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Abstract

We consider the problem of predicting values of a random process
or field satisfying a linear model y(x) = θ>f(x) + ε(x), where errors
ε(x) are correlated. This is a common problem in kriging, where the
case of discrete observations is standard. By focussing on the case
of continuous observations, we derive expressions for the best linear
unbiased predictors and their mean squared error. Our results are
also applicable in the case where the derivatives of the process y are
available, and either a response or one of its derivatives need to be
predicted. The theoretical results are illustrated by several examples
in particular for the popular Matérn 3/2 kernel.
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1 Introduction

A common problem, which occurs in many different areas, most notably geo-
statistics (Ripley, 1991; Cressie, 1993), computer experiments (Sacks et al.,
1989; Stein, 1999; Santner et al., 2003; Leatherman et al., 2017) and machine
learning (Rasmussen and Williams, 2006), is to predict the response y(t0) at a
point t0 ∈ Rd from given responses y(t1), . . . , y(tN) at points t1, . . . , tN ∈ Rd,
where t0 6= ti for all i = 1, . . . , N . Making the prediction assuming that
responses are observations of a random field is called kriging (Stein, 1999).
In classical kriging, it is assumed that y is a random field of the form

y(t) = f>(t)θ + ε(t), (1.1)

where f(t) ∈ Rm is a vector of known regression functions, θ ∈ Rm is a
vector of unknown parameters and ε is a random field with zero mean and
existing covariance kernel, say K(t, s) = E[ε(t)ε(s)]. The components of the
vector-function f(t) are assumed to be linearly independent on the set of
points where the observations have been made.
It is well-known, see e.g. Sacks et al. (1989), that in the case of discrete
observations the best linear unbiased predictor (BLUP) of y(t0) has the form

ŷ(t0) = f>(t0)θ̂BLUE +K>t0Σ−1(Y −Xθ̂BLUE), (1.2)

where Σ =
(
K(ti, tj)

)N
i,j=1

is anN×N -matrix, Kt0 =
(
K(t0, t1), . . . , K(t0, tN)

)>
is a vector in RN , X = (f(t1), . . . , f(tN))> is an N×m-matrix, Y = (y(t1), . . . ,
y(tN))> ∈ RN is a vector of observations and

θ̂BLUE = (X>Σ−1X)−1X>Σ−1Y

is the best linear unbiased estimator (BLUE) of θ. The BLUP satisfies the
unbiased condition E[ŷ(t0)] = E[y(t0)] and minimizes the mean squared error
MSE(ỹ(t0)) = E (y(t0)− ỹ(t0))

2 in the class of all linear unbiased predictors
ỹ(t0); its mean squared error is

MSE(ŷ(t0)) = K(t0, t0)−
[
f(t0)
Kt0

]> [
0 X>

X Σ

]−1 [
f(t0)
Kt0

]
.

In the present paper, we generalize the predictor (1.2) to the case of continu-
ous observations of the response including possibly derivatives and prediction
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of derivatives and weighted averages of y(t). We shall separately consider the
cases where the observation region is an interval or a product set (in partic-
ular, square).
An important observation concerning construction of the BLUPs at different
points is the fact that there is a considerable common part related to the
use of the same BLUE. This could lead to significant computational savings
relative to independent construction of the BLUPs. This observation extend
to the cases when the observations are taken in Rd and when derivatives are
also used for predictions.
The remaining part of this paper is organized as follows. In Section 2 we
consider the BLUPs when we observe the process or field only. In Section 3
we study the BLUPs for either process values or one of its derivatives when
we observe the process (or field) with derivatives. In Section 4 we provide
proofs of the main results and in an Appendix we give more illustrating
examples of the BLUPs for particular kernels.

2 Prediction without derivatives

2.1 Prediction at a point

Assume T ⊂ Rd and consider prediction at a point t0 6∈ T for a response
given by the model (1.1), where the observations for all t ∈ T are available.
The vector-function f : T →Rm is assumed to contain functions which are
bounded, integrable, smooth enough and linearly independent on T ; the
covariance kernel K(t, s) = E[ε(t)ε(s)] is assumed strictly positive definite.
A general linear predictor of y(t0) can be defined as

ŷQ(t0) =

∫
T
y(t)Q(dt),

where Q is a signed measure defined on the Borel field of T . This predictor
is unbiased if E[ŷQ(t0)] = E[y(t0)], which is equivalent to the condition∫

T
f(t)Q(dt) = f(t0).

The mean squared error (MSE) of ŷQ(t0) is given by

MSE(ŷQ(t0)) = E (y(t0)− ŷQ(t0))
2 .
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The best linear unbiased predictor (BLUP) ŷQ∗(t0) of y(t0) minimizes the
mean squared error MSE(ŷQ(t0)) in the set of all linear unbiased predictors.
The corresponding signed measure Q∗ will be called BLUP measure through-
out this paper. Unlike the case of discrete observations, the BLUP measure
does not have to exist for continuous observations.

Assumption A.
(1) The best linear unbiased estimator (BLUE) θ̂BLUE =

∫
T y(t)G(dt) exists

in the model (1.1), where G(dt) is some signed vector-measure on T ,
(2) There exists a signed measure ζt0(dt) which satisfies the equation∫

T
K(t, s)ζt0(dt) = K(t0, s), ∀s ∈ T . (2.1)

Assumption A will be discussed in Section 2.2 below. We continue with a
general statement establishing the existence and explicit form of the BLUP.

Theorem 2.1. If Assumption A holds then the BLUP measure Q∗ exists and
is given by

Q∗(dt) = ζt0(dt) + c>G(dt), (2.2)

where the signed measure ζt0(dt) satisfies (2.1) and c = f(t0)−
∫
T f(t)ζt0(dt) .

The MSE of the corresponding BLUP ŷQ∗(t0) is given by

MSE(ŷQ∗(t0)) = K(t0, t0) + c>Df(t0)−
∫
T
K(t, t0)Q∗(dt) , (2.3)

where D =
∫
T

∫
T K(t, s)G(dt)G>(ds) is the covariance matrix of θ̂BLUE =∫

T y(t)G(dt).

This theorem is a particular case of a more general Theorem 2.2, which con-
siders the problem of predicting an integral of the response. A few examples
illustrating applications of Theorem 2.1 for particular kernels are given in
the Appendix.
We can interpret the construction of the BLUP at t0 in model (1.1) as
the following two-stage algorithm. At stage 1, we use the BLUE θ̂BLUE =∫
T y(t)G(dt) for estimating θ. At stage 2, we compute the BLUP in the

model

ỹ(t) = y(t)− f>(t)θ̂BLUE = ε(t)− f>(t)

∫
T
ε(t′)G(dt′) ,
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which is a model with new error process and no trend. Straightforwardly,
the covariance function of the process ỹ(t) is calculated as

K̃(t, s) = K(t, s)− f>(t)Df(s).

It then follows from Theorem 2.1 applied to the new model that the signed
measure Q∗(dt) satisfies the equation∫

T
K̃(t, s)Q∗(dt) = K̃(s, t0), ∀s ∈ T .

From (2.3) in the new model, we obtain an alternative representation for the
MSE of the BLUP ŷQ∗(t0); that is,

MSE(ŷQ∗(t0)) = K̃(t0, t0)−
∫
T
K̃(t, t0)Q∗(dt) .

2.2 Validity of Assumption A

If T is a discrete set then Assumption A is satisfied for any strictly positive
definite covariance kernel.
In general, the main part of Assumption A is the existence of the BLUE of
the parameter θ, which has been clarified by Dette et al. (2019). According
to their Theorem 2.2, the BLUE of θ exists if and only if there exists a
signed vector-measure G = (G1, . . . , Gm)> on T , such that the m×m-matrix∫
T f(t)G>(dt) is the identity matrix and∫

T
K(t, s)G(dt) = Df(s) (2.4)

holds for all s ∈ T and some m×m-matrix D. In this case, θ̂BLUE =∫
T Y (t)G(dt) and D is the covariance matrix of θ̂BLUE; this matrix does not

have to be non-degenerate.
Let HK be the reproducing kernel Hilbert space (RKHS) associated with
kernel K. If the function K(t0, s) belongs to HK, then the second part of
Assumption A is also satisfied; that is, there exists a measure ζt0(dt) satisfying
the equation (2.1). This follows from results of Parzen (1961). Note that the
functionK(t0, s) does not automatically belong toHK since in general t0 /∈ T .
If all components of f belong toHK then Assumption A holds and the matrix
D in (2.4) is non-degenerate; see Dette et al. (2019) and Parzen (1961).
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If the matrix D in Theorem 2.1 is non-degenerate then this theorem can be
reformulated in the following form which is practically more convenient as
there is no unbiasedness condition to check.

Proposition 2.1. Assume that there exists a signed measure ζt0(dt) satisfy-
ing (2.1) and a signed vector-measure ζ(dt) satisfying equation∫

T
K(t, s)ζ(dt) = f(s), ∀s ∈ T . (2.5)

If additionally the matrix C =
∫
T f(t)ζ>(dt) is non-degenerate, then the

BLUP measure exists and is given by (2.2) with D = C−1. Its MSE is given
by (2.3).

Clearly, if the conditions of Proposition 2.1 are satisfied then the BLUE
measure G(dt) is expressed via the measure ζ(dt) by G(dt) = C−1ζ(dt).
Explicit forms of the BLUP for some kernels are given in the Appendix.

2.3 Matching expressions in the case of discrete obser-
vations

Let us show that in the case of discrete observations the form of the BLUP
of Proposition 2.1 coincides with the standard form (1.2). Assume that T
is finite, say, T = {t1, . . . , tN}. In this case, equation (2.5) has the form
Σζ = X, where ζ is and N×m-matrix. Since the kernel K is strictly positive
definite, this gives ζ = Σ−1X, and we also obtain C = X>Σ−1X, G> =
C−1ζ>. A general linear predictor is of form ỹ(t0) = Q>Y and the BLUP is
Q>∗ Y with Q>∗ = ζ>t0 + c>G>, where ζt0 = Σ−1Kt0 satisfies equation (2.1) and
c = f(t0)−X>ζt0 . Expanding the expression for Q>∗ we obtain

Q>∗ = (Σ−1Kt0)
> + c>C−1(Σ−1X)>

= K>t0Σ−1 + (f(t0)−X>Σ−1Kt0)
>C−1X>Σ−1 . (2.6)

The classical form of the BLUP is given by (1.2), which can be written as
Q>Y with Q> = f>(t0)C

−1X>Σ−1 + K>t0Σ−1 − K>t0Σ−1XC−1Σ−1X>. and
coincides with (2.6).
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2.4 Predicting an average with respect to a measure

Assume that we have a realization of a random field (1.1) observed for all
t ∈ T ⊂ Rd. Consider the prediction problem of Z =

∫
S y(t)ν(dt), where

ν(dt) is some (signed) measure on the Borel field of Rd with support S.
Assume that S \ T 6= ∅ (otherwise, if S ⊆ T , the problem is trivial as we
observe the full trajectory {y(t) | t ∈ T }). We interpret Z as a weighted
average of the true process values on S. The general linear predictor can be
defined as

ẐQ =

∫
T
y(t)Q(dt), (2.7)

where Q is a signed measure on the Borel field of T . The estimator ẐQ is
unbiased if and only if∫

T
f(t)Q(dt) =

∫
S
f(s)ν(ds) . (2.8)

The BLUP signed measure Q∗ minimizes

MSE(ẐQ) = E
(
Z − ẐQ

)2
among all signed measure Q satisfying the unbiasedness condition (2.8). As-
sumption A and Theorem 2.1 generalize to the following.

Assumption A′. The BLUE θ̂BLUE exists and there exists a signed measure
ζν(dt) which satisfies the equation∫

T
K(t, s)ζν(dt) =

∫
S
K(s, u)ν(du), ∀s ∈ T . (2.9)

Theorem 2.2. Suppose that Assumption A′ holds and let D be the covariance
matrix of θ̂BLUE =

∫
T y(t)G(dt). Then the BLUP measure exists and is given

by

Q∗(dt) = ζν(dt) + c>G(dt), (2.10)

where ζν(dt) is the signed measure satisfying (2.9) and c =
∫
S f(s)ν(ds) −∫

T f(t)ζν(dt) . The MSE of the BLUP ẐQ∗ is given by

MSE(ẐQ∗)=

∫
S

∫
S
K(s, u)ν(ds)ν(du)+c>D

∫
S
f(s)ν(ds)−

∫
S

∫
T
K(t, u)ν(du)Q∗(dt).
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The proof of Theorem 2.2 is given in Section 4 and contains the proof of
Theorem 2.1 as a special case. Note also that the BLUP ẐQ∗ is simply the
average (with respect to the measure ν) of the BLUPs at points s ∈ S.

2.5 Location scale model on a product set

In this section we consider the location scale model

y(t) = θ + ε(t), where t = (t1, t2) ∈ T (2.11)

and assume that the kernel K of the random field ε(t) is given by

K(t, t′) = E[ε(t)ε(t′)] = K1(t1, t
′
1)K2(t2, t

′
2) , (2.12)

for t = (t1, t2), t
′ = (t′1, t

′
2) ∈ T . We also assume that the set T ⊂ R2 is

a product-set of the form T = T1 × T2, where T1 and T2 are Borel subsets
of R (in particular, these sets could be discrete or continuous). The kernel
K of the product form (2.12) is called separable; such kernels are frequently
used in modelling of spatial-temporal structures because they offer enormous
computational benefits, including rapid fitting and simple extensions of many
techniques from time series and classical geostatistics [see Gneiting et al.
(2007) or Fuentes (2006) among many others].
Assume that Assumption A′ holds for two one-dimensional models

y(i)(u) = θ + ε(i)(u) , u ∈ Ti (i = 1, 2) (2.13)

with Ki(u, u
′) = E[ε(i)(u)ε(i)(u

′)] , u, u′ ∈ Ti (i = 1, 2). Let the measures
Gi(du) define the BLUE

∫
Ti y(i)(u)Gi(du) in these two models. Then the

BLUE of θ in the model (2.11) is given by θ̂ =
∫
T y(t)G(dt), where G is a

product-measure G(dt) = G1(dt1)G2(dt2), Assume we want to predict y(t) at
a point T = (T1, T2) /∈ T . Note that equation (2.9) can be rewritten as∫

T
K(t, s)ζT (dt) = K(s, T ), ∀s ∈ T .

A solution of the above equation has the form ζT (dt1, dt2) = ζT1(dt1)ζT2(dt2) ,
where ζTi(dt) (i = 1, 2) satisfies the equation∫

Ti
Ki(u, v)ζTi(du) = Ki(v, Ti), ∀v ∈ Ti. (2.14)
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Finally, the BLUP at the point T = (T1, T2) is
∫
T y(t)Q∗(dt), where

Q∗(dt) = ζT (dt) + cG(dt) with c = 1−
∫
T
ζT (dt).

The measure G(dt) is the BLUE measure and does not depend on T1, T2. On
the other hand, the measure ζT (dt) and constant c do depend on T1, T2. The
MSE of the BLUP is MSE(ŷQ∗(T )) = 1 + c−

∫
T K(t, T )Q∗(dt) .

Example 2.1. Consider the case of T = [0, 1]2 and the exponential kernel

K(t, t′) = E[ε(t)ε(t′)] = exp {−λ [|t1 − t′1|+ |t2 − t′2|]} ,

where λ > 0 and t = (t1, t2), t
′ = (t′1, t

′
2) ∈ [0, 1]2. Define the measure

G(du) =
1

2 + λ
[δ0(du) + δ1(du) + λdu] , u ∈ [0, 1].

In view of (Dette et al., 2019, Sect 3.4),
∫ 1

0
y(u)G(du) is the BLUE in the

model y(u) = θ+ ε(u) with kernel K(u, u′) = E[ε(u)ε(u′)] = e−λ|u−u
′|, u, u′ ∈

[0, 1]. The equation (2.14) can be rewritten as∫ 1

0

e−λ|v−u|ζTi(du) = e−λ|v−Ti|, ∀v ∈ [0, 1].

It follows from (Dette et al., 2019, Sect 3.4) that this equation is satisfied by
the measure

ζTi(du) =


e−λ|Ti|δ0(du), if Ti ≤ 0,
δTi(du), if 0 ≤ Ti ≤ 1,
e−λ(Ti−1)δ1(du), if Ti ≥ 1.

For T1 ≤ 0 we obtain Q∗(dt) = ζ(T1,T2)(dt) + cG(dt) in the following form

Q∗(dt) =


e−λ|T1|δ0(dt1)δT2(dt2) +

(
1− e−λ|T1|

)
G(dt), if 0 ≤ T2 ≤ 1,

e−λ|T1|−λ|T2|δ0(dt1)δ0(dt2) +
(
1− e−λ|T1|−λ|T2|

)
G(dt),
if T2 ≤ 0,

e−λ|T1|−λ(T2−1)δ0(dt1)δ1(dt2) +
(
1− e−λ|T1|−λ|T2−1|

)
G(dt),

if T2 ≥ 1.

Similar formulas can be obtained for 0 < T1 < 1 and T1 ≥ 1.
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In Table 1 we show the square root of the MSE of the BLUP for the equidis-
tant design supported at points (i/(N−1), j/(N−1)), i, j = 0, 1, . . . , N − 1.
We can see that the MSE for the design with N = 4 is already rather close
to the MSE for the design with large N and the design with continuous
observations.

Table 1: The square root of the MSE of the BLUP at several points for the
N×N-point equidistant design in the location scale model on the square [0, 1]2

and the exponential kernel with λ = 2. In the case N = ∞ we provide the
MSE for continuous observations.

N 2 3 4 8 16 32 ∞
T = (2, 2) 1.1446 1.1225 1.1177 1.1145 1.11398 1.11386 1.11383
T = (0.5, 2) 1.1242 1.0879 1.0884 1.0831 1.08177 1.08133 1.08117

In Figure 1 we show the plot of the square root of the MSE as a function
of a prediction point for points (T1, T2) ∈ [0.5, 2] × [0.5, 2]. As the design is
symmetric with respect to the point (0.5, 0.5), the plot of the MSE is also
symmetric with respect to this point. Consequently only the upper quadrant
is depicted in the figure.
We observe that the MSE tends to zero when the prediction point tends to
one of design points and the MSE is almost constant if the prediction point
is far enough from the observation domain.

Remark 2.1. The results of this section can be easily generalized to the case
of d > 2 variables and, moreover, to the model y(t) = θf(t) + ε(t), where t =
(t1, . . . , td) ∈ T1× . . .×Td, K(t, t′) = E[ε(t)ε(t′)] = K1(t1, t

′
1) · · ·Kd(td, t

′
d) and

f(t) = f(1)(t1) · · · f(d)(td), where f(i) are some functions on Ti ; i = 1, . . . , d.

3 Prediction with derivatives

In this section we consider prediction problems, where the trajectory y in
model (1.1) is differentiable (in the mean-square sense) and derivatives of the
process (or field) y are available. In Section 3.1 we discuss the discrete case of
a once-differentiable process and in Section 3.2 we consider the general case
of a q times differentiable (in the mean-square sense) process y satisfying the
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Figure 1: The square root of the MSE of the BLUP for the N ×N-point
equidistant design with N = 3 (left) and N = 4 (right) and the exponential
kernel with λ = 2.

model (1.1). For the process y to be q times differentiable, the covariance
kernel K and vector-function f in (1.1) have to be q times differentiable,
which is one of the assumptions in Section 3.2. In Section 3.3 we consider
the prediction problem for the location scale model on a two-dimensional
product set in the case where the kernel K of the random field ε has the
product form (2.12). The results of this section can be easily generalized to
the case of d > 2 variables.

3.1 Discrete case

Consider the model (1.1), where the kernel K and vector-function f are
differentiable and one can observe the process y and its derivative at N
different points t1, . . . , tN ∈ R. In this case, the BLUP of y(t0) has the form

ŷ(t0) = f>(t0)θ̂BLUE,2N +K>t0,2NΣ−1(Y2N −X2N θ̂BLUE,2N), (3.1)

where Y2N = (y(t1), . . . , y(tN), y′(t1), . . . , y
′(tN))> ∈ R2N ,

Σ =

(
Σ00

Σ10

Σ>10
Σ11

)
is a block matrix,

Σ00 =
(
K(ti, tj)

)N
i,j=1

, Σ10 =
( ∂

∂ti
K(ti, tj)

)N
i,j=1

, Σ11 =
( ∂2

∂ti∂tj
K(ti, tj)

)N
i,j=1
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are N×N -matrices,

Kt0,2N =
(
K(t0, t1), . . . , K(t0, tN),

∂

∂t0
K(t0, t1), . . . ,

∂

∂t0
K(t0, tN)

)>
is a vector in R2N , X2N = (f(t1), . . . , f(tN), f ′(t1), . . . , f

′(tN))> is an 2N×m-
matrix and

θ̂BLUE,2N = (X>2NΣ−1d X2N)−1X>2NΣ−1d Y2N

is the BLUE of θ. The MSE of the BLUP (3.1) is given by

MSE(ŷ(t0)) = K(t0, t0)−
[
f(t0)
Kt0,2N

]> [
0 X>2N

X2N Σ2N

]−1 [
f(t0)
Kt0,2N

]
.

For more general cases of prediction of processes and fields with derivatives
observed at a finite number of points, see (Morris et al., 1993; Näther and
Šimák, 2003).

3.2 Continuous observations on an interval

Consider the continuous-time model (1.1), where the error process ε has a
q times differentiable covariance kernel K(t, s). We also assume that the
vector-function f is q times differentiable and therefore the response y is q
times differentiable as well.
Suppose we observe realization y(t) = y(0)(t) for t ∈ T0 ⊂ R and assume that
observations of the derivatives y(i)(t) are also available for all t ∈ Ti, where
Ti ⊂ R; i = 1, . . . , q. The sets Ti (i = 0, 1, . . . , q) do not have to be the
same; some of these sets (but not all) can even be empty. If at least one of
the sets Ti contains an interval then we speak of a problem with continuous
observations.
Consider the problem of prediction of y(p)(t0), the p-th derivative of y at a
point t0 6∈ Tp, where 0 ≤ p ≤ q.
A general linear predictor of the p-th derivative y(p)(t0) can be defined as

ŷp,Q(t0) =

∫
Y>(t)Q(dt) =

q∑
i=0

∫
Ti

y(i)(t)Qi(dt), (3.2)

where Y(t) =
(
y(t), y(1)(t), . . . , y(q)(t)

)>
is a vector with observations of

the process and its derivatives, Q(dt) = (Q0(dt), . . . , Qq(dt))
> is a vec-

tor of length (q + 1) and Q0(dt), . . . , Qq(dt) are signed measures defined
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on T0, . . . ,Tq, respectively. The covariance matrix of Y(t) is

K(t, s) = E[Y(t)− EY(t)][Y(t)− EY(t)]> =

(
∂i+jK(t, s)

∂ti∂sj

)q
i,j=0

which is a non-negative definite matrix of size (q + 1)× (q + 1).
The estimator ŷp,Q(t0) is unbiased if E[ŷp,Q(t0)] = E[y(p)(t0)], which is equiv-
alent to ∫

F(t)Q(dt) = f (p)(t0),

where F(t) =
(
f(t), f (1)(t), . . . , f (q)(t)

)
is a m×(q + 1)-matrix.

Assumption A′′.
(1) The best linear unbiased estimator (BLUE) θ̂BLUE =

∫
G(dt)Y(t) exists

in the model (1.1), where G(dt) is some signed m×(q + 1)-matrix measure
(that is, the j-th column of G(dt) is a signed vector measure defined on Tj);
(2) There exists a signed vector-measure ζp,t0(dt) (of size q+1) which satisfies
the equation ∫

K>(t, s)ζp,t0(dt) =
∂pK(s, t0)

∂tp0
, ∀s ∈ Ti , (3.3)

where K(t, s) =
(∂jK(t,s)

∂sj

)q
j=0

is a (q + 1)-dimensional vector.

The problem of existence and construction of the BLUE in the continuous
model with derivatives is discussed in (Dette et al., 2019). A general state-
ment establishing the existence and explicit form of the BLUP is as follows.
The proof is given in Section 4.

Theorem 3.1. If Assumption A′′ holds, then the BLUP measure Q∗ exists
and is given by

Q∗(dt) = ζp,t0(dt) + G>(dt)cp, (3.4)

where the signed measure ζp,t0(dt) satisfies (3.3) and

cp = f (p)(t0)−
∫

F(t)ζp,t0(dt).

The MSE of the BLUP ŷp,Q∗(t0) is given by

MSE(ŷp,Q∗(t0)) =
∂2pK(t, s)

∂tp∂sp

∣∣∣∣
t=t0
s=t0

+ c>pDf
(p)(t0)−

∫
K>(t, t0)Q∗(dt) ,
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where

D =

∫ ∫
G(dt)K(t, s)G>(ds)

is the covariance matrix of θ̂BLUE =
∫
G(dt)Y(t).

Example 3.1. As a particular case of prediction in the model (1.1), in this
example we consider the problem of predicting a value of a process (so that
p = 0) with Matérn 3/2 covariance kernel K(t, s) = (1 + λ|t − s|)e−λ|t−s| ;
this kernel is once differentiable and is very popular in practice, see e.g.
(Rasmussen and Williams, 2006). We assume that the vector-function f
in the model (1.1) is 4 times differentiable and that the process y and its
derivative y′ are observed on an interval [A,B] (so that T0 = T1 = [A,B] in
the general statements). As shown in (Dette et al., 2019), for this kernel the
BLUE measure G(dt) can be expressed in terms of the signed matrix-measure
ζ(dt) = (ζ0(dt), ζ1(dt)) with

ζ0(dt) = zAδA(dt) + zBδB(dt) + z(t)dt,

ζ1(dt) = z1,AδA(dt) + z1,BδB(dt),

where

zA =
1

4λ3
(
f (3)(A)− 3λ2f (1)(A) + 2λ3f(A)

)
,

z1,A =
1

4λ3
(
− f (2)(A) + 2λf (1)(A)− λ2f(A)

)
,

zB =
1

4λ3
(
− f (3)(B) + 3λ2f (1)(B) + 2λ3f(B)

)
,

z1,B =
1

4λ3
(
f (2)(B) + 2λf (1)(B) + λ2f(B)

)
,

z(t) =
1

4λ3
(
λ4f(t)− 2λ2f (2)(t) + f (4)(t)

)
.

Then using (Dette et al., 2019, Sect. 3.4) we obtain ζ0,t0(dt) = (ζ0,t0,0(dt),
ζ0,t0,1(dt)) with

ζ0,t0,0(dt) = zt0,AδA(dt) + zt0,BδB(dt) + zt0(t)dt,

ζ0,t0,1(dt) = zt0,1,AδA(dt) + zt0,1,BδB(dt),

where for t0 > B we have zt0,A = 0, zt0,1,A = 0, zt0(t) = 0,

zt0,B = (1 + λ(t0 −B))e−λ(t0−B), zt0,1,B = (t0 −B)e−λ(t0−B) .

14



We also obtain the matrix

C =

∫ B

A

ζ0(dt)f
>(t) +

∫ B

A

ζ1(dt)f
′>(t)

defined in (Dette et al., 2019, Lem. 2.1) from the condition of unbiasedness.
If D, the covariance matrix of the BLUE is non-degenerate, then D = C−1.
In the present case,

C =
1

2

[
f(A)f>(A) + f(B)f>(B)

]
+

1

2λ2

[
f ′(A)f ′>(A) + f ′(B)f ′>(B)

]
+

− 1

4λ

[
f ′(A)f>(A) + f(A)f ′>(A) + f ′(B)f>(B) + f(B)f ′>(B)

]
+

+
1

4λ3

∫ B

A

[
λ4f(t)f>(t) + 2λ2f ′(t)f ′>(t) + f ′′(t)f ′′>(t)

]
dt ,

c0 =
(
f(t0)− [zt0,Bf(B) + zt0,1,Bf

′(B)]
)
.

The BLUE-defining measure G(dt) is expressed through the measures ζ(dt)
and the matrix C by G(dt) = C−1ζ(dt). The BLUP measure for process
prediction is given by

Q∗(dt) = ζ0,t0(dt) + G>(dt)c0

=
(
ζ0,t0,0(dt) + c>0 C

−1ζ0(dt), ζ0,t0,1(dt) + c>0 C
−1ζ1(dt)

)>
,

where

c0 = f(t0)−
∫

F(t)ζ0,t0(dt).

For the location scale model with f(t) = 1, we obtain C = 1 + λ(B − A)/4,
c0 = (1− zt0,B) and, therefore, a BLUP measure for this model is given by

Q∗(dt) = 0.5c0δA(dt)/C + (0.5c0/C + zt0,B)δB(dt) + 0.25c0λdt/C

− 0.25c0/(Cλ)δA(dt) + (zt0,1,B + 0.25c0/(Cλ))δB(dt)

Therefore, the corresponding BLUP is given

ŷ0,Q∗(t0) = 0.5c0y(A)/C + (0.5c0/C + zt0,B)y(B) + 0.25c0λ

∫ B

A

y(t)dt/C

−0.25c0/(Cλ)y′(A)(dt) + (zt0,1,B + 0.25c0/(Cλ))y′(B).
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Table 2 gives values of the square root of the MSE of the BLUP in the
location scale model at the point t0 = 2 for three families of designs, where
[A,B] = [0, 1]. We observe that observations of derivatives inside the interval
do not bring any improvement to the BLUP which can be explained by the
fact that the weights of the continuous BLUP at derivatives at points in the
interior of the interval [A,B] are 0.

Table 2: The square root of the MSE of the BLUP at the point t0 = 2 for
different designs. (i) the design ξN,0 observing the process at N-point equidis-
tant points, (ii) the design ξN,2 observing the process at N-point equidistant
points and the derivative at two boundary points. (iii) the design ξN,N observ-
ing the process and derivative at N-point equidistant points. The model is
the location scale model on the interval [0, 1] and the covariance kernel of the
error process is given by the Matérn 3/2 kernel with λ = 2. For continuous
observations the square root of the BLUB is given by

√
MSE = 0.9985569896.

N 2 4 8 16
ξN,0 1.059339 1.038152 1.019244 1.009052
ξN,2 0.999276 0.9985675343 0.9985573516 0.9985570068
ξN,N 0.999276 0.9985675343 0.9985573516 0.9985570068

3.3 Location scale model on a product set

Similarly to Section 2.5, we consider the location scale model (2.11) defined
on the product set T = T1×T2 (where T1 and T2 are Borel sets in R) with the
kernel K of the random field ε having the product form (2.12). The results of
this section (as of Section 2.5) can be easily generalized to the case of d > 2
variables.
Assume that Assumption A′′ with q = 1 is satisfied for two one-dimensional
models (2.13). For this assumption to hold, the process {y(t1, t2) | (t1, t2) ∈
T } has to be once differentiable with respect to t1 and t2. Let the measures
G0,i(du) and G1,i(du) define the BLUE∫

Ti
y(i)(u)G0,k(du) +

∫
Ti
y
(1)
(i) (u)G1,i(du)
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in the univariate models (2.13); i = 1, 2. In this case, results of (Dette
et al., 2019) imply that the BLUE of θ in the model (2.11) has the form
θ̂ =

∫
T Y

>(t) G(dt), where

Y>(t) =

(
y(t),

∂

∂t1
y(t),

∂

∂t2
y(t),

∂2

∂t1∂t2
y(t)

)
and

G(dt) = (G00(dt),G10(dt),G01(dt),G11(dt))
>

with Gij(dt) = Gi,k(dt1)Gj,k(dt2).
Assume we want to predict y(T ) at a point T = (T1, T2) /∈ T . The analogue
of the equation (2.9) is given by∫

T
K>(t, t′)ZT (dt′) = K(t, T ), ∀t ∈ T , (3.5)

where

K((t1, t2), (s1, s2)) =


K1(t1, s1)K2(t2, s2)
∂
∂t1
K1(t1, s1)K2(t2, s2)

K1(t1, s1)
∂
∂t2
K2(t2, s2)

∂
∂t1
K1(t1, s1)

∂
∂t2
K2(t2, s2)

 .

Observing the product-form of expressions, we directly obtain that a solution
of (3.5) has the form

ZT (dt1, dt2) =


ζ0,T1(dt1)ζ0,T2(dt2)
ζ1,T1(dt1)ζ0,T2(dt2)
ζ0,T1(dt1)ζ1,T2(dt2)
ζ1,T1(dt1)ζ1,T2(dt2)

 ,

where measures ζ0,Ti(dt) and ζ1,Ti(dt) for i = 1, 2 satisfy the equation∫
Ti
Ki(t, s)ζ0,Ti(dt) +

∫
Ti

∂

∂t
Ki(t, s)ζ1,Ti(dt) = Ki(s, Ti), ∀s ∈ Ti.

Finally, the BLUP at the point T = (T1, T2) is
∫
T Y

>(t)Q∗(dt), where
Q∗(dt) = ZT (dt) + c0G(dt) with c0 = 1−

∫
T (1, 0, 0, 0)ZT (dt).

The MSE of the BLUP is given by

MSE(ŷ0,Q∗(T )) = 1 + c0D −
∫
T
K>(t, T )Q∗(dt),

where D is the variance of the BLUE.
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Example 3.2. Consider a location scale model on a square [0, 1]2 with a
product covariance Matérn 3/2 kernel, that is

K(t, t′) = E[ε(t)ε(t′)] = K(t1, t
′
1)K(t2, t

′
2),

where
K(u, u′) = (1 + λ|u− u′|)e−λ|u−u′|. (3.6)

Define the measures

G0(du) =
1

4 + λ
[2δ0(du) + 2δ1(du) + λdu]

and

G1(du) =
1

(4 + λ)λ
[δ1(du)− δ0(du)] , u ∈ [0, 1].

In view of (Dette et al., 2019, Sect. 3.4),∫ 1

0

y(u)G0(du) +

∫ 1

0

y(1)(u)G1(du)

defines a BLUE in the model y(u) = θ + ε(u) with u ∈ [0, 1] and covariance
kernel (3.6). Additionally, from (Dette et al., 2019, Sect. 3.4) we have

ζ0,Ti(du) =


(1 + λ|Ti|)e−λ|Ti|δ0(du), Ti ≤ 0,
δTi(du), 0 ≤ Ti ≤ 1,
(1 + λ(Ti − 1))e−λ(Ti−1)δ1(du), Ti ≥ 1,

and

ζ1,Ti(du) =


−|Ti|e−λ|Ti|δ0(du), Ti ≤ 0,
0, 0 ≤ Ti ≤ 1,
(Ti − 1)e−λ(Ti−1)δ1(du), Ti ≥ 1.

Finally, c0 = 1−
∫ 1

0

∫ 1

0
(1, 0, 0, 0)ZT (dt) = 1−

∫ 1

0
ζ0,T1(dt1)

∫ 1

0
ζ0,T2(dt2) and the

BLUP measure is given by Q∗(dt) = ZT (dt) + c0G(dt); that is,

Q∗(dt) =


ζ0,T1(dt1)ζ0,T2(dt2) + c0G0(dt1)G0(dt2)
ζ1,T1(dt1)ζ0,T2(dt2) + c0G1(dt1)G0(dt2)
ζ0,T1(dt1)ζ1,T2(dt2) + c0G0(dt1)G1(dt2)
ζ1,T1(dt1)ζ1,T2(dt2) + c0G1(dt1)G1(dt2)

 .

We now investigate the performance of five discrete designs:
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(i) the design ξN2,0,0,0, where we observe process y on an N×N grid;

(ii) the design ξN2,4,4,4, where we observe process y on an N×N grid and

additionally derivatives ∂y
∂t1

, ∂y
∂t2

, ∂2y
∂t1∂t2

at 4 corners of [0, 1]2;

(iii) the design ξN2,N2,N2,0, where we observe process y and derivatives ∂y
∂t1

,
∂y
∂t2

on an N×N grid;

(iv) the design ξN2,N2,N2,0, where we observe process y on an N×N grid and

derivatives ∂y
∂t1

, ∂y
∂t2

, ∂2y
∂t1∂t2

at 4N−4 equidistant points on the boundary

of [0, 1]2;

(v) the design ξN2,N2,N2,N2 , where we observe process y and derivatives ∂y
∂t1

,
∂y
∂t2

, ∂2y
∂t1∂t2

at N×N equidistant points on an N×N grid.

Table 3: The square root of the MSE of the BLUP at the point (2, 2) (upper
part) and the point (0.5, 2) (lower part) for several designs in the location
scale model on the square [0, 1]2 with Matérn 3/2 product-kernel (λ = 2).
The square root of the MSE of the continuous BLUP equals 1.119510 at the
point (2, 2) and 0.958494 at the point (0.5, 2).

N 2 3 4 8 16
ξN2,0,0,0 1.16139 1.15344 1.14972 1.13548 1.12764
ξN2,4,4,4 1.121205 1.119682 1.119582 1.119543 1.119528
ξN2,N2,N2,0 1.124401 1.121576 1.120913 1.119893 1.119609
ξN2,4N−4,4N−4,4N−4 1.121205 1.119632 1.119535 1.119511 1.119510

ξN2,0,0,0 1.03152 1.00413 0.99900 0.97862 0.96862
ξN2,4,4,4 0.979953 0.962754 0.963426 0.960604 0.959550
ξN2,N2,N2,0 0.982184 0.958732 0.959663 0.958606 0.958511
ξN2,4N−4,4N−4,4N−4 0.979953 0.958566 0.959314 0.958556 0.958500

The results are depicted in Table 3, which shows the square root of the MSE
of predictions at the point (2, 2) and (0.5, 2) for different sample sizes. For
any given N ≥ 2, the MSE for prediction outside the square [0, 1]2 for the
designs ξN2,N2,N2,N2 and ξN2,4N−4,4N−4,4N−4 are exactly the same. This is
related to the fact that the BLUP weights associated with all derivatives at
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interior points in [0, 1]2 of the designs ξN2,N2,N2,N2 are all 0. This means that
for optimal prediction of y(t0) at a point t0 outside the observation region
one needs the design guaranteeing the optimal BLUE plus the observations
of y(t) and y′(t) at points t closest to t0. Note that the results of (Dette
et al., 2019, Sect. 3.4) imply that the continuous optimal design for the
BLUE does not use values of any derivatives of the process (or field for the
product-covariance model) in the interior of T .
The observation above is consistent with our other numerical experience
which have shown that the BLUP at a point t0 ∈ (0, 1)× (0, 1) constructed
from the design ξN2,N2,N2,N2 has vanishing weights at all derivatives of inte-
rior points of [0, 1]2 with five exceptions: the center 0 and the four points
which are closest to t0 in the L∞ (Manhattan) metric.
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Figure 2: Square root of the MSE of the BLUP for the design ξN2,0,0,0 with
N = 3 (left) and N = 4 (right), and the Matérn 3/2 product-kernel with
λ = 2.

Figures 2 and 3 compare the MSE for some designs. As Figure 3 illus-
trates, additionally to Table 3, the MSE for designs ξN2,4N−4,4N−4,4N−4 and
ξN2,N2,N2,N2 is exactly the same for all points outside [0, 1]2 and almost the
same at all interior points of [0, 1]2.
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Figure 3: Square root of the MSE of the BLUP for the design
ξN2,4N−4,4N−4,4N−4 (left) and ξN2,N2,N2,N2 (right) with N = 3 and the Matérn
3/2 product-kernel with λ = 2.

4 Proofs

4.1 Proof of Theorem 2.2

To start, we proof the following lemma.

Lemma 4.1. The mean squared error [relative to the true process value] of
any unbiased estimator ẐQ =

∫
T y(t)Q(dt) is given by

MSE(ẐQ) = E
(
Z − ẐQ

)2
=∫

S

∫
S
K(t, s)ν(dt)ν(ds)−2

∫
S

∫
T
K(t, s)ν(dt)Q(ds)+

∫
T

∫
T
Q(dt)K(t, s)Q(ds).

21



Proof. Straightforward calculation gives

MSE(ẐQ) = E
(
Z − ẐQ

)2
= E

(
Z −

∫
T
y(t)Q(dt)

)2

= E
(∫
S
[θ>f(t) + ε(t)]ν(dt)−

∫
T

[θ>f (t) + ε(t)]Q(dt)

)2

= E
(∫
S
ε(t)ν(dt)−

∫
T
ε(t)Q(dt)

)2

= E
(∫
S
ε(t)ν(dt)−

∫
T
ε(t)Q(dt)

)(∫
S
ε(s)ν(ds)−

∫
T
ε(s)Q(ds)

)
=

∫
S

∫
S
K(t, s)ν(dt)ν(ds)−2

∫
S

∫
T
K(t, s)ν(dt)Q(ds)

+

∫
T

∫
T
K(t, s)Q(dt)Q(ds) ,

as required. �

Let us now prove the main result. We will show that MSE(ẐQ) ≥ MSE(ẐQ∗),

where ẐQ is any linear unbiased estimator of the from (2.7) and ẐQ∗ is defined
by the measure (2.10). Define R(dt) = Q(dt) − Q∗(dt). From the condition
of unbiasedness for Q(dt) and Q∗(dt), we have

∫
T f(t)R(dt) = 0m×1.

We obtain

MSE(ẐQ)= MSE(ẐQ∗+R)

=

∫
S

∫
S
K(t, s)ν(dt)ν(ds)− 2

∫
S

∫
T
K(t, s)ν(dt)[Q∗ +R](ds)

+

∫
T

∫
T

[Q∗ +R](dt)K(t, s)[Q∗ +R](ds)

= MSE(Q∗)−2

∫
S

∫
T
K(t, s)ν(dt)R(ds)+

∫
T

∫
T
R(dt)K(t, s)R(ds)

+2

∫
T

∫
T
Q∗(dt)K(t, s)R(ds)

≥MSE(Q∗)−2

∫
S

∫
T
K(t, s)ν(dt)R(ds)+2

∫
T

∫
T
Q∗(dt)K(t, s)R(ds)

= MSE(Q∗) + 2

∫
T

[ ∫
T
Q∗(dt)K(t, s)−

∫
S
K(t, s)ν(dt)

]
R(ds)

= MSE(Q∗) + 2

∫
T
c>Df(s)R(ds) = MSE(Q∗) ,
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where the inequality follows from nonnegative definiteness of the covari-
ance kernel and the last equality follows from the unbiasedness condition∫
f(t)R(dt) = 0. �

4.2 Proof of Theorem 3.1

For simplicity, assume p = 0; the case p > 0 can be dealt with analogously.
First, we derive the following lemma.

Lemma 4.2. The mean squared error of any unbiased estimator ŷQ(t0) of
the form (3.2) is given by

MSE(ŷQ(t0)) = E (y(t0)− ŷQ(t0))
2

= K(t0, t0)− 2

∫
T
K>(t0, s)Q(ds) +

∫
T

∫
T
Q>(dt)K(t, s)Q(ds) .

Proof. Straightforward calculation gives

MSE(ŷQ(t0))= E (y(t0)− ŷQ(t0))
2 = E

(
y(t0)−

q∑
i=0

∫
T
y(i)(t)Qi(dt)

)2

= E

(
θ>f(t0) + ε(t0)−

q∑
i=0

∫
T

[θ>f (i)(t) + ε(i)(t)]Qi(dt)

)2

= E

(
ε(t0)−

q∑
i=0

∫
T
ε(i)(t)Qi(dt)

)2

= K(t0, t0)− 2

q∑
j=0

∫
T

∂jK(t0, s)

∂sj
Qj(ds)

+

q∑
i=0

q∑
j=0

∫
T

∫
T

∂i+jK(t, s)

∂ti∂sj
Qi(dt)Qj(ds) ,

as required. �
Now we will prove the main result. We will show that MSE(ŷQ(t0)) ≥
MSE(ŷQ∗(t0)), where ŷQ(t0) is any linear unbiased estimator of the form (3.2)
and ŷQ∗(t0) is defined by (3.4). Define R(dt) = Q(dt)−Q∗(dt). From the con-
dition of unbiasedness for Q(dt) and Q∗(dt), we have

∫
T F(t)R(dt) = 0m×1,
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where F(t) = (f(t), f (1)(t), . . . , f (q)(t)). Therefore we obtain

MSE(ŷQ(t0))= MSE(ŷQ∗+R(t0))

= K(t0, t0)− 2

∫
T
K>(t0, s)[Q∗ + R](ds)

+

∫
T

∫
T

[Q∗ + R]>(dt)K(t, s)[Q∗ + R](ds)

= MSE(ŷQ∗(t0))−2

∫
T
K>(t0, s)R(ds)+

∫
T

∫
T
R>(dt)K(t, s)R(ds)

+2

∫
T

∫
T
Q>∗ (dt)K(t, s)R(ds)

≥MSE(ŷQ∗(t0))−2

∫
T
K>(t0, s)R(ds)+2

∫
T

∫
T
Q>∗ (dt)K(t, s)R(ds)

= MSE(ŷQ∗(t0)) + 2

∫
T

[ ∫
T
Q>∗ (dt)K(t, s)−K>(t0, s)

]
R(ds)

= MSE(ŷQ∗(t0)) + 2

∫
T
c>pDF(s)R(ds) = MSE(ŷQ∗(t0)) ,

where the inequality follows from nonnegative definiteness of the covari-
ance kernel and the last equality follows from the unbiasedness condition∫
F(t)R(dt) = 0. �

5 Appendix: more examples of predicting pro-

cess values

In the appendix, we give further examples of prediction of values of specific
random processes y(t), which follows the model (1.1) and observed for all
t ∈ T = [A,B]. In Section 5.1, we illustrate application of Proposition 2.1
and in Section 5.2 we give an example of application of Theorem 3.1. In the
example of Section 5.2 we consider the integrated Brownian motion process,
which is a once differentiable random process, and we assume that in addition
to values of y(t), the values of the derivative of y(t) are also available. As in
the main body of the paper, the components of the vector-function f(t) in
(1.1) are assumed to be smooth enough (for all formulas to make sense) and
linearly independent on T .
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5.1 Prediction for Markovian error processes

5.1.1 General Markovian process

Consider the prediction of the random process (1.1) with T = [A,B] and the
Markovian kernel K(t, s) = u(t)v(s) for t ≤ s, where u(·) and v(·) are twice
differentiable positive functions such that q(t) = u(t)/v(t) is monotonically
increasing. As shown in (Dette et al., 2019, Sect. 2.6), a solution of the

equation
∫ B
A
K(t, s)ζ(dt) = f(s) holding for all s ∈ T is the signed vector-

measure ζ(dt) = zAδA(dt) + zBδB(dt) + z(t)dt with

zA =
1

v2(A)q′(A)

[f(A)u′(A)

u(A)
− f ′(A)

]
,

z(t) = − 1

v(t)

[h′(t)
q′(t)

]′
, zB =

h′(B)

v(B)q′(B)
,

where ψ′ denotes a derivative of a function ψ, the vector-function h(·) is
defined by h(t) = f(t)/v(t).
Then we obtain ζt0(dt) = z0AδA(dt) + z0BδB(dt) with

z0A =
1− u′(A)

v2(A)q′(A)
v(t0), z0B =

1

v(B)
v(t0),

C =
1

v2(A)q(A)
f(A)f>(A) +

∫ B

A

[f(t)/v(t)]′[f(t)/v(t)]′>

q′(t)
dt

and

c̃ = C−1c = C−1
(
f(t0)−

[
1− u′(A)

v2(A)q′(A)
v(t0)f(A) +

1

v(B)
v(t0)f(B)

])
.

The BLUP measure is given by

Q∗(dt) = ζt0(dt) + c>G(dt) = ζt0(dt) + c̃>ζ(dt)

and the MSE of the BLUP is

MSE(ŷQ∗(t0)) = u(t0)v(t0) + c̃>f(t0)−
∫ B

A

K(t, t0)Q∗(dt) .
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5.1.2 Prediction when the error process is Brownian motion

The covariance kernel K(t, s) = min(t, s) of Brownian motion is a particular
case of the Markovian kernel with u(t) = t and v(s) = 1, t ≤ s. Further we
present the BLUP for few choices of f(t).
For the location-scale model with f(t) = 1, we obtain c = 0 and, therefore,
the BLUP measure is given by Q∗(dt) = δB(dt). The BLUP is ŷQ∗(t0) = y(B)
and it has MSE(ŷQ∗(t0)) = t0 −B.
For the model with f(t) = t, we obtain c̃ = B−1(t0−B) and, thus, the BLUP
measure is given by

Q∗(dt) = δB(dt) +
t0 −B
B

δB(dt) =
t0
B
δB(dt).

The BLUP is ŷQ∗(t0) = t0
B
y(B) and it has MSE(ŷQ∗(t0)) = t0

B
(t0 −B).

For the model with f(t) = t2, we obtain c̃ = (A3 + 4/3(B3−A3))−1(t20−B2)
and, thus, the BLUP measure is given by

Q∗(dt) = δB(dt) +
t20 −B2

A3 + 4/3(B3 − A3)

(
2BδB(dt)− AδA(dt)− 2dt

)
.

The BLUP is

ŷQ∗(t0) = y(B) +
t20 −B2

A3 + 4/3(B3 − A3)

(
2By(B)− Ay(A)− 2

∫ B

A

y(t)dt

)
and it has the mean squared error

MSE(ŷQ∗(t0)) = t0 + c̃ · t20 −
∫ B

A

t ·Q∗(dt).

5.1.3 Prediction for an OU error process

The covariance kernel K(t, s) = exp(−λ|t−s|) of the OU error process is also
a particular case of the Markovian kernel with u(t) = eλt and v(s) = e−λs,
t ≤ s.
For the location-scale model f(t) = 1, we obtain c̃ = (1 + (B − A)λ

2
)−1(1 −

e−λ|t0−B|) and, therefore, the BLUP measure is given by

Q∗(dt) = c̃/2δA(dt) + (e−λ|t0−B| + c̃/2)δB(dt) + c̃λ/2dt.
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The BLUP is ŷQ∗(t0) = c̃/2y(A) + (e−λ|t0−B|+ c̃/2)y(B) + c̃λ/2
∫ B
A
y(t)dt and

it has MSE(ŷQ∗(t0)) = 1 + c̃−
∫ B
A
e−λ|t−t0|Q∗(dt).

In Table 4 we give values of the square root of the MSE of the BLUP at the
point t0 = 2 for the N -point equidistant design in the location scale model
on the interval [0, 1] and the OU kernel with λ = 2. From this table, we can
see that one does not need many points to get almost optimal prediction:
indeed, the MSE for designs with N ≥ 4 is very close to the MSE for the
continuous design. Similar results have been observed for other points t0 and
other Markovian kernels.

Table 4: The square root of the MSE of the BLUP at the point t0 = 2 for the
N -point equidistant design in the location scale model on the interval [0, 1]
and the OU kernel with λ = 2; for the continuous design

√
MSE = 1.164262.

N 2 4 8 16 32√
MSE 1.18579 1.167157 1.164806 1.164381 1.16429

5.2 Prediction when the error process is integrated
Brownian motion

Consider the prediction of the random process (1.1) with T = [A,B], the 4
times differentiable vector of regression functions f(t) and the kernel of the
integrated Brownian motion defined by

K(t, s) = min(t, s)2(3 max(t, s)−min(t, s))/6.

From (Dette et al., 2019, Sect. 3.2) we have that the signed matrix-measure
ζ(dt) = (ζ0(dt), ζ1(dt)) has components ζ0(dt) = zAδA(dt)+zBδB(dt)+z(t)dt
and ζ1(dt) = z1,AδA(dt) + z1,BδB(dt), where

zA = f (3)(A)− 6

A2
f (1)(A) +

12

A3
f(A),

z1,A = −f (2)(A) +
4

A
f (1)(A)− 6

A2
f(A),

zB = −f (3)(B), z1,B = f (2)(B), z(t) = f (4)(t).
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Then we obtain ζt0,0(dt) = zt0,AδA(dt) + zt0,BδB(dt) + zt0(t)dt and ζt0,1(dt) =
zt0,1,AδA(dt) + zt0,1,BδB(dt) with (for t0 > B)

zt0,A = K(3)(A, t0)−
6

A2
K(1)(A, t0) +

12

A3
K(A, t0) = 0,

zt0,1,A = −K(2)(A, t0) +
4

A
K(1)(A, t0)−

6

A2
K(A, t0) = 0,

zt0,B = −K(3)(B, t0) = 1, zt0,1,B = K(2)(B, t0) = t0 −B,

and zt0(t) = K(4)(t, t0) = 0. This implies ζt0,0(dt) = δB(dt) and ζt0,1(dt) =

(t0 − B)δB(dt). Also we obtain C = 12
A3f(A)f>(A) − 6

A2

(
f ′(A)f>(A) +

f(A)f ′>(A)
)

+ 4
A
f ′(A)f ′>(A)+

∫ B
A
f ′′(t)f ′′>(t)dt and c̃0 =C−1c0 =C−1

(
f(t0)−

[f(B) + (t0 −B)f ′(B)]
)
.

For the location-scale model with f(t) = 1, we obtain c = 0 and, therefore,
the BLUP measure is given by Q∗(dt) = (δB(dt), (t0 − B)δB(dt))>. The
BLUP is ŷQ∗(t0) = y(B) + (t0 − B)y′(B) and it has MSE(ŷQ∗(t0)) = t30/3−
t0B(t0 −B/2).
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