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UPPER ENVELOPES OF FAMILIES OF FELLER SEMIGROUPS
AND VISCOSITY SOLUTIONS TO A CLASS OF NONLINEAR
CAUCHY PROBLEMS

MAX NENDEL'and MICHAEL ROCKNER?

ABSTRACT. In this paper we construct the smallest semigroup . that dom-
inates a given family of linear Feller semigroups. The semigroup . will be
referred to as the semigroup envelope or Nisio semigroup. In a second step we
investigate strong continuity properties of the semigroup envelope and show
that it is a viscosity solution to a nonlinear abstract Cauchy problem. We
derive a condition for the existence of a Markov process under a nonlinear ex-
pectation for the case where the state space of the Feller processes is locally
compact. The procedure is then applied to numerous examples, in particu-
lar nonlinear PDEs that arise from control problems for infinite dimensional
Ornstein-Uhlenbeck processes and infinite dimensional Lévy processes.
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process, nonlinear expectation
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1. INTRODUCTION AND MAIN RESULTS

For two (possibly nonlinear) semigroups S = (S(t))t>0 and T = (T(t))t>0 on
a Banach lattice X we write S < T if S(t)x < T(t)x for all t > 0 and z € X.
For a nonempty index set A and a family (S))xea of semigroups on X we call
a semigroup T an upper bound of S if T' > S, for all A € A. We call .¥ a
least upper bound of (Sy)xea if 7 is an upper bound of (S))xepa and ¥ < T for
any other upper bound T of (Sy)xea. Then, the very interesting question arises
under which conditions the family (S))xea has a least upper bound. To the best
of our knowledge this question has first been adressed by Nisio [11] for strongly
continuous semigroups on the space of all bounded measurable functions, which
is why we call the least upper bound . of (S))xea the Nisio semigroup or the
semigroup envelope of (S))aea. Due to a Theorem of Lotz [8] it is known that
strongly continuous semigroups on the space of all bounded measurable functions
always have a bounded generator, which is why the result of Nisio is not applica-
ble for most semigroups related to partial differential equations. However, using
a similar approach to the one by Nisio on the space of bounded and uniformly
continuous functions, Denk et al. [3] proved the existence of a least upper bound
for semigroups related to Lévy processes. In [9] the approach by Nisio has been

used to characterize the generators of Markov chains with finite state space under
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2 M. NENDEL and M. ROCKNER

nonlinear expectations. In the present paper, we use the idea of Nisio in a more
general framework than Denk et al. in order to go beyond Lévy processes. Main
examples will be Ornstein-Uhlenbeck processes on real separable Hilbert spaces,
Geometric Brownian Motions, Lévy processes on real separable Hilbert spaces
and Koopman semigroups with semiflows in real separable Banach spaces.

A fundamental result from semigroup theory is the fact that for a strongly
continuous semigroup S = (S(t)) i~ Of linear operators with generator A the
function u(t) := S(t)z is a solution to the abstract Cauchy problem

u'(t) = Au(t) fort >0, wu(0)= uo.

Similar as in the work by Denk et al. [3] we show that the Nisio semigroup yields
a viscosity solution to the nonlinear Cauchy problem

u'(t) = Au(t) fort >0, wu(0) = um,

where Au := sup,c, Axu is the pointwise supremum of the generators of the
family of semigroups (S))xea. On one hand, this is interesting from a structural
point of view since it shows that there is still a relation between the least upper
bound of a family of semigroups and the least upper bound of their generators.
On the other hand, this shows that Nisio semigroups are closely related to solu-
tions to optimal control problems in Mathematical Finance. Examples include
solutions to BSDEs (see e.g. Coquet et al. [1]), 2BSDEs or the G-heat equation
(cf. Peng [12],[13], Soner et al. [14],[15]), semigroups related to the geometric
G-Brownian Motion (cf. Epstein and Ji [5], Vorbrink [16]) and G-Lévy processes
(cf. Hu and Peng [0], Neufeld and Nutz [10], Denk et al. [3]). Against this back-
ground, under certain conditions, we derive a stochasic representation of Nisio
semigroup via stochastic processes under a nonlinear expectation, which gives a
link to robust finance and the pricing of contingent claims under ambiguity.

Throughout, we consider a nonempty index set A, a fixed separable metric
space (M, d) and a fixed weight function k: M — (0, 00), which is assumed to be
continuous and bounded. Let C = C(M) be the space of all continuous functions
M — R. We denote the space of all u € C with norm

||tt]|co := sup |u(x)| < oo
rzeM

by Cy, and the space of all © € C with seminorm
ullLip :=inf {L > 0|Vz,y € M : Ju(z) — u(y)| < Ld(z,y)} < oo
by Lip. Finally, we denote the space of all u € C' with norm
[ulls = [rulloe < o0

by C, and the closure of Lip, := LipNC,, in the space C, by UC,. If x is bounded
below by some positive constant, then C, = Cj, and || - ||, is equivalent to || - ||s-
In this case, UC, is the closure of Lip w.r.t. |||/, which in most examples will be
the space UCy, of all bounded and uniformly continuous functions M — R. For a
sequence (u,)nen C UC, and u € UC, we write u, ,/ u as n — 00 if u, < t,qq
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for all n € N and u,(x) = u(z) as n — oo for all x € M. Analogously, we write
Up N\ u as n — 0o if u, > u,4 for all n € N and w,(r) — u(x) as n — oo for all
reM.

Definition 1.1.

a) We call a family .7 = ((t))i>0 of possibly nonlinear operators a Feller
semigroup if the following conditions are satisfied:
(i) L(t): UC, — UC, is continuous for all ¢ > 0,
(i) L (0)u =wvand L (s+t)u = .7 (s).(t)u for all s,t > 0 and u € UC,,
(iii) L(t) is monotone and continuous from below for all t > 0, i.e. for
any sequence (uy,)peny C UC, and u € UC, with u, / u asn — oo
it holds .7 (t)u,, /7 (t)u as n — oo.
b) Let D C UC,. We then say that a Feller semigroup . is strongly contin-
wous on D if the map

[0,00) = UC,, t— S(t)u

is continuous for all u € D. If D = UC,, we say that .% is strongly
continuous.

Remark 1.2. Let . be a Feller semigroup and D C UC, the set of all u € UC,
such that

[0,00) = UC,, t— L(t)u
is continuous. Then, by the semigroup property (ii), the set D is invariant under
Sie. L(tue D forall u € D and all t > 0.

Throughout this work, we assume the following setup:

(A1) For all A € A let Sy be a Feller semigroup of linear operators.
(A2) There exist constants a, € R such that

1Sx(@)ulle < e™[lull and  [[Sy(t)ullip < ™ ullui

for all u € Lip,, A € A and ¢t > 0.

The paper is structured as follows. In Section 2 we show the existence of the
semigroup envelope . of the family S = (S5))rea under the assumptions (Al)
and (A2). The main result of this section is Theorem 2.6. In Section 3 we first
derive three conditions that guarantee the strong continuity of the semigroup
envelope, which in turn yields viscosity solutions to a nonlinear abstract Cauchy
problem. The main result of this section is Theorem 3.12. In Section 4 we derive
some approximation results for the Nisio semigroup. In Section 5, we give a
stochastic representation of the semigroup envelope via a stochastic process under
a sublinear expectation. In Section 6 we apply the results from the sections 2, 3
and 5 to several examples.

2. CONSTRUCTION OF THE SEMIGROUP ENVELOPE

Throughout, we assume that the conditions (A1) and (A2) are satisfied. Let
u € UC,, A € A and ¢t > 0. Then, since S)(t): UC, — UC, is continuous, we
have that
1Sx@)ullc < el
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Hence,
(&pu) (z) := sup (Sx(h)u)(z)
AEA
is well-defined for all x € M and h > 0. Moreover, we have the following:
Lemma 2.1. Let h > 0.
a) For all u,v € UC,,
1Epw — Env||x < " |lu — v,

In particular, ||Epull. < e®||ull. for all u € UC,.

b) [|EnullLip < €M ||ullLip for all u € Lipy,.

¢) The map &,: UC, — UC, is well-defined and Lipschitz continuous with
Lipschitz constant e®".

d) & is sublinear, monotone and continuous from below for all h > 0.

Proof.
a) Let u,v € UC, and h > 0.
£(Sx(h)u — Ew) < k(Sa(h)u — Sx(h)v) = kSi(h)(u —v)
< [[Sa(h)(u = v)llx < e lu— o]
for all A € A. Taking the supremum over all A € A, we obtain that
k(Epu — Epv) < eMlu — v,
and therefore, by a symmetry argument,
1€h = Envlle < e flu = vl
b) Let u € Lip, and x,y € M. Then,
(Sx(h)u) (2) = (Enu) (y) < (Sa(R)u)(x) — (Sx(R)u) (y) < €™ |lullipd(z, y).
Taking the supremum over all A € A, we obtain that
(Enu) (z) — (Enur) (y) < ||ulluipd(, y)
and therefore, by a symmetry argument,
[(Enu) (2) = (Ente) ()] < ™ [Julluipd(z, y).

This shows that ||Epul|ip < e77|ul|Lip-

c¢) By part b), we have that &,u € UC, for all u € Lip,. Since Lip, is dense
in UC,, part a) implies that &,: UC, — UC, is well-defined and Lipschitz
continuous with Lipschitz constant e®”.

d) All these properties diretly carry over to the supremum.

O

In the sequel, we consider finite partitions P := {7 C [0,00): 0 € 7, |7| < 00}
of the positive half line. The set of partitions with end-point ¢ will be denoted
by P, i.e. P,:={m € P:maxm = t}. Note that

P: Pt'



UPPER ENVELOPES AND VISCOSITY SOLUTIONS 5

Let u € UC, and 7 € P\ {{0}}. Then, there exist 0 =ty < t; < ... < t,, such
that m = {to,t1,...,tn} and we set
&Tu = gtlftg C Stm,tmflu.

Moreover, we set Eyu := u. Note that, by definition, &, = &y for h > 0.
Since &,: UC, — UC, is well-defined, the map &,: UC,, — UC, is well-defined,
too.
Lemma 2.2. Let m € P.

a) & is a sublinear, monotone and continuous from below.

b) For all u,v € UC,,

[Eru — Exv]l < ™ ||u — vl

In particular, £,: UC, — UC, is well-defined and Lipschitz continuous
with Lipschitz constant e*™*7™ . Moreover,

1€xulluip < ™ fu|Lip
for all u € Lip,,.

Proof.

a) Since &, is a sublinear, monotone and continuous from below for all h > 0,
the same holds for &, as these properties are preserved under compositions.

b) This follows from Lemma 2.1 and the behaviour of Lipschitz constants
under composition.

OJ

Let u € UC,. In the following, we consider the limit of £,u when the mesh
size of the partition m € P tends to zero. For this, first note that for hy, hy > 0
and x € M we have that

(Envynou) (x) = sup (Sx(hy + ho)u) () = sup (Sx(h1)Sx(ha)u)(z)

AEA AEA
< iug (Sa(h1)Enyu) (z) = (EnyEnyu) (),
S

which implies the pointwise inequality
Enu < Eru (2.1)

for my,m € P with m C my. In particular, for 7, m € P and 7 := m U 1y we
have that m € P with
(Emu) V (8,,2u) < &, u. (2.2)
Recall that we denote by P, the set of all finite partitions with end point ¢ > 0.
Fort > 0, x € M and u € UC,, we define
((t)u)(z) := sup (Exu)(z).

TEP;

Note that .(0)u = u for all u € UC,. The family .’ = (#(t)),., is called the
semigroup envelope or Nisio semigroup of the family (Sy)xea. Let ¢ > 0. Then,
1.7 () = (vl < e llu— v,
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for all u,v € UC, and
1 ()l < e flulluip

due to Lemma 2.2. Therefore, the map . (¢): UC, — UCy is well-defined and
Lipschitz continuous with Lipschitz constant e®. Moreover, .#(¢) is sublinear,
monotone and continuous from below. In the following, we show that the Nisio
semigroup .7 is in fact a semigroup. We start with the following lemma.

Lemma 2.3. Letu € UC,, andt > 0. Then, there exists a sequence (7, )nen C P
with

Eryu L (Hu as n — oo.
Proof. Let (zx)ken C M such that the set {z |k € N} is dense in M. Then, for

every k € N, there exists a sequence (7))nen C P with 7 C @), for all n € N
and

(Enru) (i) /(L (t)u)(zx)  as n — oo.
Now, let

T 1= U mk
k=1
for all n € N. Then, 7% C 7, C 7,41 for alln € Nand k € {1,...,n}. Hence,
Epi < Emt < En i (2.3)
for alln € Nand k € {1,...,n}. Let
(Exv)(z) = sugI (Eryv) (@)

ne

for all v € UC, and x € M. Then, by Lemma 2.2, the map £,: UC, — UC, is
well-defined. In particular, E,u: M — R is continuous and, by (2.3),

Enx ot S Eu  as n — o0.
Again, by (2.3),

(L)) (z) = nh_g)lo (Eprur) () < nh_g)lo (Eryu) (1) = (Exott) (zr) < (L (t)u) ()
for all £ € N. Since, . (t)u and E,u are both continuous and the set {xy | k € N}
is dense in M, it follows that .7 (t)u = E,u, which shows that

Erpu S (Hu  as n — oo.
0

Proposition 2.4 (Dynamic programming principle). For all s,t > 0 we have
that

S(s+1) = .S() (D). (2.4)

Proof. Let u € UC,. If s = 0 or t = 0 the statement is trivial. Therefore, let
s,t >0, mg € Psyy and 7 := mo U {s}. Then, we have that = € P,,; with my C 7.
Hence, by (2.1), we get that

Enou < Equ.



UPPER ENVELOPES AND VISCOSITY SOLUTIONS 7

Let m € Nand 0 = tg < t; < ...t,, = s+t with 7 = {to,...,t,,} and i €
{1,...,m} with ¢; = s. Then, we have that m := {to,...,t;} € P and my :=
{ti—s,...,t, — s} € P, with

gﬂ'l = 5t1*t0 o ‘gti*ti—l
and
g7r2 = gti+1_ti T gtrn_tmfl'
We thus get that
gﬂ'ou < gﬂ'u = Stlfto o 'gtm*tm—lu = (gtlfto o .gti*tifl) (StiJrl*ti T 'Stm*tm—1u)
=EnEnu < & (L (D) < F(5)S(t)u.
Taking the supremum over all 7y € Psyy, we get that (s + t)u < 7 (s).7(t)u.
Now, let (mp)neny C P with &, u 2 L (Hu as n — oo (see Lemma 2.3) and
fix my € Ps. Then, for all n € N we have that
m, =moU{s+T1: T €M} € Psyy
with & = & Er,. As &, is continuous from below, we get that
Ene (L (t)u) = nh_)xgo EroEnyul = nh_{rgo Enu < S (s+t)u.
Taking the supremum over all my € P, we get that .7 (s).7(t)f < L (s+t)f. O

Remark 2.5. The semigroup . is the least upper bound of the family S =
(Sx\)aea- In fact, let T' be an upper bound of the family S, i.e.

(Sa(t)u)(z) < (T(t)u)(x)
forall A € A, u € UC,,t >0 and z € M. Then, we have that
(Sa(h)u)(z) < (Epu)(z) < (T(h)u)(z)
forall A € A, u € UC,, h > 0 and x € M. Consequently
(Sa(t)u)(z) < (Exu)(z) < (T(t)u)(z)

foral A€ A, u e UC,,t >0, 7 € P, and x € M. Taking the supremum over all
m € P;, we obtain that

(Sa(t)u) (z) < (L (t)u) () < (T(t)u)(z)
forall A€ A, u e UC,,t>0and z € M.

We conclude this section with the following main theorem.

Theorem 2.6. The family . is a Feller semigroup of sublinear operators and
the least upper bound of the family S = (S))ea-

Proof. All properties except for the semigroup property follow directly from the
definition of . before Lemma 2.3. The semigroup property is exactly (2.4). The
fact that .# is the least upper bound of the family S has been shown in the
previous remark. O
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3. STRONG CONTINUITY AND VISCOSITY SOLUTIONS

Let . be the Feller semigroup from the previous section, i.e. the semigroup
envelope of the family (S))xea.

Lemma 3.1. Let u € UC,. Then, the following statements are equivalent:
(i) limp—o |- (h)u — ul|, = 0.
(ii) The map
[0,00) = UC,, t— S (t)u

18 continuous.

Proof. Clearly, (ii) implies (i). Therefore, assume that limy_q || (h)u —ul|, = 0.
Let ¢ > 0 and ¢ > 0. W.lo.g. we may assume that in (A2) we have a > 0. By
assumption, there exists some d > 0 such that

.7 (h)u — u|,, < e e
for all h € [0,0). Now, let s € [0,¢ + 1] with |t — s| < . Then,
1.7 (t)u — L (s)ullw = || Lt A s)L ([t = s])u— L (t A s)uHK
< ea(t+1)||Y(|t — s)u — uHH <e.
0

Remark 3.2. Let D C UC, and assume that . is stongly continuous on D.
Then, . is also strongly continuous on the closure D of D. In order to see
this, let (up)peny € D and u € UC, with ||u, — u|, — 0 as n — co. W.lLo.g.
we may assume that « > 0. Let ¢ > 0. Then, there exists some ny € N such
that [Jup, — ul|. < §e7®. Since u,, € D, there exists some ¢ € (0, 1] such that
-7 (R )ty — Unyl|w < § for all b € [0,6). Hence, for h € [0,0), it follows that

2e
|- (h)u —ull, < 5t |7 (h)tng — Une | < €.

By the previous lemma, it follows that the map [0,00) — UC,, t — Z(t)u is
continuous.

In the sequel, we will give three conditions that imply the strong continuity of
the semigroup ..

Proposition 3.3. Assume that for every & > 0 there exists a family of functions
(pz)zerm C UC, satisfying the following:
(1) 0 < @uly) <1 forally € M, p,(x) =1, and @,(y) = 0 for ally € M
with d(z,y) > 9,
(ii) There exists some hy > 0 and a continuous function f: [0,hy) — [0, 00)
with f(0) = 0 such that, for all h € [0, hg) and x € M,

(h)
(F0)(1 = ) @) < 255,
If, additionally, Sx(t)1 =1 for all A € A and t > 0, where 1 denotes the constant
1-function, then . is strongly continuous.

~~

~—

K
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Proof. Let u € Lip,, \ {0} and € > 0. Then, there exists some ¢’ > 0 such that
u(z) —u(y)| < gz forall z,y € M with d(z, y) < §.

By assumption, there exists a family (¢.).enr C UC, satisfying (i) and (ii) for
d = 0'. Since f:[0,hg) — [0,00) is continuous, there exists some hy € (0, hg)

such that
€

)< e
for all h € [0, hy). Hence, for all z € M and all h € [0, hy),
[(# (hyu) (@) — u(x)] = |(F(h)(u — u(@)) (@)] < (L (B)|u —u(2)]) ()
< (S W) (@olu — u@)))) (@) + (L)1~ po)lu— ulx)]) (x)
s 4 2fulloe (L ()L~ 22)) (@)

2[|Klloo

€
< —.

k()

<

This shows that
|- (h)u — u||ﬁ <e€

for all h € [0, hy) and therefore, . is strongly continuous on Lip,. Since Lipy, is
dense in UC,, Remark 3.2 imples that .# is strongly continuous. O

Throughout the rest of this section, we denote by Dy C UC, the subspace of
all v € UC,, for which there exist L, > 0 and h, > 0 such that

sup ||Sx(h)u — |, < Lyh
AEA

for all h € [0, hy,).

Proposition 3.4. The semigroup . is strongly continuous on Dy. If Dy is
dense in UC,, then . is strongly continuous.

Proof. Let u € Dp and 0 < hy < hy with hy — hy < h,. Then, for all x € M and
Ao € A, we have that

(Sxo()u) () = (Enyue) (2) < (Sro(ha)u) (2) = (Sxg(ho)u) ().
Taking the supremum over \g € A, we get that

(En)(w) = (Eng)(w) < sup | (S3(a)u) () = (Sa(ha)u) x)

for all x € M. By a symmetry argument, multiplying by x(x) and taking the
supremum over all x € M, we thus get that

I8 = Enyule < sup S50 = S5 ()l
S
Further, by assumption (A3),
1S5 (h1)u — Sx(ho)ull, < e ||Sx(ha — hy)u — ul, < Lyue®™ (hg — hy).
Taking the supremum over all A € A, we obtain that
1Enu — Enyuillx < Lye®™ (hy — hy). (3.1)
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Next, we show that
|Exu — ull < Lye® ™™ ™ maxm (3.2)

for all 7 € P with maxm € [0, h,) by an induction on #r € N. First, let 7 € P
with #m =1, i.e. m = {0}. Then, we have that

amax m

|Exu —ullx = ||Eyu — ullx =0 = Lye max 7.

Now, let m € N and assume that (3.2) holds for all 7 € P with max7 € [0, h,,)
and #m = m. Let 7 € P with #7 = m + 1 and ¢, := maxw € [0,h,). Then
7 =7\ {tn} € P with #7' = m and t,,_1 := max7’ € [0,t,,). We thus have
that

Eeu=Ev&y, 1, U (3.3)
and therefore, by induction hypothesis, (3.3) and (3.1), we get that

[€xu = ullx < [|Exu — Evull, + [[Eru — ull,
= ||gﬂ'l€tm_tm—l
< e &t
< L€ty — tm_1) + L€, 1

= L, et < L,e*™>™ max .

u— Evt]| s + ||Emu —

U — ull, + [[Epu — ull,

By definition of the semigroup . we thus obtain that
|- (h)u — ul, < L,e®™h =0 as h — 0.
O

Proposition 3.5. Assume that for every 6 > 0 there exists a family of functions
(pz)eerm C UC, satisfying the following:

(1) 0 < wauly) <1 forally € M, p,(x) =1, and @,(y) = 0 for ally € M
with d(z,y) > 9,
(ii") There exist L > 0 and hy > 0 such that

sup [|Sx(h)ps — @ullx < Lh
AEA

for all h € [0, hy) and x € M.

If, additionally, Sx(t)1 =1 for all A € A and t > 0, where 1 denotes the constant
1-function, then . s strongly continuous.

Proof. By assumption the family (. ).cn satisfies condition (i) from Proposition
3.3. We now verify that (ii’) implies condition (ii) from Proposition 3.3. Observe
that
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for all h € [0, hy) and z,y € M. W.l.o.g. we assume that o > 0 in (A2). Then,
by (3.1), we thus obtain that

< (E(1— o)) (@) + L(—)h

for all 7 € P with maxm € [0, hg) and h € [0, hg). Inductively, it follows that

e max 7 e max T
(Ex(1— ) (2) <1 — @a(z) + = k(z) - : K(x)

for all # € P with max7 € [0,hg). Taking the supremum over all 7 € P, for
h € [0, hy) yields that
Le®h
L (h)(1 — ¢, < .
(F(1 = 20)) @) < s

Therefore, setting f(h) := Le*’h for h € [0, hy), condition (ii) from Proposition
3.3 is satisfied and the strong continuity of .7 follows. O

Let A € A. Then, we denote by D) C UC, the space of all u € UC, such that
[0,00) = UC,, t~— Sa(t)u
is continuous. We further denote by D(A,) the space of all u € UC,, for which
Sx(h)u —u

Ayu = %1{{1((1) T — e UC,

exists. Notice that, by definition, D(Ay) C D,.

Remark 3.6. Let u € (,c, D(Ax) with

Cy = sup ||Arul|x < o0.
AEA

Then, it follows that (see e.g. [4, Lemma I1.1.3])
h
193 () — ull, < / 195(5) Ayt ds < Cue®h
0

for all A € A. This shows that u € Dj. Moreover, since supy¢, || Arullx < oo, it
follows that

(Au)(z) := sup (Ayu)(z)
AEA
is well-defined for all x € M.

Lemma 3.7. Let u € [),oy D(Ax) with

sup [[Aulls < oo and sup||Sx(h)A\u — Ayull, =0 ash — 0.
xeA AeA

Then,
Enu—u

— Au|| =0.

K

lim
AN)
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In particular, Au € UC,.
Proof. Let € > 0. Then, by assumption, there exists some hg > 0 such that

sup ||Sx(s)Axu — Ayul|, < e
AeA

for all s € [0, hg]. Hence, for all h € (0, ho] it follows that
‘ Sx(h)u —u

Evu—u

. — Au

< sup — Ayu

K AEA

K

h
/ Sa(s)Ayu — Ayuds
0

:sup—‘

xeA h .

1 [t
< sup—/ I19x(s)Axu — Apul|. ds
xer b Jo

<e.
O

Lemma 3.8. Let T: UC, — UC,, be sublinear and Lipschitz continuous. Fur-
ther, let v: [0,00) — UC, be continuous. Then, Tv: [0,00) = UC,, ¢t +— T(v(t))
s again continuous and

T (/Otv(s)d3> < /OtTv(s)ds for allt > 0.

Proof. 1t is clear that Tv: [0,00) — UC, is continuous. Let ¢t > 0 and u: [0,t] —
UC, be a step function, then Tu: [0,t] — UC,, s — T(u(s)) is a step function

and it follows that . .
T (/ u(s) ds) < / Tu(s)ds,
0 0

where we used the fact that 7" is sublinear. Now, let (v, ),en be a sequence of step
functions with limy, . Supsep g [|vn(s) — v(s)|lx = 0. The continuity of 7" implies
that lim,, oo Supsepq [|7vn(s) — Tv(s)x = 0 and therefore,

T (/Otv(s) ds) ~ lim 7 (/Otvn(s) ds) < lim Ot:mn(s) ds = /OtTv(s) ds.
0

Proposition 3.9. Let u € (,o, D(Ax) with

sup ||[Aaul|x < oo and sup ||Sx(h)Ayu — Ayul|l, — 0 as h — 0.
AEA AEA
Then, Au € UC, and the following statements are equivalent:

(i) The map [0,00) — UC,, t — L (t)Au is continuous,

(i) Timyoo || A5 — Aul], = 0.

Proof. By Lemma 3.7, we already know that Au € UC,. Let D denote the set
of all v € UC,, such that the map [0,00) — UC,, t — #(t)v is continuous. By
Remark 3.6, u € Dy. Therefore, by Proposition 3.4, u € D and, by Remark
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1.2, Z(t)u € D for all t > 0. Therefore, by Remark 3.2, statement (ii) implies

statement (i). Therefore, assume that (i) is satisfied. By Lemma 3.7,

S (h)u —u Ehu—u
7 @< —
N < Au ’

Since the map [0, 00) — UC,,, t — 7 (t).Au is continuous, it follows that

Au —

— 0, ash 0

h
1/ S (s)Auds — Au
h Jo

— 0, as h /0.

K

Hence, it is sufficient to show that
t
L (thu —u < / S (s)Auds
0
forallt > 0. Let £t > 0 and A > 0. Then,

h
Enu—u=supSy(h)u —u = sup/ Sa(s)Ayuds
AEA AeA JO
h t+h
< / S (s)Auds = (s —t)Auds.
0

t
Next, we prove that

Exu —u < / S (s)Auds
0

(3.5)

for all # € P by an induction on m = #=. If m = 1, i.e. if # = {0}, the statement

is trivial. Hence, assume that

Ervu—u < / S (s)Auds
0

for all 7/ € P with #7n' = m for some m € N. Let 7 = {to,t1,...,tn} with

0=ty <t <...<tyand 7" := 7\ {t,}. Then, it follows from (3.5) that

&ru — gﬂ—lu S y(tm_l) (5tm_tm71u — U)
tm
S y(tm_l) (/ y(S — tm_1)./4u dS)
tm—1

tm
< / S (s)Auds,
tm—1

where the last inequality follows from Lemma 3.8. By the induction hypothesis,

we thus get that

tm

tm—1
Eu—u=(Eu—Evu) + (Evu—u) < S (s)Auds + / S (s)Auds
0

t'm—l
_ / 7 (s) Auds.
0

In particular, for every m € P,

t
Eru—u < / S (s)Auds.
0
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Taking the supremum over all 7 € P, yields the assertion. O
Let D denote the set of all u € (1,4 D(Ay) with
S (h)u —
sup || Aul|s < oo and M—Au —0 ash—0.
AEA h .

In the sequel, we are interested in viscosity solutions to the abstract differential
equation

u'(t) = Au(t), fort >0,

where we use the following notion of a viscosity solution.

Definition 3.10. We say that u is a wviscosity subsolution of the abstract differ-
ential equation

u'(t) = Au(t), fort >0, (3.6)

if u: [0,00) — UC, is continuous and for every ¢ > 0 and x € M we have

(0'(1) () < (Av(®)) ()

for every differentiable ¢: (0,00) — UC, which satisfies ¢(t) € D, (¢(t))(z) =
(u(t))(z) and ¥(s) < u(s) for all s > 0.

Analogously, u is called a wiscosity supersolution of (3.6) if u: [0,00) — UC
is continuous and for every t > 0 and x € M we have

(0'() (@) = (Ad()) ()

for every differentiable : (0, 00) — UC, which satisfies ¢(t) € D, (¢(t))(x) =
(u(t))(z) and ¥(s) < u(s) for all s > 0.

We say that u is a wviscosity solution of (3.6) if u is a viscosity subsolution and
a viscosity supersolution.

Remark 3.11. In general it is not clear how rich the class of test functions for a
viscosity solution from the previous definition is. However, in the examples in
Section 6, we will see that often Lip; C D with k € {0,1,2}. For¢: (0,00)x M —
R differentiable w.r.t. ¢ and dy¢: (0,00) x M — R uniformly w.r.t.  Lipschitz
continuous in ¢ with Lipschitz constant L > 0, we have

w<t + h7 x) B ¢(t, iL‘)

sup —O(t,x)| < Lh—0 ash\,0
zeM h

for all ¢ > 0. Hence, if Liplg C D for some k € Ny, then every function ¢ €
Lip, " ((0, 00) x M) is differentiable as a map (0, 00) — UC, and satisfies ¢(t) € D
for all t > 0. In most applications the class Lip;’k((O, 00) X M) of test functions
is sufficiently large in order to obtain uniqueness of a viscosity solution.

We conclude this section with the following main theorem.

Theorem 3.12. Assume that . is strongly continuous. Then, for every uy €
UC,, the function

u(t) := L (t)ug, fort >0,
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18 a viscosity solution to the abstract initial value problem
u'(t) = Au(t), fort>0,
u(0) = .

Proof. Fix t > 0 and x € M. We first show that u is a viscosity subsolution.
Let ¢: (0,00) — UC, differentiable with ¢(t) € D, (¢(t))(z) = (u(t))(z) and
¥(s) < wu(s) for all s > 0. Then, for every h € (0,1), it follows from Theorem 2.4
that

L (h)L(t —h)ug — L (t)ug L (h)u(t —h) — u(t)

O: =
h h

< )Yt —h) —u(t) L () (Wt —h) =) + L (h)b(t) — u(t)
< - )
:aﬂmcm_2—¢@)+¢WW®—¢®+¢®—MQ

h h
Let € > 0. Then,

<

and
|| L (W)Y @)(t)
= A

Since (u(t))(z) = (¥(t))(x), it follows that
0 < —(¥'(t) () + (Av()) ().

To show that u is a viscosity supersolution, let ¢: (0,00) — UC, differentiable
with ¢(t) € D, (¢(t))(z) = (u(t))(z) and ¢ (s) < u(s) for all s > 0. By Theorem
2.4, for all h > 0 with 0 < h <t we get

0= S (tyug — L (h).L(t — h)ug _ u(t) — L (h)u(t — h) < u(t) — L (h)Y(t — h)

h h - h
_ () = () () =SB | S () S (Rt~ h)
h h h
u(t) —o(@t) | »t) = Z(h)p() Y(t) =Yt —h)
< o + . +Ymm h )

Let € > 0. Then,

and
|| @) = L (R)y(t)
o h AV

Since (u(t))(z) = (¥(t))(z), we obtain that
— (A1) (z) + (' (1)) (x)
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4. APPROXIMATION OF THE SEMIGROUP ENVELOPE

Throughout this section, we assume that the map
[O, OO) — UC,{, h— Epu
is continuous for all u € UC,.. Note that this assumption is, for example, implied
by the condition that

sup [|[Sx(h)u —ullx — 0 as h — 0,
AeA

for all w € Lip,, which, in most applications, is satisfied. The following lemma
shows that &, depends continuously on the partition 7w € P.

Lemma 4.1. Let m € N and © = {to,t1,...,tm} € P with 0 = tqg < ... < tp,.
For each n € N let m, = {t,t7,...,th} € P with 0 = tj <t} < ... <t and
tr —t; asn — oo foralli € {1,...,m}. Then, for all u € UC, we have that

|Exu — Er, il = 0, n — o0.

Proof. First note that the set of all partitions with cardinality m + 1 can be
identified with the set

S™ = {(31,...,3m) ERm‘O<sl <... <sm} C R™.
Therefore, the assertion is equivalent to the continuity of the map

S™ = UCu,  (S15--+,5m) = (0,51, 5m} U (4.1)
Since the mapping
[0,00) = UC,, hw— &Eu

is continuous for all u € UC, and ||E,u — Epvl|x < e |lu — v]|,, for all h > 0 and
u,v € UC,, it follows that (4.1) is continuous. O

Let u € UC,. In the following, we now consider the limit of £,u when the
mesh size
|TT|oo == max (t; —tj_1)
7j=1,....m

=1,...,

of the partition m = {tg,t1,...,tm} € P with 0 =ty < t; < ... < t,, tends to
zero. For the sake of completeness, we define [{0}|o := 0. The following lemma
shows that . (¢)u can be obtained by a pointwise monotone approximation with
finite partitions letting the mesh size tend to zero.

Lemma 4.2. Let t > 0 and (7,)nen € P with m, C w41 for allm € N and
|Tnloo \¢ 0 as n — o0o. Then, for all u € UC,,

Eryu L (Hu as n — oo.
Proof. For t = 0 the statement is trivial. Therefore, assume that ¢ > 0 and let
(Exct)(z) :=sup (Er,u)(2)
neN
foru € UC, and x € M. Asin the proof of Lemma 2.3, the map £,,: UC, — UC,
is well-defined. Let u € UC,. Since m, C m,41 for all n € N, it follows

Enxt S Eu as n — 0.
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Since (m,)nen C P;, we obtain that
Esou < L (t)u.

Let m = {to,t1,...,tm} € Powithm € Nand 0 =t < t1 < ... < t,, = t.
Since |Tyleo \¢ 0 as n — o0, w.l.o.g. we may assume that #m, > m + 1 for
all n € N. Moreover, let 0 = ¢ < tf < ... <t =t for all n € N with
o= {ty, t, ..., th} C m, and tf — t; asn — oo for all i € {1,...,m}. Then,
by Lemma 4.1 b), we have that

| — Epulle =0 asn — oo.
and therefore,
ot —Eu>Er u—Eu>Epu—Eu—0 asn— oo.
This shows that E,u > E,u. Taking the supremum over all 7 € P, we thus get
that Eou = 7 (t)u. O
Corollary 4.3. For allt > 0 there ezists a sequence (7, )nen C P with
Eryu S (Hu
as n — oo for all u € UC,.

Proof. Choose

kt kt
Tm=4—|ke€{0,...,2"}p or m,=4—|ke{0,...,n!}
2" n!
in Lemma 4.2. [
Corollary 4.4. For allt > 0 and u € UC, we have that

S (t)u = sup Efu = lim EX.,u,
neN 7 n—00

where the supremum and the limit are to be understood pointwise.

5. STOCHASTIC REPRESENTATION

In this section, we derive a stochastic representation for the semigroup envelope
& using sublinear expectations. We again assume that the conditions (A1) and
(A2) are satisfied. We start with a short introdution into the theory of nonlinear
expectations. For a measurable space (2, F), we denote the space of all bounded
F-measurable functions 2 — R by £>(Q, F). For two bounded random variables
X,Y € L2(Q, F) we write X <Y if X(w) <Y (w) for all w € Q. For a constant
a € R, we do not distinguish between o and the constant function taking the
value . Throughout, we assume that S)(¢)1 =1 for all ¢ > 0 and X\ € A.

Definition 5.1. Let (€2, F) be a measurable space. A functional £: L>(, F) —
R is called a sublinear expectation if for all X, Y € £L2(Q, F) and A > 0
(i) EX)<EY)f X <Y,
(i) £(a) = a for all @ € R,
(ili) EX +Y) <EX)+E(Y) and ENX) = AE(X).
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We say that (Q,F,&) is a sublinear expectation space if there exists a set of
probability measures P on (€2, F) such that

E(X) =supEp(X) forall X € L(Q,F),
PeP

where Ep(-) denotes the expectation w.r.t. to the probability measure P.

Definition 5.2. We say that .7 is continuous from above on UCy if .7 (t)u, N\
& (t)u for all ¢ > 0 and all (uy,)peny C UC, with u, \,u € UC;, as n — oo.

Remark 5.3.
a) Assume that M is compact. Then, by Dini’s lemma .% is continuous from
above.
b) Assume that . is continuous from above on UCy. Then, by [2, Remark
5.4 ¢)], .7 (t) uniquely extends to an operator .#(t): C, — C,,, which is
again continuous from above. Moreover, for every n € N, v € C,(M™+1)
the mapping

M SR, (21, @y Tngr) = (L(O0(@1, . T, +)) (Tg1)
is bounded and continuous.

Continuity from above on UC, will be crucial for the existence of a stochastc
representation. The following proposition gives a sufficitont condition for the
continuity from above on UC,. Let UCy be the closure of the space Lip, of all
Lipschitz continuous functions with compact support w.r.t. the supremum norm

I {lo-
Proposition 5.4. Suppose that for every > 0 there exists a family of functions
(pz)eers € UCq satisfying the following for all x € M:
(1) pr(r) =1 and 0 < @, <1,
(i) ¢z € Myea D(AN) with supyey [[Arpalls < 0.
Then, . is continuous from above on UCy.

Proof. Fixt > 0, x € M and 0 > 0. Since ¢ (x) = 1 and 1 — ¢, € [, D(Ar)
with Ay(1 — @) = —A,p, it follows that

(L)1 =) (x) < %Hﬂﬂ(l —z) = (L= @u)lls
< tignAmu < %

Let (up)nen € UC, with u, N\, 0 as n — oo and € > 0. Then, there exists
some ¢, € UC, satisfying (i) and (ii) with § = 5’;5’0”), where ¢ := max {1, ||u1|o }-
Then,

ftnlloo (2 (£)(1 = 02)) (x) < g for all n € N.

Moreover, there exists some n € N such that ||u,p.|. < § since ¢, € UC,.
Hence,

(7 (O)un) (@) < unlloo (L)1 = 02)) () + () (Unpa)) () < e
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This shows that . (t)u, \, 0 as n — oco. Now, let (u,)en C UC, and u € UC,
with w, \, u as n — oo. Then,
| (), — L (t)u] < () (up, —u) (0 asn — oo.
O

Note that the existence of a function in ¢, € UCy with ¢, (x) # 0 for all x € M
implies that M is locally compact. Thus, Proposition 5.4 is only applicable for
locally compact M. The following theorem is a direct consequence of [2, Theorem
5.6].

Theorem 5.5. Assume that M is a Polish space and that the semigroup . is con-
tinuous from above on UCy,. Then, there exists a quadruple (2, F, (E7)wem, (Xt)t>0)
such that

(i) X¢: Q@ — M is F-B-measurable for allt > 0,
(ii) (Q,F,E%) is a sublinear expectation space with E*(u(Xy)) = u(x) for all
x €M and u € Cy,
(iii) Forall0<s<t,neN,0<t; <...<t, <s andv € C,(M"),

E (0 Xy, X4, X)) = E (Lt = s)o( Xy, -, Xi, ) (X)) -

In particular,
(Y(t)u) (x) = E%(u(Xy)).
forallt >0, x € M and u € Cy,.

The quadruple (2, F, (£%)zem, (Xt)t>0) can be seen as a nonlinear Markov pro-
cess, where (iii) is the nonlinear analogue of the Markov property.

6. EXAMPLES

For k£ € Ny, let Lip’g denote the space of all k-times differentiable functions
with bounded and Lipschitz continuous derivatives up to order k.

Example 6.1 (Koopman semigroups on real separable Banach spaces). We con-
sider the case, where the state space M = X is a real separable Banach space.
Let F': X — X be Lipschitz continuous with Lipschitz constant L > 0. Then,
we denote by ®z: [0,00) x X — X the solution to the initial value problem

0Pp(t,x) = F(Pp(t,z)), t>0, (6.1)
Qp(0,2) =2 (6.2)

for all x € X. Then, ®p defines a so-called continuous semiflow. Let 8 € (0, 00)
with 8 > L. Then,

1@t 2) — el )] < o — yll + 5 / 1@ (s, 2) — Bp(s,y)] ds

for all t > 0 and x,y € X. Hence, by Gronwall’s lemma,
[@r(t,x) = @p(t,y)|| < [z —ylle™ (6.3)
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for all t > 0 and z,y € X. Let C € [1,00) with C' > ||F(0)|| and @ = max{1, 8}.
Then, for all t > 0 and = € X,

t
CHllzll +12p, ) — = < C+ =] + a/ C A [lzll + [ ®p(s, 2) — [ ds.
0

Again, by Gronwall’s lemma, it follows
C+@p(t, )] < C+ |zl + [ @r(t,2) — 2l < (C+ |lz])e™  (6.4)

forall t > 0 and z € X. Let k(z) := (C + ||z||)2 for all z € X. For u € C,,
t >0 and x € X, we then define

(Sk(t)u)(z) == u(Pp(t, v)).
Then, for u € UC,, t >0 and = € X,
2 2 94
| (Se(t)u)(@)] < ull«(C+ [@pt,2)1)” < [Jullo(C + [|lz]l)"e*
and therefore, ||Sp(t)ul|. < e?*||ul|.. On the other hand, by (6.4),

[(Se(t)u) () — u(@)| < Jullusp|@p(t, ) — al] < Julls (C + 2l]) (e ~ 1)

for all u € Lip,. Therefore, ||Sp(t)u — ull. < ||lul|Lip(e® — 1) for u € Lip,. By
(6.3),

[(Se(t)u) (@) = (Se(tn) )] < e lulluillz — vl
for all z,y € X and u € Lip,. That is, ||Sp(t)u||Lip < €°|Jul|Lip. For u € Lipy, let
Cu = [[Wlloo + [[u']Lip
and Apu € C, be given by
(Apu)(z) :=u'(z)F(z) forz € X.
Let u € Lip.. Then, for all t > 0 and z € X,
|(Sr(t)Apu) (z) — (Apu) (z)| < ﬁ()’ua(eat —1)

and therefore,
|1SF(t)Aru — Apul|,, < Cuoz(eat - 1).

By the chain rule and the fundamental theorem of infinitesimal calculus, it follows
that

Sr(h — h
Eet0e) ) 1T (s r) @) s
h h Jo
for all A > 0, which implies that
Sp(h)u —u

— AFU

1

Hence, for any nonempty set A of Lipschitz continuous functions F': X — X with

F - F
sup (HF(O)H + sup |#(x) (y)H) < 00
FeA z,yeM Hx - y”

< Cua(e™ —1) -0 as h\,0.

K

h
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the assumptions (A1) and (A2) are satisfied, the semigroup envelope .7 is strongly
continuous and Lip;, C D. By Theorem 3.12, we thus obtain that u(t) := . ()u,
for t > 0, defines a viscosity solution to the fully nonlinear PDE

u(t,z) = i’lg Vu(t,z)F(x), (t,z) € (0,00)x X,

w(0,2) = wup(z), =€ X.

Moreover, if X = R? the semigroup envelope .# is continuous from above by
Proposition 5.4. In this case, Theorem 5.5 implies the existence of a Markov
process under a nonlinear expectation related to .. This Markov process can be
viewed as a nonlinear drift process.

Example 6.2 (Geometric Brownian Motion). Let M =R, p € R, 0 > 0 and W
a Brownian Motion on a probability space (€2, F,P). Define

X} :=exp <t(u — "72) + aWt>x
for t > 0 and x € R. Then, for x € R, the stochastic processes (X[ );>o is a
solution to the SDE
dXy = pX,dt + o X/ dW,, X7 =u.

Let 8> 0 with 8 > u + 0% Then,

1 (p=1)o?
E(|X2P)p < [zl 2 )t < Jafedt

for p € [2,3] and x € R. By Young’s inequality and Ito’s isometry,
t

1+E(X] —17) <1+ 45/ 1+E(]X) — 1) ds.
0

By Gronwall’s lemma, it follows that
E(|X, —1]*) <e*' —1.
Let r(z) := (14 |z])® for x € R and S = S,,, be given by
(S(t)u)(z) == E(u(X}))
for u € UC,, t > 0 and z € R. Then, it follows that
IS ulle < Jlull.e*
for t > 0 and u € UC,. Moreover, for u € Lip,,
lulluip < € [lullwip.
and
15w — ulls < JullLpE(|X] —1]) < Vet —1—=0 ast— 0.
Therefore, S is a strongly continuous Feller semigroup. For u € Lip?, let
Cu = max{||u'l|sc, |u"]|oo; [t [|Lip}
and Au € UC, be given by

o2

(Au)(2) == pav'(z) + u'(z) for z € R.
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Let u € Lip{. Then, for h > 0,
(S(:A0)() ~ (Au)(0)| < ) Comax { /e T, et 1}
and therefore,
1S(h)Au — Aul|, < Cua max{\/m, etoh 1}.

By Ito’s formula, it follows that

ujr) —ulx h
(S(h) )(h) ( ):%/0 (S(s)Au) (z) ds

for all A > 0 and x € R, which implies that

S(h)u —u SCuamaX{\/e45h—1,e4’Bh—1}—>0 as h ™\, 0.

. — Au

Hence, for any nonempty set A of tuples (u, o) with

K

sup (u + 02) < o0
(p,0)EA
the assumptions (A1) and (A2) are satisfied, the semigroup envelope .7 is strongly
continuous and Lip; C D. By Theorem 3.12, we thus obtain that w(t) := .7 (t)u,
for t > 0, defines a viscosity solution to the fully nonlinear Cauchy problem

2,.2
w(t,x) = sup pxdyu(t,x) + ﬂ8;,;;,;11(25,%), (t,x) € (0,00) X R,
(p,0)EA 2

u(0,z) = wup(z), zeR.
Moreover, the semigroup . is continuous from above by Proposition 5.4. The

nonlinear Markov process related to ./ can be seen as a geometric G-Brownian
Motion (cf. Theorem 5.5).

Example 6.3 (Ornstein-Uhlenbeck processes on separable Hilbert spaces). We
consider the case where M = H is a real separable Hilbert space and I" = (). Let
m e H, Be L(H), T(t) :=¢eB forallt >0, C € L(H) a trace class operator
and W a Brownian Motion with covariance operator C' on a probability space
(Q, F,P). We define

t

X7 ::T(t)x+/tT(t—s)mds+/ T(t—s)dW¢

for t > 0 and x € H. Then, for € H, the stochastic process (X[);>0 is a mild
solution to the infinite-dimensional SDE

dX} = (BX} +m)dt+dWS, X =u.
Let o > 0 with a > e!Zll(|| B||2 + ||m||* + ||C|t+). Then, by Young’s inequality,
L+ E(|X7(1P) < 1+ (] + 4P| B2 || 2]P6 + [|m|£* + [ Cllut)
< (1+ [Jlf*)e™
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for all x € H and 0 <t < 1. Moreover,
E(|X; — zll) < PN B[]t + el Pl]jm]|t + lPI\/[[Cllut < (14 ||2[])3Vat
forall z € H and 0 <t < 1. Let k := (1 + ||z]|*)"! and define S = Sp ¢ by

(S(t)u)(z) == E(u(X}))
forz € H,t > 0 and u € C,. Then, ||S(t)ul. < e*u|, for all u € C, and
t >0 and
IS@ulluip < el #1ullui.
For u € Lip; let
Cy = max{||Vull, [V*ull o, [ V*ul|Lip}
and Au € C, be given by

(Au)(z) = Vu(z)(Bz +m) + %tr (CV?u(z))
for x € H. Then, for h € [0,1],

I|S(h)Au — Aul|, < 3C,Va3h.
By Ito’s formula it follows that

Ujxr) —ulx h
(S(h) )(h) ( ):%/0 (S(s)Au) (z) ds

for all h > 0 and x € H, which implies that
H S(h)u —u

h

Hence, for any nonempty set A of triplets (B, m,C) with
ELBYZ + [m? + 1Cl) < @

the assumptions (A1) and (A2) are satisfied, the semigroup envelope . is strongly
continuous on Linb. In order to show that Lipﬁ C D, by the previous compu-
tations, it suffices to show that .# is stongly continuous. For this we invoke
Proposition 3.5. Notice that Lip; is not dense in Lip,, if H is infinite dimensional.
Let > 0 and ¢: [0,00) — [0, 1] infinitely smooth with ¢(s) = 1 for z € [0, 2]
and p(s) = 0 for s € [§,00). For z,y € H, let v.(y) := ¢(|ly — z||). Then,
¢, € Lip{ with

— Aul| <3C,Va*h —0 ash\,0.

K

3
IVerlloo < I¢lle and  [[Vpsle0 < 51l T 19"l forall z € M.
Hence,

3V«
[Apallx < WmaX{HQO/Hom 1" ]lse } =2 L
for all x € M. Therefore, by Remark 3.6 and Proposition 3.5, the semigroup .
is strongly continuous. Altogether, we have shown that, for any nonempty set A
of triplets (B, m,C') with

sup (|| B]]* + ||m|® + [|C]lu) < o0,
(B,m,C)eA
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the assumptions (A1) and (A2) are satisfied, the semigroup envelope .7 is strongly
continuous and Lip;, C D. By Theorem 3.12, we thus obtain that u(t) := . ()u,
for t > 0, defines a viscosity solution to the fully nonlinear PDE

1
w(t,x) = sup  Vu(t,z)(Br+m)+ ;S tr (CVZu(t,z)), (t,2) € (0,00) x H,
(Bym,C)eA 2

w(0,2) = wup(z), =€ H.

If H = R? the semigroup .# is continuous from above by Proposition 5.4, which
implies the existence of an O-U-process under a nonlinear expectation which
represents . (cf. Theorem 5.5).

Example 6.4 (Lévy Processes on abelian groups). Let M = G be an abelian
group with a translation invariant metric d and x(x) := 1 for all x € M. Let
(S(t))i>0 be a Markovian convolution semigroup, i.e. a semigroup arising from a
Lévy process. Then, (S(t)):>o is a strongly continuous Feller semigroup of linear
contractions (cf. [3]). Moreoever, due to the translation invariance, ||S(¢)u|Lip <
|w||Lip for all £ > 0 and w € Lip,. Now, let (S))rea be a family of Markovian
convolution semigroups with generators (Ay)aea. Then, the assumptions (Al) -
(A2) are satisfied. We refer to [3] for examples, where the semigroup envelope
is strongly continuous. In particular, all examples from [3] fall into our theory.
In the case, where G = H is a real separable Hilbert space, we can improve the
result obtained in [3, Example 3.3]. In this case, by the Lévy-Khintchine formula
(see e.g. [7, Theorem 5.7.3]), every generator A of a Markovian convolution
semigroup is characterized by a Lévy triplet (b, %, 1), where b € H, ¥ € L(H) is
a self-adjoint positive semidefinite trace-class operator and pu is a Lévy measure
on H. For u € Lip;(H) and a Lévy triplet (b, ¥, i), the generator Ayx, is given
by

(Aps ) (z) = (b,Vu(z)) + %tr(EVzu(x))

+é@@+w—u@ywvmwﬂ@»@W)

for x € H. Here, the function h: H — H is defined by h(y) = y for |ly|| < 1,
and h(y) = 0 whenever ||y|| > 1. Let A be a nonempty set of Lévy triplets. We
assume that

Co— sup @w+MM+/1AM%M@)<w (6.5)
H

(b,3,n)eA

Notice that (6.5) does not exclude any Lévy triplet a priori. Under (6.5), the
semigroup envelope . is strongly continuous on Lip;. In order to show that
Lip? C D, by the computations in [3], it suffices to show that .7 is strongly
continuous. For this we invoke Proposition 3.3. For § > 0, we choose the family
(¢2)zen as in the previous example. Since (7(t)v)(z) = (Z(t)v(z + -))(0) for
all v e UC,, x € H and t > 0, it follows that

(L)1 = @) (@) = (L)1 = 20)) (0)
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for all z € H and t > 0. Defining f(t) := ((t)(1 — o)) (0) for ¢ > 0, it follows
that f is continuous with f(0) = 0. Therefore, by Proposition 3.3, the semigroup
& is strongly continuous. Altogether, we have shown that under the condition
(6.5), the assumptions (Al) and (A2) are satisfied, the semigroup envelope .
is strongly continuous and Lip; C D. By Theorem 3.12, we thus obtain that
u(t) == S (t)ug, for t > 0, defines a viscosity solution to the fully nonlinear
Cauchy problem

w(t,z) = sup (Aps,uu(®))(z), (t,z) € (0,00) x H,
(b,Z,u)EA

u(0,2) = wup(z), =€ H.

If H = R% and the set of Lévy measures within the set of Lévy triplets A is tight,
the semigroup envelope .# is continuous from above, which implies the existence
of a nonlinear Lévy process related to .. However, due to the translation invari-
ance of the semigroups, the continuity from above is not necessary in order to
obtain the existence of a Lévy process under a nonlinear expectation. The non-
linear Lévy process can be explicitly constructed via stochastic integrals w.r.t.
Lévy processes with Lévy triplet contained in A. We refer to [3, Proposition 5.12]
for the details of the construction.

Example 6.5 (a-stable Lévy processes). Consider the setup of the previous
example, with G = R? for some d € N and let A, := —(—A)* be fractional
Laplacian for 0 < o < 1. Then, for any compact subset A C (0, 1), condition
(6.5) is satisfied. Hence, the assumptions (Al) and (A2) are satisfied and the
semigroup envelope .# is strongly continuous with Lip; C D. By Theorem 3.12,
we thus obtain that u(t) := . (t)uo, for t > 0, defines a viscosity solution to the
nonlinear Cauchy problem

w(t,x) = (slléa)—(—A)au(t,a:), (t,r) € (0,00) x RY,

u(0,7) = wup(x), z€R%
The related nonlinear Lévy process can be interpreted as a A-stable Lévy process.

Example 6.6 (Mehler semigroups). Consider the case, where the state space
M = H is a real separable Hilbert space and x = 1. Let (T, u) be a tuple
consisting of a Cy-semigroup 7" = (T'(t)):>o of linear operators on H with || T(t)]| <
e® for all t > 0 and some « € R and a family u = ()>0 of probability measures
on H such that

po =00 and puis = ps* 0T (s)"t for all s, > 0.
We then define the semigroup S = S,y by

(S(tyu) (x) = /H W(T(t)e + ) dju(y)

for u € UC,, t > 0 and © € H. Then, [|S(t)ulle < ||ul|s for all u € Cp and
1S () ullLip < e||ul|Lip for u € Lipy. Hence, for any nonempty family A of tuples
(T, ) with | T(¢)|| < e* for all ¢ > 0 the assumptions (A1) and (A2) are satisfied.
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Example 6.7 (Bounded generators on £*). Let M = N and k(i) = 1 for all
i € N. Let (Ax)aea € L(£*) be a family of operators satisfying the positive
maximum principle and

sup [ A=) < o0.

AEA

Here, we say that an operator A € L({*) satisfies the positive maximum principle
if A;; <0 forall7 e Nand A;; > 0 for all 4,7 € N with ¢ # j. Then, the family
(A))aen satisfies the assumptions (A1) and (A2) with D = ¢*°. In particular, the
semigroup envelope is strongly continuous. If Ay1 = 0 for all A € A, then the
semigroup envelope admits a stochasic representation. This representation can
be seen as a nonlinear Markov chain with state space N.

Example 6.8 (Multiples of generators of Feller semigroups). Let A be the gen-
erator of a strongly continuous Feller semigroup (S(t));>¢ of linear operators.
Assume that there exist constants «, 8 € R such that

1S@yulle < elull. and [[SE)ullup < e”[lulu

for all u € Lip, and ¢ > 0. For A > 0 let Ay := AA for all \. Then, A, generates
the semigroup Sy given by Sy(t) := S(At) for all ¢t > 0 and A > 0. Then, for any
compact set A C [0,00) the family (S))rea satisfies the assumptions (A1) and
(A2) with D(A) C D and the semigroup envelope is strongly continuous. Hence,
by Theorem 3.12, we obtain that u(t) := . (t)ug, for t > 0, defines a viscosity
solution to the abstract Cauchy problem

u'(t) = supNAu(t), fort >0,
A€A

u(0) = wup.
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