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Abstract

In this paper, we propose a new model to describe vehicle dynamics in full
braking situations with collision avoiding motions. By combining the equa-
tions of the classic Ackermann-Model with conditions that ensure a stable
vehicle movement during simultaneous heavy braking and turning motions,
we derive a model that describes the set of controllable trajectories. We
describe these trajectories by compound motion equations in the x,y plane
that are directly computable. We discuss our model regarding uncertainties
and their effect on reachability analysis of vehicles in admissible scenarios, to
show the feasibility of our solution. We compare our model to the well known
Constant-Turn-Rate-And-Acceleration-Model which is computationally more
expensive and less precise. By considering uncertainties of the parameters
used in our model, we show a way to estimate the reachable area of a hard
braking vehicle.

Keywords: Reachability; Trajectory; Dynamic Vehicle Model; Safety;
Collision Avoidance; Braking.

1 Introduction

1.1 Motivation

Many functions in Highly Automated Driving (HAD) and Advanced Driving Assis-
tance Systems (ADAS) are discussed regarding their safety towards events caused
by other traffic participants, whose behavior is not well predictable. In case of
an unforeseen event, vehicles need to avoid a collision by a suitable trajectory. In
literature, these trajectories are often referred to as Fail-Safe-Trajectories. These
trajectories can either be evasive and try to find a solution around an obstacle or
bring the vehicle to an emergency stop. The vehicle is then forced to find a tra-
jectory till full stop within an area in front of the vehicle, which is defined by its
physical properties and speed vector. In this paper, we call this area the braking
area, which is important to know in many different applications. For example, when
defining the set up of on-board sensors, it can be useful to have a good knowledge
of the braking area. Also when searching for fail-safe trajectories, the knowledge
of the reachable set of vehicle states can significantly accelerate the computation,
as it reduces the search space and can therefore save valuable time in emergency
situations.
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**FernUniversitat in Hagen, Cooperative Systems, Hagen, Germany, icking@fernuni-hagen.de



Figure 1: A critical traffic situation. Left, two vehicles approach a T-crossing with-
out seeing each other. Right, vehicle v; is suddenly confronted with the long vehicle
vy which blocks the road. To remain safe, v; should always know its reachable area
in case of emergency braking.

1.2 Literature overview

Computing the braking area of a vehicle is related to finding fail-safe trajectories.
Methods for avoiding obstacles are numerous, see for example Werling et al. [I],
where the authors address dynamic street scenarios by an optimal control approach.
The method generates trajectories that are optimal in terms of jerk minimization
and following a previously computed trajectory. Another approach is explained
by Ziegler et al. [2]. They use a cost function to plan obstacle avoiding paths
in unstructured environments, but not on the description of fail-safe trajectories.
Several approaches towards finding fail safe trajectories for road vehicles exist. Pek
and Althoff [3] describe a method to generate fail-safe trajectories for dynamic traffic
scenarios in a computationally efficient manner. Their solution approximates the set
of reachable states of the ego vehicle and other traffic participants and can therefore
guarantee collision free trajectories. A motion planner for fail-safe trajectories is
shown by Magdici and Althoff [4]. A related application is presented in [5], where
a safety framework is demonstrated that can test a planned trajectory for possible
future collisions.

Mitchell et al. [6] discuss different approaches of reachability analysis of dynamic
systems for the safety assessment of trajectories. Asarin et al. [7] present an ap-
proach for reachability approximation of partially linearized systems in general. An
often applied technique to approximate the state space efficiently is by zonotopes,
see, e.g., the paper of Girad [8]. Koschi et al. [9] introduce an open source soft-
ware solution which predicts road occupancy by traffic participants within a given
time horizon. By overestimating the occupancy by the union of several object mod-
els, the authors ensure to find all possible traffic configurations. Potential braking
and turning is overestimated by a circle of lateral and longitudinal maximum and
minimum accelerations. The physical interaction between velocity and admissible
lateral accelerations are therefore overestimated. Althoff [I0] describes many un-
derlying concepts of reachability analysis for road vehicles. In contrast to formal
verification, ByeoungDo et al. [T1] propose a Recurrent Neural Net for predicting
traffic participants. Explicit braking and turning motions and their interrelation
are not in the focus. Our model provides a more detailed and accurate description



of this interaction in order to reduce the overestimation towards a more realistic
model.

The interrelation of braking and turning is, e.g., discussed by Giovannini et al. [12]
where the authors describe the last point in time when a collision can be avoided by
swerving. The authors explicitly focus their work on two-wheeled vehicles. Ack-
ermann et al. [I3] present control strategies for braking and swerving motions.
Choi et al. [I4] propose an additional strategy based on model predictive control.

1.3 Contribution

In this work, we present an accurate model for estimating not only a set of feasible
trajectories of a vehicle while braking and turning till full stop. We also discuss
the model regarding parameter uncertainties, to describe their effect on the overall
braking area. Thereby, we aim to overestimate the occupancy where necessary, while
reducing it where it is possible in order to provide both safety and accuracy.

In Section [2, we define a model that directly calculates vehicle trajectories to-
wards a full stop while simultaneously braking and steering. Braking and steering
always needs to be done in a balanced way, as both influence the controllability of
the vehicle on the road. We therefore introduce a parameter that describes the ratio
of this compromise. Furthermore, the friction between different road surfaces and
tires is considered, as well as the vehicles’ dynamic limits and initial state. In Sec-
tion [3] we discuss how uncertainties of the model parameters influence the braking
area. We thereby provide an estimation of the braking area in admissible situations.

2 Model definition

Physical model values are denoted as regular latin letters, while angles are denoted
as greek letters. Symbols used in this paper are summarized in the Table [I]

Table 1: Symbols used in this paper.

Symbol Description Unit
v Velocity m/s
X; Model state at time —
P Position € R? m
KXstop Stop state, v =0 —
Y Yaw Angle rad
b Braking Factor -
t Time S
a Maximum admissible acceleration | ™/s2
Tturn Minimum turning radius m
T Interval of admissible values for e —
® ins ®max Extreme values of Z, -
f(t), f(t) | Lower/Upper part of function f(¢) | -




2.1 Assumptions

Our model builds upon assumptions that describe braking and turning in the fol-
lowing order of priority:

1. The vehicle needs to stop as quickly as possible.

2. By steering, the vehicle must try to avoid obstacles if ever possible, or minimize
an unavoidable impact.

These assumptions hold in many situations where a collision can only be prevented
by a full stop of the vehicle, as sketched out in Figure [l Due to the high speed of
vg, the other vehicle v; can only react to the depicted incident by quickly stopping.
The purpose of the following model is to predict the set of possible trajectories in
space and time during braking maneuvers in such situations.

2.2 Model derivation

Our model builds on the so called friction circle, e.g. described by Pacejka [15].
As the modeled vehicle is braking in order to come to a full stop quickly, it will
always be located near the boundary of this circle, either due to braking only, or by
braking and turning in combination. Staying at the boundary of the friction circle
means that the vehicle remains controllable in such an extreme maneuver. The basic
concept of the friction circle is shown in Figure 2] The combined acceleration ayes
is the vectorial sum of the centripetal acceleration aeen = vt and the longitudinal
acceleration ajo,. An a,s > @ can not be achieved, because the tires would loose
their grip.

Figure 2: Friction circle in the a,,a,-plane. Radius 7 is equal to the maximally
applicable acceleration a between vehicle and road surface.

Note, that the friction circle as shown in Figure [2|is an idealized and simplified
model of tire forces. A more accurate model like the friction ellipse [I5] will be
implicitly considered in the reachability estimation in Section [3| by introducing a
high uncertainty in a. The circle leads to the following equation:

s = \Ja2 + = 00 (1)



For a braking and turning maneuver in an emergency situation, we want to keep
the vehicle controllable but also apply the strongest acceleration possible in order
to react effectively. This constraints the vehicle to operate on the boundary of the
friction circle, as described by .

a= /()2 +ai, 2)

2.2.1 Interrelation between braking, steering and yaw rate

The yaw rate 1/1 describes the change in yaw angle ¢ of a vehicle over time. As
the acceleration a, results from a combination of braking and steering, the ratio
aon /5 causes different trajectories. We define this ratio by the factor b, as declared
in , further on called Braking Factor. We call b Braking Factor, as it describes
the percentage of a that is applied for braking rather than turning. A b value of
—0.5 means that 50% of the applicable acceleration is applied for braking. Note,
that a is positive, but when braking aj,, is negative, hence we choose b € [—1,0].

b — alon (3)

N

a
Solving (2)) for y yields a description of é(t), see .

av'1l—b?
u(t)
Equation describes the yaw rate g(t) of a vehicle that stays at the boundary

of the friction circle with radius a. This describes the interrelation between braking,
steering, and yaw rate.

d(t) = (4)

2.2.2 Vehicle yaw angle as function of time

The vehicle’s yaw angle 1) determines its travel direction, so a description of v (t) is
required for the model, as shown in .

Mﬂ=/é®ﬁ=2®@@%%ﬂw»+% (5)
U(t) = alont + Vo (6)

Z=b"V1-1 (7)

where v(t) is the linear speed equation (6]) and Z is a constant described by (7).
The angle ¢(t) rises in its absolute as the speed v falls. Figure |3| depicts this
relation for an exemplary vehicle. The major flaw of this description is that the yaw
rate tends towards co. This is not possible for any real vehicle, as the limit for a
real vehicle is reached when the steering wheel reaches its maximum position and
the minimum turning angle is performed. This effect is depicted in Figure [3|in the
dashed line. As the speed approaches zero, y(t) approaches co. A realistic model

must therefore respect the smallest turning radius rem. As ¥ of a moving object is
also defined as



where 7 is the radius of the object’s circular path, the maximal w(t) can be described

by .
G(t) = (8)

By solving

av1l—0v2  o(t)

alont + Vo Tturn

for t we know the time t.;; at which the yaw rate will reach its mechanical maximum,

as shown in @
tcrit = Tturnd Lt k. (9)

Qlon

At times above t.i we therefore describe the yaw angle by E = f Z(t)dt, as
shown in ([10)), in order to derive a realistic model.

1 2
_ t S@ont” + vot + const;
U = [y 2l 20 : (10)
Tturn Tturn
where consty; must be defined in a way that the condition
77ZJ(tcrit) = E(tcrit) (11)

holds. The condition means that the angle at t.; must be equal for both
and . It yields consty as:

1
consty = Tum ¥ (erit) — ialontz — vgt (12)

The sectionally defined yaw angle ¢, consisting of 1 and 1, is plotted in Fig-
ure [3] (solid line). Note, how ¢ now drops with falling speed, which directly follows
from . The dashed line plots ¢ (t), which approaches oo as the speed approaches
zero. This follows from its property to be at the boundary of the friction circle. At
low speeds, this can only be achieved by high yaw rates.

o7 == 2 /
= 44— () S
H g
= 9 - ”/

oy
| /
O 1 1 1
0 1 2
tls]

Figure 3: The yaw angle ¢) over time ¢ during braking and steering. Dashed line
plots ¢(t). Solid line plots the combined stepwise definition () which considers
the turning radius 7¢um for ¢ > .



The final description of 1 (¢) is defined stepwise in ({13]).

%(t% 0 S t S 2(:crit
v(t) =19 _ (13)
?/J(t% tcrit <t S tstop
Note, that due to the equality condition of yaw angles in and the definition

of e In @[) the final yaw angle (t) is differentiable. Also note, that then t > t.;,
the vehicle in our model is no longer at the boundary of the friction circle.

2.2.3 Vehicle position as function of time

A description of vehicle position p(t) = [z, y] is described as the compound equations
for x and y, which follow from the integrals:

Solving the integrals yields:

_ o(®)* (Zsin(¥(t) + 2 cos(¢(1)))
&(t) - Qon (22 + 4) + C£ (14)

E(t) = Tturn Sln(w(t)) + Of (15)
These equations describe position over time z(t) and y(t). See stepwise for

x(t).

14 ) 0<t< tcri
o) = {20 DS o
l’(t), tcrit <t S tstop

The constant C,, is bound by the conditions z(0) = x¢, which means the vehicle
must be at the starting position at time ¢,. The constant for =, C; is bound to hold
the condition T(teit) = Z(terit), which means that x must seamlessly — e.g. in value
and gradient — be continued by T at t.. The result for both constants is described

by and (18).

(16)

g (Zsin(th) + 2 cos(¢h))
Cy =0 o (22 + 1)
Cf = x@crit) — Tturn Sin(w@crit)) (18)

The general description for y(t) is shown below in (21)), and can be derived
analogously to x(t).

(17)

__o(®)* (Zeos(y(t) — 2sin(4(1)))
(t) B Qlon (22 + 4) - Cg <19)

(t) = —rgun cos(¥(t)) + Cy (20)

<

<



y t ) O S t S tcri
TORR t 1)
y(t)7 tcrit <t S tstop

o vE (Z cos(1y) — 2sin(ty))
g Qo (22 + 4)
C@ = y<tcrit) + Tturn Cos<w(tcrit))

The trajectory of a braking and turning vehicle is described as p(t), by the
compound z- and y-position in Cartesian coordinates over time. How the more
realistic yaw angle description influences the resulting position can be seen in a direct
comparison in Figure [l The vehicle performs a spiral shape until the maximum
turning angle is reached, which is clearly visible in Figure [dbl In a real situation,
this trajectory with such a low b value will most likely not be considered feasible for
braking, it rather demonstrated the spiral nature of our model. Note, that all other
b € ]—1,0[ also describe spirals, only less clearly visible as in Figure .

30
20
£
>
10 A
0 -
I I I
0 5 10
a[m]
(a) Calculated position p(t) with (b) Calculated position with
b=—0.5. b= —0.085.

Figure 4: Vehicle position p(t) in x,y plane with different values for b. Dashed line,
the model result without considering r,,. Solid line, the model considering 7,
using the final model equations.

In the next step, we compare our trajectories to simulative results of another
model.

2.2.4 Comparison of our model against CTRA model

To evaluate our model’s performance with respect to calculation time and to show
its correctness, we compare it to a CTRA-model [16] Constant Turn Rate and Accel-
eration in a simulation. The CTRA simulation iteratively moves a vehicle, such that
our condition in is fulfilled, and the assumptions introduced in Section [2| hold.



The simulation therefore calculates effectively the same maneuvers as our model,
but in a very different way. We choose the CTRA-model, as it is well known, allows
the vehicle to follow a spiral shape and has the same state space representation as
our model. The turn rate and acceleration is assumed to be constant within one of
many consecutive time steps At.

The result in Figure |5 shows that our model matches the shape of the CTRA-
model well, without introducing linearization errors as the CTRA model does.

10 4 Our model 10 - CTRA
ERE E 01
> >
—10 - —10 1
1 1 1 1 1 1
0 10 20 0 10 20
a[m] a[m]
(a) Our braking model. (b) CTRA model, At = 0.0075s.

Figure 5: Comparison of our model to the CTRA model for 40 vehicle trajectories
with linearly sampled b values. The starting conditions for both tests are vy =
16.67m/s,a = 10m/s2, 7oy = 12.5m, g = 0 rad.

Both results from Figure [5| show a very similar structure. Note that the CTRA
model (Figure has slightly longer trajectories, especially in the outer arms of
the structure. This is caused by the CTRA-model’s assumption of a constant turn
rate 1&, which is not correct in this kind of non-linear maneuver. In our model
(Figure , the only assumption is that of a constant acceleration, as introduced in
Section 21

The main advantage of our model is the fact that we can directly compute
certain vehicle positions straight from the formulas derived in Section [2 such that
time intensive calculations are not necessary. A comparison of computation times
tcale in seconds, and their deviation oy, over 10 runs is shown in Table . In the
first test, only the stop states where computed of 1000 different b values. In the
second test, a whole pearl chain of positions from start to stop was computed, with
250 points per b value.



Table 2: Comparison to the CTRA model.
Calculate 1000 possible stop states, At = 0.01112s

m 5 m/s 10 ™/s 20 m/;

Mean Mean Mean

tcalc [S] Tteate tcalc Tteate tcalc Feale
CTRA 1.0715 | 0.0137 | 2.1975 | 0.0052 | 4.9310 | 0.1073

Our model | 0.2059 | 0.0053 | 0.2078 | 0.0017 | 0.2144 | 0.0075
Calculate 1000 trajectories, 250 samples per trajectory, At = 0.01112s

Vo 5) m/s 10 m/s 20 m/s

Mean Mean Mean

tcalc Tteate tcalc Tteate tcalc Oteatc
CTRA 1.0870 | 0.0207 | 2.2335 | 0.0096 | 4.9761 | 0.0814

Our model | 0.2310 | 0.0017 | 0.2326 | 0.0021 | 0.2320 | 0.0011

The table shows that our model is up to 20 times faster in terms of computing
time than the CTRA model, especially for high initial velocities vy. This is caused
by the fact that CTRA must iteratively compute time steps until the stop position
is found, whereas our model can directly compute the stop state.

3 Model uncertainties

In this section, we discuss the effect of individual uncertainties in the model pa-
rameters 7., @ and the initial vehicle state Xy = [0, yo, vo, z/JO]T. We model the
uncertainties as intervals Zg,Zx, that contain all possible values.

3.1 Highest possible deceleration a

The highest possible deceleration heavily depends on the road and tire conditions,
which are often uncertain. The interval Z; therefore covers the most slippery and
most rough road condition possible. Calculating different stop states Xgop with
different values for a reveals an almost linear behavior within expectable values of
a e I@.

The resulting shape of 50 different a € Z; can be seen in Figure where lower
values of a lead to a farther vehicle trajectory with an almost linear behavior.

3.2 Smallest possible turning radius 7¢urm

The smallest possible turning radius r¢,, is a vehicle inherent parameter which
influences the trajectory after t..;; and also defines the value of t. itself. Although
there are certain legal requirements for ry,., depending on vehicle class, the exact
value is uncertain, especially when considering other traffic participants.

Any ryym € Z,.,,,, causes a different stopping position. Unfortunately, the lowest
or highest r,;, not always leads to the outmost stopping position. By observing the
stopping positions depending on 7y, one can see that the shape of all stopping
positions with different ry., € Z,,... forms a spiral with a rising radius. Let A be

turn
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[m] [m]
(a) Resulting trajectories at interval (b) Resulting trajectories at intervals
T, = [4,12]m/s2. T = [4,12]m/s2,
T,, = [15.3,18.1] m/s

Figure 6: Two sets of trajectories with a b value of —0.6. Left, only considering
7,. Right, considering Z; and Z,,. A line segment shows the extending effect of the
parameter uncertainties on the top half.

the stopping position of the lowest 7um, A = Xstoplriwrn.mins 804 B = Xstop|rewrm.mae-
The circle with radius r = dist(A, B) at center A then includes all points of the
spiral, which means all stopping positions can be overestimated by such a circle. By
describing this distance as function d = f(a, vp), it can be shown that the maximum
distance is at diar = f(@mins Vo.maz)- Figure [7] shows an example of such a circle.

4.0 (‘\ ‘I
E 357 - I
S . /
3.04 +* Tturn,min 7
T
95 [ turn,max /‘
1 1 1
5 6 7 8
z[m]

Figure 7: Effect of Z,

Tturn

stopping positions caused by different ry,., € Z,

on Xgop. The figure shows how a circle can surround all
= [le—7,13]m.
In order to show the spiral effect in Figure , we assumed Z,

Teurn [16_77 13]m
and vy = 10™/s, which results in a circle radius of ~ 2.4m. For a more realistic
scenario of Z,, . = [7,13]m and vy = 10™/s, the radius of the circle is ~ 1.3m.

Tturn

3.3 Initial velocity vg

The uncertainty in the initial velocity Z,, determines the stopping distance similarly
to Z;, as it stretches the possibly reachable positions farther from the start. This
means the closest reachable position is defined by v min and @z, Which stands for a
very rough road-to-tire surface. In contrast, the farthest reachable stopping position
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is defined by the highest velocity vg e, on the most slippery road @y, possible. An
example of the resulting shape is shown in Figure [6b]

3.4 Initial position

The initial position of the vehicle will always be uncertain, as no perfect localization
is possible. The effect of an uncertain starting position (zg,yo) is however not
complex, as a different starting position of Az, Ay simply causes a translation of
the complete reachable area of Az, Ay.

3.5 Initial yaw angle

The initial yaw angle rotates the complete reachable area around the starting po-
sition of the vehicle. Figure shows an example of this effect, where Z,, =

[—7 /32,7 /32].

3.6 Combination of all uncertainties

So far, we discussed the uncertainty of parameters separately. To describe and
overestimate all system states that can potentially be reached under all uncertainties
is not in the scope of this paper. In order to do so, a formal reachability analysis
must be performed, compare for example [5] 6, 10, [17].

10 - ) 90 -
5 - & 10 -
BN < E
_5 - ) —10 A
~10 4 it —20 -
I I I 1
0 10 0 20
x[m] x[m]
(a) Trajectories at interval (b) Trajectories at interval
Ty = [—7/32,7/32]. T, = [7,11)m/s? T, ... = [7,13]m,
Other parameters, b = —0.6, Ty, = [15.3,18.1]m/s,
a = 4m/s? vy = 15.3m/s, Ly, = [—7/32,7/32]rad,
Tturn = 12.5m. Toy =1y, = [-1,1m.

Figure 8: The effect of uncertain parameters. Left, only Z,, is considered. Right,
all parameters are assumed uncertain.

By sampling all parameters from Z and calculating all combinations, we can
estimate the reachable area non formally by the union of the resulting shapes.
In Figure we show such a result, where Z, = [7,11],Z,,... = [7,13],Z,, =

[15.3,18.1],Zy, = [—"/32,7/32],1,, = I,, = [—1,1]. We sample 3 parameters of
each interval.
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4 Conclusion

In this paper, we present a model for hard braking and collision avoiding vehicle tra-
jectories. We take into account the maximally applicable acceleration/deceleration
between tires and road surface, the minimal turning radius, the vehicle velocity, as
well as starting position and heading. We explain our approach in detail and com-
pare our model equations with an iterative CTRA-model simulation, which finds
very similar solutions. However, in tests we could show that our solution computes
stopping positions and trajectories up to 20 times faster than CTRA. By solving
the compound differential equations for position in x, y-plane, we describe the com-
plete vehicle motion till full stop, while also turning and still respecting the friction
circle. With the derived equations, we can directly compute possible positions that
a vehicle will reach in a braking and collision avoiding scenario. This might be used
to generate braking and collision avoiding trajectories, by sampling our model for
different feasible motion primitives, which can be computed in very short time.

We contribute a model that can aid in solving reachability problems for hard
braking vehicles in an accurate and yet overapproximative way, considering all un-
certainties in model parameters and start state of the vehicle.

As next steps, the proposed model for vehicle motion can be compared to the
trajectories of real vehicles under the same assumptions given. Another next step
might be the usage of our model for fast generation of braking trajectories by sam-
pling motion primitives and compare the solution to other state of the art methods.
As we can directly compute motion primitives for the highly non linear motions in
braking and collision avoidance the proposed model can significantly reduce valuable
trajectory generation time. Another aspect that can be tested is to apply our model
in a formal reachability analysis for risk assessment in hard braking traffic scenarios
and compare the solution to other contributions in the field of reachability analysis.
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