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Abstract
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1 Introduction

Consider the common linear regression model

Yi = θ>f(xi) + εi, i = 1, . . . , N, (1.1)

where ε1, . . . , εN denote uncorrelated random variables with E[εi] = 0; Var(εi) = σ2 > 0

(i = 1, . . . , N), θ ∈ Rd is an vector of unknown parameters, f(x) = (f1(x), . . . , fd(x))> is

the vector of regression functions and x varies in the design space X ⊂ R. Optimal design

problems in the case, where the regression functions are polynomials, i.e. fi(x) = xki ,

have been studied intensively in the literature and numerous elegant solutions are available

describing the optimal designs in a very elegant form. A large portion of the literature has

its focus on the D-optimality criterion and starting with the seminal paper of Hoel (1958)

numerous authors have received explicit solutions of optimal design problems with respect

to various determinant type criteria [see Studden (1980); Dette (1990); Dette and Franke

(2001); Zen and Tsai (2004) among many others]. Another type of criterion for which

explicit solutions of the optimal design problem for polynomial regression are available

is the E-optimality criterion [see Pukelsheim and Studden (1993); Dette (1993); Heiligers

(1994)]. The E-optimal design problem is actually feasible, if the minimum eigenvalue of

the information matrix of the optimal design has multiplicity 1. In this case the problem

is equivalent to a c-optimal design problem for a specific vector c ∈ Rm, which determines

the design such that the variance of the best linear estimate of the linear combination c>θ

becomes minimal [see Dette and Studden (1993)].

A rather complete characterization of the c-optimal design problem for regression models

with basis functions forming a Chebychev system can be found in the seminal paper of

Studden (1968). However, in this reference it is also indicated that in general the solution

of the c-optimal design problem is an extremely difficult one. For this reason explicit

solutions of the c-optimal design problem are mainly available for models with a small

number of parameters, where they are usually determined by geometric arguments using

Elfving‘s theorem [see Elfving (1952)].

The purpose of the present contribution is to provide more explicit solutions for this chal-

lenging optimal design problem in polynomial type regression models, where we concentrate

on optimal designs for extrapolation and for estimating the slope. The problem of designing

experiments for extrapolation in polynomial regression has been solved a long time ago by

Hoel and Levine (1964) and several authors have discussed optimal extrapolation designs
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from several perspectives problem [see Dette and Wong (1996); Dette and Huang (2000)

or Celant and Broniatowski (2016) among others]. Similarly, optimal designs for estimat-

ing the slope of a regression function have found considerable attention in the literature

[see Atkinson (1970); Ott and Mendenhall (1972); Murthy and Studden (1972); Myres and

Lahoda (1975); Hader and Park (1978); Mukerjee and Huda (1985); Mandal and Heiligers

(1992); Pronzato and Walter (1993); Melas et al. (2003) or Dette et al. (2010)]. In this pa-

per we add new explicit results to the literature by finding optimal designs for extrapolation

and estimating the slope in polynomial regression models with no intercept.

The remaining part of this paper is organized as follows. In Section 2 we introduce the

basic optimal design problem and review a geometric characterization of the optimal de-

signs. Section 3 is devoted to the determination of optimal designs for extrapolation in a

polynomial regression with no intercept. Finally, Section 4 considers the problem of opti-

mally designing experiments for the estimation of the slope in this model, while Section 5

contains a technical result, which is used several times in the proofs of our main statements.

2 Preliminaries

Following Kiefer (1974) we call a discrete probability measure

ξ =

(
x1 · · · xm
ω1 · · · ωm

)

with support points x1, . . . , xm and weights ω1, . . . , ωm an approximate design in the linear

regression model (1.1). If N observations can be taken this means that the quantities Nωi
are rounded to integers, say ni, with

∑m
i=1 ni = N and ni observations are taken at each

experimental condition xi (i = 1, . . . ,m). For an approximate design ξ we denote by

M(ξ) =

∫
X
f(x)f>(x)ξ(dx)

its information matrix in model (1.1). The covariance matrix of the least squares estimate,

say θ̂, can be approximated (if N →∞, ni/N → ωi) by σ2/NM−1(ξ) and an optimal design

minimizes an appropriate real valued function of the matrix M−1(ξ). In this paper we are

interested in designs which minimize the asymptotic variance of the best linear unbiased

estimate c>θ̂ of the linear combination c>θ for a given vector c ∈ Rd. To be precise, we
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call a design ξ c-optimal in the regression model (1.1), if it minimizes the function

Φ(ξ) =

c>M−(ξ)c, if there exists a vectorv ∈ Rd such that c = M(ξ)v;

∞, otherwise,

where M−(ξ) is a generalized inverse for the matrix M(ξ). In the first case the design ξ is

called admissible for estimating the linear combination c>θ in the regression model (1.1)

and the value of the quadratic form does not depend on the choice of the generalized inverse

[see Pukelsheim (2006)]. An important case is obtained by the choice c> = (f1(z), . . . , fd(z))

for some z, which corresponds to the minimization of the variance of the best unbiased

prediction of the function θ>f(x) at the point z. If z ∈ X the optimal design is called

optimal interpolation design, if z 6∈ X optimal extrapolation design. If X ⊂ R, the vector f

differentiable and c> = (f ′1(z), . . . , f ′d(z)) for some z ∈ R the optimal design will be called

optimal design for estimating derivative at the point z.

A useful tool for the determination of c-optimal designs is a geometric characterization of

the c-optimal design and called Elfving’s theorem [see Elfving (1952)]. We formulate it

here in a slightly different form, which can be directly used to check optimality of a given

design [see Dette et al. (2004) for details].

Theorem 2.1 An admissible design ξ∗ for estimating the linear combination c>θ with

support points x1, x2, . . . , xm and weights ω1, ω2, . . . , ωm is c-optimal if and only if there

exists a vector p ∈ Rd and a constant h such that the following conditions are satisfied:

(1) |p>f(x)| ≤ 1 for all x ∈ X ;

(2) |p>f(xi)| = 1 for all i = 1, 2, . . . ,m ;

(3) c = h
∑m

i=1 f(xi)ωip
>f(xi).

Moreover, in this case we have c>M−(ξ∗)c = h2.

The function p>f(x) will be called extremal polynomial throughout this paper.

3 Optimal extrapolation designs

It is well known that for the common polynomial regression model, i.e. f(x) = (1, x, . . . , xn)>

on the interval [−1, 1] the optimal extrapolation design for a point z with |z| > 1 is unique
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and supported at the extremal points s1,n, . . . , sn+1,n of the Chebyshev polynomial of the

first kind

Tn(x) = cos(n arccos(x)) (3.1)

[see Hoel and Levine (1964)]. In our notation this polynomial is the unique extremal

polynomial (up to a sign) and the vector p in Theorem 2.1 is given by coefficients of the

polynomial Tn. The points si,n are explicitly given by

si,n = cos
( (n+1−i)π

n

)
, i = 1, 2, . . . , n+ 1, (3.2)

and the weights of the optimal extrapolating design are obtained by

ωi =
|Li(z)|∑n+1
j=1 |Lj(z)|

, i = 1, . . . , n+ 1, (3.3)

where

Li(x) =

∏
j 6=i(x− sj,n)∏
j 6=i(si,n − sj,n)

, i = 1, . . . , n+ 1

are the Lagrange basis interpolation polynomials corresponding to the nodes s1,n, . . . , sn+1,n.

In this section we investigate the optimal extrapolation designs for a polynomial regression

model on the interval [−1, 1] without intercept. More precisely, we consider the vector of

regression functions

f(x) = (x, x2, . . . , xn)>. (3.4)

in model (1.1). If the degree n in (3.4) is odd the Chebyshev polynomial is a polynomial

without intercept and therefore it remains the unique extremal polynomial in Elfving’s

theorem. Consequently, the design with support points and weights given by (3.2) and

(3.3), respectively is again an optimal extrapolation design. However, the optimal design

is not unique anymore. Nevertheless we can describe all optimal extrapolation designs

in this case. If the degree of the polynomial regression with no intercept is even the

situation is different. The optimal extremal polynomial is again unique and can be found

explicitly. Interestingly, the corresponding extremal polynomial in Elfving’s theorem is not

a Chebyshev polynomial. We first discuss the case where the degree in the regression model

(1.1) with vector of regression functions given by (3.4) is odd, that is n = 2k + 1.

Theorem 3.1 In the case n = 2k + 1 there exist exactly two optimal extrapolation designs

with 2k + 1 support points for the polynomial regression model of degree 2k + 1 without
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intercept on the interval [−1, 1]. One of the designs is supported at the 2k + 1 small-

est extremal points t∗i = cos
(π(2k+2−i)

2k+1

)
(i = 1, . . . , 2k + 1) of the Chebyshev polynomial

T2k+1(x) in the interval [−1, 1) and the other one is supported at the 2k+1 largest extremal

points t∗i−1 = cos
(π(2k+2−i)

2k+1

)
(i = 2, . . . , 2k + 2) of T2k+1(x) in the interval (−1, 1]. The

corresponding weights ω∗i , . . . ω
∗
2k+1 at these points are given by

ω∗i = ω∗i (z) =
|L̄i(z)|∑n
j=1 |L̄j(z)|

(i = 1, . . . , n), (3.5)

where

L̄i(x) =
x
∏

j 6=i(x− t∗j)
t∗i
∏

j 6=i(t
∗
i − t∗j)

(3.6)

is the ith Lagrange basis interpolation polynomial without intercept corresponding to the

nodes t∗1, . . . , t
∗
2k+1 (i = 1, . . . , 2k + 1).

Proof: Recall the definition of the vector f (with n = 2k + 1) in (3.4) and note that

the extremal polynomial in Theorem 2.1 is given by p>f(x) = ±T2k+1(x). Consequently,

by this characterization the support of the optimal extrapolation design is a subset of the

extremal points

{cos
(
π(2k+2−i)

2k+1
) : i = 1, . . . , 2k + 2

}
of the polynomial−T2k+1(x) on the interval [−1, 1]. It will be shown below that it is possible

to satisfy all conditions of Theorem 2.1 using all interior support points and exactly one

of the boundary points. We assume without loss of generality that t∗1 = −1 and z > 1, all

other cases can be proved by similar arguments.

Define the vector β = (β1, . . . , β2k+1)
T by βi = ωi(p

>f(t∗i )), i = 1, . . . , 2k + 1, where

p>f(x) = −T2k+1(x) is the extremal polynomial in Theorem 2.1 and ω1, . . . , ω2k+1 are

weights. Note that

p>f(t∗i ) = −T2k+1(t
∗
i ) = (−1)2k+1−i , i = 1, . . . , 2k + 1 (3.7)

and that condition (3) in Theorem 2.1 can be rewritten as

c = (z, . . . , zn)> = hFβ, (3.8)

where

F = ((t∗j)
i)2k+1
i,j=1 = (f(t∗1), . . . , f(t∗2k+1)) ∈ R2k+1×2k+1.
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We will show that there exists a solution with respect to the nonnegative weights ω1, . . . , ω2k+1

with
∑2k+1

i=1 ωi = 1 which is given by (3.5). As the conditions (1) and (2) in this theorem

are obviously satisfied this yields the assertion of Theorem 3.1.

In order to investigate condition (3.8) note that the identity F−1F = I2k+1 (here I2k+1 is

the identity matrix) implies

e>i F
−1f(t∗j) = δij (i, j = 1, . . . , 2k + 1),

where δij is the Kroneker symbol. As these equations characterize the ith Lagrange basis

interpolation polynomial L̄i(z) = aTi f(z) with nodes t∗1, . . . , t
∗
2k+1 we have

e>i F
−1f(z) = L̄i(z), i = 1, . . . , 2k + 1,

or equivalently

F−1f(z) = (L̄1(z), . . . , L̄2k+1(z))>.

Therefore we obtain for the solution of (3.8)

hβ = (L̄1(z), . . . , L̄2k+1(z))>

or equivalently (since βi = ωi(p
>f(x∗i )))

hβi = hωi(−1)2k+1−i = L̄i(z) , i = 1, . . . , 2k + 1 (3.9)

Note that it follows immediately from formula (3.6) that for z > 1 the sign of L̄i(z)

is given by (−1)2k+1−i which implies that the weights are given by ωi = |Li(z)|/h with

h =
∑n

j=1 |L̄j(z)| and proves the result. �

Our next result specifies the optimal extrapolation designs for a polynomial regression

model of even degree with no intercept. In this case the structure of the optimal design

changes substantially.

Theorem 3.2 For i = 1, . . . , k define

x∗i = −

√
cos (i−1)π

k
+ cos π

2k

1 + cos π
2k

, x∗2k+1−i =

√
cos (i−1)π

k
+ cos π

2k

1 + cos π
2k

. (3.10)

Then the design with support points x∗1, . . . , x
∗
2k and weights ω1, . . . , ω2k determined by (3.5)

is the unique optimal extrapolation design in the polynomial regression model of degree 2k

without intercept on the interval [−1, 1].
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Figure 1: The extremal polynomial in the proof of Theorem 3.2 in the case n = 4 (k = 2).

Proof. A simple calculation shows that the points x∗1, x
∗
2, . . . , x

∗
2k in (3.10) are the extremal

points of the polynomial

P (x) = Tk

(
(x2(1 + cos

π

2k
)− cos

π

2k
)
)
. (3.11)

Consequently, P (x) is an extremal polynomial, which can be used in Theorem 2.1 to prove

the optimality of the design. Observing that P (x∗i ) = (−1)i+1, if i = 1, . . . , k and P (x∗i ) =

(−1)i if i = k + 1, . . . , 2k we see that condition (1) and (2) of Theorem 2.1 are satisfied.

The verification of condition (3) follows by the same arguments as given in the proof of

Theorem 3.1 and is omitted for the sake of brevity.

The uniqueness of the optimal design follows from the fact that the polynomial P in (3.11)

is the unique (up to a sign) polynomial of degree 2k with no intercept that achieves its sup-

norm on the interval [−1, 1] exactly 2k times. The proof of this property can be obtained

by the same arguments as the proof of a similar extremal property of the Chebyshev

polynomial of the first kind. �.

Example 3.3 In the case n = 4 (that is k = 2) we have cos π
2k

= cos π
4

= 1√
2

and the

extremal polynomial in (3.11) is given by

P (x) = 2[x2(1 + 1√
2
)− 1√

2
]2 − 1 = (3 + 2

√
2)x4 − (2 + 2

√
2)x2.

The extremal polynomial P (x) in (3.11) is depicted in Figure 1 and a straightforward

calculation shows that the optimal extrapolation design at the point z = 2 is given by

ξ =

(
−1 −0.6436 0.6436 1

0.083 0.227 0.442 0.248

)
. (3.12)
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4 Optimal designs for estimating the slope

In this section we consider optimal designs for estimating the slope of a polynomial regres-

sion with no intercept on the interval [−1, 1] at a given point, say z ∈ R. As pointed out

in the previous sections, this problem corresponds to a c-optimal design problem in model

(1.1) with f>(x) = (x, . . . , xn) and vector c = (1, 2z, . . . , nzn−1)>. For the common poly-

nomial model with intercept this problem has recently been studied in Dette et al. (2010),

who showed that there exists three different types of optimal designs, depending on the

location of the point z. Only in one of these cases the corresponding extremal polynomial

is a Chebyshev polynomial.

For the polynomial with no intercept we begin with a result regarding the general structure

of the optimal design for estimating derivative at a given point. The proof is similar to

the proof of the corresponding result with intercept [see Dette et al. (2010)] and therefore

omitted.

Theorem 4.1 The optimal design for estimating the slope in the polynomial regression of

degree n with no intercept has either m = n or m = n − 1 support points t∗1, . . . , t
∗
m. The

weights at these points are given by

ωi =
|L̄′i(z)|∑m
j=1 |L̄′j(z)|

, i = 1, . . . ,m, (4.1)

where L̄1, . . . , L̄m are the Lagrange basis interpolation polynomials without intercept defined

in (3.6) corresponding to the nodes t∗1, . . . , t
∗
m and L̄′i denotes the derivative of L̄i.

We now discuss the case of even and odd degree separately starting with the odd degree.

that is n = 2k + 1.

4.1 Polynomials of odd degree

For the linear model through the origin (that is k = 0, n = 1) it is easy to see using

Elfving’s theorem that (independently of the point z) there exist an infinite number of

optimal designs of the form

ξ∗ = αδ−1 + (1− α)δ1

where α ∈ [0, 1] and δx denotes the Dirac measure at the point x. However, in the case

k ≥ 1 the situation is more complicated. In order to describe the optimal design in the
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case n = 2k + 1 explicitly we recall the notation

si,2k+1 = cos( (2k+2−i)π
2k+1

) , i = 1, . . . , 2k + 2 (4.2)

for the extremal points of the Chebyshev polynomial T2k+1(x) = cos((2k + 1) arccosx) of

the first kind and denote by

U2k(x) =
sin((2k + 1) arccosx)

cos(arccosx)

the 2kth Chebyshev polynomial of the second kind. It can be checked by a direct calculation

that the leading coefficient of U2k(x) is 22k and that T ′2k+1(x) = (2k + 1)U2k(x). Therefore

we obtain the representation

U2k(x) = 22k

2k+1∏
l=2

(x− sl,2k+1). (4.3)

Based on the polynomial U2k(x) we now consider four basic polynomials of degree 2k + 1

R(x) =
x(x+ 1)U2k(x)

x− sk+1,2k+1

, (4.4)

R1(x) =
x(x− 1)U2k(x)

x− sk+2,2k+1

, (4.5)

R2(x) =
x(x− 1)U2k(x)

x− sk+1,2k+1

, (4.6)

R3(x) =
x(x+ 1)U2k(x)

x− sk+2,2k+1

, (4.7)

and denote the roots of their derivatives by

ν1 < ν2 < · · · < ν2k, (4.8)

µ1 < µ2 < · · · < µ2k, (4.9)

ρ1 < ρ2 < · · · < ρ2k (4.10)

τ1 < τ2 < · · · < τ2k, (4.11)

respectively. In order to study the roots of the derivatives of these polynomials we will

make use of the following two auxiliary results.
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Lemma 4.2 The roots ν1 < ν2 < · · · < ν2k and µ1 < µ2 < · · · < µ2k of the polynomials

R′(x) and R′1(x) satisfy

ν2k+1−i = −µi , i = 1, . . . , 2k .

The roots ρ1 < ρ2 < · · · < ρ2k and τ1 < τ2 < · · · < τ2k of the polynomials R′2(x) and R′3(x)

satisfy

ρ2k+1−i = −τi , i = 1, . . . , 2k .

Lemma 4.2 is a simple consequence of the facts sk+1,2k+1 = −sk+2,2k+1 and U2k(−x) =

U2k(x), which implies R(−x) = R1(x), R2(−x) = R3(x).

Lemma 4.3 Let P1(x) and P2(x) be polynomials of degree n with n distinct roots t(1,1) <

t(2,1) < . . . < t(n,1) and t(1,2) < t(2,2) < . . . < t(n,2), respectively. Assume that the roots are

interlacing in the following sense:

t(1,1) ≤ t(1,2) < t(2,1) ≤ t(2,2) < . . . < t(n,1) ≤ t(n,2)

where at least one of the inequalities t(`,1) ≤ t(`,2) (` = 1, . . . n) is strict.

Then the roots v(1,1) ≤ v(2,1) ≤ . . . ≤ v(n−1,1) and v(1,2) ≤ v(2,2) ≤ . . . ≤ v(n−1,2) of the

derivatives P ′1(x) and P ′2(x) are strictly interlacing, that is

v(1,1) < v(2,1) < . . . < v(1,n−1) < v(2,n−1).

The proof can be found in the PhD thesis of Sahm (1998) and is given in the Appendix for

the sake of completeness. The following lemma provides the interlacing property for the

roots of the first derivatives of the polynomials R(x), R1(x), R2(x) and R3(x).

Lemma 4.4 The points defined by (4.8) - (4.11) satisfy

µi < ρi, µi < τi+1, τi < νi, ρi < νi+1, i = 1, . . . , 2k ,

where ν2k+1 =∞, τ2k+1 =∞.

Proof. The proof is a direct consequence of Lemma 4.3. Exemplarily, consider the roots

of the polynomials R1(x) and R2(x), which are given by

s2,2k+1 < . . . < sk,2k+1 < sk+1,2k+1 < 0 < sk+3,2k+1 < . . . < s2k+1,2k+1,

s2,2k+1 < . . . < sk,2k+1 < 0 < sk+2,2k+1 < sk+3,2k+1 < . . . < s2k+1,2k+1,
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respectively. Consequently Lemma 4.3 with P1(x) = R1(x) and P2(x) = R2(x) is applicable

and implies for the roots µi and ρi of the derivatives R′1 and R′2 the interlacing properties

µ1 < ρ1 < µ2 < ρ2 < . . . < µ2k < ρ2k .

As all other cases are treated similarly, the assertion of Lemma 4.4 follows. �

For the statement of our first main result we define a sequence of designs ξ1, . . . , ξ2k+2

supported at 2k + 1 points, where the weights are defined by (4.1) for the different the

support points. Note that these weights are positive by definition. For the design ξ1 the

support points are given by

s2,2k+1, s3,2k+1, . . . , s2k+2,2k+1 (4.12)

If i ∈ {2, . . . 2k + 1} the support points of the design ξi are given by

s1,2k+1, . . . si−1,2k+1, si+1,2k+1, . . . , s2k+2,2k+1,

and the support points of the design ξ2k+2 are given by

s1,2k+1, s2,2k+1, . . . , s2k+1,2k+1.

Note that the designs are obtained by omitting one of the points s1,2k+1, . . . , s2k+2,2k+1. In

the following result we show that for many values of z one of the designs ξ1, ξk+1, ξk+2 or

ξ2k+2 is optimal for estimating the slope in a polynomial regression with no intercept.

Theorem 4.5 The optimal design on the interval [−1, 1] for estimating the slope of a

polynomial regression with no intercept at the point z has at most 2k + 1 points in the

set {s1,2k+1, . . . , s2k+2,2k+1} if and only if z ∈ ∪2k+1
i=1 Ai, where the set Ai is defined by

Ai = (−ν2k+2−i, νi), i = 1, . . . , 2k + 1. Moreover,

(1) The design ξ1 is the optimal design if and only if z is in one of the intervals (µi, ρi), i =

1, . . . , 2k. If z = ρi, i = 1, . . . , 2k the optimal is supported at the 2k points

s2,2k+1, . . . , sk,2k+1, sk+2,2k+1, . . . , s2k+2,2k+1

with weights defined by (4.1).
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(2) The design ξk+1 is the optimal design if and only if z is in one of the intervals

(−∞, ν1), (ρ2k,∞) or (ρi, νi+1), i = 1, . . . , 2k− 1, . If z = νi, i = 1, . . . , 2k the optimal

is supported at the 2k points

s1,2k+1, . . . , sk,2k+1, sk+2,2k+1, . . . , s2k+1,2k+1

with weights defined by (4.1).

(3) The design ξk+2 is the optimal design if and only if z is in one of the intervals

(−∞, τ1), (µ2k,∞) or (µi, τi+1), i = 1, . . . , 2k− 1. If z = µi, i = 1, . . . , 2k the optimal

is supported at the 2k points

s2,2k+1, . . . , sk+1,2k+1, sk+3,2k+1, . . . , s2k+2,2k+1

with weights defined by (4.1).

(4) The design ξ2k+2 is the optimal design if and only if z is in one of the intervals

(τi, νi), i = 1, . . . , 2k. If z = τi, i = 1, . . . , 2k the optimal is supported at the 2k points

s1,2k+1, . . . , sk+1,2k+1, sk+3,2k+1, . . . , s2k+1,2k+1

with weights defined by (4.1).

Proof. We begin with the proof of the statements (1) - (4), where we restrict ourselves to

the case (1), as the other cases can be shown similarly. The basic idea is the following. The

polynomial T2k+1(x) will serve as extremal polynomial in Theorem 2.1. Consequently, the

points si,2k+1 in (4.2) are potential support points of the optimal design and conditions (1)

and (2) of Theorem 2.1 are satisfied. It now remains to characterize those values of z such

that the system of equations defined by condition (3) in Theorem 2.1 admits a solution

with nonnegative weights ωi satisfying
∑m

i=1 ωi = 1. Observing the representation (4.3) it

is easy to see that the polynomials R(x), R1(x), R2(x) and R3(x) are special cases (up to a

constant) of the polynomials

L̄i,j(x) =
x
∏

` 6=i,j(x− s`,2k+1)

sj,2k+1

∏
` 6=i,j(sj,2k+1 − s`,2k+1)

, j = 1, 2, . . . , i− 1, i+ 1, . . . 2k + 2 (4.13)

(note that L̄i,j(x) is a polynomial of degree 2k + 1 as the index ` runs over the set

{1, 2, . . . , 2k + 2} \ {i, j}). More precisely we have

R(x) = cL̄2k+2,k+1(x) , R1(x) = c1L̄1,k+2(x) ,

R2(x) = c2L̄1,k+1(x) , R3(x) = c3L̄2k+2,k+2(x) ,
(4.14)
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for appropriate constants c, c1, c2 and c3. Note that in case (1) the Lagrange interpolation

polynomial without intercept defined in (3.6) corresponding to the points in (4.12) is given

by

L̄j(x) =
x
∏

`6=1,j(x− s`,2k+1)

sj,2k+1

∏
`6=1,j(sj,2k+1 − s`,2k+1)

= L̄1,j(x)

(j = 2, . . . , 2k+ 2). If z → −∞ the sign of the derivatives L̄′1,j(z) coincide with the sign of

the polynomials L̄1,j(z) and are equal to the sign of

(−1)sj,2k+1

∏
`6=1,j

(sj,2k+1 − s`,2k+1) ,

which are denoted by tj in the following (j = 2, . . . , 2k + 2). Consequently we have

tj =

(−1)j if j = 2, . . . , k + 1

(−1)j+1 if j = k + 2, . . . , 2k + 2

if z is negative and |z| is sufficiently large.

Let us now consider the signs of the derivatives of the polynomials L̄1,j(x) (j = 2, . . . , 2k+1)

at a point z ∈ (µi, ρi) (i = 1, . . . , 2k + 1). For this purpose we denote the roots of L̄′1,j(x)

by uj,1, . . . , uj,2k, j = 2, . . . , 2k + 2. A straightforward calculation shows that the roots of

the polynomials L̄1,j and L̄1,l for j < l are interlacing and by Lemma 4.3 we have

u2k+2,1 < . . . < uk+2,1 < uk+1,1 < . . . < u2,1 <

< u2k+2,2 < . . . < uk+2,2 < uk+1,2 < . . . < u2,2 < . . . < u2k+2,2k < . . . < u2,2k.

Observing that µj and ρj are the roots of the polynomials R1 and R2, respectively and

using the representation (4.14) it follows that

uk+2,j = µj, uk+1,j = ρj, j = 1, . . . , 2k.

Next we show that the quantities L̄′1,i(z)(−1)i, i = 1, 2, . . . , 2k + 1 have the same sign if

and only if z is in the one of the intervals (µi, ρi), i = 1, . . . , 2k. Note (see Figure 2) that

each of the polynomials L̄1,j (j = 2k + 2, . . . , k + 2) has exactly one root in the interval

(−∞, uk+2,1 − δ) (where δ > 0 and arbitrarily small). Moreover uk+2,1 = µ1, uk+1,1 = ρ1,

and there are no roots between µ1 and ρ1 Consequently, the quantities L̄′i(z)(−1)i, i =

1, 2, . . . , 2k + 1 have the same sign for z ∈ (µ1, ρ1).
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−∞ u2k+2,1

µ1

uk+2,1

ρ1

uk+1,1

µ2

uk+2,2

ρ2

uk+1,2 ∞

Figure 2: Roots of the polynomials L̄′1,j(x), j = 1, . . . , 2k. There are no roots between µ1

and ρ1.

Figure 3: The derivatives L̄′1,j(z) as a function z ∈ R for j = 1, . . . , n = 2k + 1 = 3

(k = 1). The polynomials L̄′1,1(z), L̄′1,2(z) and L̄′1,3(z) alternate in sign if and only if z ∈
(µ1, ρ1) ∪ (µ2, ρ2).

Consider now the intervals (µi, ρi), i = 2, . . . , 2k. Note that the derivatives L̄′1,j(z) (j =

1, . . . , 2k+ 1) change their signs exactly once as z is passing from ρi to µi+1 and that there

are no roots between µi and ρi (see Figure 3, where we show these functions for k = 1).

This part is still a little unclear to me ! Thus the signs of the quantities L̄′1,j(z) coincide with

the signs of (−1)i−1T2k+1(sj,2k+1) if z is in the interval (µi, ρi) and they do not coincide with

the signs of T2k+1(sj,2k+1) or −T2k+1(sj,2k+1) if z is outside these intervals (i = 2, . . . , 2k+1).

Using these observations we obtain in the same manner as in the proof of Theorem 3.1 that

c> = (1, 2z, . . . , (2k + 1)z2k)> = F · (L̄′1,1(z), . . . , L̄′1,2k+1(z))> = hFβ,

where

F = (sij+1,2k+1)
2k+1
i,j=1 ∈ R2k+1×2k+1,

h =
∑2k+1

j=1 |L̄′1,j(z)|, βi = ωiT2k+1(si+1,2k+1) and ωi = |L̄′1,i(z)| ≥ 0 (i = 1, . . . , 2k + 1). As

these equations are equivalent to the condition (3) in Theorem 2.1 the optimality of the
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design ξ1 in part (1) of Theorem 4.5 follows. The optimality of the designs ξk+1, ξk+2 and

ξ2k+2 in part (2), (3) and (4) is shown by the same arguments.

Next we consider the remaining case z = ρi, i = 1, 2, . . . , 2k in part (1) of Theorem 4.5.

For this purpose we use the obvious identities

(µi, ρi) ∪ (ρi, νi+1) ∪ {ρi} = (µi, νi+1), i = 1, . . . , 2k,

(µi, τi+1) ∪ (τi+1, νi+1) ∪ {τi+1} = (µi, νi+1), i = 1, . . . , 2k,
(4.15)

and (−∞, τ1) ∪ (τ1, ν1) ∪ {τ1} = (µ0, ν1), where µ0 = −∞. The assertion about the case

z = ρi, i = 1, 2, . . . , 2k follows considering the limit z → ρi (the designs ξ1 and ξk+1 must

converge to the same limit). The remaining statements for z = νi, µi and τi are treated

similarly. Finally, it can be also verified that designs ξi can not be optimal if i is outside

the set {1, k + 1, k + 2, 2k + 1}.
Due to Lemma 4.2 we have ν2k+1−i = −µi, i = 1, . . . , 2k. Thus from (1) - (4) it follows

that the optimal design on the interval [−1, 1] for estimating the slope of a polynomial

regression with no intercept at the point z is supported at exactly 2k + 1 points in the set

{s1,2k+1, . . . , s2k+2,2k+1} if and only if z ∈ ∪2k+1
i=1 Ai, which completes the proof of Theorem

4.5.

Remark 4.6

(a) It also follows from the proof of Theorem 4.5 that ξj can not be optimal if j 6∈ {1, k +

1, k + 2, 2k + 2}.
(b) It follows from the proof of Theorem 4.5 that for any z ∈ ∪2k+1

i=1 Ai there exist exactly

two optimal designs for estimating the slope of a polynomial regression with no intercept

which are supported at 2k+ 1 points from the set of 2k+ 2 points {s1,2k+1, . . . , s2k+2,2k+1}.
Indeed, it follows from the identity (4.15) that each

z ∈ Ai = (−ν2k+2−i, νi) = (µi−1, νi), i = 1, . . . , 2k + 1,

belongs to exactly two of the intervals determined in the cases (1) - (4) of Theorem 4.5.

Similarly, the points ρ1, . . . , ρ2k and τ1, . . . , τ2k belong to exactly two of the intervals de-

termined in the cases (1) - (4) of Theorem 4.5 (in this case there exists an optimal design

with 2k and 2k + 1 support points).

Example 4.7 In this example we illustrate potential applications of Theorem 4.5 deter-

mining optimal designs for estimating the slope of a cubic regression with no intercept (note
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that this corresponds to the case k = 1 in the previous result). In this case the extremal

points in (4.2) are given by {−1,−1/2, 1/2, 1} and the derivatives of the polynomials in

(4.4) - (4.7) are given by

R′(x) = 12x2 + 4x− 2 , R′1(x) = 12x2 − 4x− 2

R′2(x) = 12x2 − 12x+ 2 , R′3(x) = 12x2 + 12x22

The corresponding roots are obtained as

ν1 = −0.608 , ν2 = 0.274 , µ1 = −0.274 , µ2 = 0.608 ,

ρ1 = 0.211 , ρ2 = 0.789 , τ1 = −0.789 , τ2 = −0.211 ,

and consequently the optimal design for estimating the slope of a polynomial regression

without intercept at the point z is supported at 3 points from the set {−1,−1/2, 1/2, 1} if

and only if

z ∈ (−∞,−0.608) ∪ (−0.274, 0.274) ∪ (0.608,∞)

(1) The optimal design supported at the points {−1/2, 1/2, 1} if

z ∈ (µ1, ρ1) ∪ (µ2, ρ2) ≈ (−0.274, 0.211) ∪ (0.608, 0.789);

(2) The optimal design supported at the points {−1, 1/2, 1} if

z ∈ (−∞, ν1) ∪ (ρ1, ν2) ∪ (ρ2,∞) ≈ (−∞,−0.608) ∪ (0.211, 0.274) ∪ (0.789,∞);

(3) The optimal design supported at the points {−1,−1/2, 1} if

z ∈ (−∞, τ1) ∪ (µ1, τ2) ∪ (µ2,∞) ≈ (−∞,−0.789) ∪ (−0.274,−0.211) ∪ (0.608,∞);

(4) The optimal design supported at the points {−1,−1/2, 1/2} if

z ∈ (τ1, ν1) ∪ (τ2, ν2) ≈ (−0.789,−0.608) ∪ (−0.211, 0.274).

4.2 Polynomials of even degree

In this section we consider the problem of designing an experiment for the estimation of

the slope of a polynomial regression of even degree with no intercept, that is n = 2k. We
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recall the definition of the polynomial P (x) in (3.11), its corresponding extremal points

x∗1, . . . x
∗
2k in (3.10) and introduce the polynomials

Q1(x) = x(x+ 1)
2k−1∏
`=2

(x− x∗`) = x(x+ 1)P ′(x),

Q2(x) = x(x− 1)
2k−1∏
`=2

(x− x∗`) = x(x− 1)P ′(x).

Q3(x) = x(x− 1)
2k−1∏
`=2

(x− s`,2k−1) = x(x− 1)U2k−2(x),

Q4(x) = x(x+ 1)
2k−1∏
`=2

(x− s`,2k−1) = x(x+ 1)U2k−2(x)

where s1,2k−1, s2,2k−1, . . . , s2k,2k−1, are the extremal points of the Chebyshev polynomial

T2k−1(x). Moreover, we define the sets

B = ∪2k−1i=0 (−ν2k−i, νi+1), (4.16)

C = ∪2k−1i=1 (−ρ2k−i, ρi), (4.17)

where ν2k = ∞ and ν1 < ν2 < · · · < ν2k−1 are the roots of the first derivative of the

polynomial Q1(x) and ρ1 < ρ2 < · · · < ρ2k−1 are the roots of the first derivative of the

polynomial Q3(x). Note that the roots of the derivative of the polynomial Q2(x) are given

by −ν2k−1, . . . ,−ν1 because of the equality Q2(−x) = Q1(x).

Theorem 4.8

(1) There exists an optimal design for estimating the slope at the point z in a polynomial

regression of degree 2k ≥ 2 with no intercept supported at the points x∗1, . . . x
∗
2k in (3.10) if

and only z ∈ B. In this case the optimal design is unique and the corresponding weights

are given by (4.1) with m=2k.

(2) There exists an optimal design for estimating the slope at the point z in a poly-

nomial regression of degree 2k ≥ 2 with no intercept supported at the extremal points

s1,2k−1, s2,2k−1, . . . , s2k,2k−1, of the Chebyshev polynomial T2k−1(x) if and only if z ∈ C. In

this case the optimal design is unique and the corresponding weights are given by (4.1) with

m=2k.

Proof. The proof is similar to that of Theorem 4.5 and therefore we only indicate a proof of

part (1). As the polynomial P (x) in (3.11) obviously satisfies the conditions of Theorem 2.1
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it remains to show condition (3). It then follows that the weights coefficients are uniquely

determined by (4.1) with m = 2k.

Similar to the proof of Theorem 3.1 condition (3) of Theorem 2.1 holds if the quantities

P (x∗i ) and L̄′i(z) have the same sign for i = 1, 2, . . . , 2k, where the polynomial L̄i is given

by

L̄i(x) =
x
∏

s 6=i(x− x∗s)
x∗i
∏

s 6=i(x
∗
i − x∗s)

, i = 1, 2, . . . , 2k.

Note that the quantities P (x∗i )(−1)i, i = 1, 2, . . . , k and −P (x∗i )(−1)i, i = k + 1, k +

2, . . . , 2k have the same sign, and consequently it is sufficient to show that all the quanti-

ties L̄′i(z)(−1)i, i = 1, 2, . . . , k and −L̄′i(z)(−1)i, i = k+ 1, k+ 2, . . . , 2k have the same sign.

We will show that this property holds if and only if z ∈ B, where the set B is defined in

(4.16).

Obviously, the roots of the polynomials L̄i(x) and L̄i+1(x) satisfy the assumptions of Lemma

4.3. Note also that Q1(x) = c1L̄2k(x), Q2(x) = c2L̄1(x) for some constants c1and c2. Conse-

quently, if v(i,1) < . . . , v(i,2k−1) denote the roots of the derivative of L̄i(x) (i = 1, 2, . . . , 2k),

then an application of Lemma 4.3 shows that

ν1 = v(1,2k) < · · · < v(1,1) = −ν2k−1 <
ν2 = v(2,2k) < · · · < v(2,1) = −ν2k−2 < ν3 < · · · <

ν2k−1 = v(2k−1,2k) < · · · < v(2k−1,1) = −ν1.

First we consider the case z < ν1. If z → −∞ the sign of the derivatives L̄′i(z) coincide

with the sign of the polynomials L̄i(z) and are equal to the sign of

−x∗i
∏
s 6=i

(x∗i − x∗s), i = 1, 2, . . . , 2k.

which are denoted by ti in the following i = 1, . . . , 2k. Consequently we have

ti =

(−1)i if i = 1, . . . , k

(−1)i+1 if i = k + 1, . . . , 2k.

if z is negative and |z| is sufficiently large. Note that there are no zeros of the polynomial

L̄′1(z), . . . , L̄′2k(z) for z ∈ (−∞, ν1). Therefore all the quantities L̄′i(z)(−1)i, i = 1, 2, . . . , k

and −L̄′i(z)(−1)i, i = k + 1, k + 2, . . . , 2k have the same sign for z ∈ (−∞, ν1).
Next consider the case z ∈ (−ν2k−1, ν2). In this case it follows from the above inequalities
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that all polynomials L̄′i(z)(−1)i, i = 1, 2, . . . , k and −L̄′i(z)(−1)i, i = k + 1, k + 2, . . . , 2k

have the same signs since all derivatives have exactly one sign change on the interval

(ν1,−ν2k−1). Proceeding in the same way we can prove that the quantities P (x∗i ) and L̄′i(z)

(i = 1, 2, . . . , 2k) have the same sign if and only if z ∈ B.

The uniqueness of the optimal design follows from the fact that the extremal polynomial

P (x) in (3.11) is unique in the sense that it is the unique polynomial of degree 2k with no

intercept that achieve its extremal absolute value equal in the interval [−1, 1] exactly 2k

times. This completes the proof of the part (1) of the theorem. The part (2) can be proved

in a similar way.

Example 4.9

(a) Consider the case n = 2, which corresponds to a quadratic regression model with no

intercept. In order to apply part (2) of Theorem 4.8 note that in this case the extremal

points of the Chebyshev polynomials T1(x) are given by s1,1 = −1 and s2,1 = 1 and

Q3(x) = x(x− 1). This gives for the root of its derivative ρ1 = 1/2.

Consequently, the optimal design for estimating the slope in a quadratic regression model

with no intercept is supported at the points −1 and 1 if and only if z ∈ C = (−1
2
, 1
2
).

Moreover, in this case the weights are given by

1

2
− z and

1

2
+ z,

respectively. It can be checked by a direct calculation that this statement remains correct

in the case z = −1
2

of z = 1
2
.

Next we consider the situation corresponding to part (1) in Theorem 4.8, noting that in

this case the polynomial P in (3.11) is given by P (x) = x, which yields x∗1 = −1 and x∗2 = 1

as support points of the potential optimal design. Moreover as Q1(x) = x(x + 1) we have

ν1 = −1/2 and ν2 = 1/2 and

B = (−∞,−1/2) ∪ (1/2,∞)

Consequently, if |z| > 1/2, it follows by a straightforward calculation that the optimal

design for estimating the slope in a quadratic regression has weights

1/2− 1

4z
and 1/2 +

1

4z

at the points −1 and 1, respectively.
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(b) For polynomials of larger degree the situations gets substantially more complicated.

Consider exemplarily the case n = 2k = 4. The extremal polynomial in part (1) of Theorem

4.8 is given by (3.11). The optimal design for estimating the slope in the polynomial of

degree n = 4 with no intercept is supported at the extremal points −1,−0.6436, 0.6436 and

1 of this polynomial if and only if z belongs to one of the following intervals

(−∞,−0.8503), (−0.4027,−0.3023), (0.3023, 0.4027), (0.8503,∞).

Part (2) of Theorem 4.8 is applicable if and only if z belongs to one of the intervals

(−0.804,−0.663), (−0.235, 0.235), (0.663, 0.804).

In this case the optimal design for estimating the slope is supported at the extremal points

1,−0.5, 0.5 and 1 of the third Chebyshev polynomial T3(x) = 4x3 − 3x.
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5 Proof of Lemma 4.3

The proof of this result can be found in the PhD thesis of Sahm (1998). As it is difficult

to get access to this thesis, we repeat his arguments here for the sake of completeness. We

begin with two statements, from which the proof of Lemma 4.3 will easily follow.

Lemma 5.1 Let Q(x) =
∏n

i=1(x − qi) and P (x) =
∏m

i=1(x − pi) denote two polynomials

of degree n and m, respectively,where m = n − 1 or m = n. Assume that P 6= Q and set

qn+1 = −∞. If

qi ≥ pi ≥ qi+1, i = 1, . . . ,m, (5.1)

then we have

R(x) := (P (x)/Q(x))′ < 0,

whenever the polynomial R(x) is defined.
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Proof. In the case n = 1 the result is nearly obvious: if m = n − 1 = 0 we have

R(x) = −Q−2(x) < 0 and for m = n = 1

R(x) =
p1 − q1

(x− q1)2
< 0 for all x 6= q1

Now we turn to the case n > 1 and assume that the pair (P,Q) form a counterexample

of minimal degree. This implies in particular that P (x) and Q(x) cannot have a root in

common (otherwise their degree would not be minimal). Furthermore all roots of P (x)

and Q(x) must be simple. As the pair (P,Q) is a counterexample there exists some z ∈ R
where R(z) ≥ 0.

The idea is following. Move the polynomial P up (or down) without changing the property

R(z) ≥ 0 until one of the zeros of P (x) and Q(x) coincide. Then divide the polynomials

by this factor and produce a counterexample of smaller degree, which contradicts the

assumption of minimality. For this purpose we have to consider the two cases Q′(z) ≥ 0

and Q′(z) < 0 separately.

We restrict ourselves to the case Q′(z) ≥ 0 and mention that the case Q′(z) < 0 can be

obtained by exactly the same arguments. To be precise define

ε := sup{δ > 0| the roots of the polynomials P (x)− δ and Q(x) interlace }.

This set is not empty due to the continuity of the roots of the polynomial P (x) − δ with

respect to δ. Now let P̄ (x) = P (x)− ε. Then it is clear from the definition of ε that P̄ (x)

has m zeros p̄1, . . . , p̄m, which interlace with those of Q(x), and P̄ (x) and Q(x) have at

least one zero in common. Furthermore, since P̄ ′(x) = P ′(x) we have

R̄(z) = (P̄ /Q)′(z) = R(z) +
εQ′(z)

Q2(z)
≥ 0;

Before we divide P̄ (x) and Q(x) by the factors that they have in common, note that P̄

cannot equal Q because in this case we would have P (x) = Q(x) + ε, which contradicts the

interlacing property for n > 1. Now let P̃ (x) and Q̃(x) denote the polynomials obtained

by dividing P̄ (x) and Q(x) by their greatest common denominator. These polynomials

still have the interlacing property, are of degree smaller than n and are not equal. For the

corresponding ratio we find

R̂(z) = (P̃ /Q̃)′(z) = (P̄ /Q)′(z) = R̄(z) ≥ 0

which contradicts the assumption that the pair (P,Q) forms a counterexample of minimal

degree. �
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Theorem 5.2 Consider two polynomials Q(x) =
∏n

i=1(x− qi), and P (x) =
∏m

i=1(x− pi),
of degree n and m, where m ≤ n ≤ m + 1, the roots q1 > · · · > qn, p1 > · · · > pm, fulfil

condition (5.1) and P 6= Q. Then the zeros of q′1 > · · · > q′n−1 and p′1 > · · · > p′m−1, the

derivatives Q′(x) and P ′(x) satisfy

q′i > p′i > q′i+1 for i = 1, . . . ,m− 1

(here q′n id defined as q′n = −∞). In other words, if the polynomials P 6= Q have only

simple roots, which interlace, then the roots of their derivatives strictly interlace.

Proof. We first consider the case where the polynomial P (x) has degree m = n− 1. From

Lemma 5.1 for i = 1, . . . , n− 1

0 > R(q′i) =

(
P

Q

)′
(q′i) =

P ′(q′i)Q(q′i)− P (q′i)Q
′(q′i)

Q(q′i)
2

=
P ′(q′i)

Q(q′i)
.

Since the denominator alternates in sign (the roots of Q′ interlace with those of Q) and the

leading coefficient is 1 it follows that sign(Q(q′i)) = (−1)i. This implies that the numerator

must also alternate in sign, i.e.

sign(P ′(q′i)) = (−1)sign(P ′(q′i+1)) = (−1)i−1 (i = 1, . . . , n− 2) .

This means that between any pair of consecutive roots q′i, q
′
i+1 of Q′(x) there is a root of

P ′(x), which proves the Theorem 5.2 for n = m+ 1.

If both polynomials P (x) and Q(x) have the same degree m, note that

lim
x→−∞

sign(P ′(x)) = (−1)m−1 = (−1)P ′(q′m−1) .

Consequently, P ′(x) also has a root in the interval (−∞, q′m−1), which completes the proof

of Theorem 5.2 . �

Proof of Lemma 4.3. Without loss of generality we assume that the leading coefficients

of the polynomial P1 and P2 are equal to 1. With the notation

P (x) = P2(x), Q(x) = P1(x)

pi = t(n−i+1,2), i = 1. . . . , n

qi = t(n−i+1,1), i = 1. . . . , n

the proposition of Lemma 4.3 follows from Theorem 5.2. �
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