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Abstract

We develop an estimator for the high-dimensional covariance matrix of a locally
stationary process with a smoothly varying trend and use this statistic to derive con-
sistent predictors in non-stationary time series. In contrast to the currently available
methods for this problem the predictor developed here does not rely on fitting an
autoregressive model and does not require a vanishing trend. The finite sample prop-
erties of the new methodology are illustrated by means of a simulation study and a

data example.
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1 Introduction

An important problem in time series analysis is to predict or forecast future observations
from a given a stretch of data, say Xj,..., X, and numerous authors have worked on this
problem. Meanwhile there is a well developed theory for prediction under the assumption
of stationary processes [see for example Brockwell et al. (2002), Bickel and Gel (2011),
McMurry and Politis (2015) among many others]. On the other hand, if data is obtained
over a long stretch of time it may be unrealistic to assume that the stochastic structure of



a time series is stable. Moreover, in many shorter time series non-stationarity can also be
observed and prediction under the assumption of stationarity might be misleading.

A common approach to deal with this problem of non-stationarity is to assume a location
scale model with a smoothly changing trend and variance but a stationary error process,
say X, = p(n)+o(n)e, [see, for example, Van Bellegem and Von Sachs (2004), Starica and
Granger (2005), Zhao and Wu (2008), Guillaumin et al. (2017), Das and Politis (2017)]. In
this case the trend and variance function can be estimated and prediction can be performed
applying methods for stationary data to the standardized residuals. However, there appear
also more sophisticated features of non-stationarity in the data, which are not captured
by a a simple location scale model, such as time-changing kurtosis or skewness, and the
standardized residuals obtained by this procedure may not be stationary.

To address this type of non-stationarity various mathematical concepts modeling a slowly-
changing stochastic structure have been developed in the literature [see for example, Priest-
ley (1988), Dahlhaus (1997), Nason et al. (2000), Zhou and Wu (2009) or Vogt (2012)].
The corresponding stochastic processes are usually called locally stationary and the prob-
lem of predicting future observations in these models is a very challenging one. An early
reference is Fryzlewicz et al. (2003) who considered centered locally stationary wavelet
processes. In this model the sample covariance matrix in the prediction equation is not
estimable and the authors proposed an approximation using the (uniquely defined) wavelet
spectrum. Van Bellegem and Von Sachs (2004) considered the prediction problem in a lo-
cation scale model with a smoothly changing variance and stationary error process. More
recent work on forecasting in centered locally stationary time series can be found in Roueff
and Sanchez-Perez (2018) and Kley et al. (2019). The first named authors investigated
a predictor based on auto-regression of a given order, while Kley et al. (2019) considered
predictors in stationary and locally stationary models for (possibly) non-stationary data
and selected the “better” prediction among the two estimates. A common feature of most
of these methods is that they are all based on auto-regressive fitting.

In the present paper we contribute to this literature and propose an alternative method for
prediction in physically dependent locally stationary times series, which does not rely on
auto-regressive fitting and is therefore more flexible. To be precise we consider the model

Xin=p(i/n) +€n, i=1,...,n (1.1)

where u is a deterministic and smooth mean or trend function on the interval [0, 1] and
{€in:i=1,... ,n}yey is a triangular array modelled by a locally stationary process in the
sense of Zhou and Wu (2009) - see Section 2 for mathematical details. We then estimate



the regression function p by local linear smoothing and define a banded estimator for the
corresponding auto-covariance matrix

En = {COV(X’i7TL7Xj,TL (12)

)}1§i,j§n

from the residuals of the nonparametric fit, where the width of the band increases with the
sample size. Banded estimates of auto-covariance matrices have been considered by Wu
and Pourahmadi (2009) and McMurry and Politis (2010) for centered and stationary
processes using the fact that in this case the matrix ¥, in (1.2) is a Toeplitz matrix.
Neither of these results is applicable under the assumption of non-stationarity (even if the

locally stationary process {X;,}i=1.. ., in (1.1) is centered).

In Section 3 we establish consistency (with respect to the operator norm) of the new
covariance operator for locally stationary processes with a time varying mean function.
These results are then used in Section 4 to develop new prediction methods, which - in
contrast to the currently available literature - do not use autoregressive fitting. In Section
5 we investigate the finite sample properties of the estimator of the covariance matrix and
compare the new predictor with the currently available methodology. Finally, all proofs of

our main theoretical results and technical details can be found in Section 6.

2 Locally stationary processes

Consider the time series model (1.1) where {¢;,, : i = 1,...,n}nen is an array of centered

random variables, and p : [0, 1] — R is a smooth mean function. More precisely we assume

(M1) The function g in model (1.1) has a Lipschitz continuous second order derivative

on the interval [0, 1].

In order to model a local stationary error process we use a concept introduced by Zhou
and Wu (2009). To be precise, define for an L%-integrable random variable X its norm by
1 X1, = (E[|X]|))Y(g > 1), let {¢; : i € Z} denote a sequence of independent identically
distributed observations and define F; = (... ,&;_2,&;1,&;). We assume that there exists
a function G : [0,1] x RY — R such that

€in=G(i/n,F;) (2.1)

is a well defined random variable. For arbitrary functions G it is not guaranteed that
the stochastic structure of {e;,,: i € Z} varies smoothly, but we can achieve this by the
following assumptions.



(L1) For some ¢ > 2 we have that

sup [|G(t, Fo)ll, < oo.
te(0,1]

(L2) The function G is differentiable with respect to the first coordinate and there exists
a constant M > 0 such that for all ¢,s € [0, 1]
HQG(t 7 - 2as ]-")H < Mlt — §f
ot T o TV, = '
Next we quantify the dependence structure. For this purpose let {e} : i € Z} denote an
independent copy of {e; : i € Z}, define F} = (...,e_9,6_1,€(,€1,...,&;) and

5q(Gai) = sup [|G(t, F;) — G(ta}}*)Hq

te(0,1]
as a measure of dependence. We assume for the same ¢ > 2 as in assumption (L1) that

(L3) There exists a constant x € (0,1) such that

04(G, i) = O(x').

Example 2.1. A prominent example of this non-stationary model is a locally stationary
AR(p) process where the filter in (2.1) is defined by

Gt F) = 3 al0G( Fi) + olt)e (2.2)

where (£;);ez is a sequence of independent identically distributed centered random variables
with |le1||, < 00, and ay, ..., ap, 0 : [0,1] — R, are for smooth functions such that for some
do > 1 the polynomial 1 — > a,(t)z® has no roots in the disc {z € C: |z| < do}. If
the functions a and ¢ have bounded derivatives, G(t, F;) has a MA representation of the
form G(t, Fi) = o(t) 3272, cj(t)ei—j, where ¢y, ca, . .. are smooth functions with derivatives
satisfying |(t)| < My’ for j > 0. Therefore assumptions (L1)-(L3) hold for model (2.2).
It has been shown in Zhou (2013) that Model (2.2) can approximate the time-varying
AR(p) model in Dahlhaus (1997).

Remark 2.1. Note that the definition of a locally stationary error process contains the
case that each row of {¢,: i € Z},ey is stationary, that is G(t,F;) = H(F;) for some
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function H : RY — R. In this case the random variables €i.n = H(F;) do not depend on n,
Assumption (L2) is obviously satisfied and Assumption (L1) and (L3) reduce to

(S1) For some q > 2, ||H(Fo)ll; < 0.

(S2) There exists a constant x € (0, 1) such that

0g(H, i) = | H(F;) — H(F)]lq = O(x') -

If assumption (L1) holds the covariance matrix X,, = (0y jn)1<ij<n i (1.2) is well defined,
where

Oijn = Cov(Xin, Xjn) = E(G(i/n, Fi)G(j/n, F;)). (2.3)

Throughout this paper we do not reflect the dependence on n in the notation of the entries
of a matrix, whenever it is clear from the context. For example we will use o, ; instead of
0;jn and similarly a simplified notation for corresponding estimates. We also define the
(time dependent) auto-covariances

Ww(t) = E(GE F)G(t Fir)) (k€ Z) (2.4)

of the stationary (for fixed ¢ € [0,1]) process {G(t, F;)}icz. To estimate the covariances
in (2.3) we use a local linear regression estimate of the function ;. In order to prove
consistency of this estimator we require a smoothness condition on the auto-covariances in
(2.4), which is formulated as follows.

(A1) For any k € Z the function v, in (2.4) is differentiable with derivative 4;(t) = 27, (%).
There exists constants Dy such that for all ¢,s € [0, 1]

[Yk(8) = ()| < Dlt — s,

An application of the Cauchy-Schwarz inequality and the dominated convergence theorem
show that a sufficient condition for assumptions (L2) and (A1), is given by (L1) and

In the following section we will use the local linear estimates for the function v to define
a banded estimate of the covariance matrix >3, of a locally stationary process of the form
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(1.1) and investigate its asymptotic properties for increasing sample size. We also discuss
a corresponding estimator in the stationary case because usually estimators are studied
under the assumption of a centered stationary process, that is g = 0. In the subsequent
Section 4 we use these results for prediction in locally stationary processes with a non-

vanishing trend.

3 Covariance matrix estimation

The estimation of the covariance matrix has attracted considerable attention in the lit-
erature. We refer among many others to the work of Bickel and Levina (2008a), Bickel
and Levina (2008b) for high-dimensional independent identically distributed data and An-
derson (2003), Wu and Pourahmadi (2009), Chen et al. (2013), Box et al. (2015), and
McMurry and Politis (2015) who considered this problem for time series. Most authors
consider the case of a vanishing trend, i.e. g = 0, and assume that the error process
{€in:1=1,...,n} is a sequence of independent identical observations or a stationary se-
ries. For example, in the case of a stationary centered process Wu and Pourahmadi (2009)
proposed the banded estimator

Sn = 1{Gi1(i — j| <1n).1 <i,j <n} (3.1)

of the matrix ¥,,, where 1(A) denotes the indicator function of the set A and

1 n—|i—jl
0ij = m ; X nXstliijlns
is the sample auto-covariance of { X ., ..., X, ,} at lag |i — j| and [,, € N denotes a tuning

parameter satisfying l,, — oo, l,, = o(n) as n — co. McMurry and Politis (2010) modified
this statistic such that the new estimator leaves the band intact, and then gradually down-
weighs increasingly distant off-diagonal entries instead of setting them to zero as in the
banded matrix case. Both estimators use the fact that for stationary processes the matrix
Y, is a Toeplitz matrix.

Note that the estimator (3.1) is not consistent for the auto-covariance if the mean function
is not constant. As there are many applications where time series have a smoothly changing
mean function we begin our discussion analyzing a mean-corrected estimator of the matrix

Y., for a stationary error process of the form (1.1), which avoids this problem.



Let i be the local linear estimator defined by

(i), f(0)" = arguiin 2 o= malim—0)’K (D) 3)

(Bo,B1)€R? Tn
where 7,, denotes the bandwidth. For the kernel K we make the following assumption:

(K) The kernel K is a symmetric, continuously differentiable, bounded density function
supported on the interval [—1, 1].

We consider the residuals

€in = Xin — f1(i/n) (3-3)

obtained from the local linear fit and denote by

n—|i—jl|
1
1= —— Conbotligln (17 =1,...
the sample auto-covariance of the residuals {€é;,,...,€,,} at lag |i — j|. Finally, we define
for [, € N the banded matrix
Sh={el1(i =l <)}, (3.4)

as an estimator of the matrix >J,,. It will be shown below that the estimator EA]IL is consistent
for ¥, in the case of a strictly stationary error process. To measure the distance between

two matrices (of increasing dimension) we introduce the operator norm

p(A) = max |Ax|

z€R™:|z|=1
of a matrix A, where | - | denotes the Euclidean norm (note that p*(A) is the largest
eigenvalue of the matrix AT A).
Theorem 3.1. Assume that nt8 = o(1), n7> — oo, I,, — 00, % = o(1). If conditions (K),
(S1), (S2) and (M1) hold, then

(], = Za)llas2 = OG3),



where the sequence 13 is defined by

l2
78 = L(72 + (n7,)"Y?) + g" + x'.

Theorem 3.1 establishes consistency of the estimator of the covariance matrix in model
(1.1) in the operator norm under the assumption of a stationary error process. However,
there also exist many time series exhibiting a non-stationary behaviour in the higher order
moments and dependence structure [see Starica and Granger (2005), Elsner et al. (2008),
Guillaumin et al. (2017) among others], and estimation under the assumption of a location
model with a stationary error process might be misleading. In this case the estimator
52 in (3.4) is not necessarily consistent since the unknown covariance matrix %, is not a
Toeplitz matrix. To address this problem we propose an alternative approach which also
yields a consistent estimator for non-stationary time series. Roughly speaking, we estimate

the elements o; ; in the matrix ¥, by

. . i+
0'7;73' = 7|z—]\( 2n >, (35)

where (1) is a local linear estimate of the auto-covariance function (2.4) of the process
{G(t7 E)}ZGZ

To be precise, we distinguish between a lag of odd or even order and define

(3(1), 4%() " = argmin Y~ (éijoméisk/on — Bo — Pi(i/n — t))2K<i/ 7’2 - t) (3.6)

(Bo,B1)ER? 5 n

if the lag k is of even order, where b,, is a bandwidth and the residuals €;,, are defined in
(3.3). In (3.6) we use the notation €;,, = 0 if the index ¢ satisfies ¢ < 0 or ¢ > n. Similarly,
for an odd lag k we define

R R . B . . . 2 1/n—t
(i (1), G ()7 = amemin, 3 (Bt néiscienyn = Fo = Bulifn = 1) K ( / ).
0,01)€ER i=1

(/S/k_(t% (/?];)/(t))—l— — a]fgmin Z (gi_(k+1)/2,néi+(k—l)/2,n _ ﬂO . /31(1/71 i t))2K<Z/n — t) ‘

(Bo,B1)ER?




The estimator of the element ¢;; in 3, is finally defined by (3.5) and for the covariance
matrix we use again a banded estimator, that is

- R 1+ .
Za = (Geea (G0 = gl < 1) )

(3.8)

1<ij<n

Our next result yields the consistency of this estimator in the operator norm.

1

n

Theorem 3.2. Assume that nt> — oo, n7d = o(1),

= o(1), by, = o(1),
L((nby) Y2027 4 72 4 (n7,) V%) = 0o(1) and  b? Z Dy = o(1)

If the conditions (K), (L1)-(L3), (A1) and (M1) are satisfied, then we have

Hp(in - Zn)”q/? = O(rn),

where the sequence 1, is defined by

12 I
o = Lo((nby) Y20, %7 4+ 72 + (n7,,)7V/%) + 2+ X" +02Y) Dp=o(1).  (3.9)
k=0

Remark 3.1.

(a) In the case of a stationary and centered time series it has been demonstrated by
McMurry and Politis (2015) that tapering can improve the performance of simply
banded estimators of the covariance matrix and similar arguments apply to the co-
variance estimators (3.4) and (3.8) proposed in this paper for stationary times series
with a time varying mean function and for locally stationary times series. To be
precise consider the situation in Theorem 3.2 and define the tapering function (other
tapers could be used as well) by

a(z) = (2 — ) 1(1 < o] < 2) + 1(|a] < 1)

The tapered and banded estimate of the covariance matrix 3, is now defined by

A i=il\. i+
st (D)
" g L, gl ]|< 2n ) 1<i,j<n



Using the same arguments as in the proof of Theorem 3.2 it can be shown that

Hp(ifzap = 2n)llgs2 = O(ra),
where the sequence 7, is defined in (3.9).

(b) It is worthwhile to mention that recently Ding and Zhou (2018) proposed an alterna-
tive estimate of the the precision matrix X! of a centered locally stationary series,
which is based on a Cholesky decomposition. In contrast the estimator i; ! consid-
ers the inverse of a banded estimator of the covariance matrix of a locally stationary
series with a smoothly varying trend.

4 Prediction

In this section we discuss some applications of the proposed estimators in the problem to
perform predictions in locally stationary processes. For centered time series this problem
has been recently investigated by Roueff and Sanchez-Perez (2018), Kley et al. (2019) who
proposed to fit a locally stationary AR model and perform the prediction using an AR
approximation. In this section, we suggest an alternative method which is not based on
AR fitting. To be precise, assume that we observe a stretch of data Xi,,...,X,,, from
the model (1.1) and that we are interested in a prediction of the next observation X,, 1.
To be precise, our aim is the construction of best linear predictor of X,,;;, based on
Xins .-y Xmpn. For this purpose we define

m
Pred .__ _al
Xoiin = Gmyin + E Umt1—snXsn = A X, (4.1)

s=1
where X,,,,, = (1, X1, ..., X;nn) | and the prediction vector a,, = (Gmi1m, Gmnees G10) | =
TNT i o
(@mi1ms (Am™*) )" is given by

A = (Ami1ms (Am™) )T = argmin E(X 010 — 0 X0 )2 (4.2)
eeRm+1

In order to estimate the vector a,, we define the local linear estimators from the sample
Xl,m s ’Xm,n by

m

(@™(1), (1) = argmin > (X, — o — Sili/n — 1))’ K (i/n — t) ) (4.3)

(BO:Bl)GRQ i=1 Tn
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and denote by
Snm = (Oign)i<igem = (Cov(Xin, Xin))1<; iom (4.4)

the covariance matrix of the vector (Xi,,..., Xmn)?. The residuals (3.3) for estimating
the auto-covariances are then replaced by residuals by

&m =X, — pY (/) (i=1,...,m)
from the nonparametric fit from the data Xi,,..., X, . Next, we define Ai™ as the

analogue of the estimator (3.6) (if the lag k is even) and (3.7) (if the lag is odd), where
the residual €, is replaced by é77". We further define

U+ v
( 2n

B 1= (W () 1w = ol < 1)) (45)

1<u,v<m

as a banded estimator of the covariance matrix ¥, ., := Cov(X;,, X, )1<j<m in (4.4). It
can be shown that, if the assumptions of Theorem 3.2 are satisfied and m > |en] for some
positive constant c,

||i]n,m - 2nm“q/2 = O(ry), (4.6)

where the sequence r,, is defined in (3.9). We shall construct a predictor based on f];in
and for this purpose we show that the consistency of the estimator ﬁ]nm in (4.6) can be
transferred to its inverse.

Throughout this paper we denote A, (A) the minimum eigenvalue of a symmetric matrix
A and make the following assumption.

(E1) There exists a constant ¢ > 0 such that

n=lminf inf A,;n(Zm) > 0.

n—o0  |en|<m<n

Corollary 4.1. Assume that the conditions of Theorem 3.2 and condition (E1) are satis-
fied. If n — oo, |en] < m < n we have

p(Ent, — St ) = Op(ry) (4.7)

11



We can now define an estimate &, = (a1, (a5,)")" of the vector a,, in (4.2) by

m
dm+1,n = m/n Z Q41— sn,u S/n)
and
& = (s drn) = Sp L AR, (4.8)
where

~1im 1:m 21:m ~1:m\T

T = (Vnmvr)/nm 17"‘?771;1) )

o (2m — 1
G =4 (2010 < s <),
2n

The final predictor of X, 1, is defined by
quiicll,n = &m—i-l,n + Z CA’/m—‘,—l—s,n)(s,n, (49)
s=1

Theorem 4.1. Assume that the conditions of Theorem 3.2 and assumption (E1) are sat-
(0,1) such that

isfied, lim mfn_,o1
form >cn, m > Lnb J

(a) The vector a,, = (Gmi1m, (85)") 7 is a consistent estimator of the coefficient vector a,,
of the best linear predictor defined in (4.2), i.e

’é:jn - ajn' = OP(rn)a &m-i-l,n — Om41,n = O]P’O”Z)

where r,, is defined in (3.9), and

= (Iy/*log" n)ry + /nx'". (4.10)

(b) Assume that ry = o(1). If the error €;,, is a locally stationary AR (p) process as defined
i Example 2.1 and

(P1) nir, = o(1).
(P2) 6,(G,1) = O(X"),

(P3) supiey [1G(8, Fi)ll, < o0,

12



where G(t, F;) = SG(t, F;) denotes the derivative of the filter G, we have

v~ Pred
Xm+17n - Xm—‘rl,n

1
=)

o = £ (4.11)

where = denotes the convergence in distribution and €, denotes the error in model (2.2) .

The rate 7y in (4.10) results from convergence rate of the nonparmetric estimate of the
time-varying mean and does not appear if the trend is not estimated because it is known
to be 0. Conditions (P2) and (P3) can be verified by checking the coefficients of the MA
representation of the locally stationary AR process (2.2). They assure that for any i, j,
the process {E(G(t, F;)G(s, F;)) }t,sefo,y is sufficiently smooth on [0, 1] x [0, 1].

Remark 4.1. Similar arguments as given in the proof of Theorem 3.2 show that the

A

estimator 3, ,, is positive definite if the sample size is sufficiently large. However, for
finite sample sizes the matrix f)nm can be singular. As the prediction in (4.9) requires a
non-singular sample covariance matrix we propose in applications to replace the estimator
f]mm by a a positive definite estimator, say f]{’lflm, which is defined as follows. If f]nm =
Un,mVn,mUnT’m is the spectral decomposition of 2n,m and V,,,, = diag(vi,...,v,) is the

diagonal matrix containing the corresponding eigenvalues, we define

where anm is a diagonal matrix with its ith diagonal element given by
10 % 2 1:m t dt
v*zmax{vi, Jy 50 (1) },izl,....m
7 mﬁ

for some 3 > 0. As a rule of thumb, we choose S = 0.5 because for this choice p(ifﬁm -
Spm) = O(n~?) = O(r,). This type of modification has been also advocated by McMurry
and Politis (2010) and McMurry and Politis (2015) for stationary time series. Using similar
argument as in the proof of Theorem 3.2 of this paper and in the proof of Theorem 3 of
McMurry and Politis (2010), it can be shown that Hflfldm — Ynmllgi2z = O(ry). Now the
arguments given in the proof of Corollary 1 of Wu and Pourahmadi (2009) yield an analogue
of Corollary 4.1, that is
p((528,)7 = 550) = Os ().

A careful inspection of the proof of Theorem 4.1 finally shows that its assertion remains
valid, if 3, ,, in (4.7) is replaced by iﬁf’m.

13



5 Implementation and numerical results

To implement our method we need to choose several tuning parameters: the bandwidths
T, and b, for the local linear estimators of the trend p and auto-covariance function
and the width [,, of the banded estimator of the covariance matrix ¥,,. For choosing 7,,, we
recommend the Generalized Cross Validation (GCV) method proposed in Zhou and Wu
(2010).

More precisely, let '™ (-,7),1 < i < m be the local linear estimate of the mean trend
defined in (4.3) using bandwidth 7, then we choose 7,, as

—1 m X, — ~lm (s 2
T, = argmin n 21:1( ,n 1% (Z/n7 T))

v (=251 /)2

where T1/" is the iy, diagonal entry of the matrix
m m( m( m -1 m m(
T (X (i /n) W2 (i /) X (i /m)) (X7 (i) "W (i),

JE™ and X1™(i/n) are m x 2 matrices defined by

11 1\ 11 1\
1m ‘m
P = (0 0 ... o) X (@/n)=<% = mT-> !

respectively, and W, (z) is an m x m diagonal matrix with elements { K (@) | S
The bandwidth b,, for the estimation of the auto-covariance function ~, in (2.4) is defined

similarly. For example, if £k is even, we choose b,, as

b, = argmin ! Zgl(é}:—%/lnéilflz/zn —™(i/n, c))?
=

c (1 =225 (125 /n)? ’

where 4™ (i/n, c) is the local linear estimator with bandwidth ¢ defined as in (3.6) using

(5.1)

m observations and T3 is defined as in the previous paragraph.

c,it
To motivate the choice of the width [,, in the banded estimator of the covariance matrix,
note that

mA(n—k)

V(LTS i [ w0) = 0.5, 52

n -
=1

m A n—k

[see Section 4.3 in Zhang and Wu (2012)], where ¢; = OWAT g*(t)dt, and the function g*
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is the long-run variance of the locally stationary process {€; ,€i1 n}l 1. For its estimation
we use a statistic proposed by Dette and Wu (2019), which is defined as follows. Consider
the partial sum of lag k£

1

kolim __ ~l:m ~1l:m
Sro,rl - § ei,n €i+k,n7

=7
where we use the notation 6};” = 0 if the index ¢ satisfies ¢« < 1 or ¢ > m. For an integer
b > 2 we introduce the quantities

k 1:m
kALm _ Sj b+1j S]+17]+b
b .

Finally, we define for ¢ € [b/n, (m — b)/n]

" BARR
=3 2 ),

Jj=1

where

it =K (T =) [k ()

and the bandwidth b, is given by (5.1) with &7 /2 w1l 0. there replaced by &€ . For

t € [0,b/n) and t € ((m —b)/n, m/n] we define §*(t) = §*(b/n) and §*(t) = §*((m — b)/n),
respectively. Finally, we propose

I, = max {z e llo, I ‘ -172 Z elmelm | > (0, 01)01} (5.3)

. . . . - 1= ) .
as a data-driven choice of the width [,,, where x(«) is the L a)12/ nt -quantile of the

standard normal distribution and Iy and l; are constants (if the set {n=/2| 31" elmeln | >
k(0.01)a;, 1o <1 < ll} is empty we define I, =y — 1).
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5.1 Covariance estimation

In this section we investigate the finite sample properties of the estimators (3.4) and (3.8)

for the covariance matrix ¥, of a locally stationary process, where we consider

u(t) = 2sin2n(t), (5.4)
w(t) = 2—8(t—0.5)?
p o= 0, (5.6)

as mean functions. Recalling the notation F; = (..., ¢;_1,&;) we investigate four different
distributions for the errors in model (1.1):

(a) {€in:1=1,...,n} is a stationary AR(0.3) process with independent standard normal
distributed innovations.

(b) €, = 0.8G(i/n,F;) where
G(t, Fi) = 0.7sin(2nt)G(t, Fi) + €

and {&;}iez is a sequence of independent, standardized (Ele;] = 0, Var(g;) = 1)
t-distributed random variables with six degrees of freedom.

(¢) €in = G(i/n, F;) where
G(t, 7o) = S(exp(A(t = 0.5) + ey + 0.6(ei 1] — E(lei 1))

and {e;}icz is a sequence of independent standard normal distributed random vari-
ables.

(d) €, = G(i/n, F;) where
1
G(t, .7:;) = Z(COS<7Tt) + 2)(52 + 0.981;1 — 0.6&?@72)

and {g;}iez is a sequence of standardized (E[e;] = 0, Var(e;) = 1) independent chi-
square distributed random variables with five degrees of freedom.

Note that model (a) defines a stationary process and model (b) defines a locally stationary
AR(1) process. Model (c) defines a nonlinear tvM A(1) process. Since the innovations &;

in model (c¢) have a symmetric distribution, the covariance matrix of model (c) is diagonal.
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Model (d) defines a tvM A(2) process, where only the entries in the diagonal and the first
two off diagonals of the covariance matrix do not vanish.

A

Table 1: Simulated mean squared error p(%, — X,) for the estimators (3.8) and (3.4) in
model (1.1) with different mean functions and error processes (a) and (b).

Model (a) Model (b)
n 1 (3.8) (3.4) (3.8) (3.4)
(5.4) | 0.952 (0.0104) 0.637 (0.0105) || 5.034 (0.0311) 5.532 (0.0083)
250 | (5.5) | 0.943 (0.0100) 0.632 (0.0102) || 5.063 (0.0308) 5.529 (0.0083)
(5.6) | 0.770 (0.098)  0.474 (0.0090) | 4.646 (0.0365) 5.388 (0.0103)
(5.4) | 0.683 (0.0080) 0.410 (0.0051) || 4.304 (0.0303) 5.610 (0.0076)
500 | (5.5) | 0.672 (0.0078) 0.421 (0.0053) || 4.370 (0.0291) 5.595 (0.0081)
(5.6) | 0.609 (0.0073)  0.346(0.0045) | 4.021 (0.0299)  5.490(0.0096)
(5.4) | 0.518 (0.0060) 0.329 (0.0043) || 3.868 (0.0264) 5.624 (0.0069)
1000 | (5.5) | 0.535 (0.0062) 0.322 (0.0043) || 3.881 (0.0265) 5.632 (0.0070)
(5.6) | 0.484 (0.0060) 0.282 (0.0042) || 3.760 (0.0274) 5.563 (0.0077)

We examine the estimator for covariance matrix ¥, for sample sizes n = 250, 500 and
1000 using 1000 simulation runs. For the estimation of the width [, of the band in (4.5)
we use (5.3) with o = 1, l; = 6. In each simulation run the tuning parameters (7, b,)
are determined as described at the beginning of this section. In Table 1 and 2 we display
the simulated mean squared error of the spectral loss p(f]n — ¥,) for different estimators
5.,, where different mean functions and error processes in model (1.1) are considered. In
particular we compare the mean corrected estimator (3.8) for non-stationary error pro-
cesses with the mean corrected estimator (3.4) which assumes a stationary error process.
The numbers in brackets show the standard error of the estimates. We observe that in the
stationary model (a) the accuracy of both estimators improve with increasing sample size.
Moreover, the estimator (3.4) outperforms (3.8) because this estimator is constructed for
stationary processes. On the other hand, for the dependence structures (b) - (d) corre-
sponding to locally stationary processes the stationary method in (3.4) is not consistent
and the estimator (3.8) shows a substantially superior behaviour.

5.2 Prediction

To illustrate the finite sample properties of the estimator proposed in Section 4 for predic-
tion we examine the mean trend (5.4). As error process we consider a locally stationary

AR(6) model defined by
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A

Table 2: Simulated mean squared error p(X, — 3,) for the estimators (3.8) and (3.4) in
model (1.1) with different mean functions and error processes (c¢) and (d)

Model (c) Model (d)
n | & 33) 3.4) 3.3) 3.4)
250 | (5.4) | 0.647 (0.0114) 1.059 (0.0022) || 0.767 (0.0113) 1.024 (0.0071)
(5.5) | 0.623 (0.0116) 1.062 (0.0023) | 0.773 (0.011)  1.037 (0.0071)
(5.6) | 0.557 (0.0109) 1.045 (0.0023) || 0.745 (0.0109) 1.062 (0.0073)
500 | (5.4) | 0.482 (0.0094) 1.045 (0.0017) 0.558 (0.010)  0.963 (0.0045)
(5.5) | 0.478 (0.0094) 1.043 (0.0016) | 0.569 (0.010)  0.960 (0.0044)
(5.6) | 0.450 (0.0090) 1.037 (0.0016) | 0.564 (0.0098) 0.963 (0.0044)
1000 | (5.4) | 0.357 (0.0069) 1.037 (0.0012) || 0.426 (0.0082) 0.964 (0.0030)
(5.5) | 0.374 (0.0071) 1.040 (0.0012) | 0.418 (0.0078) 0.959 (0.0031)
(5.6) | 0.360 (0.0074)  1.036(0.0012) | 0.405 (0.0079) 0.960 (0.0030)
6
H(l —as(t)B)G(t, Fi) = o(t)ei, (5.7)
s=1
where the functions a;(t), ..., as(t) are given by

ay(t) = 0.6sin(27(t — 0.05)), as(t) = 0.3 cos*(3mt), as(t) = ((exp(t —0.6))%)/3 — 0.4,
as(t) = —0.4sin(67t) — 0.1, as(t) = (t — 0.3)*> — 0.2, ag(t) = 0.2,

o(t) = (1 + 0.5sin27t)%® and B is the lag operator on the filter F;, i.e., BG(t, F;) =
G(t, F;_1). We consider a standard normal as well as a x*(6) distribution for the errors &;
(centered and standardized such that Ele;] = 0 Var(g;) = 1) and examine the mean squared
error of the prediction for sample sizes n = 250, n = 500, n = 1000. We also compare the
new predictor with the methods in Roueff and Sanchez-Perez (2018), Kley et al. (2019)
and Giraud et al. (2015) which were theoretically investigated for centered data. In a

~1:m
ei,n

first step we used these methods with the residuals to obtain a prediction for the
de-trended series. In a second step we add to this estimate the value '™ (m/n) to obtain
the final prediction of X,,+1,. Notice that these authors use time-varying AR(d) processes
to approximate the time series for prediction without knowing d. Since the error process
(5.7) is a locally AR(6) process, we investigate the performance of the methods proposed
by Roueff and Sanchez-Perez (2018), Kley et al. (2019) and Giraud et al. (2015) for d = 3,
d =6 and d = 9 (note that in the predictor of Kley et al. (2019) d denotes the maximum
lag that their algorithm allows). These cases represent the situation of underestimation,
correct-estimation and overestimation of d. Note that in the cited references there are no

rules how to select d. Moreover, for the method proposed by Kley et al. (2019) we choose
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the parameter ¢ in their procedure as 0.05, as a small parameter ¢ prefers the choices of a
time-varying model to a stationary model.

Table 3: Simulated mean squared error of different predictors in model (5.7) with standard
normal distributed ;. The numbers in brackets show the standard error and the index *
represents the predictor with the best best performance.

Method tp’red =0.5 tpred =1

lag n=250 mn=500 n=1000 || n=250 n =500 n = 1000

(4.9) 1.250 1.070* 1.033* 1.283* 1.170 1.077*
- (0.0570)  (0.0530)  (0.0464) (0.0596)  (0.0511)  (0.0464)

d=3 1.286 1.126 1.057 1.342 1.148%* 1.137
(0.0523)  (0.0499)  (0.0466) (0.0577)  (0.0589)  (0.0490)

RS d=6 1.427 1.250 1.263 1.494 1.288 1.161
(0.0700)  (0.0510)  (0.0532) (0.0905)  (0.0536)  (0.0518)

d=9 1.895 1.297 1.209 32.286 1.779 1.125
(0.1667)  (0.0566)  (0.0514) || (20.2729) (0.0630)  (0.0542)

d=3 1.241% 1.244 1.319 2.729 3.262 3.524
(0.0623)  (0.0607)  (0.0633) (0.1201)  ( 0.1676) ( 0.2425)

G-R-S d=6 1.251 1.241 1.122 2.385 2.868 2.933
(0.0572)  (0.0537)  (0.0552) (0.1065)  (0.1280)  (0.1378)

d=9 1.323 1.166 1.170 2.536 2.461 2.441
(0.0625)  (0.0548) 0.0500) (0.1105)  (0.1169)  (0.1311)

d=3 1.314 1.182 1.126 1.346 1.329 1.168
(0.0628)  (0.0538)  (0.0484) (0.0674)  (0.0652)  (0.0517)

KP-F d=6 1.336 1.155 1.133 1.448 1.340 1.270
(0.0565)  (0.0586)  (0.0474) (0.0726)  (0.0612)  (0.0503)

d=9 1.343 1.357 1.215 1.459 1.279 1.255
(0.0598) (0.0480 )  (0.0509) (0.0588)  (0.0659)  (0.0581)

In Table 3 and 4 we present the simulated mean squared error

A~

E[(Xgﬁin - Xm-&-l,n)z}

for the four different prediction methods and different distributions of the innovations.
The columns denoted by t,..q = 0.5 and ?,,.q = 1 correspond to a prediction of X\, )41
from on Xy 1,..., X|,/2) and a prediction of X,, ,, from Xy 1,..., X,,_1,, respectively, where
we use lp = [log(m)] and l; = 5+ [log(m)] in (5.3). The first row shows the simulated
mean squared error of the prediction (4.9). With increasing sample size this mean squared
error approximates 1. This corresponds to our theoretical result in Theorem 4.1, because
we have for the model under consideration ¢(0.5) = o(1) = 1. The rows denoted by R-
S, G-R-S and K-P-F show the simulated mean squared error for predictors proposed by
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Table 4: Simulated mean squared error of different predictors in model (5.7) with (stan-
dardized) chi-squared €;. The numbers in brackets show the standard error and the index
x represents the predictor with the best best performance.

tpred = 0.5 tpred = 1
Method lag n=250 n=500 n=1000 n=250 mn=>500 mn=1000
(4.9) - 1.201 1.123 1.072* 1.294* 1.116* 1.088
(0.0577)  (0.0722)  (0.0624) (0.0871)  (0.0554)  (0.0608)
d=3 1.276 1.032* 1.100 1.307 1.196 1.061*
R-S (0.0645) (0.0757)  (0.0632) (0.0718)  (0.0794)  (0.0696)
d=26 4.282 1.263 1.107 1.775 1.298 1.160
(0.0645) (0.0787)  (0.0720) (0.0833)  (0.0868)  (0.0627)
d=29 1.726 1.347 1.159 50.111 4.181 1.210
(0.1022) (0.0573)  (0.0567) (24.4556)  (0.0804)  (0.0861)
d=3 1.366 1.376 1.346 2.646 3.185 3.162
G-R-S (0.0885) (0.1016)  (0.0784) (0.1748)  (0.2806)  (0.3451)
d=26 1.207 1.302 1.274 2.420 2.553 2.844
(0.0651) (0.0780) (0.0632) (0.1217)  (0.2104)  (0.1783)
d=29 1.263 1.299 1.182 2.338 2.722 2.721
(0.0618) (0.0597)  (0.0683) (0.1440)  (0.2321)  (0.1664)
d=3 1.120* 1.101 1.176 1.372 1.320 1.061*
K-P-F (0.0668) (0.0508)  (0.0611) (0.0731)  (0.0753)  (0.0697)
d=26 1.235 1.163 1.107 1.379 1.195 1.278
(0.0644) (0.0621) (0.0715) (0.0946)  (0.0589)  (0.0663)
d=29 1.134 1.283 1.202 1.317 1.293 1.132
(0.0712)  (0.0710)  (0.0602) (0.0793)  (0.0801) (0.0708)

Roueff and Sanchez-Perez (2018), Giraud et al. (2015) and Kley et al. (2019), respectively,
with different time lags d = 3,6,9. In general, the non-stationary predictor (4.9) performs
better or similar as the alternative methods with different time lag d in all scenarios.
Our simulation results also demonstrate that the performance of R-S, G-R-S and K-P-F
predictors depend sensitively on the choice of d. Finally, the large numbers in R-S predictor
is due to the singularity of estimated local covariance matrix. We expect that this can be
corrected by using an eigenvalue corrected positive definite covariance matrix estimator
similar to (4.12).

We also examine the distribution of the prediction error as investigated in Theorem 4.1. For
this purpose we show in Figure 1 the QQ plot of prediction errors of the predictors (4.9) for
standard normal distributed errors and centered and standardized x?(6)-distributed errors
in model (5.7), respectively. The model is given by (5.7) and the sample sizes is n = 1000.
These results confirm the theoretical findings in Theorem 4.1.

Finally, we compare the new predictor (4.9) with the methods proposed by Roueff and
Sanchez-Perez (2018), Giraud et al. (2015) and Kley et al. (2019) in a locally stationary
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Figure 1: QQ plots of prediction errors. Left part: standard normal distributed errors.

Right part: (X2(6) — 6)/v/12-distributed errors.

MA(6) model defined by

6

Gt F) =] — as(t)B)o(t)e:, (5.8)

s=1

where the time varying coefficients ag,...ag and the function o are the same as those
defined in the locally stationary AR(6) model (5.7), the mean function is given by (5.4)
and the random variables ¢; are independent standard normal distributed. The results are
presented in Table 5 and we observe similar properties as in the locally stationary AR(6)
model (5.7). A detailed discussion is omitted for the sake of brevity.

5.3 Market indices analysis

In this section we apply our method to predict market indices. Let p; be the adjusted daily
closing value at day ¢, then the log return r, is defined as

ry = log p; — log pi—1.

As pointed out by Starica and Granger (2005), the sign of 7, is unpredictable. As a result,

these authors proposed to model r; as

log[ri| = p(t) + o (t)e; (5.9)
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Table 5: Simulated mean squared error of different predictors with MA(6) model (5.8).
The numbers in brackets show the standard error and the index x represents the predictor
with the best best performance.

tpred =05 tpred =1
Method | lag n =250 n=500 n=1000| n=250 n=>500 mn=1000
(4.9) - 1.187 1.090%* 1.083 1.346%* 1.234%* 1.092%*
(0.0504) (0.0509) (0.0470) | (0.0627) (0.0554) (0.0511)
d=3 1.222 1.152 1.144 1.505 1.287 1.102
R-S (0.0571)  (0.0532)  (0.0503) || (0.0673)  (0.0580)  (0.0475)
d=6 1.331 1.137 1.228 1.869 1.405 1.266

(0.0569) (0.0511)  (0.0519) || (0.0912)  (0.1037)  (0.0511)
d=9 8757  1.338 1.138 254780  2.128 1.247
(1.213)  (0.0596)  (0.0515) || (175.380) (0.1643)  (0.0533)

d=3 1.232 1.255 1.296 2.462 2.484 2.042

G-R-S (0.0557) (0.0562) (0.0642) || (0.1044) (0.2468)  (0.1060)
d=6  1.167 1.257 1.035 2.169 1.868 1.793

(0.0544)  (0.0539)  (0.0492) || (0.0973)  (0.0839)  (0.0849)
d=9 1.128%  1.178 1.087 1.985 2.064 1.949

(0.0610)  (0.0604)  (0.0543) || (0.0943)  (0.0925)  (0.0882)
d=3 1286 1280  1.051% 1.571 1.404 1.292

K-P-F (0.0497)  (0.0599)  (0.0456) || (0.0677) (0.0595)  (0.0545)
d=6  1.177 1.179 1.244 1.523 1.321 1.288

(0.0595) (0.0538)  (0.0516) || (0.0751)  (0.0669)  (0.0548)
d=9 1296 1.238 1.158 1.649 1.449 1.310

(0.0524)  (0.0511)  (0.0479) || (0.0724)  (0.0640)  (0.0606)

where 1 and o are time varying functions and €; denotes a zero-mean noise process. Starica
and Granger (2005) used model (5.9) to study the non-stationarity of stock returns. In
this section we apply the new method to predict y; := log(|r;|) for the SP500, NASDAQ
and Dow Jones Index. We consider data from Dec. 19, 2016 to Dec. 17, 2019. For SP500,
NASDAQ and Dow Jones Index, we delete the log return of Jan. 10, 2017, Nov. 13, 2018
and Nov. 12, 2019 respectively due to their negative infinity values. Therefore the lengths
of the series are 752. We use the new method to predict the market indices at trading days
between April. 8, 2019 and Dec. 17, 2019 for SP500 and NASDAQ and at trading days
between April. 5, 2019 and Dec. 17, 2019 for Dow Jones Series, respectively, and calculate
the empirical mean squared error for these predictions. For the sake of comparison we
also apply the methods of Roueff and Sanchez-Perez (2018) (R-S), Giraud et al. (2015)
(G-R-S) and Kley et al. (2019) (K-P-F) to the same series. As in the simulation, for fair
comparison we perform those algorithms on non-parametrically de-trended data and use
the outcome plus i((7°— 1)/T) as the prediction of indices at day 7. The corresponding
results are listed in Table 6, where we use the different lags 3,6,9 in the procedures based
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on autoregressive fitting. We observe that the new prediction method (4.9) shows the best
performance for all three market indices. For NASDAQ index the method proposed by
Kley et al. (2019) with d = 9 shows a similar performance. In general the parameter d
for the prediction method proposed by Roueff and Sanchez-Perez (2018), Giraud et al.
(2015) and Kley et al. (2019) is difficult to select, while it has a complicated impact on
the predictions when applying those approaches. In Figure 2 we also plot the prediction
error of the different methods for the three market indices. The left panels display log |r|,
while the right panels show absolute prediction errors of the prediction (4.9) and of the
predictors proposed by Roueff and Sanchez-Perez (2018) (R-S), Giraud et al. (2015) (G-
R-S) and Kley et al. (2019) (K-P-F) for the corresponding parameter d € {3,6,9}, which
achieves the smallest mean squared error.

Table 6: Empirical mean squared error of different predictors for SP500, NASDAQ and
Dow Jones. The notation x marks the best method.

Method | lag SP500 NASDAQ Dow Jones
(4.9) - 1.456%* 1.119* 1.745%
d=3 1.535 1.130 1.747
R-S d=6 1.586 1.142 1.873
d=9 1.607 1.170 1.860
d=3 1.817 1.826 2.054
G-R-S | d=6 2.689 1.350 2.361
d=9 2.225 1.200 2.344
d=3 1.653 1.147 1.883
K-P-F | d=6 1.707 1.124 1.938
d=9 1.763 1.119* 1.932
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Figure 2: Prediction of different market indices (left panels). Right Panel: the absolute
prediction errors of the different methods
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6 Appendix: Proofs

In the proof, we shall use P;(-) = E(:|F;) — E(:|Fi—1) as the projection operator. Let
€&n = 0 and €, = 0 for ¢ < 0 or ¢ > n for convenience. For a p—dimensional real
vector v = (v1,...,v,)", we write [v| = (3F_, v?)¥2 for its euclidean norm, and write
Iv], =E (|v|9)*? if v is random. Let M denote a sufficiently large constant which varies
from line to line. Write aVb = max(a,b) and aAb = min(a, b). For positive definite matrix

A, define A\ (A) and A (A) be its largest and smallest eigenvalues, respectively.

6.1 Some auxiliary results

In this section we provide several auxiliary results, which will be used in the proofs of the
main statements. The main result is Proposition 6.3, while Proposition 6.1 and 6.2 are
used for a proof of this statement.

Proposition 6.1. If assumptions (L1)-(L3), (M1) hold, nT3 — oo and nt8 = o(1), and
len| < m < n for some constant ¢,0 < ¢ < 1, then the local linear estimate in (3.2)

satisfies

sup [|2"(t) — p(t)llg = O(7 + (n7,)~'1%).
t€[0,1]

Proof. Define the quantities M(t), k =0,1,2 as

M,(t) = LiK(/n - t) (i/n _ t>k'

i=1 n n

The straightforward but tedious calculations by solving (4.3) we have for ¢ € [0, ] the

solution is

Tn

_nii N ten) K*(i/”_t), (6.1)

where

L=ty Ma()E () — My(#) K (=) (=
K ( ) - Mo(t)Ma(t) — ME(t) ’

Tn

with 0/0 = 0 for convenience. Observe that K* is bounded and has a compact support on
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[—1,1]. Observing the identity

ifn—t i/n—
. = ||— Pi_ K*( ) , 6.2
Ll LS e
and applying Burkholder’s inequality to the martingale difference > 7" P, K* (z/ o t)ei,n

shows

i=1 n 1

for some constant Cj, where we have used the same arguments as given in the proof of
Theorem 1 in Wu (2005) for the last inequality, and have used the fact that m > [cn].
Combining (6.2) and (6.3) leads to

> s (L),

Now elementary calculations using condition (M1) with Taylor expansion show that

< Coqnr, 02 (k) (6.3)

m . o t 2
< Coug Z Hpi—kK* (z/n )Ei,n
i=1 a

Tn

< Cy*¢"*(nr,) 1/225 (6.4)
k=0

1 & l t/n—t
op [ (e (P — | = 0 (65)
te[0,1] ' Ty i—1 n
Then the the assertion follows from (6.1), (6.4) and (6.5). &

Proposition 6.2. If assumptions (L1)-(L3), (M1) are satisfied, nt2 — oo and nt8 = o(1),
then we have for 1 <k <n,

ma | Z<+k - e,nmk,qu/z — O(an),
1=

where oy, = ntd + 7,7 + \/nT,.

Proof. Proposition 2 follows using similar arguments as given in the proof of Theorem 3.1
in Dette et al. (2019). &

Proposition 6.3. If the assumptions of Theorem 3.2 are satisfied, and 0 < k < ,, there
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exists a sufficiently large constant M such that

. . _ k
(i) sup [50(6) = w(Ollyz < M ((b,) 2+ D + =+ S8,

te[0,1] nb,

(i)

k
t < M(b,%/(nb,)""? 4+ Dyb? =
s Fielt) - O, <2 (52, 2+ D+ 2 2.

Proof. Without loss of generality, we assume that the lag k is even and define 7, (t) as the
analogue J,(t) in (3.6), where the residuals €, ,, are replaced by the “true” errors ¢;,,, that

18

(%(t),%(t))T - (g;%?elxg Z €ik/2n€itk/2n — Po — Bi(i/n — t)) K(i/zn_ t).

Elementary calculations show that

Ma(t)
w(t) = ==

Zz 1 €i—k/2,n€itk/2, nK(i/::U Ml(t) Zz 1 €i—k/2,n€it+k/2, nK(Z/ZL_;t)(Z/;L;t>
Mo(t)M2( ) — ME(t) 7

where

M) = S (PN (N o

=1
Similarly, we have

My(t)

n ~ ~ L /m—t M (t n ~ ~ i /n—t L /n—t
Sa(t) = S Eimkambiskyzn K (G0 = 2O ST & ki o n K (L) ()

Mo(t) My(t) — M7 (t)

and using the summation by parts formula and Proposition 6.2 it follows that

Qnp
sup |7 (t) — Yk (t =0(—-).
t€[0,1]| =%l , =00
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uniformly with respect to 1 < k < n and it remains to show that

< 1\4((nbn)—1/2 + Db + %)

(a) sup H% — k(1)

te[0,1] q/2

(b) || sup () — e (?)]

tel0,1]

§A4@fmmmyﬂf+pmi+ﬁ)
n

)q/Q

Let i = €i—kj2,n€itk/2,n (nOte that k is even). By (6.6) we have

~ ~ R~ i/n—t ifn—t\ i/n—t
500 = 300 Sk (L) 00 - Y mare (=) (5=)
- _ Mo () ~ _ — M (£) :
with M (t) = Mo(t)MQ?t)—Mf(tV My(t) = Mo(t)MZ(i)_M%(t). Notice that
~ 1 < i/n—t z/n—t ifn—t
20 = 3500 i3 (L =0) o - Ym0 (=)
As a result, we can decompose i (t) — v (t) into a random part and a deterministic part,
ie.
(1) = (t) = EL(t) + E5(1),
where
— ~ - 1/n—t
(1) = S(0) - > e — )i ()
~ = ifn—t, i/n—t
s . 1< i/n—t
Ex(t) = 1(0% Z('fhk Eni ) K ( 2 )
~ 1 <« i/n—t, i/n—t
4 ()3 (o~ ) k(L (L
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To complete the proof we will show that (uniformly for 0 < k <1,)

Eoo1
sup |Z4(t <M<Dbi+—+—), 6.7
sup [Z0)] <M Db+ 0 (6.7)
sup [|Z5(8)llq2 < M ((nbn)~'?) (6.8)
te[0,1]
| sup |Z5()]llg2 < M (b, 9(nb,) %) . (6.9)
te(0,1]

Observe that Z%4(¢) can be further decomposed as

Ep(t) = E(li,k(t) + Eg,k(t)a

where

=440) = (1)1 > s — i) (L2
+ Mz(t)n%l > (Enig — %(i/n))K(i/ZH_ ) (i/zn_ ),

=1

4400 = ¥ (0= > uifm) () (L2

= i/n—t

(0> i)~ K (L) (1),

By conditions (L1), (L2) and a Taylor expansion it follows that

B -0 R ) (el R
=0(k/n)

uniformly with respect to i. A straightforward but tedious calculation now shows that

sup |E‘11k(t)] =O0(k/n+ L) (6.10)

te[0,1] nb,

as n — oo, uniformly with respect to 0 < k < [,,. In addition by condition (A1), we obtain

29



that

1
sup |=5,(t)] = O(Diby+——) (6.11)
te[0,1] ' nbn
(uniformly for 0 < k& < [,). As a result, inequality (6.7) follows from (6.10) and (6.11).
For =;(t), an application of the Cauchy-Schwartz inequality shows that

[Pisija-stikllasz < M(0y(s) + s = k)dy(s — k),

(uniformly with respect to i) and assertion (6.8) now follows using similar arguments as
given in the proof of Proposition 6.1. By Assumption (K) and similar arguments as given
in the proof of Proposition 6.1 we have

< M ((nb,)~*?b, ") (6.12)

a/2

=10
sup || ==
te(0,1] ot b

(uniformly with respect 0 < k < [,,). Finally, inequality (6.9) follows from (6.8), (6.12)
and Proposition B.1 in Dette et al. (2019), which completes the proof. O

6.2 Proof of Theorem 3.1 and 3.2

For the sake of brevity we restrict ourselves to the proof of Theorem 3.2. Theorem 3.1 can
be shown by similar but substantially simpler arguments.

Define the banded matrix %, , = (0;;1(]¢ — j| < 1)), where we use the symbol o; ;
for o;;, to simplify the notation. Note that ¥; , — ¥, is a symmetric matrix and by
Gershgorin’s circle theorem it follows that

n

P(Stn — ) < max Y oiy — 031 — j| < 1)

1<i<n 4

7=1
(i—ln)V1 n
< . N
< 2%;( Z os.5] + Z ]aw\>. (6.13)
J=1 j=(i+ln)An

Using similar arguments as given in the proof of Lemma 5 of Zhou and Wu (2010) it follows
that

|03 5] = O(ixzsﬂij) =0o(") | (6.14)
s=1
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for all 7, € N, and straightforward calculations give

(i—ln)V1 n
_ In ) = ln
max (3 Joil) =00 max (3 Jougl) = 00,
T J=1 T j=(it+la)An

Therefore we obtain from (6.13) the estimate
IO(Elnﬂ'L - Zn) = O(Xln>

Note that, by definition, 0;; = E(G(L, )G (L, F;)), 1i—j (521) = E(G(5L, F)G(5L, F))),
then using conditions (L1), (L2) we have

147 Ly
ia(—2) — o < ME 6.15
Jnax |91i—gi(57) = oig| < Mo (6.15)
for some large constant M.
On the other hand, similarly to (6.13) it follows that
i+J .
p(Sn = Stm <1rg§<>;2| 015 = A=t (57) 1l = ] < )|
J=(i+lp)An i+ j
—max (Y (5 —oul). (6.16)
j=(i—ln)V1
By Proposition 6.3 it follows that
j=(i+ln)An
1+
pax >, a0 —oul]
j=(G—1ln)V1
J=(i+ln)An . . G=(i+ln)An
1+ 1+ 1+
SH Z 1121a<x ‘7|z j|( om ) — V)i—j ( a2 + 112%); Z |'7|z J\( m ) - Jz,]’
j=(i—ln)V1 j=(i~ln)V1
a 2o
<M (L (6,209 (nb) V2 4 ) 4 2 D). 6.17
<M ((bn(6%/(nby) +nbn)+n+; ; (6.17)
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where the quantities Dy, are defined in (A1), for which we have used (6.15) and the estimate

j:(i""ln)

S max P o) — (S|
Wt 1<i<n |i—J] m i—J] m /2
J=(t—ln

O(i (B22(nba) 72 + D2 4+ = - W»

k=0

O(In (b,;?/ff(nbn)—l/2 +n —) Z D2

Therefore the theorem follows from (6.16) and (6.17).
6.3 Proof of Corollary 4.1
Condition (E1) shows that the quantity

W=x 125 w12

is well defined. By our construction, W is positive definite with probability tending to 1.
Then by (4.6) and condition (E1), we have that

lp(W — [mxm)Hq/? = O(ry),

where I,,«,, is an m x m diagonal matrix. Now the corollary follows from the argument
in the proof of Theorem 2 of McMurry and Politis (2010) and the fact that p(3,,,) is
bounded which is a consequence of Gershgorin’s circle theorem.

6.4 Proof of Theorem 4.1

By the projection theorem, equation (4.2) is equivalent to

]E(Xm+1,n - Xrlp)zrj%,n) = 07 E((Xm-i-l,n - Xfrfi(i,n)Xj,n) = O; ] = 17 RN

32



Using these equations in (4.1) yields

m+1 “ s
Am41n = K < n ) - Zam—i—l—s,n,u <E> ; (618)

{65 7)o (o)) 1) o

(1 < j < m), which shows that the vector a’, in (4.2) is given by

= (6.19)

nm7m7
_ T
where 7v,, = (Cmt1.1s- - Omi1m) - Let
T
PYm,ln = (07 e 7Oa Om+1,m—Ilp+1y - - - 70-m+1,m)

be the vector with jy, entry given by 0,,41,;1(m + 1 —j < [,). By the representation of
n (4.8), we have

—a;‘n:G1~|—G2+G3,
where the terms G, Gy and G3 are defined by

Gl = 27:,171 (;yn —Tm ln)
Ga = (Snn = i) Y.
G3 = Z;}n(’Ym,ln - ’7m>

In the following we shall show that G; = Op(r,,) for j = 1,2, 3, which implies

lay, —a’,| = Op(ry,). (6.20)

m

Using similar arguments as given in the derivation of (6.17) we have

~1m = Lim m+ s 1/2
5™ = At llay2 = H( > () —0m+1,s|2)

s=m+1—1Ip

=O(ry).

q/2
A straightforward calculation using assumption (E1) and Corollary 4.1 show
Gr < pCE )™ = Y, = Op(ra).
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By (6.14) |v,,,,| is bounded. By Corollary 4.1 it also follows Gy = Op(r,). Observing
(6.14) we obtain

m—In
|7m,ln - 7m| = ( Z 0-7271,j)1/2 S MXln (621)

=1

which implies G5 = O(r,,), and hence (6.20) follows. For a proof of part (a), it now remains
to show that

|dm+1,n - am+1,n| = OIP’(T701>~ (622)

From (6.18) and definition (4) it follows that

o ~l:m + 1
m4+1n — Am+1n = ,UL (%) - m (Z Am41—s n,u Z Am41—s,n b :;))
_ Alzmm _ m+1 ) - < i _Al:m£>
= (,u (n) wu( - ) —i—;(lmﬂ—s,n M(n) H (n)
< ~1m (S A
+2 K (ﬁ) (@n+1-sn = Gme1-sn)
s=1

= H1 +H2+H3,

where the statistics Hy, H, and Hj are defined in an obvious way. Using assumption (M1)
and Proposition 6.1, we have that || H, ||, = O(72 + (n7,)~'/?). For an estimate of Hy we
need to determine the order of af, defined in (4.2). For this purpose we define

Snamidn = (0510 = j1 < i)i<ijens &t = St Yo
then using (6.14) and (6.21) we get
a0, — an| = O(™). (6.23)

Denote by a1, j; Y., the ju, entry of the vector aj,; and 7, , respectively. Define

“ S\ o tm, S
H27ln - Z Am 1, ,m+1—s <M(E) - /"Ll. (_)>7

n
s=1
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then, by (6.23) and Proposition 6.1, it follows that

Hyy, — Hy = Op(\/ﬁxl"(ﬂf + (nTn)_l/Q)). (6.24)

Hence it suffices to study the order of Hy;,. Denote the (i, j)s, entry of the matrix En il
by Enml (i,7). Since Xy my, is lp-banded, limy, o0 |20 my, ||F < 0o and condition (E1),
we can apply Proposition 2.2 of Demko et al. (1984), and obtain

2[i—4|

Where dn = (\/ﬁ - 1)/(\/E+ ]-)7 T'n = )\max(Zn,m,ln)/)\min(zn,m,l ) O - max()\min, COn),
Con = (14 72/*)2/(2Amin(A)r,). By condition (E1) and (6.14), it follows that there exists
a positive constant M and a constant @ € (0, 1) such that

Ch <M, 0<¢g <Q<L

Then, if h a is positive constant such that thlOg"ll/ 2 O(logl/ n), we have uniformly
for 1 <i<m —hl,logn

Amlp,i = ZznmanJlenJ Z Enml Z]mean

j=m—ln+1

Z}L/Qlo 12y
— O<anhlogn) — O<—g>

n

On the other hand, observing the fact |aZ,| < |p(3;},)|[7,,| < oo yields

> a2, ;<M < oo (6.26)

m,ln

1€(m—hly logn,m|

for some constant M’. Thus it follows from Proposition 6.1 and an application of the
Cauchy Schwarz inequality that

S

m
|H27ln‘ S‘ Z m 1, ,m+1—s (,U/(ﬁ
s=1

) — a2

>
n))l(s > hl,logn + 1)‘

L f _ nlim f
+ ‘ Zamln’m_’_l_s (,u(n) fL (n)>1(s < hl,logn + 1))

= o]p(zl/2 log? n(72 + (nm,)~Y?)). (6.27)
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Equation (6.24) and (6.27) now show that Hy = Op(ry), where 7 is defined in (4.10).
Finally, for the estimate of H3 we define

m
HS,ln = Z ﬂlm(g) (am,ln,erlfs - derlfs,n)-
s=1

By (6.23) we find |Hj,;, — Hs| = Op(y/nx™). Notice that (6.20) and (6.23) yield that
&y, —ay,, | = Op(r,). Furthermore, similarly to (6.25), using Proposition 2.2 of Demko
et al. (1984) it follows that there exist constants My > 0 and Qo € (0,1) such that

2li—j|

S ) < MoQy ™ , 1<i,j<m

with probability tending to 1. Using this fact and similar arguments as for the derivation of
(6.27), we obtain |Hj,, | = Op((l}/2 log'? n)r,) = Op(r2). This proves (6.22) and completes
the proof of part (a).

For a proof of part (b), we recall the definition of the filter G in (2.2) and obtain

P

G Fr) =Y a(")G(=E Fn) + Y diG(E, Frsims) + 0(2 e,

s=1 s=p+1

where d, = 0, for p+ 1 < s < m. Observe that
E(G(™E, Frp)G(L,F)) = D as(E(G(™E, Fruo)G(L, 7))

n’

+ Y dE(G(E Fr-s)G(LFy)), (6.28)
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(m—p+1<j<m). Define

0 =E(G(;, F)G(2,F;), 1<i<m—p, 1<j<m—p,

G =E(G(E, F)G(L F), 1<i<m—p, m—p+1<j<m+1,

5i; =BG, F)G(L, 7)), m—p+1<i<m+1, 1<j<m-—p,

Gij =B(G(™, F)G(™E, Fy)) , m—p+1<i<m+1, m—p+1<j<m+1,

(note that &, ; = ¢;,;). These notations and the equations (6.28) and (6.29) show that the
m-dimensional vector &, = (0, ..,0, a, ("), a,_; (2, ..., al(mTH))T satisfies

ARy _ ., AR
z]'m, am _’Ym )

where the m x m matrix X% and the m-dimensional vector v/\% are defined by A% =
(5:4)1<ijem and VAR = (611, oy Omi1m) |, Tespectively. On the other hand we have

P = A () ) s ((2) — 1°(2) + (85,) T Z,
s=1

+a,Z+ o (") e

_ +1
Xm—i—l,n — ,u(mT

~—

where the m-dimensional vectors Z and Z are given by

Z = (G(L R oo GO, Fo ) G2, Fy ) G2, Fy))

n n

n n

- T
Z = (G(%wrl)a IRERD] G(Ma‘rm—p)a G(mT—HMFm—Q—l—p)a G(m_—H Fm+2—p)> G(_—Hafm)) .

(note that the first m — p elements of the two vectors coincide). Therefore we obtain the

following decomposition
v Pred _ +1
Xgin — Xmrin = W1+ Wa — )

where



It now follows from the proof of (6.22) that W, = Op(r%). To derive a similar estimate for
the term W5 we note that by (6.26) and (6.20)

a5 = Op(1).

Straightforward but tedious calculations using condition (L2) yield that

~ 3/2
2-7-0.("0),
n
which leads to W5, = Op(r,). For estimation of W55, note that a maximal inequality
shows
Z| = I1flr_31><|Z| = Op(n) . (6.29)
We will show below that
- e D
la, —ay| =0(=). (6.30)
n

which yields with (6.20) the estimate |&f, — a,,] = Op(r,). Observing (6.29) we have
Wy = Op(n%m), which completes the proof of part (b), observing the fact that €, is
identically distributed with .

In order to show (6.30) we use conditions (P2), (P3), will prove that

2 +2 — hoy (i) — hn(§) v
sup |6y — 034] = O( me ) mX" J‘>,
1<ij<mt1 n

(6.31)

where
hp(u)=m+ D11 <u<m-—p)+ul(m—p+1<u<m+1).

To see this, we consider exemplarily the case that i,j € [m —p+1,m+ 1] - all other cases

are treated in the same way. Then

Gij—o0i; = E(G(=E F)G(2E 7)) —E(G(L, F)G(L,F)) = K1+ Kb, (6.32)

n ’ n’ n’
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where K7 and K, are defined by

n’

K, =E(G(4,F) (G52 F) - G F)) )
For the investigation of K7, we use the differentiability of the filter to obtain
m+1

B(or A G m) - G| < [, [B(Ge A)Gw R |du (633

n’

n

Observing assumption (P2), (P3) and by the argument of proving (6.14), it follows

B F)Gw 7)) =

XN (6.34)
(uniformly with respect to u € [0, 1]). Combining the estimates (6.33) and (6.34) yields

m+ 1 ;
—X‘ J|)
n

1] = o

Similarly it follows that [Ks| = O(ZE=txl=l). These bounds and (6.32) yield

sup  |6i; — 0] =
m—p<ij<mt1

O<2m—|-2—z'—jXﬁ_j)7
n

which shows that (6.31) holds uniformly for i,5 € [m — p,m + 1]. Similar and simpler
arguments yield that (6.31) holds uniformly for the other choices of i, j.
YAR

Next, observe that YA% is an m x m symmetric matrix, and so is — Y m. By similar

arguments as given in the proof of Theorem 3.2, it follows that

p(Ep — <maXZ|0” Gijl = ( )

1<i<n

where the last inequality is a consequence from (6.31). This inequality and assumption
(E1) imply that $AF is positive definite if n is sufficiently large. Consequently,

a, = (EﬁzR) 17?@}2'
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and by similar arguments as given in the proof of Corollary 4.1 we obtain that

p(ZA) ™ = 200 = O(0), (6.35)
p
Vi = Yl = O() (6.36)
Now (6.30) follows from (6.19) (6.35), (6.36), which completes the proof. O
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