
INFORMATIK
BERICHTE

376 – 11/2017

A term matching algorithm and

substitution generality

Marija Kulaš

Fakultät für Mathematik und Informatik
D-58084 Hagen

A term matching algorithm and substitution
generality

Marija Kulaš
FernUniversität in Hagen, Wissensbasierte Systeme, 58084 Hagen, Germany

kulas.marija@online.de

Abstract—We revisit a simple non-deterministic algorithm for
term matching given in (Klop and de Vrijer et al. 2003) and em-
ploy it for deciding substitution generality (and thus equivalence),
using a witness term technique. The technique alleviates the need
for ad-hoc proofs involving generality of substitutions.

Index Terms—substitution, term matching, generality

I. INTRODUCTION

Computer scientists are often wary of using variable sub-
stitutions as mathematical functions, due to some counter-
intuitive pitfalls ((Palamidessi 1990), (Shepherdson 1994)).
One of those pitfalls is substitution generality. With common
understanding of generality, it is not obvious that substituting
y for x, written as

(
x
y

)
, is not more general than

(
x
a

)
, where

a is a constant, and neither that
(

x
f(y,z)

)
is not more general

than
(

x
f(a,a)

)
. Resorting to the definition does not remove all

doubt: we learn that a substitution σ is more general than θ if
there exists δ satisfying θ = δ · σ (Definition IV.1), but how
to find δ? This paper proposes a remedy, at least for the latter
shortcoming, by observing that substitution generality can be
decided with a term matching algorithm.

The algorithm in its non-deterministic form originates from
(Klop and de Vrijer et al. 2003). We present a deterministic
version, using relaxed core representation of substitutions,
defined in Section II. Term matching and the algorithm are
discussed in Section III, and then used, together with witness
term, to decide substitution generality in Section IV. This is
further used for checking substitution equivalence in Section V
and most general unifiers in Section VI. Apart from exam-
ples with concrete substitutions, we apply the technique of
witness terms to prove two classical claims (Legacy V.3 and
Legacy VI.3) in a more direct way.

II. PRELIMINARIES

First we need a bit of notation, and let us begin with
the concept of term1. Assume two disjoint sets: a countably
infinite set V of variables, in this text x, y, z, u, possibly with
indices, and a set Fun of functors, in this text f, g, a, b and
◦,nil , |, []. Associated with every functor f 2 shall be one or
more natural numbers n denoting its number of arguments,
arity. For disambiguation, the notation f /n will be used.
Functors of arity 0 are called constants, in this text a, b,nil , [].

1Here, as in the programming language Prolog, term shall be the topmost
syntactic concept: everything is a term.

Starting from V and Fun we build data objects, terms. Any
variable x2 ∈ V is a term. If t1, ..., tn are terms and
f /n ∈ Fun, then f(t1, ..., tn) is a term with constructor f
and outline f /n. In case of f /0, the term shall be written
without parentheses. If a term s occurs within a term t, we
say s is a subterm of t and write s ∈ t.

The ordered pair of terms h and t is written in McCarthy’s
dot-notation as (h◦t), where h is called the head and t the tail
of the pair (McCarthy 1960). A special ordered pair is a non-
empty list, distinguished by its tail being a special term nil
called the empty list, or a non-empty list itself. In Edinburgh
Prolog notation, the above ordered pair would be written with
brackets instead of parentheses and ”|” instead of ”◦”, resulting
in [h|t], and empty list as [] (Clocksin and Mellish 2003). A
list of n elements is the term [t1|[t2|[...[tn|[]]]]], conveniently
written as [t1, ..., tn].

Let Vars(t) be the set of variables in the term t. If the
terms s and t share a variable, that shall be written s ./ t.
Otherwise, we say s, t are variable-disjoint, written as s 6./ t.
The list of all variables of t, in order of appearance, shall be
denoted as VarList(t).

To present the matching algorithm, we further need notions
of substitution, its relaxed cores, and subterm position.

A. Substitution

Definition II.1 (substitution). A substitution σ is a function
mapping variables to terms, which is identity almost every-
where. In other words, a function σ with domain Dom(σ) = V
such that Core(σ) ··= {x ∈ V | σ(x) 6= x} is finite. The set
Core(σ) shall be called the active domain3 or core of σ, and
its elements active variables4 of σ. The active range of σ is
Ran(σ) ··= σ(Core(σ)). A variable x such that σ(x) = x
shall be called a passive variable for σ. Also, we say that σ is

2Strictly speaking, there should be two sets of symbols: one for object
language (terms themselves), and another for meta-language (meta-variables
for denoting terms, e. g. capitalized as in Prolog, as well as meta-functors for
handling terms, like V or Vars). However, due to our having lots of meta-
variables, such strictness would result in lots of capital letters. So we decided
to adopt the usual sloppy approach, with mostly lower-case meta-variables,
meaning that f can be both an object-functor and a meta-variable denoting
any object-functor, as befits the context; similarly for x etc. Meta-functors
shall always be capitalized.

3Traditionally called just domain. This is confusing, since in the usual
mathematical sense it is always the whole V (moreover, the set of all terms,
p. 2) that is the domain of any substitution.

4The name active variable appears in (Jacobs and Langen 1992).

active on the variables from Core(σ), and passive on all the
other variables.

If Core(σ) = {x1, ..., xk}, with x1, ..., xk pairwise distinct,
and σ maps each xi to ti, then the core representation of σ is
{x1/t1, ..., xk/tk}, often depicted as

(
x1

t1

...

...
xk

tk

)
. Each xi/ti

is called the binding for xi in σ.
Often we identify a substitution with its core representation,

and thus regard it as a syntactical object, a term representing
a finite set. So we write xi/ti ∈ σ. For the same reason, the
set of variables of a substitution is defined as Vars(σ) ··=
Core(σ) ∪Vars(Ran(σ)).

The notions of restriction and extension of a mapping shall
also be transported to core representation: if θ ⊆ σ, we say θ is
a restriction of σ, and σ is an extension of θ. The restriction
σ�W of a substitution σ to5 a set of variables W ⊆ V is
defined as follows: if x ∈W then σ�W (x) ··= σ(x), otherwise
σ�W (x) ··= x. The restriction of σ to the variables of t is
abbreviated as σ�t ··= σ�Vars(t). To denote the restriction of
σ to variables outside of t, we use σ�−t ··= σ�Core(σ)\Vars(t).

The identity function on V is ε ··= (). The composition θ · σ
of substitutions θ and σ is defined by (θ · σ)(x) ··= θ(σ(x)).
A substitution σ satisfying the equality σ · σ = σ is called
idempotent. A renaming of variables is a finite permutation of
variables, i. e. a substitution ρ with Core(ρ) = ρ(Core(ρ)). It
has inverse ρ−1, satisfying ρ−1 · ρ = ε.

Substitution domain is enhanced from variables to arbitrary
terms in a structure-preserving way by σ(f(t1, ..., tn)) ··=
f(σ(t1), ..., σ(tn)). We say that σ(t) is an instance of t via σ.

We shall refer to some well-known claims about substitu-
tions as legacy claims. The first one is from (Eder 1985).

Legacy II.2 (idempotence). A substitution σ is idempotent, iff
Core(σ) 6./ Ran(σ).

B. Relaxed core representation

As seen above, only active pairs x/σ(x), i. e. those with
x 6= σ(x), go into the core representation of σ. But the passive
pairs can be interesting as well, as placeholders.

For example, assume there is a substitution σ mapping s
on t; it is mapping each variable in s on a subterm of t, so
it is possible that a variable stays the same. If we want our
mapping to account for all variables in s, necessarily x/x
would have to be tolerated as a ”binding”, a passive binding.
In other words, the core of the substitution σ would have to be
relaxed to allow some passive variables, raising those above
the rest, as it were (Kulaš 2017).

Definition II.3 (relaxed core). If Core(σ) ⊆ {x1, ..., xn} and
variables x1, ..., xn are pairwise distinct, then {x1, ..., xn} is a
relaxed core for σ, and {x1/σ(x1), ..., xn/σ(xn)} its relaxed
core representation. If we fix a relaxed core for σ, it shall be
denoted C(σ) ··= {x1, ..., xn}. The associated range σ(C(σ))
we denote as R(σ).

5As remarked in (Klop and de Vrijer et al. 2003), the traditional wording
”restriction to a set” is somewhat unfortunate, since the definition only gives
Core(σ) ⊆W but not necessarily Core(σ) =W , as would be expected.

Actually, the placeholding capability of passive bindings
is implicitly used each time when applying the well-known
scheme for composing substitutions and a variable gets deacti-
vated:

(
x
y
y
x

)
·
(
x
y

)
=

(
6x
6x
6x
6y
y
x

)
=

(
y
x

)
. Here x gets deactivated,

but it is not free, hence x/y has to be discarded. This is
depicted by striking out the columns for x/x and x/y.

Inspired by this, we may strike out any passive pairs when
depicting a relaxed core representation, like

(
...
...
6x
6x
...
...

)
, to

visually reconcile it with the traditional representation.
For extending, substitutions are treated like sets of active

bindings, so disjoint union] may be used:

Definition II.4 (sum of substitutions). Let σ =
(
x1

s1

...

...
xn

sn

)

and θ =
(
y1
t1

...

...
ym
tm

)
be substitutions in relaxed representa-

tion, such that {y1, ..., ym} 6./ {x1, ..., xn}. Then σ] θ ··=(
x1

s1

...

...
xn

sn

y1
t1

...

...
ym
tm

)
is the sum of σ and θ.

Given a term t, does an extension of σ still map t in the
same way?

Lemma II.5 (backward compatibility). Let σ, θ be substitu-
tions and x be a variable. Then (σ]θ)(x) = σ(x) iff θ(x) = x.

Proof. If x 6∈ C(θ), then θ(x) = x, and (σ] θ)(x) = σ(x).
If x ∈ C(θ), then (σ] θ)(x) = θ(x) and also x 6∈ C(σ),
hence σ(x) = x. The condition (σ] θ)(x) = σ(x) collapses
to θ(x) = x. ♦

Passivity of θ on a term t is guaranteed if σ is ”complete”
for t, i. e. lays claim to all its variables:

Definition II.6 (complete for term). Substitution σ in relaxed
core representation is complete for t if Vars(t) ⊆ C(σ).

In such a case there is no danger that an extension of σ
might map t differently from σ:

Corollary II.7 (backward compatibility). If σ is complete for
t, then for any θ holds: σ]θ is complete for t and (σ]θ)(t) =
σ(t).

Relaxed core representation shall be needed for the third
argument and for the result of the matching algorithm Match
(Section III), otherwise we assume substitutions in traditional,
non-relaxed representation. As a visual reminder, a relaxed
core of σ is denoted C(σ), and the traditional core Core(σ).
The passive pairs are shown striked-out (Figure 4, Figure 6).

C. Subterm

Definition II.8 (subterm occurrence). A character subse-
quence of the term t which is itself a term, s, shall be
called an occurrence of the subterm s of t, denoted non-
deterministically by s ∈ t. This may also be pictured as t = s .

There may be several occurrences of the same subterm in a
term. Each occurrence is uniquely determined by its position.
To identify positions in a term, we have to represent it as
a tree. A variable x is represented by the tree consisting of
the root labeled x and nothing else. A term f(t1, ..., tn) is

2

represented by the tree consisting of the root labeled f and of
the trees for t1, ..., tn as subtrees, ordered from left to right.
Thus, the root label for a term t is t itself, if t is a variable,
otherwise the constructor of t. Position of a subterm is defined
via access path, which shall be a variation of the notion in
(Apt 1997, p. 27), and used to define pendants, which include
disagreement pairs from (Robinson 1965).

Definition II.9 (access path and pendants). Let t be a term
and consider an occurrence of its subterm s, denoted as s ∈ t.
The access path of s ∈ t is defined as follows. If s = t,
then AP(s ∈ t) is r/0, where r is the root label for t. If
t = f(t1, ..., tn) and s ∈ tk (where the same occurrence of s
in t is meant), then AP(s ∈ t) ··= f/k ◦AP(s ∈ tk).

By extracting the integers from the access path of s ∈ t,
we obtain the position of s ∈ t. For disambiguation, we may
write (s ∈ t)p if p is the position of the chosen occurrence
s ∈ t. By extracting the root labels, save for the last one, we
obtain the ancestry of s ∈ t.

If s ∈ t has the same position and ancestry as s′ ∈ t′,
then we say s ∈ t and s′ ∈ t′ are pendants in t and t′.
A disagreement pair between t and t′ is a pair of pendants
therein differing in their last root label.

For example, let t ··= [f(y), z] and s ··= z. There is only
one ocurrence s ∈ t. According to preliminaries, [f(y), z] is
an abbreviation of [f(y)|[z|[]]], so AP(s ∈ t) = |/2 ◦ |/1 ◦
z/0, The position of s ∈ t is 2 ◦ 1 ◦ 0 and its ancestry is
| ◦ |. An example of pendants: f(y) ∈ [f(y), z] and g(a, b) ∈
[g(a, b), h(x)]. This is also a disagreement pair.

III. TERM MATCHING

”Matching” or ”pattern matching” is a central notion in text
processing (e. g. regular expression matching) and artificial
intelligence (for responding to the environment). It is a flexible
way of function definition in programming languages (Hudak
et al. 2000), and of rule application in term rewriting (Klop
and de Vrijer et al. 2003).

In this paper a simple kind of syntactic comparison called
term matching shall be handled. Consider terms f(x, y) and
f(z, x). Intuitively, they ”match” each other, while f(x) and
g(x) do not. If asked about f(x, x) and f(x, y), we might
have a harder time of it, but probably would consent that they
match only in one direction. Namely, f(x, y) can be ”made
to look like” f(x, x) by substituting x for y, but not the other
way around, meaning that f(x, x) is ”more concrete”, ”more
specific” than f(x, y).

So shall we now say that f(x, y) matches f(x, x), or vice
versa? Let us agree upon the usage ”general matches specific”.
Hence, in the above example f(x, y) matches f(x, x).

Such a notion appears under the name subsumption in
(Robinson 1965), as well as generalization in (Plotkin 1971)
and (Reynolds 1970). Other sources (Huet 1976, p. 44) and
(Dwork et al. 1984) speak also of (term) matching.

Definition III.1 (term matching). Let g, s be terms. If there
is a substitution σ such that σ(g) = s, then we say that g

matches6 s, written as g ≤ s,7 and also that s is an instance
of g. The substitution σ is then a matcher of g on s.

A matcher is relevant, if it has no extraneous variables, i. e.
if Vars(σ) ⊆ Vars([g, s]).

The notion of subsumption has been used synonymously
with term matching (Huet 1976). In Prolog programming,
however, there has been a need for a stricter notion of
subsumption, codified by the ISO standardization committee
in (ISO 2012, Section 8.2.4) along the following lines.

Desideratum III.2 (strict subsumption). Prolog built-in pred-
icate subsumes term/2 must satisfy: subsumes term(G,S)
is true iff there is a substitution σ such that σ(G) = σ(S) = S.

Thus, f(x) matches f(g(x)), but in the strict sense does
not subsume it, while f(x, y) subsumes f(x, x).

How to verify whether a given term matches another one?
For the introductory example, it is easy to find a matcher
σ =

(
y
x

)
and thus verify that f(x, y) indeed matches f(x, x)

according to the definition. For arbitrary g, s it was observed
in (Robinson 1965) that matching is actually one-sided uni-
fication (Section VI): g matches s iff g and Freeze(s) unify,
where Freeze(s) is obtained from s by replacing each variable
therein with a new constant. Hence, matching can be checked
with a unification algorithm; but also, there are algorithms
specifically made for matching. An efficient parallel algorithm
is given in (Dwork et al. 1984). A simple non-deterministic
algorithm is presented in (Klop and de Vrijer et al. 2003). We
give a deterministic, one-pass version of it (Algorithm III.1).

variable Assume L is a variable. If L/S ∈ δ and S 6=
R, then stop with Failure(”divergence”). Otherwise,
Match(L,R, δ) ··= δ ∪

(
L
R

)
.

failure: shrinkage If L is a non-variable, but R is a variable,
stop with Failure(”shrinkage”).

failure: clash If L and R are non-variables with different
outlines, stop with Failure(”clash”).

decomposition Let L = f(s1, ..., sn) and R = f(t1, ..., tn).
If there exist substitutions δ1 ··= Match(s1, t1, δ), δ2 ··=
Match(s2, t2, δ1), ... up to δn ··= Match(sn, tn, δn−1),
then Match(L,R, δ) ··= δn.

Algorithm III.1: One-pass term matching by Match(L,R, δ)

The algorithm from (Klop and de Vrijer et al. 2003) was
made deterministic using the placeholding facility of relaxed
core representation. Actually, without the placeholding facility
it would be difficult to capture the failure in matching f(x, x)
on f(x, y) in just one pass along the terms, and without
auxiliary registers.

6It has also been said that g schematises s (Huet 1976).
7Some authors like (Reynolds 1970), (Klop and de Vrijer et al. 2003)

turn the symbol ≤ around. The bias towards ≤ stems from the original
use of subsumption in automated theorem proving (Robinson 1965), where a
disjunction of literals (”clause”) is represented as set of literals, so a clause
C subsumes a clause D if there is a substitution σ with σ(C) ⊆ D.

3

Theorem III.3 (term matching). If Match(L,R, ε) stops with
failure, then L does not match R. Otherwise, it stops with
a substitution δ that is a relevant matcher of L on R. This
follows from:

1) If Match(L,R, δ) stops with failure, there is no µ with
µ(L) = R and µ ⊇ δ.

2) If Match(L,R, δ) = δ′, then δ′(L) = R and δ′ ⊇ δ.
In other words, Match(L,R, δ) is a matcher of L on
R containing δ. Additionally, δ′ is complete for L and
Vars(δ′) ⊆ Vars([L,R, δ]).

Proof. The algorithm clearly always terminates. For 1), we
need two observations, readily verified by structural induction:

• If µ maps L on R, then it maps any s ∈ L on its pendant
t ∈ R.

• Each time Match is (re-) called, its arguments L and R
denote either the original terms, or some pendants therein.

Thus, in the non-variable failure cases of Algorithm III.1 there
can be no matcher for the original terms, notwithstanding δ.

In the variable failure case, the purported matcher µ would
have to map one variable on two different terms (Figure 1).

x x × s r

divergence

Fig. 1. One variable, two terms

To prove 2), we again use structural induction. In case
of variable, the claim holds. Assume we have a case of
decomposition and the claim holds for the argument terms, i. e.
δ1(s1) = t1, δ1 ⊇ δ, δ2(s2) = t2, δ2 ⊇ δ1, ..., δn(sn) =
tn, δn ⊇ δn−1, and each δi is complete for si as well as
relevant for si, ti. Due to completeness and Corollary II.7,
from δn ⊇ ... ⊇ δ2 ⊇ δ1 follows δn(s1) = ... = δ2(s1) = t1
and so forth. Hence, δn(L) = R. Clearly, δn ⊇ δ and δn is
complete for L and relevant.

Finally, recall that the representation of δn may contain
passive pairs, which can be discarded. ♦

IV. SUBSTITUTION GENERALITY

As an application of the matching algorithm Algorithm III.1,
we can solve the problem of generality and equivalence
between two substitutions.

Definition IV.1 (more general). A substitution σ is more
general8 than a substitution θ, written9 as σ ≤• θ, if σ is
a right-divisor of θ, i. e. if there exists a substitution δ with
the property θ = δ · σ.

8Rather ”no less general” or ”at least as general”, because the definition
allows equal generality (Section V). However, such a formulation is somewhat
cumbersome and thus rarely seen in literature.

9Some authors like (Jacobs and Langen 1992) and (Amato and Scozzari
2009) turn the symbol ≤• around. Indeed the choice may appear to be abitrary.
But we shall stick to the notion that a more general object is ”smaller”, because
it correlates with the ”smallness” of the substitution stack.

Clearly, ε ≤• θ for any θ. The claim
(
x
y

)
6≤•

(
x
y
y
x

)
may

not be so obvious, but shall soon be easy to prove.

Remark IV.2 (”≤” versus ”≤•”). Term generality (as given in
Definition III.1) and substitution generality have in common
that an object is deemed ”less concrete” than another one.
Also, when generality goes both ways, the two objects are
connected by a renaming (in case of substitutions, Legacy V.3).

Yet there is a difference. If we regard substitution as
a special case of term (which is often the case, e. g. for
extension), then an analogue for s = δ(t) would be σ = δ(θ).
But δ(θ) is only meaningful for variable-pure δ injective on
θ, and even then δ(θ) 6= δ · θ (Kulaš 2017, Sec. 5.3.2).

Hence, the analogy does not go the whole way, and perhaps
for that reason it is not usual to speak of ”substitution instance”
or ”substitution matching”. As a token, we have not used the
same symbol for both kinds of generality, despite tradition.

How to check whether σ ≤• θ? One possibility would be
to look for a counter-example, i. e. try to find a term w such
that for no renaming δ holds δ(σ(w)) = θ(w). Let us call
such a term a witness term for σ, θ. How to obtain a witness
term? Intuitively, we may take w to be the list of all variables
of σ, θ, denoted w ··= VarList([σ, θ]), and see if we can
find an impasse, i. e. some parts of σ(w) that cannot possibly
simultaneously be mapped on the respective parts of θ(w). It
turns out this is sufficient.

Theorem IV.3 (witness). Let σ, θ be substitutions and w ··=
VarList([σ, θ]). Then holds: σ ≤• θ iff σ(w) ≤ θ(w).

Additionally, if Match(σ(w), θ(w), ε) = δ, then δ · σ = θ.

Proof. If δ · σ = θ, then surely δ(σ(w)) = θ(w) for any w.
For the other direction, assume there is a matcher µ

of σ(w) on θ(w), so µ(σ(w)) = θ(w). Due to Theo-
rem III.3, we can choose a relevant matcher by setting
µ ··= Match(σ(w), θ(w), ε), so Vars(µ) ⊆ Vars([σ, θ]).
If for some x ∈ V holds µ(σ(x)) 6= θ(x), then clearly
x 6∈ Vars([σ, θ]), hence the inequality becomes µ(x) 6= x,
meaning x ∈ Core(µ), which contradicts relevance of µ. ♦

The claim shows that w ··= VarList([σ, θ]) is the only
potential witness term ever needed: if there is an impasse,
Match(σ(w), θ(w), ε) will find it, and if there is no impasse,
it will find a matcher. Therefore, w shall be called the complete
candidate for witness term for σ, θ.

As a consequence of the claim, we obtain a simple visual
criterion.

Corollary IV.4 (witness). The relation σ ≤• θ does not
hold, iff for some w with Vars(w) ⊆ Vars([σ, θ]) any of the
following holds:

1) At some corresponding positions, σ(w) exhibits a non-
variable, and θ(w) exhibits a variable (”shrinkage”), or
a non-variable with a different outline (”clash”).

2) σ(w) exibits two occurrences of variable x, but at the
corresponding positions in θ(w) there are two mutually
distinct terms (”divergence of x”).

4

Some test runs are shown in the following pictures and in the
two remaining legacy claims. Mostly the complete candidate
is used, with the exception of Legacy VI.3.

Example IV.5 (subtlety of ”more general”). As noted in (Apt
1997), σ ··=

(
x
y

)
is more general than

(
x
a
y
a

)
, but not more

general than θ ··=
(
x
a

)
. The former claim is justified by(

x
a
y
a

)
=

(
y
a

)
·
(
x
y

)
. The matcher was here not difficult to

guess, but in any case it can be found by Algorithm III.1
(Figure 2).

The latter claim is a simplified form of an example by Hai-
Ping Ko, reported in (Shepherdson 1994, p. 148), which was
pivotal in showing that the strong completeness theorem for
SLD-derivation in (Lloyd 1987) does not always hold. The Ko
example purports that σ ··=

(
x

f(y,z)

)
is not more general than

θ ··=
(

x
f(a,a)

)
. For proof, it was observed: If δ ·

(
x

f(y,z)

)
=(

x
f(a,a)

)
, then y/a, z/a ∈ δ, therefore even if one of y, z (but

not both) were equal to x, at least one of the bindings y/a, z/a
has to be in

(
x

f(a,a)

)
, which does not hold.

Instead of such custom-made proofs, Algorithm III.1 could
be used, giving divergence (Figure 3).

[x, y]
σ =

(
x
y
y
x

)
θ = ()

[y, x] [x, y]

δ =
(

y
x
x
y

)

[x, y]
σ =

(
x
y

)
θ =

(
x
a
y
a

)

[y, y] [a, a]

δ =
(

y
a

)

Fig. 2. Successfull check on ≤•

V. SUBSTITUTION EQUIVALENCE

The set of substitutions is not partially ordered by ≤•,
namely it is possible that σ ≤• θ and θ ≤• σ for σ 6= θ. Such
cases form an equivalence relation, called simply equivalence
and denoted by σ ∼ θ.

Example V.1 (subtlety of ”equivalent”). Any two renamings
ρ, δ are equivalent, as shown by (δ · ρ−1) · ρ = δ and vice
versa. Hence also ρ ∼ ε, so permuting any number of variables
amounts to doing nothing. In particular,

(
x
y
y
x

)
∼ ε, which is

another often-cited example of counter-intuitive behaviour of
substitutions (Palamidessi 1990).10

Clearly, if an algorithm decides substitution generality, then
equivalence as well (Figure 4).

10Perhaps a new name like equigeneral instead of simply equivalent would
be less confusing?

[x, y]
σ =

(
x
a

)
θ =

(
x
y

)

[a, y] × [y, y]
shrinkage

[x, y]
σ =

(
x
a

)
θ =

(
x
b

)

[a, y] × [b, y]
clash

[x, y, z]
σ =

(
x

f(y,z)

)
θ =

(
x

f(a,a)

)

[f(y, z), y, z] × [f(a, a), y, z]
divergence

Fig. 3. Failed check on ≤•

Example V.2 (”∼” is not compositional). (Eder 1985) shows
that equivalence is not compatible with composition, as fol-
lows. Let σ ··=

(
y
x

)
, σ′ ··=

(
x
y

)
and θ ··=

(
x
z

)
. Then σ ∼ σ′,

but θ · σ =
(
y
z
x
z

)
6∼ θ · σ′ =

(
x
y

)
. The non-equivalence is

verified by Algorithm III.1 in Figure 4.

[x, y, z](
x
z
y
z

) (
x
y

)

[z, z, z] × [y, y, z]
divergence

[x, y, z](
x
y

) (
x
z
y
z

)

[y, y, z] [z, z, z]

δ =
(

y
z
6z
6z

)

Fig. 4. Checking equivalence

The following property has been proved in (Eder 1985), in
similar form; the present formulation is from (Apt 1997). It
can also be proved using witness terms.

Legacy V.3 (equivalence). θ is more general than θ′ and θ′

is more general than θ iff for some renaming ρ such that
Vars(ρ) ⊆ Vars(θ) ∪Vars(θ′) holds ρ · θ = θ′.

Proof. If ρ ·θ = θ′ for an invertible substitution ρ, then clearly
θ ≤• θ′ and θ ≤• θ′.

For the other direction, assume θ ≤• θ′ and θ′ ≤• θ, and let
w ··= VarList([θ, θ′]). By double application of Theorem IV.3,
Match(θ(w), θ′(w), ε) succeeds and Match(θ′(w), θ(w), ε)
succeeds. Observe that we have the same two terms in both
of the Match calls, so the case where one of a pendant

5

pair is a variable and the other a non-variable is clearly not
possible (shrinkage failure). Hence, any bindings obtained are
necessarily variable-pure, i. e. in both cases we have a variable-
pure substitution with mutually distinct variables in range.11

So let δ ··= Match(θ(w), θ′(w), ε). By construction, δ is
relevant for θ, θ′, and satisfies the generality equation δ·θ = θ′.
Yet δ does not have to be a renaming, and we want one.

So assume δ is not a renaming, i. e. not a permutation of
variables, and let us embed it in a relevant renaming. There
is y ∈ R(δ) with y 6∈ C(δ), as in Figure 5. By construction,
y ∈ w, so its whereabouts may be

1) y ∈ Core(θ)

2) y ∈ Core(θ′) \ Core(θ)
3) y ∈ (Ran(θ) ∪ Ran(θ′)) \ (Core(θ) ∪ Core(θ′))

Actually, only the first case is possible: In the last case, θ(y) =
θ′(y) = y, so y/y ∈ δ, which contradicts the assumption
y 6∈ C(δ) and is thus impossible. In the middle case θ(y) = y
and θ(y) 6= y, so y/θ′(y) ∈ δ, also impossible.

Therefore, y is bound by θ, hence (δ]
(
y
)
) · θ = δ · θ for

any binding y/ . Thus, a binding for y can be added without
disturbing the generality equation. The empty places in the
(finitely many) added bindings can be freely12 populated so
as to obtain a finite permutation of variables.

For the example in Figure 5, there is only one choice for
embedding:

(
x
y
y
x

)
. ♦

[x, y]
θ =

(
x

f(x)
y
x

)
θ′ =

(
x

f(y)

)

[f(x), x] [f(y), y]

δ =
(

x
y

)

Fig. 5. Variable-pure matcher which is not a permutation

VI. UNIFICATION

Substitution generality is also involved in the concept of a
most general unifier of two terms.

Definition VI.1 (unification). Let s and t be terms. If there
is a substitution θ such that θ(s) = θ(t), then s and t are
said to be unifiable, and θ is their unifier, the set of all such
being Unifs(s, t). We say θ is a relevant unifier, if it has no
extraneous variables, i. e. if Vars(θ) ⊆ Vars([s, t]).

A unifier θ of s and t is their most general unifier (mgu),
if it is more general than any other; the set of all such shall
be Mgus(s, t) ··= {θ ∈ Unifs(s, t) | θ ≤• α for every α ∈
Unifs(s, t)}.

Any two unifiable terms have an idempotent (and relevant)
most general unifier, as provided by Robinson’s unification
algorithm (Robinson 1965) or Martelli-Montanari’s unification

11In (Kulaš 2017), such substitutions are called prenamings.
12For a ”natural” choice, see (Kulaš 2017, Theorem 5.3).

scheme (Martelli and Montanari 1982) recalled here briefly
(Algorithm VI.1). It acts on finite equation sets, with the ratio-
nale that unifiability of an equation f(s1, ..., sn)=f(t1, ..., tn)
entails unifiability of a set of equations {s1=t1, ..., sn=tn},
and vice versa.

The notion of unifier is extended to a set of equations by
Unifs(E) ··= {θ | for every s=t ∈ E holds θ(s) = θ(t)}.
Similarly for Mgus(E).

To find an mgu of a finite set of equations E0, take E ··= E0

and transform E according to the (mutually disjoint) rules
below. The transformation is bound to stop. If the stop is not
due to failure, then the final set E determines an idempotent
mgu of E0 as {x/t | x=t ∈ E}.
decomposition E] {f(s1, ..., sn)=f(t1, ..., tn)}

E ∪ {s1=t1, ..., sn=tn}
failure: clash E] {f(s1, ..., sn)=g(t1, ..., tm)}

Failure(”clash”), if f 6= g or m 6= n

elimination E] {x=x} E

orientation E] {t=x} E ∪ {x=t}, if t 6∈ V
binding E] {x=t}

(
x
t

)
(E) ∪ {x=t}, if x ∈ E, x 6∈ t

failure: occurs-check
E] {x=t} Failure(”OC”), if x ∈ t and x 6= t

Algorithm VI.1: Martelli-Montanari’s non-deterministic unifi-
cation scheme

Example VI.2. Consider unifying terms s ··= f(x, y, u) and
t ··= f(z, z, u). Martelli-Montanari scheme applied on s = t
produces one mgu, µ ··=

(
x
z
y
z

)
. For the same but inverted task

t = s the scheme gives another two mgus,
(
x
y
z
y

)
and

(
y
x
z
x

)
.

Apart from mgus obtained by the scheme, there are other
relevant unifiers of s, t like σ ··=

(
x
u
y
u
z
u

)
and θ ··=

(
x
u
y
u
z
u
u
z

)
.

Are they mgus as well? By the witness term technique we
easily obtain σ 6≤• θ, i. e. σ is not more general than θ (and
hence not an mgu), despite σ ⊆ θ (Figure 6). Also, θ ≤• µ,
hence θ is a further mgu.

[x, y, z, u]
σ =

(
x
u

y
u

z
u

)
θ =

(
x
u

y
u

z
u

u
z

)

[u, u, u, u] × [u, u, u, z]
divergence

[x, y, z, u]
θ =

(
x
u

y
u

z
u

u
z

)
σ =

(
x
u

y
u

z
u

)

[u, u, u, z] [u, u, u, u]

δ =
(
6u
6u

z
u

)

Fig. 6. Restriction is not always more general

How many mgus can a pair of terms have? If σ ∈ Mgus(E),

6

then for any renaming ρ holds ρ ·σ ∈ Mgus(E).13 Hence, the
set Mgus(E) is either empty or infinite.

Finally, let us appply witness terms for an alternative proof
of another well-known claim (Apt 1997):

Legacy VI.3 (relevance). Every idempotent mgu is relevant.

Proof. Assume σ ∈ Mgus(E) is idempotent, but not relevant,
i. e. there is z ∈ Vars(σ) with z 6∈ Vars(E). Our plan is to
refute the generality of σ, by finding a unifier θ of E such that
¬(σ ≤• θ). Technically, we construct θ and a witness term w
satisfying Corollary IV.4.

a) Case z ∈ Core(σ): Here we choose θ ··= σ�−z . If σ
is an idempotent unifier of E, then so is θ, by Legacy II.2.

Subcase 1: σ(z) is ground. Take w ··= z. Then θ(w) = z is
a variable, so we have shrinkage.

Subcase 2: σ(z) contains a variable, say x, pictured as
σ(z) = x . By Legacy II.2, x 6∈ Core(σ), so x 6= z. Let w ··=
[x, z]. Then σ([x, z]) = [x, x], whereas θ([x, z]) = [x, z]. If
x is not a variable, we have shrinkage, otherwise divergence.

b) Case z ∈ Ran(σ) = Ran(σ)\Core(σ): There is x ∈
Core(σ) (and therefore x 6= z) with σ(x) = z . Here we take
w ··= [x, z] and θ to be a relevant mgu of E (e. g. an outcome
of the Martelli-Montanari scheme). Then σ([x, z]) = [z , z]
and θ([x, z]) = [θ(x), z], with z 6∈ θ(x) due to relevance.
Even if z ≤ θ(x), we obtain a failure (divergence of z). ♦

As a bonus, we also give an indirect proof, via Legacy V.3.
It is similar in spirit to the one from (Apt 1997), insofar as
they both rely on ”groping around” for a contradiction, which
is then put together as a logical, yet somewhat artificial chain
of reasoning. Arguably, the witness-based proof above is more
focused.

Proof (II). As before, assume σ ∈ Mgus(E) is idempotent,
but not relevant, so there is z ∈ Vars(σ) \ Vars(E). Take θ
to be an mgu for E obtained by Martelli-Montanari scheme,
so θ is relevant and thus z 6∈ Vars(θ). Also, by Legacy V.3,
there is a renaming ρ with

σ = ρ · θ (1)

a) Case: z ∈ Core(σ): We refute by showing z = σ(z),
which means z 6∈ Core(σ):

y ··= σ(z) = ρ(θ(z)) = ρ(z), by relevance of θ and (1) (2)

σ(y) = σ2(z) = σ(z) = y, idempotency of σ and (2) (3)
y = σ(y) = ρ(θ(y)), by (3) and (1) (4)
ρ(z) = ρ(θ(y)), by (2) and (4) (5)
z = θ(y), by injectivity of ρ and (5) (6)
z = y, by relevance of θ and z 6∈ Vars(θ) and (6) (7)

13In fact, any θ from Mgus(E) can be thus obtained, due to Legacy V.3.

b) Case: z ∈ Ran(σ): Then for some x ∈ Core(σ)
holds z ∈ σ(x). By Legacy II.2, z 6= x. We refute by showing
z = x.

σ(x) = σ(σ(x)) = ρ(θ(σ(x))), idempotency and (1) (8)
ρ(θ(x)) = ρ(θ(σ(x))), by (1) and (8) (9)
θ(x) = θ(σ(x)), by injectivity of ρ (10)
z ∈ θ(σ(x)), by z ∈ σ(x) and θ(z) = z (11)
z ∈ θ(x), by (10) and (11) (12)
z = x, by relevance and (12) (13)

♦

VII. OUTLOOK

A simple one-pass term matching algorithm is proposed. It
is a deterministic version of the algorithm given in (Klop and
de Vrijer et al. 2003), enabled by relaxed core representation
of substitutions, where some finite number of placeholding
pairs x/x may appear.

The algorithm also decides substitution generality, and
hence equivalence of two substitutions, when applied on their
complete witness term candidate. The witness term method
alleviates the need for ad-hoc proofs involving substitution
generality.

ACKNOWLEDGEMENT

Many thanks to M. D. Kulaš for spotting some ambiguities.

REFERENCES

G. Amato and F. Scozzari, “Optimality in goal-dependent analysis
of sharing,” Theory and Practice of Logic Programming, vol. 9,
no. 5, pp. 617–689, 2009.

K. R. Apt, From logic programming to Prolog. Prentice Hall, 1997.
W. F. Clocksin and C. S. Mellish, Programming in Prolog, 5th ed.

Springer-Verlag, 2003.
C. Dwork, P. Kanellakis, and J. C. Mitchell, “On the sequential nature

of unification,” J. Logic Programming, vol. 1, pp. 35–50, 1984.
E. Eder, “Properties of substitutions and unifications,” J. Symbolic

Computation, vol. 1, no. 1, pp. 31–46, 1985.
P. Hudak, J. Peterson, and J. Fasel, A gentle introduction to Haskell,

2000, version 0.98, http://www.haskell.org/tutorial.
G. Huet, “Résolution d’équations dans des langages d’ordre 1,2,...,ω,”

Ph.D. dissertation, U. Paris VII, 1976, available on http://cristal.
inria.fr/∼huet/bib.html.

ISO, Information technology - Programming languages - Prolog -
Part 1: General core. Technical Corrigendum 2, ISO/IEC JTC
1/SC 22, 2012, iSO/IEC 13211-1:1995/Cor.2:2012(en). https://
www.iso.org/obp/ui/#iso:std:58033:en.

D. Jacobs and A. Langen, “Static analysis of logic programs for
independent AND parallelism,” J. of Logic Programming, vol. 13,
no. 2-3, pp. 291 – 314, 1992.

J. W. Klop and R. de Vrijer et al., Eds., TeReSe: Term Rewriting
Systems. Cambridge University Press, 2003, ch. First-order term
rewriting systems, excerpt on http://www.cs.vu.nl/∼tcs/trs.

M. Kulaš, “A practical view on renaming,” in Proc. WLP’15/’16 and
WFLP’16, ser. EPTCS, S. Schwarz and J. Voigtländer, Eds., vol.
234, 2017, pp. 27–41, https://arxiv.org/abs/1701.00624.

7

http://www.haskell.org/tutorial
http://cristal.inria.fr/~huet/bib.html
http://cristal.inria.fr/~huet/bib.html
https://www.iso.org/obp/ui/#iso:std:58033:en
https://www.iso.org/obp/ui/#iso:std:58033:en
http://www.cs.vu.nl/~tcs/trs
https://arxiv.org/abs/1701.00624

J. W. Lloyd, Foundations of logic programming, 2nd ed. Springer-
Verlag, 1987.

A. Martelli and U. Montanari, “An efficient unification algorithm,”
ACM Trans. on Prog. Lang. and Systems, vol. 4, no. 2, pp. 258–
282, 1982.

J. McCarthy, “Recursive functions of symbolic expressions and their
computation by machine,” Comm. of ACM, vol. 3, no. 4, pp. 184–
195, 1960.

C. Palamidessi, “Algebraic properties of idempotent substitutions,” in
Proc. 17th ICALP, ser. LNCS, vol. 443. Springer-Verlag, 1990,
pp. 386–399.

G. D. Plotkin, “Automatic methods of inductive inference,” Ph.D.
dissertation, U. of Edinburgh, 1971, available on http://homepages.
inf.ed.ac.uk/gdp.

J. C. Reynolds, “Transformational systems and the algebraic structure
of atomic formulas,” in Machine Intelligence 5, B. Meltzer and
D. Michie, Eds. Edinburgh University Press, 1970, pp. 135–151.

J. A. Robinson, “A machine-oriented logic based on the resolution
principle,” J. of ACM, vol. 12, no. 1, pp. 23–41, 1965.

J. C. Shepherdson, “The role of standardising apart in logic program-
ming,” Th. Comp. Sci., vol. 129, no. 1, pp. 143–166, 1994.

8

http://homepages.inf.ed.ac.uk/gdp
http://homepages.inf.ed.ac.uk/gdp

Verzeichnis der zuletzt erschienenen Informatik-Berichte

[366] Lu, J., Güting, R.H.:

Simple and Efficient Coupling of a Hadoop With a Database Engine,
10/2012

[367] Hoyrup, M., Ko, K., Rettinger, R., Zhong, N.:

CCA 2013 Tenth International Conference on Computability and
Complexity in Analysis (extended abstracts), 7/2013

[368] Beierle, C., Kern-Isberner, G.:
 4th Workshop on Dynamics of Knowledge and Belief (DKB-2013),
 9/2013

[369] Güting, R.H., Valdés, F., Damiani, M.L.:
 Symbolic Trajectories, 12/2013

[370] Bortfeldt, A., Hahn, T., Männel, D., Mönch, L.:

 Metaheuristics for the Vehicle Routing Problem with Clustered
Backhauls and 3D Loading Constraints, 8/2014

[371] Güting, R. H., Nidzwetzki, J. K.:

DISTRIBUTED SECONDO: An extensible highly available and scalable
database management system, 5/2016

[372] M. Kulaš:

A practical view on substitutions, 7/2016

[373] Fabio Valdés, Ralf Hartmut Güting:

Index-supported Pattern Matching on Tuples of Time-dependent
Values, 7/2016

[374] Sebastian Reil, Andreas Bortfeldt, Lars Mönch;

Heuristics for Vehicle Routing Problems with Backhauls, Time
Windows, and 3D Loading Constraints, 10/2016

[375] Ralf Hartmut Güting and Thomas Behr;

Distributed Query Processing in Secondo, 12/2016

	Introduction
	Preliminaries
	Substitution
	Relaxed core representation
	Subterm

	Term matching
	Substitution generality
	Substitution equivalence
	Unification
	Outlook

