
Helmut Meister

On a Useful Characterization of Nash 
Equilibria in Decision Trees

Lehrgebiet Stochastik
Forschungsbericht

Fakultät für 
Mathematik und 
Informatik 



On a Useful Characterization of Nash Equilibria

in Decision Trees

Helmut Meister

Department of Mathematics and Computer Science

FernUniversität

Universitätsstraße 1
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Abstract

The concept of subgame perfect equilibrium is broadly accepted in the
theory of non-cooperative games in extensive form and offers a method
of equilibrium calculation called backward induction. Nevertheless, there
often exist many other equilibria, which might also be interesting, because
they require some coordination by groups of players. The most frequently
cited literature does not provide an effective mechanism to identify all
equilibria of games in extensive form. The present paper gives an answer
to this problem. First, a general characterization of equilibrium is derived.
This result offers a way to specify an algorithm, which lists all paths to
terminal points of the game arising from equilibrium strategies. Finally,
an application of the results to the decision problem of the Cuban Missile
Crisis will be discussed.

Keywords: Game Theory, Decision Tree, Extensive Form Game, Subgame
Perfectness, Backward Induction, Nash Equilibrium Strategies, Entangled Sub-
game, Equilibrium Path, Equilibrium Identification Algorithm

1 Problem

Sequential Games have been a matter of discussions from various points of view.
The original idea of E. Zermelo ([5]) to formulate sequential games as decision
trees has gained in importance after J. F. Nash proposed his classical solution
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concept of equilibrium points for non-cooperative games ([1]). R. Selten ( see e.g.
[3]) found that not all Nash equilibria for extensive form games with complete
information are of the same quality and accordingly introduced the concept of
subgame perfect equilibrium in 1965. His valuable contributions to game theory
have been honored by the Nobel price in 1994.

Game trees have the nice property that algorithms can easily step through
and find Nash equilibria of the underlying game. The most frequently applied
algorithm is backward induction, which starts from the leaves of the tree and
solves all subgames successively until the root node is reached. This algorithm
assigns strategies to all players which turn out to form a subgame perfect Nash
equilibrium of the game. Moreover, this approach provides a method to proof
the existence of at least one subgame perfect Nash equilibrium under relatively
weak assumptions.

The concept of subgame perfect equilibrium is broadly accepted by game
theorists as far as players have complete information about everybody’s prefer-
ences and the stages of the game. In the case of strict preferences, there exists
exactly one subgame perfect equilibrium. Nevertheless, even in this case there
may be many other equilibria, which are not subgame perfect, but may also
provide a plausible course of the game.

If we are interested in an algorithm, which identifies all equilibria of the game,
we may check all strategy combinations of players and list all those which satisfy
the equilibrium conditions. This approach is very time consuming and needs a
lot of computing power even for trees of rather small size. Therefore, it seems
to be reasonable to search for more efficient algorithms to solve this problem.

For this purpose, we first give a characterization of equilibrium paths in the
tree. Considering the paths to equilibrium the number of checks for equilibrium
conditions increases only with the number of terminal points of the tree and not
with all combinations of decisions made by the players. On the one hand this
characterization gives some insight how the other players can force a decision
maker to follow a given path, on the other hand it offers a way to specify an
algorithm which allows to identify paths to equilibrium. The algorithm draws
on the Nash solution of certain zero-sum subgames starting from the decision
points of the path, where the decision maker in each specific point on the path
maximizes his own outcome in the subgames against the coalition of all other
players.

2 Model

We assume to have a sequential game represented by a decision tree with finite
horizon and complete information for all players. Such a game consists of a finite
set P := {1, . . . , n} of players and a finite tree G(V,E) of nodes V and edges E.
The successors of nodes v ∈ V will be denoted by N(v) and the terminal nodes
of the tree will be denoted by V ∗. Accordingly, V 0 := V \V ∗ is the set of interior
nodes of the tree. Each player i is assumed to have some transitive and complete
preferences �i on the set V ∗ of terminal nodes. At all interior points v ∈ V 0 of
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V , a certain player π(v) is invoked to make a decision, to which of the followers
N(v) of v in the tree he would like to move. The complete plan of all decisions
of player i in the tree is called a strategy of player i. The set of all strategies of
player i is denoted by Σi. As soon as all players have chosen a certain strategy,
the corresponding moves starting from a node v ∈ V 0 in the game tree form a
path ω(v, σ1, . . . , σn) for given strategies σ1 ∈ Σ1, . . . , σn ∈ Σn, which ends up
in a specific terminal node ω∗(v, σ1, . . . , σn) of the tree. If v is the root node of
the decision tree, we simply write ω(σ1, . . . , σn) and ω∗(σ1, . . . , σn), respectively.
With these notations we can formulate the equilibrium conditions for the game.

2.1 Definition: Given the described sequential game, we call each strategy com-
bination σ1 ∈ Σ1, . . . , σn ∈ Σn which satisfies

ω∗(σ1, . . . , σi−1, τi, σi+1, . . . , σn) �i ω∗(σ1, . . . , σn) (1)

∀τi ∈ Σi,∀i ∈ P,

a Nash equilibrium of the game.

This is the standard definition of J. F. Nash for equilibrium. It means that
each player choses a best response to the plans of all opposing players. The same
definition applies to subgames with any root node v ∈ V 0 of the given game,
if we confine strategies of players to the corresponding subtree Gv(V,E) of the
entire tree and denote it by Σvi . This consideration gives us an opportunity to
talk about subgame perfectness of Nash equilibria.

2.2 Definition: For each player i and strategy σi ∈ Σi we denote the restriction
of σi to the subgame with root node v ∈ V 0 by σvi . We call each strategy
combination σ1 ∈ Σ1, . . . , σn ∈ Σn which satisfies

ω∗(v, σv1 , . . . , σ
v
i−1, τi, σ

v
i+1, . . . , σ

v
n) �i ω∗(v, σv1 , . . . , σvn) (2)

∀τi ∈ Σvi ,∀i ∈ P,∀v ∈ V 0,

a subgame perfect Nash equilibrium of the game.

Subgame perfectness is a widely accepted concept of equilibrium for decision
trees and offers a method to calculate a subgame perfect strategy combination
by backward induction starting with the terminal nodes and solving successively
all subgames. Of course, backward induction is a bottom up approach, which
considers the game upside down in terms of timing of decisions. Essentially,
the common understanding of the game is top down decision making starting
from the root node. For this process to end up successfully for the players,
rational behavior of the players is necessary in each step. Nevertheless, simple
examples exist, where this decision process may fail, if some player’s preferences
have indifference on terminal nodes. The assumption of strict preferences of
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players ensures that such defects cannot occur. Players have strict preferences,
whenever

v �i w and w �i v ⇒ v = w (3)

holds for all v, w ∈ V ∗ and i ∈ P . Moreover, for strict preferences a unique
subgame perfect equililibrium point exists. This fact is a good justification for
the concept of subgame perfectness.

But what may happen, if the decision process is performed in bottom up
direction? There may arise an opportunity for players to cooperate and force
other players to make decisions in advantage of the coalition. This can be
illustrated by an example in the following remarks. Moreover, equilibrium points
of this type turn out to be not necessarily subgame perfect. The criticism on
such equilibria concerns incredible threats involved in the strategies of players.
This objection is of course correct for top down decision processes. As we will
show, for bottom up processes it does not apply in the same rigor. Therefore,
there exists some justification to analyze the set of all equilibria regardless of
their subgame perfectness.

3 Entangled Subgames

The following simple example with three players “chess bishop” , “chess king”
and “chess knight” illustrates the problem of top down and bottom up decision
processes. 1

Figure 1: Equilibrium calculation top down

The unique subgame perfect equilibrium path is drawn in green color (Fig-
ure 1), the decision path in the left subgame is colored red. In this case, player

1All graphics has been produced by a model using the open source environment NetLogo
([4])
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“chess bishop” will prefer to move along the subgame perfect equilibrium path.
But there exists a second green colored equilibrium path (Figure 2). Play-
ers “chess knight” and “chess king” will prefer the terminal node with payoffs
[72, 54, 67] to the terminal node of the subgame perfect equilibrium path with
payoffs [98, 18, 64]. Therefore, in the bottom up decision process player “chess
knight” will play the terminal node with payoff [21, 24, 51] and keep the “chess
bishop” from handing the decision over to him. This kind of equilibrium re-
quires some coordination between the “chess king” and the “chess knight”, but
results in a better payoff for both. One may argue if player “chess bishop” starts
with the decision path as in Figure 1 then there is no better way for the other
players than to decide in the sense of the subgame perfect solution. But this
argumentation draws on the top down decision sequence.

Figure 2: Equilibrium calculation bottom up

As a preparation for a more general analysis of equilibria we will first in-
troduce a concept which will turn out to be helpful for a characterization of
equilibrium paths.

3.1 Remark: Given some node v ∈ V 0, the preferences in the terminal nodes of
the subgame with root node v will be defined by the original preference relation
�i for a given coalition C ⊂ P and some key player i ∈ C. For all players in
P \ C the preferences will be inverse to those of i, i.e.

v �i w ⇐⇒ v �j w ∀j ∈ C, (4)

v �i w ⇐⇒ w �j v ∀j ∈ P \ C.

Since all players of C as well as all players of P \ C have each the same
preferences, the game can be considered as a two person game of C against
P \ C. An equilibrium of this game with root node v is therefore a strategy
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combination σ1 ∈ Σv1, . . . , σn ∈ Σvn satisfying 2

ω∗(v, τC , σP\C) �i ω∗(v, σC , σP\C) ∀τj ∈ Σvj , j ∈ C (5)

ω∗(v, σC , σP\C) �i ω∗(v, σC , τP\C) ∀τj ∈ Σvj , j ∈ P \ C

Since these particularly modified subgames will become useful for an analysis
of the set of all equilibria of the original game, we will address them by a separate
notation.

3.2 Definition: The resulting game will be called the entangled subgame of
the original subgame with root node v, coalition C and key player i ∈ C. We
will use the symbol Γ(v, i, C) to address this game.

Entangled subgames with root node v are games of a coalition C against
the rest of the world, because players from C maximize their outcome with
respect to the preferences of the key player against the strategies of the other
players, who aim for minimizing this outcome. In case of numerical payoffs the
equilibria of this (zero-sum) game are therefore maximin solutions. At least
one (even subgame perfect) equilibrium exists, since backward induction also
applies to this kind of game. Entangled subgames have some properties, which
are immediate consequences of the equilibrium conditions.

3.3 Remarks: 1. For all equilibria of an entangled subgame with root node
v, coalition C and key player i ∈ C the corresponding paths in the sub-
game end up in equivalent terminal nodes. This is a well-known fact for
zero-sum games and applies in the same way to games with complete and
transitive preferences of two opposing players. Thus, the terminal nodes of
equilibrium strategies specify a characteristic value of the entangled sub-
game Γ(v, i, C). This value is given by φ(Γ(v, i, C)) := ω∗(v, σ1, . . . , σn),
whenever the strategy combination σ1 ∈ Σv1, . . . , σn ∈ Σvn satisfies the
equilibrium conditions of Remark 3.1 (5).

2. For two entangled subgames Γ(v, i, C) and Γ(v, i,D) with i ∈ C ⊂ D the
corresponding characteristic values satisfy

φ(Γ(v, i, C)) �i φ(Γ(v, i,D)) (6)

To verify this relation, let σ := (σ1, . . . , σn) be an equilibrium of Γ(v, i, C)
and let τ := (τ1, . . . , τn) be an equilibrium of Γ(v, i,D). Then, from the
equilibrium conditions of Remark 3.1 (5) and C ⊂ D, we have

φ(Γ(v, i, C)) = ω∗(v, σ) �i ω∗(v, σC , τP\C) �i (7)

�i ω∗(v, τC , τP\C) = ω∗(v, τ) = φ(Γ(v, i,D)). (8)

2we use the notation (σS , τP\S) for the strategy combination with players j ∈ S chosing
their strategy σj ∈ Σj and players j ∈ P \ S chosing their strategy τj ∈ Σj for given S ⊂ P .
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Since players in the coalition C and D can be considered as groups of
supporters of player i in the entangled subgame, the above relation shows
that more supporters improve the outcome for player i in this game.

3. The previous remark shows that the value φ(Γ(v, i, C)) of an entangled
subgame Γ(v, i, C) always dominates φ(Γ(v, i, {i}). Therefore, C := {i} is
the worst case for player i, which occurs, whenever nobody supports him
in the entangled subgame.

4 A Characterization of Equilibrium Paths

Starting from a given terminal node of the decision tree, graph theory guarantees
a unique path back to the root of the tree. We will investigate those paths
more accurately, which belong to equilibrium strategies of the community of
players. Since the decisions of players on the path are fixed, we are interested
in appropriate decisions of all players at nodes contiguous to the path, which
do not tempt the decision makers on the path to deviate from the path. In this
sense, the question is, whether the partially defined strategies on the path can
be extended in such a way that they form a Nash equilibrium. All paths of this
type will be called equilibrium paths. First, we make a note of the following
fact about equilibrium paths.

4.1 Lemma: Let be given a path ρ = (v0, . . . , vk) from the root node v0 to a
terminal node vk of the tree together with strategies σ1, . . . , σn of all players
satisfying

σπ(vj)(vj) = vj+1 (j = 0, . . . , k − 1) (9)

as well as

ω∗(w, τ{i},σP\{i}) �i vk (10)

(w ∈ N(vj) \ {vj+1}, i := π(vj), τi ∈ Σwi , j = 0, . . . , k − 1),

then ρ is an equilibrium path and σ1, . . . , σn is a Nash equilibrium.

Proof. Suppose, there exists a player i and a strategy τi ∈ Σi with the property

vk ≺i ω∗(τ{i}, σP\{i}). (11)

Then, since all players from P \ {i} retain their strategies, there must exist a
node vj on the path ρ, where player i deviates from the path ρ, while all previous
moves remain on the path. Therefore, there exists w ∈ N(vj) \ {vj+1} with

ω∗(τ{i},σP\{i}) = ω∗(w, τ{i}, σP\{i}). (12)

But (11) and (12) contradict assumption (10). Together with (9) we have proven
that there cannot exist any player i and any strategy τi ∈ Σi with

ω∗(σ1, . . . , σn) = vk ≺i ω∗(τ{i}, σP\{i}). (13)

Hence σ1, . . . , σn is a Nash equilibrium and ρ is an equilibrium path.
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The following result provides a complete characterization of equilibrium
paths.

4.2 Theorem: A given path ρ = (v0, . . . , vk) from the root node v0 to a terminal
node vk of the tree is an equilibrium path if and only if for all nodes vj on the
path and all entangled subgames with root node w ∈ N(vj) \ {vj+1} and key
player i := π(vj) the entanglement condition

φ(Γ(w, i, {i})) �i vk (14)

is satisfied.

Proof. Let ρ = (v0, . . . , vk) be any path from the root node v0 to a terminal node
vk of the tree. If ρ is an equilibrium path of the game, there exist equilibrium
strategies σ1, . . . , σn, for which at each node vj the decision of player π(vj)
invoked at vj is vj+1, and hence

vk = ω∗(σ1, . . . , σn). (15)

Now, let be given a node vj on the path ρ and consider an equilibrium
ξ1, . . . , ξn of the entangled subgame Γ(w, π(vj), {π(vj)}) for a given root node
w ∈ N(vj) \ {vj+1}. Since all players j 6= i := π(vj) tend to downgrade the
outcome of player i in the entangled subgame, we get

φ(Γ(w, i, {i})) = ω∗(w, ξ1, . . . , ξn) �i ω∗(w, τ1, . . . , τi−1, ξi, τi+1, . . . , τn) (16)

∀τj ∈ Σwj , j ∈ P \ {i},

and therefore particularly

φ(Γ(w, i, {i})) �i ω∗(w, σ1, . . . , σi−1, ξi, σi+1, . . . , σn). (17)

Since σ1, . . . , σn is an equilibrium of the entire game, the deviation of player
i at node vj from the path ρ to node w will not improve his outcome as long as
the other players keep their strategies. Therefore,

ω∗(w, σ1, . . . , σi−1, ξi, σi+1, . . . , σn) �i ω∗(σ1, . . . , σn) (18)

is satisfied. Relations (15), (17) and (18) together with the transitivity of pref-
erences, complete the ′′ =⇒′′ part of the theorem.

Let now the entanglement condition be satisfied. For each of the entangled
subgames Γ(w, π(vj), {π(vj)}) with root node w ∈ N(vj)\{vj+1} for some node
vj on the path ρ, we can find equilibrium strategies σ1 ∈ Σw1 , . . . , σn ∈ Σwn such
that

ω∗(w, σ1, . . . , σn) = φ(Γ(w, π(vj), {π(vj)})). (19)

Since i := π(vj) is the maximizing players in the entangled subgame
Γ(w, i, {i}), we have

ω∗(w, τ{i}, σP\{i}) �i ω∗(w, σ1, . . . , σn). (20)

8



for all strategies τi ∈ Σwi . By the transitivity of preferences together with (19),
we have thus proven that

ω∗(w, τ{i}, σP\{i}) �i vk (21)

is satisfied for all strategies τi ∈ Σwi of player i = π(vj). Therefore, there exists
no better option for player i than to move to vj+1 at node vj .

Since all the entangled subgames with root nodes w ∈ N(vj) \ {vj+1} for
some node vj on the path ρ have pairwise disjoint subtrees and comprise all
nodes outside the path ρ, we can define the strategies of players for the whole
decision tree by choosing their equilibrium strategies in the entangled subgames
Γ(w, π(vj), {π(vj)}) and setting

σπ(vj)(vj) := vj+1 (j = 0, . . . , k − 1). (22)

Together with (21), Lemma 4.1 completes the ′′ ⇐=′′ part of the theorem.

Of course, there exist many equilibrium paths, which do not represent a
plausible course of action. Therefore, the set of equilibria should be examined
concerning additional qualities.

4.3 Remark: As Theorem 4.2 states, the set of equilibrium paths ρ = (v0, . . . , vk)
is characterized by the entanglement conditions (14) for all entangled subgames
Γ(w, π(vj), {π(vj)}) with root node w ∈ N(vj) \ {vj+1}. Since, by Remark 3.3
(2)

φ(Γ(v, π(vj), {π(vj)})) �vj φ(Γ(v, π(vj), C ∪ {π(vj)})) (23)

holds for C ⊂ P , it would be a stronger entanglement condition to claim

φ(Γ(w, π(vj), C ∪ {π(vj)})) �π(vj) vk (24)

for some player coalition C ⊂ P , leading to a smaller set of equilibrium paths
satisfying this condition. Equilibrium paths of this type can be considered to
be robust against the coalition C, or conversely, the coalition P \ C is able to
force players to follow the path.

The given characterization offers an approach to identify equilibrium paths.
The next section focuses on the corresponding algorithm. Clearly, each subgame
perfect equilibrium satisfies the condition in Theorem 4.2. So, they will be part
of the resulting set of paths.

5 Identification of Equilibrium Paths

A recapitulation of the characterization result 4.2 gives rise to a method how
equilibrium paths can be identified. It suffices to step through each path starting
from a terminal node of the decision tree and leading back to the root node.
At each node of the path the entangled subgames for deviation points from
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For each terminal node of the decision tree

Calculate path to root node

For each node on the path

Check all entangled subgames

to satisfy entanglement condition (14)

if any negative answer: stop

if all checks positiv: add path to set of equilibria

Table 1: Identification algorithm

the path have to be checked for their equilibrium to satisfy the entanglement
condition (14). Formally the algorithm works as described in Table 1.

As a consequence of the numerical complexity of the backward induction
algorithm, the identification algorithm runs in polynomial time depending on
the number of nodes of the tree. The subsequent examples illustrate the results
of the algorithm (Table 1).

Figure 3: Identification of all equilibria of a decision tree

Equilibrium paths are colored orange, in addition, the subgame perfect equi-
librium is colored blue. The next figure shows how entangled subgames are
solved and contains the subgame paths satisfying the entanglement condition
in red color.
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Figure 4: Solving entangled subgames

6 An Application in the Political-Military En-
vironment

Using the previous results, we will analyze the situation of the Cuba Crisis
in 1962, which was perhaps the most dangerous conflict during the cold war
period between the US and the Soviet government. There is a comprehensive
documentation and analysis of the backgrounds of this conflict (see for instance
L. Scott and R.G. Hughes [2]). In brief, the balance of military capabilities was
perceived by the Soviet side to be in favor of the US side. Therefore the Soviets
tried to install nuclear war heads and launchers on the island of Cuba, which
threatened at least a part of the US area. Troops, equipment and launchers were
currently shipped to Cuba by the Soviets. This was a strong violation of the
US integrity demand and required an adequate reaction. The available options
of a nuclear strike against the Soviets, an air attack against the installations on
Cuba, a sea blockade of the island and further negotiations with the counter
part turned out to be a matter of decision.

The corresponding outcomes are the expected military capabilities of both
sides after a decision for one of the four options and possible reactions (see Figure
5). As we know, for the identification of equilibria the numerical values are less
important than the preferences behind them. Therefore there exists some scope
for adjustment of these numbers and the given numbers should be considered as
of exemplary nature. The equilibrium analysis shows that there is a subgame
perfect solution with an air attack, following negotiations and an agreement.
Two other entangled equilibria exist, one with direct unfruitful negotiations
(see Figure 6) and another with a sea blockade and subsequent negotiations
with concessions on both sides (see Figure 7). As history shows, this was the
preferred option for the US side leading to a deescalation of the conflict. The
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Figure 5: Cuba Crisis decision tree

concessions of the US side were to uninstall missiles already deployed in Turkey
as well as to give some grantees not to attack Cuba any more. In return the
Soviets withdrew their missiles from Cuba.

Figure 6: Cuba Crisis negotiation option

During the decision process a massive nuclear attack with disastrous conse-
quences turned out to be not an appropriate option. Immediate negotiations
were at risk to fail and give the Soviets the chance to complete their installa-
tions on Cuba and thus to achieve a better position for further activities. The
entangled subgames show that the assumptions for this option would have been
the Soviets to disregard the sea blockade and to respond to an air attack by a
massive counter strike. In addition, the success of an air attack seemed to be
questionable.
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Figure 7: Cuba Crisis sea blockade option

The sea blockade was considered to be the best way to establish at least a
chance for fruitful negotiations.

7 Management by Coalitions

As Figure 3 shows, there may exist many equilibria besides the subgame per-
fect solutions. Some of them may be less credible than others. Therefore, the
question arises, which additional qualifier should be used to sort out equilibria
of lower attraction. We propose a criterion which concerns a deeper analysis
of entangled subgames. Theorem 4.2 states that an equilibrium path is char-
acterized by the feature that in each point the decision maker can be kept on
the path by all other players making the alternatives less favorable to him. In
some situations this may result in paradox behavior of players who are not very
interested in the terminal outcome of the decision path. To avoid this effect the
situation could be modified in such a way that only a group of players with cred-
ible intentions manages the entangled subgames in their desired direction. This
idea was already addressed by Remark 4.3. Starting from a subgame perfect
solution for all equilibrium paths a coalition of players can be identified whose
members all prefer the according terminal node of some alternative path. The
problem is, whether they can manage the corresponding entangled subgames on
behalf of their preferences.

This approach gives rise to find an algorithm which allows to identify equilib-
ria which can be managed by coalitions in the above sense. A slight modification
of the identification algorithm in Table 1 can do this job and gives an answer,
whether equilibria of the desired type exist.

The only difference to the already mentioned algorithm in Table 1 is the
method how entangled subgames are treated. They are rather games of a group
of supporters of the actual decision maker against their complementary group
than a single decision maker against the rest of the world. The complementary
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group manages the entangled subgames in such a way that they keep the decision
process on the given path. Their intention is to reach the better outcome in
comparison to the subgame perfect result. In detail the algorithm works as
decribed in Table 2.

Calculate a subgame perfect equilibrium

For each terminal node of the decision tree:

Identify player group C which prefers the outcome to the subgame perfect solution

Calculate path to root node

For each node on the path

Check all entangled subgames to satisfy entanglement condition

for player group C and the corresponding key player (Remark 3.1)

if any negative answer: stop

if all checks positiv: add path to set of equilibria

Table 2: Identification algorithm for player groups

Unfortunately, examples of game trees with no such equilibria exist (see
Figure 8). In this case, the algorithm only identifies the subgame perfect equi-
librium (blue color) together with some less plausible equilibrium paths (orange
color). Therefore, the concept of subgame perfectness becomes corroborated to
be the only reasonable solution in this situation.

Figure 8: No better equilibria than the subgame perfect outcome

Nevertheless, in many cases with other assignments of utilities for the same
decision tree, equilibria of the discussed type can be found (see Figure 9). Equi-
librium paths are colored orange, in addition, the subgame perfect equilibrium
is colored blue, while the paths managed by a coalition are painted in red color.
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Clearly, solving the entangled subgames with two opposing coalitions results in
stronger requirements for the path to become an equilibrium path. Therefore,
less equilibria exist satisfying the conditions of Remark 4.3 than in the case of
Theorem 4.2.

Figure 9: Equilibria managed by a coalition

The following listing (Table 3) contains the data corresponding to the above
example in Figure 9.

Subgame perfect equilibrium (terminal vertex 109)

Outcome [16 68 34 68 21 89 97]

Prefered terminal nodes of other equilibria

[(terminal vertex 76) preferred by players [1 3 5]]

Outcome [78 0 97 30 30 66 59]

[(terminal vertex 81) preferred by players [1 2 3 4 5]]

Outcome [83 78 36 76 95 47 24]

Table 3: Management by coalitions

The table shows that there exists a strong incentive for some players to
deviate from the subgame perfect strategy.
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8 Summary

We have shown that for many game trees there exist alternative equilibria be-
sides the subgame perfect solution, which may also be attractive for some coali-
tions of players and which can be realized by cooperation of these groups. If no
such alternatives exist, there is no stimulation of any player group to deviate
from the subgame perfect solution. Moreover, we can find sufficient conditions
for decision paths in the game tree to form an equilibrium path managed by
certain groups of players. This approach provides the opportunity to formulate
an algorithm which identifies appropriate equilibrium paths. The algorithm is
efficient and takes the same time as for backward induction times the number
of terminal nodes in the tree.
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[5] Zermelo, E., 1913, Über eine Anwendung der Mengenlehre auf die Theorie
des Schachspiels, Proceedings of the Fifth International Congress of Math-
ematicians 2: 501 – 504.

17


	Meister_Dynamic_Games_Equilibrium_Titelblatt
	Meister_Dynamic_Games_Equilibrium_Text



