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ABSTRACT. We develop a basic convergence analysis for an adaptive C°IPG
method for the Biharmonic problem which provides convergence without rates
for all practically relevant marking strategies and all penalty parameters as-
suring coercivity of the method. The analysis hinges on embedding properties
of (broken) Sobolev and BV spaces, and the construction of a suitable limit
space. In contrast to the convergence result of adaptive discontinuous Galerkin
methods for elliptic PDEs, by Kreuzer and Georgoulis ([KG18]), here we have
to deal with the fact that the Lagrange finite element spaces may possibly con-
tain no proper C'-conforming subspace. This prevents from a straight forward
generalisation and requires the development of some new key technical tools.

1. INTRODUCTION

We develop here a basic convergence analysis for an adaptive C°-interior penalty
method (AC°IPGM) for fourth order boundary value problems. Let © ¢ R? be a
bounded polygonal domain with Lipschitz boundary. For the ease of presentation
we restrict ourselves to the Biharmonic problem

(1.1) A2u=f inQ, and u= ou =0 on 09,
ang

where f € L?(Q) and ng denotes the outer normal on 052. However, we emphasise
that the presented techniques also apply to more general fourth order problems.

Conforming discretisations of fourth order problems require C'!-elements [AFS68,
Cia74, DDPS79], which are typically very cumbersome to implement since they re-
quire polynomial degree > 5 in 2d or constructions via macrotriangulations. For
this reason, mixed (see e.g. [BBF13, dB74, Joh73]) and non-conforming meth-
ods (e.g. [BCI65, Mor68]) gained attraction. In this work, we consider the non-
conforming so-called C-interior penalty Galerkin discretisation (C°IPG) of (1.1).
This method uses standard continuous Lagrange finite elements of order > 2. Con-
sistency is ensured and jumps of the normal derivatives across element interfaces
are penalised. For a thorough introduction to C%interior penalty methods see e.g.
[BS05, EGH*02, HLO02]. A posteriori error estimators for the C°IPG method were
developed in [GHV11, BGS10] and can be used to design an AC°IPGM based on the
standard loop

(1.2) SOLVE — ESTIMATE — MARK — REFINE.

The convergence theory, however, turns out to be a particular challenging task for
two reasons. First, the presence of the negative power of the mesh-size h in the
discontinuity penalisation term. Second, the analysis of the C°IPG method suffers
additionally from the fact that, in general, no conforming subspace with proper
approximation properties is available unless the polynomial degree exceeds e.g. 4
in 2d; compare with [dBD83, GS02].
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The first issue also appears in adaptive discontinuous Galerkin methods for 2nd
order problems. Here, resorting to Dorflers marking strategy, error reduction [KP07,
HKWO09] and even optimal convergence rates [BN10] of adaptive schemes are avail-
able. These results generalise the ideas for conforming methods in [D96, MNSO0O,
CKNSO08] based on the observation that the penalty is dominated by the ‘con-
forming parts’ of the estimator provided the penalisation parameter is chosen suf-
ficiently large. This idea was taken up in [FHP15] in an attempt to prove con-
vergence of the AC’IPGM for the biharmonic problem (1.1), although the resulting
argument is unclear to hold. However, there are generalisations for the Hellan-
Hermann-Johnson element [HHX11] and a hybridisable C°-discontinuous Galerkin
method [SH18] where no negative power of the mesh-size is present; compare also
with the discussion in [CNZ16].

Very recently in [KG18] the basic convergence results for conforming adaptive
finite element methods [MSV08, Siell] have been extended to adaptive discontinu-
ous Galerkin methods for 2nd order problems. The result utilises a newly developed
space limit of the discrete space sequence created by the adaptive loop (1.2). Replac-
ing Cea’s Lemma in [MSV08] by a version of the medius analysis of Gudi [Gud10)]
adapted to the limit space yields convergence of discrete approximations to the weak
solution in the limit space. Coincidence with the exact solution follows thanks to
properties of the marking strategy. The result is neither restricted to symmetric
problems and discretisations nor to a particular marking strategy and holds for all
values of the penalty parameter, for which the method is coercive. This has im-
portant consequences in practical computations: Since the condition number of the
respective stiffness matrix grows as the penalty parameter grows, the magnitude
of the penalisation affects the performance of iterative linear solvers. This fact be-
comes even more relevant for the here considered fourth order problem. We stress,
however, that this technique does not provide linear or even optimal convergence
rates.

In this work, we extend [KG18] to an AC’IPGM for the Biharmonic problem (1.1).
The main result states convergence of the adaptive loop (1.2) for most common
marking strategies and all penalty parameters, for which the method is coercive.
Unfortunately, [KG18] makes exhaustive use of conforming subspaces of the respec-
tive discrete spaces, which is prohibitive for the AC’IPGM unless the polynomial
degree of the Ansatz space is large enough. Therefore, the verification of certain
properties of the limit space requires the development of essentially different tech-
niques and also the convergence of discrete solutions cannot be concluded using the
generalised medius analysis of Gudi [Gud10] from [KG18]. For the sake of presenta-
tion, in this paper, we restrict ourselves to quadratic C%-elements. We emphasise,
however, that the techniques apply to more general fourth order problems, arbitrary
polynomial and even discontinuous Galerkin discretisations, however, the construc-
tion of suitable technical tools like interpolation operators and a posteriori error
estimators is getting much more involved.

The rest of this paper is organised as follows. In Section 2, we introduce the C°IPG
discretisation and define the AC°IPGM by a precise formulation of the adaptive
loop (1.2). We conclude the section stating the main result, Theorem 7. For the
sake of clarity, in Section 3, we first present the main ideas of its proof. The
fact that the discrete C°-spaces do in general not contain proper C!-conforming
subspaces mainly affects the proofs of the two key technical results, Lemma 10
and Theorem 12. They are presented in Section 4. Finally, in appendices A-C we
elaborate on some auxiliary results in order to keep the presentation self consistent.



CONVERGENCE OF AN ADAPTIVE C°IPG METHOD 3

2. THE ADAPTIVE C’IPG FINITE ELEMENT METHOD AND THE MAIN RESULT

Let w be a measurable set and m € N. We consider the usual Lebesgue spaces
LP(w;R™), 1 < p < o0 over w with values in R™. In the case p = 2, L?(w;R™) is
a Hilbert space with inner product (-, -)  and associated norm |-[| . We also set
L?(w) := L?(w;R). The Sobolev space H*(w) is the space of all functions in L?(w)
whose weak derivatives of up to order k are in L?(w). Thanks to the Poincaré-
Friedrichs’ inequality, the closure HZ(w) of C°(w) in H?(w) is a Hilbert space
with inner product <D2~7 D2~>w and norm HD2-HW, where D?v denotes the Hessian
of v. The dual space H *(w) of Hg(w) is equipped with the norm |2, :=
SUP. e 2 (w) %, v € H2?(w), with dual brackets defined by (v, w) := v(w), for
w e HZ(w).

For f e L?(12), the weak formulation of (1.1) reads: find u € H3(Q), such that

(2.1) a(u,v) = fQ fodr Yve HZ(Q),

for the bilinear form

D*w: D*vdx = d
a(w,v) f wrErar= J 2 (%Zaa:] 63: (9337 “

which is uniformly coercive and continuous on HZ(Q2). Consequently, Riesz’ repre-
sentation theorem provides a unique solution u € H3(2) of (2.1).

2.1. The C°IPG finite element Method. Let 7 be a conforming and shape
regular subdivision of € into disjoint triangular elements K € 7 such that Q =
Uker K. Let Fr := F(T) be the set of one-dimensional faces F', associated with
the subdivision T (including 092), and let Fr be the subset of interior sides only.
The corresponding skeletons are then defined by I'r = T'(T) := (J{F € Fr} and
Iy = U{F € ]-"7—} respectively. We assume that 7 is derived by iterative or
recursive bisection of an initial conforming mesh 7p; compare with [Bae91, Kos94,
Mau95]. We denote by G the family of shape-regular triangulations consisting of
such refinements of 7y. For T, T, € G, we write 7, = T, whenever 7, is a refinement
of T.

For r > 2, we define the Lagrange finite-element space by
V(T) := Hy(Q) nP.(T) with P.(T):={ve L' (Q): v|g e P.(K) VK € T}.

Obviously, we have V(T) < H{(Q) but V(T) ¢ HZ(Q) in general. Since each
function V' € V(7)) is locally a polynomial on each element K € T, we have, however,
that

V(T) < H(T) = H*(T) n Hy (),

where H%(T) := {ve L*(Q): v|x € H*(K), YK € T}.

The piecewise constant mesh-size function hy : Q@ — R is defined by hy(z) :=
hig = |K|1/d for x € K\0K and hy(z) := hp := |F|1/(d_1) forx € F e F. Let
Z7 be the set of Lagrange nodes of V(7), which can be identified with its nodal
degrees of freedom N7. For z € €, we denote its neighbourhood by Nr(z) :=
{K'eT|zeK'}, and the corresponding domain is defined by wy(z) := Q(N7(2)).
Hereafter we use Q(X) := [J{K | K € X} for a collection of elements X. With
a little abuse of notatlon for an element K € T we define its jth neighbourhood
recursively by N%(K) = {K’ eT|K' n N%_l(K) + @}7 where we set N3(K) :=

K, and the corresponding domain by w%-(K) = Q(N%-(K)) We shall skip the
superindex if j = 1, e.g. we write N7 (K) = N#(K) and wr(K) = wi-(K) for
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simplicity. For a side F' < Fr, we set wr(F) := |J{K eT | F c K}. We extend
the above definitions to subsets M < T setting

NI (M) := {K e T: 3K’ € M such that K € NJ(K")}.

Note that the shape regularity and conformity of G implies local quasi-uniformity,
ie.

K]

sup max
TeG K'eN7(K) |K'

<1 and sup max #N7(K) < 1.
| TeG KeT

In the sequel we use the notation a < b, when a < Cb for a constant C' > 0, which
is independent of all essential quantities (e.g. the mesh-size of T).
In order to formulate the discrete bilinear form, we first need to introduce the

so-called jumps and averages of vector- respectively tensorfields on the skeleton I'.
In fact, for v € V(T), we define

[0,v]p :=[Vv-n]|r:= Vv|g, -nk, + Vv|k, -1k,

for F' € ]-'OT and F' = K| n Ko with two disjoint elements Ki,Ks € 7. If F c
0K n 09, then [[0,v]» := Vv|k - ng. The average of the Hessian of v € V(7)) is
defined by

(@20}, = {(D?0)m-n} 1= § (Dol + DPulie,) m, -,

whenever F' € ]-37— with F' = K1 n K9 and {{é’%v}}F = D%\KnK -ng for sides
F c 0K n 09). We stress that the above definitions do not depend on the choice of
the ordering of the elements K7 and K. This is not true for

1
(2.2) H&ivﬂF =[0,(Vv-ng,)]|lr and {0,v}, := 3 (Vu|g, + Vu|k,) -k,

for F' e fT with F' = K7 n K> for disjoint K7, K5 € T. However, the two expressions
will only appear as products with each other, e.g. as [[0721“]]1: {0, w}r oras [[0%"0]]3,,
which are then again unique.

For v,w € V(T) we recall then the discrete bilinear form from [BS05, BGS10]

Brv, w]: = fT D*v: D*wdx — .L {o2v} [0,w] + {o2w} [0,v] ds

g

+ [, v e, w] ds.

Here, we used the following abbreviations

-dx = J-dx and J -ds = f-ds,
J‘T [{27* K Fr F;FT F

where on each element K € T, the piecewise Hessian (Dyv)|x = D*(v|x) € L*(K)
exists since v € H(T), i.e. we have { D?v: D*wdx = {;, D2v: Diwdx.

For sufficiently large o, we have from [BS05] that 9B is continuous and coercive
on V(T) with respect to the energy norm

Fr b1

ol := L D%v: D?vdz + f % [0, 0117 ds Yo e H2(T).

Fr

In the following, instead of §, D2v: DZ2vdz, we will also write {, ’Dp%,v‘z dz for
brevity.

Proposition 1 (Continuity and coercivity). Let T € G, then there exists o, > 0,
such that for all o > o, there exist positive constants Ceont, Ceoer Such that

2
Brlv, w] < Ceont [0l |lwll and  Ceoer [J0]7- < Br[v, v].
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for allv,w e V(T). The constants ox, Ceont, and Ceper solely depend on the shape
reqularity of T and the polynomial degree r.

Since V(7) is a Banach space with the energy-norm ||-||-, there exists a unique
ur € V(T) with

(2.3) ‘BT[UT, ’UT] = JQ fordx Yur € V(T)

This is the C°-interior penalty Galerkin approximation of (2.1), which depends
continuously on f, i.e.

(2.4) lurllr < [ fle

thanks to the following broken Poincaré-Friedrichs inequalities; compare with [Bre03].

Proposition 2. Let v e V(T), then we have

o = 35 Wliro+ 3 05 | 1o s < o

KeT FeF(T

Unfortunately, B+ cannot be applied to functions from HZ(T) since no trace of
second derivatives is available. For a side F' € Fr we therefore define a local lifting
operator L5 : LY(F) — [P,_o(T)]*** by

(2.5) JQ LE(p): Tdx = L«“ {rn-n}ods Vre[P._o(T)]>*?,

where the support of ££(¢) is given by wr(F). Using a trace estimate, we have
that

(2.6) I1£2(0)], < Hh—%HF

where the right-hand side is allowed to be infinity; compare also with e.g. [DPE12,
Lemma 4.33]. We define the global lifting operator L7: LY(T'1) — [Pr_o(T)]>*? by

@7 Lre)i= Y LR with L7l < [hr )
FeFr T

Noting that 0,v € L*(I'r) for all v € H3(T), we can extend the bilinear form B+
from V(T) to H3(T) by

Brlv, w] = f D?v: D2wdx—f Ly ([onw]): Dav + L7 ([0,0]): Daw da
J — [, vl [0, w] ds.
-7:7'

Discontinuous Galerkin spaces can be embedded into the space of functions with
bounded variation; compare e.g. with [BO09, Lemma 2]. In the context of C’IPG
methods, this transfers to the following embedding; compare also with [LNSO04].

Proposition 3. Let v e V(T) and |D(Vv)|(R) the total variation of Vv. Then we
have

D f D2 dx+f( 2,00 45 < ol
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2.2. A posteriori error bounds. From here on, we restrict ourselves to qua-
dratic C%-elements, i.e., = 2 and introduce the a posteriori error estimators
from [BGS10]. For v € V(T) and K € T let

, ) )\ 2
(2.8) n(v,K):= (J.K R |f|° do + LK QhT [o2v]]” + o2 LK h7' [0,v] ) .

When v = uy, we simply write ny(K) := n(ur, K). Moreover, for M < T, we set

1/2
nr(v,M) := ( Z n(v,K)Q) and ny(M) = nr(ur, M).
KeM

From [BGS10, Theorem 3.1], we have that (2.8) defines a reliable estimator.

Proposition 4. Let u € H3(Q) be the solution of (2.1) and uy the discrete solution
of (2.3). Then,

lv = urlly < 07 (T),

where the constants in < depend only on the shape regularity of T .
In [BGS10, Section 4] 1 is also proved to be efficient.

Proposition 5. Let u € HZ(2) be the solution of (2.1) and T € G. Then, for all
veV(T) and K € T, we have

f hA | f]? da:+j hr [[a;iv]]Q gf |D2 (u—wv \ dz + osc(Ny(K), f)?,
K OKNQ wr (K

with data-oscillation defined by

KeM
for all M < T. Here, Iof denotes the L?(Q)-orthogonal projection onto Po(T),

1
o fl i ::ﬁf fdr VK eT.
K

1/2
osc(M, f) := ( 2 osc(K, f)2> , where osc(K, f)? := J hE|f —Tof)? da
K

2.3. The adaptive C’IPG method (AC’°IPGM). Now, we are in the position
to precisely formulate the adaptive algorithm (1.2) based on the modules SOLVE,
ESTIMATE, MARK and REFINE, which are described in more detail below.

Algorithm 6 (ACOIPGM). Let 7o be an initial triangulation. The adaptive algo-
rithm is an iteration of the following form:

(1) uk = SOLVE(V(Tk));

(2) {ne(K)}ker, = ESTIMATE (u, Te);

(3) My = MARK ({n.(K)}keTi» i) 5
(4) Trs+1 = REFINE(Tg, My); increment k and go to Step 1.

Here we have replaced the subscript triangulations {7x}ren, with the itera-
tion counter k in nx(7x) = 77, (T) for brevity. Similar short hand notations
will be frequently used below when no confusion can occur, e.g. we write also
N LK) = Njk(K) Next we comment on the modules SOLVE, ESTIMATE, MARK
and REFINE.

SOLVE. For a given mesh 7 we assume that

ur = SOLVE(V(T))

is the exact C°IPG solution of problem (2.3).
ESTIMATE. We suppose that

{n7(K)} ke := ESTIMATE (ur, K)
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is the elementwise error defined in (2.8).
MARK. We assume that the output

M = MARK({n7(K)} e T)
of marked elements satisfies
(2.9) nr(K) < gnr(M)),  forall K e T\M.

Here g: R* — R" is a fixed function, which is continuous in 0, with g(0) = 0.
REFINE. We assume for M < T that

~

T < T := REFINE(T, M) € G,
such that
(2.10) KeM = KeT\T,

i.e., each marked element is at least refined once.

2.4. The main result. The main result of this work states that the sequence
of C°IPG finite element approximations produced by the AC’IPGM (Algorithm 6)
converges to the exact solution u € HZ(2) of (2.1). From here on we will refer to

Il 7 as Il
Theorem 7. We have that

Me(Te) =0 and |lu—ugf, =0 ask— oo

3. PROOF OF THE MAIN RESULT THEOREM 7

The proof of convergence of the AC'IPGM is based on ideas of [MSV08, Siell]
for conforming elements and its generalisation [KG18] to adaptive discontinuous
Galerkin methods for the Poisson problem. For the sake of clarity, in this section,
we present the main ideas of the proof of Theorem 7 following the ideas of [KG18]. In
contrast to the latter result here we are faced with the problem that V(7)) contains
no proper conforming subspace. This requires new techniques of proof for the two
key auxiliary results, Theorem 12 and Lemma 10, which proofs are postponed to
Section 4 below.

3.1. Sequence of Partitions. Following [MSVO08, Siell, KG18], we split the do-
main () into essentially two parts according to whether the mesh-size function
hy = hy, vanishes or not. In order to make this rigorous, we define the set of
eventually never refined elements by

(3.1) Tt := U m 7, with corresponding domain ~ Q := Q(T™).
k>0 1>k

Additionally, we denote the complementary domain 2~ = interior(Q\Q).
For k € Ny, we define 7,7 :={K € T;;: K € Q~} and T," := T, n T as well as
forj>1

TP = {KeTw: NN(K)c T} = {K € Ta: No(K) < TV V7Y,
T = {K € To: N(K) & T} = {K & To: No(K) < 977,
=T\ 0T,
where we used 7;§0+ = '7? and 7',60_ := 7T, in the identities when j = 0. For
the corresponding domains we denote Q) := Q(T/7), Q.7 := Q(T/") and Q)" :=
Q(T™). Moreover, we adopt the above notations for the corresponding faces, e.g.
Fi==F(TY7), Fit = F(T{). ' '
We remark that we need the above definitions of 7/~ and 7" for technical
reasons. In fact, our analysis involves Clément type quasi-interpolations for which
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local stability estimates involve neighbourhoods. However, for different but fixed js
the above sets behave asymptotically similar for & — oo. To see this, the next key
result from [MSVO08, Lemma 4.1] states that neighbours of never refined elements
are eventually also never refined again.

Lemma 8. For K € T there exists a constant L = L(K) € Ny such that
Ni(K) = NL(K)
for all k = L. In particular, we have Ny (K) < T+ for all k > L.

The next Lemma essentially goes back to [MSVO08, (4.15) and Corollary 4.1] and
was proved for j = 2 in [KG18, Lemma 11].

Lemma 9. For fized j € N, we have

. Jx| _ . )
Jmjok| =0 and i o

with X~ denoting the characteristic function of Qg;, Moreover, we have T+ =
k
© )+
Uk Ti ™
Proof. We prove the first claim by induction over j. In fact, we have
|0 < [ — 0 as k —

from [KG18, Lemma 11]. In order to conclude j — j + 1, we observe that

(3.2 27 = e\ T+ e
and consider the two terms on the right-hand side separately. Since #7;0 O+ o0,

we have thanks to Lemma 8, that for all k£ € N there exists K = K(k) > k, such
that 7—}(<J+1)+ - ’773+, and consequently,

NQE) T < 10N\ <197 >0 ask o

Since |Q+\Q,(cj +1)+| decreases monotonically, we conclude that |Q+\Q,(€j +1)+| — 0 as
’ ;o(f;che second term in (3.2), we have from the nestedness Q,(f - Qg; that
07\ = 1en\e ]+ o\

The first term vanishes by the induction assumption. For the second term, we have
KeTI\TIV™M™ = Ny(K)& T but Ny(K) < T

Therefore, there exists K’ € Ty, with K’ € Ni(K) or equivalently K € Ny (K'), such
that K’ € 7;@_1)_\7737. We thus conclude that

QYT = (T \TE ) < 1T TONTE )| S 1TV,

where the last inequality is a consequence of shape regularity. Finally, we have
|Q(7;€(]_1)_\727)\ < QT \T?7)| — 0 as k — o by the induction assumption.
Since [|hiX oG+ o) < [heXgi- e @), j = 0, the second claim follows from
k k
[MSV08, Corollary 4.1] noting that €, < QY with Qf as in [MSVO03].
The last claim is a direct consequence of Lemma 8. |
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3.2. The limit space. In this section we discuss the limit of the finite element
spaces Vi. Following the ideas in [KG18, Section 3.2], we define

Vo = {ve H}(Q) | Vve BV(Q)?, v|g- € H3q 00— (7)), v|g €P.(K), VK e T,
such that I{vi }ren, vx € Vi with klim flv—vill, =0
—00

and limsup [Jvg |, < o0}
k—0

By HZ, ;o-(927) we denote the space of functions from Hg(€2) restricted to the
domain Q~. The fact that VV,, = BV (Q)? is motivated by Proposition 3.
We will use the following bilinear form on V,: For v, w € V4, we define

U, Whep 1= J- Dp2w’l}: Dp2ww dz + O’J hit[0,v] [0,w] ds,
Q F+

where we set hy := hy+ and Ft := F(TT). For a function v € Vg, the piecewise
Hessian Dp2 v is defined by

Div(x) = D*v(z) ifxeQ” and Diu(z):=D’v(z) ifzeKeT".

The induced norm is denoted by [|v],, = <v, v>§c/2. Note that from the definition of
Vo, we have Vo € BV (2)2. Consequently, we have from [AFP00, Theorem 3.88]
that the L'-trace of Vv exists for all F € F and for all k € N. Therefore, the jump
terms are measurable with respect to the 1-dimensional Hausdorff measure on F,
and we are able to evaluate the k-norm [[v[|, for v e V.

The next Lemma is crucial for the existence of a generalised Galerkin solution in
Voo, its proof is postponed to Section 4.3.

Lemma 10. The space (Vo, (-, -).,) is a Hilbert space.

In order to extend the discrete problem (2.3) to the space Vo, we have to extend
the bilinear form B+ to the space V4. To this end, we define suitable liftings for
the limit space. Thanks to Lemma 8, for each F' € F*, there exists L = L(F) such
that F € ]:eH for all £ = L. We define the local lifting operators

(3.3) £l =rf =k .

From the definition of the discrete local liftings (2.5), we see that £ vanishes
outside the two neighbouring element K’, K, with F' = K n K’. Consequently, we
have £ = L¥ for all ¢ > L, and therefore this definition is unique. The global
lifting operator is defined by

(3.4) Lo= ), LL.

FeF+

From estimate (2.7) we have that Y ..+ L5 ([0,v]) is a Cauchy sequence in
L2(Q)%*d. Therefore, Lo, ([[0,,v]]) € L?(Q2%*9) and the estimate

(3.5) 1o (lonvDlg 5 [A7Y 2,01

holds. Here we used the notation I't := | J{F | F € F*}. Now we are in position
to generalise the DG-bilinear form to V, setting

T+

Bylv, w]: = f Dp2wv: Dpzww dz —J Lo ([Onw]): Dpzwv + Lo ([Onv]): Dp2ww dz
Q Q

o leello.w] s
F+ hr

for all v,w € V.
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Corollary 11. There exists a unique uy € Vo, such that
(3.6) B oo [te, v] = J fvdz YveVy.
Q

Proof. From Lemma 10 we have that V, is a Hilbert space. Moreover, stability of
the lifting operators (3.5) and local scaled trace inequalities prove coercivity and
continuity of B [-, -] with respect to ||-[|,; compare also with Proposition 1. The
assertion follows from the Riesz representation theorem. (]

The following Theorem states that the solution of (3.6) is indeed the limit of the
adaptive sequence produced by the ACPIPGM. Its proof is postponed to Section 4.

Theorem 12. Let uq, the solution of (3.6) and let {uy}ren, be the sequence of
CIPG solutions produced by AC'IPGM. Then,

luw — ugll, =0 as k — oo.

3.3. Convergence of the estimator. In this section we shall conclude from The-
orem 12, that the sequence of estimators {nx(7%)}ren, produced by AC’IPGM van-
ishes as k — o0. On 7;1_ this follows from the following local lower bound, which
extends the result of Proposition 5 to our adaptively created limit space V.

Proposition 13. Let uy be the solution of (3.6). Then, for every K € 7761_ and
v € Vi, ke N, we have

J WA 1P da +J hy. [[020]* ds
K 0K NQ

2 2
< | Dpulucs — i) + [RE(f =T )], (s -

In particular, we also have that

D J ik dx+f hy, [[020])° ds
K OKNQ

KeTkl*
Sl =l + D) B~ o) -
KeT;}~ K'ewi(K)

Proof. Verifying for suitable element bubble functions by € HZ(K) < Vg, for K €
7,/ and, correspondingly, for side bubble functions br € HZ(wi(F)) = Vo, and
F = K; n K, with Ky, Ky € T, , allows to use standard techniques in a posteriori
analysis (see [Ver13, BGS10, GHV11]) resorting to (3.6) instead of (2.1). In order to
keep the presentation self-contained, we present a precise proof in Appendix A. O

Now we are in a position to prove that the error estimator is vanishing.
Lemma 14. We have for the sequence of error estimators produced by AC’ IPGM
(T ") =0 ask — o0,

Proof. From Proposition 13 we deduce that
KEZT; fK hi|f1” de + Lm he [[2u])” ds

< llue —ully + D) ose(Ni(K), £).
KeT,!~

The first term on the right-hand side vanishes, due to Theorem 12. For the
second term, we have by the finite overlap of neighbourhoods that

4
Z osc(Np(K), f)* < Z osc(K, f)? < Hhk}XQ; L) ||f||?27
KeT,~ KeT,
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which vanishes thanks to Lemma 9.
It remains to prove that

f it [0,ur]” ds — 0 as k — oo.
.

k

To this end we observe that uy, € H3,, 5o (27) and €, < Q, and thus [0, ux ]| |r =
0 for all F' e }",i . From this we conclude from Theorem 12 that

| et e ds = | it 1o, tn = )l ds < o= el 0

as k — oo. O

In view of Lemma 16 we have to analyse the limit behaviour of jumpterms stem-
ming from functions located in V. This is part of the following Proposition.

Proposition 15. For v € Vo, we have
loll, /vl <o ask — oo

In particular, for fized £ € N, let K € Ty; then, we have

f hy ! [0,v]° ds ~ hit [0n0ﬂ2 ds ask — o0.
{FeFy,: FCK} {FeF+: FcK}

Proof. The assertion follows along the same arguments used in [KG18, Proposition
12]. A detailed proof is provided in the Appendix B. O

Lemma 16. We have that n(T,2*) — 0 as k — .

Proof. Thanks to Proposition 5, we have

f hi | £ dx+J hy [[020]* ds
0K NQ

KeT2*

< D2 (u — dz + osc(N(K), f)?,
ng*ka(K ! (u uk} x 4+ osc(Ni(K), f)

< Z {J | u| +} ! | ugo| dz + osc(Ng(K), f)2}
KeT> wk (K

The right-hand side vanishes as k — oo by Theorem 12, Lemma 9 and the uniform

integrability of the terms involving u and us. In this context we emphasise that

U {wi(K): K € T2*}| < |Q%*|, thanks to the finite overlap of neighbourhoods.
We are left to prove that

it [0, uc]” ds — 0 as k — oo.
F2
To this end, we deduce for the solution us € Vo, of (3.6) that

f hit [0,ur]’ ds < f hit [0, (u — uos)] ds +f hit [0, uxe]? ds
F2 F2r

2%
}-k

] I I L
.F *

k
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The first term vanishes thanks to Theorem 12. For the second term we have

f h; ! [0, ux]® ds = f
]_‘]3* 1

Fr\F

it [0, usx]’® ds
+
= J hit [0,ux]? ds — f hit [0,uxe]” ds
Fr Fut
s J Wit [0,ux]” ds *J Wyt [0, uxc]” ds,
F+ .7-';'*'

where the last estimate follows from Proposition 15 and hiy = hy on }",?”. Now
the assertion follows from Lemma 9 and the fact that 3+ §, 85" [0,ux0]” ds <
s, < <. M

Lemma 17. We have ni(7,'7) — 0 as k — 0.

Proof. Let K € 7;“', then K ¢ My, thanks to (2.10). Thus, by assumption (2.9) on
the marking MARK, we conclude from Lemmas 14 and 16 for all K € 77€1+ that

0 < me(K) < g(me(My)) < giie(T2* 0 T27)) >0 as k — oo

This yields the element-wise convergence of 7 (K) for all K € 7;1+. The convergence
ne(T1T) — 0 as k — oo follows then from reformulating the element-wise conver-
gence as pointwise convergence in an integral framework and a generalised Lebesgue
dominated convergence theorem; for details see [MSV08, Proposition 4.3]. ]

Proof of Theorem 7. Combining Lemmas 14, 16, and 17, we obtain
Me(Te)? = (T + e (TE)? + mk(TiF)* — 0

as k — 00. Thanks to Proposition 4 this also implies convergence of the error. O

4. PROOFS OF LEMMA 10 AND THEOREM 12

In order to close the proof of the main result, Theorem 7, we need to verify
Lemma 10 and Theorem 12. The primer states that V, is a Hilbert space with
norm |||, and thus a unique solution uy € Vo of (3.6) exists; see Corollary 11.
The latter proves that uy is indeed the limit of the CoIPG approximations {u }ren,
produced by the AC'IPGM. We emphasise that in contrast to [KG18], the lack of
proper H2-conforming subspaces of C°IPG spaces, does not allow for a straight
forward generalisation: For example, in order to prove [[ue — ug|, — 0, in [KG18]
the best-approximation property for inf-sup stable conforming elements [MSVO08,
Siell] is replaced by a variant of Gudi’s medius analysis [Gud10]. However, this
required a discrete smoothing operator into V,, whose construction is heavily based
on the existence of a proper conforming subspace of V.

After recalling auxiliary Poincaré- and Friedrichs-type inequalities, we shall in-
troduce a smoothing operator, which maps Vy into HZ(£2). This accounts for the
fact that each v € Vo, on Q7 is a restriction of an HZ({) function. Moreover, we
require an interpolation operator in order to deal with the piecewise discrete struc-
ture of Vo, on Q7. Both operators need to satisfy some compatibility conditions.
Finally, we conclude the section with the proofs of Lemma 10 and Theorem 12.

4.1. Preliminary results. The following Poincaré and Friedrichs estimates are
subsequently used to prove stability of the smoothing and quasi-interpolation oper-
ators, defined below.
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Lemma 18. Let T, Ty be some triangulations of Q with T < Ty and let v e V(Ty).
Moreover, for K € T let D < Q be either wr(K) or wi(K). Then, there ezists a
linear polynomial Q, defined on Dy such that we have

(4.1a) v — Qﬁql(DK) < j h%’ |D}12wv‘2 dx + Z f h%—hi: [[anv]]Q ds.
Dk FeF(Ty) ' F
FCDK

If additionally F < Dy n 0 for some F € Fr, then

2 2
(4.1b) 01 () < j WDzl dz+ Y
Dk FeF(Tx)
FCDK

L h5hz! [0,0]* ds.

Proof. Let Q € P1(Dg) be the H'-orthogonal projection of v into Py(Dg), i.e.,
(V(v-Q),VP), =0 VPeP(Dk) and Qdx = f vdz.
Dy Dy

Now the proof of (4.1a) is a direct consequence of [KG18, Proposition 1].
The second claim (4.1b) follows from [BO09, Corollary 4.3] together with [KG18,
Proposition 1] and the definition of the jump terms on boundary sides. O

The following Lemma extends the previous result to the limit space V.

Lemma 19 (Poincaré-Friedrichs V). Let v € Vo, and let either D = wi(K) or
Dk = wi(K) for some K € Ty, and k € Ng. Then, there exists Q € P1(Dk), such
that

v — Qlfm(DK) < f hi ]D]?wvf dz + Z J hih7t[e,v]? ds.
Dk rer+
FCDK

If in addition F' < Dg n 0S) for some F € F, then

2 2 _ 2
|U|H1(DK)SL) hi |DI,2wv| dz + Z JFhthrl [2,v]" ds.

FeF™
FcDg

Proof. We follow the ideas of [KG18, Lemma 13] and let Q € P;(Dg) be the H*-
orthogonal projection of v into Py (Dg), defined by

Vw-Q), VP)p, =0 VPePi(Dg) and Qdx = J vdz.
Dy Dy

Since v € Vo, there exists a sequence v, € Vy, £ € N, with limy_, [Jv — v¢f|, — 0
and limsup,_,, [|v¢]|, < . From Proposition 15 we have

J |DP2wvg\2dx+ Z Jh[l [0, ve]” ds
Dx F

FeFy
FCDK
/J D20 dz+ ] Jh;l[[anv]]2 ds
Dk rert F
FCDK

as { — . Let ¢ > k. Thanks to Lemma 18 there exists @, € P1(Dg) with

Dk FeFy F
FcDg

/L WD dz + )] Lhﬁh;l [o,v]° ds,

FeF™
FcDg
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Ky Ky
b
K3

FIGURE 1. A macro triangle K subdivided into three small sub
triangles which share a common point b.

as ¢ — oo; compare also with Proposition 15. From the definition of @) and Q,, we
have from Proposition 2 that

2 2 2 2
Qe — Q|H1(DK) < ve — ”|H1(DK) < ve = U|H01(Q) < llve —vfly; =0

as { — oo. Therefore, Proposition 2 implies |vp — Qgﬁ{l(DK) - |v— Qﬁil(DK) as
{ — o0, which finishes the proof.

4.2. Smoothing and quasi-interpolation. Before introducing the interpolation
operator, we first discuss a smoothing operator &7 : V(T) — HZ(Q), T € G. To
this end, following the ideas of [BGS10, GHV11], we introduce the so-called Hsieh-
Clough-Tocher (HCT) macro element constructed in [DDPS79].

Definition 20 (HCT element). Let T € G and K € T. Then the HCT nodal macro
finite element (K, 1@4(K),./\/'§TC) is defined as follows.

a) The local space is given by
Py(K) = {pe CHK): p|x, € P4(K;),i = 1,2,3}.

Here the three triangles K1, Ko and K3 denote subtriangulation of K obtained
by connecting the vertices of K with its barycenter; compare with Figure 1.
b) The degrees of freedom NFEC are given by (compare also with Figure 2)

e the function value and the gradient at the vertices of K,

e the function value at one interior point of each side F € F, F c 0K.

e the normal deriwative at two disctinct points in the interior of each side

FeFr, FcoK.
e the function value and the gradient at the barrycenter of K.

The corresponding global H?-conforming finite element space is defined as
V(T) :={V e C'(Q): V|k € Py(K) for all K € T}
and its global degrees of freedom are given by
HTC . _ HTC
N o= KLEJT e,
which, is well-posed thanks to conformity of V(T) < H2(Q).
Since Py(K) < P4(K), we can apply NEC to Py(K). We therefore define the

smoothing operator Er: V(T) — V(T) < H2(Q), by setting for all degrees of free-
dom N, e NFF¢:

\w‘:g)l > NE(lk) ifzeZH¥°nQ
(4.2) N.(E7(v)) = Keor(2)
0 if z € Z%*,TC A 00,

Here Zg—TC denotes the set of nodes z associated with some degree of freedom N, €
NEC and corresponding local degree of freedom N € NI, Note that there may
be different degrees of freedom associated with one node; compare with Figure 2.
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FIGURE 2. The Lagrange element of degree two and the corre-
sponding macro element of degree four. Here point evaluations
are denoted by small dots, (first) partial derivatives by circles and
normal derivatives by lines.

Lemma 21 (HZ(Q)-smoothing). Let T € G. The operator Er: V(T) — HZ(Q)
defined in (4.2) satisfies

S 1D — Er(v) “K~J B [o,0]? ds,  a=0,1,2
KeT

where the hidden constant depends only on shape coefficient of 7.
Proof. See [GHV11, Lemma 3.1]. O

Denoting by Z¥€ the set of points in K associated with the degrees of freedom
HIC we have ZK = Zr n K < Z¥I° This enables us to define a Clément-type
quasi-interpolation Zr : L'(Q2) — Ll(Q), which is locally a right inverse of the
smoothing operator £ on V(T), i.e.,
Ir o &rlyer) = id v

To this end, we define the operator based on extensions of the local degrees of
freedoms NEC instead of Nk
To be more precise, for K € T, let {¢X: N € N}T¢} be the nodal basis of P4 (K)

and identify N3¢ with the dual basis {(bg’*: Ne J\/}H(Tc} c Py(K) , ie.

<¢]\/[ ) ¢N>L2(K) ¢N) = (SNM N M eNHTC

Recalling Definition 20, we have that N contains the point evaluation in the
vertices and edge midpoints of T (the Lagrange nodes Zx of Po(K)). For z € Zg,
we denote the corresponding dual basis functions by

P e {q&ﬁ’*: Ne NIH(TC} such that (X%, v>L2(K) = u(z) for all v e Py(K).
Extending each local dual function by zero to an function in L?(2) we define
¢ = ﬁ Z PE*eV(T)*, zeZr.

wr(z Kewr(z)
Obviously, supp(¢*) < wr(z) and
(%, V12 = v(2) for all z € Z7,v € V(T).
We define a quasi-interpolation operator Z7: L*(2) — V(7)) by

<¢;k7 U>L2(Q)’ ifZEZTﬁQ

(4.3) (Zrv)(2) := {0 if z€ Z1 n o9

Since this definition differs from standard Clément interpolation in [Cle75] only
by the choice of a different but nevertheless piecewise polynomial dual basis repre-
sentation, we obtain the following results from standard arguments; see [Cle75].
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Lemma 22 (Quasi-interpolation onto V(T)). For T € G let Zr: L*(Q2) — V(T)
be defined as in (4.3). Then we have that

a) Iy: LP(Q) — LP(Q) is a linear and bounded projection for all 1 < p < o©
and is stable in the following sense: If ve HL(Q) and £ € Ny, then

J IVZro|® dz < f Vol dz forall KeT.
b (K)

Wi ()

b) Zrv e V(T) for all ve L' (),

¢) Irvlg = vk on K € T with K n 0Q = & if v|,, (k) € P2(N7(K)) N
Clur (K)),

4) TrEro)lx = vlx on K € T if vl ey € Po(N7(K)) 0 Claog(K)) and
KndQ =& orvlga~x = 0. Here Er: V(T) — HZ(Q) is the enriching
operator defined in (4.2).

We remark that, in principle, one can also resort to a Scott-Zhang-type quasi
interpolation [SZ90]. However, this complicates the construction of Z7, since a dual
basis, bi-orthogonal to the nodal basis of traces of functions in I@’4(K ), needs to be
constructed on faces of boundary elements. The price we have to pay for the simpler
construction is that the set of integration needs to be slightly increased in the right
hand side of the following stability estimate. We are particularly interested in the
interplay of different refinement levels related to the sequence {7j}ren, of meshes
produced by the AC°IPGM. To simplify notation, we again replace subscripts 75, by
k, e.g. we write 7, instead of Zr, .

Lemma 23 (Stability of Zy). Let v € V; for some £ € Ny u {0}. Then, for all
Ke T, k</{, we have

J |D21kv|2 dz +J it [0, Zwv]? ds
K oK

< J ‘D;wv|2 dz + Z J- h;t [o,v]° ds,
wii (K) FeF, YF
FCwi(K)

where Fp := F and hy := hy, when £ = 0. In particular, we have |Zyv, < |vll,-

Proof. Let ¢ < oo and assume that K € T, such that w?(K) n dQ = &. Let Q be
the linear polynomial from Lemma 18 with T = T, 7* = Ty, and D = wi(K).
Then Lemma 22a) and ¢) yields

J |D2Z;0)” da = J D> T, (v — Q) du < J hi 2 IVIi(v — Q) dw
K K K

sj W2 V(o - Q) da
wk(K)

< D2v|* dz + fh_lé 2 gs.
ka(K)} P’U‘ z Z P ¢ [[nv]] s

FeFp
Fka(K)

In order to bound the jump terms, let @) be the linear polynomial from Lemma 18
with 7 = Ty, V(T*) = Vi, and Dg = w?(K). We observe that VQ = const and

hence does not jump across interelement boundaries. Consequently, using Lemma
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22a) and c), together with a scaled trace theorem and inverse estimates, we obtain

f ht [0, Zkv])? ds = J h [0,Zk(v — Q)] ds
oK oK

< J W V(o — Q) da < hi? V(o — Q) de
o (K) W (K)
< J |D2wv‘2 dz + J hyt [0,v]° ds,
wi(K) P FGZ}-[{ F
Fcwi(K)

where we also used | J{wi(F): F < 0K} < wi(K) and Lemma 18(4.1a).
If wi(K) N 0N £ &, then there exists a side F € Fj, with F < wi(K) n Q. Now
applying (4.1b) instead of (4.1a) the desired assertion follows similar as above.
For ¢ = o0 we replace Lemma 18 by Lemma 19 and proceed as before. |

In view of the proof of Lemma 10 below, we need a stability estimate comparable
to Lemma 23 for w € HZ(2). This estimate follows by analogous arguments as in the
proof above but replacing Lemma 18 by the classical Poincaré-Friedrichs inequality
for functions in H2(2) together with scaling arguments. In particular for w € HZ(€2)
we have |Zyw|, < [D?w],,.

The following Corollary is an immediate consequence of Lemma 23.

Corollary 24 (Interpolation estimate). Let v € Vy, £ € N U {0} and K € Ty, for
some k < (. Then

J DTy — Do da + J hit [0, (Zrv — v)]° ds
K oK

2,12 -1 2
< J ‘Dpwv’ dz + Z f hy, " [0,v]” ds,
wi (K) FeFy F
Fcwi(K)
where we write Fy := F and hy := hy if { = o0 as in Lemma 25.
The next Lemma states the convergence of the interpolation operator

Lemma 25. Let v e Vy, then |Zyv —vf,, = 0 as k — oo.

Proof. Fix some arbitrary € > 0. For k € N, we split
I1Ziv — v|||i = Z U |D2Ikv — wavf dz + f h;l 0, (Ziv — v)]]Q ds]
KeT, LVK oK

according to Ty = (’7};\ (7;2+ U 7;2_)) U 7;2+ U 7762_.

We first consider the terms of [|Zv — v||; according to Ti\ (T2 U T.27).
Using Corollary 24, Proposition 15 and the finite overlap of the patches wj(K),
K € Ty, we have

Z U;( |D*Tjv — Dpzwv|2 dz + ﬁK hi M 0, (Zkv — )] ds]

KeTi\(TZTuTd)

4.4 < D2o|* do + fh*l 0,0 d
(44 DO I PN E D Y I %0 o

KeTi\(T2HuT2) e
Cwy,

2 _
< Z fwﬁ(K) |Dp2wv| dz + Z JF hit [o,v]? ds.

KeTi\(TZTuT2™) FeFH\Fot
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Thanks to Q(NZ(T\(T2T 0 T27))) < Q\(2F U Q77), Lemma 9, and the finite
overlap of neighbourhoods, we can employ the uniform integrability of Dp2wv and
conclude for the first term on the right-hand side of (4.4), that

(45) J‘ DZWU 2 dz < DQW’U 2 . < 62
Ken\(%JrU,Tkz) wz(K)| P ’ H P ||Q\(Qk+uﬂk )

for all k = Ky = K;(e).
In order to estimate the second term on the right-hand side of (4.4), we observe
from F* = Jpen, F2* (see Lemma 9) and the fact that |Jv]|,, < oo, that

Z f hit [0,v]* ds < Z J hit [0,v]? ds < €
F F

FeF\F* FeFH\Fot
for all k > Ko = Ky(€). Thus, for all k£ > max{K;, K»}, we have

3 f |D*Z0 — D2o|" da + f

KeTi\(T2t o7 ) VK ?

o
We next bound the terms of || Zyv — v\||i according to T2~. Recall, that
H3,, 2o (€7) is defined to be the space of restrictions of Hg(Q)-functions to Q.
From the density of H3(Q) in HZ(Q2) we have that there exists v € H3(Q) with

[v— UE/HEQ(Q,) < €2/2. Therefore, stability of Z, (Lemma 23) and the fact, that
Q. < Q imply

Z [L{ |D*Tjv — Dpzwv|2 dz + ﬁK h 0, (Zkv — )] ds]

KeT?2~

Wt [0, (o — )] ds < €.
K

< 2 [J | DT, (v — Ue)|2 +|D*Zve — DPQWU6|2 + |Dp2wv6 - D%]Q dx]
KeT2™ K

.2 [LK’“_'I [0, Zx(v = w1 + ' [0, Zev]? dS]

KeT;?™

sf|
Q

+ Z J |D*Zyve — Dp2wv€|2 + J it [0, Zxv]? ds
rera UK oK

2 _
<&+ Z f ‘DQI]CU€ B DpQwUE| Jrf hkl [[anIkUE]]Q ds.
KeT,;

2
DPZW’U - D21)6| dx

Employing the trace Theorem and Lemma 22a) and c), we can further bound the
last two terms on the right-hand side by

3 J |D2Ty0. — Do * + J hi [0, Tkvc]? ds
- JK oK
KeT,;

< Z L{ |D*Z;, (ve — QK)}2 +|D?(ve — QK)|2 dz

KeT,f*

+ ) LK R [0,k (ve — Q)] ds

KeT?

_ 2
S Z J hk2|V(UE—QK)|2 + |Dp2w(v€—QK)| dz,
Ke'Tlf_ wi (K)
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for some arbitrary Qx € Py(wi(K)), K € T. Using the Bramble-Hilbert Lemma [DS80]
and the finite overlap of neighbourhoods, we obtain

> J |D2T;0 — Do +J hit [0, Zrv ] ds
oK

KET27

J Z |Dv)? d.
L*(Q)

$€2+J‘7hi Z |D%v|? dx<e2+HthQ
k lee|=3

|a|=3

Thanks to Lemma 9, there exists K3 = K3(¢), sucht that for all kK > K3, we have

> J |D*Tjv — D, v| da:—i—f hit [0, (T — )] ds < €.
Ke 7-kz— oK

By the definition of Vo, we have that v|,, (k) € P2(Ni(K)) N C(wi(K)) for
all K € 7,>". Therefore, Lemma 22c) implies Z;v = v on Q7" and thus

Z J |DQIkv—D2v| dac—i—J h; ' [0, (Zxv — )] ds = 0.

KeT?t

Concluding, we have ||Zpv — v||\i < e whenever k > max{K;, Ko, K3}. This is
the desired result. g

4.3. Proof of Lemma 10. Note that for all v € lem the bounds
0l ) < Wl and  [D(VO)|(Q) < vl ,

are inherited from Propositions 2 and 3. In particular, the trace of Vv € BV (Q)?
is measurable on sides F' € F, k € N, (c.f. [AFP00, Theorem 3.88]) and thus we
conclude also for v € Vll(;mw that [|v|l, /" lv]., as ¥ — oo from Proposition 15 and
the density of V, in V&IH@

Let 0 # v € VM"O arbitrary, then there exist {v‘}, < Vi, such that
|||v — ot moo — 0 as £ — o. Using norm equivalence on finite dimensional spaces, we
readily conclude that v|x € Po(K) for all K € TT.

In order to prove v|g- € H3, o (Q27) we need to show that v is a restriction
of a Hg(Q) function. To this end, let {m}sen, < N such that |Jvf — v} <  for

mellm

U, 1= Im,v € V,,,; see Lemma 25. Then !”v is uniformly bounded; since

el

lom b, < lome =01, + 10" =0l + Wl = Mol a8 £ — 0.

We can now apply the smoothing operator defined in (4.2) to v, , € Vi, together
with Lemma 21 (a = 2) and obtain

H DQEme (vé

me)HQ S HDPQW(gmé(Ue ) B Ufnz)HQ + ”D2 ;

e ST RO (Y
Hence, there exists w € HZ(Q) such that, for a not relabelled subsequence

(4.6) Em, (vfm) —w weakly in H3(Q), as { — .

Again from Lemma 21 (for o = 0) and the trace theorem with scaling we have that

Feteclln,

my

)~ ol = [ i, Lot 5 % [, |

my

L ()
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where we used [hp, HLOO(.ETLZ) < [ hmexa-

my

L2 (Q)" Applying Lemma 9 yields

Hgml (Uﬁw) - Uﬁw HQ* = ”gml (Ufmz) - Ufmz + Hgmf (Ufﬂe

2

U, ) — Ufﬂe HQ*\QZM

+ €m0, ) = wlg + [om, = vlg

< Jrmxas, [ g b

+ HUHsr\Q;”Z + Hstr\Q;”Z
-0 as { — 0.
Here we also used uniform integrability of v,w and (4.6) together with the fact

that HZ(Q) is compactly embedded into L?(£2). As a consequence, we have that
v]g- = w|o- and thus v|g- € HZ, o (Q7).
We conclude by showing that for vy, := Zyw € Vi, k € N, we have [|v — vy, —

0 as k — oo, and limsupy_,., [Jvkll, < o0; here w € HZ(Q) is the function defined
in (4.6). The uniform boundedness follows since from Lemma 23, we have

2
ks ¥ [ D%l do 5 ol <=
KeTs w (K)

Fix now € > 0. Similarly as in the proof of Lemma 25, we split ||v — vy, |||z according
to Tx = (’E\ (7;2+ V) 7;2_)) V) 7;2+ v 7;2_ and consider the corresponding terms
separately. Thanks to Lemma 23, we have

Z [f |D*Tpw — DPQW11|2 dz + J byt 0, (Zrw — )] ds]
K oK

KeTi\(TTuTET)

< > LS

’DQw‘Q + ‘Dﬁwvf dz + Z f hit [0,v]* ds
KeTi\(T2+ o) | TR d

FeFr*

FcK
< Z J ’Dwa + ‘wavf dz + Z f hit [0,v]° ds.
KeT\(T2+ o7 Tk (K) reFr\F2 O F

Arguing as in (4.5), we can employ the uniform integrability of Dpzwv and D?w to
obtain

Z J ’DP%,'U!Q + ‘D2w|2 dr <€,
KeTi\(T2+oT2m) Tk ()
for all k > Ky = Ki(€). According to F* = J;cn, F2t and v, < oo, we have
Z J hit [0,v]? ds < e,
FeF+H\F2t F
for all k > Ky = Ks(e) and consequently we conclude for all k£ > max{K;, K5} that
(4.7)

2 _
> U |D*Tw — Dao|” da + J hit [0, (Trw — o) ds] Se
KeTi\(T2HuT ) B oK

Considering the terms of ||v — vy, H|Z according to 7,2~ we recall v|- = w|q- and
it suffices to prove
2 2,2 -1 2 9. <
(4.8) > \D*Tiv — Dol dz+ | b [0,(Tww —v)]* ds < e
rere- JK oK

for all k > K3 = K3(€). This follows exactly as in step | 2 | of Lemma 25.
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Let now K € ’7;2+. Then we have for all my > k that 7,7 < T, and thus
Vf, L (1) € P2(Nk(K)) N C(wi(K)) (see step | 2] for the definition of vf,, and my).
Therefore, Lemma 22d) implies

Ve = Ikw <« Ikg U Ikgkvfm = ’Ue

me “my my

— v in PQ(K)
as £ — oo. Consequently, for all k£ € N, we have

2 f ’Dzvk—D%} dx+f hi e, (v —0)]* ds = 0.

KeT;?*

Combining this with (4.7) and (4.8), we have ||Zw — v|||i < € whenever k£ >
max{Kh KQ, Kg}
Overall, we have thus showed that v € Vo, which concludes the proof. ([l

4.4. Proof of Theorem 12. To identify a candidate for the limit of the sequence
{ur}ren, of discrete approximations computed by the AC°IPGM, we employ Propo-
sition 2 and (2.4), and conclude that

(4.9) Up; — U weakly in Hj(Q) asj— oo

for some subsequence {k;}jen, < {k}ren, and Uy, € H(2). In the following, we
shall see that in fact ue = Ug € V. Thus {uy }ren, has only one weak accumulation
point and the whole sequence converges. Finally we will conclude the section with
proving the strong convergence limy_, ||ur — tw ||, = 0 claimed in Theorem 12.

Lemma 26. We have li € V.

Proof. For each K € T, the weak convergence (4.9) implies strong convergence
of the restrictions uy, |k in the finite dimensional Po(K) and thus |k € P2 (K).

Thanks to the uniform boundedness (2.4) of |||u;~ij mk, we conclude with Proposi-
tions 2 and 3 that ’

(4.10) Vuy, —* Vi, — weakly* in BV(Q)? as j — o0;

compare also with [AFP00, Theorem 3.23]. Moreover, Lemma 21 (a = 2) yields for
the smoothing operator from (4.2) that

| D%Ex, (u, )|
We thus have
(4.11) Ek; (u,;) — w weakly in HZ(Q)

o < | D€ () = i) + | Dowtany gy < [l U, -

for a not relabelled subsequence. Arguing as in step of Lemma 10, we obtain
thanks to compact embeddings, that Hé’kj (ur;) — ug; HQ_ — 0 as j — o0 and thus
kj

Uplo- = wlo- € Hig 00— (7).
For w from (4.11), defining
Vg = Ikw S Vk,

we have by Lemma 23 that |Jvg[, < HD2w||Q < 0. Therefore, in order to conclude
the proof, it remains to show that ||vy, — U], — 0 as k — co. To see this, we first
observe that, thanks to Lemma 22d), we have Zyw = Uy on all K € ’7;” and thus

th 0,701 ds = lim > Jh [0,Tx] ds

FeF+ ]_—1+

~Jim 3| e ds < s <

k—o0
FeF.t
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In the same vein, we have that Dngk = Dp%,ﬂoo for all K € 7;”, which implies
D2vr — Dilie ae. in QF as k — o0 and thus D27y, € L*(Q1). Together with
D*uy, = D*w in Q7 , this yields D2y, € L?(Q) and we conclude [t < oo.
The assertion follows now as in step of the proof of Lemma 10 by splitting
lve — T |Hi according to T = (Te\ (77T 0 727)) U 2T U T2~ and investigating
the resulting terms separately. ]

Lemma 27. We have that Ty, € Vo, solves (3.6) and thus Ty = ue. In particular,
the limit in (4.9) is unique and the full sequence {uy}ren, converges to uy, weakly
in H}(Q).

Proof. Let v € Vo, and {vr},cy, vk € Vi such that |Jup —vf, — 0 as &k — oo.

Consequently, for the subsequence (4.9) of discrete solutions {uk]. }jeN, we have

(4.12) B, [ur,, vr,] = {f, vx; g, — {5 Vrag) asj— .

Using |Jvg — v||,, — 0 as k — oo again, it suffices to prove By, [uy,, v] = B[l v]
as j — o0. To see this, we split the bilinear form according to

%kj [uk’j ’ U] J (Dp2wukj - Ekj ([[anukj]]) : DP2WIU dz
Q

- J Ly ([0nv]): Dp2wuk, dz + J Z [0, ux, | [0, ] ds
q 9 g 7, hk:j J

—: I, — II; + ITI;.

and consider the limit of each term separately.
In order to analyse the limit of I;, we split the domain €2 according to

Q=0 Qo )u vyt
for some ¢ < k;. We recall from (2.7) and (2.4) that
| g g < lluws < 17le and [[Le; ([[onun; Dl < funsfly, < 11e-

Hence, thanks to Lemma 9 and the stability of liftings, for € > 0 there exists K (¢)
such that

‘ J (D2, — L, ([Gntin, ]|) = D2t + Lo([0nT])) : Do dx‘
o\ o)

< (Buw I, + Wl ) D20l gy o ey < €

for each fixed £ > K (). Moreover, on 2, we have, similar to [BO09, Theorem 5.2]
(for details, compare Lemma 28, Appendix C), that

J (Dp%,ukj — Ly, ([[Onu,]])): D*vdz — D%y : D*vdx  as j — .
Q;” Q"

For the terms according to Q;, we observe from (4.9) that Dp2wukj|ﬂé+ —
Dpzwﬂoobf strongly in L2(Q, ") as j — oo since Po(7,'")2*? is finite dimensional for
fixed £. Therefore, we have

J Dpzwukj: Dprv dz — J Dpzwﬂgoz DP2W’U dz asj — 0.
Q,t Q,*

Similar arguments prove ||y, us, || |le+ — [Ontoo ]l |le+ strongly in L2(F,; ™) as j —
oo and, thanks to the fact that the local definition (2.5) of the liftings eventually
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does not change on ’721+, we have

‘[ Lo, ([0nu, 1) DPQWU dz = J Lo ([[Onu, ]]): DPQWU dx
Q,* Qi+
o R T T
Q"

Since ¢ > 0 was arbitrary, combining the above results with the fact that
|O\(Q;" U Q)| — 0 as £ — o0, we have proved that

hm ‘ J\Q (Dp2wukj - Ekj ([[anukj]])) : DPQWU dx - J\Q (DPZWHOO 7‘500([[6’”6@]])) : Dp2wlU dl"

Jj—00
set ‘J (D132wﬂoo - ‘COO(IIanﬂoc]]))i Dpzwv dx‘ — €
QT uQy7)

as { — o0. Since € > 0 was chosen arbitrary, for j — o we conclude

(4.13)
f (D2, — L, ([owun, ])): D2vde — f (D2 — Lop([2nic])): D2l
Q Q

In order to identify the limit of 11;, we split the domain € according to
Q=0 vt

for some ¢ < k;. Thanks to uniform boundedness ||ux||, < |f|q, for € > 0, we have

(119 | L\QH L, ([20]): Dus, da| < £, (2D g+ 1l < e
4

for all kj > ¢ > K(e). Indeed, the stability of the lifting operator (2.6) together
with Proposition 15 yields

1/2
el < ([ i ol @) 0wty e
Fr\Fit

L

As in [1], on Q% we employ the strong convergence Dgwukj\%+ — Dp%ﬁoobf €
Po(7;'1)?*2 in L2(Q;") as j — o0, in order to obtain from the local definitions of
the liftings (2.5) and (3.3) that

J Ly, ([0nv]): Dp2wuk7. dz = J Lo ([Onv]): D}?wukj dz

e " : . :
- J Lo ([[0nv]): Dp2wﬂoo dz as j — .
Q,t
Combining this with (4.14) and |Q\(2;7 U Q; )| — 0 as £ — o, we thus obtain
| J L, ([2w0]): Dk, — Lon([20]): DT
Q
<e+‘f Lo ([Onv]): DPQWﬂoodx’ — € as £ — oo.
o\t

Since € > 0 was arbitrary, this yields

(4.15) f Cr, ([2n0]): D2y, d — f Coo([2av]): D2 di a5 & — 0.
Q Q



24 A. DOMINICUS, F. GASPOZ, AND CH. KREUZER

For the last term 111}, we observe from ]-7 c ]-',;:,, ¢ < kj, that
‘[ i[[é‘u]][[ﬁv]]ds—f iII(?u]][é’v]]ds
Fuy Py " o Ll Fohe, 5" S

+L:k - h [0, uk, ]| [0,v] ds.

For the second term on the right-hand side, we conclude from Proposition 15 that
for arbitrary fixed e there exists K(e) > 0 such that

[0, ur; ]| [0,v] ds

1/2 1/2
g 2
< (J]:k \]:+ h’k? [[a s ]] ds) (Jfkj\f+ hfk’J [[anv:l] ds)
1/2
sholy ([ i ol o)
T\JFN\FS

Jfk \F,F hk

Y4

1/2
< Hf||L2(Q) (J]: - h+ e, v]] ds) <e

whenever k; > ¢ > K(e). As in [t], we use for fixed ¢ that [[0,ug,]] |]_-Z1+ —
[0ntico]l | 72+ as j — o0 strongly in L2(F;") and consequently

J [[é’uk]][[é‘v]]dsaf T 1o ][00 ds  asj— .

The deblred convergence
(4.16) f — [[0nus, || [0,v] ds —>J — [0, T ] [0,v] ds as j —
Fry 'Vkj

follows from SF+\H - [0 [0,0] ds — 0 as £ — co.
Now combining (4.13), (4.15) and (4.16), we have proved

B, [uk,, v] — Dty : D*vdx + j (Dp%ﬂ@ — Lo ([0nTs])): Dp2wv dz
- o+

+ J Coo([2nv]): D2ig e + J T 0.7, ] [0,0] ds
O+ Ft h+
= B [Uop, V] as j — o0.

Hence, by (4.12) we conclude Uy, = g, thanks to Uy € Vo, and the uniqueness of
the generalised Galerkin solution of (3.6). O

We conclude the section by finally proving Theorem 12.

Proof of Theorem 12. Using the coercivity of the bilinear form, Lemmas 25 and 27,
and the interpolation operator Zyuo € Vi, we observe

Ceoer | Zktior — up H|i < Bi[Livo — g, Lo — ug)
= By [T, Tt ] — 2Bk [Liuco, uk] + By [uk, uy]
= By [Zitoo, Iruco] — 2{f, Intoo)r2(q) + {fs Uk r2(q)
— Boo[teo, Ueo] — {f, uoo>L2(Q) =0 as k — 0.
Hence, again with Lemma 25, we conclude

o = wrlly < 1 Zwuos = usslly + I Zxuco — wlly; — 0
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as k — oo. O
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APPENDIX A. PROOF OF PROPOSITION 13

For K € 7;17, we define the element bubble function

b =B || Mo

2€ZT NK

where Ak . denotes the barycentric coordinate of K with respect to the node z €
Z7, n K. The scaling factor S > 0 is such that max,ex bi (x) = 1; compare with
[Ver13]. Note that b € HZ(K) and since K < Q~, extending bx by zero to Q, we
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have that bx € V. Setting ¢ = by Il f € HZ(K) we have
(A1) ||¢||L2(K) = HbKHOfHL2(K) < HHOJCHH(K)
Recalling A2?v|g = 0 for v € V(T), we conclude from (2.1) and integration by parts

J fodzr = Bo[uw, ¢] = f D*uy: D*¢pdx
K K
= J D?uy: D*¢ — (A?v)pda = J D?(uy —v): D?*¢da.
K K

Consequently, thanks to equivalence of norms on finite dimensional spaces, standard
inverse estimates, and (A.1), we obtain

Maflae = [ Mofode = | (s = oo+ | fodr
(A.2) = f (o f — f)¢da +J D*(uy —v): D*¢dx
K K

< (HHof — fllpagiy + i lue — ’U|H2(K)> Mo f{l 2 k) -

This proves the assertion of Proposition 13 for the element residual.
In order to bound the jump residual let K, K5 € 7;17 with FF = K1 n Ky € ]-',if
and set vp := [[0Zv]] . We define pp € Py by
op
A3 =0 d —— =~p,
(A.3) plr and 2" =

where np = nk, |r assuming the convention in (2.2). Since vr € R, we have

1/2
2
|p‘H1(wk(F)) = |wi(F) |1/2 lve| = hp lyr| = <L hr [aiv]] ds) J

recalling that wy(F) = Ky u K5. Moreover, we have

1/2
1) or oy = o | = ( [ el ds) |

Next, we define the side bubble function

Ki = BF H )‘%(i,z K

2EZKNF

i=1,2.

i)

Here Br > 0 is such that max,cp bp(z) = maxuex, br(z) = 1, ¢ = 1,2. Conse-
quently, we have by € H3(wi(F)) and extending b to by zero yields by € H3(Q).
Standard scaling arguments prove

L brpds~ |F| = hr = [brl 120, (r)) -

Therefore, combining this with (A.3), (3.6), and integration by parts, from p|r = 0,
that
obp

J [[6iv]]2 ds < f [[621}]]2131: ds = j [[(9211]] —bF —pds
F F
= fF [o2v]] ag;f;:) ds = Z f D?v: D*(pbp)dz

KeNg(

:f DQ(U_Um): DQ(pr)dx“‘%oo[Uoo’pr]
w (F)

- Po-ua) Dhe)dst [ fobe)ds
wi (F)

wy (F)

< (I = werliga o) + WLy ) 17 1062 2o )
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Here, we have used equivalence of norms on finite dimensional spaces in the first as
well as Cauchy-Schwartz and an inverse inequalities in the last estimate. Combining
this with

1/2
2
1957 22 (e (7)) < 1P 2o o (7)) OF L2 o (ryy S P 17E| = B (L hr [[050]] ds)

proves

1/2
(J, 120 ) % bo = wtlasnio + 1Sy

The assertion of Proposition 13 for the jump residual follows then from apply-
ing (A.2) for the last term on the right-hand side. d

APPENDIX B. PROOF OF PROPOSITION 15

For v € Vy there exists a sequence vy, € Vj, k€N, such that v — v, — 0
as k — oo and limsup,_,, |Jvk|l, < . Therefore, {||v||,}ren is bounded, since
Ioll, < llv—well, + llvell, < oo uniformly in k. For m > k we have, by inclusion
Urer, F' € Uper, I and mesh-size reduction hi b < h;l, that

j it [o,v]? ds < j hot e, 0] ds < J

Fk Fk Fm

ht o, v]” ds.

Consequently, we have [|v], < [[v[,, and {[|v]|,},.y converges. In particular, for
€ > 0, the exists L = L(e) € N such that for all k¥ > L and some sufficiently large
m > k, we have

2 2
> Jloll, - ol = o |

hyt e, v]* ds — O'J h; ! [0,v]* ds
Fin\(FenFm)

fk:\(fkﬁ]:m)
= O'J ! [0,v]? ds.
Fi\F;

This follows from the fact that h,,|r < 27 hi|r for all F € F,\(Fx N Frn), and
Fii = Fm 0 Fy for sufficiently large m > k. Therefore, Sfm\FJr hot[o,v]° ds — 0
as m — oo and thus
1ol = [ 10207 do o [ hp Mol s+ [ a0 as
Q Fib Fi\F;

— v, +0  ask— .

The second claim is a localised version and follows by analogous arguments. [J

APPENDIX C. AUXILIARY RESULTS

Lemma 28. Let {uy}, .y be the sequence of discrete solutions generated by the
AC’IPGM and Ty, € Vo, as in (4.9). Then, for arbitrary fized £ € N, we have

[Diwuk — Lr([0pu])] ‘Qé_ — D2ﬂ°°‘ﬂf weakly in L*(Q;7)**? ask — 0.

Proof. For £ < k we have ;~ < Q,~ and thus ”thQf [0y < ||thQ)1; [y —
0 as k — o0, thanks to Lemma 9. We proceed similar as in [BO09, Theorem 5.2].

By the stability of the lifting operator (2.7) and the definition of the energy-norm
we have

| Dvu|, < lluell,  and | Le([onuel)lq < luxlly -

Consequently, thanks to (2.4), both terms are bounded uniformly and thus, for a
not relabelled subsequence, we obtain

(C.1) Daur —To  and  Li([Onui]) — Ty



CONVERGENCE OF AN ADAPTIVE C°IPG METHOD 29

weakly in € L?(2)2*2 as k — o0. It therefore remains to prove that
T, — T; = D*uy, in L?(Q;7)%*2.

Proposition 3 and (2.4) imply that {Vuy }ken, is uniformly bounded in BV (£2;7)2.
Therefore, as in (4.10), we have that Vuy —* Vi, in BV(Q;7)2, ie., for ¢ €
Cl (Q%‘)g;ﬁl, we have

f p: dD(Vuy) — @: dD(Viiy) :J @: DTy, da,
Q;” Q;” Q;”

as k — o. Here dD(Vuy) is a finite Radon-measure on © (compare [AFPO0O,
Chapter 3.1]) and the last identity follows since Uy |o- € HZ,,, 5, (27) and @~ <

)~. By element-wise integration by parts formula ([Com89]) we have

f @: dD(Vuy) =J Dp%,uk: pdx — Z J pn - n[[d,u] ds,
Q Q"

FeFy F
FcQy~
for all € C}(2, )22, The assertion thus follows if
(C.2) Z J pn - n [Onur]] ds—»f T;: pdx ask — o0.
FeF, VF Q"
FcQ,™

In order to verify this, let ), = mx () be the L2(Q;~)?*?-orthogonal projection of
¢ onto Py({K € Ty : K = Q; })%*?. Then, we have

Z JF pn - n[dpu] ds

FeF,
FCQ%7

= Z L(Sa—ﬂ’k)"'n[[anuk]] ds + 2 JFﬂ'kn-n[[&nuk]] ds

Fer, FeF;
FCQé_ FCQ;_
= Z J (o —mp)n - n [ Opu] ds+f . Li([Onug]]): 7r dz
FeF, F &
FcQ,~
= Z J (o — ) - n [ Opus] ds—&-j Li([Onuk]): (wr — ) dz
_JF Qr
FeF, £
FCQ,}_

J o Li([Onur]]): ¢ dz.
Qf

Thanks to HthQ;— =) — 0 as k — o0, we have that the first two terms on the

right hand side vanish as k — oo since ¢ € C} (Q;l)gg,i This concludes the proof

since (C.2) follows then from (C.1). O
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