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J. Dünnebacke, S. Turek, P. Zajac, and A. Sokolov

Abstract We present a time-simultaneous multigrid scheme for parabolic equations
that is motivated by blocking multiple time steps together. The resulting method is
closely related to multigrid waveform relaxation and is robust with respect to the
spatial and temporal grid size and the number of simultaneously computed time
steps. We give an intuitive understanding of the convergence behavior and briefly
discuss how the theory for multigrid waveform relaxation can be applied in some
special cases. Finally, some numerical results for linear and also nonlinear test cases
are shown.

1 Motivation

Modern high performance computing systems feature a growing number of proces-
sors and massively parallel co-processors, e.g. GPUs, while the performance of each
processor does barely increase or even stagnates. To efficiently use such supercom-
puters the algorithms have to bemassively parallel. The usual time stepping approach
to solve time dependent partial differential equations (PDEs) is inherently sequential
and does only allow spatial parallelization. If we want to simulate problems with
a relatively low number of spatial degrees of freedoms (DOFs), we can only use a
certain degree of parallelism, while the number of time steps may be very high due
to a long time frame or short time steps. These simulations can not be sped up even
if there is more parallel compute power available.

The parallel scalability is limited because the communication between the pro-
cesses will outweigh the actual computation time, if too many processes are used.
It is important to note that usually the main cost of the communication stems from
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latency and not from limited bandwidth. If the number of communication operations
is reduced by communicating more data at once, the scaling behavior can be im-
proved, so that more processors can be used efficiently in such simulations (see Fig.
3). To achieve this we have to abandon the sequential time stepping.

There already exists a lot of work on time parallel integration. Many methods are
based on integrating ODEs parallel in time. The most prominent examples of this
group are Parareal [6] and its variants. Another group of time parallel methods is
based on solving a global discrete systemwith multigrid methods. The first parabolic
multigrid was developed by Hackbusch [3]. Other representers of such schemes are
the one developed by Horton and Vandewalle [4] as well as the recent variant by
Gander andNeumüller [2]. Themethod our approach resembles themost is multigrid
waveform relaxation which was first published by Lubich and Ostermann [7]. For a
more complete overview on parallel in time methods, we refer to [1].

2 Time-simultaneous multigrid

In the following, we propose a multigrid scheme that computes many time steps
simultaneously but relies solely on spatial parallelization. Here, we start with a
second order parabolic evolution equation

mCD(G, C) − L(C)D(G, C) = 5 (G, C) (G, C) ∈ Ω × (0, )) (1)

with suitable initial and boundary conditions. L(C) is a linear elliptic operator for
every C ∈ (0, )). As discretization schemes we consider linear one- or multistep
methods in time and finite element (FE) or finite difference (FD) methods in space
so that the discrete linear systems of equations (LSE) can be written as
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The main idea is to reorder the unknowns from a space-major ordering

ū = [D1,1, . . . , D1,# , D2,1, . . . , D2,# , . . . , D ,1, . . . , D ,# ]

to a time-major ordering

u = [D1,1, . . . , D ,1, D1,2, . . . , D ,2, . . . , D1,# , . . . , D ,# ] ,

where D:,8 = (u: )8 denotes the 8-th degree of freedom at the :-th time step. Re-
ordering the right hand side vector f̄ and the global matrix �̄ accordingly leads to
the time-blocked system matrix � and the vector f. The Matrix � has the same outer
block-structure as the matrices �:,; , but each block is a lower triangular  × matrix
with " + 1 diagonals.

Now, when we adapt the spatial multigrid method for those systems, we treat each
block of the matrix as one entry and use the same transfers and smoothers we would
use in a sequential time stepping approach. In our work, we take a Jacobi smoother
given by the iteration

u<+1 = u< + l�−1 (f − �u<) , (4)

where � is the block-diagonal part of the reordered matrix � and l ∈ R is the
damping parameter. As we are formally treating the matrix � as a matrix of blocks,
we have to use the complete block-diagonal of � to construct the matrix � instead of
only using the main diagonal of �. This leads to a block-Jacobi smoother with block
dimension  . Different smoothers that can be written in the form of eq. (4) with
different block-matrices � are applicable in the same manner. The transfer operators
are constructed by the same reasoning leading to semi-coarsening in space which
means that the transfers in space are applied to each time step independently and
the temporal grid stays the same across all levels. With these transfer and smoothing
operators the usual multigrid algorithm can be used to solve the LSE incorporating
multiple time steps simultaneously.

2.1 Intuitive explanation for small and large time steps

We want to give a short intuitive understanding of two special cases that can help
to tweak the algorithm in practice. To do this we consider the one dimensional heat
equation. In the most simplistic case of central differences as space discretization
and an implicit Euler time discretization the discrete scheme is given by

1
g
(D:,8 − D:−1,8) −

1
ℎ2 (D:,8+1 − 2D:,8 + D:,8−1) = 5:,8 (5)

with the (fixed) spatial grid size ℎ and the (fixed) time step size g.
Therefore, the matrix entries belonging to the time derivative are of size O(g−1)

whereas the values belonging to discrete Laplace operator are of size O(ℎ−2). To
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describe the ratio between them we introduce the anisotropy factor _ = g

ℎ2 that is
widely used in the convergence analysis of space-time multigrid methods [2, 4, 11].

As this parameter depends on the temporal and spatial grids, it changes on dif-
ferent levels of the multigrid scheme. Furthermore, it changes locally on each level,
if local refinements or space and time dependent diffusion coefficients are used.
Consequently the multigrid method should yield fast convergence for all possible _.

In the extreme case _→∞ the matrix entries belonging to the spatial discretiza-
tions prevail. If we ignore the significantly smaller values with a factor of g−1, each
block of the global matrix becomes diagonal, so that the global system consists of  
independent # × # systems. Thus, using the time-blocked multigrid is equivalent to
solving each time step with a multigrid scheme on its own. This consideration holds
true for all BDF-like time discretizations. Other time discretizations show a similar
behavior (see Sect. 3). In the opposite case of _↘ 0 the values of the time derivative
dominate and therefore the global system becomes block-diagonal, if the mass ma-
trix is diagonal. A diagonal mass matrix arises naturally in FD discretizations or can
be created by using finite elements with mass lumping. With those block-diagonal
matrices the undamped block-Jacobi smoother (l = 1.0) becomes exact and the
multigrid solver converges in one step.

An undamped Jacobi smoother is not a suitable smoother generally and we do not
want to choose the damping parameter l based on _ manually. Instead, we suggest
to use different smoothers, like the Krylov subspace methods BiCGSTAB [9] or
GMRES [8] with the block-diagonal matrix � as a preconditioner. These smoothers
yield convergence rates similar to the Jacobi smoothing with comparable effort for
large _, while they can recover the convergence in one step in the case of _↘ 0 and
a diagonal matrix (see Sect. 3).

2.2 Characteristics of the proposed method

The time-simultaneous multigrid scheme can be interpreted as a variation of multi-
grid waveform relaxation (WRMG) (c.f. [7, 5]). Multigrid waveform relaxation
methods are based on discretizing the PDE in space and applying a multigrid split-
ting to the stiffness matrix of the semi-discrete ODE system. When using finite
elements such a splitting has to be applied to the mass matrix as well to be able
to solve the ODEs that arise in every step of the algorithm independently. These
methods are equivalent to the time-simultaneous algorithm if a multigrid splitting
with a smoother of the form (4) is used for the mass and stiffness matrices and if
the same linear multistep method is used to solve every ODE in the multigrid wave-
form relaxation scheme. Therefore, we do not provide a more detailed convergence
analysis but refer to the literature on WRMG [11, 5].

Remark 1 As was shown by Janssen and Vandewalle [5] the time discrete WRMG
method for finite elements with a time constant operator L converges and yields the
same asymptotic convergence rates as the traditional multigrid algorithm in the time
stepping case, if the coarse grid system matrix �0 and the preconditioning matrices
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�; on each level ; are regular. Due to the equivalence of both methods this result
holds true for the time-simultaneous algorithm.

The spectral radius of the iteration matrix is bounded, but that does not imply that
the defect reduction in each iteration is bounded as well, since the iteration matrix
is not symmetric. For more complex smoothers like BiCGSTAB and GMRES with
a time-blocked preconditioner the result mentioned in remark 1 – that is based on
the spectral radius of the iteration matrix – cannot be applied, because the resulting
multigrid iteration is not linear.

The number of necessary floating point operations (FLOPs) in each iteration of
the time-simultaneous method with  blocked time steps is still linear in the number
of unknowns # . Compared to the time stepping casewhere a #×# system is solved
by a multigrid method in  time steps, the cost of the grid transfer per iteration and
time step is the same. The cost of the defect calculation per iteration and time step is
slightly higher in the time-simultaneous case, because the global matrix has a higher
bandwidth. The application of the block-diagonal preconditioner � in the smoothing
operation (4) also has linear complexity, as each block is a lower triangular matrix
with " bands and can be solved by forward substitution.

While the number of required FLOPs of the time-simultaneous method is slightly
higher, the number of required communications per multigrid iteration and time step
is reduced by a factor of  −1, because one multigrid solve yields the solution to
 time steps. Consequently, the latency induced time of the communications can
be lowered and better parallel scaling is possible. In order to actually achieve this a
telescopic multigrid scheme, where on coarser levels fewer processes are used, needs
to be applied. When only a single process is used on the coarse grid, the coarse solve
can also be done by time stepping, since no communication is necessary.

The lower triangular solves are inherently sequential, therefore, parallelization in
time direction is not trivial. Nevertheless, it is still possible using parallel triangular
solvers (c.f. [10]).

To solve non-linear evolution equations we use a time-simultaneous fixed-point
or Newton iteration. Using a time stepping scheme we would discretize the equation
in time and apply the linearization in each time step, but now we want to solve
multiple time steps simultaneously. Therefore, we have to linearize the PDE itself or
the global non-linear discrete system.

3 Numerical results

In the following, we provide some exemplary results. As a linear test problem we
choose the heat equation

mCD − ΔD = 1 + 0.1 sin(C) (G, C) ∈ (0, 1)2 × (0, ))
D(0, C) = D(1, C) = 0 C ∈ (0, ))

D(G, 0) = 0 G ∈ (0, 1)
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with linear finite elements withmass-lumping as space and a Crank-Nicolson scheme
as time discretization. The time-blocked multigrid algorithm uses the F-cycle with
one block-Jacobi preconditioned BiCGSTAB pre- and post-smoothing step. For each
test 1000 time steps were computed using a different number of blocked time steps.
Additionally, we solve the same problem by time stepping and the stationary problem
with the samemultigrid configuration to create reference results. This was done using
spatial grids with grid sizes ℎ = 1

32 and ℎ = 1
128 . The results are shown in Fig. 1 and

2.
The number of iterations for very small and large time steps behaves as expected.

For _ � 1 the number of iterations needed to reduce the global defect by a factor
of 10−8 is independent of the block size and corresponds to the number of iterations
that are needed in the stationary test. In the case of _ � 1, the multigrid algorithm
converges in one step and in between the number of iteration is at most slightly higher
than in the case of large time steps. The onlymajor difference between different block
sizes is that the transition area between small and large time steps shifts to smaller
time steps if the block size increases.

Comparing the results of different spatial grids shows that the grid size only
affects the convergence speed due to its influence on _. Other linear multistep meth-
ods, higher order finite elements and different test cases show the same qualitative
behavior.

To demonstrate the possible benefits of this approach we show the results of
a strong scaling test with the same configuration (see Fig. 3) and grid sizes of
ℎ = 1/256 and g = 0.001. The method was implemented using the C++ based
software package FEAT31 and the tests were executed on the LiDO3 cluster2.

With sequential time stepping the best run time is achievable with 32 CPUs and
using more processors yields no benefit. Due to the computational overhead, the
time-simultaneous approach needs approximately twice the time for low core counts
but provides better scaling. Even with a small block size of 20 time steps, more
processors can be efficiently used and the run time can be reduced, but with greater
block sizes the time-simultaneous scheme scales even better.

To investigate whether this method can be used for non-linear problems we study
the behavior of a time-simultaneous linearization with the one-dimensional viscous
Burgers’ equation

mCD − YmGGD + DmGD = 0 (G, C) ∈ (0, 1) × (0, ))
D(0, C) = 1 , D(1, C) = 0 C ∈ (0, ))
D(G, 0) = max(1 − 5G, 0) G ∈ (0, 1)

with the viscosity 0 < Y ∈ R. Here, we use a FD-discretization with upwind
stabilization as discretization in space and Crank-Nicolson in time.

The number of necessary fixed point iteration 8C to achieve a global defect re-
duction by 10−6 depends on the simulated time frame in the case of small diffusion

1 http://www.featflow.de/en/software/feat3.html
2 https://www.lido.tu-dortmund.de/
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Fig. 1 Number of iterations in the heat eq. test
case with different time step sizes and block
dimensions, ℎ = 1/32

Fig. 2 Number of iterations in the heat eq. test
case with different time step sizes and block
dimensions, ℎ = 1/128

Fig. 3 Strong scaling test:
Solver time for a increas-
ing number of processors,
ℎ = 1/256 (65536 spatial
elements), g = 0.001, ) = 1
(1000 time steps)
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coefficients Y. For example, in the case of ) = 1, g = 0.05 and Y = 10−3 the
non-linear solver needs 45 iterations, whereas the averaged number of iterations per
time step 8CA4 5 is only 14.25 in the time stepping approach. If the time step size
is decreased the number on non-linear iteration in the time stepping case decreases
while the global fixed-point iteration does not even manage to converge in 50 steps.
Therefore, a time-simultaneous fixed-point iteration is not suitable for the Burgers’
equation with a small viscosity.

The Newton scheme provides quadratic convergence if the initial guess is close
to the solution. Thus, we compute the solution for the same problem with 2ℎ, g and
2Y and use it as the initial guess for the simulation with the grid sizes g, ℎ and the
viscosity Y. Using those starting values the number of iterations shows only a slight
increase if a longer time frame is calculated simultaneously and in those tests at most
5 iterations are necessary to achieve the desired defect reduction (see Tab. 2).

4 Conclusion

We have presented an algebraic approach leading to a time-simultaneous multigrid
method that is closely related tomultigridwaveform relaxation. The proposedmethod
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n = 1 n = 10−2 n = 10−3

) g 8C 8CA4 5 8C 8CA4 5 8C 8CA4 5
0.1 0.050 4 4.00 10 9.00 13 11.50
0.1 0.005 4 3.00 8 4.15 9 4.45
0.1 0.001 4 2.99 7 3.00 8 3.00
1.0 0.050 5 4.00 23 9.30 45 14.25
1.0 0.005 5 3.00 25 4.92 - 7.42
1.0 0.001 5 2.23 25 3.00 - 4.67

n = 1 n = 10−2 n = 10−3

) g 8C 8CA4 5 8C 8CA4 5 8C 8CA4 5
0.1 0.050 2 2.50 3 3.00 3 3.00
0.1 0.005 2 2.00 3 2.00 3 2.40
0.1 0.001 2 2.00 3 2.00 3 2.00
1.0 0.050 2 2.90 3 3.80 4 -
1.0 0.005 2 2.00 4 2.88 5 3.25
1.0 0.001 2 2.00 4 2.00 5 2.82

Table 1 Burgers’ equation: number of fixed-
point iterations, ℎ = 1

2048

Table 2 Burgers’ equation: number of New-
ton iterations, ℎ = 1

2048

shows convergence rates that are stable with respect to the number of simultaneous
time steps, the grid size and the time step size. The computational cost is slightly
higher than in the time stepping case and no parallelization in time direction was
done, but the time-simultaneous multigrid method enhances the scalability of the
spatial parallelization. The application of this scheme to non-linear equations is also
possible by using a time-simultaneous Newton scheme with suitable initial guesses
whose choice remains challenging and has to be further examined.

Acknowledgements Calculations have been carried out on the LiDO3 cluster at TU Dortmund.
The support by the LiDO3 team at the ITMC at TU Dortmund is gratefully acknowledged.

References

1. Gander, M.J.: 50 Years of Time Parallel Time Integration. Contrib. Math. Comput. Sci. (2015)
doi: 10.1007/978-3-319-23321-5_3

2. Gander, M.J., Neumüller, M.: Analysis of a new space-time parallel multigrid algortihm for
parabolic problems. SIAM J. Sci. Comput. 38(4), A2173–A2208 (2016)

3. Hackbusch, W.: Parabolic Multi-grid methods. In R. Glowinski and J.-L. Lions (eds.) Com-
puting Methods in Applied Science and Engineering VI, pp. 189–197, North-Holland (1984)

4. Horton, G., Vandewalle, S.: A space-time multigrid method for parabolic partial differential
equations. SIAM J. Sci. Comput. 16(4), 848–864 (1995)

5. Janssen, J., Vandewalle, S.: Multigrid waveform relaxation on spatial finite element meshes:
The discrete-time case. SIAM J. Sci. Comput. 17(1), 133–155 (1996)

6. Lions, J-L., Maday, Y., Turinici, G.: Résolution d’EDP par un schéma en temps «pararéel »
(2001) doi: 10.1016/S0764-4442(00)01793-6

7. Lubich, C., Ostermann, A.: Multi-grid dynamic iteration for parabolic equations. BIT Numer.
Math. 27(2), 216–234 (1987)

8. Saad, Y., Schultz, M.L.: GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

9. Van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging cariant of Bi-CG for the
solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

10. Vandewalle, S., Van de Velde, E.: Space-time concurrent multigrid waveform relaxation. Ann.
Numer. Math. 1(1-4), 347–363 (1994)

11. Vandewalle, S., Horton, G.: Fourier mode analysis of the multigrid waveform relaxation and
time-parallel multigrid methods. Computing (1995) doi: 10.1007/BF02238230


	EB 619_1
	EB 619

