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Abstract. The article at hand focuses on finite element discretizations, where the contin-
uous and the discrete formulations differ. We introduce a general approach based on the
dual weighted residual method for estimating on the one hand the discretization error in a
user specified quantity of interest and on the other hand the discrete model error induced
by using different discrete techniques. Here, the usual error identities are obtained plus
some additional terms. Furthermore, the numerical approximation of the error identities
is discussed. As a simple example, we consider selective reduced integration for stabiliz-
ing the finite element discretization of linear elastic problems with nearly incompressible
material behavior. This example fits well in the general setting. However, one has to be
very careful in the numerical approximation of the error identities, where different recon-
struction techniques have to be used for the additional terms due to the deviating discrete
bi-linear form. Numerical examples substantiate the accuracy of the a posteriori error
estimators and the efficiency of the adaptive methods based on them.
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method, adaptive finite element method, model adaptivity.
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1 Introduction

Sheet-bulk metal forming is a comparatively new production process, which com-
bines the classical techniques of sheet metal and bulk forming. We refer to [22]
for a detailed description of this process. It is characterized in large parts of the
workpiece by two dimensional stress states, which can accurately and efficiently
be simulated by shell or solid-like shell elements. However, in some smaller parts
three dimensional stress states occur, for instance if teeth are molded in the pro-
duction of gear wheels. Thus, one wants to use different finite element types in
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one mesh. In order to choose the element type and to obtain an efficient trian-
gulation of the workpiece automatically, a posteriori error estimators and thereon
based adaptive methods are a good choice.

In practical situations, one is interested in the estimation of the error in a user
defined functional, which is often called quantity of interest. This case usually
implies the use of dual or adjoint techniques, see, for instance, [15]. One approach
is based on using the Cauchy-Schwarz-inequality and a posteriori error estimators,
which estimate the error in the energy norm, for the primal and the dual problem.
We refer, e.g., to [2,28,29]. In [6, 14, 24], the optimal convergence of adaptive
methods based on this approach is proven. However, it is limited to linear problems
and linear quantities of interest. In contrast, the dual weighted residual (DWR)
method, see, e.g., [4,7], can cope even with highly nonlinear problems. It is based
on an analytic error identity, which has to be approximated numerically. Hence,
the resulting error estimators are not reliable nor efficient. For linear problems, a
safeguarded DWR method is proposed in [25], which ensures the reliability of the
DWR method.

In this contribution, we consider also somehow model adaptive algorithms.
Dimension adaptivity, which fits in the presented framework, is considered in
[1,8,9,33,34]. Here, the combination of volume elements with shells or plates
are discussed. Heterogeneous linear elastic models and their homogenization are
in the focus of [26,27], where the automatic selection of the local model is of ma-
jor importance. The choice of the model is based on a posteriori error estimates
with respect to the error measured in the energy norm as well as to linear quantities
of interest. The adaptive coupling of different models used in electrocardialogy is
presented in [23]. The basic result concerning the extension of the DWR method to
control modeling errors and to adaptively choose the model is introduced in [10].
The estimation of the modeling error is basically given by entering the solution
to the coarse model into the fine one weighted by the dual solution. The article
[10] focuses on diffusion-reaction-equations with highly oscillating coefficients.
The results are extended to time dependent problems in [11]. This approach has
been applied on structural mechanic problem settings as well. The combination of
linear and nonlinear elasticity is discussed in [17], while thermoplastic problems
with damage are in the focus of [16]. Frictional contact problems with a model
hierarchy consisting of several (nonlinear) friction laws are examined in [30].

As outlined in the beginning, a posteriori error estimators provide a good basis
for the choice of the triangulation and of the element type in many situations.
The focus of this article is on the development of a general approach to derive
goal-oriented a posteriori error estimates in such problem settings based on the
DWR method. To this end, we split the task into three different steps. At first, we
consider the case, where only one element type is used. However, the continuous
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problem setting and the discrete one differ. We derive some error identities in
this case involving, for instance, the primal residual as well as the primal and
the dual one. They are marked by the fact that we get the usual residual terms
of the DWR method plus some additional residuals connected to the difference
between the continuous and the discrete semi-linear forms. In a second step, we
examine the model error due to the use of different discrete semi-linear forms
and corresponding function spaces. Here, one gets an analogous error identity
to [10] in the discrete semi-linear forms plus some additional terms due to the
varying discrete function spaces, where the additional terms simplify or vanish
under certain additional assumptions on the discrete function spaces. As usual
in the DWR method, the error identities cannot be evaluated numerically. Thus,
in the third step, we discuss there numerical approximation in general, where we
concentrate on the modeling error. Several considerations on the possibility of
neglecting some terms are outlined.

The second part of the article is dedicated to the application of the general
framework on a comparatively simple model problem. We consider selective re-
duced integration in linear elasticity in comparison to fully integrated elements.
While the application of the general framework to estimate the discretization error
is straight forward, the numerical results using the standard numerical approxima-
tion techniques are somehow disappointing. The reason behind can been seen by
the interpretation of selective reduced integration as mixed method, which shows
that the numerical reconstruction of the reduced integrated terms corresponding to
the pressure have to be carried out using other techniques than for the displacement
related terms. We apply an average technique rather than a patchwise bi-quadratic
reconstruction. For the model error, we check that the error identity can be reduced
to numerically evaluable terms. Furthermore, the resulting estimator leads to an
accurate estimation of the model error and works fine as basis of a model adaptive
algorithm.

The article consists of two main parts. In the first part, Section 2, the general
approach for estimating the error in a user specified quantity of interest is dis-
cussed. In Section 2.1, an error identity with respect to the discretization error is
derived. It is extended to the model error in Section 2.2. Finally, the numerical
approximation of both error identities is discussed in Section 2.3. The second part,
Section 3, focuses on the application of the general approach to a model problem
setting, here a FE discretization of linear elasticity using selective reduced inte-
gration. After introducing the problem formulation, Section 3.1 is devoted to the
derivation of the error estimator with respect to the discretization error. It is tested
in some numerical examples in Section 3.2. In Section 3.3, an alternative approach
based on the corresponding mixed formulation is presented and combined with the
general framework. In Section 3.4 and 3.5, the estimation of the model error in
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comparison to the not reduced integrated bi-linear form is considered. Further,
a model adaptive algorithm is proposed, whose applicability is substantiated by
some numerical examples. The article closes with a conclusion and an outlook on
further research topics.

2 General approach

For our investigations we consider a problem formulation of the following form:
Find u € V so that
Au) (9) =0 VoeW, (D)

with A : V x W — R being a semi-linear form representing the weak form
of the underlying problem as well as with V' and W suitable function spaces.
Moreover, a quantity of interest is given by a possibly nonlinear functional J :
V' — R. The main goal is to determine the value J (u) for u being a solution of
equation (1). Assuming u to be unique the quantity of interest can be connected
to the problem formulation by reformulating the whole framework into a trivial
optimization problem, see [7, Section 2] for further details. Thus we have to find
a stationary point of the Lagrangian functional

L(y) = LW, ) :=J () = A(¥) (#),

withy = (¢, p) € V x W.

Let us assume for now that the discrete problem formulation is not just given
by replacing the continuous functions by its discrete counterparts but also by a
modification of the semi-linear form A, i.e. for finite dimensional subspaces V}, C
V and W), C W we get: Find uj, € V}, so that

Ap (up) (pn) =0 Von € Wh. 2

With this modification the corresponding discrete Lagrangian functional is defined
by
Li (yn) = Ln (nson) == J () — An (¥n) (on)

with y, = (¢Yp,pn) € Vi, x Wp,. Similar investigations have been carried out
in [7, Section 2.3] on different assumptions though. The main goal therein is the
treatment of stabilization techniques demanding a “consistence” requirement of
the form Ay, (u) (¢) = 0 for all ¢ € W. In contrast to that the ongoing investi-
gations ignore this consistence property and take into account possible numerical
errors as well, i.e. equation (2) is not fulfilled exactly. Further we recall that for a
stationary point x = (u, z) of L the following identities hold:

L(z) = J (u), (3)
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L' (2) (y) =0 vy eW. @

2.1 Error identity for discretization error

Within this section, we establish an error identity for the discretization error with
respect to the quantity of interest JJ based on the framework of the dual weighted
residual method. Since the discrete solution xy, is not a stationary point of the La-
grangian functional L but only of the discrete one L, the standard DWR approach,
cf., for instance, [7, Section 2.1], is not applicable. Therefore, we introduce a
functional JL describing the difference between the continuous and the discrete
functional, i.e.

oL (y) == L(y) = Ln (y) = An (¥) () — A(¢) (¢),

and split L up into
L(y) =Ln(y) +6L(y).

With this auxiliary functional we may affiliate the new situation to the standard
framework and are able to establish an error identity of the following form:

Theorem 2.1. Let J and A be three times as well as Ay, at least once directional
differentiable in the first argument. Furthermore, u and uy, are the solutions of
equation (1) and (2), respectively. Then we have the error representation

T () = 7 (un) = 3m () (e2) + 301 (un ) (ea)

1 1
380 (un) (e2) + 380" (unyzn) (e) O
(3)

+ pn (un) (zn) + Ap (up) (21) + R,

with
pn (up) (-) = —Ap (un) (-) 5 (6)
Ph (Umzh) (-) = J" (un) (-) = A}, (un) (-, 2n) , @)
Ap (up) (1) = Ap (up) () — A(up) (), ®)
Ap* (up, zn) (-) = Ay, (un) (-, 2n) = A (un) (-, 2n) - )

3)

The remainder term R’ is cubic in the “primal” and “dual” error e, = u — uy,
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and e, = z — zp,

1
RS) == / [J”/ (Uh + Seu) (eua €u, eu)
0

(10)
- AI” (uh + Seu) (ew €y, Cuy Zh T Sez)

— 3A" (up, + sey) (eus €us€z)] s (s — 1) ds.

Next to the components of the standard error identity, i.e. the primal residual

pn (up) (ez), the dual residual pj, (us, 2p,) (e,) and the remainder term RS), see

[7, Sections 2.2 and 2.3], equation (5) consists of four additional terms. The first
two, i.e. Ap (up) (e;) and Ap* (up, z1,) (ey,), measure the difference between the
respective continuous and the discrete residual weighted with a continuous func-
tion. The term pj, (up) (25,) represents the quality of the numerical solution process
and the last one Ap (uy,) (21,) describes the difference between the two semi-linear
forms weighted by the discrete dual solution.

Proof. With equation (3) and the definition of L, we get
J(u) — J (up) = L(z) — L(xp) + 0L (zp) — Ap (up) (zn)

1
= /0 L' (2, + sez) (ex) ds + 5L (zp) — Ap (un) (21)

1
= /0 L' (xh + sex) (€x) ds + Ap (un) (z1) + pu (un) (2n)

by applying the fundamental theorem of calculus. Approximating the integral with
the trapezoidal rule and its remainder term, we end up with

T () = T () = 3L (@) (e2) + 5L (@) (e2) + R

+ Ap (un) (zn) + pr (un) (2n) -

Since x is a stationary point of L the term L’ (x) (e,) vanishes. Moreover, by
splitting the continuous Lagrangian into the discrete and difference functional part
and using the definition of the Lagrangian we have

L' (21) (ex) = (L), (uns 2n) (eu) + (Ln), (un, 21) (e2) + 0L () (e2)
= J" (un) (ew) — Ap, (un) (eu; zn) = An (un) (e2) + 0L’ (z1) (€x)
= pj, (uns 2n) (€u) + pu (un) (e2) + Ap (up) (e2)
+ Ap* (up, zp) (€y) -
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At last we have to deal with the remainder term RS) that is given by

1
1

— / L"” (zp + sez) (ex,ex,6z) s (s — 1) ds

(3
’[Z ) —

due to the applied trapezoidal rule. Calculating the third derivative completes the
proof. i

Remark 2.2. Obviously, we can combine several terms in equation (5). Using
definitions (6) — (9) the established error identity may be written as follows,

T () = T (un) = 2 (un) (e2) + 5 un. 1) () + A (un) (21) + R,

with
p (un) (ez) := pn (un) (ez) + Ap (up) (e2)
= —A(up) (ez),
P* (un, z1) (eu) := pj, (un, 2n) (€u) + Ap* (un, 21) (€u)
= J" (un) (ew) — A’ (un) (eu, 1)
and

A(un) (zn) = pn (un) () + Ap (un) (2n) = —A (un) (24) -
However, the form presented in Theorem 2.1 points out the different sources of the
error more precisely. Further, the detailed splitting becomes important when talk-
ing about the numerical approximation of the error identity for a specific problem
as we will see in Section 3.

Remark 2.3. Assuming equation (2) is solved exactly and this holds for the corre-
sponding dual problem as well then we also have

Ly (zn) = J (un), (1D
L’ (:L‘h) (yh) =0 Vyh e Wh. (12)

Hence, it holds py, (up) (¢r) = 0 and p}; (un, z,) (¥n) = 0 for all py, € Wy, ¥y, €
V}, and equation (5) reduces to

T () = 7 () = 50 un) (= = o0) + 37 (s 20) (0 — )

1 1
58 (un) (e:) + 389" (un, 20) (eu) + Ry

for arbitrary functions ¢, € W}, and ¢y, € V.
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Similar to the standard DWR approach there is a relationship between the primal
and the dual residual. In contrast to the original identity, compare [7, Proposition
2.3] we have to consider the additional terms as well.

Theorem 2.4. Assuming the same setting as described in Theorem 2.1 the dual
residual can be expressed in terms of the primal residual, the two additional terms
and the linearisation error p,

ph (Uns z1n) (ew) = pn (un) (e2) + Ap (un) (e2)

(13)
— Ap* (up, 2) (€w) + 6p

with
1
/ [A” (up + sey) (€us €us 21 + s€2) — J” (up + sey) (eu, €4)] ds.
0

Moreover we obtain a simplified error identity

T (u) = J (up) = pn (un) (€2) + Ap (un) (2) + pn (un) (z1) + R (14)

with a remainder term of second order in the primal error e,

1
/ [A” (up, + sew) (€us €, 2) — J" (up + sey) (e, €4)] sds.
0

Proof. We introduce a scalar auxiliary function g by
g (s) = L) (up + sey, zn + sez) (ey)
with
g(1) =L, (u,2) (eu) =0
due to equation (4) and

g (8) = LV, (up + seu, zp + se€z) (e, eu) + Lhr. (up + sey, 2n + s€;) (eu, €z) -

Using the definition of the Lagrangian functional and the possibility to split it into
a discrete and a continuous part as well as the fundamental theorem of calculus
leads to

piy (un, 2n) (ew) = (Ln),,, (un, 2n) (€w)
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= L3, (un, 2n) (ew) — 6L3, (un, 2n) (ew)
=g(0) —g (1) = 6L, (un, zn) (eu)
1

/ g (5) ds — 6L], (un, z0) (ew)
0

/ﬁuu (up, + sey, zn, + sez) (ey, ey) ds

up, 2n) (€2) — L, (u, 2) (e2) — 0L, (un, z1) (eu)
Ln),, (un, 2n) (e2) + An (up) (e2)

(e2) = A, (un) (eu, 2n) + A’ (up) (€u, 2n)
up) (e2) + Ap (up) (e2) — Ap™ (up, 21) (€u)

L
= 5p + (
A (un)
=dp+ pn (
and to equation (13). The simplified error representation can be deduced from the
remainder term R;Lz) by applying integration by parts and the identities (3) and (4)

/Euu (up + sey, z) (ey, ey) Sds

L, (up, + seu, z) (eu) ds — [Ly, (up + sey, 2) (eu) SLI)

I
\_

(u) Z) - L (Uhv Z) - 'C; (U” Z) (eu)
(u) = Ly (up, 2) — 6L (up, 2)
(u) = J (un) — pn (un) (€2) — pn (un) (zn) — Ap (up) (2),

which finishes the proof. i

I
~ S ©°

Remark 2.5. The simplified error representation (14) can be reformulated by using
definition (8) as

T (w)—J (up) = pn (un) (e2)+Ap (up) () +pn (un) (20) +Ap (up) (z1) + Ry

Remark 2.6. If we assume that the quantity of interest is a linear functional and
that the semi-linear forms .4 and Aj, are affine-linear in the first argument, the

(2)

remainder terms RS) and R, are zero just as the linearisation error p.
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2.2 Error identity concerning the model error

Hereafter, we are going to establish an error identity for the model error. Therefore,
we need to specify what we mean by a model in this context and also by the error
between two models. Since we talked about the different problem formulations
for the continuous and discrete case in the previous section a natural choice would
be to identify the model by the discrete semi-linear form used. Consequently,
the aforementioned model error is defined by the difference of two discretization
errors belonging to different discrete semi-linear forms each.

In order to derive the model error identity we append a second discrete setting to
the problem formulations from above, i.e. in addition to equations (1) and (2) we
consider the task to find uy,, € Vj, C V so that

Ap (unm) (@) =0 Vg, € W, (15)

with a further discrete semi-linear form Ay, : V x W — R. Like before, the
corresponding Lagrangian functional is given by

Ly, (Un) = Ln, (@m@h) =J (Eh) — A, (Eh) (@h)

for g, = (¢, %n) € Vi x Wy The stationary point Zpm = (UWhm, 2hm) €
Vi, x Wy, of Ly, fulfills

Eh (mhm) = J(uhm) 5 (16)
Ly (@hm) (1) =0 V5, € Vi, x W, (17)

Moreover, we define

6Ln (y) == Lu () — Lu () = A (¥) (¢) — An () ()

for arbitrary y = (¢, ) € V. x W.

Again, we allow the situation that the equations (15) — (17) are not fulfilled exactly.
However, we assume that (2) holds exactly. Under these assumptions we formulate
the model error identity describing the difference between the two discretization
errors w.r.t. the quantity of interest J as follows.

Theorem 2.7. Let J and Ay, be three times and Ay, once directional differentiable
in the first argument. Furthermore, x, = (up,zp) € Vi X Wy, and xp,, =
(Uhim, 2hm) € Vi X Wy, are solutions of the primal and dual problem, respec-
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tively. Then we get the model error identity
J (un) = J (unm) = [J (u) = J (unm)] = [J (w) = J (ua)]
1 ! 1 !/
= 0Lp (xhm) + §5Lh (@hm) (em) + ELh (n) (em)  (18)
1— —
+ 5 Ln (@hm) (em) = A (unm) (2m) + RS

with the remainder term of third order in the model error e, = T, — Thm

RG) .=

m

| =

1
/ L (hm + S€m) (€m, €m, €m) s (s — 1) ds.
0

Proof. We recall the idea used in the proof of Theorem 2.1 and replace L by L;, and
Ly, by Ly, respectively. However, we have to keep in mind that equations (15) —
(17) are not fulfilled exactly and thus on one hand we have to add zeros to achieve
the Lagrangian representation for the second discretizations and on the other hand
the terms L}, (x,) (e,,) and E;l (Zhm) (em) do not vanish. Hence, we end up with
equation (18). u|

It should be mentioned at this point that even if we have a numerical exact
solution of the aforementioned equations the derivative terms do not necessarily
vanish since in general neither e,,, € V}, x W}, nor e,, € V}, x W}, holds. For
this reason, we focus on these different situations in which the model error is an
element of the discrete subspaces and adapt the identity (18) to each of them.

Corollary 2.8. We assume the framework from Theorem 2.7 that the equations (2),
(11), (12), and (15) — (17) are fulfilled exactly and that additionally the correlation
of the discrete subspaces is either

Vh cVy, and Wh c Wy

or

Vi, C Vh and W C Wh.

Then the model error identity (18) can be reduced to

T (un) = J () = 0L (2m) + 30L (Zm) (em)
(19)

1—
+ ELIh (Zhm) (em) + R
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or
1
J (uh) —J (uhm) = 0Ly, (th) + §5L;L (.I‘hm) (em)
(20)
+ 3L () (o) + R,

Proof. We consider the first case. With V), C V and W}, C W), we have e,, €
V}, x W}, and thus equation (19) deduces from equation (18) using identity (12).
The second case follows with analogous arguments. o

These subset relationships occur for example if we want to combine continuous
and discontinuous Galerkin methods or use discretizations on different refinement
levels.

If the two discrete problem formulations only differ in the semi-linear forms
but the discrete subspaces are identical the model error identity can be further
simplified:

Corollary 2.9. We presume that the assumptions of Corollary 2.8 hold and that
the discrete subspaces are additionally identical, i.e.

Vh = Vh and Wh = Wh.

Then the model error identity (18) reduces to
1
J (un) = J (tnm) = OLn (whm) + 50U (2hm) (em) + R, 1)

Remark 2.10. The explicit dependency of the stationary point x; and the as-
sumption of identical discrete subspaces can be circumvented by applying the box
quadrature rule instead of the trapezoidal rule. Requiring the relation Vj, x W}, C
V1, x Wy, the model error identity reads

J (up) — J (tpm) = 6Lp (hm) + 6L, (2hm) (em) + R, (22)

Here, the remainder term is only of second order in the model error e,, and given
by

1
R .= /LZ (Thm + S€m) (Em, em) s ds.
0

Remark 2.11. The remainder terms Rg) and R%) vanish, if the quantity of inter-

est is a linear functional and and if the semi-linear forms A;, and A;, are affine-
linear in the first argument.
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2.3 Numerical approximation of the error identity

After establishing error identities for the discretization and model error we con-
sider the task to derive suitable error estimators and realize the numerical approx-
imation and evaluation. An overview of different strategies is presented, e.g., in
[4, Section 4.1] or [7, Section 5].

At first, we deal with the estimation of the discretization error. Since the re-
mainder terms R;lz) and RS) are usually of higher order in the primal and dual
error e, = (ey, ;) they are negligible. Nevertheless, there is still a dependency
of the error identity on the analytical primal and dual solutions, which are not
available in general. Therefore, we need adequate approximations of them. These
can be provided with solving the problem by finite elements of higher polynomial
degree or more efficiently by patch reconstruction techniques. For simplicity we
do not distinguish between the different techniques but substitutionally denote the
approximation of the unknown analytical solutions « and z by the operator IT.
Assuming a problem formulation that fulfills the aforementioned conditions the
discretization error can be estimated by

M= %ph (up) (T1(2) — 2) + %pZ (un, z) (T(w) — up)
+ 380 (un) (T1(2) = ) + 389" (s 20) (1) =) P
+ pn (un) (zn) + Ap (un) (z1)
and
my + = pu (up) (TN(2) — 21) + Ap (up) (TX(2)) + pp (un) (z1) (24)

based on equations (5) and (14), respectively.

In a second step, we consider the model error identity for numerically exact
solved discrete problems. As before, we want to detect terms of higher order that
are negligible within a model error estimation. Therefore, it is useful to obtain
some a priori estimation of the various terms arising in equations (18) and (22).
Assuming that the operator L}, : V x W — (V' x W)’ satisfies a stability property
on Xy, := (V x Wp,) U (Vh X Wh), i.e. for Cs > 0 it holds

ly1 = w2llx, < CslILy (1) = L (12) s » (25)

we obtain an upper bound for the model error e,, of the form
lemllx,, = llzn — zamlix, < CsllL (@n) = Ly (2hm)lIx;,

-/
< Cs (It @n)lx, + T )l + 6L, (@am) ;)
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Applying this to equation (18) leads to
17 ()~ 7 ()| < 100 Conon) 5 (1L )l + [T ),
8L, (@hm)lx; ) e lx, + [ (unm) (zam)| + (R
< 16U ()] + 55 (ILh ()l + 1T ()l

2 —
L (rm)lxg, )+ [ () (za)] + RS

where Rg) is of third order in the error e,,. Depending on the relationship of
the discrete subspaces contributions containing L}, or [,h may equal to zero. The
term &L, describes the difference between the two models and is given by the
difference of the two semi-linear forms. Assuming that this perturbation and also
its derivative are sufficiently small, then there is a constant 0 < C' (Ah, Xh) <1
with

|5Lh (.Thm)| <C (.A}“.Zh) H*ThmHXh and
8L, (@), < € (Ans An) 1,

Referring to the situation described in Corollary 2.9 the inequality reduces to

_ 1 _
17 (un) =7 (unm)| < C (A An) llennllx, + 5C (An, An)* llenal, + RG]

Since the remainder term is of third order in the error e, it is also of third order in
the constant C' (.Ah, Xh). As aresult, the model error estimator 7, is establish by
neglecting higher order terms w.r.t. C' (Ah, Xh) and is given by

N = 6Ly (Thm) — Ap (Wam) (2hm) = —An (Uhm) (Zhm) - (26)

In the concrete setting detailed investigations on the different terms have to be per-
formed taking into account the characteristics of the current problem formulation.

W.r.t. adaptive mesh refinement as well as a local adaptive choice of the model
given by the different semi-linear forms, a localization of the estimated discretiza-
tion and model error to each element is indispensable to get local indicators. Sev-
eral different techniques to realize this localization are known: The classic ap-
proach is based on integration by parts on element level, see, for instance, [7, Sec-
tion 3.1]. Whereas filtering techniques are introduced in [10]. A quite new kind of
localization is developed in [32], which uses a partition of unity. In this article, we
employ filtering techniques.
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3 Application to selective reduced integration

In this section, we apply the general framework introduced in the last section to
a representative model problem to present its functionality and point out possible
difficulties. For sake of simplicity, we focus on the problem of linear elasticity for
nearly incompressible materials taking into account the plain strain assumption
to end up in a two-dimensional problem. The semi-linear form A is given by an
additive composition of a bi-linear form @ and a linear form [ with

A@W) (p) =a(,9) —1L(p), (27)
a(,p) =(C:Dy, Dyp),, (28)
L) =(fs @)o+ (9, 7 (©))ry (29)
Vsz{«peHl (QR?) "y(go):()onl—‘l)}. (30)

Here, (-, -), is the standard L? scalar product on the polygonal domain Q C R?.
Its boundary 0Q is subdivided into two parts I';, and I'y, where we assume that
the Hausdorff measure of I, is greater than zero. The L? scalar product on Iy is
denoted by (-, ~)1-N. The symmetric gradient is given by D, : stands for the tensor
double contraction and  denotes the trace operator. The body and the traction
force are described by f € L? (Q,R2) and g € L? (FN, Rz), respectively. The
linear form is composed by

L(p) = (f: ¥)o+ (9, 7 ())ry -

For linear isotropic material behavior, the elasticity tensor C is given by
1
C=2u (H3I®I> + KI® 1,

with the fourth and second order identity tensors I, | and the shear and bulk moduli
pu, K € LT (Q) == {v e L>®(Q) | v(x) >0 ae. in Q}, respectively. In correla-
tion with nearly incompressible material behavior it is more common to talk about
the Poisson’s ratio v than about the bulk modulus K. Given the Poisson’s ratio
v € L (Q) the bulk modulus is given by

~ 2u(14v)
K= 3(1—-2v)

Although, the bi-linear form a is H'-elliptic — due to Korn’s inequality — as well
as continuous, i.e.

alvllip <a@,v) and a(y,9) < Clllglellu, Yo,0 €V,



16 D. Kumor and A. Rademacher

the constants « and C' depend on the material parameter K and p. More precisely,
we have a < pand C' > K + p. Recalling Céa’s Lemma, we have to take into
account the quotient C'/« for the error estimation. In the case of nearly incom-
pressible materials v is very close to 0.5, resulting in a significantly greater bulk
modulus K than shear modulus g, i.e. K > p. Thus we end up in a bad estima-
tion due to an increasing quotient that is proportional to K. This phenomena can
also be observed within finite element computations and is known as volumetric
or Poisson’s locking. There are different possibilities to overcome the drawback of
this formulation. One of them is the modification of the bi-linear form a another
will be discussed later on.

The aforementioned modification is based on a special treatment of the vol-
umetric part of the bi-linear form «a in the discrete problem formulation. In or-
der to achieve a consistent presentation, we reformulate the problem formulation
stated in equations (27) - (29). Starting from a two field formulation based on
the Hellinger-Reissner functional, see e.g., [3], we split up the stress field o into
the volumetric and deviatoric part. Recalling that 0¥ = —pl and requiring that
o = (C:D u)deV we get a formulation in the displacement field » and the me-
chanical pressure p. Further we define an operator P : H' (Q, Rz) — L*(Q) such
that P fulfills

I: (D) +1:A:P(p)1=0 aeinQ, (31)

with the compliance tensor

1
A=C"'= I—=-I®l — Il
2,u( 3®>+9K®

Replacing the mechanical pressure p by the operator P leads to a bi-linear form
a(pe) = (C: (D)™, (DR)™) + (AP PP
= (C: @)™, DP)™) + P W), P(©)x
with the weighted scalar product (-, -) -1 = (K‘l-, ')0 = (-7 K‘l-)o. Since
P (p) = —K div (i) is a feasible choice a can be seen as a specialization of a.

To establish the discrete problem we choose a triangulation 75, of € using quadri-
laterals with Q = (J keT;, I and a finite dimensional subspace

Vii={un €V |tnlx = tnoF ' th e QER), KT}, (32

where @ (K IR?) is the space of vector valued functions on the reference element
K having bi-linear polynomials in each component. The function F' : K-> K
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maps the reference element to the respective physical element K and is bijective
and orientation-preserving. Furthermore, we introduce the discrete subspace
My = {&n € Mi=I*(Q): &l =& o F~', & € R(K), K € Th},

~

where Py(K) is the space of constant scalar functions. With this subspace we de-
fine a discrete operator Py, : H'! (Q, Rz) — M}, such that Py, fulfills equation (31)
in a weak sense, i.e.

(I (D) +1: AP, (o)1, Ch)o =0 V¢, € M,

Straight forward algebraic calculations lead to the equivalent but more compact
definition

(Pn(p), Cn)g—1 = (=K div(p), Cu) -1 VCh € Mp,. (33)

Within a finite element computation the determination of Py can be realized, e.g.,
by using a one point Gaussian quadrature rule only in the volumetric part. This is
why the approach is also known as selective reduced integration, see, e.g., [18].

3.1 Estimation of discretization error

We consider the situation described above in the framework presented in Section
2.1. The continuous problem formulation with homogeneous Dirichlet boundary
conditions reads: Find v € V so that

Au)(p) =0 VeoeV,

in which A and V' are defined using equations (27) - (30).

Keeping in mind that a defined in equation (28) can be interpreted as a specializa-
tion of a the discrete problem can be derived from the continuous one by replacing
the operator P with its discrete counterpart Py, defined in equation (33). Thus, the
problem formulation is given by:

Find uy, € V}, so that

Ap (un) (pn) =0 Vop € Vg, (34)

with V}, as in equation (32) and
An (¢n) (en) = an (¥n, on) — L (en) (35)
an (Y 01) = (C: (DY), D))+ (Pr (), P (@) - (36)
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Recalling Theorem 2.1 we may identify the different parts as

pn (un) (1) =1(-) —an (up, ),
P (uns zn) () = J" (un) (-) — an (-, 21) ,
Ap (up) (-) = (Pn (un), Pn(+)) -1 — (KdiV (un) , div (+))
= (Pn (un), Pn (-)) -1 — (P (un), P () g
= (Pn (up) —P(un), P (")) g1
Ap” (up, zp) () = (div (), Pn (2) — K div (21)),

using the definition of Py, in (33). Hence, the error identity reads

J (u) = J (un)

1

=3 [pn (un) (€2) + pf, (uns 2n) (€u) + Ap (un) (e2) + Ap™ (un, 21) (ew)]
(3)

+ pn (up) (zn) + Ap (up) (21) + Ry,

Further on, rearranging the term

Ap (un) (2n) = 5 [(Ph (up) — K div (up) , div (23))o]

N =

+ % [(div (up) , Pp (zn) — K div (z))o]

= lAp (up) (zn) + %AP* (un, zn) (un)

2
we have
T () = J ()
= 2 Do () ) (i, 20) () + B (un) (2) + 80" (i, 20) ()]

+ pn (un) (1) + R,

Because of A4 being affine-linear in the first argument the remainder term only
depends on the quantity of interest J, i.e.

1

/J’” up + sey) (e, ey, ey) s (s — 1) ds.
0

N\'—‘
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Neglecting the remainder term of higher order the error estimator 7, reads

3 o (un) (T1(2) = 2) + 93 (s 2) (TECw) — ) )

+ Ap (up) (T1(2)) + Ap™ (un, 21) (X1(w))] + pr (un) (21)

with T1(-) being the approximation of the primal and dual solution, respectively.

Nh =

3.2 Numerical example

At first, we consider a smooth problem and choose an analytic primal solution
ue C® (Q, ]Rz) given by

1 23“ [sin (7 (x — 0.5)) + 1] cos (2 (y — 0.25))

14 1+V) cos (m (x — 0.5)) [sin 27 (y — 0.25)) + 1]

u(z,y) =

for Q := (0,2) x (0,1) C R% The material parameters are chosen as constant
functions, i.e. v (z,y) = v = 0.25 and p (z,y) = p = 1.0. With this definition it
holds u = 0 on 0Q and

2
div (u(z, y)) = m cos (x (z — 0.5)) cos (2 (y — 0.25)).
Thus, div (u) tends to zero for v — 0.5. The volume force f results from the
strong form of the partial differential equation, i.e. f := —div (o(u)), and for the
linear quantity of interest J we choose the integral mean value over a certain sub-
set B := [1.4,1.6] x [0.15,0.65]. However, instead of using the non-smooth char-
acteristic function of the subset B we replace it by a continuously differentiable
approximation xp, based on B, = [1.4 — a,1.6 + a] x [0.15 — ,0.65 + o
and cubic cut off polynomials. Thus, setting B := By s we define the quantity of

interest by

1 1
J(u):|§E/ul—l—uzd(m,y):|§|Q/(u1+uz)xéd(m,y).

In order to evaluate the error estimator presented in equation (37) we need
to specify the reconstruction operator I1. Assuming that the triangulation has a
patch structure, the higher order approximations of the analytical quantities can be
achieved by a bi-quadratic patch interpolant operator IZh’ cf., for instance, [7, Sec-
tion 5]. Thus, the evaluation of the discretization error estimation relies on the
formula

N = Mh + 1A + 1N (38)
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(a) Effectivity indices for error estimation with (b) Effectivity index taking into account addi-
and without additional terms. tional terms for v — 0.5.

Figure 1. Effectivity indices in dependence of the number of cells and of Av.
with

[on (un) (I (zn) — 21) + pi, (uns zn) (I, (un) — un)]

[ (un) (I35 (20) + A0 (s 20) (55 un))]

The quality of the derived error estimator 7, may be investigated by considering
the effectivity index I.g. It is given by the quotient of the estimated and the real
errot, i.e. Iefr = n/(J(u)—J(uy)). In Figure 1a we compare error estimations with
and without additional terms, i.e.

Th + 1N
J(u) = J (up)

h

- d I =
T(u)— J (up) O e

1) e =

We observe that using the full error estimator including the additional terms gives
an error representation, which converges to an effectivity index of 1 on the consid-
ered meshes, whereas the restriction to the conventional terms does not. Thus the
additional terms are indispensable.

After that, we consider the nearly incompressible case and study the error estima-
tion for v — 0.5. We choose a fixed discretization on a uniform refined mesh
with 262 144 elements. Figure 1b depicts the development of the effectivity index
dependent on Av = 0.5 — v, the difference of Poisson’s ratio v to 0.5. It can be
observed that the error estimation becomes worse the closer v is to 0.5.



DWR error estimation for modified discrete formulations 21

3.3 Estimation of discretization error using a mixed formulation

In Section 3.2 we have seen that the additional terms have to be taken into account
to get an accurate error estimation. However, the quality of the error estimation
still depends on the Poisson’s ratio v and becomes worse when v tends to 0.5.
Therefore, we deal with a second possibility to overcome the drawback of volu-
metric locking and consider the equivalent mixed formulation. Further details can
be found in [20]. Instead of replacing the mechanical pressure p € L? (Q) with
the operator P we keep it as an independent field and add equation (31) in a weak
sense. Thus the mixed problem reads: Find U € V so that

BU)@®) =0 VdeV (39
withU = (u,p),® = (¢,{) € V=V x M and
BU)(®) = b(u,¢) +c(p,p) = 1(p) +¢(u, () —d(p, ().

The bi-linear forms b, c and d are given by
b:V xV =R, b(“"ﬁ):(Ci(DU)deV,(Dgo)df’V)O,

c:VxM—=R, c(u,¢)=(div(u), ),
d:MxM—=R, dp{) = )k-1-

The resulting formulation is a saddle point problem with penalty term for which a
unique solution exist. For further details on this topic we refer to [12, Chapter 111,
§4].

Following the procedure already described in Section 2, we rewrite the basic
task from equation (39) into a trivial optimization problem. Consequently, we
have to find a stationary point X = (U, Z) € V x V of the Lagrangian functional

L(X)=L(U 2)=J(u)-B({U)(2)

with Z = (z,q) € V. Within this formulation the discretization is straight forward.
We choose a discrete subspace V; C V and try to find a stationary point X =
(Un, Z1) € Vi, x Vy, of L that fulfills

L' (X5) (Ya) =0 VY, = (W), @p) € Vi, X V.

In contrast to Section 3.1, we do not need to modify the Lagrangian functional
since the discrete problem formulation establishes only from restriction to the dis-
crete spaces. Thus we can rely on the classic approach to derive the error identity
for the discretization error,

T ) =T () = 5 (Un) (e2) + 50" (Us Z0) (eur) + p (Un) (Z0) + R,
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with

p(Un) (-) === B(Ux) ()
) = b(up,) —c(pn) —c(un, ") +dPn, ),
p* (Un, Z1) () := J" (up) (-) = B'(Un) (-, Zn)
I (un) () = b (s 2n) — ¢ (2n,) —c(qn) +d (- qn).

|
o~

The remainder term is of third order in the error

ex = (ev,ez) = (eu,ep, €z, 6q) = (W —Up, D — Ph,Z — 21y q — qp) -

and is only affected by the quantity of interest since B is affine-linear in the first
argument, i.e.

N\—‘

1
/J’" up, + sey) (ey) s (s — 1) ds.
0

For the error estimation we neglect the remainder term and use a suitable approx-
imation of the primal and dual solution denoted with the operator I1. Then, the
discretization error estimator 7, reads

= 50 U0 (0(Z) = Z4) + 50 Un, 24) (T0) = Us) + p (U3) (Z).

The next step is to specify the operator II to perform a numerical evaluation of
the established error estimator. The displacement part u and z of the analytical
solution U and Z, respectively, are approximated using the bi-quadratic patch in-
terpolant Iéz}i already introduced in Section 3.2. For the pressure variables p and ¢
we choose the operator I7*. It is based on average techniques [5, 13] also known
as ZZ-approach [35], which are usually applied for a posteriori error estimation.
Thus, the operator II is defined by

(W) := (I (¥n) , 17 (En)) -
The primal and dual residual are evaluated using the representations
p(Un) I(Z) — Zp,)

= 1(I5)(2n) — z1) — b (un, I5)(21) — z1) — ¢ (I (2n) — 2n, ) (40)
— ¢ (un, I (qn) — an) + d (pn, 15 (an) — an)
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and
p* (Un, Zy,) (INU) — Up)
= J' (up) (I3 (un) — un) = b (I (un) — wn, 2n) — ¢ (2n, 15 (pr) — pr)  (41)
—c (Iﬁ(uh) — Up, Qh) + d (15 (pn) — P> an) -

At this point, we may compare the error estimators derived from the pure pri-
mal and the mixed problem. Therefore, we re-substitute py, = Py, (uy,) and g5, =
P (21,) using the operator Py, defined via (33).

At first, we consider the primal residual presented in equation (40) with U ,s“ =
(un, Pn (up)) and Z;* = (24, Py (21)). Applying the definitions of the bi-linear
forms ¢ and d and recalling the definition of P, we get

¢ (I5)(zn) — 2, Ph (un)) = (K div (I3) (zn) = 21) , Ph (un)) ;s
= (Ph (Ig}i(zh) - Zh) ) Ph (uh))K*I

and

d (P (un) , Iy" (Pn (2n)) — Pn (2n)) — ¢ (un, Iy* (Pn (21)) — Pn (21))
= (P (up) — K div (up) , I5* (P (21))) g1 -

Finally, we end up with

P (U:h) <H(Z) - Z,};h) = pp (up) (Igﬁ(zh) - zh)

+ (Pn (up) — K div (un) , Iy (Pn (28))) -1 -
Analogously, we have the identity
P <U£h, Z}lzh) (H(U) — U;“) = pj, (up, zp) (I;)l(uh) — uh)
+ (" (Pu (pn)) s Pu (2) — K div (2n)) 1
for the dual residual (41). At last it holds
p (U/Sh) (Zi};h) = pn (un) (2n)

due to equation (33). In contrast to the error estimator presented in equation (37)

based on the problem formulation in the displacement only, we figure out that
within the additional terms a higher order approximation of P (u) and P (z) is
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Figure 2. Effectivity index of modified and unmodified error estimator for v — 0.5.

needed instead of u and z, respectively. Thus, the modified a posteriori error
estimator in the purely displacement formulation reads

mod

ot = ﬁh + A% + N

= 3 Ion Con) (E520n) = ) + 97 s 20) (15 Can) — )] o
3 180 () (7 (o () + A (un,20) (IF (P (un)]
+ pn (un) (21)

with

Ap (up) () = (Pn (up) — K div (up) , )1,
Ap* (up, 21) () = (- Pn (21) — K div (21)) g1 -

In order to investigate the effects of the modified reconstruction technique on the
quality of the error estimation we recall the example presented in Section 3.2. The
results of the non-modified error estimator 7, and of the modified error estimator
nnod are illustrated in Figure 2. With the improved version given in equation (42)
a precise error estimation is achieved even for a Poisson’s ratio v very close to 0.5.

After dealing with a smooth problem having an optimal rate of convergence
already for uniform refinement, we consider a framework with less regularity. A
typical example is an L-shaped domain with a corner singularity. We adapt this to
the framework of linear elasticity prescribing an analytical primal solution based
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on a singularity function presented in [21]. Using polar coordinates (r,t) € R?
the solution is given by

w(r,t) = ¥ | = (z+ 1)sin(t) 6 () — cos () 96 (1) |

<t <2m.
13 | (z2+1)cos(t)0 (t) — sin (t) 9;0 (t) -

T
2
and fulfills div (u) = 0. The function 6 : R — R reads

0(t) =cosin((z—1)t)+cicos((z—1)t)+casin((z + 1) t)+ezcos ((z + 1))
with constants

co = 0.857971843963184, c1 = 0.190068891083326,
cp = 0.103221773043934, c3 = —0.465943555785929

and z = 0.544483736782463. The domain is given by
Q = (—0.5,0.5)*\ ([0,0.5] x [0,0.5]) C R?.
We demand homogeneous Dirichlet boundary conditions on
I, = {0} x [0,0.5]U[0,0.5] x {0},

and the Neumann boundary condition on I'y = 9Q \ I, reads fy = o (u)n.
The volume force is given by the strong form of the partial differential equation
again, i.e. f = —div (o(u)). Recalling that v fulfills div (u) = O the traction and
volume force reduce to fy = o (u)* n and f = —div (o(u)®), respectively.
For the quantity of interest we restrict our investigations to a linear functional, i.e.
the integral mean value of the first component of the solution w over the whole

domain €,
1
J(u)—/uldﬂ.
[l )

As marking strategy in the mesh adaptive algorithm, we employ the optimal mesh
strategy introduced in [31, Section 4.3]. During the adaptive refinement, we allow
only one hanging node per edge and ensure the patch property of the mesh. Fig-
ure 3a depicts the error in the quantity of interest J for uniformly and adaptively
refined meshes. Within the adaptive case we distinguish between the refinement
based on the localization of the original error estimator presented in equation (38)
and the modified one given by equation (42). We observe a reduced convergence
rate of order N "> for uniform mesh refinement. For both adaptive approaches,
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Figure 3. Convergence analysis results for a Poisson’s ratio v = 0.5 — 1077,

we recover the optimal convergence rate of order N !, with almost identical re-
sults. Also, the adaptive meshes are similar. Hence, we show only an adaptively
refined mesh for the modified error estimator, cf. Figure 3d. We observe strong
refinements in the re-entrant corner as expected. Further, Figure 3b illustrates the
development of the different components of the error estimator 77,‘1‘0‘1. We observe
an almost parallel reduction of 775, and 7720‘1 differing by a factor of approximately
10. From a number of 500000 elements, the influence of the numerical error
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becomes significant, although we use a direct solver. The reason lies in the ill
conditioning of the resulting linear system of equations. Since the estimated nu-
merical error has the same order of magnitude as 71, this part has to be taken into
account as well. In Figure 3c, the effectivity indices for the different approaches
are compared. We find that the original error estimator presented in equation (38)
leads to very bad effectivity indices in the order of 10°. The modified estimator
given by equation (42) leads to approximately constant effectivity indices in the
order of 0.36 using uniform mesh refinement as expected. Whereas we find ef-
fectivity indices converging to 1 for the adaptive approach based on the modified
estimator.

Recollecting the results of the previous examples we conclude that in frame-
works in which continuous and discrete semi-linear form differ the additional
terms in the error identity presented in Theorem 2.1 are not only of theoretical
interest. Much more they are indispensable to achieve an accurate error estima-
tion. However, special care must be taken to the higher order approximations of
the analytical primal and dual solution. We have figured out that an adjustment
is necessary dependent on the currently considered problem. Here, a higher or-
der reconstruction of the divergence is required in the additional terms to get a
correct error representation independent of the choice of v. Further, the adaptive
algorithms based on both estimators show an optimal convergence order.

3.4 Estimation of the model error

After dealing with the a posteriori estimation of the discretization error we focus
on the model error. Referring to Section 2.2, the two models are given by the
modified bi-linear form (36) using the operator Py on the one hand and the original
bi-linear form (28) on the other, i.e.

An (¥n) (pn) = an (Yn, on) — 1 (en)
and

A (9n) (@n) = a (1, 21) = L(@n) -
Since the discretization is the same in both models, i.e. V}, = V', we can rely on
the simplified model error identity (21). For the sake of simplicity, we assume the

quantity of interest to be a linear functional. Then the derivative of the Lagrangian
functional £}, defines a linear operator L : X;, = V}, x V}, — X], with

(Yny on) = L (Yn, on) = (an (s 0n)  an (Yn, ) -

and the problem can be reformulated using operator notation: Find (up, z,) €
Vi, x Vj, so that
L (uh, Zh) = (J, l)
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holds. The bi-linear form
A (un, 205 Yns on) 2= (L (uns 2n) 5 (n,n))xr x, = an ($n, 20) + an (un, pn)
induced by L is elliptic. Hence, the operator L fulfills the stability property (25).

For the perturbation JL;, we get

OLn (2hn) = (P (unm) , P (2hm)) g1 — (P (whm) , Ph (2m))
(P (uhm) — Py (Uhm) , P (th))K*'

and for the derivative
5";1 (th> (yh) = (P (d)h) ) P (th) - Ph (th))Kfl
+ (P (uhm) — Py (uhm) ’ P (@h))K*l .

Further, we have

[6Ln (@hn)| < |1 (unm) =P (wnn) 2 | P (zhn) 2

1
< [P (uhm) = P (w2 e

and
0Lk () ()l < P (Dn)ll 2 1P (zhim) = Ph (zm) 2
1P () — P ()2 P (o)l g2
K K
< (IIP (zhm) = P Gzhm)ll 12
1
+ [P (unm) — Py (uhm)HLi(il)HK”[/;OHyh”X
with the weighted L?-norm ||| ;2 = (- -)II/(Z,]. At this point, we need to esti-
.

mate the difference between the two operators P and Py,. It holds

1P (utim) = P (upm )z < I[P (w) =P (unm)2

+ 1P (u) = Pu (w)llz2 |+ [IPn (u) = Po (unm)llzz -

1

Assuming the primal and dual solution to be in V N H'™ (Q,R?) for § > 0,
respectively and applying a prior error estimates leads to

1 1
IP () =P Cnm) 2, < WKl = vl < K Cal e
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for the first term. For the third term we refer to the result of the first term and use
equation (33)

[P (w) = Ph (unm)l[72
K—1
= (Pn (u) — P (upm) , P(u) = P (upm)) -1
<I[Pn (w) = Pn (unm)ll 2 _ 1P (u) =P (unm)ll 2 _ -
Thus
1
[Ph () = P ()2 < 1P (u) = P (unm)llzz | < K[| Cah® ]| o

The second term describes the quality of the piecewise constant interpolation of
P (u). Using the Bramble-Hilbert-Lemma and a scaling argument, we get

[P () = Pu ()l 2| < 1Kl [P (w) = 1) (P (w))] 12
< KL Crh|[P ()| o
< NE 2 Lo 1K || o Crh |ful iso

and finally we end up with
1P Cunin) — Pr Cunm)llzz
< (2Ca + Crl K ooe 1K 2 ) IR ull oo
Carrying out the analogous argumentation it holds
1P (zhm) = Ph (zhm)ll2
< (20 + Gl K Pl | UL ) IR 2] oo

All in all, we have an upper estimation of dLj, and JL}, of the following form,

10Ln (Zhm)| < C'|lzhmlIx,
0L%, (@hm) (yn)| < C"llynllx,

with
C" = (204 + Coll K~ e 1K e ) 1S Lol oo i,

_ 1
" = ((2Ca + CrlE e K £ ) (lull oo + 12l re0) ) 11
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Set C' = max {C’,C""} and recall that C’ and C" are of first order in h? we can
achieve C' < 1 for a sufficiently small mesh size h.

Recalling the simplified error identity from equation (21) we obtain that the first
term is of first order and the derivative term of second order in the constant C'.
Moreover, the remainder term vanishes due to the linearity of the entire problem.
Thus, neglecting the higher order terms, i.e. the derivative part, the model error
estimator reads

Nm = —An (Unm) (Znm)
= (P (unm) — Pn (unm) » P (2hm)) 1
= (K div (urm) — Pn (Upnm) , div (zhm))o .

3.5 Numerical example

In this example we combine mesh and model adaptivity considering the second
framework introduced in Section 3.2. In addition, we allow a non-constant Pois-
son’s ratio v to localize the nearly incompressible material in a certain region of
Q. More precisely, we define a circular subset with radius R = 0.1, centered in
M = (—0.37,0.19) and assume the material to be nearly incompressible therein.
On the complement, we choose a moderate value, i.e.

025, /(e — M, +(y— M)} >R
Cu,s \/(as—Mm)2+(y—My)2 <R

v (1‘, y) =

with arbitrary ¢, € [0,0.5), here ¢, = 0.4999999. As in Section 3.2 we replace
v (x,y) by a smooth approximation v, (z,y) using a cubic polynomial in the tran-
sition zone [R — a, R + o] with v = 0.02.

The mesh and model adaptive algorithm is based on the following procedure. We
start the algorithm computing a solution of the initial discrete problem using the
semi-linear form Aj, everywhere in Q. After estimating the discretization and
model error we compare the global estimations. If |7,,| > 0.4|n,| only an adjust-
ment of the model distribution is performed, otherwise there will be an adaptive
mesh refinement only. The marking of cells refers to the optimal mesh strategy for
mesh refinement, see [31, Section 4.3], and a fixed fraction approach, see [4, Sec-
tion 4.2], with ¥ = 0.45 for model adjustment, respectively.

Figure 4 shows sample iterations of the mesh and model adaptive algorithm. In
the first four iterations only an adjustment of the model distribution is performed.
Whereas during the ongoing iterations we have adaptive mesh refinement only.
The change from the initial model, i.e. from the semi-linear form .Aj, to .4}, obvi-
ously occurs in the expected region. The nearly incompressible area is identified
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(a) Iteration: 1. (b) Iteration: 3.
(c) Iteration: 5. (d) Iteration: 9.

Figure 4. Different stages of the mesh and model adaptive algorithm with model
distribution (red: Ay, blue: Ap,).

by the model error estimator, compare the red “square” on the left of the L-shaped
domain in Figure 4b. Since the estimation basically depends on gradient infor-
mation we find an unexpected model change around the re-entrant corner as well.
This results from large gradients due to the corner singularity. The resulting mesh
has a typical element distribution with concentrations around the re-entrant corner
resolving the singularity and in the transition regions from Dirichlet to Neumann
boundary conditions. However, it is not affected by the nearly incompressible
region at all.

The progress of the model and discretization error estimator is shown in Fig-
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Figure 5. Convergence analysis results for the mesh and model adaptive algorithm.

ure S5a. Up to the third cycle there is no real change within both estimators. Consid-
ering the fourth cycle, we have a significant reduction of the model error estimator
leading to a mesh refinement this time. From this point on there is only mesh
refinement due to the nearly parallel reduction behavior of both estimators. The
numerical error is not significant within this example because it is only in the order
of magnitude of 10~'°. In Figure 5b, we consider on the one hand the number of
mesh cells showing again that we have model changes only in the first iterations.
On the other hand, the effectivity indices of the model and discretization error
estimator are depicted and we observe values converging to 1.

With this example, we substantiate the efficiency of the mesh and model adap-
tive algorithm as well as the accuracy of the estimator. It shows that the algorithm
works as expected and detects the region of nearly incompressible material. Erro-
neously, a small additional region around the re-entrant corner is identified as such
regions as well. Further, we observe an untypical mesh dependency of the model
error estimator. However, this behavior is expected since the model error mea-
sures the difference between two discretisation errors which are mesh dependent
themselves.

4 Conclusion and Outlook

In this article, we have extended the usual DWR framework to include also dis-
cretizations, where the continuous and the discrete semi-linear form differ and no
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further consistency assumptions hold. In this case, several additional terms have
to be taken into account. Here, we study a comparatively simple model situation
given by the selective reduced integration approach for nearly incompressible lin-
ear elasticity to test the introduced framework. Using a suitable approximation of
the analytic variables in the error identity, we see an accurate error estimator and
an optimal convergent adaptive algorithm in the numerical experiments. The sec-
ond main contribution of the article at hand lies in the estimation of the modeling
error arising from the use of two different discrete semi-linear forms. Extending
the usual techniques on the continuous level to the discrete case, we also observe
an accurate estimator as well as an efficient model and mesh adaptive algorithm in
the numerical examples.

Ongoing research focuses on the more complex finite element formulation of
solid-like shell elements. Here, similar problems occur due to several stabiliza-
tion techniques which include without limitation an in-plane reduced integration
scheme to prevent, e.g., membran locking. Within this context the model adap-
tive aspect becomes more important since using solid-like shell elements instead
of volume elements leads to a remarkable reduction of the number of degrees of
freedom and thus results in significant lower computational costs. First results
discussed in [19] show great promise.
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