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Abstract

The Diebold-Mariano-Test has become a common tool to compare the accuracy of macroeconomic forecasts.
Since these are typically model-free forecasts, distribution free tests might be a good alternative to the
Diebold-Mariano-Test. This paper suggests a permutation test. Stochastic simulations showthat permutation
tests outperform the Diebold-Mariano-Test. Furthermore, a test statistic based on absolute errors seems to
be more sensitive to differences in forecast accuracy than a statistic based on squared errors.
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1. Introduction

Comparing the accuracy of macroeconomic forecasts is difficult for
various reasons: The task is, in Diebold’s (2015: 1) words, to compare
“model-free forecasts”. Furthermore, the samples are often quite small,
the properties of the forecast errors are unknown, and, finally, forecasts
are not independent from earlier forecasts of the same institution and of
other institutions (Gallo et al. 2002). A widely used and simple test for
comparing predictive accuracy is the Diebold Mariano-(DM)-Test
(Diebold and Mariano 1995). However, the test statistic tends to be
oversized when samples are small and when forecast errors have heavy
tails. Furthermore, non-stationary errors may cause problems. However,
the strength of the test is its simplicity, and a simple approach to
overcome these problems, at least partially, is the modification proposed
by Harvey, Leybourne and Newbold (1997).

As an alternative to the DM-Test, forecast comparisons in a model-free
world suggest the use of a non-parametric test. However, different from
other research-fields with typically small samples such as meteorology
(Peissendorfer, Barnett 1983) or medicine (Ludbrook, Dudley 1998),
these approaches have not become popular in the forecast comparison
literature. This paper tries to fill this gap by proposing permutation tests.?

In many applications, permutation tests have turned out to be a powerful
alternative to parametric tests. Commonly, they are applied to two
independent samples. A test statistic is chosen (e.g. the difference of
means) and calculated for the original sample. After that, the
observations are resampled without repetition, and the test statistic is
calculated for each resampling. By that, an empirical distribution of the
test statistic is generated. Finally, the test statistic of the original data is
compared to the empirical distribution.

1 Originally meant just for comparing forecasts (Diebold 2015), in the
follow-up a rich literature emerged that pushed ahead the DM-test in various
directions, in particular to make it applicable to model-based forecasts (for an
overview see Diebold 2015, Coroneo and lacome 2015).

2 A simple alternative in the case of matched pairs would be a sign test,
or, as a more powerful one, a signed rank test (Butar Butar, Bandularesi 2009).



Adopting this approach to forecasts has to take into account that
forecasts relate to a specific year. Thus, resampling all data would not be
helpful. Therefore, a permutation test for matched pairs must be used.
This also allows for a simple interpretation of the test as a treatment
problem: Two forecasters know the same raw data, but they ‘treat’ them
differently, e.g. by using different models. The test evaluates, whose
treatment is more 'successful’ in terms of forecast accuracy.

Table 1 illustrates a permutation test for matched pairs. For simplicity,
only five years are considered. The numbers are absolute forecast errors
of two forecaster (FC1 and FC2). The difference in the mean absolute
error is -0.32. Next, all possible permutations are calculated, in the
present case 32 (=2°). The firstis identical to the original data. The second
is @ combination of four values taken from FC1 and one from FC2 and so
forth. Of particular interest are permutations 5 and 6, since they are the
only ones showing a difference in forecast means exceeding that of the
original data. In total, three of 32 permutations, i.e. 9.4% of all cases,
show a difference in the mean absolute error that is equal to or smaller
than the original. Thus, the null hypothesis of equal mean forecast errors
cannot be rejected at the usual level of significance.

Table 1
Forecast permutation an differences in forecast errors: an example

Yearl Year2 Year3 Year4 Year5 Mean Diff

Original ~ FC1 0.4 3 2 0.4 0.1 1.18

FC2 0.8 3.9 1.7 0.8 0.3 1.5 -032
Perm 1 FC1 0.4 3 2 0.4 0.1 1.18

FC2 0.8 3.9 1.7 0.8 0.3 1.5 -0.32
Perm 2 FC1 0.4 3 2 0.4 0.3 1.22

FC2 0.8 3.9 1.7 0.8 0.1 146 -0.24
Perm 3 FC1 0.4 3 2 0.8 0.3 1.26

FC2 0.8 3.9 1.7 0.4 0.1 142 -0.16
Perm 5 FC1 0.4 3 1.7 0.4 0.1 1.12

FC2 0.8 3.9 2 0.8 0.3 156 -0.44
Perm 6 FC1 0.4 3 1.7 0.4 0.3 1.16

FC2 0.8 3.9 2 0.8 0.1 1.52 -0.36
Perm 31 FC1 0.8 3.9 1.7 0.8 0.1 1.46

FC2 0.4 3 2 0.4 0.3 1.22 0.24
Perm 32 FC1 0.8 3.9 1.7 0.8 0.3 15

FC2 0.4 3 2 0.4 0.1 1.18 0.32

Author’s calculations.



This paper analyses the use of permutation test for forecast comparisons
in more depth. It starts with a short description of the test (Section 2). In
Section 3, an application is presented, in which the outcome of the
permutation test is also compared to the traditional DM-test. Section 4
provides a more detailed analysis and evaluates the power of the
permutation test in comparison to the DM-test. Section 5 concludes.

2. Permutation test for matched pairs

The setup of the permutation test has already been outlined briefly in the
introduction. For a more general description, we consider a bivariate
sample of size T.

(1) <eA,l eB,l) (eA,Z eB,Z) (eA,3 eB,s) (eA,T eB,T)

Each element of the sample relates to a specific year and it contains a
forecast error of forecaster A and of forecaster B. The permutations are
calculated for each of these pairs, i.e. the elements will not be changed
between the pairs.

The null hypothesis to be tested is that Forecasters A and B have the
same accuracy. Depending on the loss function, one can use the
difference of mean absolute errors as a test statistic (Omae) or the
difference in the mean squared errors (Ouse); the latter is more in line
with the DM-test.

1 1
(2) Omag = ;Zt|eA| - ;2t|33|

3) Ouse = 7 2e(ea)? = Nelep)?

To describe the test, it is helpful to re-write pairs in (1) in a way that
accounts for the order of the two elements in each pair. The first element
E; of each pair t is one of the two members of the matched pairs. The
second element E, is the member not chosen as the first element.

(4) (B = (eA,t \ eB,t) E,: € (eA,treB,t)_'El,t)

Now all pairs are resampled in this way P times to get P permutations.
The total number of permutations is 27. If T is not too large, the full set of
possible permutations can be calculated. However, with T rising the



number of permutations grows exponentially, and accordingly the
execution time of the test. Therefore, it is advisable to use bootstrapping
for large Ts. Whether full set or bootstrapped: For each permutation p
the test statistics 0., are calculated according to (2) and (3); where p
denotes the permutation and L the loss function (LE(MAE,MSE)). After
each permutation, the test statistic of the original data 0., is compared
to O.p. The result of this comparison is stored in a count-vector c.

1 >
) =y O =00

0 else

After having completed the permutations, the test statistic s of the
permutation test is:

(6) s, =22 for | = MAE, MSE

Thus, the test statistic s is the share of permutations showing a higher
difference in mean absolute or squared errors than the original data. A
different interpretation is rendered by looking at the distribution of the
O.p: It is tested, whether the original 0 is located at the upper or at the
lower end of this distribution.

From (4) it becomes evident, that the distribution of the 6., will be
symmetric in the case the full set of permutations is calculated. Every
combination of forecasts appearing as E1 will also appear once as E,, and
the E; resp. E; will be the same complement. If the permutations are
bootstrapped, symmetry is not warranted, but it will be reached
asymptotically.

With a being the level of significance, the null should be rejected if s<o/2
or s>(1-a/2. In the first case, an overwhelming share of permutations
shows a 6 which is smaller than the observed one. This indicates that the
mean error of forecast A is larger than the mean error of forecast B at a
level of significance of a. In the second case, most permutations show a
larger error, meaning that forecast A tends to be the more accurate one.

3. An example

Subsequently, the test procedure will be applied to two samples of
forecasts. The first example relates to one year ahead forecasts for the



US economy in the period 2008 to 2018. They have been contributed by
the forecasters to the Consensus Economics survey of December.? Thus
they can be assumed to be released in the second half of November or in
early December. Table 2 presents some descriptive statistics of these
forecasts. It shows that MAE as well as MSE do not deviate too much
except for the forecast of the Eaton Corporation which shows lower
values.

Table 2

Accuracy measures of US-December GDP forecasts for the following year
Forecaster Acronym MAE MSE
Eaton Corporation EATON 0.45 0.35
Moody's Analytics MOODY 0.68 0.63
The Conference Board CONF 0.60 0.49
Fannie Mae FANNIE 0.59 0.53
Nat Assn of Home Builders NAH 0.55 0.50
Swiss Re SWISS 0.72 0.62
Univ of Michigan — RSQE UoM 0.58 0.53
Wells Fargo WELLS 0.62 0.60

Source: Consensus economics; author’s calculations.

Table 3 shows the results of three tests comparing the accuracy of these
forecast pairwise: The DM-Test, the permutation test for MSE (PERMSE),
and the permutation test for MAE (PERMAE). In neither case does the
DM-Test reject the null of equal forecast accuracy. The PERMSE-Test
shows in one case that mixing the forecast of EATON with another
forecasts generates a higher MSE in more than 95% of all permutations,
i.e. the null of equal forecast accuracy can be rejected with an error
margin of 10%. The PERMAE-test generates an even clearer result: The
EATON forecast shows a lower MAE than four of the competing forecasts,
in three cases at an error margin of 10%, in one case it is significant even
at the 5%-level. Furthermore, the NAH-forecast outperforms one of its
competitors.

3 Consensus Economics collects the forecasts in the first week of a

month. However, it is unclear when the forecasts were produced. In three
cases, missing data were taken from the January survey.



Table 3
Pairwise tests for equal forecast accuracy of eight December forecasts of U.S. GDP,
2008-2018

Diebold-Mariano-Test, p-values

MOODY CONF FANNIE NAH SWISS UoM WELLS
EATON 0.231 0.137 0.270 0.457 0.241 0.189 0.150
MOODY 0.555 0.423 0.081 0.947 0.573 0.937
CONF 0.811 0.974 0.556 0.809 0.450
FANNIE 0.800 0.394 0.996 0.778
NAH 0.474 0.845 0.735
SWISS 0.703 0.961
UoM 0.668

Permutation test, MSE?

MOODY  CONF FANNIE NAH SWISS UoM WELLS
EATON 0.894 0.949 0.854 0.816 0.890 0.833 0.951
MOODY 0.246 0.301 0.104 0.472 0.268 0.457
CONF 0.594 0.520 0.729 0.580 0.617
FANNIE 0.359 0.740 0.500 0.614
NAH 0.813 0.582 0.668
SWISS 0.311 0.473
UoM 0.739

Permutation text, MAE?

MOODY  CONF FANNIE NAH SWISS UoM WELLS
EATON 0.950 0.986 0.869 0.777 0.965 0.905 0.970
MOODY 0.259 0.222 0.102 0.610 0.172 0.298
CONF 0.500 0.355 0.823 0.463 0.551
FANNIE 0.297 0.882 0.492 0.563
NAH 0.954 0.691 0.707
SWISS 0.161 0.231
UoM 0.633

Author’s calculations. Abbreviations of the institutions see table 2. - 'Modified Diebold-
Mariano-Statistics according to Harvey, Leybourne, Newbold (1993). — ?Share of forecast
permutations of forecast in row and column showing a higher difference in mean errors
than the forecast in the row.

The second example looks at forecasts of the German economy. Five
spring forecasts for the current year are considered, mostly published in
April. The sample is 2011 to 2018; its size is delimited by the forecast of
the German government, which was made public for the first time in
2011.% Thus, the second example approaches the limits of testing, since
only 8 observations are available.

Table 4 exhibits some characteristics of these forecasts. Since — different
from the U.S. case — the publication date of these forecasts is known, it
also shows the average length of the forecast horizon. It is quite similar;
the difference between the forecast published earliest and the one

4 The Bundesbank as well as the Government have a longer record of

forecasts. However, earlier forecasts were only for internal use.



published latest is only 28 days. Therefore, the information the forecasts
are built on should not differ substantially. Again, the mean errors are
within a narrow range.

Table 4
Accuracy measures of the forecasts analyzed
Forecaster Acronym MAE MSE Average
Forecast
horizon (days)
IMF IMF 0.47 0.35 276
Joint Forecast GD 0.41 0.21 263
Bundesregierung BR 0.32 0.20 253
European Commission EU 0.32 0.19 251
Institut der deutschen Wirtschaft W 0.47 0.25 248

Source: RWI Forecast database; author’s calculations.

Table 5 shows results similar to those in the U.S. case. The DM-test
rejects the null only in one case, and only at an error margin of 10%. Both
permutation tests reject the null at an error margin of 5% for the IMF
forecast relative to the EU forecast as well as to the government’s
forecast. In both cases the IMF provides the less accurate forecast.

Table 5
Pairwise tests for equal forecast accuracy of five spring forecasts of German GDP,
2011-2018

Diebold-Mariano-Test, p-values!

IMF EU W BR
GD 0.308 0.528 0.588 0.700
IMF 0.121 0.573 0.096
EU 0.465 0.617
W 0.557
Permutation test, MAE?
IMF EU W BR
GD 0.910 0.242 0.727 0.313
IMF 0.023 0.289 0.023
EU 0.773 0.625
IW 0.266
Permutation test, MSE?
IMF EU W BR
GD 0.758 0.102 0.820 0.102
IMF 0.023 0.523 0.023
EU 0.938 0.688
IW 0.086

Author’s calculations. Abbreviations of the institutions see table 4. - ‘Modified Diebold-
Mariano-Statistics according to Harvey, Leybourne, Newbold (1993). — 2Share of forecast
permutations of forecast in row and column showing a higher difference in mean errors
than the forecast in the row.
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4, Power of the test

As the examples show, the permutation test seems to be more sensitive
to differences in forecast accuracy than the DM-test. In the following, it
will be analyzed whether this is just an outcome that is specific to the
dataset considered, or the observation can be generalized.

A tool to compare the power of statistical tests are power functions as
proposed by Butar Butar/Park (2008) and Butar Butar/Bandularesi
(2009). The underlying idea is straightforward: two data sets to be
compared are randomly drawn from the same distribution, and
thereafter one of the datasets is “shocked” by adding a constant. It is
then tested whether both datasets have the same mean. Since it is
known that this should not be the case, we expect the test to reject this
hypothesis.

The simulation design is as follows. In step one, two random datasets are
drawn. In step two, a constant p is added to all elements in the first
dataset to ensure that means differ. In step three, it is tested whether
the mean error of the first dataset is larger than that of the second. Steps
one to three are repeated m times, counting the share of the m
repetitions rejecting the null of equal means at an error margin of a.
After that, the simulations start again with a larger p in the second step.
The entire procedure is repeated until p is large enough that 100% of the
tests reject the null. For positive p the power functions relate the
complement of the share of simulations making a type Il error (i.e. do not
reject the null) to the imputed difference p in the means of two datasets.
The slope of the functions should be positive, and the functions should
converge to one for large values of L.

In Butar Butar/Park (2008) and Butar Butar/Bandularesi (2009) the
datasets are drawn randomly from different statistical distributions. In
the present case, a normal distribution with zero mean and a standard
deviation of one will be used. Both vectors of length T are interpreted as
forecast errors. To be able to analyze the impact of different volatilities
of the forecast errors the standard deviation of both vectors is rescaled
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using the factors 0.5, 1, 1.5 and 2.° To evaluate, how the power of the
permutation test is influenced by the sample size T, the power functions

are calculated for sample sizes of 8, 10, 12, and 14 years. p is increased
stepwise by 0.05, and the number of repetitions m is set to 1000. Since
the shocked data indeed have a larger mean than the non-shocked, a
one-sided test is conducted with o = 5%.

Figure 1 exhibits the power functions of the DM-test as well as of the
permutation tests PERMAE and PERMSE. Three aspects become evident.
First, having more observations shifts the power function generally to the
left, i.e. the power of all test increases. Second, having more volatile
errors shifts all power functions to the right in general, i.e. they reduce
the power of all three test. Third, the order of the three tests is the same
in all simulation experiments and for all shocks p.. The power of PERMAE
is highest, PERMSE comes second and the DM-test is the least powerful
among these tests.

Table 6 summarizes the results shown in Chart 1. It displays the p
(rounded to 0.05) at which the margin of 95% of the tests rejecting the
null is hit. The figures become smaller in general from the top to the
bottom in each block, and they increase from left to right. Comparing the
three tests, they are lowest for PERMAE, a bit larger for PERMSE, and
largest for DM-test for all combinations of sample size and volatility of
the forecast errors.

5 Using the root of MISE as an approximation of the standard deviation of
forecast errors, 0.5 is about the value observed for spring forecasts of GDP in the
current year. A standard deviation of 1 is approximately found in the winter
forecast of GDP for the next year. Standard deviations of 1.5 and 2 are typically
for forecasts of more volatile variables such as gross fixed capital formation or
GDP forecasts over a longer horizon.

12



Figure 1

Power functions for the permutation and the DM test for different standard deviations
of errors and sample sizes

—— oM
-~ PERMAE
—— - PERMSE

5=05

s=15

02 04 06 08 1.0 1.2 14 16 1.8 20 22 24 26 28 3.0

700 02 04 06 08 1.0 1.2 14 1.6 1.8 2.0 22 24 26 28 3.0

.0
00 02 04 06 08 1.0 1.2 14 16 18 20 2.2 24 26 28 30
nobs =8

Author’s computations

nobs =10
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Figure 1 (continued)

Power functions for the permutation and the DM test for different standard deviations
of errors and sample sizes

=05

s=15

700 02 04 06 08 1.0 12 14 1.6 18 20 22 24 26 28 3.0 700 02 04 06 08 1.0 12 14 1.6 1.8 2.0 22 24 2.6 28 30

nobs =12

Author’s computations

nobs =14
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Table 6
Difference in mean forecast errors at which 95% of tests reject to null*

Number of Standard deviation of errors

observations 0.5 1.0 1.5 2.0
Permutation test MAE

8 0.60 1.20 1.80 2.30

10 0.50 1.00 1.50 2.00

12 0.50 0.90 1.40 1.80

14 0.40 0.80 1.20 1.70
Permutation test MSE

8 0.65 1.30 1.85 2.65

10 0.60 1.20 1.75 2.30

12 0.55 1.10 1.55 2.10

14 0.55 1.00 1.45 2.00

DM-test

8 0.75 1.40 2.35 3.00

10 0.70 1.30 2.10 2.70

12 0.60 1.20 1.80 2.35

14 0.55 1.10 1.60 2.20

Autor’s computations. — 'at a 5% level (one-sided test)

Figure 1 also includes the results for p = 0, i.e. for the case in which the
means indeed should be equal. Since all values are different from zero
and positive, although small, they demonstrate that there also is a type |
error associated with the tests. To assess the power of the tests fairly,
the type | error should be considered, too. Table 7 shows the type | error
of the simulation experiments. As a general result, type | errors seem to
be somewhat smaller for PERMAE and PERMSE than for the DM-test.
Concerning the relation to sample size and standard deviations of the
errors, however, the simulations do not exhibit clear-cut results.

5. Conclusions

For deciding whether one forecast shows smaller errors than another the
Diebold-Mariano (DM)-Test has become a widely used tool. It is — as
Diebold (2015) clarifies — designed for model-free forecasts, for which
macroeconomic forecasts are typical examples. This paper proposes
permutation tests for paired observations as an alternative approach to
test for equal mean forecast errors. It shows in a series of simulation
experiments that permutation tests are more powerful than the DM-test,
and that a test statistic based on absolute errors detects differences in
forecast accuracy earlier than a test statistic based on squared errors.
Furthermore, it is shown that high volatility of the forecast errors and

15



Table 7
Type | errors of the tests
Share of cases with p=0 in which the null of equal forecast errors is rejected at o =0.05 in per cent

Number of Standard deviation of errors

observations 0.5 1.0 1.5 2.0
Permutation test MAE

8 5,5 4.3 7.0 6.3

10 5.0 4.3 5.4 3,7

12 4.8 4.4 53 5.9

14 5.1 5.4 5.2 5.1
Permutation test MSE

8 5.5 3.1 5.5 4.7

10 5.2 4.9 5.0 3.8

12 4.6 4.9 5.1 5.3

14 4.9 5.2 5.6 4.9

DM-test

8 3.9 7.0 9.3 7.1

10 7.5 7.2 6.9 7.1

12 6.5 7.7 6.5 8.1

14 6.5 7.3 7.1 6.9

Autor’s computations.

small samples reduce the power of all tests. Finally, the type | error
margin of all tests is about 5%, with the DM-test showing somewhat
larger errors.

These results are derived from simulation experiments with random
data. Applied to real forecasts, all tests can be expected to be more
powerful, since errors of forecasts for the same economic entity for the
same year are intercorrelated empirically. Therefore, the differences in
errors of two forecast observed empirically should be smaller than the
differences between two random error vectors, and a deviating forecast
accuracy might be easier to detect.

Notwithstanding these advantages, the permutation test faces a
technical problem: The number of possible permutations increases
guadratic to the number of observations. For 20 observations, e.g., more
than one million permutations must be calculated, and for 21
observations already more than two million. Therefore, the computation
time will increase quadratically to the number of observations. For
comparing forecasts over longer periods, Monte Carlo methods may be
employed to draw a random sample of n permutation replications (Efron,
Tibshirani 1993: 207).
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