
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 No. 609         June 2019 
 
 
 

Monolithic convex limiting for  
continuous finite element discretizations  

of hyperbolic conservation laws 
 

 
D. Kuzmin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ISSN: 2190-1767 



Monolithic convex limiting for continuous finite element
discretizations of hyperbolic conservation laws

Dmitri Kuzmina

aInstitute of Applied Mathematics (LS III), TU Dortmund University,
Vogelpothsweg 87, D-44227 Dortmund, Germany

Abstract

Using the theoretical framework of algebraic flux correction and invariant do-
main preserving schemes, we introduce a monolithic approach to convex lim-
iting in continuous finite element schemes for linear advection equations, non-
linear scalar conservation laws, and hyperbolic systems. In contrast to flux-
corrected transport (FCT) algorithms that apply limited antidiffusive correc-
tions to bound-preserving low-order solutions, our new limiting strategy ex-
ploits the fact that these solutions can be expressed as convex combinations
of bar states belonging to a convex invariant set of physically admissible so-
lutions. Each antidiffusive flux is limited in a way which guarantees that the
associated bar state remains in the invariant set and preserves appropriate local
bounds. There is no free parameter and no need for limit fluxes associated with
the consistent mass matrix of time derivative term separately. Moreover, the
steady-state limit of the nonlinear discrete problem is well defined and indepen-
dent of the pseudo-time step. In the case study for the Euler equations, the
components of the bar states are constrained sequentially to satisfy local max-
imum principles for the density, velocity, and specific total energy in addition
to positivity preservation for the density and pressure. The results of numerical
experiments for standard test problems illustrate the ability of built-in convex
limiters to resolve steep fronts in a sharp and nonoscillatory manner.

Keywords: hyperbolic conservation laws, positivity preservation, invariant
domains, finite elements, algebraic flux correction, convex limiting

1. Introduction

The discretization of hyperbolic conservation laws using continuous finite el-
ements requires the use of advanced shock-capturing techniques based on (gen-
eralized) discrete maximum principles. If the exact solution of an initial value
problem is known to lie in a convex invariant set, numerical approximations
should be constrained to stay in this set as well. Discretizations that provide
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this property are called invariant domain preserving [29, 25, 28]. Additionally,
global bounds depending on the boundary conditions and local bounds depend-
ing on the solution values at neighboring nodes / previous time steps may need
to be enforced to avoid numerical instabilities and spurious oscillations. Since
both global and local maximum principles can be formulated using equivalent
nonnegativity constraints, numerical schemes satisfying the above requirements
are often called positivity preserving or simply positive.

Recent years have witnessed an increased interest of the finite element com-
munity in the analysis of existing and design of new bound-preserving schemes
for convection-dominated transport problems. New algebraic approaches based
on the flux-corrected transport (FCT) methodology [15, 46, 48, 70] and various
generalizations of total variation diminishing (TVD) limiters [33, 34] were de-
veloped using the unified framework of algebraic flux correction (AFC) schemes
[6, 10, 26, 40, 42, 54]. Moreover, a breakthrough was achieved in the field of
rigorous theoretical analysis for nonlinear high-resolution AFC schemes based
on continuous finite element approximations [9, 11, 26, 52].

Modern limiting techniques for continuous finite elements trace their origins
to edge-based FEM developed in the 1980s and early 1990s [55, 59, 60, 62, 63, 64].
In view of the equivalence between linear finite elements and vertex-centered fi-
nite volumes [27, 65, 66], edge-based extensions of FCT and TVD-like schemes
can be constructed in a fairly straightforward manner. The AFC formalism
presented in [42, 43] provides algebraic interpretations of local extremum di-
minishing (LED) schemes [35, 36, 37] that use artificial diffusion operators and
flux limiters to enforce discrete maximum principles. Localized element-based
limiting procedures for scalar conservation laws and hyperbolic systems were
proposed in [16, 18, 40, 44, 54]. The way in which the limiter is localized in
element-based and edge-based FCT schemes of this kind forms the basis of what
Guermond et al. [25, 27] named convex limiting in the context of second-order
invariant domain preserving schemes for hyperbolic systems.

The theoretical studies of Barrenechea et al. [8, 9, 11] provided new insights
into the properties of AFC schemes for steady convection-diffusion equations
and stimulated the development of improved limiter functions [10, 40]. The cor-
responding theoretical results for steady and unsteady linear advection problems
were recently obtained by Lohmann [52]. The design of edge-based invariant
domain preserving (IDP) finite element schemes for time-dependent nonlinear
conservation laws and hyperbolic systems was greatly advanced by the recent
work of Guermond et al. [26, 27, 25, 28] who derived such schemes using a very
general and abstract theoretical framework based on convexity arguments. The
second-order versions of their IDP schemes are based on a predictor-corrector al-
gorithm of FCT type. At the first stage, a low-order approximation is calculated
using graph viscosity based on a provable upper bound for the guaranteed maxi-
mum speed (GMS). At the second stage, an antidiffusive correction is performed
using edge-based convex limiting to maintain the IDP property.

As shown by Lohmann [52], multistep limiting procedures provide LED prop-
erties with respect to extended stencils, which may result in a lack of mono-
tonicity. To avoid bounded phase errors within the range of IDP values, some
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high-order stabilization may need to be included [26, 54]. If fractional-step al-
gorithms are used for limiting purposes, pseudo-time stepping schemes do not
converge to steady state solutions. Monolithic AFC schemes [42, 52] lead to
well-posed nonlinear discrete problems but the accuracy and convergence be-
havior of constrained finite element approximations depends on the choice of
the involved free parameters. Moreover, existing extensions of such schemes
to hyperbolic systems [61] cannot be analyzed using the concept of invariant
domains as long as this concept is restricted to initial value problems.

The convex limiting strategy proposed in this paper makes it possible to
constrain the antidiffusive part of the continuous Galerkin discretization in a
manner which guarantees IDP properties and does not inhibit convergence to
steady state solutions. No free parameters are involved and local maximum
principles hold with respect to compact stencils. Using the representation of
the low-order method in terms of invariant domain preserving bar states, we use
these states to define the IDP bounds for the limited antidiffusive fluxes. The
resulting limiting procedure has the structure of a localized FCT algorithm in
which the original bar state (rather than the nodal value of a low-order solution
assembled from multiple bar states) is adjusted in the process of antidiffusive
corrections. The resulting nonlinear discrete problem has a well-defined steady-
state residual and exhibits the structure of a monolithic AFC discretization but
the correction factors for the antidiffusive fluxes are determined using the bar
states (rather than the nodal values) of the solution from the previous iteration
or time step. In Sections 2 and 3, we explain the underlying design philosophy
for the continuous P1/Q1 finite element discretization of a generic hyperbolic
problem. In Sections 3 and 4, we discuss convex limiting for linear advection
equations, nonlinear conservation laws, and hyperbolic systems. In the last two
sections, we perform numerical studies and draw preliminary conclusions.

2. Low-order invariant domain preserving schemes

Let u(x, t) ∈ Rm denote the local density of m ∈ N conserved quantities at
the space location x ∈ Rd, d ∈ {1, 2, 3} and time t ≥ 0. In many models of
computational fluid dynamics, the evolution of such quantities is governed by
linear or nonlinear hyperbolic conservation laws which can be written as

∂u

∂t
+∇ · f(u) = 0 in Ω × R+, (1)

where Ω ⊆ Rd is the domain of interest, f(u) ∈ Rm×d is an array of inviscid
fluxes and (∇·f)k =

∑d
l=1

∂fkl

∂xl
, k = 1, . . . ,m. A set G containing the initial data

u(·, 0) = u0 in Ω (2)

is called an invariant set if u(x, t) ∈ G for all x ∈ Ω and t > 0. A formal
definition of invariant sets and invariant domains for hyperbolic initial value
problems in unbounded domains can be found in [25, 28, 29].
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If the domain Ω is bounded with a Lipschitz boundary Γ = ∂Ω and unit
outward normal n, a natural boundary condition of the form

f(u) · n =

d∑
l=1

fkl(u)nl = fn(u, û) ∈ Rm (3)

can be formulated using the solution of the one-dimensional Riemann problem

∂u

∂t
+ (n · ∇)(f(u) · n) = 0, u(x, 0) =

{
uL for x < 0,

uR for x > 0
(4)

with the internal state uL = u and an external state uR = û ∈ G. Invariant
sets of initial-boundary value problems depend on the boundary conditions (see
Section 4.1 for a definition of G based on a global maximum principle). Ad-
missible sets for stationary hyperbolic problems can be defined in terms of the
inflow boundary data (incoming Riemann invariants for systems).

Integrating the weighted residuals of (1) and (3) over Ω and Γ , respectively,
we consider the following weak form of the boundary value problem:∫

Ω

w

(
∂u

∂t
+∇ · f(u)

)
dx =

∫
Γ

w (f(u) · n− fn(u, û)) ds ∀w ∈W. (5)

Let Wh ⊂ W be the subspace of W = L2(Ω) corresponding to a globally
continuous approximation on a conforming mesh Th = {K1, . . . ,KEh} using
linear (P1) or multilinear (Q1) finite elements. The approximate solution

uh(x, t) =

Nh∑
j=1

uj(t)ϕj(x), x ∈ K, K ∈ Th, t ∈ [0, T ] (6)

is expressed in terms of basis functions ϕ1, . . . , ϕNh
∈Wh such that ϕi(xj) = δij

and ϕi|K ∈ P(K) or ϕi|K ∈ Q(K) on each element K ∈ Th.
Substituting (6) into the Galerkin weak form (5) and using w ∈ {ϕ1, . . . , ϕNh

},
a system of differential-algebraic equations is obtained for Nh discrete nodal
states uj = (uj1, . . . , ujm). For brevity, we will often call xi, i = 1, . . . , Nh
“node i” and Ke, e = 1, . . . , Eh “element e” instead of saying that i and e are
the numbers of xi and Ke, respectively. Let Ei be the set of elements containing
node i and Ni be the set of nodes belonging to these elements. Using this stencil
notation, the m equations associated with node i can be written as∑

j∈Ni

mij
duj
dt

+
∑
j∈Ni

uj
∑

e∈Ei∩Ej

∫
Ke

ϕif
′(uh) · ∇ϕj dx = bi(uh, û), (7)

where
mij =

∑
e∈Ei∩Ej

∫
Ke

ϕiϕj dx (8)
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is an entry of the consistent mass matrix. The sums of element contributions
associated with the boundary integral over Γ are stored in

bi(uh, û) =
∑
e∈Ei

∫
Ke∩Γ

ϕi(f(u) · n− fn(uh, û)) ds. (9)

In the case of a scalar conservation law (m = 1), the vector f ′(u) ∈ Rd is the
characteristic velocity of wave propagation. In the case of a hyperbolic system
(m > 1), the Jacobian f ′(u) is an array of m×m matrices f ′1(u), . . . , f ′d(u). For
any unit vector n = (n1, . . . , nd)

>, the corresponding Jacobian matrix

f ′(u) · n :=

d∑
l=1

f ′l (u)nl ∈ Rm×m

is diagonalizable with real eigenvalues λ1(n, u), . . . , λm(n, u) representing the m
wave speeds, i.e., the projections of m characteristic velocities onto n.

The first-order invariant domain preserving schemes of Guermond and Popov
[28] generalize the concept of discrete upwinding [42, 46] to hyperbolic systems.
Their derivation is based on three conservative modifications of (7). First, the
entries mij of the consistent mass matrix are approximated by

m̃ij = miδij , mi =

Nh∑
j=1

mij =
∑
e∈Ei

∫
Ke

ϕi dx. (10)

This approximation is known as row-sum mass lumping and can be interpreted
as calculation of mij using low-order nodal quadrature. In a similar vein, let
the boundary term bi(uh, û) be replaced with the lumped approximation

b̃i(uh, û) = (f(ui) · n− fn(ui, û(xi)))
∑
e∈Ei

∫
Ke∩Γ

ϕi ds. (11)

Next, the Galerkin flux f(uh) is approximated by the finite element interpolant

fh(uh) =

Nh∑
j=1

fjϕj , fj = f(uj). (12)

Many edge-based FEM for compressible flow problems are based on this group
finite element formulation [20, 21] which can also be interpreted as low-order
nodal quadrature [12]. It greatly reduces the cost of matrix assembly without
degrading the accuracy of the lumped Galerkin approximation.

Using the partition of unity property (
∑Nh

i=1 ϕi ≡ 1) of the basis functions
ϕi, the resulting semi-discrete scheme can be written as [25, 43]

mi
dui
dt

+
∑
j∈N∗

i

cij · (fj − fi) = b̃i(uh, û), (13)
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where N ∗i = Ni\{i} is the set containing the nearest neighbors of node i. The
vector-valued coefficents cij of the discrete gradient operator are defined by

cij =
∑

e∈Ei∩Ej

∫
Ke

ϕi∇ϕj dx. (14)

The final modification of (7) is the addition of diffusive fluxes dij(ui−uj) to
the edge contributions cij · (fj − fi) of the group finite element approximation.
This modification preserves the discrete conservation property if dij = dji for
i, j = 1, . . . , Nh. It leads to the system of ordinary differential equations

mi
dui
dt

= b̃i(uh, û) +
∑
j∈N∗

i

[dij(uj − ui)− cij · (fj − fi)]. (15)

Let i be an interior node of the finite element mesh. Then ϕi = 0 on Γ and,
therefore, b̃i(uh, û) = 0. If time integration is performed using an explicit strong
stability preserving (SSP) method [23], each stage is an update of the form

ūi = ui +
∆t

mi

∑
j∈N∗

i

[dij(uj − ui)− cij · (fj − fi)] , (16)

where ∆t is the time increment. For sufficiently small ∆t, the so-defined ap-
proximation is invariant domain preserving (IDP) w.r.t. G if the parameters dij
are chosen so that ūi ∈ G whenever uj ∈ G for all j ∈ Ni.

To determine artificial viscosity coefficients dij which provably provide the
IDP property under CFL-like time step restrictions, Guermond et al. [25] con-
sidered an equivalent repesentation of (16) in terms of the bar states

ūij =
uj + ui

2
− cij · (fj − fi)

2dij
. (17)

Note that ūij = ūji for nodes xi,xj /∈ Γ since cji = −cij if ϕi = ϕj = 0 on Γ .
The result ūi of the generic forward Euler update (16) can be written as

ūi =

1− 2∆t

mi

∑
j∈N∗

i

dij

ui +
2∆t

mi

∑
j∈N∗

i

dij ūij . (18)

Let ū(n, uL, uR) denote the exact solution of the projected one-dimensional
Riemann problem (4). As explained in [25], the bar state ūij is a space average
of ū(nij , ui, uj) for nij =

cij

|cij | at the artificial time τij =
|cij |
2dij

if

λmax(nij , ui, uj) ≤
1

2τij
=

dij
|cij |

, (19)

where λmax(n, uL, uR) = maxω∈[0,1] spr(f ′(ωuL + (1 − ω)uR) · n) is the fastest
wave speed. For time steps ∆t satisfying the CFL-like condition

2∆t

mi

∑
j∈N∗

i

dij ≤ 1, (20)
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the nodal state ūi defined by formula (18) is a convex combination of ui and
ūij , j ∈ N ∗i . Hence, this approximation proves IDP for dij ≥ λGMS

ij |cij |, where
λGMS
ij is an upper bound for λmax(nij , ui, uj). The abbreviation GMS stands

for guaranteed maximum speed [29, 25]. To define a consistent and conservative
graph Laplacian operator, the GMS artificial viscosity coefficients

dij =


max{λGMS

ij |cij |, λGMS
ji |cji|} if j ∈ N ∗i ,

−
∑
k∈N∗

i
dik if j = i,

0 otherwise

(21)

are chosen to satisfy the symmetry condition dij = dji for i, j = 1, . . . , Nh and
the zero sum condition

∑Nh

j=1 dij = 0 for i = 1, . . . , Nh (cf. [42, 46]).

Remark 1. The above algebraic manipulations can also be performed using
the entries of element matrices instead of the global matrix entries. In such
localized algorithms [18, 44, 54], the element contributions deij to dij are defined
in terms of the element contributions ceij =

∫
Ke ϕi∇ϕj dx to (14).

3. High-order invariant domain preserving schemes

By the Godunov theorem [22], the space discretization defined by (15) and
(21) can be at most first-order accurate. In monolithic AFC schemes [42, 52],
limited antidiffusive fluxes f∗ij are added to dij(uj − ui) in order to compensate
the mass lumping error and remove the artificial viscosity or replace it with
high-order stabilization in smooth regions. The flux-corrected scheme

mi
dui
dt

= b̃i(uh, û) +
∑
j∈N∗

i

[dij(uj − ui) + f∗ij − cij · (fj − fi)] (22)

can be written in terms of the bar states defined by (17) as follows:

mi
dui
dt

= b̃i(uh, û)−

2
∑
j∈N∗

i

dij

ui +
∑
j∈N∗

i

2dij

(
ūij +

f∗ij
2dij

)
. (23)

The corresponding forward Euler step is IDP if the corrected bar states

ū∗ij = ūij +
f∗ij
2dij

(24)

stay in the convex invariant set G. This is generally not the case for f∗ij = fij ,
where fij are the fluxes that transform (15) into a high-order target scheme.
Hence, the fluxes fij must be limited to produce IDP fluxes f∗ij . In the remainder
of this section, we discuss the definition of fij and convex limiting techniques
that can be used to enforce the IDP property in nonlinear AFC schemes.
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3.1. Definition of the raw antidiffusive fluxes
It is easy to verify that the consistent-mass group Galerkin approximation∑

j∈Ni

mij
duj
dt

= b̃i(uh, û)−
∑
j∈N∗

i

cij · (fj − fi) (25)

can be recovered from (15) by adding the high-order antidiffusive fluxes

fHij = mij

(
u̇Hi − u̇Hj

)
+ dij(ui − uj). (26)

In view of (25), the calculation of the time derivatives u̇Hi = dui

dt , i = 1, . . . , Nh
requires (approximate) solution of the well-conditioned linear system∑

j∈Ni

mij u̇
H
j = b̃i(uh, û)−

∑
j∈N∗

i

cij · (fj − fi), i = 1, . . . , Nh. (27)

The time derivatives u̇Li corresponding to the solution of (15) are given by

u̇Li =
1

mi

b̃i(uh, û) +
∑
j∈N∗

i

[dij(uj − ui)− cij · (fj − fi)]

 . (28)

The replacement of u̇H by u̇L in (26) corresponds to using the target fluxes

fij = mij

(
u̇Li − u̇Lj

)
+ dij(ui − uj) = fHij + fS

ij , (29)

where the oscillatory Galerkin component fHij is stabilized by

fS
ij = mij(u̇

L
i − u̇Lj )−mij(u̇

H
i − u̇Hj ). (30)

Definition (29) of the target flux fij was introduced in the context of AFC
schemes [41, 42, 43]. The stabilization properties of fS

ij were explored in numer-
ical studies by Lohmann [52]. The stabilized target (29) produces well-defined
approximations at steady state and is an efficient alternative to the use of dissi-
pative fluxes fSij based on entropy viscosity [26, 25] and other kinds of high-order
stabilization which may be required to achieve optimal convergence behavior
[40, 54] and/or prevent convergence to entropy-violating weak solutions [26].

3.2. Predictor-corrector limiting strategy
The convex limiting procedure proposed by Guermond et al. [25, 27] belongs

to the family of flux-corrected transport (FCT) algorithms. That is, it is based
on a predictor-corrector strategy. The forward Euler update

ūi = ui +
∆t

mi

∑
j∈N∗

i

[dij(uj − ui) + f∗ij − cij · (fj − fi)] (31)
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corresponding to an SSP Runge-Kutta time discretization of equation (22) for
an internal node i is split into the low-order prediction step

uLi = ui +
∆t

mi

∑
j∈N∗

i

[dij(uj − ui)− cij · (fj − fi)] (32)

and the high-order antidiffusive correction step

ūi = uLi +
∆t

mi

∑
j∈N∗

i

f∗ij . (33)

The limited fluxes f∗ij = αijfij are defined using the same scalar-valued cor-
rection factor αij = αji for all components of fij ∈ Rm. The proof of the
IDP property for update (32) was reviewed in Section 2. The calculation of
correction factors αij ∈ [0, 1] for update (32) is based on the representation

ūi =
1

mi

∑
j∈N∗

i

µiju
∗
ij (34)

of the flux-corrected state as a convex combination of edge contributions

u∗ij = ui +
∆t

µij
f∗ij = ui +

∆t

µij
αijfij (35)

with nonnegative weights µij such that
∑
j∈N∗

i
µij = mi. The derivation of IDP

limiters (i.e., of algorithms for calculating the correction factors αij) is based
on the fact that ūi is a convex combination of the edge states u∗ij which stay in
the invariant set G if ui ∈ G and αij are chosen sufficiently small.

An element-based localized FCT algorithm based on the above design phi-
losophy was proposed in [16]. It can be interpreted as algebraic version of the
Barth-Jespersen slope limiter [13] which is well suited for extensions to high-
order finite elements and hyperbolic systems [18, 54, 44]. The first edge-based
localized limiting procedures of this kind were introduced independently in [50]
and [25]. The weights for (34) can be defined e.g., by the formula µij =

mijmi

mi−mii
,

as proposed in Section 4.4.1.1 of [52]. Guermond et al. [25] used µij = mi

|N∗
i |
,

where |N ∗i | = card(N ∗i ) is the number of nearest neighbors of node i.

3.3. Monolithic limiting strategy
As mentioned in the Introduction, FCT-like predictor-corrector approaches

are generally not monotonicity preserving and cause convergence problems in
steady state computations using pseudo-time stepping. To constrain the bar
states without splitting, we propose a new limiting strategy which belongs to
the family of monolithic AFC schemes. In contrast to other representatives of
this family, it does not involve the use of free parameters and leads to very
simple monolithic versions of convex limiting techniques designed for FCT.
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Our representation of the unsplit semi-discrete problem (22) in the bar state
form (23) reveals that the generic forward Euler step can be written as

ūi =

1− 2∆t

mi

∑
j∈N∗

i

dij

ui +
2∆t

mi

∑
j∈N∗

i

dij ū
∗
ij (36)

with bar states ū∗ij defined in terms of the constrained fluxes f∗ij by (24). Note
that the only difference between (36) and (18) is the use of ū∗ij instead of ūij ∈ G.
If the CFL number νi = 2∆t

mi

∑
j∈Ni

dij satisfies condition (20) and the definition
of f∗ij guarantees that ū∗ij ∈ G for ūij ∈ G and, then the IDP property of the
updated nodal state ūi follows by convexity. The trivial choice f∗ij = 0 produces
the bar state ū∗ij = ūij of the low-order IDP scheme. The choice f∗ij = fij
produces the bar state of the unconstrained target scheme. Since neither of
these approximations is generally satisfactory, the limited flux f∗ij should be
chosen as close to fij as possible without producing an unacceptable bar state
ū∗ij /∈ G and/or violating additional limiting criteria to be defined below. The
simplest way to constrain f∗ij ∈ Rm in this manner is to multiply each compo-
nent of fij by the same correction factor αij ∈ [0, 1], as in synchronized FCT
algorithms for hyperbolic systems [25, 48, 53]. However, the use of individu-
ally chosen correction factors for different quantities of interest [18, 44] or even
inequality-constrained optimization approaches [14] to direct calculation of the
fluxes f∗ij may be appropriate for some applications. Some practical algorithms
for calculating αij and f∗ij are presented in Sections 4 and 5.

We emphasize that the analysis of (36) was used to show the IDP property
in the simplest possible setting. In contrast to the FCT approach, which re-
quires the use of explicit SSP time integrators and small time steps, the unsplit
form (31) of our monolithic semi-discrete AFC scheme can be integrated in time
implicitly, and the nonlinear discrete problem corresponding to the steady state
limit (dui

dt = 0, i = 1, . . . , Nh) can be solved using more efficient iterative meth-
ods than time marching with spatially constant ∆t. Moreover, the monolithic
formulation in terms of the bar states ūij is amenable to theoretical analysis.

Remark 2. Using the weights µij defined in Section 3.2, update (36) can also
be written as ūi = 1

mi

∑
j∈N∗

i
µij ũij with the edge states (cf. [5], p. 12)

ũij = ui +
∆t

µij

[
cij · (fi + fj) + dij(uj − ui) + f∗ij

]
. (37)

This representation of ūi is also well suited for convex limiting but the reguire-
ment that ũij ∈ G for uLij = ui + ∆t

µij
[cij · (fi + fj) + dij(uj − ui)] ∈ G leads to

FCT-like inequality constraints in which the bounds for f∗ij depend on the time
step ∆t. Convex limiters based on such constraints are not monolithic.

Remark 3. Similarly to element-based versions [18, 44, 54, 61] of low-order
schemes for AFC, the convex limiting procedure can be further localized to
edges of individual elements using the bar states ūeij and antidiffusive fluxes feij
defined in terms of the edge contributions me

ij and deij to mij and dij .

10



4. Convex limiting for scalar conservation laws

The preservation of global bounds encoded into the definition of the convex
invariant set G is generally insufficient to guarantee monotonicity preservation
and entropy consistency [25]. As shown in [52] for the linear advection equation
and symmetric tensor fields, the low-order scheme defined by (15) is not only
globally positivity preserving but also local extremum diminishing (LED) under
the additional assumption of an incompressible velocity field. In FCT algorithms
for scalar conservation laws, the LED property of the antidiffusive correction
step (33) is enforced by using limiters based on the inequality constraints

min
j∈Ni

uLj =: umin,L
i ≤ ūi ≤ umax,L

i := max
j∈Ni

uLj . (38)

This limiting criterion implies that ūi = G if uj ∈ G for all j ∈ Ni. However,
the investigations and counterexamples presented in [52] show that these FCT
constraints do not guarantee the validity of the local maximum principle

min
j∈Ni

uj =: umin
i ≤ ūi ≤ umax

i := max
j∈Ni

uj . (39)

A sufficient condition for the state ūi defined by (36) to satisfy (39) is given by

umin
i ≤ ū∗ij = ūij + αij

fij
2dij

≤ umax
i ∀j ∈ Ni. (40)

By definition (21) of the GMS diffusion coefficient dij , all scalar bar states ūij
defined by (17) are in the admissible range, i.e., ūij ∈ [umin

i , umax
i ] for j ∈ N ∗i .

To verify the validity of this local maximum principle, we notice that

ūij =
uj + ui

2
− cij · (fj − fi)

2dij
=
uj + ui

2
−
(
cij · vij
dij

)
uj − ui

2
, (41)

where

vij =

{
fj−fi
uj−ui

for uj 6= ui,

f ′(ūij) for uj = uj = ūij
(42)

is the Rankine-Hugoniot shock velocity of the Riemann problem with the initial
states ui and uj . By the mean value theorem, we have

cij · vij = cij · f ′(ωui + (1− ω)uj)

for some ω ∈ [0, 1]. The scalar version of the GMS formula (21) yields

dij = max
ω∈[0,1]

max{|cij · f ′(ωui + (1− ω)uj)|, |cji · f ′(ωui + (1− ω)uj)|}. (43)

It follows that the low-order bar state ūij is a convex average of the nodal states
ui ∈ [umin

i , umax
i ] and uj ∈ [umin

i , umax
i ]. In general, the existence of a correction

factor αij ∈ [0, 1] satisfying (40) is guaranteed if ūij ∈ [umin
i , umax

i ].
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The conservation property is preserved for αji = αij . Hence, an additional
requirement for the choice of αij is given by the inequality constraints

umin
j ≤ ū∗ji = ūji − αij

fij
2dij

≤ umax
j (44)

for the bar state ū∗ji, whose low-order counterpart ūji coincides with ūij if i and
j are internal nodes. In view of these considerations, we define αij as follows:

αij =

min
{

1,min
{

2dij(umax
i −ūij)
fij

,
2dij(ūji−umin

j )

fij

}}
if fij > 0,

min
{

1,min
{

2dij(umin
i −ūij)
fij

,
2dij(ūji−umax

j )

fij

}}
if fij < 0.

(45)

In the case fij = 0, the correction factor αij may be chosen arbitrarily.
Note that the CFL condition (20) under which the IDP property is guaran-

teed for bound-preserving bar states ū∗ij ∈ G is independent of αij . This a quite
remarkable fact since time step restrictions of other monolithic AFC schemes
exhibit strong dependence on the design of limiter functions [52]. In steady
state computations, this dependence has an adverse effect on the convergence
behavior of iterative solvers for the nonlinear discrete problem.

Some remarks regarding the practical calculation of f∗ij are in order. First,
the division by dij in the formulas for ūij and ū∗ij may give rise to large rounding
errors. Second, the limited flux f∗ij = αijfij is a continuous function of the nodal
values u1, . . . , uNh

. We calculate it directly using the formula

f∗ij =

min
{
fij ,min {2dijumax

i − w̄ij , w̄ji − 2diju
min
j }

}
if fij > 0,

max
{
fij ,max{2dijumin

i − w̄ij , w̄ji − 2diju
max
j }

}
otherwise,

(46)

where w̄ij = 2dij
uj+ui

2 − cij · (fj − fi) is a numerically stable representation of
2dij ūij for the low-order bar state ūij defined by (17). The limited bar states
ū∗ij are never calculated in practice. Following the derivation of the low-order
scheme in Section 2, we introduced the bar state form (36) just to prove that def-
initions (45) and (46) ensure the validity of (39). In a practical implementation,
the fluxes f∗ij should be inserted into the right-hand side of (31).

In general, the residual of the nonlinear system associated with a fully dis-
crete version of (31) can be assembled in the above manner without calculating
the bar states ū∗ij . The antidiffusive flux corresponding to the steady-state limit
of (26) is given by fij = dij(ui − uj). Substituting it into (46), we obtain

f∗ij =

{
dij min

{
ui − uj , 2 min {umax

i − ūij , ūji − umin
j }

}
if ui > uj ,

dij max
{
ui − uj , 2 max{umin

i − ūij , ūji − umax
j }

}
otherwise.

(47)

Importantly, the continuous dependence of the limited fluxes f∗ij on the degrees
of freedom implies existence of a solution to the nonlinear discrete problem by
Brouwer’s fixed-point theorem, see [9, 11, 52] for detailed analysis.
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4.1. Case study: linear advection
To illustrate the presented ideas in a simple setting, we consider a hyperbolic

conservation law of the form (1) with the linear flux function f(u) = vu, where
v ∈ Rd is a constant vector and u is a scalar. In this linear advection model,
the flux boundary condition (3) should be defined using the upwind state

û =

{
uin on Γ−,
u on Γ\Γ−,

(48)

where Γ− = {x ∈ Γ : v · n(x) < 0} is the inflow boundary of Ω and uin is a
given data. Substituting the so-defined f(u) and û into (5), we obtain∫

Ω

w

(
∂u

∂t
+∇ · (vu)

)
dx =

∫
Γ−

w(u− uin)v · n ds ∀w ∈W. (49)

Since the exact solution of the linear advection equation is constant along the
characteristics, the initial-boundary value problem has the invariant set

G =
{
u ∈ R : umin ≤ u ≤ umax

}
, (50)

where umin and umax are the global bounds defined by

umin = min

{
min
Ω

u0,min
Γ−

uin

}
, (51)

umax = max

{
max
Ω

u0,max
Γ−

uin

}
. (52)

The semi-discrete AFC scheme (22) with dij defined by (21) becomes

mi
dui
dt

= b̃i(uh, û) +
∑
j∈N∗

i

[(dij − cij · v)(uj − ui) + f∗ij ] (53)

= b̃i(uh, û)−

2
∑
j∈N∗

i

dij

ui +
∑
j∈N∗

i

2dij

(
ūij +

f∗ij
2dij

)
(54)

= b̃i(uh, û)−

2
∑
j∈N∗

i

dij

ui +
∑
j∈N∗

i

2dij ū
∗
ij , (55)

where
b̃i(uh, û) = (ui − uin(xi))

∫
Γ−

ϕiv · n ds (56)

and
dij = max{|cij · v|, |cji · v|}. (57)

If i and j are internal nodes, then cji = −cij and, therefore, the bar state

ūij =
uj + ui

2
−
(
cij · v
dij

)
uj − ui

2
=

{
ui if cij · v > 0,

uj if cij · v < 0
(58)
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represents the solution value at the upwind node of the graph edge {i, j} in the
terminology of edge-based AFC schemes [42]. In other words, the addition of
the GMS artificial viscosity transforms a centered approximation of the con-
vective flux into an upwind-type approximation. Therefore, this type of graph
Laplacian stabilization is called discrete upwinding in the AFC literature. Ge-
ometrically, xi is the upwind node of the edge connecting xi to xj if and only
if (xj − xi) · v > 0. Hence, the algebraic and geometric definitions of upwind
nodes may differ in the case d > 1 if cij 6= α(xj − xi) for some α > 0 [39].

For constant velocity fields, the Galerkin flux f(uh) = vuh coincides with
its group finite element approximation defined by (12). This is no longer the
case if v = v(x) is a spatially variable vector field. Moreover, the corresponding
advection problem is not of the form (1). Since the flux f(x, u) = v(x)u depends
not only on u but also on x, the Rankine-Hugoniot velocity vij defined by (42)
may become infinite on edges where ui = uj and vi 6= vj . Hence, the IDP
properties of exact and numerical solutions require further analysis.

If the velocity field v is divergence-free, then an invariant set of the contin-
uous initial-boundary value problem is still defined by (50)–(52). In the case
∇ · v 6= 0, the method of characteristics can be used to show that

G = {u ∈ R : u ≥ 0} (59)

is an invariant set, i.e., at least positivity preservation is guaranteed for such v.
The finite element discretization of ∇ · (vu) produces edge contributions of

the form aij(uj − ui). The standard Galerkin method yields [42]

aij =

∫
Ω

ϕiv · ∇ϕj dx +

∫
Ω

ϕi(∇ · v)ϕj dx. (60)

In the case ∇ · v = 0, we have
∑Nh

j=1 aij = 0 and the IDP property of the
resulting discrete upwind schemes can be shown for [42, 46, 52]

dij ≥ max{aij , 0, aji}, j ∈ N ∗i . (61)

The validity of local maximum principles for the bar states ūij and ū∗ij can be
verified as before. Lohmann’s [52] analysis for general AFC discretizations of
advection problems proves O(h1/2) accuracy for any choice of IDP correction
factors αij . In particular, this worst-case convergence behavior is guaranteed
for the low-order scheme and limiters that define αij in terms of bar states.

The group finite element approximation (12) produces aij = cij ·vj , and the
corresponding low-order scheme can be defined using the GMS formula

dij = max{|cij · vi|, |cij · vj |, |cji · vi|, |cji · vj |}. (62)

For internal nodes, this definition simplifies to dij = max{|cij · vi|, |cij · vj |}
because cji = −cij . Positivity preservation is guaranteed for any velocity field.
The discrete maximum principle for solenoidal velocities holds approximately
because the group finite element formulation may produce nonvanishing terms
ui
∑Nh

j=1 aij = ui
∑Nh

j=1 cij · vj ≈ miui(∇ · v)i even in the case ∇ · v = 0.
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4.2. Case study: Burgers equation
As a nonlinear counterpart of the first model problem, we consider the in-

viscid Burgers equation corresponding to (1) with the flux function f(u) = vu
2

2 ,
where v ∈ Rd is a constant vector. Let the initial data u0 be piecewise-constant
with values in the range [umin, umax]. Define the consistent normal flux

fn(û, u) := f(u) · n− (u− û)ûv · n (63)

of the weakly imposed boundary condition (3) using the exact solution uex of
the Riemann problem in Rd to determine the upwind state û = uin at the inlet
Γ−(t) = {x ∈ Γ : uex(x, t)v(x) · n(x) < 0}. Use û = u elsewhere. Then an
invariant set G of the continuous problem is given by (50).

Definition (63) of the upwind flux leads to the weighted residual formulation∫
Ω

w

(
∂u

∂t
+

1

2
∇ · (vu2)

)
dx =

∫
Γ−(t)

w(u− uin)uinv · nds ∀w ∈W. (64)

We discretize this problem using the group finite element approximation for the
advective flux. The bar state corrections produce the semi-discrete scheme

mi
dui
dt

= b̃i(uh, û) +
∑
j∈N∗

i

[(dij − cij · vij)(uj − ui) + f∗ij ] (65)

where vij =
fj−fi
uj−ui

= v
ui+uj

2 is the shock velocity defined by (42) and

b̃i(uh, û) = (ui − uin(xi))

∫
Γ−(t)

ϕiuinv · n ds. (66)

Following the analysis of the bar state behavior for the general case and linear
advection with constant velocity, the IDP property can be shown for

dij ≥ max{|cij · vij |, |cji · vij |} (67)

and, in particular, for the GMS diffusion coefficient (21) which is given by

dij = max{|cij · v|, |cji · v|}max{|ui|, |uj |}. (68)

Since cji = −cij for each pair of internal nodes i and j, the use of dij = |cij ·vij |
for such node pairs yields bar states ūij corresponding to upwind values.

5. Convex limiting for hyperbolic systems

In extensions to systems of conservation laws, local bounds may need to be
imposed on nonlinear functions of ūi1, . . . , ūim. The constrained nodal state ūi
should belong to a subset G∩Gi of the convex invariant set G. In the terminology
of Multi-dimensional Optimal Order Detection (MOOD) [19, 68], the sets G and
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Gi may be associated with physical and numerical admissibility conditions, re-
spectively. While an appropriate invariant set G is often unambiguously defined
by the physics of the problem at hand, mathematical structure of the continu-
ous problem, and initial/boundary conditions, the set Gi should be defined to
prevent large numerical errors and nonphysical solution behavior. In addition
to local maximum principles of the form (39) for conserved or derived quantities
[18, 25, 42, 48, 49, 51, 53], the definition of Gi may be based, e.g., on objectivity
requirements [31, 56, 57], smoothness criteria [17, 18], and/or the principle of
linearity preservation [8, 10, 42]. In general, G is not a subset of Gi and vice
versa. For example, the use of smoothness indicators may result in violations of
global bounds, while the preservation of these bounds does not guarantee the
absence of spurious oscillations, entropy shocks, and other numerical artifacts.

5.1. Case study: Euler equations
As an important example of a nonlinear hyperbolic system that requires a

careful choice of the set Gi and of the limiting strategy, we consider the Euler
equations of gas dynamics which can be written in the form (1). The vector u
of conserved variables and the matrix f(u) of inviscid fluxes are defined by

u =

 ρ
ρv
ρE

 ∈ Rd+2, f(u) =

 ρv
ρv ⊗ v + pId
ρEv + pv

 ∈ Rd+2,d, (69)

where Id is the d× d identity tensor, ρ is the density, v is the velocity, and E is
the specific total energy. The pressure p of an ideal polytropic gas is related to
the internal energy ρe by the equation of state

p = (γ − 1)

(
ρE − |ρv|

2

2ρ

)
= (γ − 1)ρe (70)

with the heat capacity ratio γ > 1. Let smin > 0 be an arbitrary lower bound
for the specific entropy s of initial and boundary data. Then

G = {(ρ, ρv, ρE)> : ρ > 0, e > 0, s ≥ smin} (71)

is a convex invariant set of the Euler system [25]. Let Gi be the set of states ū
satisfying the numerical admissibility conditions (cf. [18, 31, 44])

ρmin
i ≤ ρ̄ ≤ ρmax

i , (72)

ρ̄vmin
i,l ≤ (ρv) · el ≤ ρ̄vmax

i,l , l = 1, . . . , d, (73)

ρ̄Emin
i ≤ (ρE) ≤ ρ̄Emax

i , (74)

where e1, . . . , ed are unit vectors of the Cartesian coordinate systems and the
following definition of the local bounds for convex limiting is adopted:

ρmin
i = min

j∈Ni

ρj , ρmax
i = max

j∈Ni

ρj , (75)
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vmin
i,l = min

j∈N∗
i

(v̄ij · el), vmax
i,l = max

j∈N∗
i

(v̄ij · el), (76)

Emin
i = min

j∈N∗
i

Ēij , Emax
i = max

j∈N∗
i

Ēij . (77)

In the monolithic version, these bounds should be calculated using the nodal
states ui = (ρi, (ρv)i, (ρE)i)

> of the numerical solution at the beginning of
the Runge-Kutta stage (or previous iteration in implicit schemes and steady
state solvers) to calculate the invariant domain preserving low-order bar states
ūij = (ρ̄ij , (ρv)ij , (ρE)ij)

> ∈ G and derived quantities of the form

φi =
(ρφ)i
ρi

, φ̄ij =
(ρφ)ij + (ρφ)ji

ρ̄ij + ρ̄ji
= φ̄ji. (78)

The low-order bar states ūij are calculated using the GMS diffusion coeffi-
cient dij defined by (21). A guaranteed upper bound λij for the maximum wave
speed λmax(nij , ui, uj) can be found in [25, 28]. The frequently used approxi-
mation λ̃ij = max{|vi| + ci, |vj | + cj}, where ci is the local speed of sound at
node i, corresponds to the classical Rusanov (local Lax-Friedrichs) scheme. It is
essentially nonoscillatory but not provably IDP because λ̃ij may underestimate
λmax(nij , ui, uj) in some pathological cases, see [25] for further explanations.

The above definition of local bounds guarantees that ūij ∈ Gi. To make sure
that the constrained bar states ū∗ij = ūij +

f∗
ij

2dij
belong to Gi as well, we will

construct the fluxes f∗ij = (f∗,ρij , f
∗,ρv1
ij , . . . , f∗,ρvdij , f∗,ρEij )> using an edge-based

bar state version of the sequential limiting strategy developed in [18, 31, 44] for
element-based FCT algorithms. Given the vector fij = (fρij , f

ρv1
ij , . . . , fρvdij , fρEij )>

of target fluxes, we first enforce the numerical admissibility conditions (72)–(74)
by limiting the components of fij in the following sequential manner:

1. Limit fρij and update the density

f∗,ρij = αρijf
ρ
ij , ρ∗ij = ρ̄ij +

f∗,ρij
2dij

. (79)

2. For φ ∈ {v1, . . . , vd, E} calculate

f∗,ρφij = 2dij

[
ρ∗ij φ̄ij − (ρφ)ij

]
+ αρφij g

ρφ
ij (80)

using
gρφij = fρφij + 2dij

[
(ρφ)ij − ρ

∗
ij φ̄ij

]
. (81)

By definition, the target fluxes satisfy fρφji = −fρφij . The conservation property
f∗,ρφji = −f∗,ρφij of their limited counterparts follows from the fact that

gρφij + gρφji = 2dij

[
(ρφ)ij + (ρφ)ji

]
− 2dij

[
ρ∗ij + ρ∗ji

]
φ̄ij +

[
fρφij + fρφji

]
= 2dij

[
(ρφ)ij + (ρφ)ji

]
− 2dij [ρ̄ij + ρ̄ji] φ̄ij −

[
fρij + fρji

]
φ̄ij = 0
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by definition of φ̄ij . A correction factor αρij such that ρ∗ij ∈ [ρmin
i , ρmax

i ] can be
readily computed using the scalar flux limiter (45). The validity of

ρ∗ijφ
min
i ≤ (ρφ)∗ij = (ρφ)ij +

f∗,ρφij

2dij
= ρ∗ij φ̄ij +

αρφij g
ρφ
ij

2dij
≤ ρ∗ijφmax

i (82)

is guaranteed at least for αρφij = 0 since this choice produces (ρφ)∗ij = ρ∗ij φ̄ij . On
the other hand, the unlimited target flux f∗,ρφij = fρφij can be recovered using the
correction factor αρφij = 1. Clearly, neither of these choices is generally optimal.
Since conditions (82) are equivalent to the inequality constraints

2dijρ
∗
ij(φ

min
i − φ̄ij) =: gmin

ij ≤ g∗,ρφij = αρφij g
ρφ
ij ≤ g

max
ij := 2dijρ

∗
ij(φ

max
i − φ̄ij),

a better approximation g∗,ρφij to gρφij can be calculated similarly to (46) thus:

g∗,ρφij =

{
min{gmax,ρφ

ij ,max{gρφij , g
min,ρφ
ij }} if gρφij > 0,

max{gmin,ρφ
ij ,min{gρφij , g

max,ρφ
ij }} otherwise.

(83)

In view of the fact that ρ∗ij ∈ [ρmin
i , ρmax

i ] and ρmin
i ≥ 0, the preconstrained

density ρ∗ij is nonnegative. If the tentative bar state u∗ij ∈ Gi fails to satisfy
the additional conditions e∗ij > 0 and s∗ij ≥ smin, they can be readily enforced
using additional synchronized limiting of the offending fluxes f∗ij [31, 44]. Let
the final, physically admissible bar state ū∗ij ∈ G be defined by the formula

ū∗ij = ūij +
αijf

∗
ij

2dij
. (84)

The energy constraint ē∗ij ≥ 0 holds if αij ∈ [0, 1] is chosen to satisfy

ρ̄∗ij(ρE)
∗
ij ≥

|(ρv)
∗
ij |2

2
, (85)

i.e., if the kinetic energy does not exceed the total energy. Invoking definition
(84) of ū∗ij =

[
ρ̄∗ij , (ρv)

∗
ij , (ρE)

∗
ij

]
and introducing the scaled bar states

w̄ij = [w̄ρij , w̄
ρv, w̄ρEij ]> = 2dij ūij (86)

for reasons explained in Section 4, we find that (85) is equivalent to

Pij(αij) ≤ Qij := w̄ρijw̄
ρE
ij −

|w̄ρv|2

2
, (87)

where Pij(α) is a quadratic polynomial (cf. [53, 44]) defined by

Pij(α) =

[
|f∗,ρvij |2

2
− f∗,ρEij f∗,ρij

]
α2 +

[
w̄ρv · f∗,ρvij − w̄ρijf

∗,ρE
ij − w̄ρEij f

∗,ρ
ij

]
α.
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Since αn ≤ α for α ∈ [0, 1] and n ∈ N, the estimate Pij(α) ≤ αRij holds for

Rij = max
{

0, w̄ρv · f∗,ρvij − w̄ρijf
∗,ρE
ij − w̄ρEij f

∗,ρ
ij +R+

ij

}
,

where

R+
ij = max

{
0,
|f∗,ρvij |2

2
− f∗,ρEij f∗,ρij

}
.

The symmetry condition αij = αji and the internal energy constraint for node j
can be taken into account by using the synchronized correction factor

αij =


min

{
Qij

Rij
,
Qji

Rji

}
if Rij > Qij , Rji > Qji,

Qij

Rij
if Rij > Qij , Rji ≤ Qji,

Qji

Rji
if Rij ≤ Qij , Rji > Qji,

1 otherwise.

(88)

If i and j are internal nodes, we have Qji = Qij , and (88) simplifies to

αij =

{
Qij

max{Rij ,Rji} if max{Rij , Rji} > Qij ,

1 otherwise.
(89)

We use formula (88) in the numerical experiments below. Since it does not
guarantee continuous dependence of αijf∗ij on the data, convergence problems
may occur in steady state computations according to the AFC theory developed
in [9, 11, 52]. To avoid these problems, the triangle inequality estimate

max{Rij , Rji} = |w̄ρv · f∗,ρvij − w̄ρijf
∗,ρE
ij − w̄ρEij f

∗,ρ
ij |+R+

ij

≤ |w̄ρv| |f∗,ρvij |+ |w̄ρijf
∗,ρE
ij |+ |w̄ρEij f

∗,ρ
ij |+R+

ij =: Rmax
ij

may be used to redefine the synchronized correction factor αij as follows:

αij =

{
min{Qij ,Qji}

Rmax
ij

if Rmax
ij > Qij ,

1 otherwise.
(90)

This modification of (88) satisfies the theoretical requirements for the design
of limiter functions without producing significantly higher levels of artificial
viscosity, as we show in two one-dimensional examples of Section 6.

Positivity preservation for the assembled nodal values of the internal energy
and pressure follows by Jensen’s inequality [18, 31, 44]. To enforce the entropy
constraint min{s̄ij , s̄ji} ≥ smin, an entropy-consistent synchronized correction
factor αsij ≤ αij can be calculated using the convex limiting methodology orig-
inally developed in [25] for FCT algorithms of predictor-corrector type.

The reader may wonder why we calculate the prelimited fluxes f∗ij instead of
multiplying fij by αij ∈ [0, 1] such that ū∗ij = ūij +

αijfij
2dij

∈ Gi ∩ G. The reason

19



for this is very simple. Using the same correction factor for all components of
fij generates excessively strong numerical dissipation. The prelimited bar states
u∗ij = ūij+

αijfij
2dij

∈ Gi are more accurate and no further correction of these states
is required if u∗ij ∈ G. Moreover, the magnitude of the raw antidiffusive fluxes
f∗ij is smaller and, therefore, worst-case estimates for nonlinear functions of αij
are not as pessimistic as in fully synchronized limiters for fij [44].

5.2. Case study: tensorial advection
Hyperbolic problems of the form (1) are also used to model advective trans-

port of tensor fields which play an important role, e.g., in numerical simulations
of fiber suspension flows and injection molding processes [49, 51, 52]. Let the
states u ∈ Rd(d+1)/2 be defined as arrays containing the independent compo-
nents of symmetric tensors U ∈ Rd×d. The real eigenvalues of these tensors will
be denoted by λl(u), l = 1, . . . , d and sorted in ascending order.

The flux function of the tensorial linear advection problem is f = vu. If
∇ · v = 0 holds in Ω, the eigenvalues of u remain bounded by [52]

λmin = min

{
min
Ω

λ1(u0),min
Γ−

λ1(uin)

}
, (91)

λmax = max

{
max
Ω

λd(u0),max
Γ−

λd(uin)

}
. (92)

Hence, G = {u ∈ Rd(d+1)/2 : λmin ≤ λ1(u), λd(u) ≤ λmax} is a convex invari-
ant set of the initial-boundary value problem. In particular, this fact implies
preservation of positive semidefiniteness in the process of advection.

The set Gi of numerically admissible states may be defined to enforce in-
equality constraints depending on the nature of the problem at hand. As shown
by Lohmann [49, 51, 52], the imposition of local bounds

λmin
i = min

j∈N∗
i

λ1(uj) ≥ λmin, λmax
i = max

j∈N∗
i

λd(uj) ≤ λmax (93)

on the maximal and minimal eigenvalues, i.e., using Gi = {u ∈ Rd(d+1)/2 :
λmin
i ≤ λ1(u), λd(u) ≤ λmax

i } ⊆ G is particularly well suited for AFC discretiza-
tions of fiber suspension flow models. This definition of Gi turned out to be a
good criterion for the design of eigenvalue range preserving (ERP) limiters.

Since all components of evolving tensors are advected by the same velocity
field v, the diffusion coefficient dij is defined as in Section 4.1. The correspond-
ing low-order scheme is ERP, as shown by Lohmann [49, 51, 52]. The represen-
tation of this scheme and its limited high-order extensions in terms of the bar
states makes it possible to obtain alternative proofs of the ERP property (at
least for explicit SSP Runge-Kutta time discretizations) and convert the FCT
algorithms developed in [49] into tensorial bar state limiters. We also envisage
that a new generation of ERP tensor limiters could be designed exploiting the
fact that ūij = ūji for internal edges and, therefore, limiting can be performed
in the principal axis system of Ūij using individually chosen correction factors
for different eigenvalues (see [51, 52] for examples of such spectral limiters).
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6. Numerical examples

In this section, we perform numerical studies of the monolithic convex lim-
iting (MCL) procedures and compare some results to those obtained with other
approaches (NVL: monolithic nodal variation limiter using αij = min{αi, αj}
with linearity-preserving nodal correction factors αi defined as in [40], FCT:
predictor-corrector scheme based on a sequential FCT algorithm [18, 31, 44]).
The methods under investigation are applied to well-documented test problems
for steady and unsteady linear advection, the two-dimensional inviscid Burgers
equation, and the Euler equations. We demonstrate the superb shock-capturing
properties of bar state limiters and perform grid convergence studies for an ad-
vection problem with a smooth steady-state solution. In all examples, we use
linear or bilinear Lagrange finite elements. Time integration is performed using
an explicit second-order accurate SSP Runge-Kutta scheme.

Given a reference solution u, we measure the errors of numerical approxima-
tions uh on successively refined meshes using the discrete L1 norm [41, 42]

E1(h) :=

Nh∑
i=1

mi|u(xi)− ui| ≈
∫
Ω

|u− uh|dx = ‖u− uh‖L1(Ω), (94)

where mi is a diagonal coefficient of the lumped mass defined by (10). The
experimental order of convergence is determined using the formula [47]

p = log2

(
E1(2h)

E1(h)

)
. (95)

In some examples, the values of global maxima and minima are reported in order
to verify the invariant domain preservation properties of the AFC schemes under
investigation and quantify the levels of numerical dissipation.

6.1. Steady circular advection
In the first numerical experiment, we solve the steady advection equation

∇ · (vu) = 0 in Ω = (0, 1)2 (96)

using the divergence-free velocity field v(x, y) = (y,−x). The inflow boundary
condition and the exact solution at any point in Ω̄ are given by

u(x, y) =


1, if 0.15 ≤ r(x, y) ≤ 0.45,

cos2
(

10π r(x,y)−0.7
3

)
, if 0.55 ≤ r(x, y) ≤ 0.85,

0, otherwise,
(97)

where r(x, y) =
√
x2 + y2 denotes the distance to the corner point (0, 0).

Numerical solutions are marched to the steady state using explicit SSP
Runge-Kutta time stepping. Simulations are terminated when the Euclidean
norm of the steady state residual becomes smaller than the prescribed toler-
ance. In contrast to the linearity-preserving local bounds of the NVL version,
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the MCL constraints for the bar states are defined without using free parameters.
Remarkably, the steady state residuals of MCL discrete problem converge to
machine zero in a monotone fashion, while the behavior of NVL-like monolithic
limiters is strongly affected by the choice of such parameters. Less restrictive
bounds imply lower levels of numerical diffusion but the convergence behavior
of fixed-point iterations becomes unsatisfactory and steady state residuals begin
to stagnate. No such problems were observed in simulations with MCL.

In Figure 1, we present the results of steady-state computations on uniform
meshes with Nh = (129)2 = 16, 642 nodes using P1 and Q1 elements. All

(a) E1 =4.75e-2 (b) E1=5.98e-2

(c) E1=8.23e-3 (d) E1=9.90e-3

(e) E1=6.18e-3 (f) E1=9.44e-3

Figure 1: Steady circular advection. Solutions produced by the low-order scheme (top row),
MCL (middle row), and NVL (bottom row) on uniform meshes with Nh = (129)2 = 16, 642
nodes. The results for P1 and Q1 elements are shown in the left and right column, respectively.
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numerical approximations are bounded below by umin = 0 = min1≤i≤Nh
ui and

above by umax = 1 = max1≤i≤Nh
ui. For a better quantitative comparison, the

E1 errors are listed above each diagram. The flux-corrected solutions are far
more accurate than the diffusive results produced by the low-order version of
the IDP scheme. Both AFC schemes used the unstabilized Galerkin target flux
fij = dij(ui − uj). The NVL parameter γi was set equal to 2γmin

i , where γmin
i

is the linearity-preserving lower bound presented in [40].

h MCL p NVL p
1
64 4.52e-3 3.87e-3
1

128 1.16e-3 1.96 9.17e-4 2.08
1

256 2.99e-4 1.96 2.10e-4 2.13

Table 1: Steady circular advection. E1 convergence history of the MCL = MCL-LP and NVL
schemes on uniform triangular meshes.

h MCL p NVL p MCL-LP p
1
64 4.87e-3 4.85e-3 4.61e-3
1

128 1.46e-3 1.74 1.50e-3 1.69 1.37e-3 1.75
1

256 5.14e-4 1.51 5.02e-4 1.58 4.14e-4 1.72

Table 2: Steady circular advection. E1 convergence history of the MCL, NVL, and MCL-LP
schemes on perturbed triangular meshes.

Tables 1 and 2 show the results of grid convergence studies on uniform and
perturbed triangular meshes for the smooth exact solution [52]

u(x, y) = exp
(
−100(r(x, y)− 0.7)2

)
, 0 ≤ x, y ≤ 1. (98)

In this numerical study of MCL and NVL, perturbed counterparts of uniform
grids with spacing h = 1√

Nh−1
were generated by adding random numbers

ξi, ηj ∈ [−0.25h, 0.25h] to the Cartesian coordinates (xi, yj) ∈ Ω of internal
mesh nodes. By definition of local bounds, NVL is linearity-preserving (LP)
on any mesh, while the basic definition (39) of the MCL bounds is LP only on
symmetric meshes (as defined in [8]). There is strong numerical and some theo-
retical evidence indicating that the LP property is essential for achieving optimal
convergence rates (p = 1.5 for linear finite elements and smooth solutions) on
general meshes, see [10, 40, 42]. As an upgrade of the basic MCL scheme, we
consider a linearity-preserving (MCL-LP) version in which the bounds

umin
i = min

j∈Ni

min{uj , ûk(i,j)}, umax
i = max

j∈Ni

max{uj , ûk(i,j)} (99)

for the P1 discretization are defined using bound-preserving extrapolated values
ûk(i,j) = ui + (∇u)i · (xi − xj) at the dummy nodes xk(i,j) = xj + 2(xi − xj).
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If the nodal gradient (∇u)i is calculated using the basis functions of the first
element crossed by the line connecting an internal node xi to xk(i,j), then ûk(i,j)

is a convex combination of the solution values at the nodes of this element
[35, 58, 59]. Moreover, we have ui = 1

2 (uj + ûk(i,j)) if ∇uh is continuous at
node i. Hence, definition (99) is linearity-preserving on general simplex meshes.
On symmetric meshes, the so-defined MCL-LP scheme reduces to MCL.

The E1 convergence history presented in Table 1 demonstrates that both
MCL(-LP) and NVL exhibit second-order convergence on uniform meshes. On
perturbed meshes, the experimental orders of accuracy exceed the provable lower
bound p = 1.5 for stabilized FEM. The use of linearity-preserving bounds (99)
in MCL-LP leads to a marked improvement compared to the basic MCL scheme.
Although even the MCL-LP bounds are relatively tight and no parameter tun-
ing is involved, both the EOCs and the convergence rates w.r.t. steady-state
residuals are higher than those of the carefully configured NVL scheme.

6.2. Solid body rotation
The solid body rotation benchmark [38, 47] is an obligatory 2D test for

numerical advection schemes. We use it in this numerical study to facilitate
direct comparison with other algebraic flux correction schemes [40, 41, 42, 52]
and variational shock capturing techniques for stabilized finite element methods
[38]. In this experiment, we solve the unsteady linear advection equation

∂u

∂t
+∇ · (vu) = 0 in Ω = (0, 1)2 (100)

using the velocity field v(x, y) = (0.5− y, x− 0.5)> to rotate a slotted cylinder,
a sharp cone, and a smooth hump around the center (0.5, 0.5) of the domain Ω.
The initial condition, as defned by LeVeque [47], is given by

u0(x, y) =



uhump
0 (x, y) if

√
(x− 0.25)2 + (y − 0.5)2 ≤ 0.15,

ucone
0 (x, y) if

√
(x− 0.5)2 + (y − 0.25)2 ≤ 0.15,

1 if

{(√
(x− 0.5)2 + (y − 0.75)2 ≤ 0.15

)
∧

(|x− 0.5| ≥ 0.025 ∨ y ≥ 0.85) ,

0 otherwise,

where

uhump
0 (x, y) =

1

4
+

1

4
cos

(
π
√

(x− 0.25)2 + (y − 0.5)2

0.15

)
, (101)

ucone
0 (x, y) = 1−

√
(x− 0.5)2 + (y − 0.25)2

0.15
. (102)

Homogeneous Dirichlet boundary conditions are prescribed at the inlets.
After each full rotation, the exact solution u(·, 2πk), k ∈ N coincides with

the initial data u0. In Figure 2, we present the Q1 interpolant uh(·, 0) = Ihu0 of
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(a) E1 =0.00e-0, uh ∈ [0.0, 1.0] (b) E1 =9.68e-2, uh ∈ [0.0, 0.547]

(c) E1 =3.50e-2, uh ∈ [−0.374, 1.365] (d) E1 =2.45e-2, uh ∈ [−0.064, 1.126]

(e) E1 =1.85e-2, uh ∈ [0.0, 0.993] (f) E1 =2.38e-2, uh ∈ [0.0, 0.996]

Figure 2: Solid body rotation [47]. The plots show (a) projected initial data uh(·, 0) and Q1

approximations uh(·, 2π) produced by (b) the low-order scheme (fij = 0) and flux-corrected
high-order schemes using (c) unlimited fluxes fHij , (d) unlimited fluxes fij , (e) MCL for fHij ,
and (f) MCL for fij on a uniform mesh with h = 1

128
and ∆t = 10−3.
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u0 and numerical solutions uh(·, 2π) calculated on a uniform mesh of 128× 128
bilinear elements using the time step ∆t = 10−3. In addition to the values of the
E1 error w.r.t. uh(·, 0) = Ihu(·, 2π), the global maxima and minima of the Q1

approximations are shown above each plot to assess the amounts of numerical
diffusion and magnitudes of spurious undershoots/overshoots (if any).

The low-order solution presented in Fig. 2(a) is bound-preserving but very
diffusive. After one full rotation, the global maximum decreases to 0.547, and
the shapes of the rotating objects are smeared so strongly that they are hardly
recognizable. In Figs 2(c,d), we show the results of adding unlimited antidiffu-
sive fluxes fHij and fij , as defined by (26) and (29), respectively. By definition
of fHij , this choice recovers the highly oscillatory standard Galerkin approxima-
tion (25). The fluxes fij can be calculated more efficiently and correspond to a
stabilized high-order target. The discrete maximum principle is still violated but
undershoots and overshoots stay in a neighborhood of steep gradients, and their
magnitude is smaller than the case of the AFC scheme using the fHij target. The
MCL-constrained counterparts of these solutions are presented in Figs 2(e,f).
The difference between the flux-corrected approximations is marginal. We con-
clude that fij is a better alternative to fHij in terms of stability and efficiency.
For that reason, the remaining experiments of this section are performed using
the fij version of MCL, i.e., definition (29) of the target flux.

6.3. Burgers equation
As a nonlinear scalar test problem, we consider two-dimensional inviscid

Burgers equation defined as in Section 4.2 using the constant vector v = (1, 1)

in the flux function f(u) = vu
2

2 . The exact solution uex corresponding to

u0(x, y) =


−0.2 if x < 0.5 ∧ y > 0.5,

−1.0 if x > 0.5 ∧ y > 0.5,

0.5 if x < 0.5 ∧ y < 0.5,

0.8 if x > 0.5 ∧ y < 0.5

(103)

can be found in [24]. This solution is defined in R2 and stays in the invariant
set G = [−1.0, 0.8]. We use uex to impose flux boundary conditions in the man-
ner described in Section 4.2. In our numerical experiment, the computational
domain Ω is a unit square and simulations are terminated at the final time
T = 0.5. In Figure 3, we present the low-order solution and the MCL solution
calculated using a P1 discretization on a uniform triangular mesh. The mesh
size h = 1

128 and time step ∆t = 10−3 are the same as in the solid body rotation
test. The accuracy of the low-order solution shown in Fig. 3(a) is not as poor
as in the linear advection examples. Since shocks are self-steepening, the low-
order scheme resolves them fairly well but the rarefaction is strongly smeared
and the corners are rounded. The MCL scheme performs much better in the
rarefaction wave region (see Fig. 3(b)) and exhibits higher overall accuracy in
terms of the E1 error. The invariant domain preservation capability of both
schemes is illustrated by the fact that ui ∈ G for all i = 1, . . . , Nh.

26



(a) E1 =1.13e-2, uh ∈ [−1.0, 0.8] (b) E1 =7.75e-3, uh ∈ [−1.0, 0.8]

Figure 3: Burgers equation [24]. Snapshots uh(·, 0.5) of the P1 approximations produced by
(a) the low-order scheme and (b) MCL on a uniform mesh with h = 1

128
and ∆t = 10−3.

6.4. Sod’s shock tube
Sod’s shock tube problem [67] is a well-known 1D benchmark for the Euler

equations. The computational domain Ω = (0, 1) has reflective walls and is
initially separated by a membrane into two sections. When the membrane is
removed, the gas begins to flow into the region of lower pressure. The initial
condition for the nonlinear Riemann problem is given by ρL

vL
pL

 =

 1.0
0.0
1.0

 ,
 ρR
vR
pR

 =

 0.125
0.0
0.1

 . (104)

The removal of the membrane at the time t = 0 releases a shock wave that
propagates to the right with velocity satisfying the Rankine-Hugoniot condi-
tions. All of the primitive variables are discontinuous across the shock which is
followed by a contact discontinuity. The latter represents a moving interface be-
tween the regions of different densities but constant velocity and pressure. The
rarefaction wave propagates in the opposite direction providing a smooth tran-
sition to the original values of the state variables in the left part of the domain.
Hence, the one-dimensional flow pattern in the shock tube is characterized by
three waves traveling at different speeds.

Since our MCL scheme for the Euler equations (as presented in Section 5.1)
is closely related to the sequential FCT algorithm developed in [18], our pre-
liminary evaluation of MCL involves a comparison to the FCT approach. In
Figure 4, we show the density (blue), velocity (green), and pressure (red) dis-
tributions corresponding to the final time T = 0.231. The analytical solution
of Sod’s shock tube problem is shown by the solid lines without markers. The
corresponding finite element approximations are shown as solid lines with bullet
markers. As in [18], we use a uniform mesh of 128 linear elements and the time
step ∆t = 10−3. Although the MCL and FCT schemes are based on the same
design principles, the monolithic bar state version of the sequential (ρ, v, E) lim-
iting strategy achieves visibly higher resolution of the contact discontinuity and
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produces smaller E1 errors for all primitive variables. If the correction factor
αij is calculated using (90) instead of (88) to ensure continuous dependence of
αijf

∗
ij on the input, the MCL solution remains unchanged in this example.

(a) E1 = (0.70, 1.55, 0.59) · 10−2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

(b) E1 = (0.95, 2.07, 0.82) · 10−2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Figure 4: Sod’s shock tube [67]. Exact solution for (ρ, v, p) at T = 0.231 vs. P1 approximations
obtained with (a) MCL and (b) sequential FCT using h = 1

128
and ∆t = 10−3.

6.5. Blast wave problem
The blast wave problem of Woodward and Colella [69] models the flow of a

γ = 1.4 ideal gas between reflecting walls. The three constant states[
ρL
vL
pL

]
=

[
1.0
0.0

1000.0

]
,

[
ρM
vM
pM

]
=

[
1.0
0.0
0.01

]
,

[
ρR
vR
pR

]
=

[
1.0
0.0

100.0

]
(105)

of the initial condition for the primitive variables are associated with the sub-
domains ΩL = (0, 0.1), ΩM = (0.1, 0.9), and ΩR = (0.9, 1).

The above initial conditions give rise to two strong blast waves which eventu-
ally collide. The flow evolution involves complex interactions of shocks, rarefac-
tions, and contact discontinuities in a small region of space. These interactions
impose more stringent requirements on the robustness of numerical solution
methods than Sod’s shock tube problem. Limiters that do not guarantee posi-
tivity preservation for the pressure are likely to fail in this test. The MCL and
FCT results for the density at T = 0.038 are shown in in Fig. 5. The numerical
solutions obtained using 1000 linear elements and the time step 10−6 are shown
as red circles. The blue solid line depicts the reference solution. It can be seen
that MCL produces a smaller E1 density error than the original FCT algorithm.
This error increases marginally from 5.46 · 10−2 to 5.60 · 10−2 if the internal en-
ergy correction factor αij is calculated using (90) instead of (88). The shape of
the density profile remains virtually unchanged and is not shown here.

6.6. Double Mach reflection
In the last example, we consider the double Mach reflection benchmark [69]

for the two-dimensional Euler equations. The computational domain for this
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(a) E1(ρh) = 5.46 · 10−2
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(b) E1(ρh) = 6.59 · 10−2
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Figure 5: Blast wave problem [69]. Reference solution for ρ at T = 0.038 vs. P1 approximations
obtained with (a) MCL and (b) sequential FCT using h = 10−3 and ∆t = 10−6.

test is the rectangle Ω = (0, 4)× (0, 1). The flow pattern features a propagating
Mach 10 shock in air (γ = 1.4) which initially makes a 60◦ angle with a reflecting
wall. The following pre-shock and post-shock values of the flow variables are
used to define the initial and boundary conditionsρLuL

vL
pL

 =

 8.0
8.25 cos(30◦)
−8.25 sin(30◦)

116.5

 ,
ρRuR
vR
pR

 =

1.4
0.0
0.0
1.0

 . (106)

Initially, the post-shock values (subscript L) are prescribed in the subdomain
ΩL = {(x, y) | x < 1/6 + y/

√
3} and the pre-shock values (subscript R) in

ΩR = Ω\ΩL. The reflecting wall corresponds to 1/6 ≤ x ≤ 4 and y = 0.
No boundary conditions are required along the line x = 4. On the rest of the
boundary, the post-shock conditions are assigned for x < 1/6 + (1 + 20t)/

√
3

and the pre-shock conditions elsewhere. The so-defined values along the top
boundary describe the exact motion of the initial Mach 10 shock.

In Figure 6, we present snapshots of the density distribution at T = 0.2
calculated using Q1 approximation on a uniform mesh with h = 1

128 . In this ex-
ample, time integration was performed using the implicit Crank-Nicolson scheme
and the time step ∆t = 10−4. As already mentioned, monolithic AFC schemes
like MCL support the use of general time integrators (although formal proofs of
positivity preservation are usually restricted to the basic two-level θ scheme and
SSP Runge-Kutta methods). The MCL solution of the double Mach reflection
problem exhibits higher resolution than its low-order counterpart and is also free
of spurious oscillations. Numerical results obtained with predictor-corrector ap-
proaches can be found in [18, 53]. Although no reference solutions are available
for this test, the MCL scheme seems to resolve the fine-scale features at least
as well as the best limiters we have tested so far. We conclude that convex
limiting techniques of this kind are a useful tool for enforcing invariant domain
preservation in finite element methods for computational gas dynamics.
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(a)

(b)

Figure 6: Double Mach reflection [69]. Density distribution at T = 0.2 obtained with (a) the
low-order scheme and (b) MCL using h = 1

128
and ∆t = 10−4.

7. Conclusions

The main result of this paper is the finding that the representation of mod-
ified Galerkin schemes in terms of edge-based bar states is very useful not only
for the derivation of GMS artificial viscosities that lead to provably invariant do-
main preserving low-order approximations but also for the design of monolithic
algebraic flux correction schemes in which the limited antidiffusive terms are
incorporated into the bar states. The new approach to edge-based convex lim-
iting bridges the gap between predictor-corrector algorithms of FCT type and
monolithic AFC approaches that enforce inequality constraints for nodal states
using parameter-dependent local bounds. Any FCT scheme or the equivalent
slope limiting procedure for the gradients of a piecewise-linear approximation
(see [18, 71] for a unified presentation of algebraic and geometric limiting tech-
niques) can be readily converted into a parameter-free limiter for the well-posed
nonlinear discrete problem of the monolithically constrained version.

Our presentation of new bar state limiters for IDP high-resolution schemes
was focused on continuous edge-based P1/Q1 finite element methods for scalar
conservation laws and the Euler equations of gas dynamics. However, the gener-
ality of the proposed methodology paves the way for major upgrades of property-
preserving limiters for symmetric tensor fields [49, 51, 52], shallow water equa-
tions, [4, 30, 31], element-based correction procedures [3, 18, 54], discontinuous
Galerkin (DG) methods [3, 7, 18, 31], high-order Bernstein polynomial approxi-
mations [3, 54], residual distribution schemes [2, 1, 32], and hp-adaptive finite el-

30



ement methods that construct a continuous limiter-controlled partition of unity
using the basis functions of high-order and low-order spaces [45]. Moreover,
rigorous theoretical studies of the presented schemes and their extensions can
be performed using the AFC analysis framework developed in [9, 11, 52].

Acknowledgments. This research was supported by the German Research
Association (DFG) under grant KU 1530/23-1. The author would like to thank
Christoph Lohmann (TU Dortmund University) for insightful remarks regarding
the properties of bar state limiters.

References

[1] R. Abgrall, P. Bacigaluppi, and S. Tokareva, High-order residual distri-
bution scheme for the time-dependent Euler equations of fluid dynamics.
Computers & Mathematics with Applications 78 (2019) 274–297.

[2] R. Abgrall and S. Tokareva, Staggered grid residual distribution scheme
for Lagrangian hydrodynamics. SIAM J. Sci. Comput. 39 (2017) A2317–
A2344.

[3] R. Anderson, V. Dobrev, Tz. Kolev, D. Kuzmin, M. Quezada de Luna,
R. Rieben, and V. Tomov, High-order local maximum principle preserv-
ing (MPP) discontinuous Galerkin finite element method for the transport
equation. J. Comput. Phys. 334 (2017) 102–124.

[4] P. Azerad, J.-L. Guermond, and B. Popov, Well-balanced second-order ap-
proximation of the shallow water equation with continuous finite elements.
SIAM J. Numer. Anal. 55 (2017) 3203–3224.

[5] P. Bacigaluppi, R. Abgrall, and S. Tokareva, "A posteriori" limited high
order and robust residual distribution schemes for transient simulations of
fluid flows in gas dynamics. Preprint arXiv:1902.07773 [math.NA], 2019.

[6] S. Badia and J. Bonilla, Monotonicity-preserving finite element schemes
based on differentiable nonlinear stabilization. Computer Methods Appl.
Mech. Engrg. 313 (2017) 133-158.

[7] S. Badia, J. Bonilla, and A. Hierro, Differentiable monotonicity-preserving
schemes for discontinuous Galerkin methods on arbitrary meshes. Computer
Methods Appl. Mech. Engrg. 320 (2017 582-605.

[8] G. Barrenechea, E. Burman, and F. Karakatsani, Edge-based nonlinear
diffusion for finite element approximations of convection-diffusion equations
and its relation to algebraic flux-correction schemes. Numer. Math. 135
(2017) 521–545.

[9] G. Barrenechea, V. John, and P. Knobloch, Analysis of algebraic flux cor-
rection schemes. SIAM J. Numer. Anal. 54 (2016) 2427–2451.

31



[10] G. Barrenechea, V. John, and P. Knobloch, A linearity preserving algebraic
flux correction scheme satisfying the discrete maximum principle on general
meshes. Mathematical Models and Methods in Applied Sciences (M3AS) 27
(2017) 525–548.

[11] G. Barrenechea, V. John, P. Knobloch, and R. Rankin, A unified analysis of
algebraic flux correction schemes for convection-diffusion equations. SeMA
75 (2018) 655–685.

[12] G. Barrenechea and P. Knobloch, Analysis of a group finite element formu-
lation. Applied Numerical Mathematics 118 (2017) 238–248.

[13] T. Barth and D.C. Jespersen, The design and application of upwind
schemes on unstructured meshes. AIAA Paper, 89-0366, 1989.

[14] P. Bochev, D. Ridzal, M. D’Elia, M. Perego, and K. Peterson,
Optimization-based, property-preserving finite element methods for scalar
advection equations and their connection to Algebraic Flux Correction.
Preprint, 2019, https://doi.org/10.13140/RG.2.2.20942.72000.

[15] J.P. Boris and D.L. Book, Flux-Corrected Transport: I. SHASTA, a fluid
transport algorithm that works. J. Comput. Phys. 11 (1973) 38–69.

[16] C.J. Cotter and D. Kuzmin, Embedded discontinuous Galerkin transport
schemes with localised limiters. J. Comput. Phys. 311 (2016) 363–373.

[17] S. Diot, S. Clain, and R. Loubére, Improved detection criteria for the Multi-
dimensional Optimal Order Detection (MOOD) on unstructured meshes
with very high-order polynomials. Computers & Fluids 64 (2012) 43–63.

[18] V. Dobrev, Tz. Kolev, D. Kuzmin, R. Rieben, and V. Tomov, Sequential
limiting in continuous and discontinuous Galerkin methods for the Euler
equations. J. Comput. Phys. 356 (2018) 372–390.

[19] M. Dumbser, O. Zanotti, R. Loubère, and S. Diot, A posteriori subcell
limiting of the discontinuous Galerkin finite element method for hyperbolic
conservation laws. J. Comput. Phys. 278 (2014) 47–75.

[20] C.A.J. Fletcher, The group finite element formulation, Comput. Methods
Appl. Mech. Engrg. 37 (1983) 225–243.

[21] C.A.J. Fletcher, A comparison of finite element and finite difference solu-
tions of the one- and two-dimensional Burgers’ equations. J. Comput. Phys.
51 (1983) 159–188.

[22] S.K. Godunov, Finite difference method for numerical computation of dis-
continuous solutions of the equations of fluid dynamics. Mat. Sb. 47 (1959)
271–306.

[23] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-
order time discretization methods. SIAM Review 43 (2001) 89–112.

32



[24] J.-L. Guermond and M. Nazarov, A maximum-principle preserving C0 fi-
nite element method for scalar conservation equations. Computer Methods
Appl. Mech. Engrg. 272 (2014) 198–213.

[25] J.-L. Guermond, M. Nazarov, B. Popov, and I. Tomas, Second-order invari-
ant domain preserving approximation of the Euler equations using convex
limiting. SIAM J. Sci. Computing 40 (2018) A3211-A3239.

[26] J.-L. Guermond, M. Nazarov, B. Popov, and Y. Yang, A second-order max-
imum principle preserving Lagrange finite element technique for nonlinear
scalar conservation equations. SIAM J. Numer. Anal. 52 (2014) 2163–2182.

[27] J.-L. Guermond, M. Nazarov, and I. Tomas, Invariant domain preserving
discretization-independent schemes and convex limiting for hyperbolic sys-
tems. Computer Methods Appl. Mech. Engrg. 347 (2019) 143–175.

[28] J.-L. Guermond and B. Popov, Invariant domains and first-order continu-
ous finite element approximation for hyperbolic systems. SIAM J. Numer.
Anal. 54 (2016) 2466–2489.

[29] J.-L. Guermond and B. Popov, Invariant domains and second-order contin-
uous finite element approximation for scalar conservation equations. SIAM
J. Numer. Anal. 55 (2017) 3120–3146.

[30] J.-L. Guermond, M. Quezada de Luna, B. Popov, C.E. Kees, and M.W.
Farthing, Well-balanced second-order finite element approximation of the
shallow water equations with friction. SIAM J. Sci. Comput. 40 (2018)
A3873-A3901.

[31] H. Hajduk, D. Kuzmin, and V. Aizinger, New directional vector limiters for
discontinuous Galerkin methods. J. Comput. Phys. 384 (2019) 308–325.

[32] H. Hajduk, D. Kuzmin, Tz. Kolev, and R. Abgrall, Matrix-free subcell resid-
ual distribution for Bernstein finite elements: Low-order schemes and FCT.
Sbumitted to Computer Methods Appl. Mech. Engrg. Preprint: Ergebnis-
ber. Inst. Angew. Math. 598 TU Dortmund, 2019.

[33] A. Harten, High resolution schemes for hyperbolic conservation laws. J.
Comput. Phys. 49 (1983) 357–393.

[34] A. Harten, On a class of high resolution total-variation-stable finite-
difference-schemes. SIAM J. Numer. Anal. 21 (1984) 1-23.

[35] A. Jameson, Computational algorithms for aerodynamic analysis and de-
sign. Appl. Numer. Math. 13 (1993) 383–422.

[36] A. Jameson, Positive schemes and shock modelling for compressible flows.
Int. J. Numer. Methods Fluids 20 (1995) 743-776.

33



[37] A. Jameson, Analysis and design of numerical schemes for gas dynamics
1. Artificial diffusion, upwind biasing, limiters and their effect on accuracy
and multigrid convergence. Int. Journal of CFD 4 (1995) 171–218.

[38] V. John and E. Schmeyer, On finite element methods for 3D time-
dependent convection-diffusion-reaction equations with small diffusion.
Comput. Meth. Appl. Mech. Engrg. 198 (2008) 475–494.

[39] P. Knobloch, On the discrete maximum principle for algebraic flux cor-
rection schemes with limiters of upwind type. In: Z. Huang, M. Stynes,
and Z. Zhang (eds), Boundary and Interior Layers, Computational and
Asymptotic Methods (Proceedings of the BAIL 2016 conference). Springer
International Publishing, 2017, pp. 129–139.

[40] D. Kuzmin, Gradient-based limiting and stabilization of continuous
Galerkin methods. Ergebnisber. Angew. Math. 589, TU Dortmund Uni-
versity, 2018. To appear in: G. Rozza et al. (eds), LNCSE Springer FEF
2017 Special Volume (2019).

[41] D. Kuzmin, Explicit and implicit FEM-FCT algorithms with flux lineariza-
tion. J. Comput. Phys. 228 (2009) 2517–2534.

[42] D. Kuzmin, Algebraic flux correction I. Scalar conservation laws. In: D.
Kuzmin, R. Löhner and S. Turek (eds.) Flux-Corrected Transport: Princi-
ples, Algorithms, and Applications. Springer, 2nd edition: 145–192 (2012).

[43] D. Kuzmin, M. Möller, and M. Gurris, Algebraic flux correction II. Com-
pressible flow problems. In: D. Kuzmin, R. Löhner, S. Turek (eds), Flux-
Corrected Transport: Principles, Algorithms, and Applications. Springer,
2nd edition, 2012, pp. 193–238.

[44] D. Kuzmin and N. Klyushnev, Limiting and divergence cleaning for con-
tinuous finite element discretizations of the MHD equations. Submitted
to J. Comput. Phys. Preprint Ergebnisber. Inst. Angew. Math. 608, TU
Dortmund, 2019.

[45] D. Kuzmin, M. Quezada de Luna and C. Kees, A partition of unity ap-
proach to adaptivity and limiting in continuous finite element methods.
Computers & Mathematics with Applications 78 (2019) 944–957.

[46] D. Kuzmin and S. Turek, Flux correction tools for finite elements. J. Com-
put. Phys. 175 (2002) 525–558.

[47] R.J. LeVeque, High-resolution conservative algorithms for advection in in-
compressible flow. SIAM Journal on Numerical Analysis 33, (1996) 627–
665.

[48] R. Löhner, K. Morgan, J. Peraire, and M. Vahdati, Finite element flux-
corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations.
Int. J. Numer. Meth. Fluids 7 (1987) 1093–1109.

34



[49] C. Lohmann, Flux-corrected transport algorithms preserving the eigenvalue
range of symmetric tensor quantities. J. Comput. Phys. 350 (2017) 907–
926.

[50] C. Lohmann, Eigenvalue range limiters for tensors in flux-corrected trans-
port algorithms. Presentation given at the MultiMat 2017 Conference
on September 20, 2017 in Santa Fe, USA. Slides available online at
https://custom.cvent.com/F6288ADDEF3C4A6CBA5358DAE922C966/
files/e4c3aedf74394eb1a33e141f57f33b2e.pdf

[51] C. Lohmann, Algebraic flux correction schemes preserving the eigenvalue
range of symmetric tensor fields. ESAIM: M2AN 53 (2019) 833-867.

[52] C. Lohmann, Physics-Compatible Finite Element Methods for Scalar and
Tensorial Advection Problems. PhD thesis, TU Dortmund University, 2019.

[53] C. Lohmann and D. Kuzmin, Synchronized flux limiting for gas dynamics
variables. J. Comput. Phys. 326 (2016) 973–990.

[54] C. Lohmann, D. Kuzmin, J.N. Shadid, and S. Mabuza, Flux-corrected
transport algorithms for continuous Galerkin methods based on high order
Bernstein finite elements. J. Comput. Phys. 344 (2017) 151-186.

[55] H. Luo, J.D. Baum, and R. Löhner, Edge-based finite element scheme for
the Euler equations. AIAA Journal 32 (1994) 1183–1190.

[56] G. Luttwak and J. Falcovitz, Slope limiting for vectors: A novel vector
limiting algorithm. Int. J. Numer. Methods Fluids 65 (2011) 1365–1375.

[57] G. Luttwak and J. Falcovitz, VIP (Vector Image Polygon) multi-
dimensional slope limiters for scalar variables. Computers & Fluids 83
(2013) 90-97.

[58] P.R.M. Lyra, Unstructured Grid Adaptive Algorithms for Fluid Dynamics
and Heat Conduction. PhD thesis, University of Wales, Swansea, 1994.

[59] P.R.M. Lyra and K. Morgan, A review and comparative study of upwind
biased schemes for compressible flow computation. III: Multidimensional
extension on unstructured grids. Arch. Comput. Methods Eng. 9:3 (2002)
207–256.

[60] P.R.M. Lyra, K. Morgan, J. Peraire, and J. Peiro, TVD algorithms for the
solution of the compressible Euler equations on unstructured meshes. Int.
J. Numer. Methods Fluids 19 (1994) 827–847.

[61] S. Mabuza, J.N. Shadid, and D. Kuzmin, Local bounds preserving sta-
bilization for continuous Galerkin discretization of hyperbolic systems. J.
Comput. Phys. 361 (2018) 82-110.

35



[62] J. Peraire, M. Vahdati, J. Peiro, and K. Morgan, The construction and be-
haviour of some unstructured grid algorithms for compressible flows. Nu-
merical Methods for Fluid Dynamics IV, Oxford University Press, 1993,
221-239.

[63] V. Selmin, Finite element solution of hyperbolic equations. I. One-
dimensional case. INRIA Research Report 655, 1987.

[64] V. Selmin, Finite element solution of hyperbolic equations. II. Two-
dimensional case. INRIA Research Report 708, 1987.

[65] V. Selmin, The node-centred finite volume approach: bridge between finite
differences and finite elements. Comput. Methods Appl. Mech. Engrg. 102
(1993) 107–138.

[66] V. Selmin and L. Formaggia, Unified construction of finite element and
finite volume discretizations for compressible flows. Int. J. Numer. Methods
Engrg. 39 (1996) 1–32.

[67] G. Sod, A survey of several finite difference methods for systems of nonlin-
ear hyperbolic conservation laws. J. Comput. Phys. 27 (1978) 1–31.

[68] F. Vilar, A posteriori correction of high-order discontinuous Galerkin
scheme through subcell finite volume formulation and flux reconstruction.
J. Comput. Phys. 387 (2019) 245–279.

[69] P.R. Woodward and P. Colella, The numerical simulation of two-dimen-
sional fluid flow with strong shocks. J. Comput. Phys. 54 (1984) 115–173.

[70] S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms
for fluids. J. Comput. Phys. 31 (1979) 335–362.

[71] S.T. Zalesak, A preliminary comparison of modern shock-capturing
schemes: linear advection. In: R. Vichnevetsky and R. Stepleman (eds),
Advances in Computer Methods for PDEs. Publ. IMACS, 1987, 15–22.

36


	EB 609_1. Seite
	EB 609

