnu↗ E∞u as n→∞.
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Since (πn)n∈N ⊂ Pt, we obtain that

E∞u ≤ S (t)u.

Let π = {t0, t1, . . . , tm} ∈ Pt with m ∈ N and 0 = t0 < t1 < . . . < tm = t.
Since |πn|∞ ↘ 0 as n → ∞, w.l.o.g. we may assume that #πn ≥ m + 1 for
all n ∈ N. Moreover, let 0 = tn0 < tn1 < . . . < tnm = t for all n ∈ N with
π′n := {tn0 , tn1 , . . . , tnm} ⊂ πn and tni → ti as n → ∞ for all i ∈ {1, . . . ,m}. Then,
by Lemma 4.1 b), we have that

‖Eπu− Eπ′nu‖κ → 0 as n→∞.
and therefore,

E∞u− Eπu ≥ Eπnu− Eπu ≥ Eπ′nu− Eπu→ 0 as n→∞.
This shows that E∞u ≥ Eπu. Taking the supremum over all π ∈ Pt we thus get
that E∞u = S (t)u. �

Corollary 4.3. For all t > 0 there exists a sequence (πn)n∈N ⊂ Pt with

Eπnu↗ S (t)u

as n→∞ for all u ∈ UCκ.

Proof. Choose

πn =

{
kt

2n

∣∣∣∣ k ∈ {0, . . . , 2n}} or πn =

{
kt

n!

∣∣∣∣ k ∈ {0, . . . , n!}
}

in Lemma 4.2. �

Corollary 4.4. For all t ≥ 0 and u ∈ UCκ we have that

S (t)u = sup
n∈N
Ent

n
u = lim

n→∞
E2n

2−ntu,

where the supremum and the limit are to be understood pointwise.

5. Stochastic representation

In this section, we derive a stochastic representation for the semigroup envelope
S using sublinear expectations. We again assume that the conditions (A1) and
(A2) are satisfied. We start with a short introdution into the theory of nonlinear
expectations. For a measurable space (Ω,F), we denote the space of all bounded
F -measurable functions Ω→ R by L∞(Ω,F). For two bounded random variables
X, Y ∈ L∞(Ω,F) we write X ≤ Y if X(ω) ≤ Y (ω) for all ω ∈ Ω. For a constant
α ∈ R, we do not distinguish between α and the constant function taking the
value α. Throughout, we assume that Sλ(t)1 = 1 for all t ≥ 0 and λ ∈ Λ.

Definition 5.1. Let (Ω,F) be a measurable space. A functional E : L∞(Ω,F)→
R is called a sublinear expectation if for all X, Y ∈ L∞(Ω,F) and λ > 0

(i) E(X) ≤ E(Y ) if X ≤ Y ,
(ii) E(α) = α for all α ∈ R,
(iii) E(X + Y ) ≤ E(X) + E(Y ) and E(λX) = λE(X).
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We say that (Ω,F , E) is a sublinear expectation space if there exists a set of
probability measures P on (Ω,F) such that

E(X) = sup
P∈P

EP(X) for all X ∈ L∞(Ω,F),

where EP(·) denotes the expectation w.r.t. to the probability measure P.

Definition 5.2. We say that S is continuous from above on UCb if S (t)un ↘
S (t)u for all t ≥ 0 and all (un)n∈N ⊂ UCb with un ↘ u ∈ UCb as n→∞.

Remark 5.3.

a) Assume that M is compact. Then, by Dini’s lemma S is continuous from
above.

b) Assume that S is continuous from above on UCb. Then, by [2, Remark
5.4 c)], S (t) uniquely extends to an operator S (t) : Cb → Cb, which is
again continuous from above. Moreover, for every n ∈ N, v ∈ Cb(Mn+1)
the mapping

Mn+1 → R, (x1, . . . , xn, xn+1) 7→
(
S (t)v(x1, . . . , xn, · )

)
(xn+1)

is bounded and continuous.

Continuity from above on UCb will be crucial for the existence of a stochastc
representation. The following proposition gives a sufficitont condition for the
continuity from above on UCb. Let UC0 be the closure of the space Lipc of all
Lipschitz continuous functions with compact support w.r.t. the supremum norm
‖ · ‖∞.

Proposition 5.4. Suppose that for every δ > 0 there exists a family of functions
(ϕx)x∈M ⊂ UC0 satisfying the following for all x ∈M :

(i) ϕx(x) = 1 and 0 ≤ ϕx ≤ 1,
(ii) ϕx ∈

⋂
λ∈ΛD(Aλ) with supλ∈Λ ‖Aλϕx‖κ ≤ δ.

Then, S is continuous from above on UCb.

Proof. Fix t > 0, x ∈ M and δ > 0. Since ϕx(x) = 1 and 1 − ϕx ∈
⋂
λ∈ΛD(Aλ)

with Aλ(1− ϕ) = −Aλϕ, it follows that(
S (t)(1− ϕx)

)
(x) ≤ 1

κ(x)
‖S (t)(1− ϕx)− (1− ϕx)‖κ

≤ t sup
λ∈Λ
‖Aλϕx‖κ ≤

δt

k(x)
.

Let (un)n∈N ⊂ UCb with un ↘ 0 as n → ∞ and ε > 0. Then, there exists

some ϕx ∈ UC0 satisfying (i) and (ii) with δ = εκ(x)
2tc

, where c := max
{

1, ‖u1‖∞
}

.
Then,

‖un‖∞
(
S (t)(1− ϕx)

)
(x) ≤ ε

2
for all n ∈ N.

Moreover, there exists some n ∈ N such that ‖unϕx‖κ < ε
2

since ϕx ∈ UC0.
Hence, (

S (t)un
)
(x) ≤ ‖un‖∞

(
S (t)(1− ϕx)

)
(x) +

(
S (t)(unϕx)

)
(x) < ε.
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This shows that S (t)un ↘ 0 as n → ∞. Now, let (un)n∈N ⊂ UCb and u ∈ UCb

with un ↘ u as n→∞. Then,

|S (t)un −S (t)u| ≤ S (t)(un − u)↘ 0 as n→∞.

�

Note that the existence of a function in ϕx ∈ UC0 with ϕx(x) 6= 0 for all x ∈M
implies that M is locally compact. Thus, Proposition 5.4 is only applicable for
locally compact M . The following theorem is a direct consequence of [2, Theorem
5.6].

Theorem 5.5. Assume that M is a Polish space and that the semigroup S is con-
tinuous from above on UCb. Then, there exists a quadruple (Ω,F , (Ex)x∈M , (Xt)t≥0)
such that

(i) Xt : Ω→M is F-B-measurable for all t ≥ 0,
(ii) (Ω,F , Ex) is a sublinear expectation space with Ex(u(X0)) = u(x) for all

x ∈M and u ∈ Cb,
(iii) For all 0 ≤ s < t, n ∈ N, 0 ≤ t1 < . . . < tn ≤ s and v ∈ Cb(Mn+1),

Ex
(
v(Xt1 , . . . , Xtn , Xt)

)
= Ex

((
S (t− s)v(Xt1 , . . . , Xtn , · )

)
(Xs)

)
.

In particular, (
S (t)u

)
(x) = Ex(u(Xt)).

for all t ≥ 0, x ∈M and u ∈ Cb.

The quadruple (Ω,F , (Ex)x∈M , (Xt)t≥0) can be seen as a nonlinear Markov pro-
cess, where (iii) is the nonlinear analogue of the Markov property.

6. Examples

For k ∈ N0, let Lipkb denote the space of all k-times differentiable functions
with bounded and Lipschitz continuous derivatives up to order k.

Example 6.1 (Koopman semigroups on real separable Banach spaces). We con-
sider the case, where the state space M = X is a real separable Banach space.
Let F : X → X be Lipschitz continuous with Lipschitz constant L > 0. Then,
we denote by ΦF : [0,∞)×X → X the solution to the initial value problem

∂tΦF (t, x) = F (ΦF (t, x)), t ≥ 0, (6.1)

ΦF (0, x) = x (6.2)

for all x ∈ X. Then, ΦF defines a so-called continuous semiflow. Let β ∈ (0,∞)
with β ≥ L. Then,

‖ΦF (t, x)− ΦF (t, y)‖ ≤ ‖x− y‖+ β

∫ t

0

‖ΦF (s, x)− ΦF (s, y)‖ ds

for all t ≥ 0 and x, y ∈ X. Hence, by Gronwall’s lemma,

‖ΦF (t, x)− ΦF (t, y)‖ ≤ ‖x− y‖eβt (6.3)
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for all t ≥ 0 and x, y ∈ X. Let C ∈ [1,∞) with C ≥ ‖F (0)‖ and α = max{1, β}.
Then, for all t ≥ 0 and x ∈ X,

C + ‖x‖+ ‖ΦF (t, x)− x‖ ≤ C + ‖x‖+ α

∫ t

0

C + ‖x‖+ ‖ΦF (s, x)− x‖ ds.

Again, by Gronwall’s lemma, it follows

C + ‖ΦF (t, x)‖ ≤ C + ‖x‖+ ‖ΦF (t, x)− x‖ ≤
(
C + ‖x‖

)
eαt (6.4)

for all t ≥ 0 and x ∈ X. Let κ(x) := (C + ‖x‖)−2 for all x ∈ X. For u ∈ Cκ,
t ≥ 0 and x ∈ X, we then define(

SF (t)u
)
(x) := u(ΦF (t, x)).

Then, for u ∈ UCκ, t ≥ 0 and x ∈ X,∣∣(SF (t)u
)
(x)
∣∣ ≤ ‖u‖κ(C + ‖ΦF (t, x)‖

)2 ≤ ‖u‖κ
(
C + ‖x‖

)2
e2αt

and therefore, ‖SF (t)u‖κ ≤ e2αt‖u‖κ. On the other hand, by (6.4),∣∣(SF (t)u
)
(x)− u(x)

∣∣ ≤ ‖u‖Lip‖ΦF (t, x)− x‖ ≤ ‖u‖Lip

(
C + ‖x‖

)(
eαt − 1

)
for all u ∈ Lipb. Therefore, ‖SF (t)u − u‖κ ≤ ‖u‖Lip

(
eαt − 1

)
for u ∈ Lipb. By

(6.3), ∣∣(SF (t)u
)
(x)−

(
SF (t)u

)
(y)
∣∣ ≤ eβt‖u‖Lip‖x− y‖

for all x, y ∈ X and u ∈ Lipb. That is, ‖SF (t)u‖Lip ≤ eβt‖u‖Lip. For u ∈ Lip1
b, let

Cu := ‖u′‖∞ + ‖u′‖Lip

and AFu ∈ Cκ be given by(
AFu

)
(x) := u′(x)F (x) for x ∈ X.

Let u ∈ Lip1
b. Then, for all t ≥ 0 and x ∈ X,∣∣(SF (t)AFu

)
(x)−

(
AFu

)
(x)
∣∣ ≤ 1

κ(x)
Cuα

(
eαt − 1

)
and therefore,

‖SF (t)AFu− AFu‖κ ≤ Cuα
(
eαt − 1

)
.

By the chain rule and the fundamental theorem of infinitesimal calculus, it follows
that (

SF (h)u
)
(x)− u(x)

h
=

1

h

∫ h

0

(
SF (s)AFu

)
(x) ds

for all h > 0, which implies that∥∥∥∥SF (h)u− u
h

− AFu
∥∥∥∥
κ

≤ Cuα
(
eαh − 1

)
→ 0 as h↘ 0.

Hence, for any nonempty set Λ of Lipschitz continuous functions F : X → X with

sup
F∈Λ

(
‖F (0)‖+ sup

x,y∈M

‖F (x)− F (y)‖
‖x− y‖

)
<∞
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the assumptions (A1) and (A2) are satisfied, the semigroup envelope S is strongly
continuous and Lip1

b ⊂ D. By Theorem 3.12, we thus obtain that u(t) := S (t)u0,
for t ≥ 0, defines a viscosity solution to the fully nonlinear PDE

ut(t, x) = sup
F∈Λ
∇u(t, x)F (x), (t, x) ∈ (0,∞)×X,

u(0, x) = u0(x), x ∈ X.
Moreover, if X = Rd, the semigroup envelope S is continuous from above by
Proposition 5.4. In this case, Theorem 5.5 implies the existence of a Markov
process under a nonlinear expectation related to S . This Markov process can be
viewed as a nonlinear drift process.

Example 6.2 (Geometric Brownian Motion). Let M = R, µ ∈ R, σ > 0 and W
a Brownian Motion on a probability space (Ω,F ,P). Define

Xx
t := exp

(
t
(
µ− σ2

2

)
+ σWt

)
x

for t ≥ 0 and x ∈ R. Then, for x ∈ R, the stochastic processes (Xx
t )t≥0 is a

solution to the SDE

dXx
t = µXt dt+ σXx

t dWt, Xx
0 = x.

Let β ≥ 0 with β ≥ µ+ σ2. Then,

E(|Xx
t |p)

1
p ≤ |x|e

(
µ+

(p−1)σ2

2

)
t ≤ |x|eβt

for p ∈ [2, 3] and x ∈ R. By Young’s inequality and Ito’s isometry,

1 + E
(
|X1

t − 1|2
)
≤ 1 + 4β

∫ t

0

1 + E
(
|X1

s − 1|2
)

ds.

By Gronwall’s lemma, it follows that

E
(
|X1

t − 1|2
)
≤ e4βt − 1.

Let κ(x) := (1 + |x|)3 for x ∈ R and S = Sµ,σ be given by(
S(t)u

)
(x) := E

(
u(Xx

t )
)

for u ∈ UCκ, t ≥ 0 and x ∈ R. Then, it follows that

‖S(t)u‖κ ≤ ‖u‖κe3βt

for t ≥ 0 and u ∈ UCκ. Moreover, for u ∈ Lipb,

‖u‖Lip ≤ eβt‖u‖Lip.

and
‖S(t)u− u‖κ ≤ ‖u‖LipE

(
|X1

t − 1|
)
≤
√
e4βt − 1→ 0 as t→ 0.

Therefore, S is a strongly continuous Feller semigroup. For u ∈ Lip2
b, let

Cu := max{‖u′‖∞, ‖u′′‖∞, ‖u′′‖Lip}
and Au ∈ UCκ be given by(

Au
)
(x) := µxu′(x) +

σ2x2

2
u′′(x) for x ∈ R.
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Let u ∈ Lip2
b. Then, for h > 0,∣∣(S(h)Au

)
(x)−

(
Au
)
(x)
∣∣ ≤ κ(x)Cuαmax

{√
e4βh − 1, e4βh − 1

}
and therefore,

‖S(h)Au− Au‖κ ≤ Cuαmax

{√
e4βh − 1, e4βh − 1

}
.

By Ito’s formula, it follows that(
S(h)u

)
(x)− u(x)

h
=

1

h

∫ h

0

(
S(s)Au

)
(x) ds

for all h > 0 and x ∈ R, which implies that∥∥∥∥S(h)u− u
h

− Au
∥∥∥∥
κ

≤ Cuαmax

{√
e4βh − 1, e4βh − 1

}
→ 0 as h↘ 0.

Hence, for any nonempty set Λ of tuples (µ, σ) with

sup
(µ,σ)∈Λ

(
µ+ σ2

)
<∞

the assumptions (A1) and (A2) are satisfied, the semigroup envelope S is strongly
continuous and Lip2

b ⊂ D. By Theorem 3.12, we thus obtain that u(t) := S (t)u0,
for t ≥ 0, defines a viscosity solution to the fully nonlinear Cauchy problem

ut(t, x) = sup
(µ,σ)∈Λ

µx∂xu(t, x) +
σ2x2

2
∂xxu(t, x), (t, x) ∈ (0,∞)× R,

u(0, x) = u0(x), x ∈ R.
Moreover, the semigroup S is continuous from above by Proposition 5.4. The
nonlinear Markov process related to S can be seen as a geometric G-Brownian
Motion (cf. Theorem 5.5).

Example 6.3 (Ornstein-Uhlenbeck processes on separable Hilbert spaces). We
consider the case where M = H is a real separable Hilbert space and Γ = ∅. Let
m ∈ H, B ∈ L(H), T (t) := etB for all t ≥ 0, C ∈ L(H) a trace class operator
and WC a Brownian Motion with covariance operator C on a probability space
(Ω,F ,P). We define

Xx
t := T (t)x+

∫ t

0

T (t− s)m ds+

∫ t

T (t− s) dWC
s

for t ≥ 0 and x ∈ H. Then, for x ∈ H, the stochastic process (Xx
t )t≥0 is a mild

solution to the infinite-dimensional SDE

dXx
t =

(
BXx

t +m
)

dt+ dWC
t , Xx

0 = x.

Let α ≥ 0 with α ≥ e2‖B‖(‖B‖2 + ‖m‖2 + ‖C‖tr

)
. Then, by Young’s inequality,

1 + E(‖Xx
t ‖2) ≤ 1 + ‖x‖2 + 4e2‖B‖(‖B‖2‖x‖2t2 + ‖m‖t2 + ‖C‖trt

)
≤ (1 + ‖x‖2)e4αt
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for all x ∈ H and 0 ≤ t ≤ 1. Moreover,

E
(
‖Xt − x‖

)
≤ e‖B‖‖B‖‖x‖t+ e‖B‖‖m‖t+ e‖B‖

√
‖C‖trt ≤ (1 + ‖x‖)3

√
αt

for all x ∈ H and 0 ≤ t ≤ 1. Let κ := (1 + ‖x‖2)−1 and define S = SB,m,C by(
S(t)u

)
(x) := E

(
u(Xx

t )
)

for x ∈ H, t ≥ 0 and u ∈ Cκ. Then, ‖S(t)u‖κ ≤ e4αt‖u‖κ for all u ∈ Cκ and
t ≥ 0 and

‖S(t)u‖Lip ≤ e‖B‖t‖u‖Lip.

For u ∈ Lip2
b let

Cu := max{‖∇u‖, ‖∇2u‖∞, ‖∇2u‖Lip}
and Au ∈ Cκ be given by(

Au
)
(x) = ∇u(x)(Bx+m) +

1

2
tr
(
C∇2u(x)

)
for x ∈ H. Then, for h ∈ [0, 1],

‖S(h)Au− Au‖κ ≤ 3Cu
√
α3h.

By Ito’s formula it follows that(
S(h)u

)
(x)− u(x)

h
=

1

h

∫ h

0

(
S(s)Au

)
(x) ds

for all h > 0 and x ∈ H, which implies that∥∥∥∥S(h)u− u
h

− Au
∥∥∥∥
κ

≤ 3Cu
√
α3h→ 0 as h↘ 0.

Hence, for any nonempty set Λ of triplets (B,m,C) with

e2‖B‖(‖B‖2 + ‖m‖2 + ‖C‖tr

)
≤ α

the assumptions (A1) and (A2) are satisfied, the semigroup envelope S is strongly
continuous on Lip2

b. In order to show that Lip2
b ⊂ D, by the previous compu-

tations, it suffices to show that S is stongly continuous. For this we invoke
Proposition 3.5. Notice that Lip2

b is not dense in Lipb if H is infinite dimensional.
Let δ > 0 and ϕ : [0,∞) → [0, 1] infinitely smooth with ϕ(s) = 1 for x ∈

[
0, δ

2

]
and ϕ(s) = 0 for s ∈ [δ,∞). For x, y ∈ H, let ϕx(y) := ϕ(‖y − x‖). Then,
ϕx ∈ Lip2

b with

‖∇ϕx‖∞ ≤ ‖ϕ′‖∞ and ‖∇2ϕx‖∞ ≤
3

δ
‖ϕ′‖∞ + ‖ϕ′′‖∞ for all x ∈M.

Hence,

‖Aϕx‖κ ≤
3
√
α

2δ
max

{
‖ϕ′‖∞, ‖ϕ′′‖∞

}
=: L

for all x ∈ M . Therefore, by Remark 3.6 and Proposition 3.5, the semigroup S
is strongly continuous. Altogether, we have shown that, for any nonempty set Λ
of triplets (B,m,C) with

sup
(B,m,C)∈Λ

(
‖B‖2 + ‖m‖2 + ‖C‖tr

)
<∞,
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the assumptions (A1) and (A2) are satisfied, the semigroup envelope S is strongly
continuous and Lip2

b ⊂ D. By Theorem 3.12, we thus obtain that u(t) := S (t)u0,
for t ≥ 0, defines a viscosity solution to the fully nonlinear PDE

ut(t, x) = sup
(B,m,C)∈Λ

∇u(t, x)(Bx+m) +
1

2
tr
(
C∇2u(t, x)

)
, (t, x) ∈ (0,∞)×H,

u(0, x) = u0(x), x ∈ H.

If H = Rd, the semigroup S is continuous from above by Proposition 5.4, which
implies the existence of an O-U-process under a nonlinear expectation which
represents S (cf. Theorem 5.5).

Example 6.4 (Lévy Processes on abelian groups). Let M = G be an abelian
group with a translation invariant metric d and κ(x) := 1 for all x ∈ M . Let
(S(t))t≥0 be a Markovian convolution semigroup, i.e. a semigroup arising from a
Lévy process. Then, (S(t))t≥0 is a strongly continuous Feller semigroup of linear
contractions (cf. [3]). Moreoever, due to the translation invariance, ‖S(t)u‖Lip ≤
‖u‖Lip for all t ≥ 0 and u ∈ Lipb. Now, let (Sλ)λ∈Λ be a family of Markovian
convolution semigroups with generators (Aλ)λ∈Λ. Then, the assumptions (A1) -
(A2) are satisfied. We refer to [3] for examples, where the semigroup envelope
is strongly continuous. In particular, all examples from [3] fall into our theory.
In the case, where G = H is a real separable Hilbert space, we can improve the
result obtained in [3, Example 3.3]. In this case, by the Lévy-Khintchine formula
(see e.g. [7, Theorem 5.7.3]), every generator A of a Markovian convolution
semigroup is characterized by a Lévy triplet (b,Σ, µ), where b ∈ H, Σ ∈ L(H) is
a self-adjoint positive semidefinite trace-class operator and µ is a Lévy measure
on H. For u ∈ Lip2

b(H) and a Lévy triplet (b,Σ, µ), the generator Ab,Σ,µ is given
by (

Ab,Σ,µu
)
(x) = 〈b,∇u(x)〉+

1

2
tr
(
Σ∇2u(x)

)
+

∫
H

u(x+ y)− u(x)− 〈∇u(x), h(y)〉 dµ(y)

for x ∈ H. Here, the function h : H → H is defined by h(y) = y for ‖y‖ ≤ 1,
and h(y) = 0 whenever ‖y‖ > 1. Let Λ be a nonempty set of Lévy triplets. We
assume that

C := sup
(b,Σ,µ)∈Λ

(
‖b‖+ ‖Σ‖tr +

∫
H

1 ∧ ‖y‖2 dµ(y)

)
<∞. (6.5)

Notice that (6.5) does not exclude any Lévy triplet a priori. Under (6.5), the
semigroup envelope S is strongly continuous on Lip2

b. In order to show that
Lip2

b ⊂ D, by the computations in [3], it suffices to show that S is strongly
continuous. For this we invoke Proposition 3.3. For δ > 0, we choose the family(
ϕx)x∈H as in the previous example. Since

(
S (t)v

)
(x) =

(
S (t)v(x + ·)

)
(0) for

all v ∈ UCκ, x ∈ H and t ≥ 0, it follows that(
S (t)(1− ϕx)

)
(x) =

(
S (t)(1− ϕ0)

)
(0)
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for all x ∈ H and t ≥ 0. Defining f(t) :=
(
S (t)(1− ϕ0)

)
(0) for t ≥ 0, it follows

that f is continuous with f(0) = 0. Therefore, by Proposition 3.3, the semigroup
S is strongly continuous. Altogether, we have shown that under the condition
(6.5), the assumptions (A1) and (A2) are satisfied, the semigroup envelope S
is strongly continuous and Lip2

b ⊂ D. By Theorem 3.12, we thus obtain that
u(t) := S (t)u0, for t ≥ 0, defines a viscosity solution to the fully nonlinear
Cauchy problem

ut(t, x) = sup
(b,Σ,µ)∈Λ

(
Ab,Σ,µu(t)

)
(x), (t, x) ∈ (0,∞)×H,

u(0, x) = u0(x), x ∈ H.

If H = Rd and the set of Lévy measures within the set of Lévy triplets Λ is tight,
the semigroup envelope S is continuous from above, which implies the existence
of a nonlinear Lévy process related to S . However, due to the translation invari-
ance of the semigroups, the continuity from above is not necessary in order to
obtain the existence of a Lévy process under a nonlinear expectation. The non-
linear Lévy process can be explicitly constructed via stochastic integrals w.r.t.
Lévy processes with Lévy triplet contained in Λ. We refer to [3, Proposition 5.12]
for the details of the construction.

Example 6.5 (α-stable Lévy processes). Consider the setup of the previous
example, with G = Rd for some d ∈ N and let Aα := −(−∆)α be fractional
Laplacian for 0 < α < 1. Then, for any compact subset Λ ⊂ (0, 1), condition
(6.5) is satisfied. Hence, the assumptions (A1) and (A2) are satisfied and the
semigroup envelope S is strongly continuous with Lip2

b ⊂ D. By Theorem 3.12,
we thus obtain that u(t) := S (t)u0, for t ≥ 0, defines a viscosity solution to the
nonlinear Cauchy problem

ut(t, x) = sup
α∈Λ
−(−∆)αu(t, x), (t, x) ∈ (0,∞)× Rd,

u(0, x) = u0(x), x ∈ Rd.

The related nonlinear Lévy process can be interpreted as a Λ-stable Lévy process.

Example 6.6 (Mehler semigroups). Consider the case, where the state space
M = H is a real separable Hilbert space and κ = 1. Let (T, µ) be a tuple
consisting of a C0-semigroup T = (T (t))t≥0 of linear operators onH with ‖T (t)‖ ≤
eαt for all t ≥ 0 and some α ∈ R and a family µ = (µt)t≥0 of probability measures
on H such that

µ0 = δ0 and µt+s = µs ∗ µt ◦ T (s)−1 for all s, t ≥ 0.

We then define the semigroup S = S(T,µ) by(
S(t)u

)
(x) :=

∫
H

u(T (t)x+ y) dµt(y)

for u ∈ UCb, t ≥ 0 and x ∈ H. Then, ‖S(t)u‖∞ ≤ ‖u‖∞ for all u ∈ Cb and
‖S(t)u‖Lip ≤ eαt‖u‖Lip for u ∈ Lipb. Hence, for any nonempty family Λ of tuples
(T, µ) with ‖T (t)‖ ≤ eαt for all t ≥ 0 the assumptions (A1) and (A2) are satisfied.
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Example 6.7 (Bounded generators on `∞). Let M = N and κ(i) = 1 for all
i ∈ N. Let (Aλ)λ∈Λ ⊂ L(`∞) be a family of operators satisfying the positive
maximum principle and

sup
λ∈Λ
‖Aλ‖L(`∞) <∞.

Here, we say that an operator A ∈ L(`∞) satisfies the positive maximum principle
if Aii < 0 for all i ∈ N and Aij ≥ 0 for all i, j ∈ N with i 6= j. Then, the family
(Aλ)λ∈Λ satisfies the assumptions (A1) and (A2) with D = `∞. In particular, the
semigroup envelope is strongly continuous. If Aλ1 = 0 for all λ ∈ Λ, then the
semigroup envelope admits a stochasic representation. This representation can
be seen as a nonlinear Markov chain with state space N.

Example 6.8 (Multiples of generators of Feller semigroups). Let A be the gen-
erator of a strongly continuous Feller semigroup (S(t))t≥0 of linear operators.
Assume that there exist constants α, β ∈ R such that

‖S(t)u‖κ ≤ eαt‖u‖κ and ‖S(t)u‖Lip ≤ eβt‖u‖Lip

for all u ∈ Lipb and t ≥ 0. For λ ≥ 0 let Aλ := λA for all λ. Then, Aλ generates
the semigroup Sλ given by Sλ(t) := S(λt) for all t ≥ 0 and λ ≥ 0. Then, for any
compact set Λ ⊂ [0,∞) the family (Sλ)λ∈Λ satisfies the assumptions (A1) and
(A2) with D(A) ⊂ D and the semigroup envelope is strongly continuous. Hence,
by Theorem 3.12, we obtain that u(t) := S (t)u0, for t ≥ 0, defines a viscosity
solution to the abstract Cauchy problem

u′(t) = sup
λ∈Λ

λAu(t), for t > 0,

u(0) = u0.
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In Stochastic analysis and applications, volume 2 of Abel Symp., pages 541–567. Springer,
Berlin, 2007.

[13] S. Peng. Multi-dimensional G-Brownian motion and related stochastic calculus under G-
expectation. Stochastic Process. Appl., 118(12):2223–2253, 2008.

[14] H. M. Soner, N. Touzi, and J. Zhang. Martingale representation theorem for the G-
expectation. Stochastic Process. Appl., 121(2):265–287, 2011.

[15] H. M. Soner, N. Touzi, and J. Zhang. Quasi-sure stochastic analysis through aggregation.
Electron. J. Probab., 16:no. 67, 1844–1879, 2011.

[16] J. Vorbrink. Financial markets with volatility uncertainty. J. Math. Econom., 53:64–78,
2014.

1Center for Mathematical Economics, Bielefeld University, 33615 Bielefeld,
Germany

E-mail address: Max.Nendel@uni-bielefeld.de

2Faculty of Mathematics, Bielefeld University, 33615 Bielefeld, Germany
E-mail address: Roeckner@uni-bielefeld.de


	beispiel
	nendel_roeckner_upperenvelope
	1. Introduction and main results
	2. Construction of the semigroup envelope
	3. Strong continuity and viscosity solutions
	4. Approximation of the semigroup envelope
	5. Stochastic representation
	6. Examples
	References


