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1 Introduction

One of the most important tools to estimate the effects of economic shocks on a set of variables is

the structural vector autoregressive model (SVAR). Due to the simultaneous nature of the inter-

action among economic variables, the identification of the underlying structural shocks generally

requires the researcher to impose restrictions on the system. A variety of identifying restrictions

have been proposed in the SVAR literature. The one thing all identification approaches have in

common is the assumption of uncorrelated structural shocks. Unfortunately, uncorrelatedness is

not sufficient to identify the simultaneous interaction.

A large part of the SVAR literature eliminates this lack of identification with short-run or long-

run restrictions. For example, the often used recursive SVAR employs short-run zero restrictions

between the included variables. However, these restrictions are often difficult to find, or hardly

justifiable based on economic theory. Therefore, a number of proposals have been made to avoid

these restrictions. The general idea is to exploit the independence of the shocks and not merely

their uncorrelatedness. With independent and non-Gaussian shocks, results from the indepen-

dent component analysis (ICA) literature can be applied to identify the SVAR.

In this paper, I present a generalized method of moments (GMM) estimator for non-Gaussian

SVAR models with independent shocks. The identification is derived as a straightforward exten-

sion of traditional approaches relying on the assumption of uncorrelated shocks to independent

shocks. The approach is purely data driven and does not require any assumptions or restrictions

apart from independent and non-Gaussian shocks (more precisely: at most one shock is allowed

to have zero skewness or zero excess kurtosis). In macroeconomic applications, where restrictions

are scarce and traditional identification approaches fail, the proposed estimator allows to identify

and estimate a given SVAR by exploiting information contained in moments beyond the variance.

Independence has rarely been used to identify SVAR models. A few authors use independent

shocks to evaluate the fit of different causal orders (Hyvärinen et al. (2010) or Moneta et al.

(2013)). More recently, independence has been used to identify SVAR models without restric-

tions on the interaction of the included variables. Lanne et al. (2017) and Gouriéroux et al.
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(2017) propose a maximum likelihood (ML) and a pseudo maximum likelihood (PML) estimator

for non-Gaussian SVAR models. Lanne and Luoto (2019) use cokurtosis conditions to derive a

GMM estimator for non-Gaussian SVAR models. The authors relax the assumption of indepen-

dent structural shocks and instead assume uncorrelated shocks with a few shocks additionally

satisfying cokurtosis restrictions. Herwartz (2018) proposes a method to find the least dependent

shocks, measured by the difference between the empirical copula and the copula under indepen-

dence. Herwartz and Plödt (2016) apply the method and analyze the interaction of real economic

activity, oil production and the real price of oil.

The SVAR-GMM estimator proposed in this paper requires no distributional assumptions, apart

from independent and non-Gaussian shocks. In contrast to that, the estimators proposed by

Lanne et al. (2017) and Gouriéroux et al. (2017) require to specify the distribution of the struc-

tural shocks a priori. In macroeconomic applications, distributional restrictions are probably even

harder to derive from economic theory than traditional short-run or long-run restrictions. The

PML estimator proposed by Gouriéroux et al. (2017) is to some extent robust to distributional

misspecification. Based on a Monte Carlo study, I show that misspecifying the distribution can

lead to a serious deterioration of the finite sample performance of the PML estimator. I find that

the SVAR-GMM estimator performs more robustly across different error term specifications and

it performs better than the misspecified PML estimator.

The moment conditions derived in this paper ensure global identification up to sign and per-

mutation. However, the number of moment conditions increases quickly with the dimension of

the SVAR, which makes the estimator computationally expensive in large models. Lanne and

Luoto (2019) propose a GMM estimator which estimates the simultaneous relations based on a

subset of the moment conditions derived in this paper. Relying only on a subset of the moment

conditions yields a computationally cheap estimator, but it also destroys the global identification

result. Therefore, the estimator proposed by Lanne and Luoto (2019) is only locally identified,

which hinders asymptotic inference. I propose an alternative way to decrease the computational

burden of the estimator. By sacrificing the asymptotic efficiency of the estimator, one can gain
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a consistent, globally identified and computationally cheap approximation, which is denoted as

the fast SVAR-GMM estimator. Based on a Monte Carlo study, I show that even though the

fast SVAR-GMM estimator is asymptotically not optimal, it performs well and robustly across

various specifications and sample sizes. In small samples, it often even performs better than

the two-step SVAR-GMM estimator, which estimates the optimal weighting matrix based on the

standard two-step GMM procedure.

I find that neither the GMM estimator proposed by Lanne and Luoto (2019) nor the PML esti-

mator proposed by Gouriéroux et al. (2017) (with a pseudo distribution equal to a t-distribution)

are able to exploit information contained in the skewness of the structural shocks. Instead, both

estimators primarily rely on the excess kurtosis of the shocks. The estimator proposed in this

paper is more general and can use information contained in the skewness and excess kurtosis.

I provide empirical evidence that macroeconomic variables like economic activity, oil or stock

prices are driven by skewed shocks. The Monte Carlo study shows that estimators based on the

skewness have desirable small sample properties. In particular, I find that the small sample bias

and standard deviation of an estimator based on the skewness are driven by the relative skewness

of the shocks and I find no deterioration with a decreasing sample size.

In an empirical application, the estimator is applied to analyze the interaction of economic ac-

tivity, oil and stock prices. SVAR models with oil and stock prices have often been identified by

imposing a recursive order on both variables, see Sadorsky (1999) or Kilian and Park (2009). I

challenge this practice and provide evidence that no zero restrictions on the simultaneous rela-

tionship between oil and stock prices are feasible.

The remainder of the paper is organized as follows. Section 2 presents the SVAR model and de-

rives the identification problem. Section 3 illustrates how the usual SVAR identification approach

relying on uncorrelated shocks can be extended to independent shocks. Section 4 introduces the

notation. Section 5 derives the identification of the SVAR model based on higher moments and

introduces the SVAR-GMM estimator. Section 6 derives the fast SVAR-GMM estimator and

Section 7 analyzes the finite sample properties of the estimators in a Monte Carlo study. The
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estimator is applied in Section 8 to study the interaction of economic activity, oil and stock prices.

Section 9 concludes.

Throughout the paper real numbers are denoted by R, natural numbers are denoted by N and

the identity matrix is denoted by I. Moreover, the function vec(.) denotes the vectorization of a

matrix and det(.) denotes the determinant of a matrix.

2 SVAR model

This section briefly summarizes the identification problem in SVAR models. A detailed explana-

tion can be found in Kilian and Lütkepohl (2017). The SVAR is given by

A0yt = A1yt−1 + ...+Apyt−p + εt, (1)

with constant parameter matrices A0, ..., Ap ∈ Rn×n, the n-dimensional vector of time series

yt = [y1,t, ..., yn,t]
′ and the vector of structural shocks εt = [ε1,t, ..., εn,t]

′. The structural shocks

are supposed to satisfy the following assumptions.

Assumption 1. (i) εt is an i.i.d. vector of random variables.

(ii) εt has mutually independent components, meaning that εi,t is independent of εj,t for i 6= j.

(iii) Each component of εt has zero mean, unit variance and finite third and fourth moments.

(iv) At most one component of ε has zero skewness and/or at most one component of ε has zero

excess kurtosis.

The parameter matrix governing the simultaneous interaction is assumed to be invertible.

Assumption 2. A0 ∈ A := {A ∈ Rn×n|det(A) 6= 0}.

Equation (1) cannot be estimated consistently by OLS since a non-diagonal matrix A0 leads to
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endogenous regressors. The reduced form vector autoregression (VAR) is given by

yt = C1yt−1 + ...+ Cpyt−p + ut. (2)

The reduced form shocks ut are i.i.d., and the VAR can be estimated by OLS. However, the

estimated reduced form parameters and the reduced form shocks are of limited interest for the

structural analysis, which focuses on the structural parameters and the structural shocks. The

reduced form shocks can be written as a linear combination of the structural shocks

ut = A−10 εt. (3)

However, neither the parameters of the matrix governing the simultaneous interaction nor the

structural shocks are known. Put differently, the structural shocks cannot be directly recovered

from the estimated reduced form VAR, leaving us with an identification problem.

Define the unmixed innovations as the vector of random variables obtained by unmixing the

reduced form shocks by a matrix A ∈ A as

et(A) := Aut. (4)

If the unmixing matrix A is equal to A0, the unmixed innovations are equal to the structural

shocks. I show how to derive a system of moment conditions which globally identifies the matrix

governing the simultaneous interaction and the structural shocks up to sign and permutation.

The identification requires independent and non-Gaussian structural shocks. Intuitively, if the

unmixed innovations and the structural shocks have the same covariance, coskewness and cokur-

tosis, then the unmixed innovations and structural shocks are equal up to sign and permutation.

Note that equations (3) and (4) contain no lag structure and the shocks are i.i.d. over time.

Therefore, the time index is suppressed whenever possible.
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3 Illustration: Identification and higher moments

This section uses a bivariate SVAR to illustrate the intuition behind the identification approach

presented in Section 5. The approach is a straightforward extension of the standard identifica-

tion scheme relying on uncorrelated shocks to higher moments and independent shocks. In a

nutshell, the shocks ε are supposed to be mutually independent and thus uncorrelated, which

allows to postulate moment conditions. However, these second order moment conditions are not

sufficient for identification. Exploiting the implications of independent shocks concerning higher

co-moments allows to postulate additional moment conditions and to identify the SVAR.

Consider a bivariate SVAR such that the unmixed innovations are given by

e1
e2

 =

a11 a12

a21 a22


u1
u2

 . (5)

One can now use Assumption 1 to derive the stochastic properties of the unknown structural

shocks and choose an unmixing matrix such that the unmixed innovations fulfill the same stochas-

tic properties. Basically every SVAR identification approach exploits the second order properties

of the structural shocks. In particular, the structural shocks have unit variance and thus the

unmixed innovations should satisfy the following variance conditions

1
!
= E

[
e21
]

= E
[
(a11u1 + a12u2)2

]
(6)

1
!
= E

[
e22
]

= E
[
(a21u1 + a22u2)2

]
. (7)

Moreover, the components ε1 and ε2 are assumed to be (second order) uncorrelated and therefore

satisfy the covariance condition

0
!
= E [e1e2] = E [(a11u1 + a12u2)(a21u1 + a22u2)] . (8)
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Exploiting all second order properties yields three equations in the four unknown coefficients of

A. Therefore, infinitely many unmixing matrices A generate unmixed innovations satisfying the

second order properties and thus second order statistics are not sufficient to identify A0.

If one coefficient of A0 is known a priori, the corresponding coefficient of the unmixing matrix A

can be restricted and the system is just identified, see e.g. Rubio-Ramı́rez et al. (2010). Using

short-run restrictions of this kind is probably the most common way to solve the identifica-

tion problem. However, the approach requires the researcher to know half of the simultaneous

structure a priori and by relying solely on second moments, these restrictions cannot be tested.

Technically, short-run restrictions reduce the number of unknowns. Alternatively, one could try

to increase the number of equations while keeping the number of unknowns constant. Increasing

the number of equations until no short-run restrictions are required seems appealing since one

does not need to restrict the simultaneous structure a priori. Additional equations can only be

generated by imposing more structure on the stochastic properties of structural shocks. The

following argument shows how independence accomplishes that.

So far, only second order properties of the structural shocks have been used. Independent and

non-Gaussian structural shocks allow to exploit information contained in moments beyond the

variance and covariance. For independent structural shocks, it is fairly straightforward to generate

as many equations as desired. In particular, independence implies third order uncorrelatedness,

E
[
ε21ε2

]
= E

[
ε21
]
E [ε2] = 0 and analogously E

[
ε1ε

2
2

]
= 0, and therefore the unmixed innovations

should satisfy the coskewness conditions

0
!
=E

[
e21e2

]
= E

[
(a11u1 + a12u2)2(a21u1 + a22u2)

]
(9)

0
!
=E

[
e1e

2
2

]
= E

[
(a11u1 + a12u2)(a21u1 + a22u2)2

]
. (10)

Thus, independence allows to generate further moment conditions analogously to the usual ap-

proach based on second moments. If the shocks are non-Gaussian, these moment conditions

contain further information which allow to identify the SVAR. The system of equations (6) -

(10) now contains five equations in the four unknowns. Note that the system contains nonlinear
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equations and thus it is not obvious whether the system globally identifies the SVAR. Section 5

shows that the system indeed identifies the SVAR up to sign and permutation, given that the

structural shocks are independent and non-Gaussian.

4 Notation

The identification approach requires to calculate (co-)moments of order two, three and four. The

following notation yields a short expression to collect all (co-)moments of a given order r. For an

n-dimensional random variable x define a moment generating index W = [w1, ..., wr] ∈ {1, ..., n}r

with r ∈ N and let

xW := [xw1
, ..., xwr

]. (11)

Let the expected value be denoted by E [xW ] := E [xw1
...xwr

] and let ET [xW ] denote the re-

spective sample mean. Furthermore, define a moment generating set W = {W1, ...,Wl} with the

moment generating indices Wi ∈ {1, ..., n}r for i = 1, ..., l and define

xW :=


xW1

...

xWl

 , E [xW ] :=


E [xW1

]

...

E [xWl
]

 and ET [xW ] :=


ET [xW1

]

...

ET [xWl
]

 . (12)

This notation can be used to generate a vector containing the r-th (co-)moments of an n-

dimensional random variable.

For r ∈ N, define the r-th moments generating set as

M(r) = {[m1, ...,mr] ∈ {1, ..., n}r|m1 = ... = mr}. (13)

The set contains n elements and the vector E
[
εM(r)

]
contains all r-th moments of the structural

shocks and the vector E
[
eM(r)(A)

]
contains all r-th moments of the unmixed innovations. In
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the bivariate example, the second moments generating set is equal to M(2) = {[1, 1] , [2, 2]} and

the variance of the structural shocks is given by

E
[
εM(2)

]
= E

ε1ε1
ε2ε2

 . (14)

For r ∈ N, define the r-th co-moments generating set as

C(r) = {[c1, ..., cr] ∈ {1, ..., n}r|[c1, ..., cr] /∈M(r) and ci ≤ cj for i < j}. (15)

The set contains (n+r−1)!
(n−1)!r! −n elements and can be used to generate the corresponding co-moments

of an n-dimensional random variable. In particular, the vector E
[
εC(r)

]
contains all r-th co-

moments of the structural shocks and the vector E
[
eC(r)(A)

]
contains all r-th co-moments of the

unmixed innovations. In the bivariate example, the second co-moments generating set is equal

to C(2) = {[1, 2]} and the covariance of the structural shocks is given by

E
[
εC(2)

]
= E [ε1ε2] . (16)

Analogously, the third co-moment generating set is equal to C(3) = {[1, 1, 2] , [1, 2, 2]} and the

coskewness of the structural shocks is given by

E
[
εC(3)

]
= E

ε1ε1ε2
ε1ε2ε2

 . (17)

Additionally, for X = [x1, ..., xr] ∈ {1, ..., n}r define the index counting function

#X :=

[∑
x∈X

1x=1, ...,
∑
x∈X

1x=n

]
, (18)
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where 1x=1 =


1 , if x = 1

0 , else

such that the i-th element of #X counts how often the index i

appears in X.

5 SVAR-GMM estimator

This section generalizes the identification technique sketched in Section 3 to an n-dimensional

non-Gaussian SVAR. I first derive a system of variance, covariance, coskewness and cokurtosis

conditions, which globally identify the non-Gaussian SVAR up to sign and permutations. The

SVAR is then estimated by matching the moments via a GMM estimator.

First, the (co-)moments of the unknown structural shocks need to be derived. The (co-)moments

follow from Assumption 1.

Proposition 1. Let ε satisfy Assumption 1. It holds that

1. For [m1,m2] ∈M(2): E
[
ε[m1,m2]

]
= 1

2. For [c1, c2] ∈ C(2): E
[
ε[c1,c2]

]
= 0

3. For [c1, c2, c3] ∈ C(3): E
[
ε[c1,c2,c3]

]
= 0

4. For [c1, c2, c3, c4] ∈ C(4): E
[
ε[c1,c2,c3,c4]

]
=


1, if c1 = c2 and c3 = c4

0, else

Proof. Independence embedded in Assumption 1 implies that for C = [c1, ..., cr]

E [εC ] =

n∏
i=1

E
[
ε#Ci

i

]
, (19)

where #Ci is the i-th element of the index counting function, which counts how often the index i

appears in C. All statements follow by plugging in the value of each factor implied by Assumption

1 (iii).
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One can now match the (co-)moments of the structural shocks with the (co-)moments of the

unmixed innovations, which yields n variance conditions

E
[
eM(2)(A)

]
= E

[
εM(r)

]
⇐⇒ E

[
eM(2)(A)

]
− 1 = 0, (20)

n(n+1)
2 − n covariance conditions

E
[
eC(2)(A)

]
= E

[
εC(2)

]
⇐⇒ E

[
eC(2)(A)

]
= 0, (21)

n(n+1)(n+2)
6 − n coskewness conditions

E
[
eC(3)(A)

]
= E

[
εC(3)

]
⇐⇒ E

[
eC(3)(A)

]
= 0 (22)

and n(n+1)(n+2)(n+3)
24 − n cokurtosis conditions

E
[
eC(4)(A)

]
= E

[
εC(4)

]
, (23)

with E
[
εC(4)

]
as defined in Proposition 1.

The SVAR will only be identified up to sign and permutations. Let P be the set containing

all n × n signed permutation matrices. For any signed permutation matrix P ∈ P, the shocks

ε̃ := Pε and the mixing matrix Ã0 := PA0 generate the same reduced form shocks as the

shocks ε and the mixing matrix A0. This can easily be verified since u = A−10 ε = A−10 P−1Pε =

Ã−10 ε̃. Moreover, since ε̃ is only a signed permutation of ε, both vectors of shocks share the

same dependence structure and hence the identification approach cannot identify the correct

sign and permutation. Identification up to permutation is equivalent to the problem of labeling

the structural shocks, see Lanne et al. (2017) or Gouriéroux et al. (2017). Labeling and thus

attaching a meaning to the shocks cannot be done statistically, but remains to the researcher.

Since the identification approach cannot identify the correct sign and permutation, I redefine the

problem such that the indeterminacy of sign and permutation does no longer appear in the new
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identification problem. Obviously, the indeterminacy is only removed from the statistical side

of the problem and the researcher still needs to label the shocks. Note that the indeterminacy

of scaling the shocks is already excluded from the identification problem by assuming shocks

with unit variance. Define the set of sign-permutation representatives analogously to the set

guaranteeing global identification in Lanne et al. (2017) as

A∗ := {A ∈ A|∀i, aii > 0 and ∀i < j, |aii| ≥ |aji|}. (24)

An element A ∈ A∗ is called a unique sign-permutation representative if for any signed per-

mutation matrix P ∈ P with P 6= I it holds that PA /∈ A∗. The set A∗ fulfills the following

properties:

Proposition 2. Almost all elements A ∈ A∗ are unique sign-permutation representatives. For

any matrix A ∈ A there exists at least one signed permutation matrix P with PA ∈ A∗.

Proof. An inner point A ∈ A∗ satisfies that ∀i < j, |aii| > |aji|. Let A ∈ A∗ be an inner point.

For any P ∈ P with P 6= I it holds that for Ã := PA there exist indices i < j with |ãii| < |ãji| and

thus Ã /∈ A∗. Therefore, an inner point of A∗ is a unique sign-permutation representative. Only

the boundary of A∗ contains elements which are not unique sign-permutation representatives.

However, the boundary of the n2 dimensional manifold A∗ has dimension n2 − 1 and is thus a

null set in A∗. The second statement is trivial.

Since A0 almost surely has a unique representative in A∗, I replace Assumption 2.

Assumption 3. A0 ∈ A∗ is a unique sign-permutation representative.

The following proposition is based on Comon (1994) and shows that the variance, covariance,

coskewness and cokurtosis conditions globally identify the SVAR.
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Proposition 3. Let ε = A0u satisfy Assumption 1 and 3. For A ∈ A∗ it holds that

E



eM(2)(A)− 1

eC(2)(A)

eC(3)(A)

eC(4)(A)− E
[
εC(4)

]


= 0 ⇐⇒ A = A0, (25)

with E
[
εC(4)

]
as defined in Proposition 1.

Proof. Let Ã ∈ A∗ solve the moment conditions. Let Q̃ := ÃA−10 and thus ẽ = Ãu = Q̃ε.

Assumption 1 implies that I = E [εε′] and since ẽ solves the variance and covariance condition,

it follows that Q̃ is orthogonal. The coskewness and cokurtosis conditions then imply that all

third and fourth order cross-cumulants of ẽ are zero. Assumption 1 ensures that the shocks are

non-Gaussian and have finite moments up to order four. One can thus apply Comon (1994)

Theorem 16 and Comon (1994) equation (3.10), which yields that Q is in P and thus Ã is a

signed permutation of A0. With Assumption 3, it follows that Ã = A0. The other direction is

trivial.

If only the first [second] part of Assumption 1 (iv) is fulfilled, the cokurtosis [coskewness] condi-

tions can be dropped and the SVAR is still globally identified. However, even if the cokurtosis

[or alternatively the coskewness] conditions are dropped, there are still more moment conditions

than unknown parameters. Importantly, dropping additional moment conditions immediately

destroys the global identification result, see Appendix B. Lanne and Luoto (2019) basically iden-

tify the simultaneous interaction with a subsystem of the moment conditions used in Proposition

3. In particular, their system contains the variance, covariance and a subset of the cokurtosis

conditions. Therefore, their system is only locally identified. Without the global identification

result, it is difficult to derive the consistency and asymptotic normality of the estimator. In

fact, the authors argue that the asymptotic properties can be derived under standard assump-

tions. However, one of these standard assumptions is a globally identified system and hence it is
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not obvious why the estimator proposed by Lanne and Luoto (2019) should satisfy the claimed

asymptotic properties.

With Proposition 3, the matrix A0 can be estimated by the SVAR-GMM estimator

ÂT (W ) := arg min
A∈A∗

JT (A,W ), (26)

where W is a positive semidefinite weighting matrix and

JT (A,W ) :=



ET

[
eM(2)(A)

]
− 1

ET

[
eC(2)(A)

]
ET

[
eC(3)(A)

]
ET

[
eC(4)(A)

]
− E

[
εC(4)

]



′

W



ET

[
eM(2)(A)

]
− 1

ET

[
eC(2)(A)

]
ET

[
eC(3)(A)

]
ET

[
eC(4)(A)

]
− E

[
εC(4)

]


. (27)

If the estimator only contains the variance, covariance and coskewness conditions, it is denoted as

the SVAR-GMM estimator based on the coskewness. The SVAR-GMM estimator based on the

cokurtosis is defined analogously. The asymptotic properties of the estimator follow from standard

arguments. Given standard assumptions (which in particular include global identification ensured

by Proposition 3) the estimator ÂT is a consistent estimator for A0 and it is asymptotically

normally distributed with
√
T
(
vec(ÂT )− vec(A0)

)
d→ N(0,MSM ′), where M and S are defined

as usual, see Hall (2005). Additionally, the weighting matrix W = S−1 yields the estimator with

the minimum asymptotic variance, see Hall (2005). The two-step SVAR-GMM estimator denotes

the SVAR-GMM estimator under the standard two-step GMM procedure. Moreover, parameter

hypothesis tests can be performed as usual, see Hall (2005). Of course, the interpretation of a

test is always subject to a specific labeling, see Lanne et al. (2017). Bonhomme and Robin (2009)

note that the asymptotic standard errors depend on the variances of third-order and fourth-order

moments. In small samples these moments are difficult to estimate and the authors suggest to

use bootstrap based confidence intervals instead of the estimated asymptotic standard errors.

To summarize, if the structural shocks are independent and non-Gaussian, the identification

problem can be solved by extending the identification approach from covariance to coskewness and
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cokurtosis conditions. The SVAR can then be estimated by the SVAR-GMM estimator. However,

the number of moment conditions used in Proposition 3 increases quickly with the dimension of

the SVAR. Therefore, the computational burden of the SVAR-GMM estimator can be high in

large models. The next section shows how an asymptotically not optimal weighting scheme can be

used to derive a computationally cheap approximation of the SVAR-GMM estimator. Using an

asymptotically not optimal weighting matrix leads to an increase of the asymptotic variance of the

estimator, however, it has no impact on the global identification or consistency of the estimator.

Thus in large SVAR models, one can trade asymptotic efficiency against a computationally cheap

approximation.

6 Fast SVAR-GMM estimator

This section derives the fast SVAR-GMM estimator, which is a consistent, globally identified and

computationally cheap estimator. I show that the fast SVAR-GMM estimator is approximately

equal to the SVAR-GMM estimator proposed in Section 5 when a specific and asymptotically not

optimal weighting matrix is used. Therefore, the asymptotic efficiency of the estimator can be

sacrificed to reduce the computational burden. In the next section, I present evidence that the

asymptotic efficiency loss is rather small. Additionally, in small samples the fast SVAR-GMM

estimator often even performs better than the two-step SVAR-GMM estimator.

The fast SVAR-GMM estimator is a whitened estimator, meaning that it yields unmixed in-

novations, which by construction are uncorrelated and have unit variance. I first derive the

whitened SVAR-GMM estimator and then show how a specific weighting matrix allows to de-

crease the computational costs of the estimator. Let O denote the set of orthogonal matrices

and let V V ′ = E [uu′] be the Cholesky decomposition of the variance-covariance matrix of the

reduced form shocks. Then define the whitened set of sign-permutation representatives as

A∗V := {A ∈ A∗|AV ∈ O}. (28)
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The set is constructed such that the unmixed innovations e(A) with A ∈ A∗V always fulfill the

variance and covariance conditions in Proposition 3. Moreover, if Assumptions 1 and 3 are

fulfilled, it holds that A0 is a unique sign-permutation representative in A∗V . The SVAR is then

globally identified with the following proposition based on Comon (1994).

Proposition 4. Let ε = A0u satisfy Assumption 1 and 3. For A ∈ A∗V it holds that

E

 eC(3)(A)

eC(4)(A)− E
[
εC(4)

]
 = 0 ⇐⇒ A = A0, (29)

with E
[
εC(4)

]
as defined in Proposition 1.

Proof. Assumption 1 ensures that the shocks are non-Gaussian and have finite moments up to

order four. The coskewness and cokurtosis conditions imply that all third and fourth order cross-

cumulants of e(A) are equal to zero. The equivalence then follows from Comon (1994) Theorem

16 and Comon (1994) equation (3.10).

Define the whitened SVAR-GMM estimator as

ÂV
T (W ) := arg min

A∈A∗
V

KT (A,W ), (30)

with a positive semidefinite weighting matrix W and

KT (A,W ) :=

 ET

[
eC(3)(A)

]
ET

[
eC(4)(A)

]
− E

[
εC(4)

]

′

W

 ET

[
eC(3)(A)

]
ET

[
eC(4)(A)

]
− E

[
εC(4)

]
 . (31)

The consistency of the estimator again follows from standard arguments. In practice, the matrix

V is replaced by its consistent estimator V̂ V̂ ′ = ET [uu′], which is the Cholesky decomposition

of the sample variance-covariance matrix of the reduced form shocks.

In comparison to the SVAR-GMM estimator proposed in Section 5, the whitened SVAR-GMM

estimator does not require to calculate variance or covariance conditions, but it instead requires
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to optimize subject to the orthogonality constraints embedded in the set A∗V . In practice, it is

not necessary to keep track of these constraints. Note that the whitened SVAR-GMM estimator

can be calculated as

ÂV
T (W ) =

(
arg min

O∈O∗
V

KT (OV −1,W )

)
V −1, (32)

with O∗V = {O ∈ O|OV −1 ∈ A∗V }. An optimization problem of the form

min
O∈SO

f(O) (33)

can be pulled back to

min
s∈so

f(exp(s)), (34)

where SO denotes the set of special orthogonal matrices, so denotes the set of skew-symmetric

matrices and exp(.) is the matrix exponential, see e.g. Lezcano-Casado and Mart́ınez-Rubio

(2019). Therefore, instead of optimizing over the set of special orthogonal matrices, one can

optimize over the set of skew-symmetric matrices, which is computationally less demanding. In

this case, assuming that O0 := A0V is a special orthogonal matrix is not very restrictive, since

by construction O0 is an orthogonal matrix and one can find a singed permutation matrix P ∈ P

such that PO0 is a special orthogonal matrix.

The whitened SVAR-GMM estimator minimizes the dependency of the unmixed innovations mea-

sured by the weighted coskewness and cokurtosis conditions. It thus contains q3 := n(n+1)(n+2)
6 −n

coskewness conditions and q4 := n(n+1)(n+2)(n+3)
24 − n cokurtosis conditions. When a specific

weighting matrix is used, this minimization problem is equivalent to a computationally less de-

manding maximization problem involving only 2n instead of q3 + q4 moments. The equivalence

between both optimization problems is related to a fundamental idea of ICA; minimizing the

dependence means to maximize the non-Gaussianity. Define the q3 + q4 × q3 + q4 dimensional
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fast weighting matrix W fast as the diagonal matrix where the diagonal element corresponding

to the co-moment C ∈ C(r) with r ∈ {3, 4} is defined as

wr(C) :=

(
r

#C

)
=

r!∏n
i=1 #Ci!

, (35)

where #Ci denotes the i-th element of the counting function #C. In a bivariate SVAR, the

objective function of the whitened SVAR-GMM estimator ÂV̂
T (W fast) is equal to

KT (A,W fast) =
3!

2!1!
ET

[
e1(A)2e2(A)

]2
(36)

+
3!

1!2!
ET

[
e1(A)e2(A)2

]2
(37)

+
4!

3!1!
ET

[
e1(A)3e2(A)

]2
(38)

+
4!

2!2!
ET

[
e1(A)2e2(A)2 − 1

]2
(39)

+
4!

1!3!
ET

[
e1(A)e2(A)3

]2
. (40)

This can easily be verified since for C(3) = {[1, 1, 2], [1, 2, 2]}, the counting function yields

#[1, 1, 2] = [2, 1], #[1, 2, 2] = [1, 2] and for C(4) = {[1, 1, 1, 2], [1, 1, 2, 2], [1, 2, 2, 2]}, the count-

ing function yields #[1, 1, 1, 2] = [3, 1], #[1, 1, 2, 2] = [2, 2] and #[1, 2, 2, 2] = [1, 3]. The fast

weighting matrix W fast can now be used to derive a computationally cheap expression for the

estimator ÂV̂
T,r(W fast).

Proposition 5. The estimator ÂV̂
T (W fast) is equal to

ÂV̂
T (W fast) = argmax

A∈A∗
V̂

HT (A), (41)

with

HT (A) :=
∑

M∈M(3)

ET [eM (A)]
2

+
∑

M∈M(4)

(ET [eM (A)]− 3)
2
. (42)

Proof. The weights are constructed, such that for a given sample of size T there exists a constant
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ΩT ∈ R with HT (A) + KT (A,W fast) = ΩT for all A ∈ A∗
V̂

, which is the sample analogue of

equation (3.10) in Comon (1994). Rearranging yields KT (A,W fast) = ΩT −HT (A), which proves

the Proposition. The proof is written down in more detail in Appendix A.

The whitened SVAR-GMM estimator with the fast weighting matrix can thus be calculated by

equation (30) or by equation (41). Equation (30) minimizes the dependency of the unmixed

innovations measured by the q3 + q4 squared coskewness and cokurtosis contentions. Equation

(41) maximizes the non-Gaussianity of the unmixed innovations measured by the 2n squared

skewness and excess kurtosis coefficients. If the fast weighting matrix is used, both optimization

problems are equivalent. However, in large SVAR models the computation of the latter problem

is considerably less demanding than the computation of the former problem. Proposition 5 thus

yields a computationally cheap way to calculate ÂV̂
T (W fast), which is henceforth denoted as the

fast SVAR-GMM estimator. Analogously to the SVAR-GMM estimator, one can define the fast

SVAR-GMM estimator based on the skewness [or based on the kurtosis], which only contains

the skewness [kurtosis] coefficients in equation (42) and the coskewness [cokurtosis] conditions in

equation (30).

In the bivariate SVAR, the fast SVAR-GMM estimator ÂV̂
T (W fast) can thus be calculated as the

maximum of the objective function HT (A) which is given by

HT (A) = ET

[
e1(A)3

]2
+ ET

[
e2(A)3

]2
+ ET

[
e1(A)4 − 3

]2
+ ET

[
e2(A)4 − 3

]2
. (43)

The fast SVAR-GMM estimator can be derived as the limiting case of the SVAR-GMM estimator

proposed in Section 5, when a specific and asymptotically inefficient weighting matrix is used.

Consider the SVAR-GMM estimator ÂT (Wm), where the weighting matrix Wm puts a weight

m on the variance and covariance conditions and uses the fast weighting matrix W fast for the
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coskewness and cokurtosis conditions. The weighting matrix Wm is thus defined as

Wm :=

mI 0

0 W fast

 , (44)

where I is an n(n+1)
2 × n(n+1)

2 dimensional identity matrix and W fast is the fast weighting matrix

defined in equation (35). With the weighting matrix Wm, the objective function of the SVAR-

GMM estimator ÂT (Wm) is equal to

JT (A,Wm) =
∑

M∈M(2)

m (ET [eM (A)]− 1)
2

+
∑

C∈C(2)

m (ET [eC(A)])
2

(45)

+KT (A,W fast). (46)

Therefore, the weighting matrix Wm splits the objective function of the SVAR-GMM estimator

into two terms. The first term contains the variance and covariance conditions with the weight m.

The second term is equal to the objective function of the fast SVAR-GMM estimator and contains

the coskewness and cokurtosis conditions. The following proposition shows that when the weight

m of the variance and covariance conditions tends to infinity, the SVAR-GMM estimator ÂT (Wm)

tends to the fast SVAR-GMM estimator ÂV̂
T (W fast).

Proposition 6.

lim
m→∞

ÂT (Wm) = ÂV̂
T (W fast). (47)

Proof. For A ∈ A∗ it holds that

JT (A,Wm)
m→∞→


∞ , for A /∈ A∗

V̂

KT (A,W fast) , for A ∈ A∗
V̂

. (48)
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It thus follows that

ÂT (Wm) = arg min
A∈A∗

JT (A,Wm)
m→∞→ arg min

A∈A∗
V̂

KT (A,W fast) = ÂV̂
T (W fast). (49)

For a sufficiently large weight m, the SVAR-GMM estimator can be approximated by the fast

SVAR-GMM estimator. The weighting matrix Wm is asymptotically not optimal in terms of

the asymptotic variance of the SVAR-GMM estimator. Therefore, in large SVAR models, when

the computational burden of the SVAR-GMM estimator becomes too high, one can sacrifice

the asymptotic efficiency and gain a computationally cheap approximation of the SVAR-GMM

estimator by the fast SVAR-GMM estimator. The next section provides evidence that the fast

SVAR-GMM estimator performs robustly in finite samples and that the efficiency loss in large

samples is rather small.

7 Finite sample properties

This section analyzes the finite sample performance of the SVAR-GMM estimators and com-

pares it to the GMM estimator proposed by Lanne and Luoto (2019) and to the PML estimator

proposed by Gouriéroux et al. (2017). I show that the performance of the PML estimator de-

teriorates with the degree of misspecification, while the SVAR-GMM estimators perform more

robustly throughout different specifications. In the empirical application in Section 8, I find struc-

tural shocks with non-zero skewness and a positive excess kurtosis. If the shocks are skewed and

exhibit an excess kurtosis, the Monte Carlo study shows that the two-step SVAR-GMM estimator

performs best and it clearly outperforms the PML estimator based on a t-distribution. Moreover,

I find that the fast SVAR-GMM estimator performs well and robustly across specifications. It

thus yields a viable, computationally cheap alternative to the asymptotically optimal two-step

SVAR-GMM estimator. Additionally, the Monte Carlo simulation sheds light on the impact of
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the degree of non-Gaussianity on the finite sample performance of SVAR-GMM estimators. I

find that estimators based on the skewness have desirable small sample properties, as the bias

and standard deviation of the estimators is found to be almost solely determined by the relative

skewness and shows no deterioration with a decreasing sample size.

The setup of the Monte Carlo study is similar to the setup in Gouriéroux et al. (2017) with

u = A−10 ε and

A−10 =

cos(φ) −sin(φ)

sin(φ) cos(φ)

 , (50)

where φ = −π/5. The goal of the Monte Carlo study is to evaluate the performance of the esti-

mators depending on the degree of non-Gaussianity and the sample size. The shocks are drawn

from a distribution of the Pearson distribution system with mean zero, unit variance and different

skewness/kurtosis parameters. The degree of non-Gaussianity is measured in two dimensions, by

the relative skewness and relative excess kurtosis. A low relative skewness [excess kurtosis] is

defined as the sample skewness [excess kurtosis] a standard normally distributed shock will not

exceed in a sample of size T with a probability of 90%. A medium relative skewness [excess

kurtosis] is defined analogously for a probability of 99% and a high relative skewness [excess

kurtosis] is defined for a probability of 99.99%. The values are calculated by bootstrap and are

shown in Table 1. Defining the non-Gaussianity in relative terms allows to compare the impact

of the skewness and excess kurtosis. Moreover, it allows to disentangle the effects of the non-

Gaussianity and the sample size.

Table 1: Relative non-Gaussianity

rel. skewness rel. excess kurtosis
low medium high low medium high

T = 200 0.22 0.4 0.68 0.4 0.97 2.33
T = 500 0.14 0.26 0.41 0.27 0.6 1.25
T = 5000 0.04 0.08 0.13 0.09 0.17 0.3

The table shows the quantiles (low is 0.9, medium is 0.99, high is 0.9999) of the sample skewness and sample
excess kurtosis of standard normally distributed shocks in a sample of size T in a Monte Carlo simulation with
5000000 simulated samples for each sample size.
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The first Monte Carlo study contains three different specifications. In the first specification, both

structural shocks have zero skewness and a high excess kurtosis. In the second specification, the

first structural shock is Gaussian and the second shock has zero skewness and a high excess kur-

tosis. In the third specification, the first shock has a high skewness and zero excess kurtosis and

the second shock has a high skewness and a high excess kurtosis. Table 2 shows the mean bias

and standard deviation of different estimators. The first row contains the SVAR-GMM estimator

with an identity weighting matrix, the second row shows the two-step SVAR-GMM estimator and

the third row shows the fast SVAR-GMM estimator. The GMM estimator proposed by Lanne

and Luoto (2019) is shown in the fourth row and uses the cokurtosis condition E
[
ε1ε

3
2

]
= 0. The

PML estimator proposed by Gouriéroux et al. (2017) is shown in the fifth row and assumes a

t-distribution with twelve degrees of freedom. The results are largely unaffected by the chosen

degree of freedom.

In the first specification, the PML estimator performs better than its competitors. This is not

too surprising, since the PML estimator is essentially correctly specified (the shocks are drawn

from a Pearson Type V II distribution, which contains the t-distribution). However, the advan-

tage of the PML estimator compared to the fast SVAR-GMM estimator is small and vanishes

with an increasing sample size. In the second specification, the GMM estimator proposed by

Lanne and Luoto (2019) performs best, but is closely followed by the fast SVAR-GMM estima-

tor. In the application presented in Section 8, the reduced form shocks are skewed and have

a positive excess kurtosis. Thus the shocks simulated in the third specification are closest to

the shocks in the application. In the third specification, the two-step SVAR-GMM estimator

outperforms its competitors. Neither the GMM estimator proposed by Lanne and Luoto (2019)

nor the PML estimator can exploit the non-Gaussianity introduced by the skewed structural

shocks. However, the advantage of the two-step SVAR-GMM estimator compared to the fast

SVAR-GMM estimators is again small. Overall, each estimator has its strength and weaknesses

in different specifications. In the specification closest to the application presented in Section 8,

the two-step SVAR-GMM estimator performs best. The fast SVAR-GMM estimator yields the
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most robust performance across specifications and sample sizes. The fast SVAR-GMM estimator

is asymptotically inefficient, however, in small samples it often performs better than the two-step

SVAR-GMM estimator. This finding can be explained by the fact that estimating the optimal

weighting matrix requires to estimate the variances of third-order and fourth-order moments,

which is a difficult task in small samples, compare to Bonhomme and Robin (2009).

Table 2: Finite sample performance

T = 200 T = 500 T = 5000
Specification 1 2 3 1 2 3 1 2 3

Â(I) −0.03
(0.14)

−0.04
(0.18)

−0.02
(0.11)

−0.02
(0.11)

−0.03
(0.15)

−0.02
(0.1)

−0.01
(0.07)

−0.02
(0.13)

−0.01
(0.08)

Â(W 2-step) −0.04
(0.18)

−0.04
(0.18)

−0.02
(0.1)

−0.02
(0.13)

−0.03
(0.15)

−0.01
(0.09)

−0.01
(0.08)

−0.01
(0.11)

−0.01
(0.07)

ÂV̂ (W fast) −0.02
(0.14)

−0.03
(0.16)

−0.02
(0.12)

−0.01
(0.11)

−0.02
(0.14)

−0.01
(0.11)

−0.01
(0.07)

−0.01
(0.1)

−0.01
(0.08)

GMMLL −0.03
(0.15)

−0.03
(0.14)

−0.03
(0.14)

−0.03
(0.13)

−0.02
(0.12)

−0.02
(0.12)

−0.02
(0.11)

−0.01
(0.09)

−0.01
(0.1)

PML −0.02
(0.13)

−0.04
(0.17)

−0.04
(0.18)

−0.01
(0.09)

−0.03
(0.15)

−0.03
(0.17)

−0.01
(0.07)

−0.02
(0.14)

−0.02
(0.14)

Monte Carlo simulation with sample sizes 200, 500 and 5000 each with 10000 iterations. For an estimator Â
of A0, define the estimator B̂ := Â−1 of B := A−1

0 . Each entry shows the mean bias
(standard deviation)

of the estimated

element b̂1,1, which is the upper left element of B̂. The mean bias is calculated as E
[
b̂1,1 − b1,1

]
and the

standard deviation is calculated as the square root of E

[(
b̂1,1 − b1,1

)2]
, where b1,1 = cos(−π/5) is the upper

left element of B. The distribution of the shocks in a given specification are explained in the text and use the
relative skewness and relative excess kurtosis values shown in Table 1. The SVAR-GMM estimator denoted by
Â(I) uses an identity weighting matrix, the estimator Â(W 2-step) is the two-step SVAR-GMM estimator and

the fast SVAR-GMM estimator is denoted by ÂV̂ (W fast). The GMM estimator proposed by Lanne and Luoto
(2019) is denoted by GMMLL and uses the cokurtosis condition E

[
ε1ε32

]
= 0. The PML estimator proposed by

Gouriéroux et al. (2017) is denoted by PML and assumes a t-distribution with twelve degrees of freedom.

In a second Monte Carlo simulation I analyze the impact of the degree of non-Gaussianity and

the sample size on the SVAR-GMM estimators. I find that the results do not depend on the

weighting matrix and I thus only report the results for the fast SVAR-GMM estimator. The first

part of Table 3 shows the impact of the relative skewness on the fast SVAR-GMM estimators

based on coskewness conditions and the second part of the table shows the impact of the relative

excess kurtosis on the fast SVAR-GMM estimators based on cokurtosis conditions. In the first

part of the table the structural shocks have zero excess kurtosis and a low, medium or high rela-

tive skewness. In the second part of the table the shocks have zero skewness and a low, medium
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or high relative excess kurtosis.

Unsurprisingly, an increase in the degree of non-Gaussianity has a positive impact on the finite

sample properties of the estimators. Intuitively, this finding is comparable to the strength or

weakness of an instrument in an instrumental variables estimation. In the largest simulated sam-

ple, the impact of the relative skewness on the estimator based on the coskewness and the impact

of the relative excess kurtosis on the estimator based on the cokurtosis are almost identical.

However, decreasing the sample size reveals an important difference between both estimators.

The bias and standard deviation of the estimator based on the coskewness appear to be entirely

determined by the relative skewness and do not vary across sample sizes. In contrast to that, the

bias and standard deviation of the estimator based on the cokurtosis increase with a decreasing

sample size. This finding can be explained by the sample variance of the moment conditions,

which increases with an increase of the excess kurtosis. The effect is more pronounced in small

samples and partly offsets the positive impact of a higher excess kurtosis.

Table 3: Finite sample performance: The impact of non-Gaussianity

T = 200 T = 500 T = 5000
Skewness low med high low med high low med high

Exc. kurtosis zero zero zero zero zero zero zero zero zero

ÂV̂
r=3(W fast) −0.05

(0.2)
−0.02
(0.13)

−0.01
(0.07)

−0.05
(0.21)

−0.02
(0.13)

−0.01
(0.07)

−0.05
(0.21)

−0.02
(0.13)

−0.01
(0.07)

Skewness zero zero zero zero zero zero zero zero zero
Exc. kurtosis low med high low med high low med high

ÂV̂
r=4(W fast) −0.06

(0.23)
−0.04
(0.18)

−0.02
(0.14)

−0.05
(0.21)

−0.03
(0.16)

−0.01
(0.11)

−0.04
(0.2)

−0.02
(0.13)

−0.01
(0.07)

Monte Carlo simulation with sample sizes 200, 500 and 5000 each with 10000 iterations. For an estimator Â
of A0, define the estimator B̂ := Â−1 of B := A−1

0 . Each entry shows the mean bias
(standard deviation)

of the estimated

element b̂1,1, which is the upper left element of B̂. The mean bias is calculated as E
[
b̂1,1 − b1,1

]
and the standard

deviation is calculated as the square root of E

[(
b̂1,1 − b1,1

)2]
, where b1,1 = cos(−π/5) is the upper left element

of B. The distributions of the shocks in a given specification are explained in the text and use the relative skewness
and relative excess kurtosis values shown in Table 1. The fast SVAR-GMM estimator based on the skewness is

denoted by ÂV̂
r=3(W

fast) and the fast SVAR-GMM estimator based on the kurtosis is denoted by ÂV̂
r=4(W

fast).

To sum up, I find that the SVAR-GMM estimators perform more robustly than the PML estima-

tor proposed by Gouriéroux et al. (2017) and the GMM estimator proposed by Lanne and Luoto
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(2019). In particular when the structural shocks exhibit a non-zero skewness, the performance

of the SVAR-GMM estimators is superior to the performance of the two alternatives. Moreover,

the Monte Carlo study reveals some desirable small sample properties of estimators based on the

skewness. Last but not least, I find that the fast SVAR-GMM estimator performs well and that

the efficiency loss compared to the two-step SVAR-GMM estimator is small. Moreover, in small

samples the fast SVAR-GMM estimator often performs better than the two-step SVAR-GMM

estimator.

8 Economic activity, oil and stock prices

This section applies the SVAR-GMM estimator to analyze the simultaneous relationship between

economic activity, oil and stock prices. It might be convincing to argue that the real economy

behaves sluggishly and does not respond to stock and oil price shocks contemporaneously. How-

ever, there aren’t to many good arguments how to contemporaneously restrict the stock and oil

market. Nevertheless, in applications (e.g. Sadorsky (1999), Kilian and Park (2009) or Apergis

and Miller (2009)) stock market shocks have been restricted to have no simultaneous impact on

oil prices. I provide evidence that the real economy might indeed behave sluggishly, but oil and

stock prices do not.

The SVAR is estimated with monthly US data from 1990 to 2018 and contains three variables -

a measure of real economic activity (EA), monthly real S&P 500 returns (SP) and the monthly

growth rates of real oil prices (OP). Real economic activity is measured as 100 times the log

difference of the monthly US Industrial Production Index. Real S&P 500 returns are calculated

as 100 times the log difference of the the S&P 500 closing price deflated by the US CPI. The

monthly growth rates of real oil prices are calculated as 100 times the log difference of the crude

oil composite acquisition cost by refiners deflated by the US CPI. See Appendix D for more in-

formation on the data sources.
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The SVAR is given by

A0


EAt

SPt

OPt

 = α+

p∑
i=1

Ai


EAt−i

SPt−i

OPt−i

+


εEA
t

εSP
t

εOP
t

 . (51)

Based on the AIC criterion, I estimate the reduced form with a lag length of p = 4 months.

The moments of the residuals and the Jarque-Bera test for normality are shown in Table 4.

The Jarque-Bera test indicates non-Gaussian residuals with non-zero skewness and a positive

excess kurtosis. Based on the Monte Carlo simulation, I use the two step SVAR-GMM estimator

Table 4: Reduced form residuals

Variance Skewness Kurtosis JB-Test
uEA 0.28 -0.84 10.71 0.00
uOP 44.49 0.14 3.73 0.02
uSP 15.53 -0.37 3.55 0.01

The JB-Test shows the p-value of the Jarque-Bera test for normality.

to estimate the simultaneous relationship. The results presented below are robust to different

specifications and estimators, see Appendix D.

The impulse response function (IRF) is shown in Figure 1. The shocks are labeled such that

economic activity shocks have a positive impact on oil and stock prices, oil price shocks have a

long-run negative impact on economic activity, and the remaining shock is labeled as the stock

market shock. According to the IRF, oil price shocks lead to a lagged decrease of economic activity

and to an immediate decrease of stock returns. Stock market shocks lead to a long-run increase

of economic activity and to an immediate increase of oil prices. Therefore, real economic activity

behaves sluggishly with no simultaneous response to stock or oil market shocks. However, the

stock and oil market are found to interact simultaneously and no recursive order of both variables

is viable.
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Figure 1: Impulse Response Function

impulse response function

Confidence intervals are calculated by bootstrap with 1000 replications and the interval show the upper 0.9 and
lower 0.1 percentiles. The reduced form VAR is estimated with four lags and the simultaneous interaction is
estimated by the two step SVAR-GMM estimator.

9 Conclusion

This paper proposes an identification approach based on higher moments, which is derived as

a straightforward extension of the usual SVAR identification approach relying on uncorrelated

shocks to independent shocks. Exploiting the skewness and excess kurtosis of the shocks allows

to identify a non-Gaussian SVAR with independent structural shocks. The identification result

is used to derive an SVAR-GMM estimator. The SVAR-GMM estimator becomes computation-

ally expensive in large SVAR models. I show that by sacrificing the asymptotic efficiency of

the SVAR-GMM estimator, one can derive a consistent, globally identified and computationally

cheap approximation, which is denoted as the fast SVAR-GMM estimator.

In a Monte Carlo simulation, I show that even though the fast SVAR-GMM estimator is asymp-

totically inefficient, it performs well and robustly across different specifications. In the simulation

closest to the empirical application, I find that the two step SVAR-GMM estimator performs best.

In particular, the two step SVAR-GMM estimator outperforms the GMM estimator proposed by
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Lanne et al. (2017) and the PML estimator with a t-distribution proposed by Gouriéroux et al.

(2017). The advantage of the SVAR-GMM estimator is related to its ability to use information

contained in the skewness. Additionally, the Monte Carlo simulation reveals desirable small sam-

ple properties of estimators based on the skewness.

Finally, the empirical applications analyzes the interaction between real economic activity, stock

and oil markets. I find that stock and oil prices interact simultaneously, while the real economy

appears to behave sluggish with no contemporaneous reaction to oil and stock market shocks.

The application thus illustrates how an SVAR can be estimated based on higher moments without

relying on incredible short-run restrictions.
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A Appendix - Proofs

Let x be a an n-dimensional random variable with E [x] = 0 and E [xx′] = I. For C = [c1, c2, c3] ∈

{1, ..., n}3 the third order (cross-)cumulant of x is equal to

Cum(xC) = Cum(xc1 , xc2 , xc3) = E [xc1xc2xc3 ] . (52)

For c = [c1, c2, c3, c4] ∈ {1, ..., n}4 the fourth order (cross-)cumulant of x is equal to

Cum(xC) = Cum(xc1 , xc2 , xc3 , xc4) =E [xc1xc2xc3xc4 ] (53)

− E [xc1xc2 ]E [xc3xc4 ] (54)

− E [xc1xc3 ]E [xc2xc4 ] (55)

− E [xc1xc4 ]E [xc2xc3 ] . (56)

Consider a sample of the random variable x for which ET [x] = 0 and ET [xx′] = I, then the

same equalities hold for the sample analogue CumT (.) and ET (.).

Lemma 1. Let x be an n-dimensional random variable with E
[
xM(1)

]
= 0, E

[
xM(2)

]
= 1,

E
[
xC(2)

]
= 0 and E

[
xM(3)

]
<∞. Let ε be as defined in Assumption 1.

1) For c ∈ C(3) it holds that E [xc] = Cum(xc) .

2) For c ∈ C(4) it holds that E [xc]− E [εc] = Cum(xc).

3) For m ∈M(3) it holds that E [xm] = Cum(xm).

4) For m ∈M(4) it holds that E [xm]− 3 = Cum(xm).

Consider a sample of the random variable x with ET

[
xM(1)

]
= 0, ET

[
xM(2)

]
= 1, ET

[
xC(2)

]
= 0

and ET

[
xM(3)

]
<∞, then the same statements hold for the sample analogue ET [.] and CumT (.).
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Proof. Statements 1) and 3) are trivial. Statement 2) holds since for C = [c1, c2, c3, c4] ∈ C(4)

E [εc] =


1 , if c1 = c2 and c3 = c4

0 , else

(57)

and

Cum(xc) =


E [xc]− 1 , if c1 = c2 and c3 = c4

E [xc] , else

. (58)

Statement 4) holds since for C = [c1, c2, c3, c4] ∈M(4)

Cum(xc) = E [xc]− 3 (59)

The sample analogue can be shown analogously.

Proof of Proposition 5. Define O∗
V̂

= {O ∈ O|OV̂ −1 ∈ A∗
V̂
} and note that

argmax
A∈A∗

V̂

HT (A) =

(
arg max

O∈O∗
V̂

H̃T (O)

)
V̂ −1, (60)

with H̃T (O) = HT (OV̂ −1) and

arg min
A∈A∗

V̂

KT (A,W ) =

(
arg min

O∈O∗
V̂

K̃T (O,W )

)
V̂ −1, (61)

with K̃T (O,W ) = KT (OV̂ −1,W ). Therefore, Proposition 5 requires to show that

arg min
O∈O∗

V̂

K̃T (O,W fast) = arg max
O∈O∗

V̂

H̃T (O). (62)
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For O ∈ O∗
V̂

define

ẽ(O) := e(OV̂ −1) = OV̂ −1u = OV̂ −1A−10 ε = Oε̃, (63)

with V̂ −1A−10 ε = ε̃ and by construction I = ET [ε̃ε̃′]. Then the objective function K̃T (O,W fast)

can be written as

K̃T (O,W fast) =
∑

C∈C(3)

(
3

#C

)
ET [ẽC(O)]

2
+

∑
C∈C(4)

(
4

#C

)
(ET [ẽC(O)]− E [εC ])

2
(64)

and the objective function H̃T (O) can be written as

H̃T (O) =
∑

M∈M(3)

(
3

#M

)
ET [ẽM (O)]

2
+

∑
M∈M(4)

(
4

#M

)
(ET [ẽM (O)− 3])

2
, (65)

since
(

r
#M

)
= 1 for M ∈M(r) and r ∈ {3, 4}. With Lemma 1 it follows that

K̃T (O,W fast) =
∑

C∈C(3)

(
3

#C

)
CumT (ẽC(O))2 +

∑
C∈C(4)

(
4

#C

)
CumT (ẽC(O))2 (66)

and

H̃T (O) =
∑

M∈M(3)

(
3

#M

)
CumT (ẽM (O))2 +

∑
M∈M(4)

(
4

#M

)
CumT (ẽM (O))2. (67)

The weights are constructed such that

K̃T (O,W fast) + H̃T (O) =

n∑
s1,...,s3=1

CumT (ẽs1(O), ..., ẽs3(O))2 (68)

+

n∑
s1,...,s4=1

CumT (ẽs1(O), ..., ẽs4(O))2. (69)

Equation (3.10) in Comon (1994) states that on the pollination level, the right and side of the

equation (68) is invariant with respect to O ∈ O. However, the same statement also holds for the
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sample analogue and thus the right hand side of the equation (68) is invariant with respect to

O ∈ O. Let ΩT :=
∑n

s1,...,s3=1 CumT (ẽs1(O), ..., ẽs3(O))2+
∑n

s1,...,s4=1 CumT (ẽs1(O), ..., ẽs4(O))2

and thus

K̃T (O,W fast) = ΩT − H̃T (O). (70)

Therefore equation (62) holds, which proves the proposition.

B Appendix - Notes on identification

This section uses a bivariate example to illustrate why global identification up to sign and permu-

tation requires to include all coskewness conditions. Analogously, one can construct an example

based on cokurtosis conditions and show that including only n(n−1)/2 cokurtosis conditions (as

proposed by Lanne and Luoto (2019)) does not globally identify the SVAR.

Let E [εi] = 0, E
[
ε2i
]

= 1 and E
[
ε3i
]

= 1 for i ∈ {1, 2} and let

ε1
ε2

 = A0

u1
u2

 , (71)

with A0 = I. Define the unmixed innovations as

e1
e2

 =

 1 a1,2

a2,1 1


u1
u2

 . (72)
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To simplify calculations, the moment condition E
[
e2
]

= 1 has been replaced by the assumption

a1,1 = a2,2 = 1. The covariance and coskewness conditions are given by

0 = E [e1e2] (73)

0 = E
[
e21e2

]
(74)

0 = E
[
e1e

2
2

]
. (75)

The system thus contains three equations in two unknowns (e1 and e2 are functions of a1,2 and

a2,1). Omitting one of the coskewness conditions leads to a system not identifying A0 up to sign

and permutations. Consider the system of two equations and two unknowns

0 = E [e1e2] (76)

0 = E
[
e21e2

]
. (77)

The first equation yields

0 = E [e1e2] = E [(ε1 + a1,2ε2)(a2,1ε1 + ε2)] (78)

=⇒ 0 = a2,1 + a1,2. (79)

The second equation yields

0 = E
[
e21e2

]
= E

[
(ε1 + a1,2ε2)2(a2,1ε1 + ε2)

]
(80)

=⇒ 0 = a2,1 + a21,2. (81)

Therefore, A =

1 −1

1 1

 solves the system and thus A0 = I is not identified up to sign and

permutations.
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C Appendix - Notes on PML

Also the PML estimator proposed by Gouriéroux et al. (2017) is closely related to the maximiza-

tion of certain moments. To see this, consider the PML estimator with the pseudo distribution

of the i-th shock being equal to gi ∼ t(v), where t(v) denotes a t-distribution with v degrees of

freedom. The PML estimator is given by

ÔPML = arg max
O∈O

T∑
t=1

n∑
i=1

log gi(et,i) (82)

= arg max
O∈O

T∑
t=1

n∑
i=1

−1− v
2

log

(
1 +

e2t,i
v − 2

)
(83)

Ignoring the weighting implied by the degrees of freedom and using log(1 + x) ≈ x− x2

2 yields

ÔPML ≈ arg max
O∈O

T∑
t=1

n∑
i=1

−e2t,i +
e4t,i
2

(84)

= arg max
O∈O

T

n∑
i=1

(
−T−1

T∑
t=1

e2t,i

)
+ T

n∑
i=1

(
1

2
T−1

T∑
t=1

e4t,i

)
(85)

The shocks are normalized and thus T−1
∑T

t=1 e
2
t,i = 1 for i = 1, ..., n. It follows that the PML

estimator can be written as

ÔPML ≈ arg max
O∈O

n∑
i=1

(
T−1

T∑
t=1

e4t,i

)
(86)

= arg max
O∈O

∑
M∈M(4)

ET [eM (O)] (87)

Therefore, maximizing the pseudo log likelihood function is approximately equal to maximizing

the kurtosis of the unmixed innovations. Moreover, Equation (87) shows that the PML estimator

based on a t-distribution cannot utilize any information contained in third moments.
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D Appendix - SVAR: Data and robustness checks

U.S. Industrial Production Index

Source: Board of Governors of the Federal Reserve System (US)

Retrieved from: FRED, Federal Reserve Bank of St. Louis

Link: https://fred.stlouisfed.org/series/INDPRO, August 25, 2018

Crude oil composite acquisition cost by refiner

Source: U.S. Energy Information Administration

Link: https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=R0000____3&f=M,

August 12, 2018

S&P 500

Source: Yahoo! Finance

Link: https://finance.yahoo.com/quote/%5EGSPC?p=%5EGSPC, August 12, 2018

U.S. CPI

Source: U.S. Bureau of Labor Statistics

Retrieved from: FRED, Federal Reserve Bank of St. Louis

Link: https://fred.stlouisfed.org/series/CPIAUCSL, August 12, 2018

Table 5: Descriptive statistics

Mean Median Mode Std. deviation Variance Skewness Kurtosis Range

EA 0.13 0.15 0.41 0.58 0.34 -1.97 15.11 6.15

OP 0.03 0.14 -10.98 1.89 3.56 -1.35 9.42 16.48

SP 0.44 0.82 -17.7 4.12 17 -0.75 4.66 27.99

Real economic activity is measured as 100 times the log difference of the monthly US Industrial Production Index.
Real S&P 500 returns are calculated as 100 times the log difference of the the S&P 500 closing price deflated by
the US CPI. The monthly growth rates of real oil prices are calculated as 100 times the log difference of the crude
oil composite acquisition cost by refiners deflated by the US CPI.

36

https://fred.stlouisfed.org/series/INDPRO
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=R0000____3&f=M
https://finance.yahoo.com/quote/%5EGSPC?p=%5EGSPC
https://fred.stlouisfed.org/series/CPIAUCSL


Figure 2: Impulse Response Functions - Robustness checks

1) Fast SVAR-GMM 2) PML

3) SVAR-GMM (2-step) with six lags
The first and second set of IRFs are based on the re-
duced form described in Section 8. The first set of
IRFs is based on the fast SVAR-GMM estimator and
the second set of IRFs is based on the PML estimator
proposed by Gouriéroux et al. (2017) and uses a t-
distribution with twelve degrees of freedom. The third
set of IRFs estimates the reduced form with six lags
and the simultaneous relationship is estimated by the
two-step SVAR-GMM estimator. Confidence intervals
are calculated by bootstrap with 1000 replications and
the interval show the upper 0.9 and lower 0.1 per-
centiles.
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