
INFORMATIK 
BERICHTE 

 
378 – 06/2019 

 
 
 
 
 

 
On separation, conservation and 

unification 
 
 

 
Marija Kulaš 

 
 
 
 
 
 
 
 
 
 
 

 
 
Fakultät für Mathematik und Informatik 
D-58084 Hagen 



On separation, conservation and unification

Marija Kulaš
FernUniversität in Hagen, Wissensbasierte Systeme, 58084 Hagen, Germany

kulas.marija@online.de

Based on variable substitution, we discuss a practical aspect of Prolog computation, algorithms for
unification and standardizing-apart. The focus is on simplicity and desirable mathematical prop-
erties. For unification, we start from a deterministic version of Martelli-Montanari’s algorithmic
scheme that also happens to correspond to Robinson’s algorithm (hence, “the” classical unification
algorithm) and discuss two of its adaptations, concerned with modularity or with ordering of vari-
ables. Standardizing-apart is defined as a special case of (relatively) fresh renaming. Examples for
both kinds of algorithms are given, and some properties are discussed.

As a common ground, the issue of variable separation (i.e. variable-disjointness between parts
of terms) is raised. Variable conservation, important for formal semantics, is also approached.

1 Introduction

In logic programming literature, one often reads about “the” most general unifier (mgu) of an equation
E, even though there must be infinitely many of those, if any. This is usually justified by pointing out that
all mgus of E are “equal modulo renaming”1. A justification of a more practical kind is brought about by
implementation: in a Prolog interpreter, unification is performed by an algorithm, U , so “the” mgu is the
one produced by U . Similarly, even though a program clause can (in theory) be renamed every which
way, in practice this is also performed by an algorithm, S .

The main concern of this paper is to present a few simple U and S , and contribute toward discussion
about their effect on Prolog computations and their desirable properties. Regarding effect, it is well
known that restrictions imposed by U and S are not compromising soundness and completeness of SLD-
resolution. Yet, there may be “lowlier” claims which more or less implicitly rely on free choice of
mgus and renaming. One such claim states that an SLD-derivation can be renamed “wholesale” (the
resolvents, the mgus, the input clauses). It does not hold in the presence of S , as shall be shown. This
is important for comparisons of SLD-derivations in the context of Prolog. The reason for impossibility
of wholesale renaming is that no S can be compatible with renaming, unlike U . Of attainable properties
for S , we advocate structure-independence, necessary for handling parts of derivation. For U , apart
from said renaming-compatibility, we found relevance to be necessary. Relevance of U means that the
mgu produced has no extraneous variables, so

(
X
Y
Z
X

)
cannot be ”the” mgu for p(X)=p(Y). Apart from

necessary qualities of U , we also look into assets like modularity or bias.
As a basis, technical issues of variable separation and variable conservation shall be aproached.

Variable separation can happen in SLD-derivations in many guises, like standardizing-apart of input
clauses, idempotence of mgus or as (weaker or stronger) separation between mgus. Claims about variable
conservation are necessary for correspondence proofs in detailed operational models of Prolog, where
all variables need to be accounted for.

1A somewhat misleading phrase, suggesting that they “look the same but with other variables”, which is not the case. More
precisely, any two mgus of E are equigeneral, see Subsection 1.2 and Legacy 1.3. Example:

(
X
Y
Y
Z
Z
X

)
and () are equigeneral

and both are mgus for t = t, where t can be any term.



2 On separation, conservation and unification

Put into a broader perspective, such questions are important for any detailed study of Prolog com-
putation (our original motivation), and likewise for its further development. Together with a note on
renaming [11] (currently undergoing revision, to include a more general kind of safety) and a note on
substitution generality [12], we hope to contribute toward a sound yet gentle exchange between the occa-
sionally puzzling mathematical realm of variable substitutions, Horn clause logic and its proof theory on
the one hand, and the pragmatic issues of logic programming languages like Prolog on the other hand.

1.1 Overview of the paper

In Section 2 we handle variable separation within or between substitutions. Of the latter type, in Sub-
section 2.2 two kinds are considered. The stronger kind is named cascading and it makes its appearance
in Martelli-Montanari-type unification algorithms and in SLD-derivations. The weaker kind is core-
disjointness, and plays a rôle in conserving the set of variables when composing substitutions. A few
possibilities for variable conservation are handled in Section 3. Both separation and conservation can
occur in SLD-derivations, as shown later in Subsection 5.1.

In Section 4, we start from Martelli-Montanari’s unification scheme and its deterministic version
MM. Two adaptations are discussed: a modular rephrasing of the binding rule (Subsection 4.2), and
addition of variable order (Subsection 4.3). The latter results in algorithm MMB, and the former in mod-
ular versions of respectively MM and MMB, denoted as RMM and RMMB. Some desirable properties
of unification algorithms are discussed in Subsection 4.4.

In Section 5, the concept of algorithm for fresh renaming (relative to a set of variables) is defined,
and the questions of its structure-independence and renaming-compatibility are discussed. Two structure-
independent algorithms are shown, NT and NA.

1.2 Notation

As a visual aid, the first defining mention of a concept or symbol shall be shown in blue. In Prolog,
everything is a term, and so shall term be here the topmost syntactic concept. Terms are built from func-
tors and variables in the usual fashion; the (countably infinite) set of variables is denoted V. The set of
natural numbers (with 0) is denoted N. The set of variables of t is Vars(t). We sometimes treat a sequence
of terms as a term in its own right, so e.g. U ((E,E ′)) means that U is applied on the equation sequence
E,E ′.2 A sequence enclosed in brackets [t1, ..., tn] is called a list. The list of all distinct variables of t, in
order of appearance, shall be denoted as VarList(t). If terms s and t are variable-disjoint, we write s 6./ t.
If s is a subterm of t, we write s ∈̊ t. A variable occuring only once in a term is a singleton variable of
that term. Limit cases of term: empty (�), anything ( ) and impossibility (⊥).

We also allow for undefined terms, like an outcome of an ongoing (perhaps even non-terminating)
computation.
Remark 1.1 (object vs. meta). Our object language is the language of Horn clause logic (HCL), depicted
in Standard Prolog syntax (with the exception of indices, which we employ for better readability). Hence,
object-variables are capitalized. We use typewriter font for object-level terms, and mathematical fonts
for meta-level, so X,Y are “real” variables and x,y are meta-level variables.

Substitution For the most part traditional notation will be used, save for writing substitution appli-
cation in the functional way as σ(t), despite the meanwhile prevailing postfix notation tσ . Hence,
composition of substitutions shall be applied from right to left.

2The double parentheses in U ((E,E ′)) serve to distinguish a sequence as argument from a sequence of arguments.



M. Kulaš 3

A substitution σ is a mapping of variables to terms that is identity almost everywhere, i.e. its (active)
domain, or core, defined as Dom(σ) ··= {x ∈ V | σ(x) 6= x}, is finite. Hence, σ can be represented in
a finitary way as σ = {x1/σ(x1), ...,xn/σ(xn)}, where {x1, ...,xn} = Dom(σ). Each xi/σ(xi) is called
a binding. To aid readability, σ may be depicted as σ =

(
x1

σ(x1)
...
...

xn
σ(xn)

)
.3 The identity mapping () is

also denoted ε . The restriction σ�W of σ to4 a set W ⊆ V means: if x ∈W then σ�W (x) ··= σ(x), else
σ�W (x) ··= x. For an arbitrary term t we put σ�t ··= σ�Vars(t). Thus, as the core representation suggests,
σ ⊆ θ means θ�Dom(σ) = σ . Substitution definition is extended in the functor-preserving way on all
terms, i.e. σ( f (t1, ..., tn)) ··= f (σ(t1), ...,σ(tn)), and σ(t) is called an instance of t. The (active) range
of σ is Ran(σ) ··= σ(Dom(σ)). A renaming ρ is a substitution represented by a permutation, and ρ(t)
is a variant of t, written as t ∼= ρ(t). Composition of σ and θ is defined by (σ ·θ)(x) ··= σ(θ(x)).
If σ ·σ = σ , then σ is called idempotent. A substitution σ is at least as5 general as θ , if there is a
substitution δ with θ = δ ·σ . Two substitutions are equigeneral, if each is at least as general as the other
one. A substitution σ can be renamed with ρ by ρ(σ) ··= {ρ(x)/ρ(σ(x)) | x ∈ Dom(σ)}. A set S of
substitutions can be renamed with ρ by ρ(S) ··= {ρ(σ) | σ ∈ S}, and composed with a substitution δ

by S ·δ ··= {σ · δ | σ ∈ S}. Union of substitutions breaks down to adding of bindings to a substitution,
which is defined as follows:

σ ∪
(x

t

)
··=





⊥, if x ∈ Dom(σ) and t 6= σ(x)
σ , if x ∈ Dom(σ) and t = σ(x)(

x1
σ(x1)

...

...
xn

σ(xn)
x
t

)
, if x 6∈ Dom(σ) = {x1, ...,xn}

Already known claims like the following shall be referred to as legacy claims.

Legacy 1.2 (finite permutation, [14]). A substitution ρ is a renaming iff ρ(Dom(ρ)) = Dom(ρ).

Legacy 1.3 (equigenerality, [5, Lemma 2.10]). Substitutions θ and θ ′ are equigeneral iff for some
renaming ρ holds ρ ·θ = θ ′.

Legacy 1.4 (substitution renaming, [1]). For any renaming ρ and any substitution σ , ρ(σ) = ρ ·σ ·ρ−1.

Unification Let s and t be terms. If there is a substitution θ such that θ(s) = θ(t), then s and t (as well
as the equation s = t) are said to be unifiable, and θ is their unifier, the set of all such being UnifSet(s, t).
A unifier of s, t is a most general unifier (mgu) of s, t if it is at least as general as any unifier of s, t. An
mgu σ of s = t is relevant, if Vars(σ) ⊆ Vars((s, t)). The set of all mgus for s, t shall be denoted as
MguSet(s, t). Since unifiability of the equation f (s1, ...,sn) = f (t1, ..., tn) entails unifiability of the set of
equations {s1 = t1, ...,sn = tn} and vice versa, it is the same task. Hence, unary notation like UnifSet(E),
MguSet(E) is also used, where E is a set of equations.6 In case of only one equation, set-constructor
braces may be dropped.

An equation of the form x = t corresponds to a binding, hence we (somewhat sloppily) also call it
a binding, and say that x is a bound variable of the current equation set. Bindings x = t and x′ = t ′ are
additive if x 6= x′ or x = x′, t = t ′. A set of pairwise additive bindings is said to be in ab-form. A set of

3Repeating core variables is not harmful but does not make much sense either, so for depicting a core representation we
assume x1, ...,xn to be mutually distinct.

4As remarked in [9], beware it only gives Dom(σ)⊆W but not necessarily Dom(σ) =W , as would be expected.
5The phrase “at least as general as” is a mouthful, hence it is seldom used (apart from [21]). We can afford it here since

generality of substitutions is not a central issue. Traditionally, “more general than” is used, which is somewhat misleading.
6At this point, it may prove worthwhile for a novice reader to establish just how general the identity substitution ε is, and

what the values of UnifSet( /0) and MguSet( /0) are. The symbol /0 denotes the empty set, as usual.



4 On separation, conservation and unification

equations is in solved form (or solved), if it is in ab-form and all of its bound variables are singletons. If
E is in ab-form, then its associated substitution is Subst (E) ··= {x/t | x = t ∈ E and x 6= t}. Vice versa,
every substitution σ determines an equation set in ab-form, Eq(σ) ··= {x = t | x/t ∈ σ}.

HCL Regarding HCL and its proof method of SLD-resolution, mostly we shall assume traditional con-
cepts as given in [15] and [2], with the following changes. In a pragmatic deviation from the original
meaning of clauses, we treat program clauses as fixed terms, having their variables chosen by the pro-
grammer, so a renamed program clause is not a program clause any more, but a variant of one. As a
visual help, program clauses shall be written with a hat, like ˆK . Assume an SLD-derivation D for G
of the form G ↪−.K1:σ1 G1 ↪−.K2:σ2 ... ↪−.Kn:σn Gn. Here Ki is the actually used variant of a program
clause (i.e., an input clause). Hence, the annotations (scores) Ki:σi can now be regarded as part of the
derivation, so Vars(D) ··= Vars(G)∪ ...∪Vars(Gn)∪Vars(K1:σ1)∪ ...∪Vars(Kn:σn). Since Vars(Gn)⊆
Vars(Gn−1)∪Vars(Kn:σn) and so forth, Vars(D) = Vars(G)∪Vars(K1:σ1)∪ ...∪Vars(Kn:σn). The
substitution σn · ... ·σ1 shall be called the partial answer for G at the step n of the derivation D .

2 Variable separation for substitutions

Idempotent substitutions exhibit a kind of variable separation within them. We recall some useful facts
about idempotency (Subsection 2.1), and move on to separation between substitutions (Subsection 2.2).

2.1 Variable separation within a substitution: idempotency

Let us begin with the well-known visual criterion for idempotency, first reported by Eder: the core and
the range may not have common variables.

Legacy 2.1 (idempotency, [5, Remark 3.2]). A substitution σ is idempotent iff Dom(σ) 6./ Ran(σ).

As a consequence, idempotent substitutions eliminate their core variables from their argument:

Corollary 2.2 (core release, [2, p. 37]). If σ is idempotent and x ∈ Dom(σ), then x 6∈̊ σ(t) for any t.

As shown in [5], composition of two idempotent substitutions does not have to be idempotent – not
even equigeneral to an idempotent substitution. Example: σ ··=

(
X

f(Y)

)
and θ ··=

(
Y

f(Z)

)
give σ · θ =(

X
f(Y)

Y
f(Z)

)
. However, θ ·σ =

(
X

f(f(Z))
Y

f(Z)

)
is idempotent. This is an instance of a useful property: 7

Legacy 2.3 (idempotent composition, [2]). Let σ and θ be idempotent. If Ran(θ) 6./ Dom(σ), then θ ·σ
is also idempotent.

In case of idempotent mgus, it is known that they cannot harbour extraneous variables:

Legacy 2.4 (relevance, [2]). Every idempotent mgu is relevant.

2.2 Variable separation across substitutions

Motivated by Legacy 2.3, we now consider compositions of substitutions that are not quite arbitrary, but
in some way “variable-separated” from each other. We propose two kinds of separation for substitutions:

• weak variable separation, defined as core-disjointness

• strong variable separation, cascading
7For many of the claims in this text we give a justification, usually transferred to Appendix A and linked in.



M. Kulaš 5

2.2.1 Weak separation (core-disjointness)

Core-disjoint substitutions can extend each other (sum of substitutions, [11, Sec. 4]). Here and in Sec-
tion 3 we show a few more of their qualities. For example, there is a shortcut for their composition:

Lemma 2.5. If E is in ab-form and Dom(σ) 6./ Dom(Subst (E)), then σ ·Subst (E) = Subst (σ(E))∪σ .8

In general, composing substitutions is not monotone, i.e. compatible with the subset relation. Exam-
ple:

(
X
Y

)
⊆
(
X
Y
Y
X

)
, but

(
Y
a

)
·
(
X
Y

)
6⊆
(
Y
a

)
·
(
X
Y
Y
X

)
. An exception is composing with a core-disjoint substitution:

Lemma 2.6 (left monotonicity). If σ ⊆ θ and Dom(λ ) 6./ Dom(θ), then λ ·σ ⊆ λ ·θ .

As a consequence, core-disjoint substitutions compose in a layered way:

Corollary 2.7 (prefix refinement). For core-disjoint σ1, ...,σn holds σ1 ⊆ σ1 ·σ2 ⊆ . . .⊆ σ1 · ... ·σn.

2.2.2 Strong separation (cascading)

Now we shall require a bit more than core-disjointness. Motivation was the condition Ran(θ) 6./ Dom(σ)
from Legacy 2.3, which is satisfied by the sequence of bindings in Martelli-Montanari-type unification
algorithms (Section 4), or by the sequence of idempotent mgus in a SLD-derivation (Subsection 5.1). In
both of these cases, a stronger criterion is satisfied as well, so let us give it a name:

Definition 2.8 (cascading). A sequence of substitutions σ1,σ2, ... is cascading, if for every i,k ≥ 1

σi+k 6./ Dom(σi) (1)

Further on in Example 4.16 we shall obtain the sequence
(
X
Z

)
,
(
Z
Y

)
showing the nature of cascading:

a later member of the sequence may have variables from the ranges, but not from the cores, of the former
members.

As a special case of Legacy 2.3, composition of idempotent cascading substitutions is idempotent:

Lemma 2.9 (idempotent composition). If σ1, ...,σn are cascading and idempotent, then σn · ... ·σ1 is
idempotent.

3 Variable conservation during instantiation and composition

Here we discuss some possibilities for conserving the set of variables when applying a substitution, or
when composing two substitutions. These are useful e.g. when proving some finer points about SLD-
derivations like compositional deriving of conjunction [13, Sec. 4.2].

We start with an easy claim: through instantiation, a term may lose some or win some variables, but
any changes are contained within the substitution.

Lemma 3.1. For any term t and any substitution σ holds Vars(t)∪Vars(σ) = Vars(σ(t))∪Vars(σ).

When composing two substitutions, no new variables can appear, but any number of variables may
disappear from the core representation. A well-known example is

(
X
Y
Y
X

)
·
(
X
Y
Y
X

)
= () = ε .

If one of the substitutions is idempotent and the other one a renaming, there is no such loss, as
witnessed by

(
Y
Z
Z
Y

)
·
(

Y
f(X)

)
=
(

Y
f(X)

Z
Y

)
and

(
Y

f(X)

)
·
(
Y
Z
Z
Y

)
=
(
Y
Z

Z
f(X)

)
.

8With an appropriate definition of substitution instance σ(θ), left to the reader, the claim can be more succinctly expressed
by: If Dom(σ) 6./ Dom(θ), then σ ·θ = σ(θ)∪σ .



6 On separation, conservation and unification

Lemma 3.2 (conservation I). For any idempotent substitution σ and any renaming ρ holds Vars(ρ ·σ)=
Vars(σ ·ρ) = Vars(ρ)∪Vars(σ).

Such a property holds also if both substitutions are idempotent, but with disjoint cores. Without
core-disjointness, it does not hold, as witnessed by

(
X
Y

)
·
(
X
Z

)
=
(
X
Z

)
.

Lemma 3.3 (conservation II). If σ ,θ are idempotent and Dom(σ) 6./ Dom(θ), then Vars(θ ·σ) =
Vars(θ)∪Vars(σ).

Hence, by composing idempotent cascading substitutions we cannot “get rid” of variables:

Corollary 3.4. If σ1, ...,σn are cascading and idempotent, Vars(σn · ... ·σ1) = Vars(σn)∪ ...∪Vars(σ1).
So if at least one σ j is not ε , then σn · ... ·σ1 6= ε .

4 Unification by algorithm

For any unifiable equation set E holds that MguSet(E) is infinite. But in a sense, one mgu is enough,
since any other can be obtained by composition with a renaming, as shown in Legacy 1.3.

Hence, it is no deprivation that any (deterministic9) unification algorithm U produces just one fixed
value. For the sake of implementation, we assume the input of U to be not a set but a sequence of
equations (so instead of /0 we now have � as the limit case). The output of U shall be a substitution or a
failure report. A failure report shall be a unary term with main functor Failure.

Definition 4.1 (unification algorithm). A unary function U is a unification algorithm, if for every equa-
tion sequence E holds: in case E is unifiable, U (E) ∈MguSet(E), otherwise U (E) = Failure( ).

The first unification algorithm bearing that name was invented by Alan Robinson, who introduced
and solved the task of unification in [20] (see also [2, p. 26 ff] for two alternative presentations). Another
classical solution is Martelli-Montanari’s nondeterministic unification scheme [16, p. 261].9 10 In the
next subsection, we recall the scheme and choose a deterministic version of it as the basic unification
algorithm of this paper. As shall be seen, it amalgamates both of the classical algorithms.

4.1 Martelli-Montanari scheme and its deterministic version, algorithm MM

Martelli-Montanari scheme, rephrased in Figure 1, operates by transforming a set of equations by means
of rules. Each rule handles a certain type of equation, embodied in the working equation, freely chosen
from the set.

Essential for the scheme is to preserve unifiers: in every step E  E ′ must hold UnifSet(E) =
UnifSet(E ′). (For the failure steps, we must extend UnifSet with UnifSet(Failure( )) ··= /0.) By defi-
nition of mgu, that would imply MguSet(E) = MguSet(E ′). It is fairly obvious that the rules in Figure 1,
save perhaps for the binding rule, do preserve unifiers. For the binding rule, an appropriate claim is given
below (Lemma 4.4), formulated in two steps to suit the modified rule from Subsection 4.2 as well. But
first we need a name for a particular kind of bindings:

Definition 4.2 (I-binding). A binding x = t with x 6∈̊ t is called an I-binding11.

Lemma 4.3 (I-binding). For every I-binding x = t holds
( x

t

)
∈MguSet(x = t).

9In this paper, we reserve the word “algorithm” solely for deterministic algorithmic schemes, to be able to use it as a
mathematical function.

10Sometimes attributed to Herbrand, for being incipient in Herbrand’s dissertation [7, p. 96-97], [8, p. 31].
11“I” stands for idempotence. An I-binding is also a “simple pair” of [2, p. 27].



M. Kulaš 7

To find an mgu of a finite set of equations E0, take E ··= E0 and transform E according to the rules below.
If no more rules apply, stop with success. If a failure rule applies, stop with failure. Recall that x denotes
a variable (Remark 1.1), t,s are terms, and f ,g are functors.

decomposition E ∪{ f (s1, ...,sn) = f (t1, ..., tn)}  E ∪{s1 = t1, ...,sn = tn}
failure:clash E ∪{ f (s1, ...,sn) = g(t1, ..., tm)}  Failure(”clash”), if f 6= g or m 6= n

cleaning E ∪{x = x}  E

orientation E ∪{t = x}  E ∪{x = t}, if t 6∈ V
binding E ∪{x = t}  

( x
t

)
(E)∪{x = t}, if x ∈̊ E and x 6∈̊ t

failure:occurs-check E ∪{x = t}  Failure(”OC”), if x ∈̊ t and x 6= t

Figure 1: Martelli-Montanari’s non-deterministic unification scheme

Proof. Owing to the condition x 6∈̊ t, every I-binding is unifiable, and
( x

t

)
∈ UnifSet(x = t). Maximal

generality is ensured by the witness method [12, Theorem IV.3].
To see this, let us take an arbitrary σ ∈MguSet(x = t) and build a diagram in Figure 2 starting with

VarList((x, t,σ)) = [x,y1, ...,yn]. Due to σ(x) = σ(t), the blue mapping δ exists, and δ = σ�t,y1,...,yn .
According to the witness method, the diagram commutes, giving12 σ = σ�t,y1,...,yn ·

( x
t

)
, which shows

that
( x

t

)
is at least as general as σ . ♦

[x,y1, ...,yn]( x
t

)
σ

[t,y1, ...,yn] [σ(x),σ(y1), ...,σ(yn)]
δ

Figure 2: Proving the maximal generality of
( x

t

)

Lemma 4.4 (binding rule preserves mgus). For every equation set E and every I-binding x = t:

1. UnifSet({x = t}∪E) = UnifSet(
( x

t

)
(E)) ·

( x
t

)

2. UnifSet(
( x

t

)
(E)) ·

( x
t

)
= UnifSet({x = t}∪

( x
t

)
(E))

Both claims also hold with MguSet instead of UnifSet, or with the argument being an equation sequence
instead of a set.

By Lemma 4.4, if Martelli-Montanari scheme terminates, then it solves the unification task.

Legacy 4.5 (solved form, [16][2]). For any E0 and any choice of working equation, the transformation
in Figure 1 is certain to stop. If the stop is due to failure, then E0 is not unifiable. Otherwise, the final set
E is in solved form and Subst (E) is an idempotent mgu of E0.

12For a stronger claim, observe: If x 6∈ Dom(σ), then σ�t,y1,...,yn = σ , otherwise σ�t,y1,...,yn ∪
(

x
σ(x)

)
= σ . Due to x 6∈̊ t, in

either case σ�t,y1,...,yn ·
( x

t
)
= σ ·

( x
t
)
. Summarily, σ = σ ·

( x
t
)
. This proves “strongness” of

( x
t
)
, see also [2, Th. 2.19].



8 On separation, conservation and unification

Martelli-Montanari scheme can be turned into a (deterministic) algorithm in a number of ways, re-
sulting in many of the known unification algorithms [16, p. 263]. Here we advocate a specific instance,
emulating Robinson’s unification algorithm, which makes it “the” classical unification algorithm. Cor-
respondence with Robinson’s algorithm shall be handled in Subsubsection 4.2.6.

Definition 4.6 (MM). The algorithm MM is obtained from Martelli-Montanari scheme by using se-
quences instead of sets and picking the leftmost equation eligible for a rule application. One more
adjustment shall be made, to suit Definition 4.1: The output of MM in case of success shall not be a
solved form E, as usual, but its associated substitution Subst (E).

By Legacy 4.5, MM is a unification algorithm.

4.2 Algorithm RMM, a modular adaptation of MM

Due to its simplicity, MM is widely used. Yet, it can be made even simpler, as observed in [3]. As
a bonus, a kind of modularity can be acquired, which shall be useful in proving an iteration property
(Subsubsection 4.4.3). The only change concerns the binding rule of MM:

binding (MM) x = t, E  x = t,
(x

t

)
(E), if x 6∈̊ t and x ∈̊ E (2)

Let us take a look at its effects. After the i-th binding step, the used equation xi = ti becomes an
ineligible equation, i.e. it cannot be (re-) elected for transformation in MM. To see that, recall that
applying

(
xi
ti

)
with xi 6∈̊ ti on a term eliminates the variable xi from that term (Corollary 2.2), so only one

occurrence of xi remains in the sequence: the one in xi = ti, which makes xi a singleton variable of the
sequence. Thus, any further bindings xi+k/ti+k must be variable-disjoint with xi, i.e.

xi 6∈̊ xi+k/ti+k, for any k ≥ 1 (3)

so they can only change the right-hand side of xi = ti. Therefore, the equation remains ineligible. Another
possibility for an ineligible equation x = t is that x was a singleton already; then x = t shall never be
elected by MM. Either way, an ineligible equation only stays underfoot, so it might as well be moved
into a “result zone”, which in [3] is a solved form and here it shall be a substitution right away (we
dispense with solved form in favor of composing bindings, as in Robinson’s algorithm).

At the same time, the binding rule of MM shall be freed from the dependence on the rest of the
equations, i.e. the condition x ∈̊ E shall be dropped from (2). So any x = t satisfying x 6∈̊ t (i.e., any
I-binding) is now eligible. This gives more binding steps, but on the bonus side we now have uniformity:
the working equation is now always the leftmost equation. For want of a better word we shall speak of
modular rephrasing of the binding rule.

The algorithm so obtained is shown in Figure 3; it is a mix of Martelli-Montanari’s transformation
rules and Robinson’s result building, therefore we denote it RMM. It differs from MM in two details:

• binding rule:

– treatment of ineligible equations: MM ignores them, RMM removes them

– context dependence (MM) vs. modularity (RMM)

• construction of the result: MM builds a solved form, RMM composes bindings

Despite those differences, do they compute the same result?



M. Kulaš 9

To find an mgu of a finite sequence of equations E0, take E ··= E0 and σ ··= ε and transform E according
to the rules below. If no more rules apply, stop with success, and RMM(E) ··=σ . If a failure rule applies,
stop with failure, and RMM(E) ··= E.

decomposition f (s1, ...,sn) = f (t1, ..., tn), E  s1 = t1, ...,sn = tn, E

failure:clash f (s1, ...,sn) = g(t1, ..., tm), E  Failure(”clash”), if f 6= g or m 6= n

cleaning x = x, E  E

orientation t = x, E  x = t, E, if t 6∈ V
binding (RMM) x = t, E  

( x
t

)
(E), if x 6∈̊ t. Additionally, σ ··=

( x
t

)
·σ .

failure:occurs-check x = t, E  Failure(”OC”), if x ∈̊ t and x 6= t

Figure 3: RMM unification algorithm

4.2.1 Dissecting a termination proof

To answer this question, we shall employ two properties of the algorithms. These properties, or rather
tactics, explain the (arguably somewhat contrived) termination proof for Martelli-Montanari algorithm
[2, p. 32 ff], repeated here with Legacy 4.5. Together, they build a simple wave-like mechanism underly-
ing not only RMM but, somewhat surprisingly, MM as well:

simplification: decompose, orient and clean until an I-binding is uncovered

reduction: if there is one, use it to eliminate its bound variable

Clearly, iterating these two tactics must come to a stop. This is the gist of an alternative termination
proof for RMM, pieced together from the two tactics (Lemma 4.7, Lemma 4.9) in Theorem 4.10. Since
the tactics hold for MM as well, its termination can also be proved in this manner.

4.2.2 Simplification: Finding a variable to eliminate (via common rules)

The first tactic holds for both algorithms and puts focus on I-bindings:

Lemma 4.7 (simplification). If E is not already in form x = t, E ′ with x 6∈̊ t, then the rules common
to MM and RMM will either bring it in this form, or stop at �, or stop at a failure. In each case, the
unifiers will be preserved.

4.2.3 Reduction: Eliminating the variable (via binding rule)

To express the second tactic, we need an auxiliary operator ∗ associating a possible output of unification
with a substitution:

Definition 4.8 (maybe-composition). Let A be a possible output of an U , i.e. a substitution or a failure
report, perhaps undefined. Let σ be a substitution. Their maybe-composition is

A∗σ ··=





A ·σ , if A is a substitution
A, if A is a failure report
undefined, if A is undefined



10 On separation, conservation and unification

In case of RMM, the second tactic is rather obvious:

Lemma 4.9 (reduction in RMM). For any sequence x = t, E with x 6∈̊ t holds

RMM((x= t,E))= RMM(
(x

t

)
(E))∗

(x
t

)
with UnifSet((x = t,E)) = UnifSet(

(x
t

)
(E)) ·

(x
t

)
(4)

Proof. In RMM, the leftmost equation must be elected. Hence, computing RMM((x= t,E)) is reduced
to computing RMM(

( x
t

)
(E)), so if the latter fails or does not stop, the same holds for the former. The

bindings are composed in reverse order. So the possible output of RMM((x= t,E)) is built as in (4).
By Lemma 4.4, part 1, this is reflected in the set of unifiers. Hence, the new binding rule also

preserves unifiers. ♦

4.2.4 Consequences for RMM

Theorem 4.10 (RMM). For any (even empty) equation sequences E and E ′ holds

1. if E is unifiable, then RMM((E,E ′))= RMM(σ(E ′))∗σ , where σ ∈ UnifSet(E)

2. otherwise, RMM((E,E ′)) must fail.

By taking E ′ ··=�, we obtain that RMM(E) stops for any E and, in case of unifiability of E, produces
an unifier, otherwise a failure report. Thus, RMM is a unification algorithm.

Corollary 4.11 (iteration for RMM). If RMM(E ′)=·· σ and RMM(σ(E ′′))=·· θ both succeed, then so
does RMM((E ′,E ′′)), and RMM((E ′,E ′′))= θ ·σ .

Corollary 4.12 (idempotence for RMM). Assume RMM(E) succeeds, and σ ··=RMM(E). If the binding
rule was not applied, then σ = ε , otherwise σ = σn · ... ·σ1 6= ε , where σ1, ...,σn are the respective I-
bindings. At any rate, σ is idempotent.

4.2.5 Coincidence with MM

To conclude the comparison between MM and RMM, we need one last auxiliary result, namely that the
second tactic for RMM (Lemma 4.9) holds for MM as well, even if less obviously:

Lemma 4.13 (reduction in MM). For any sequence x = t, E with x 6∈̊ t holds

MM((x= t,E))=MM(
(x

t

)
(E))∗

(x
t

)
with UnifSet((x = t,E)) = UnifSet(

(x
t

)
(E)) ·

(x
t

)
(5)

Proof. According to the discussion of ineligible equations on page 8, computing MM((x= t,E)) is re-
duced to computing MM(

( x
t

)
(E)), whether x ∈̊ E or not. Hence, if MM(

( x
t

)
(E)) fails or does not stop,

the same holds for MM((x= t,E)) as well.
Assume now MM(

( x
t

)
(E)) succeeds. The earlier discussion of ineligible equations gives

MM((x= t,E))= Subst
(
MM(

(x
t

)
(E))(x= t)

)
∪MM(

(x
t

)
(E))

The right-hand side can be simplified by bearing in mind that x is eliminated from E by
( x

t

)
, i.e. x 6∈̊( x

t

)
(E), so by relevance x 6∈̊MM(

( x
t

)
(E)); now we can apply Lemma 2.5, obtaining MM(

( x
t

)
(E)) ·

( x
t

)
.

Summarily, MM((x= t,E)) =MM(
( x

t

)
(E)) ∗

( x
t

)
. By Lemma 4.4, the set of unifiers mimicks this

property. ♦

Theorem 4.14 (coincidence). For every equation sequence E holds RMM(E)=MM(E).



M. Kulaš 11

4.2.6 “The” classical unification algorithm

Since RMM is actually a rephrasing of Robinson’s algorithm, from Theorem 4.14 follows

Corollary 4.15 (the classical U ). MM corresponds to Robinson’s algorithm.

So MM and RMM compute the same mgu, in slightly different ways. Should RMM be favoured over
MM? The trade-off would be

• less search, more uniformity: the working equation is always the leftmost equation

• some unnecessary applications
( x

t

)
(E) despite x 6∈̊ E

Finally, let us compare the operation of MM and RMM on a typical unification task.

Example 4.16 (MM versus RMM). In the computations below, the next eligible equation is underlined.

MM(f(X,Z,U)=f(Z,Y,U))=MM((X=Z, Z=Y, U=U)), by decomposition

=MM((X=Y, Z=Y, U=U)), by binding Z/Y

=MM((X=Y, Z=Y))=
(
X
Y
Z
Y

)
, by cleaning

RMM(f(X,Z,U)=f(Z,Y,U))= RMM((X=Z, Z=Y, U=U)), by decomposition

= RMM((Z=Y, U=U))∗
(
X
Z

)
, by binding X/Z

= RMM(U=U)∗
(
Z
Y

)
∗
(
X
Z

)
, by binding Z/Y

= RMM(�)∗
(
Z
Y

)
∗
(
X
Z

)
= ε ·

(
Z
Y

)
·
(
X
Z

)
=
(
X
Y
Z
Y

)
, by cleaning

Observe the cascading sequence of bindings13
(
X
Z

)
,
(
Z
Y

)
. This is no coincidence, since the condition

(3) is a special case of (1).

4.3 Algorithm MMB, a biased derivative of MM

In fact, it appears to be convenient to restrict the choice of the mgu even more
by disallowing the “needless renaming of variables in a derivation”.

[4], p. 13

Even if we allow only idempotent mgus, a practical dilemma remains: in case of unifying variables x and
x1, where x is from the query and x1 from the input clause, should we choose

( x
x1

)
or
( x1

x

)
as their mgu?

In the first case, an “old” variable shall be renamed, and henceforth lost, since it cannot be re-introduced
again (due to standardizing-apart). In the second case this fate befalls a “new” variable, which may be
more acceptable for the user, who tends to prefer his own variables.

But naming continuity is not the only reason against renaming “older” variables (appearing earlier in
the derivation) with “newer” ones (appearing later), i.e. against the bindings xold/xnew. Bol [4] dispenses
with such needless renaming in order to prove some claims.

To achieve this, he modifies Martelli-Montanari scheme toward producing a specific kind of mgu,
compliant with an ordering of variables given by a function Tag : V→N that assigns natural numbers to
variables.

13A variable binding x/y determines a substitution in its own right,
(

x
y

)
.



12 On separation, conservation and unification

Bol’s modification consists solely in replacing the orientation rule with a new one respecting Tag.
Here we rephrase it in a deterministic way, using sequences:

orientation (Bol) t = x, E  x = t, E, if t 6∈ V or Tag(t)< Tag(x) (6)

This rule is obviously not disjoint with the binding rule of MM, namely for t ∈V and Tag(t)< Tag(x) and
x ∈̊ E both rules are applicable. Since we strive for a deterministic algorithm, hence mutually disjoint
rules as in MM and RMM, we shall change the binding rule as well. To make the two changes more
compact, let us extend the function Tag to all terms by

Tag(t) ··=−1, if t 6∈ V (7)

The new rules are shown in Figure 4. Thus changed MM needs a new name, so let us take MMB,
in acknowledgement of Bol’s original idea. The algorithm has a parameter, the ordering function Tag,
which can be made explicit by writing MMBTag.

orientation (MMB) s = t, E  t = s, E, if Tag(s)< Tag(t)

binding (MMB) x = t, E  x = t,
( x

t

)
(E), if x ∈̊ E and x 6∈̊ t and Tag(x)≥ Tag(t)

Figure 4: Changes toward MMB

Definition 4.17 (bias). Let Tag : V→N. A substitution σ is Tag-biased, if for every x∈V holds Tag(x)≥
Tag(σ(x)). A unification algorithm is Tag-biased, if it produces Tag-biased mgus.

It is easy to ascertain MMBTag to be a unification algorithm, and a Tag-biased one:

Theorem 4.18 (MMB). For any function Tag : V→ N and any equation sequence E0, MMBTag(E)
stops and, in case of unifiable E0, produces a Tag-biased mgu of E0.

Lemma 4.19 (bias is compositional). If σ ,θ are Tag-biased, their composition is Tag-biased as well.

Corollary 4.20 (bias). Assume U is Tag-biased for some Tag : V→ N. Then mgus σ1, ...,σn produced
by U in an SLD-derivation are Tag-biased, as well as their composition σn · ... ·σ1.

4.3.1 Modular adaptation, RMMB

MMB can be rewritten in a modular way, similarly to MM; let us name such an adaptation RMMB.

4.3.2 Seniority-biased SLD-derivations

Observe that the claims up to now hold for arbitrary Tag : V→N. Now let us consider a particular choice.
To express variable seniority in a SLD-derivation, Bol [4] assigns 0 to variables from the top-level query,
1 to variables from the first input clause, and so on; variables appearing later in the derivation (“newer”
variables) get bigger number. For this choice of Tag, Theorem 4.18 and Corollary 4.20 ensure:

Corollary 4.21 (seniority). If MMB is seniority-biased, then older variables in SLD-derivations will
never be renamed with newer ones.



M. Kulaš 13

But can this perhaps be ensured easier, without modifications of MM resulting in MMB? Let us look
into reasons for an old variable to be abandoned, or for new variables to appear. Assume a resolution of a
query G with a clause K . There can be patterns in the clause head, as with nat(s(A)) :- nat(A). Also,
there can be surplus variables in the clause body: son(A) :- male(A), child(A,B). In those cases it
is inevitable that some new variables must appear in the resolvent. Otherwise, this is not necessary, as
with G ··= p(X) and K ··= p(A) :- q(A). Here X can be left unchanged (e.g. using

(
A
X

)
), or needlessly

renamed (e.g. to A using
(
X
A

)
14). Also, there are cases of head-patterns like p(Z,Z) where MM may

or may not perform needless renaming for a query like p(X,Y): MM(p(X,Y)=p(Z,Z)) =
(
X
Z
Y
Z

)
, but

MM(p(Z,Z)=p(X,Y))=
(
X
Y
Z
Y

)
. This raises some hope that using MM with clause head on the left might

be sufficient to ensure absence of bindings xold/xnew, so no modification of MM would be needed.

Counter-Example 4.22 (needless renaming). By applying MM on equation tnew = told , where tnew 6./ told ,
as in SLD-resolution, we usually obtain a mgu without bindings xold/xnew. But alas, not in every case:

MM(p(f(Y1),X1,X1)=p(X,f(Y),X))=MM((f(Y1)=X, X1=f(Y), X1=X))

=MM((X=f(Y1), X1=f(Y), X1=X))=MM((X=f(Y1), X1=f(Y), X1=f(Y1)))

=MM((X=f(Y1), X1=f(Y), f(Y)=f(Y1)))=MM((X=f(Y1), X1=f(Y), Y=Y1))

=MM((X=f(Y1), X1=f(Y1), Y=Y1))=
(

X
f(Y1)

X1
f(Y1)

Y
Y1

)

Here new variables are shown indexed. Clearly, Y is needlessly renamed, i.e. abandoned in favour of a
newer variable, Y1. Using MMB instead of MM would have prevented this.

4.4 Desirable properties of unification algorithms

As shall be established in the rest of this section, the algorithm MM as well as its Tag-biased (-BTag) and
modular (R-) adaptations obey several properties, postulated below as normalcy. The first two we deem
even necessary for claims about implemented logic programming.

Definition 4.23 (reasonable U ). Unification algorithm U is reasonable, if for any equation sequence E
and any renaming ρ holds

1. renaming-compatibility: U (ρ(E)) = ρ(U (E))
2. relevance: Vars(U (E))⊆ Vars(E)

Definition 4.24 (normal U ). U is normal, if it is reasonable and additionally for any equation sequences
E,E ′ and any term t holds

3. idempotency: If U (E) succeeds, then U (E) ·U (E) = U (E).
4. anchor: U (t = t) = ε

5. iteration: If σ = U (E) and θ = U (σ(E ′)) both succeed, then θ ·σ = U ((E,E ′)).

4.4.1 Compatibility with renaming

The simple unification task X=Y has, among others, two equally attractive candidate mgus, (X
Y
) and (Y

X
).

Assume our unification algorithm U decided upon (X
Y
). Assume further that we rename the equation

14Or to something else: in case U is not relevant, it could produce an mgu like
(
X
Z
A
Z
Z
A

)
, renaming X to Z.



14 On separation, conservation and unification

using ρ = (Y
Z
Z
Y
), obtaining X=Z. What mgu shall be chosen this time? In case U is renaming-compatible,

we know that it chooses ρ((X
Y
)) = (X

Z
).

As observed in [1], the classical unification algorithms do not depend upon the actual names of
variables, hence they are renaming-compatible (and prenaming15-compatible, for the same reason). This
clearly holds for all algorithms shown above.

Counter-Example 4.25 (is every U renaming-compatible?). Let U (E) ··=
(

x
y

y
x

)
·MM(E), where x is

the rightmost variable in E, and y is x but indexed with the next available index. If no variables in E,
set U (E) ··= MM(E). Clearly, U (E) is an mgu of E. If E ··= X=Y1 and ρ ··=

(
Y1
Z

Z
Y1

)
, then U (E) =

(
Y1
Y2

Y2
Y1

)
·
(

X
Y1

)
=
(

X
Y2

Y1
Y2

Y2
Y1

)
and U (ρ(E)) =

(
X
Z1

Z
Z1

Z1
Z

)
6= ρ(U (E)) =

(
X
Y2

Z
Y2

Y2
Z

)
.

Note that, unlike U , the set-valued MguSet must be renaming-compatible16:

Lemma 4.26 (MguSet). For any renaming ρ and equation sequence E: MguSet(ρ(E))= ρ(MguSet(E)).

4.4.2 Idempotency, relevance and anchor

The algorithm MM and its adaptations are not only renaming-compatible, they produce idempotent re-
sults as well. In case of non-modular algorithms MM or MMB, idempotency is guaranteed by the solved
form. Idempotency also follows from cascading of bindings, as shown for RMM in Corollary 4.12.

From idempotency follows relevance (Legacy 2.4). Furthermore, idempotency of U prevents trivial
equations t = t from obtaining non-trivial mgus like

(
X
Y
Y
X

)
, even if they may be relevant:

Lemma 4.27 (anchor). For any t, the only idempotent mgu of t = t is ε .

Proof. Assume an idempotent σ ∈MguSet(t = t). Since ε ∈MguSet(t = t), ε and σ are equigeneral, so
by Legacy 1.3 there is a renaming ρ with σ = ρ ·ε = ρ . Since σ is idempotent, by Legacy 2.1 holds that
Dom(σ) 6./ Ran(σ). The only renaming with this property is ε , due to Legacy 1.2. ♦

4.4.3 Iteration

In [2, Lemma 2.24], it is claimed that an mgu ψ for a sequence E ′,E ′′ can be obtained in an iterative
fashion, by first finding an mgu σ for E ′ and then an mgu θ for σ(E ′′), which are then combined as
ψ = θ ·σ . If we have a unification algorithm, it would be good if those σ ,θ are not just any mgus, but
exactly the ones found by the algorithm.

As a consequence of Theorem 4.10, RMM satisfies this property, i.e. computes in a piecemeal fash-
ion, compatible with LD-resolution (Corollary 4.11). By the coincidence claim (Theorem 4.14), it also
holds for MM. Note that iteration is much easier to prove if the binding rule is modular. In a similar way
the property can be proved for RMMB (and hence MMB).

5 “Fresh” renaming

Let us conclude with a separation issue. As is well-known [2], if we wish to extend an SLD-derivation
D for a query G using a program clause ˆK , but do not wish to risk missing some (logically correct)

15A prenaming is a variable-pure substitution with mutually distinct variables in range [11].
16But MguSet is not prenaming-compatible. For example, let α ··=

(
X
W

)
and E ··= X=Y. Then α(E) = W=Y and θ ··=

(
X
Y
Y
W

)
∈

MguSet(α(E)), but clearly there is no way for θ to be obtained as α(σ) for some σ ∈MguSet(E).



M. Kulaš 15

answers for G, then we have to standardize ˆK apart17 from D . This means to regard the variables of D
as “spent”, and rename ˆK with some “fresh” variables.

5.1 Excursion: idempotent mgus in SLD-derivations

Now we have all the concepts necessary to establish cascading in SLD-derivations.

Lemma 5.1. Idempotent mgus σ1, ...,σn in a SLD-derivation G0 ↪−.K1:σ1 G1 ↪−.K2:σ2 ... are cascading.

As a consequence, a further characterization of partial answers in a Prolog derivation is obtained.
The first of its three parts is already known [2, p. 62]. The third part ensures that the partial answer can
be ε only if all involved mgus are ε .

Theorem 5.2 (partial answer). Idempotent mgus σ1, ...,σn in a SLD-derivation satisfy

1. σn · ... ·σ1 is idempotent

2. σn ⊆ σn ·σn−1 ⊆ . . .⊆ σn · ... ·σ1

3. Vars(σn · ... ·σ1) = Vars(σn)∪ . . .∪Vars(σ1)

5.2 Fresh renaming by algorithm and some properties

Standardizing-apart algorithms can be seen as a special case of algorithms renaming a given term t in a
“fresh” way with respect to a given set of “spent” variables (represented by a term s):

Definition 5.3 (fresh renaming). A binary function New is a fresh-renaming algorithm, if for any s, t
holds News(t)∼= t and News(t) 6./ s. In other words, if News(t) is a variant of t variable-disjoint with s.

Standardizing-apart algorithms have not been given much attention in literature. In theoretical work,
their existence is usually enough, established by the well-known renaming device of Lloyd [15, p. 41]:
For the n-th derivation step, the original program clause variables are indexed with n, assuming that top-
level queries may not contain indices. This assumption, however, rules out resuming of a derivation, i.e.
starting from a resolvent, which is needed for proofs involving compositionality [13].

As a remedy, instead of the whole derivation D solely its variables Vars(D) can be taken as the
parameter of the algorithm.

Definition 5.4 (structure-independence). A fresh-renaming algorithm New is structure-independent (or
flat), if it depends only on the spent variables, i.e. News(t) = NewVars(s)(t).

5.2.1 Structure-independent fresh renaming: thrifty NT and prodigal NA

Here we show two structure-independent algorithms, our alternative to Lloyd’s theoretical device and a
traditional programming device. The former is based on the simple idea to rename only where necessary:

Definition 5.5 (thrifty fresh renaming, NT). The algorithm NT renames any variable18 x apart from s as
follows. If x appears in s, together with its indexed versions x1, ...,xk, but xk+1 does not, then xk+1 shall
replace x, i.e. NTs(x) ··= xk+1. Otherwise, x remains unchanged.

17Standardization apart was introduced in [20, p. 31] and simplified in [18, p. 46]. Its subseqent evolution has led to more
strictness, owing to loopholes [4, p. 11]. The current version is from [2]. The concept appears also under the name variable
separation [10]. Most often the phrase fresh renaming of program clauses is encountered.

18Being a renaming, every New is functor-preserving. Hence, it suffices to define it on variables, if that is more comfortable.



16 On separation, conservation and unification

In programming practice, usually the original variables from the query and from the program clauses
are forsaken. Instead, variables are represented by special variable-free terms, like those obtained with
the traditional utility numbervars/3 [19]: ’$VAR’(0), ’$VAR’(1) and so forth. This practice has
found a way into the ISO standard [8], and the terms ’$VAR’(n) are output by default as variables
A,B, . . . ,Z,A1,B1, . . .. Fresh renaming consists here in advancing the counter of spent variable indices.

Definition 5.6 (all-new fresh renaming, NA). Assume variables to be enumerated, V = {V1,V2, . . .}. The
algorithm NA renames t apart from s as follows. If t has k variables and n = maxi (Vi ∈̊ s), then NTs(t)
is obtained from t by replacing variables in order of appearance by Vn+1, ...,Vn+k.

5.2.2 A missing property

Encouraged by all the nice properties of “the” classical unification algorithm and its adaptations, we
might wonder whether a fresh-renaming algorithm New can also be renaming-compatible, i.e. whether
for any renaming ρ and terms s, t may hold Newρ(s)(ρ(t)) = ρ(News(t)).

Counter-Example 5.7 (can New be renaming-compatible?). Let s be an arbitrary term. Assume New
to be renaming-compatible, and let News([X,Y]) = [U,W]. Now let ρ ··=

(
U
W
W
U

)
. Clearly, ρ([X,Y]) =

[X,Y]. Due to [U,W] 6./ s, we also have ρ(s) = s. Hence, Newρ(s)(ρ([X,Y])) = News([X,Y]) 6=
[W,U]= ρ(News([X,Y])).

In hindsight, this negative result appears trivial, yet it causes a claim that holds in HCL to break if
fresh renaming is done by an algorithm:

Lemma 5.8 (HCL only). Assume free choice of mgu and program clause renaming. If ρ is a renaming
and G ↪−.s1 G1 ... ↪−.sn Gn, then ρ(G) ↪−.ρ(s1) ρ(G1) ... ↪−.ρ(sn) ρ(Gn).

In the presence of S , the given proof does not work. More importantly, the claim does not hold. To see
this, let ˆK be a(X,Y) :- b(X,Y).We take S ··=NT, hence K ··=Sa(X,Y)( ˆK )= a(X1,Y1) :- b(X1,Y1).
Unification shall be done by U ··= MM but used in the traditional way, with clause head on the right,
giving U (a(X,Y)=a(X1,Y1)) =

(
X
X1

Y
Y1

)
. Finally, set ρ ··=

(
X1
Y1

Y1
X1

)
. For the query a(X,Y) we obtain

D : a(X,Y) ↪−.
K :
(

X
X1

Y
Y1

) b(X1,Y1), and for the query ρ(a(X,Y)) the same, instead of ρ(D).

Comparing Prolog derivations of mutually variant queries requires a bit of bookkeeping [11, Sec. 6].

6 Related work

In [10], variable separation is synonymous with standardizing-apart in SLD-derivations. Here we regard
it in a broader sense, as variable-disjointness between (parts of) arbitrary terms. The themes of variable
separation and variable conservation in the context of substitutions appear to be novel.

The main idea of modular rephrasing of the binding rule, i.e. to put away ineligible equations and
drop the context dependence, is not new: In [3, p. 449] a variant of Martelli-Montanari’s algorithmic
scheme was shown, with equations divided in a “to-do” and a “result” zone, and with the binding rule

variable elimination {x = t}∪E; S  
(x

t

)
(E);

(x
t

)
(S)∪{x = t}, if x 6∈̊ t

where S is the emergent solved form. This is equivalent to the binding rule of RMM, which can be
seen from Subst (σn(Sn−1))∪ σn = σn · Subst (Sn−1) = σn · ... · σ1, owing to σn 6./ Dom(Subst (Sn−1))
(Lemma 2.5). Where the two approaches differ is in result building. The explicit composition favoured in



M. Kulaš 17

our rephrasing enabled an easy discernment (and proof) of a “reduction” property inherent to RMM rules
(Lemma 4.9), which then led to recognizing this property in MM as well, and so forth (Subsection 4.2).

Ordering of variables by mapping to natural numbers was proposed by Bol in [4], incorporated in
the orientation rule. We modified the binding rule as well, thus re-establishing rule disjointness.

7 Summary

A somewhat neglected aspect of Prolog derivations is addressed: algorithms for unification and “fresh”
renaming, with focus on simplicity and desirable mathematical properties. For fresh renaming, structure-
independent algorithms NT and NA are presented.

For unification, our starting point was the left-to-right deterministic version of Martelli-Montanari’s
algorithmic scheme, here denoted MM. Two kinds of adaptations are discussed:

• addition of well-founded variable orderings as advocated in [4], to control variable renaming; this
resulted in the algorithm MMB

• a modular rephrasing of the binding rule similarly to [3], to obtain uniform rules; this resulted in
the algorithms RMM and RMMB (the former is coincident with MM and Robinson’s algorithm,
the latter with MMB)

Owing to the modular rephrasing, two “tactics” underlying the operation of Martelli-Montanari-type
unification algorithms, simplification and reduction, were uncovered, which led to a hitherto unreported
iteration property (compatibility with LD-resolution).

Underway, we address variable separation of substitutions, including cascading (appears in unifica-
tion and SLD-derivations), and variable conservation when applying or composing substitutions (neces-
sary for detailed operational models of Prolog).

Acknowledgement

Many thanks to Ch. Beierle for his help in debugging the terminology of an earlier draft.

References

[1] G. Amato & F. Scozzari (2009): Optimality in goal-dependent analysis of sharing. Theory and Practice of
Logic Programming 9(5), pp. 617–689, doi:10.1017/S1471068409990111.

[2] K. R. Apt (1997): From logic programming to Prolog. Prentice Hall.

[3] F. Baader & W. Snyder (2001): Unification theory. In J. A. Robinson & A. Voronkov, editors: Handbook of
automated reasoning, Elsevier.

[4] R. N. Bol (1992): Generalizing completeness results for loop checks in logic programming. Theor. Comp.
Sci. 104(1), pp. 3–28, doi:10.1016/0304-3975(92)90164-B.

[5] E. Eder (1985): Properties of substitutions and unifications. J. Symbolic Computation 1(1), pp. 31–46,
doi:10.1016/S0747-7171(85)80027-4.

[6] J. Gallier (2011): Discrete mathematics. Springer-Verlag, doi:10.1007/978-1-4419-8047-2.

[7] J. Herbrand (1930): Recherches sur la Théorie de la Démonstration. Ph.D. thesis, Université de Paris.
Available from http://www.numdam.org/item/THESE_1930__110__1_0.

http://dx.doi.org/10.1017/S1471068409990111
http://dx.doi.org/10.1016/0304-3975(92)90164-B
http://dx.doi.org/10.1016/S0747-7171(85)80027-4
http://dx.doi.org/10.1007/978-1-4419-8047-2
http://www.numdam.org/item/THESE_1930__110__1_0


18 On separation, conservation and unification

[8] ISO/IEC JTC 1/SC 22 (1995): ISO/IEC 13211-1-1995. Information technology - Programming languages -
Prolog - Part 1: General core. https://www.iso.org/standard/21413.html.

[9] J. W. Klop & R. de Vrijer et al., editors (2003): TeReSe: Term Rewriting Systems, chapter First-order term
rewriting systems. Cambridge University Press. Excerpt on http://www.cs.vu.nl/~tcs/trs.

[10] H.-P. Ko & M. E. Nadel (1991): Substitution and refutation revisited. In: Proc. of ICLP, pp. 679–692.
[11] M. Kulaš (2017): A practical view on renaming. In S. Schwarz & J. Voigtländer, editors: Proc. WLP’15/’16

and WFLP’16, EPTCS 234, pp. 27–41, doi:10.4204/EPTCS.234.3.
[12] M. Kulaš (2017): A term matching algorithm and substitution generality. Technical Report IB 376-11/2017,

FernUniversität in Hagen. http://nbn-resolving.de/urn:nbn:de:hbz:708-dh5549.
[13] M. Kulaš (2019): Toward a concept of derivation for Prolog. To appear.
[14] J. L. Lassez, M. J. Maher & K. Marriott (1988): Unification revisited. In M. Boscarol et al., editors: Foun-

dations of Logic and Functional Programming, LNCS 306, Springer-Verlag, pp. 67–113, doi:10.1007/3-540-
19129-1 4.

[15] J. W. Lloyd (1987): Foundations of logic programming, 2. edition. Springer-Verlag, doi:10.1007/978-3-642-
83189-8.

[16] A. Martelli & U. Montanari (1982): An efficient unification algorithm. ACM Trans. on Prog. Lang. and
Systems 4(2), pp. 258–282, doi:10.1145/357162.357169.

[17] C. Palamidessi (1990): Algebraic properties of idempotent substitutions. In: Proc. 17th ICALP, LNCS 443,
Springer-Verlag, pp. 386–399, doi:10.1007/BFb0032046.

[18] G. D. Plotkin (1971): Automatic methods of inductive inference. Ph.D. thesis, U. of Edinburgh. Available
from http://homepages.inf.ed.ac.uk/gdp.

[19] Quintus Corp., Palo Alto, CA (1991): Quintus Prolog language and library. Release 3.1. Also on http:

//quintus.sics.se/isl/quintus/html/quintus.
[20] J. A. Robinson (1965): A machine-oriented logic based on the resolution principle. J. of ACM 12(1), pp.

23–41, doi:10.1145/321250.321253.
[21] Dept. of Comp. Sci. VU Amsterdam (2013): Study materials on term-rewriting systems. http://www.cs.

vu.nl/~tcs/trs.

A Proofs

Legacy 2.3 (idempotent composition, [2]). Let σ and θ be idempotent. If Ran(θ) 6./ Dom(σ), then θ ·σ
is also idempotent.

Proof. If x ∈̊ Ran(θ ·σ), then either x ∈̊ Ran(θ), or x ∈̊ Ran(σ),x 6∈ Dom(θ). In the latter case idem-
potency of σ additionally gives x 6∈ Dom(σ), so summarily x 6∈ Dom(θ ·σ). Let us now consider the
former case, x ∈̊ Ran(θ). Due to the additional assumption, x 6∈ Dom(σ), and due to idempotency of θ

holds x 6∈ Dom(θ), so here also x 6∈ Dom(θ ·σ). ♦

Lemma 2.6 (left monotonicity). If σ ⊆ θ and Dom(λ ) 6./ Dom(θ), then λ ·σ ⊆ λ ·θ .

Proof. The claim is clearly a corollary of Lemma 2.5. But it can also be proved more directly. The
property σ ⊆ θ means that for x ∈ Dom(σ) holds σ(x) = θ(x). Hence,

λ (σ(x)) =

{
λ (θ(x)), if x ∈ Dom(λ ·σ)∩Dom(σ)

λ (x), if x ∈ Dom(λ ·σ)\Dom(σ) ⊆ Dom(λ )

Due to Dom(λ ) 6./ Dom(θ), the latter value is equal to λ (θ(x)), so indeed λ ·σ ⊆ λ ·θ . ♦

https://www.iso.org/standard/21413.html
http://www.cs.vu.nl/~tcs/trs
http://dx.doi.org/10.4204/EPTCS.234.3
http://nbn-resolving.de/urn:nbn:de:hbz:708-dh5549
http://dx.doi.org/10.1007/3-540-19129-1_4
http://dx.doi.org/10.1007/3-540-19129-1_4
http://dx.doi.org/10.1007/978-3-642-83189-8
http://dx.doi.org/10.1007/978-3-642-83189-8
http://dx.doi.org/10.1145/357162.357169
http://dx.doi.org/10.1007/BFb0032046
http://homepages.inf.ed.ac.uk/gdp
http://quintus.sics.se/isl/quintus/html/quintus
http://quintus.sics.se/isl/quintus/html/quintus
http://dx.doi.org/10.1145/321250.321253
http://www.cs.vu.nl/~tcs/trs
http://www.cs.vu.nl/~tcs/trs


M. Kulaš 19

Lemma 2.9 (idempotent composition). If σ1, ...,σn are cascading and idempotent, then σn · ... ·σ1 is
idempotent.

Proof. It holds Dom(σi · ... ·σ1) ⊆ Dom(σi)∪ . . .∪Dom(σ1). This and the cascading property (1) give
Ran(σn) 6./ Dom(σn−1 · ... ·σ1). By induction on n and Legacy 2.3, σn · ... ·σ1 is idempotent. ♦

Lemma 3.1. For any term t and any substitution σ holds Vars(t)∪Vars(σ) = Vars(σ(t))∪Vars(σ).

Proof. Let x ∈̊ t. If x 6∈ Dom(σ), then x = σ(x) ∈̊ σ(t). By contraposition, any variables from t that are
missing in σ(t) can be found in Dom(σ). Analogously for the possible win. ♦

Lemma 3.2 (conservation I). For any idempotent substitution σ and any renaming ρ holds Vars(ρ ·σ)=
Vars(σ ·ρ) = Vars(ρ)∪Vars(σ).

Proof. The nontrivial half is to prove that any variable x from σ or ρ appears in both ρ ·σ and σ ·ρ .
Here we employ Dom(ρ) = Ran(ρ) = Vars(ρ) (by Legacy 1.2) and Dom(σ) 6./ Ran(σ) (by Legacy 2.1).

Case ρ ·σ : If ρ(σ(x)) 6= x, then x ∈ Dom(ρ ·σ). Otherwise, σ(x) must be a variable, of two kinds:
First, σ(x) = x; then also ρ(x) = x, i.e. x 6∈̊ ρ , x 6∈ Dom(σ). This leaves x ∈ Ran(σ), i.e. for some

z 6= x holds x ∈̊ σ(z), so x = ρ(x) ∈̊ ρ(σ(z)), hence x ∈̊ Ran(ρ ·σ).
Second, σ(x) = y 6= x and ρ(y) = x. Since y ∈̊ Ran(σ), by idempotency y 6∈ Dom(σ), hence y/x ∈

ρ ·σ , so x ∈̊ Ran(ρ ·σ).

Case σ ·ρ: If σ(ρ(x)) 6= x, then x ∈ Dom(ρ ·σ). Otherwise, there are two subcases for ρ(x):
First, ρ(x) = x; then also σ(x) = x, i.e. x 6∈̊ ρ , x 6∈ Dom(σ). This leaves x ∈ Ran(σ), i.e. for some

z 6= x holds x ∈̊ σ(z). If z 6∈̊ ρ , then z/σ(z) ∈ σ ·ρ , QED. If z ∈̊ ρ , there is y with y/z ∈ ρ , y 6= x, so
y 6= σ(z) and y/σ(z) ∈ σ ·ρ , QED.

Second, ρ(x) = y 6= x and σ(y) = x; here x ∈̊ Ran(ρ), x 6∈ Dom(σ), therefore x ∈ Dom(σ ·ρ). ♦

Lemma 3.3 (conservation II). If σ ,θ are idempotent and Dom(σ) 6./ Dom(θ), then Vars(θ ·σ) =
Vars(θ)∪Vars(σ).

Proof. It suffices to prove that any variable x ∈̊ σ ,θ appears in θ ·σ . Since Dom(θ) 6./ Dom(σ), by
Lemma 2.6 holds θ ⊆ θ ·σ . Thus it remains to consider the case x ∈̊ σ , x 6∈̊ θ .

If x ∈ Dom(σ): It is not possible that x/y ∈ σ and y/x ∈ θ , so x ∈ Dom(θ ·σ).
If x ∈̊ Ran(σ): Since x 6∈ Dom(θ), clearly x ∈̊ Ran(θ ·σ). ♦

Lemma 4.4 (binding rule preserves mgus). For every equation set E and every I-binding x = t:

1. UnifSet({x = t}∪E) = UnifSet(
( x

t

)
(E)) ·

( x
t

)

2. UnifSet(
( x

t

)
(E)) ·

( x
t

)
= UnifSet({x = t}∪

( x
t

)
(E))

Both claims also hold with MguSet instead of UnifSet, or with the argument being an equation sequence
instead of a set.



20 On separation, conservation and unification

Proof. Part 1: Subset claim can be proved by generality of mgus, similarly to [2, Lemma 2.24]: Assume
θ ∈ UnifSet({x = t}∪E), so moreover θ ∈ UnifSet(x = t). Hence, by Lemma 4.3 and Legacy 1.3 there
is λ with θ = λ ·

( x
t

)
. By choice of θ then λ ·

( x
t

)
∈UnifSet(E), so λ ∈UnifSet(

( x
t

)
(E)). Superset claim

is trivial: if λ unifies
( x

t

)
(E), by Lemma 4.3 we know λ ·

( x
t

)
unifies {x = t}∪E.

Part 2: For subset claim, assume λ unifies
( x

t

)
(E). Then λ ·

( x
t

)
unifies {x = t} ∪

( x
t

)
(E), by

Lemma 4.3 and idempotency of
( x

t

)
. For superset claim, assume θ ∈ UnifSet({x = t}∪

( x
t

)
(E)), so

moreover θ ∈ UnifSet(x = t). Hence, there is again λ with θ = λ ·
( x

t

)
. By choice of θ then λ ·

( x
t

)
∈

UnifSet(
( x

t

)
(E)), so λ ∈ UnifSet(

( x
t

)
·
( x

t

)
(E)) = UnifSet(

( x
t

)
(E)), again by idempotency. ♦

Legacy 4.5 (solved form, [16][2]). For any E0 and any choice of working equation, the transformation
in Figure 1 is certain to stop. If the stop is due to failure, then E0 is not unifiable. Otherwise, the final set
E is in solved form and Subst (E) is an idempotent mgu of E0.

Proof. Termination can be proved as in [2, p. 34], using lexicographic order � on triples of natural
numbers, built by a measure of an equation set M (E) ··= (#¬bs(E),#lfun(E),#(E)). Here #¬bs(E) is
the number of variables in E which are not bound singletons19. Next, #lfun(E) is the number of functor
occurrences on the left sides in E, and #(E) is the number of equations in E.

Clearly, transformation of /0 stops. If a step results in failure, transformation stops as well. Otherwise,
the step leads from an equation set E to an equation set E ′, while decreasing at least one component of
the measure, without increasing20 the earlier components (see Figure 5). Hence M (E)�M (E ′).

Since the measure cannot decrease indefinitely, transformation must come to a stop.
If the stop was due to failure, then E0 was not unifiable, due to Lemma 4.4. Otherwise, the final E

must be in solved form. One (clearly idempotent) mgu of such E is its associated substitution Subst (E).
Again by Lemma 4.4, Subst (E) ∈MguSet(E0). ♦

rule #¬bs(E) #lfun(E) #(E)
binding <
decomposition ≤ <
orientation ≤ <
cleaning ≤ = <

Figure 5: Measure decrease by Martelli-Montanari rules

Lemma 4.7 (simplification). If E is not already in form x = t, E ′ with x 6∈̊ t, then the rules common
to MM and RMM will either bring it in this form, or stop at �, or stop at a failure. In each case, the
unifiers will be preserved.

Proof. The common rules obviously preserve unifiers. The main claim shall be proved by induction on
lexicographically ordered pairs of natural numbers, in a similar vein as in the termination proof above.
Let L (n,k) mean the claim holds for equation sequences with n functor occurrences on the left and k
equations. Clearly, L (0,0) holds. Assume now a non-empty equation sequence with parameters n,k.

19In place of our “bound singleton”, [2, p. 34] uses the notion “solved variable”. While it does sound less complicated, it
could be misunderstood as suggesting that in a solved form all variables need to be solved.

20In particular, no bound singleton can be lost by applying Martelli-Montanari rules, so their number cannot decrease. Since
the total number of variables in E cannot increase, #¬bs(E) cannot increase.



M. Kulaš 21

If the leftmost equation is a binding, either the claim L (n,k) immediately holds, or it will be reduced
to L (n,k−1). Namely, a binding x = t either satisfies x 6∈̊ t (QED), or x ∈̊ t,x 6= t (failure:occurs-check,
QED), or it is x = x (to be removed by cleaning).

Otherwise, the leftmost equation has functors on the left, so if we don’t get failure: clash (QED),
then decomposition or orientation will reduce the claim L (n,k) to L (m, ) with 0≤ m < n.

By well-founded induction [6, Ch. 5.3], L (n,k) holds for any n,k, so the claim holds. Observe,
however, that not every n,k makes sense for the claim: in case k = 0 must hold n = 0. This, of course, is
due to dependence of arguments, namely n,k depend on the “real” argument, the equation sequence E,
and provide a measure of E, akin to the one in the termination proof. ♦

Theorem 4.10 (RMM). For any (even empty) equation sequences E and E ′ holds

1. if E is unifiable, then RMM((E,E ′))= RMM(σ(E ′))∗σ , where σ ∈ UnifSet(E)

2. otherwise, RMM((E,E ′)) must fail.

Proof. Since RMM transforms an equation sequence from left to right, and the new binding rule is
independent of the rest sequence, we know that RMM shall choose the same21 equations to transform in
E as in the concatenation E,E ′, as long as E is not “spent”.

For both parts of the claim we shall use induction on the number of variables in E.

Part 1, E is unifiable: For no variables, applying Lemma 4.7 on RMM(E) must give RMM((E,E ′))=
RMM(E ′), since failure cannot be reached (common rules preserve unifiers) and neither can an I-binding,
obviously. Assume the claim holds for at most n variables, and let E be a sequence with n+1 variables.
Again by applying Lemma 4.7 on RMM(E), either RMM((E,E ′)) = RMM(E ′), or for some x, t,E ′′

holds RMM((E,E ′))= RMM((x = t,E ′′,E ′)).
In the former case, RMM(E)= ε so since unifiers are preserved ε ∈ UnifSet(E), QED.
In the latter case, by Lemma 4.9 we get RMM((E,E ′)) = RMM((

( x
t

)
(E ′′),

( x
t

)
(E ′))) ∗

( x
t

)
, so by

preserving of unifiers and by inductive hypothesis there is θ ∈UnifSet(
( x

t

)
(E ′′)) such that RMM((E,E ′))=

RMM(θ(
( x

t

)
(E ′)))∗θ ∗

( x
t

)
. By Lemma 4.4, θ ·

( x
t

)
∈ UnifSet(x = t,E ′′), QED.

Part 2, E is not unifiable: By Lemma 4.7, E must reach one of the three forms, but due to preser-
vation of unifiers it cannot be �. In case of no variables that means failure (QED). In the inductive
case, either we reach failure (QED), or for some x, t,E ′′ holds RMM((E,E ′))= RMM((x = t,E ′′,E ′))=
RMM((

( x
t

)
(E ′′),

( x
t

)
(E ′)))∗

( x
t

)
. By Lemma 4.4, x = t,E ′′ and

( x
t

)
(E ′′) are equi-unifiable, but the latter

has less variables, so by inductive hypothesis it must reach failure, so RMM((E,E ′)) fails as well. ♦

Corollary 4.12 (idempotence for RMM). Assume RMM(E) succeeds, and σ ··=RMM(E). If the binding
rule was not applied, then σ = ε , otherwise σ = σn · ... ·σ1 6= ε , where σ1, ...,σn are the respective I-
bindings. At any rate, σ is idempotent.

Proof. I-bindings satisfy (3), which is a special case of (1), so the binding sequence σ1, ...,σn is cascad-
ing. Thus, by Corollary 3.4 σ 6= ε . By Lemma 2.9, σ is idempotent as well. ♦

Theorem 4.14 (coincidence). For every equation sequence E holds RMM(E)=MM(E).

21This clearly does not hold for MM.



22 On separation, conservation and unification

Proof. By induction on the number of variables in E. In case of no variables, using Lemma 4.7 we
obtain RMM(E)= ε , or RMM(E)= Failure(Info), and the same must hold for MM(E), due to the same
common rules applied. Assume the coincidence holds for sequences of up to n variables, and consider
a sequence E of n+ 1 variables. By Lemma 4.7, we either again have a halting case RMM(E) = ε

or RMM(E) = Failure(Info), with sure coincidence to MM(E), or we have a binding case RMM(E) =
RMM((x= t,E ′)) with x 6∈̊ t. In the latter case, we also have MM(E)=MM((x= t,E ′)) with x 6∈̊ t. Using
Lemma 4.9 and its pendant Lemma 4.13 eliminates x and completes the inductive step. ♦

Theorem 4.18 (MMB). For any function Tag : V→ N and any equation sequence E0, MMBTag(E)
stops and, in case of unifiable E0, produces a Tag-biased mgu of E0.

Proof. Termination can be proved with an equations’ measure that also takes care of bias, MMMB(E) ··=
(#¬bbs(E),#lfun(E),#¬b(E),#(E)), see Figure 6.

rule #¬bbs(E) #lfun(E) #¬b(E) #(E)
binding (MMB) <
decomposition ≤ <
orientation (MMB) ≤ ≤ <
cleaning ≤ = = <

Figure 6: Measure decrease by rules of MMB

Here #¬bbs(E) is the number of variables in E that are not “biased” bound singletons (i.e., x that
occurs just once, in x = t with Tag(x)≥ Tag(t)) and #¬b(E) is the number of “non-biased” equations in
E (i.e., s = t with Tag(s)< Tag(t)).

MMB unifies, which can be seen as in the proof of Legacy 4.5: upon termination, if the stop was due
to failure, then E0 was not unifiable, due to Lemma 4.4. Otherwise, the final E must be in solved form.
Clearly, any equation x = t in the solved form must satisfy Tag(x)≥ Tag(t). ♦

Lemma 4.19 (bias is compositional). If σ ,θ are Tag-biased, their composition is Tag-biased as well.

Proof. For each x ∈ Dom(θ ·σ) we need to prove Tag(x)≥ Tag(θ(σ(x))).
First consider the case x ∈ Dom(σ). If σ(x) ∈ Dom(θ), by bias of σ and bias of θ clearly Tag(x)≥

Tag(σ(x))≥ Tag(θ(σ(x))), i.e. the claim holds. Otherwise, σ(x) 6∈ Dom(θ), so θ(σ(x)) = σ(x), hence
by bias of σ the claim again holds.

In the remaining case x ∈Dom(θ)\Dom(σ), the claim holds by θ(σ(x)) = θ(x) and bias of θ . ♦

Lemma 4.26 (MguSet). For any renaming ρ and equation sequence E: MguSet(ρ(E))= ρ(MguSet(E)).

Proof. By definition of substitution renaming, for any substitution σ

ρ(σ)(ρ(E)) = ρ(σ(E)) (A.8)

Hence, if σ ∈ UnifSet(E), then ρ(σ) ∈ UnifSet(ρ(E)).
For the other direction, assume θ ∈ UnifSet(ρ(E)). Since we need a substitution of the form ρ( ),

and by Legacy 1.4 holds ρ(σ) = ρ ·σ ·ρ−1, we set σ ··= ρ−1 ·θ ·ρ . Then θ = ρ(σ), so by (A.8) holds
that ρ ·σ unifies E, thus σ ∈ UnifSet(E) (recall that equality is compatible with renaming).

Summarily, ρ(UnifSet(E)) = UnifSet(ρ(E)), so their maximally general subsets are the same. ♦



M. Kulaš 23

Lemma 5.1. Idempotent mgus σ1, ...,σn in a SLD-derivation G0 ↪−.K1:σ1 G1 ↪−.K2:σ2 ... are cascading.

Proof. Cascading is due to idempotence (and thus relevance) of mgus, and to standardizing-apart. To
see this, let us pick an index i and one of its valid increments k and show σi+k 6./ Dom(σi).

By definition of SLD-resolution, Vars(Gm)⊆Vars(Gm−1)∪Vars(Km)∪Vars(σm) for any m≥ 1. Due
to relevance of idempotent mgus (Legacy 2.4), an mgu σm can only have variables from the current query
Gm−1 and the current input clause Km, i.e. Vars(σm) ⊆ Vars(Gm−1)∪Vars(Km) for any m ≥ 1. Hence,
Vars(Gm)⊆ Vars(Gm−1)∪Vars(Km), so by iteration Vars(Gi+k−1)⊆ Vars((Gi,Ki+1, ...,Ki+k−1)).

Combining it with the previosly obtained Vars(σi+k)⊆ Vars(Gi+k−1)∪Vars(Ki+k) gives

Vars(σi+k)⊆ Vars((Gi,Ki+1, ...,Ki+k)) (A.9)

Applying an idempotent mgu eliminates its core variables (Corollary 2.2), so

Dom(σi) 6./ Gi (A.10)

Due to standardizing-apart of input clauses,

σi 6./ Ki+m for any m≥ 1 (A.11)

On the strength of (A.9) – (A.11) we obtain Dom(σi) 6./ σi+k. ♦

Theorem 5.2 (partial answer). Idempotent mgus σ1, ...,σn in a SLD-derivation satisfy

1. σn · ... ·σ1 is idempotent

2. σn ⊆ σn ·σn−1 ⊆ . . .⊆ σn · ... ·σ1

3. Vars(σn · ... ·σ1) = Vars(σn)∪ . . .∪Vars(σ1)

Proof. Owing to Lemma 5.1, σ1, ...,σn are cascading, so respectively Lemma 2.9, Corollary 2.7 and
Corollary 3.4 can be applied. ♦

Lemma 5.8 (HCL only). Assume free choice of mgu and program clause renaming. If ρ is a renaming
and G ↪−.s1 G1 ... ↪−.sn Gn, then ρ(G) ↪−.ρ(s1) ρ(G1) ... ↪−.ρ(sn) ρ(Gn).

Proof. Assume M,A,N was resolved with input clause K ··= (H :− B) and mgu σ ∈MguSet(H = A),
i.e. with score s= K :σ , giving resolvent σ((M,B,N)). By Lemma 4.26, ρ(σ) ∈ ρ(MguSet(H = A)) =
MguSet(ρ(H = A)) so ρ((M,A,N)) can be resolved with input clause ρ(K ) and mgu ρ(σ), giving
resolvent ρ(σ((M,B,N))), due to ρ(σ)(ρ(x)) = ρ(σ(x)).

Standardizing-apart is satisfied as well, since the relation “variable-disjoint” is compatible with re-
naming. ♦



Verzeichnis der zuletzt erschienenen Informatik-Berichte 

 
 
[367]  Hoyrup, M., Ko, K., Rettinger, R., Zhong, N.: 

CCA 2013 Tenth International Conference on Computability and 
Complexity in Analysis (extended abstracts), 7/2013 

 
[368]  Beierle, C., Kern-Isberner, G.: 
  4th Workshop on Dynamics of Knowledge and Belief (DKB-2013), 
  9/2013 
 
[369] Güting, R.H., Valdés, F., Damiani, M.L.: 
 Symbolic Trajectories, 12/2013 
 
 
[370] Bortfeldt, A., Hahn, T., Männel, D., Mönch, L.: 

 Metaheuristics for the Vehicle Routing Problem with Clustered 
Backhauls and 3D Loading Constraints, 8/2014 

 
 
[371] Güting, R. H., Nidzwetzki, J. K.: 

DISTRIBUTED SECONDO: An extensible highly available and scalable 
database management system, 5/2016 

 
 
[372] M. Kulaš 

A practical view on substitutions, 7/2016 
 
 
[373] Valdés, F., Güting, R.H.: 

 Index-supported Pattern Matching on Tuples of Time-dependent  
Values, 7/2016 

 
[374]  Sebastian Reil, Andreas Bortfeldt, Lars Mönch: 

         Heuristics for vehicle routing problems with backhauls, time windows, 
                       and 3D loading constraints, 10/2016 
 
[375]  Ralf Hartmut Güting and Thomas Behr: 

Distributed Query Processing in Secondo, 12/2016 
 
[376]  Marija Kulaš: 

A term matching algorithm and substitution generality, 11/2017 
 
[377]  Jan Kristof Nidzwetzki, Ralf Hartmut Güting: 

BBoxDB - A Distributed and Highly Available Key-Bounding-Box-Value 
Store, 5/2018 

 
 


	Introduction
	Overview of the paper
	Notation

	Variable separation for substitutions
	Variable separation within a substitution: idempotency
	Variable separation across substitutions
	Weak separation (core-disjointness)
	Strong separation (cascading)


	Variable conservation during instantiation and composition
	Unification by algorithm
	Martelli-Montanari scheme and its deterministic version, algorithm MM
	Algorithm RMM, a modular adaptation of MM
	Dissecting a termination proof
	Simplification: Finding a variable to eliminate (via common rules)
	Reduction: Eliminating the variable (via binding rule)
	Consequences for RMM
	Coincidence with MM
	``The'' classical unification algorithm

	Algorithm MMB, a biased derivative of MM
	Modular adaptation, RMMB
	Seniority-biased SLD-derivations

	Desirable properties of unification algorithms
	Compatibility with renaming
	Idempotency, relevance and anchor
	Iteration


	``Fresh'' renaming
	Excursion: idempotent mgus in SLD-derivations
	Fresh renaming by algorithm and some properties
	Structure-independent fresh renaming: thrifty  and prodigal 
	A missing property


	Related work
	Summary
	Bibliography
	Proofs

