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Abstract

For independent exponentially distributed random variables Xi, i ∈ N
with distinct rates λi we consider sums

∑
i∈AXi for A ⊆ N which follow

generalized exponential mixture (GEM) distributions. We provide novel

explicit results on the conditional distribution of the total sum
∑

i∈N Xi

given that a subset sum
∑

j∈AXj exceeds a certain threshold value t > 0,

and vice versa. Moreover, we investigate the characteristic tail behavior

of these conditional distributions for t → ∞. Finally, we illustrate how

our probabilistic results can be applied in practice by providing examples

from both reliability theory and risk management.
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1 Introduction

Stochastic properties of sums of independent exponentially distributed random vari-

ables Xi for i ∈ N , where N ⊂ N is some finite set, are both of high theoreti-

cal and practical relevance. Under the assumption that the rate parameters λi >

0 are pairwise distinct, the distribution of the sum SN =
∑

i∈N Xi can be rep-

resented as a generalized exponential mixture (GEM)1 with distribution function

FSN (x) = 1 −
∑

i∈N πi e−λix, x > 0, with real-valued mixing proportions πi which

satisfy
∑

i∈N πi = 1.

The early theoretical literature on exponential mixtures is mainly focused on

necessary or sufficient conditions for the mixing proportions πi to ensure that for

x > 0 the expression 1−
∑

i∈N πi e−λix defines a valid distribution function; see e.g.

Bartholomew [6], Harris et al. [12], Steutel [23]. More recently, research has been more

concentrated on probabilistic or statistical properties of exponential mixture distri-

butions; see e.g. Amari and Misra [2], Favaro and Walker [11], Jewell [14], Kochar

and Xu [16], Navarro et al. [22]. Mixtures and convolutions of exponential distribu-

tions constitute important subclasses of so-called phase-type distributions which are

defined in terms of an underlying Markov jump process. Phase-type distributions

attract much attention in the current literature (see e.g. Albrecher and Bladt [1]);

an excellent review of recent results on phase-type distributions can be found in the

book of Bladt and Nielsen [9].

Convolutions of exponential distributions have been proved to be relevant in var-

ious application fields: in management science Bekker and Koeleman [7] provide

results on admission scheduling in a clinic with respect to stable bed demand where

patient stay lengths follow GEM distributions; in reliability theory Kordecki [17]

provides bounds for the probability that a system of independent components will

completely operate when the component failure probabilities are exponentially dis-

tributed with pairwise distinct rates, while Yin et al. [25] derive results on finding the

optimal rate of preventive maintenance in Markov systems with GEM time-to-failure

distribution; further applications are elaborated by Asmussen [4] in renewal theory,

by Bergel and Eǵıdio dos Reis [8] and Willmot and Woo [24] in actuarial science,

and by Anjum and Perros [3] in network science; Dufresne [10] shows how to apply

GEMs for approximating arbitrary distribution functions with positive half-line sup-

port. Klüppelberg and Seifert [15] investigate financial risk measures for a system of

asymptotically exponentially distributed losses, however, they show that summation

1This distribution class is known in the literature under various names, e.g. generalized Erlang

(cf. Bergel and Eǵıdio dos Reis [8]), hypoexponential as its coefficient of variation is smaller than

one as by the exponential distribution (cf. Li and Li [18]), as well as generalized hyperexponential

distribution (cf. Harris et al. [12]).
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of such losses does not lead to GEM distributions.

Although the above-mentioned literature on unconditional GEM distributions is

rather substantial, to the best of our knowledge results on conditional distributions

for sums of independent exponentially distributed random variables are not yet avail-

able. In this paper we close this gap and deduce explicit results on conditional dis-

tributions for such sums. The assumption of pairwise distinct rate parameters makes

the analysis more challenging compared to those for the sum of independent iden-

tically exponentially distributed random variables which follows an Erlang distribu-

tion. Nevertheless, we also handle the case where we relax the restriction that the

rate parameters are all pairwise distinct.

In the present paper we consider the total sum SN =
∑

i∈N Xi as well as subset

sums SA =
∑

i∈AXi based on subsets A ⊆ N of independent exponentially dis-

tributed Xi, and deduce the conditional distributions for both P (SN > s | SA > t)

and P (SA > t | SN > s) for s, t > 0. Hence, we quantify interdependence between

the total sum SN and subset sums SA of independent exponential random variables.

Besides providing results for finite thresholds s, t > 0, we also present statements

quantifying the tail behavior when conditioning on extreme events {SN > s} for

s → ∞ and {SA > t} for t → ∞. Our novel probabilistic results are essential when

only partial information on a subset is available, but the quantity of interest is the

total sum SN , or, vice versa, when there is information about the total sum SN but

the distribution of some subset sum SA is of interest.

This paper is organized as follows. In section 2 we give expressions for the dis-

tribution of sums SN =
∑

i∈N Xi of independent exponentially distributed random

variables Xi, and deduce the characteristic tail behavior of their survival functions.

In section 3 we investigate the conditional distributions for the sum SN given that

some Xj , j ∈ N exceeds a certain threshold value, as well as, conversely, those of Xj

given that SN exceeds some threshold. Next, in section 4 we generalize these results

by providing the conditional distributions for the total sum SN and subset sums

SA =
∑

j∈AXj for some A ⊆ N . In section 5 we illustrate our theoretical results

by presenting relevant examples where our results may provide support for decision

making in practice. The proofs are placed in section 6.

Notations and conventions: Two functions f and g are said to be (i) asymp-

totically equivalent f ∼ g if f(x)/g(x) → 1 for x → ∞ and (ii) proportional f ∝ g

if f(x)/g(x) = c for all x and some constant c > 0. For some |N | ∈ {2, 3, 4, . . .}
we use the notation N := {1, 2, . . . , |N |} and denote by |A| the cardinality of a

set A ⊆ N . Further, we write fXi for the density of the random variable Xi. We

denote by Exp(λi) the class of exponentially distributed random variables with rate

parameter λi > 0, such that Xi ∈ Exp(λi) has the density fXi(x) = λi e−λix for

3



x > 0, and the expectation E[Xi] = 1/λi. Given the rate parameters λ1, . . . , λ|N |

with λi 6= λj for i 6= j, the minimal rates for the sets N and A ⊆ N are denoted as:

λn = min{λi | i ∈ N} , λa = min{λj | j ∈ A} , (1)

where n (or a) denotes the index of the random variable Xn (or Xa) with minimal

rate parameter in set N (or A). As the usual convention, we set
∏
i∈A ci := 1 for

arbitrary ci when A is the empty set.

2 Generalized exponential mixtures

Throughout this paper we consider distributions of sums SN :=
∑

i∈N Xi and SA :=∑
i∈AXi with some A ⊆ N for random variables Xi which satisfy the following

Assumption (A): The random variables Xi ∈ Exp(λi), i ∈ N , are stochastically

independent with pairwise distinct rate parameters λi 6= λj for all i 6= j.

Note that the setting with λi = λ > 0 for all i ∈ N would result in an Erlang

distribution for the sum of independent random variables. Assumption (A) with

pairwise distinct λi makes our analysis more challenging; it is posed in the current

literature by e.g. Bergel and Eǵıdio dos Reis [8], Kordecki [17], McLachlan [20] and

Steutel [23]. In Remark 3(ii) at the end of this section we indicate how to handle the

case where the restriction for pairwise distinct parameters is relaxed; i.e., when some

(or even all) rate parameters coincide.

Remark 1. Note that all results on sums SN would be also valid for linear combi-

nations
∑

i∈N θiYi of independent Yi ∈ Exp(λ̃i) and coefficients θi > 0, i ∈ N , when

λ̃iθj 6= λ̃jθi for all i 6= j. The statements on linear combinations can be obtained by

the linear transformation Xi := θiYi ∈ Exp(λi) with λi := λ̃i/θi. ♦

Before we present our findings, we summarize the established results on the con-

volution of exponentially distributed random variables.

Proposition 1 (Jasiulewicz and Kordecki [13], Theorem 1). Under Assumption (A)

the sum SN =
∑

i∈N Xi has density:

fSN (x) =
∑
i∈N

πi(N )λi e−λi x , x > 0 , (2)

with mixing proportions

πi(N ) :=
∏

j∈N\{i}

λj
λj − λi

∈ (−∞,∞) , i ∈ N . (3)
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The sum SN with density (2) follows a generalized exponential mixture (GEM)

distribution as it allows – in contrast to a classical mixture – for mixing proportions of

both positive and negative signs. As the mixing proportions depend on the underlying

set N we denote them by πi(N ) . Note that a change of the underlying set could lead

to a change of all mixing proportions; i.e., in general we have πi(N ) 6= πi(A) for all

i ∈ A ⊂ N .

Remark 2. Due to the density representation in (2) it follows that the mixing

proportions sum up to one: ∑
i∈N

πi(N ) = 1 , (4)

where exactly b|N |/2c of the mixing proportions πi(N ) are negative. More precisely,

the mixing proportions alternate in sign when the rate parameters are ordered (which

can be done without loss of generality) as λ1 < λ2 < . . . < λ|N |, then πi(N ) is positive

for odd and negative for even indices i ∈ N , as there are exactly (i − 1) negative

denominators in (3). ♦

After providing results for finite x > 0, we establish the characteristic tail behavior

of GEM distributions for x → ∞. In the next corollary we show that the random

variable with the smallest parameter λn, cf. (1), determines the asymptotics:

Corollary 1. Under Assumption (A), the survival function of SN =
∑

i∈N Xi sat-

isfies:

P (SN > x) =
∑
i∈N

πi(N ) e−λi x , x > 0 ,

∼ πn(N ) e−λn x ∝ P (Xn > x) for x→∞ .

The statements of Proposition 1 and Corollary 1 are illustrated in Figure 1 where

we show, first, the different shapes of the GEM and exponential survival functions

for non-asymptotic regions and, second, how good the exponential distribution with

the smallest tail parameter λn is for the asymptotic approximation of GEM.

Similarly to the established result that phase-type distributions have asymptotic

tails of Erlang distributions (cf. Asmussen et al. [5, sect. 5.7]), our result in Corollary 1

states that the subclass of GEM distributions leads to asymptotic tails of exponential

distributions. However, if we allow the tail parameters to coincide for different indices,

then the distribution of SN has the asymptotic tail of an Erlang distribution, as we

discuss it in the following remark.
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Figure 1: (a): Survival functions of exponentially distributed Xi, i = 1, . . . , 10 with distinct rate

parameters λ1 = 0.1, λ2 = 0.2, . . . , λ10 = 1.0 (dashed lines), and the function πn(N) e−λnx (dotted

line) with n = 1 as approximation of P (SN > x) (solid line); cf. Corollary 1.

(b): Same functions as in (a) on a logarithmic vertical axis to illustrate that the approximating

function (dotted line) has the same slope as the function of dominant Xn (bold dashed line), both

determined by rate parameter λn.

Remark 3. Here we comment on the case of possibly equal rate parameters λi for

some (or all) random variables Xi, i ∈ N , where the following results hold:

(i) If the parameters λi coincide for different values of i, then the distribution of

SN =
∑

i∈N Xi is not GEM any longer. If – as a special case – it holds that

λi = λ for all i ∈ N , then SN is Erlang distributed. In general, if only some λi

coincide, SN follows a generalized Erlang mixture distribution, cf. Mathai [19]

and Moschopoulos [21].

(ii) The corresponding results of Proposition 1 if λj = λi for some j 6= i can be

obtained as limits for λj → λi. Consider e.g. the case of two variables X1 and

X2 where taking such limit leads to an Erlang distribution as follows:

lim
λ2→λ1

P
(
X1 +X2 > x

)
= lim

λ2→λ1

λ2 e−λ1x − λ1 e−λ2x

λ2 − λ1

= lim
λ2→λ1

( e−λ1x + λ1x e−λ2x) = (1 + λ1x) e−λ1x , x > 0 . (5)

The asymptotic results in Corollary 1 for x → ∞ give asymptotic tails of

Erlang distribution with shape parameter q = |Q|, where the set Q := {i ∈
N | λi = mink∈N λk} contains the indices of all variables with the smallest

rate parameter. Hence, the value q is the number of asymptotically dominant

random variables Xi with the smallest rate parameter. ♦
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3 Conditional distributions for GEM sums and a se-

lected exponential random variable

Now we provide our novel results on the conditional distribution for the sum SN =∑
i∈N Xi given that some element Xj exceeds a certain threshold value, as well as,

conversely, on the conditional distribution for Xj given that SN exceeds some thresh-

old. In the next theorem we deduce the conditional probabilities which illustrate both

finite and asymptotic influence of Xj on the sum SN .

Theorem 1. Under Assumption (A), the conditional probabilities for SN =
∑

i∈N Xi

satisfy given that Xj > x > 0 for some j ∈ N :

(i) for finite s > x:

P (SN > s | Xj > x) = P (SN > s− x) =
∑
i∈N

πi(N ) e−λi(s−x) ;

(ii) asymptotically for x→∞ and some positive function s(x) with s(x)−x→∞:

P (SN > s(x) | Xj > x) ∼ πn(N ) e−λn(s(x)−x) ∝ P (Xn > s(x)− x) ,

with n as in (1).

Throughout this paper, we exclude trivial cases where the corresponding condi-

tional probability is equal to 1. For example, in Theorem 1 we only consider s > x.

Note also that the asymptotically dominant random variable Xn has the largest ex-

pectation of all Xi for i ∈ N .

Note that in Theorem 1(ii) one can use any function s(x) which increases faster

than the identity function s(x) = x. E.g., for the important case of a linear function

we obtain asymptotically for x→∞ and some α > 1 that:

P (SN > αx | Xj > x) ∼ πn(N ) e−(α−1)λnx ∝ P (Xn > (α− 1)x) .

Remark 4. The results of Theorem 1(i) reveal the following interesting features:

The conditional distribution of the sum SN =
∑

i∈N Xi given some Xj , j ∈ N

(a) is equal to the shifted unconditional distribution of SN ;

(b) is independent of the specific index j of the variable we condition on;

(c) depends only on the difference s− x of the threshold values.

In particular, points (a) and (c) display a certain “no-memory” property of the GEM

distributions by conditioning on a single exponential random variable. ♦
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Next we present the complementary result to Theorem 1 with conditioning on the

sum SN > s.

Proposition 2. Under Assumption (A), the conditional probabilities for Xj, j ∈ N
satisfy given that SN =

∑
i∈N Xi > s > 0:

(i) for finite s > x > 0:

P (Xj > x | SN > s) =
P (Xj > x)P (SN > s− x)

P (SN > s)

= e−λjx
∑

i∈N πi(N ) e−λi(s−x)∑
i∈N πi(N ) e−λis

,

and for finite x ≥ s:

P (Xj > x | SN > s) =
P (Xj > x)

P (SN > s)
=

e−λjx∑
i∈N πi(N ) e−λis

;

(ii) asymptotically for s → ∞ and some positive function x(s) with x(s) → ∞ it

holds:
� if s− x(s)→∞:

P (Xj > x(s) | SN > s) ∼ e−(λj−λn)x(s) =
P (Xj > x(s))

P (Xn > x(s))
,

� if s− x(s)→ −∞:

P (Xj > x(s) | SN > s) ∼ e−(λjx(s)−λns)

πn(N )

∝ P (Xj > x(s))

P (Xn > s)
,

� if s− x(s)→ c ∈ (−∞,∞):

P (Xj > x(s) | SN > s) ∼ Kc e−(λj−λn)s ∝ P (Xj > s)

P (Xn > s)
,

with Kc := eλjc/πn(N ) for c ≤ 0 and Kc :=
∑

i∈N πi(N ) e−(λi−λj)c/πn(N ) for

c > 0 and with n as in (1).

In Proposition 2 we show that P (Xj > x | SN > s) depends (even asymptot-

ically) on the distribution of the particular random variable Xj in contrast to the

counterpart P (SN > s | Xj > x) investigated in Theorem 1.

For the special case of linear functional dependence between the lower thresholds

for sum SN and variable Xj we obtain asymptotically for s→∞ and 0 < β < 1:

P (Xj > βs | SN > s) ∼ e−(λj−λn)βs =
P (Xj > βs)

P (Xn > βs)
,

and for β ≥ 1:

P (Xj > βs | SN > s) ∼ e−(βλj−λn)s

πn(N )

∝ P (Xj > βs)

P (Xn > s)
.
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Remark 5. Theorem 1 and Proposition 2 point out the following characteristic

properties of the conditional distributions under consideration:
� The distribution of SN contains all information to quantify the influence of the

random variables Xj on the sum. This holds not only asymptotically for large

Xj , but also exactly for all s, x > 0 as P (SN > s | Xj > x) = P (SN > s− x).

� The above-mentioned “no-memory” property allows for a simple quantification

of the influence of a single random variable on the aggregated sum, as it is given

immediately by the distribution of the sum. Thereby, it is irrelevant which par-

ticular random variable Xj we condition on.

� By conditioning on {SN > s}, Proposition 2 states that

P (Xj > x | SN > s) = P (Xj > x)
P (SN > s− x)

P (SN > s)
, s > x > 0 . (6)

Hence, this statement involves only marginal distributions of SN and Xj but

not their joint distribution.

� The qualitative difference between the probability P (SN > s | Xj > x) and

its counterpart P (Xj > x | SN > s) is based on the following intuition: the

event {SN > s} does not specify which random variables Xj cause a threshold

exceedance. Such events may comprise very different scenarios for possible re-

alizations of random variables X1, . . . , X|N |, for example scenarios with a few

large realizations as well as scenarios where none of realizations is large but the

sum SN exceeds a high threshold merely by a cumulation effect. ♦

4 Conditional distributions for GEM sums

We generalize the results from the previous section by providing expressions for

conditional distributions of the total sum SN =
∑

i∈N Xi and the subset sum SA =∑
j∈AXj for some A ⊆ N .

Theorem 2. Under Assumption (A), for each subset A ⊆ N the conditional prob-

abilities for the total sum SN =
∑

i∈N Xi satisfy given that the subset sum SA =∑
j∈AXj > t > 0:

(i) for finite s > t:

P
(
SN > s | SA > t

)
=

∑
j∈A πj (A)P (Xj > t)P (

∑
k∈A?j

Xk > s− t)∑
j∈A πj (A)P (Xj > t)

=

∑
j∈A

∑
k∈A?j

πj (A)πk(A?j ) e−(λj−λk)t−λks∑
j∈A πj (A) e−λjt

,
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with A?j := (N \ A) ∪ {j} ;

(ii) asymptotically for t→∞ and some positive function s(t) with s(t)−t→∞:

P (SN > s(t) | SA > t) ∼ πn(A?a) e−λn(s(t)−t) ∝ P (Xn > s(t))

P (Xn > t)
,

with A?j := (N \ A) ∪ {j} and n as in (1).

In the results of Theorem 2 we use mixing proportions πj (A) or πk(A?j ) based on

subsets A ⊆ N or A?j ⊆ N , respectively. They are defined analogously to those in

(3) based on N . Moreover, these mixing proportions based on two sets with a single

element in common are related to each other as stated in the next remark.

Remark 6. Let A1,A2 ⊆ N such that A1 ∩ A2 = {j} for some j ∈ N . Then it

follows:

πj (A1) · πj (A2) = πj (A1∪A2) . (7)

In particular, for the mixing proportions in Theorem 2 it holds that:

πj (A) · πj (A?j ) = πj (A) · πj ((N\A)∪{j}) = πj (N ) for all j ∈ A . (8)

♦

The complementary result to Theorem 2 is as follows:

Proposition 3. Under Assumption (A), for each A ⊆ N the conditional probabilities

for the subset sum SA =
∑

j∈AXj satisfy given that the total sum SN =
∑

i∈N Xi >

s > 0:

(i) for finite s > t > 0:

P
(
SA > t | SN > s

)
=

∑
j∈A πj (A)P (Xj > t)P

(∑
k∈A?j

Xk > s− t
)

∑
i∈N πi(N )P (Xi > s)

=

∑
j∈A

∑
k∈A?j

πj (A)πk(A?j ) e−(λj−λk)t−λks∑
i∈N πi(N ) e−λis

,

and for finite t ≥ s:

P (SA > t | SN > s) =

∑
j∈A πj (A)P (Xj > t)∑
i∈N πi(N )P (Xi > s)

=

∑
j∈A πj (A) e−λjt∑
i∈N πi(N ) e−λis

,

with A?j := (N \ A) ∪ {j} ;
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(ii) asymptotically for s → ∞ and some positive function t(s) with t(s) → ∞ it

holds:
� if s− t(s)→∞:

P
(
SA > t(s) | SN > s

)
∼

∏
k∈A\{a}

λk − λn
λk − λa

e−(λa−λn)t(s) ∝ P (Xa > t(s))

P (Xn > t(s))
,

which reduces in the special case a = n to P
(
SA > t(s) | SN > s

)
→ 1;

� if s− t(s)→ −∞:

P
(
SA > t(s) | SN > s

)
∼ πa(A)

πn(N )

e−(λat(s)−λns) ∝ P (Xa > t(s))

P (Xn > s)
,

� if s− t(s)→ c ∈ (−∞,∞):

P
(
SA > t(s) | SN > s

)
∼ Kc e−(λa−λn)s ∝ P (Xa > s)

P (Xn > s)
,

with Kc := πa(A) eλac/πn(N ) for c ≤ 0 and Kc := πa(A)

∑
k∈A?a πk(A?a) e−(λk−λa)c/πn(N )

for c > 0 and with A?j := (N \ A) ∪ {j}, n, a as in (1).

For the special case that A = N , the results in Theorem 2 can be simplified by

applying the no-memory property of the exponential distribution as follows:

Corollary 2. Under Assumption (A), it holds that:

(i) for finite s > t > 0:

P
(
SN > s | SN > t

)
=

∑
i∈N πi(N )P (Xi > t)P (Xi > s− t)∑

i∈N πi(N )P (Xi > t)

=

∑
i∈N πi(N )P (Xi > s)∑
i∈N πi(N )P (Xi > t)

=

∑
i∈N πi(N ) e−λis∑
i∈N πi(N ) e−λit

;

(ii) asymptotically for t→∞ and some positive function s(t) with s(t)−t→∞:

P (SN > s(t) | SN > t) ∼ e−λn(s(t)−t) ∝ P (Xn > s(t))

P (Xn > t)
.

Differently to Theorem 1(i) where given that a single component exceeds some

threshold the no-memory property for GEM holds for finite thresholds, in Corol-

lary 2(ii) the no-memory feature holds only asymptotically.

Our results on conditional distributions for sums and subset sums of exponential

variables might also be of interest for the analysis of phase-type distributions as they

are important representatives of this class.
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5 Illustrative examples

Now we illustrate the practical relevance of the results presented in the previous sec-

tions. In the following we concentrate on the total average S̄N := (1/|N |)
∑

i∈N Xi

taken over all elements in the systemN , and the subset average S̄A := (1/|A|)
∑

j∈AXj

taken over some subset A ⊂ N . Our setting is determined by the cardinality |A| of

the subset compared to the total number |N | of system elements, as well as by the

rate parameters λj for j ∈ A and λi for i ∈ N . In particular, the smallest rate pa-

rameter λa in the subset is of interest, more precisely, whether a = n or a 6= n, with

a and n defined in (1). First we show how the statements in Theorems 1 and 2 help

to gain interesting results concerning conditional distributions of these averages.

Proposition 4. Under Assumption (A), the conditional probabilities of the total

average given the subset average are asymptotically proportional for all subsets A⊆N :

P (S̄N > αt | S̄A > t) ∼ C(A) e−(α|N |/|A|−1)λnt for α > |A|/|N | , t→∞ ,

with positive constants C(A) =
∏
k∈Ã λk/(λk−λn), where Ã := ((N \A)∪{a})\{n}.

Moreover, for A1 ⊂ A2 we have C(A1) > C(A2). Hence, the constants C(A) decrease

strictly monotone from the value C({j}) = πn(N ) > 1 for one-element subsets down

to C(N ) = 1 for the total system average.

The asymptotic result in Proposition 4 applies, for instance, in a situation where

only partial information is available. Let a manufacturing company exploit |N | dif-

ferent machines with (yearly) preventive maintenance times Xi for i = 1, . . . , |N |,
so that these maintenance times can be modeled as independent Exp(λi)-random

variables with λi 6= λj for i 6= j. Assume that in some subsidiary with |A| machines

the subset average maintenance time (1/|A|)
∑

j∈AXj exceeds a high threshold t in

the current year. The statement in Proposition 4 allows us to quantify the condi-

tional probability whether the total average maintenance time (1/|N |)
∑

i∈N Xi for

the whole company exceeds the value αt. Such statements are important for opti-

mizing the maintenance schedule with respect to the most efficient allocation of the

company’s resources.

The asymptotic statements in the next theorem allow us to compare probabilities

that either the total system average or a subset average exceed a high threshold βs,

given that the total system average S̄N exceeds threshold s. This is the complemen-

tary result to Proposition 4. In particular, we contrast the conditional probabilities

for averages based either on a concentrated (C) subset A ⊂ N or on the diversi-

fied (D) total set N , and establish conditions when one of these probabilities is of

smaller asymptotic order than the other one.
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Theorem 3. Under Assumption (A), the conditional probabilities for concentrated (C)

and diversified (D) subset averages given that the total average S̄N > s, namely

PC(s) := P (S̄A > βs | S̄N > s) and PD(s) := P (S̄N > βs | S̄N > s)

for some A ⊂ N and n, a as in (1) fulfill for s→∞ the following statements:

PC(s) = o(PD(s)) ⇔ λa/λn > Rβ,

PC(s) ∼ kβPD(s) ⇔ λa/λn = Rβ,

PD(s) = o(PC(s)) ⇔ λa/λn < Rβ,

with

Rβ =


1, if 0 < β ≤ 1 ,

1 + (β − 1)|N |/(β|A|), if 1 < β < |N |/|A| ,

|N |/|A| if β ≥ |N |/|A|

and with constant kβ := 1 for 0 < β ≤ 1, kβ :=
∏
k∈A\{a}(λk − λa)/(λk − λn) for

1 < β < |N |/|A| and kβ := πn(N ) /πa(A) for β ≥ |N |/|A|.

Theorem 3 quantifies in terms of the ratio λa/λn whether the asymptotic condi-

tional probability for a subset average becomes negligible compared to that for the

total average. More precisely, concentration on subset A leads to a conditional prob-

ability of a smaller order compared to taking the average over all random variables

if and only if the corresponding conditions in Theorem 3 are satisfied.

E.g., this result proves to be useful in a system with |N | risky investments, where

the investor should decide whether to build a diversified (D) portfolio with a large

number of investments included, or to concentrate (C) on a portfolio based on subset

A ⊂ N of carefully selected investment opportunities. The relations between the con-

ditional probabilities for the average concentrated (C) and diversified (D) portfolio

losses in a financial stress situation with a large system loss are stated in Theorem 3.

The results of Theorem 3 indicate that a construction of a diversified portfolio

should be preferred for investments Xi from similar risk classes characterized by

numerically similar rate parameters λi, i ∈ N . However, in a system where the

investments Xi have strongly heterogeneous rate parameters, concentrating on a few

objects identified by the criterion in Theorem 3 is advantageous in view of minimizing

the probability of a large portfolio loss given a high system loss. We demonstrate this

effect in the following example which is visualized in Figure 2.

Example 1. For independent exponential risk variables Xi, i ∈ N = {1, . . . , 15}, we

compare the conditional survival functions based on the 15 one-element risks and
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Figure 2: Log-log-plot: comparison of conditional probabilities for 15 totally concentrated subsets

based on single elements A ∈ {{1}, . . . , {15}} (dashed lines) and for the system average based

on set N = {1, . . . , 15} (solid line) with β = 9: plot (a) for scenario with weakly heterogeneous

rate parameters λi and plot (b) for scenario with strongly heterogeneous rate parameters λi; cf.

Example 1.

that for the total risk average S̄N for two different scenarios:

(a) weakly heterogeneous rate parameters: (λ1, λ2, . . . , λ15) = (0.05, 0.075, . . . 0.4),

(b) strongly heterogeneous rate parameters: (λ1, λ2, . . . , λ15) = (0.05, 0.25, . . . 2.85).

Both scenarios are comparable as the asymptotically dominant (i.e. the smallest)

rate parameter takes the same value λn = 0.05 in (a) and (b).

In Figure 2 we plot for β = 9 the survival functions P (S̄A > βx | S̄N > x) for

15 concentrated single object subsets S̄A = Xj for A = {j}, j = 1, . . . , 15 (dashed

lines) and for the system average S̄A = (1/|N |)
∑

i∈N Xi for A = N (solid line).

It illustrates the criterion given in Theorem 3: in scenario (a) the ratio is λj/λn <

1 + (β − 1)|N |/β = 43/3 for all j ∈ N , which shows that the whole system average

is most beneficial here. In contrast, in scenario (b) it holds λj/λn < 43/3 only for

j ≤ 4, which implies that concentration on single objects j ∈ {5, 6, . . . , 15} is more

advantageous compared to holding all objects in the system. ♦

Remark 7. The criterion presented in Theorem 3 leads to qualitatively different

recommendations with respect to concentration or diversification strategies compared

to those for unconditional probabilities. In the latter case, the criterion to minimize

the probability of large subset average value S̄A is as follows: Concentration on subset

A is beneficial in contrast to diversification on the whole system N in the sense that

P (S̄A > s) = o(P (S̄N > s)) as s → ∞ if and only if the ratio of the smallest rate
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parameters satisfies λa/λn > |N |/|A|. These differences should be taken into account

e.g. by comparing results on Value-at-Risk and Conditional Value-at-Risk. ♦

6 Proofs

Proof of Theorem 1 and Proposition 2 . Due to the “no-memory” property of the

exponential distribution we have that the shifted random variable Xj − x given

Xj > x follows an Exp(λj) distribution for j ∈ N , i.e. for the conditional den-

sity it holds that f(Xj−x|Xj>x) = fXj . We further partition the sum SN as follows:

SN =
∑

i∈N Xi =
∑

i 6=j Xi + (Xj − x) + x. Using that the variables Xi for i 6= j are

independent from Xj , we obtain for the conditional density of SN − x given Xj > x

that:

f(SN−x|Xj>x)(z) =

z∫
0

f(
∑
i 6=j Xi|Xj>x)(z − u)f(Xj−x|Xj>x)(u)du

=

z∫
0

f∑
i6=j Xi

(z − u)fXj (u)du = fSN (z) .

This implies that:

P (SN > s | Xj > x) = P (SN − x > s− x | Xj > x) = P (SN > s− x) ,

which proves statement (i) of Theorem 1.

Asymptotically for x→∞ and s(x)−x→∞ it holds that in P (SN > s(x)−x) =∑
i∈N πi(N ) e−λi(s(x)−x) the summand for i = n with the smallest rate parameter λn

determines the asymptotics (cf. Corollary 1). Hence, we obtain that:

P
(∑
i∈N

Xi > s(x) | Xj > x
)
∼ πn(N ) e−λn(s(x)−x) = πn(N )P (Xn > s(x)− x) , (9)

which gives statement (ii) of Theorem 1.

The statements in Proposition 2 follow from Bayes’ theorem.

Proof of Theorem 2 and Proposition 3 . To analyze the joint probability of the sums

SN =
∑

i∈N Xi and SA =
∑

j∈AXj we partition the sum SN into the subset

sum
∑

j∈AXj and its complement sum
∑

k∈N\AXk and use that these sums fol-

low stochastically independent GEM distributions with parameters λj , πj (A) , j ∈ A
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or λk, πk(N\A), k ∈ N \ A, respectively. For s > t we obtain that:

P
(
SN > s, SA > t

)
= P

(∑
i∈N

Xi > s,
∑
j∈A

Xj > t
)

=

s∫
t

P
( ∑
k∈N\A

Xk > s− u
)
f∑

j∈AXj
(u)du + P

(∑
j∈A

Xj > s
)

=
∑
j∈A

∑
k∈N\A

λjπj (A)πk(N\A) e−λks
s∫
t

e(λk−λj)udu +
∑
j∈A

πj (A) e−λjs

=
∑
j∈A

∑
k∈N\A

λjπj (A)πk(N\A)

λk − λj

[
e−λjs − e−(λjt+λk(s−t))

]
+
∑
j∈A

πj (A) e−λjs

=
∑
j∈A

πj (A)

[
(1−

∑
k∈N\A

πk({j}∪{k})πk(N\A)) e−λjs

+
∑

k∈N\A

πk({j}∪{k})πk(N\A) e−(λjt+λk(s−t))
]
.

Next, we use the properties from Eqs. (4) and (7) which together imply that

1−
∑

k∈N\A

πk({j}∪{k})πk(N\A) = 1−
∑

k∈N\A

πk((N\A)∪{j}) = πj ((N\A)∪{j}) (10)

and obtain that:

P
(∑
i∈N

Xi > s,
∑
j∈A

Xj > t
)

=
∑
j∈A

πj (A) e−λjt
[
πj ((N\A)∪{j}) e−λj(s−t) +

∑
k∈N\A

πk((N\A)∪{j}) e−λk(s−t)
]

=
∑
j∈A

πj (A) e−λjt
∑

k∈(N\A)∪{j}

πk((N\A)∪{j}) e−λk(s−t)

=
∑
j∈A

πj (A)P (Xj > t)P
( ∑
k∈(N\A)∪{j}

Xk > s− t
)
. (11)

Consequently, this gives:

P
(∑
i∈N

Xi>s |
∑
j∈A

Xj>t
)

=

∑
j∈A πj (A)P (Xj>t)P

(∑
k∈(N\A)∪{j}Xk>s−t

)∑
j∈A πj (A)P (Xj>t)

. (12)

Asymptotically for t → ∞ and s(t)− t → ∞ the summands in (12) with j = a and

k = n dominate which implies that:

P
(∑
i∈N

Xi > s(t) |
∑
j∈A

Xj > t
)
∼ πn((N\A)∪{a}) e−λn(s(t)−t) . (13)
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Hence, statements (i) and (ii) in Theorem 2 for s > t are proven. For s ≤ t we

obtain the trivial case that P (
∑

i∈N Xi > s,
∑

j∈AXj > t) = P (
∑

j∈AXj > t) and,

consequently, P (
∑

i∈N Xi > s |
∑

j∈AXj > t) = 1.

The results in Proposition 3 follow by Bayes’ theorem.

Proof of Proposition 4 . The statement (ii) in Theorem 2 gives that

P
(

(1/|N |)
∑
i∈N

Xi > αt
∣∣ (1/|A|)

∑
j∈A

Xj > t
)
∼ C(A) e−(α|N |/|A|− 1)λnt ,

for t→∞ with constants

C(A) := πn((N\A)∪{a}) =
∏

k∈(N\A)∪{a}
k 6=n

λk/(λk − λn) . (14)

This form of C(A) implies that by removing some element l from set A, then for

Ã := A \ {l} it holds that C(Ã) = C(A) · λi/(λi − λn) > C(A) with i := ã =

argmin{λj | j ∈ Ã} if l = n or i := l if l 6= n.

Proof of Theorem 3 . Proposition 3(ii) with t(s) = |A|βs/|N | and Corollary 2(ii)

imply that for PC(s) := P (S̄A > βs | S̄N > s) and PD(s) := P (S̄N > βs | S̄N > s)

it holds asymptotically for s→∞ that:

PC(s) ∼


e−(λa−λn)|A|βs/|N | / k1 for 0 < β < |N |/|A|

e−(|A|βλa/|N |−λn)s / k2 for β ≥ |N |/|A|
(15)

PD(s) ∼

1 for 0 < β ≤ 1

e−(β−1)λns for β > 1 ,
(16)

with constants k1 =
∏
k∈A\{a}(λk − λa)/(λk − λn) and k2 = πn(N ) /πa(A) .

Consequently, we obtain for s→∞:

� for 0 < β ≤ 1:

PC(s) = o(PD(s)) ⇔ a 6= n, i.e. λa/λn > 1, and PC(x) ∼ PD(x) ⇔ a = n;

� for 1 < β < |N |/|A|:

PC(s) = o(PD(s)) ⇔ (λa − λn)|A|β/|N | > (β − 1)λn

⇔ λa/λn > 1 + (β − 1)|N |/(β|A|) ;

� for β ≥ |N |/|A|:

PC(s) = o(PD(s)) ⇔ β|A|λa/|N | −λn > (β−1)λn ⇔ λa/λn > |N |/|A| .
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[8] Bergel, A.I. and Eǵıdio dos Reis, A.D.: Ruin problems in the generalized Erlang(n)

risk model European Actuarial Journal 6(1), 257-275 (2016)

[9] Bladt, M. and Nielsen, B.F.: Matrix-Exponential Distributions in Applied Probability.

Springer (2017)

[10] Dufresne, D.: Fitting combinations of exponentials to probability distributions. Applied

Stochastic Models in Business and Industry 23, 23-48 (2007)

[11] Favaro, S. and Walker, S.G.: On the distribution of sums of independent exponential

random variables via Wilks integral representation. Acta Applicandae Mathematicae

109, 1035-1042 (2010)

[12] Harris, C.M., Marchal, W.G. and Botta, R.F.: A note on generalized hyperexponential

distributions. Communications in Statistics. Stochastic Models 8, 179-191 (1992)

[13] Jasiulewicz, H. and Kordecki, W.: Convolutions of Erlang and of Pascal distributions

with applications to reliability. Demonstratio Mathematica 36(1), 231-238 (2003)

[14] Jewell, N.P.: Mixtures of exponential distributions. The Annals of Statistics 10,

479-484 (1982)
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