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Abstract In this work, the novel “Tensor Diffusion” approach for simulating vis-
coelastic fluids is proposed, which is based on the idea, that the extra-stress tensor in
the momentum equation of the flow model is replaced by a product of the strain-rate
tensor and a tensor-valued viscosity. At least for simple flows, this approach offers
the possibility to reduce the full nonlinear viscoelastic model to a generalized “Ten-
sor Stokes” problem, avoiding the need of considering a separate stress tensor in
the solution process. Besides fully developed channel flows, the “Tensor Diffusion”
approach is evaluated as well in the context of general two-dimensional flow config-
urations, which are simulated by a suitable four-field formulation of the viscoelastic
model respecting the “Tensor Diffusion”.

1 Introduction

Numerical simulations of viscoelastic fluids are still a challenging task, especially
due to the involved constitutive equations describing the complex material behaviour
of the flow. From a numerical point of view, constitutive equations of differential
type are quite straightforward to apply in combination with the Stokes equations, but
being applicable only for a limited range of flow configurations [1, 2, 3].

An alternative modelling approach in numerical flow simulations is offered by
considering integral constitutive equations, which are often of the so-called time-
separable Rivlin-Sawyers (or Kaye-BKZ) type [4, 5], where the stress tensor is
written as an infinite integral of the form

o (1) = / M~ [61 (1. 1) By (1) + 62 (1. 1) By (07 di’ (1)
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In the above stress integral, ¢, ¢, are empirical functions to model nonlinear effects
depending on the two non-trivial invariants I, I of the Finger tensor B. One of the
most suitable approaches to handle integral material models in combination with the
Stokes equations is the so-called “Deformation Fields Method” (DFM, [6, 7, 8]). A
central object in this scheme is the Finger tensor, which is evolved in time depending
on the velocity field u according to the differential equation

%Bt’ () + (u(s) - V)By (5) = Vu(s)" By (s) =By (s) - Vu(s) =0 (Ib)

in s € [t’,1] for fixed ¢’, where B, (t') = L.

However both, the differential as well as integral material model, give rise to
numerical challenges due to the complex rheology of the considered viscoelastic
fluids. On the one hand, in the differential case, the well-known “High Weissenberg
Number Problem” (HWNP, [1, 2]) together with the need of considering multiple
modes [3] has to be taken into account. On the other hand, for integral constitutive
equations, a suitable numerical treatment of the resulting integro-differential set of
equations needs to be derived resp. requires further improvement [6, 7, 8].

Therefore, in this work, the novel “Tensor Diffusion” approach is introduced,
offering the possibility to remove the complex rheology of the fluid from the set
of equations and to establish a straightforward numerical treatment of viscoelastic
fluids.

2 The “Tensor Diffusion” approach

As outlined above, many difficulties and challenges in simulating viscoelastic fluids
arise from the complex rheology of the fluid characterized by both, differential and
integral constitutive equations. Consequently, avoiding the need of considering such
an equation at all would probably improve the general numerical treatment of such
fluids. Thus, the underlying assumption of the novel “Tensor Diffusion” approach is
the existence of a decomposition of the extra-stress tensor according to

o =pu-D(u) 2

where g € R?*? in two-dimensional settings. Inserting the stress decomposition (2)
into the stationary Stokes equations gives the so-called “Tensor Stokes” problem

—%V-(ﬂ~D(u)+D(u)-uT)+Vp=0, V-ou=0 3)

Note, that a symmetrized version of the “Tensor Stokes” problem is considered here,
since the “Tensor Diffusion” p is in general not symmetric as shown in Sect. 3.1 (for
details, see [9, 10]).

Assuming, that the so-called “Tensor Diffusion” u — corresponding to an actual
viscoelastic flow problem — is known or given, the “nonlinear” velocity and pres-
sure solution, originally resulting from the (direct steady) nonlinear differential or
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integral viscoelastic model, can be computed by simply solving the “Tensor Stokes”
problem (3) in (u, p). Thus, the constitutive equation or the complex rheology of
such fluids is removed from the system and the corresponding stresses are computed
in post-processing fashion based on the velocity solution calculated from Eq. (3).
Furthermore, a robust, efficient, accurate and stable numerical scheme can be used
for solving the “Tensor Stokes” problem (3), since typical solution techniques for
(generalized) Stokes problems, i.e. problems in (u, p) only, are applicable in this
context.

Obviously, the “Tensor Stokes” problem represents an extension of classical
generalized Stokes equations involving a shear-rate dependent scalar viscosity (c.f.
[11]), since besides the corresponding “shear thinning” effect, in principle the full
viscoelastic material behaviour is covered by the tensor-valued viscosity p (see Sect.
3). Thus, one of the main potential benefits of the novel “Tensor Diffusion” approach
is the possibility to express the complex rheology by a “Tensor Diffusion” g instead
of solving a nonlinear constitutive equation. In the following section, the validity of
this concept will be shown for Poiseuille-like flows, followed by an evaluation for
complex flow configurations like the “Flow around cylinder’-benchmark in Sect. 4.

3 Proof of concept

In the following, the validity of the underlying assumption, that a stress decom-
position according to Eq. (2) exists, is investigated by checking the ability of the
“Tensor Diffusion” approach to reproduce viscoelastic flow characteristics usually
resulting from differential or integral material models. Therefore, steady-state two-
dimensional fully developed channel flows for viscoelastic fluids are considered,
where the same velocity profile is obtained at any cutline over the channel height, i.e.
in y-direction. Thus, the velocity field consists only of a y-dependent contribution
in x-direction, i.e. the channel length. Similarly, the components of stress and Finger
tensors depend on y only, but not on x.

3.1 Fully developed channel flows for UCM

Considering the differential steady-state version of the Upper-Convected Maxwell
model (UCM, [4]) in the above setting, the corresponding unknowns can be given
analytically, especially leading to a parabolic velocity profile. Furthermore, the cor-
responding (symmetric) strain-rate as well as stress tensors read

o= [T o) _ 277,,Au§ Npiy D(u):l 2y Vet Uy _ 0 uy @
o112 020 Nply (VI 2 \vx+uy, 2v, uy 0

Consequently it is realized, that indeed a matrix- or tensor-valued quantity reading
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1 2Au
#=20p (0 1 y)

can be derived even analytically, relating o and D according to Eq. (2).

In principle, the same can be done in case of the steady-state integral version
of UCM, where only one single Finger tensor needs to be considered due to the
stationary velocity field. However, inserting the analytical expressions for the com-
ponents of the Finger tensor — derived for fully developed channel flows — into the
single-mode “stationary” stress integral for UCM (c.f. [4]) yields

(&)

azfom%exp(—%)(B(s)—I)ds

3 “np (_i) s 82Uy 100w\ _
= [2/0 A2 exp (—+ (O s ds 3 \uy 0 =pu-D(u) (6)
with the same “Tensor Diffusion” p as calculated from the differential version.

Particularly, a stress decomposition according to Eq. (2) can be derived for differential
as well as integral viscoelastic models.

3.2 Poiseuille-like flow for Wagner model

In the following, a nonlinear integral model is considered, in detail the Wagner model
[12], which — for two-dimensional stationary flow configurations — results in a stress
integral of the form

o= ‘/Ooon—pexp(—%) [fexp(—nlm)+...
(1-f)exp (—nzm)] B (s)ds (7
For fully developed channel flows, the stress integral can be converted into
og=u-D(u)+v (8)

where u, v € R>? and

) -2
pin = 2m, f(l+n1A\/g) +(1—f)(1+”2A\/g) l (9a)
-3 -3
pi2 = 4, Auy f(1+n11\ ui) +(1—f)(1+n2A u%) l (9b)
-1 -1
V= pr f(1+n1A\/g) +(1-f) (1+n2A\/g) l (9¢)
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besides 22 = U1 and MH21 = 0 as well as Vil =V =V and Vi2 = V21 = 0.
Consequently, a “generalized” stress decomposition compared to UCM in Eq. (6)
is derived. However, by introducing the modified pressure P = p — v, a similar
version of the “Tensor Stokes” problem in Eq. (3) is obtained, but now replacing the
original pressure p by the modified pressure P, since the operator V - v occuring in
the “Tensor Stokes” problem can be considered as Vv and thus be absorbed into the
pressure gradient.

= —  Wagner
——————————— RO
UCM
I ——
| e
—
-1 ’\1(1 0.2 0.4 0.6 0.8 1.0
(a) x-velocity from 2D (b) x-velocity at xmpiq

Fig. 1 Channel flow for Wagner model, A = 1.0, f = 0.57,n; = 0.31, n, = 0.106

In the following, a modified Poiseuille flow is considerd in Finite Element simula-
tions, where the velocity on in- and outflow edges is set to take a parabolic profile.
At the same time, the “Tensor Diffusion” corresponding to a fully developed channel
flow is prescribed globally, which is why the flow should evolve to its fully developed
nonlinear shape away from in- and outflow.

Obviously, the flow profiles obtained from the Wagner model for the material pa-
rameters given in [12] recover the shear-thinning effect regarding the velocity profile
as depicted in Fig. 1, which is a typical material behaviour of viscoelastic fluids. Fur-
thermore, this velocity profile, resulting from two-dimensional simulations, matches
the solution of the one-dimensional version of the full integral model derived for
fully developed channel flows [10]. This indicates, that especially for nonlinear in-
tegral models, viscoelastic flow characteristics in fully developed channel flows are
reproduced by simply solving a generalized Stokes-like problem of the form (3) in
the unknowns (u, p), where the complex rheology arising from the stress integral is
completely hidden in the “Tensor Diffusion”.

In principle, the same procedure can be done also for other nonlinear viscoelastic
constitutitve equations like the Giesekus model [13] in the differential or the PSM
model [14] in the integral case. However, for non of these two cases, the “Tensor
Diffusion” p can be given in closed form, since it can be derived only “semi ana-
lytically” or numerically. But nevertheless, similar results for comparing solutions
of one- and two-dimensional simulations can also be obtained for other viscoelastic
models than Wagner, further outlining the basic validity of the proposed “Tensor
Diffusion” approach [9, 10].



6 Patrick Westervof3 and Stefan Turek

4 Complex flow configurations

So far, the proposed “Tensor Diffusion” approach is analyzed only in the context of
fully developed channel flows, for which it is possible to derive and verify the validity
of this novel approach. When more general two-dimensional flow configurations
shall be investigated in terms of this novel approach, an explicit derivation of the
corresponding tensor-valued viscosity u is not (yet?) possible.

Instead, a straightforward implementation for determining the “Tensor Diffusion”
numerically is obtained by complementing the original differential steady-state vis-
coelastic model by an additional algebraic equation regarding u and inserting the
stress decomposition (2) into the momentum equation of the flow model. Conse-
quently, to evaluate the applicability of the “Tensor Diffusion” approach in the con-
text of general two-dimensional flow configurations, the well-known “Flow around
cylinder” benchmark [1, 2, 15] is simulated by means of the four-field formulation
of the above “Tensor Stokes” problem reading

-2n,D (u) - %V~ (p-D()+D(u)-u")+Vp=0 (10a)
V-ou=0 (10b)
(u-V)o-—VuT-0'—0'-Vu+f(A,n,,,0')=2nXpD(u) (10¢)
p-Du)-0o=0 (10d)

which is discretized within the Finite Element framework presented in [2], where
the “Tensor Diffusion” is approximated by elementwise constant polynomials [10].

Within the typical benchmark configuration of a present solvent contribution of
ns = 0.59, the drag coefficients Cp (T), which are computed based on the total stress
tensor T, are analyzed for evaluating the quality of the simulation results for several
Weissenberg numbers We = AUpean/R. Therefore, the drag coefficients calculated
from the “Tensor Diffusion” are compared to reference results as well as results based
on the original approach validated in [2]. In the following, T denotes the total stress
tensor arising from the original viscoelastic model and T, the one corresponding to
the “Tensor Stokes” problem, where in principle o is replaced by the symmetrized
stress-decomposition to obtain T, from T.

Table 1 Oldroyd-B model [4, 16] Table 2 Giesekus model, @ = 0.1 [13]

We Cp (Ts) Cp (T,) Ref. [1] We Cp (Ts) Cp (T,) Ref. [15]
0.1 130.342 130.348 130.36 0.1 125567 125.572 125.58
0.2 126.605 126.624 126.62 0.5 103.717 103.733 103.73
0.3 123.172 123212 123.19 1.0 95.536  95.568 95.55
0.4 120.553 120.549 120.59 50 85210 85243 -

0.5 118.747 118.751 118.83 10.0 83.047  83.068 -
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A summary of the drag coefficients resulting from the above configuration is given in
Tab. 1 and 2, which illustrates, that the drag coeflicients obtained from the four-field
formulation (10) of the “Tensor Stokes” problem show a good agreement to the
results computed by means of the original method as well as the reference results
[1, 15] for both, Oldroyd-B and Giesekus model. For the latter, reference results
apparently are available only up to We = 1.0, which is why the “Tensor Stokes”
results for higher Weissenberg numbers are evaluated by a comparison with the
original approach only.

The more challenging configuration is represented by considering the “no solvent”
case in the above setting, where n; = 0 in Eq. (10a). Unfortunately, no reference
results are available for this flow configuration, which is why the “Tensor Stokes”
results are again compared only against the results of the original approach.

Table 3 UCM (a = 0.0) or Giesekus model

We « CD (T(,—) CD (Tll)

0.1 0.0 127.373 127.403
0.5 0.0 96.046 98.054
0.1 0.1 115377 115.508
0.50.1 60.804 61.992

When analyzing the calculated drag coefficients given in Tab. 3, again the “Tensor
Stokes” results show a good agreement to the results of the original problem —
especially for lower We for both, the UCM as well as Giesekus model. Besides, for
the Giesekus model it was not possible to reach significantly larger Weissenberg
numbers as in the case of UCM, which again illustrates the complexity of this flow
configuration.

Additionally, recall that g is approximated in Qg only, which is of lower order
than the corresponding approximation of o in Q5. Naturally, results obtained from
the original problem are expected to be of higher accuracy anyway. But nevertheless,
applying the “Tensor Diffusion” approach gives simulation results of a similar quality
as the original approach, even for this complex flow configuration.

5 Conclusion

In this work, the novel “Tensor Diffusion” approach is introduced, where in principle
the extra-stress tensor in the momentum equation of the viscoelastic model is replaced
by a product of the so-called “Tensor Diffusion” and the strain-rate tensor.

The underlying assumption, that such a stress decomposition exists in general, is
verified in a first step for fully developed channel flows, where the full viscoelastic
model can be reduced to a so-called “Tensor Stokes” problem. Consequently, the
nonlinear viscoelastic solution might be simply computed from a generalized Stokes-
like problem including a tensor-valued viscosity.
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Furthermore, the applicability of the “Tensor Diffusion” approach is evaluated

within the two-dimensional “Flow around cylinder” benchmark. Here, the drag
coefficients resulting from the original viscoelastic model as well as reference results
are reproduced quite well. But nevertheless, as a main goal of future work, the full
viscoelastic flow model shall be reduced to a pure “Tensor Stokes” problem.
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