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Dedication

As several recent political and economic developments show, decision making
is a time consuming and complex task for good governance. Although often
criticized as too scientific and impracticable the concepts of Game Theory have
proven to provide useful insights within a variety of application fields. Even in
cases, where the Theory of Games predicts results which disagree with obser-
vations from real life, these inconsistencies have initiated valuable discussions
about the modeling of situations and the reasons of conflicting outcomes.

One of our first deeper contacts with Game Theory took place in the year
1978, when Otto Moeschlin and Diethard Pallaschke organized the symposium
on Game Theory and Related Topics at the Fernuniversität of Hagen and the
Gesellschaft für Mathematik und Datenverarbeitung (GMD) near Bonn. Many
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important researchers from international institutions participated in the edi-
torial board of this symposium. The topics of the contributions represented
accordingly widespread areas of research. The proceedings of the symposium
are still an inspiring resource for further research activities.

Several doctoral thesis as well as a series of diploma thesis striking the area
of Game Theory, Mathematical Statistics and Probability Theory have been
coached under the guidance of Otto Moeschlin, partially arising from topics
concerning the above mentioned symposium. In addition, a variety of publica-
tions emerged from the periphery of the addressed fields.

Abstract

We consider totally connected networks of nodes forming a cluster
within a broader community of agents exchanging messages. These net-
works are also addressed by mesh networks. We examine a scenario where
the community is partitioned into multiple clusters, in each cluster one
node acting as cluster head. The function of the cluster head is to send
and receive messages from remote clusters while the other members within
the cluster will be informed by the cluster head and can therefore keep
silent in order to save resources. The way how this cluster head will be
selected is an internal voting scheme based on a majority rule and prefer-
ences for all voters. The problem arises from the fact that even complete
and transitive preferences of all voters on the agent set do not induce tran-
sitive collective preferences, and hence do not ensure the existence of an
undominated agent, who would be a suitable candidate for a cluster head.
Therefore, the selection process must become more complicated. We pro-
pose a selection procedure based on sequential voting and an assessment
of nodes in the style of a Shapley Value approach. Since the weakness
of the Shapley Value approach in practical applications is based on its
numerical complexity, we will investigate the properties of the voting pro-
cess in more detail. Moreover, we will analyze the different structures
of preference schemes of the voters and establish the relationship to the
Shapley value approach. This offers a numerically more tractable method
for the selection of the cluster head than the calculation of the Shapley
value in a straight forward way.

Keywords: Game Theory, Nash Equilibrium Strategies, Voting Scheme,
Cluster Head Selection, Shapley Value, Biform Games, Preference Scheme

1 Problem

Recently, networks of sensors have been a matter of research in the context
of energy saving and reduction of data exchange in wireless networks, Car2X
Communication and cooperation between moving vehicles (cf. for instance [3],
[6], [1]). We take up some underlying problems in connection with such networks
and continue the approach discussed in the paper [7]. We propose a voting
mechanism for selection of a point of contact based on the ideas developed in [4].
Given a network with n agents communicating with each other, it makes sense
for different reasons like energy saving or filtering and processing of messages
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that one node acts as point of contact for incoming and outgoing messages from
remote clusters and dispatches all information to the members of his own cluster.
The crucial question is the procedure how this cluster head can be selected in
a fair manner. We assume that all members of the cluster have preferences on
the set of all agents. It is not self-evident that they will put themselves in the
top position of their preference scheme, but they may do it this way. According
to the voting procedure described in [4], we put all agents of the concerning
cluster in a sequence (a1, . . . , an) and start with the proposal a1. Next, the
agent a2 is posed as alternative to a1 and will be the new proposal, if a majority
of agents prefers a2 to a1. Otherwise, a1 is asserted against a2 and will be set
as hypothetical candidate in the next step against a3. The selection process is
continued until a final agent persists as candidate for the cluster head. We allow
strategic voting in this process. Therefore, all agents will act in a goal-oriented
way, in accordance with their own preferences and will use best responses to the
voting strategies of the opponents. Consequently, the resulting strategies will
form a Nash Equilibrium as introduced by J. F. Nash ([5]) in his pathbreaking
work.

Since the outcome of this voting procedure, in particular the Nash solution,
depends crucially on the sequence the agents are introduced as alternatives, we
have to improve this method of voting in a more fair manner. This problem leads
us to one of the classical concepts of Cooperative Game Theory, the Shapley
Value (cf. [8]), which can be considered as a fair assessment of the agents in the
cluster concerning their qualification as cluster head. To apply this concept to
the underlying voting model, we examine all possible sequences of agents and
count the appearance of all agents as Nash solution of the voting process. One
of the most frequently elected agents will finally be chosen as cluster head.

The underlying game can be subsumed under the category of so called Bi-
form Games. This is a hybrid form between non-cooperative and cooperative
games. Biform Games are for instance investigated in the paper [2]. The way
how non-cooperative and cooperative concepts can be integrated is usually based
on a somehow defined Shapley Value for all players in combination with a de-
cision process, which offers the players to adjust their Shapley Value as best
response to the decisions of the other players. In our situation, the setting is
reverse. We start with a decision process and determine the Shapley Values of
all players as its outcome.

2 Formal model and notations

As already mentioned, we will investigate voting games, which can be described
by the following setting. Let A be the community of a finite number n of agents.
The voting process is then given by a sequence (a1, . . . , an), which describes the
order in which the candidates are introduced in the process. Each agent a ∈ A
has some preference relation �a on the set A of agents. 1 So, we consider a

1We use a very general concept of preferences: The relation � on the set A is called
preference relation, if s � s holds for all s ∈ A.
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special case of a voting game as described in [4]. The set of alternatives coincides
with the set of players. Without going into details, the strategies of the players
will be their decisions in each step of the voting process. Whenever all players
have decided how to vote in each step, they will finally select a certain candidate
for the cluster head. Although the decision process follows the majority rule in
each step, the nature of the game is non-cooperative. Each player will try to
optimize the outcome with respect to his preferences against the same behavior
of the other players. This means that the concept of Nash Equilibrium makes
sense in this context and serves as guideline for the behavior of players in the
voting process. As extensively discussed in [4], we have to refine the concept of
Nash Equilibrium in the given game, because not all Nash Equilibria make sense.
Some of them even ignore the preferences of players completely. To overcome
these undesired effects, we introduced the concept of consistent strategies.
This concept leads not only to a more plausible behavior of the players, but
offers also a rather efficient algorithm to find the outcome of Nash Equilibria
in consistent strategies. Before we go into the details of this algorithm, we will
first define collective preferences arising from the individual preferences. We
introduce the preference relation � on A by

a � b :⇔ |{i ∈ S : a �i b}| ≥
1

2
|A|. (1)

These collective preferences represent the majority rule, i.e. a � b is satisfied if
and only if a majority of all players votes for b, whenever a is the alternative.
As usual, we denote the situation, where a � b but not b � a holds, by a ≺ b.
Each alternative a ∈ A is said to be undominated in the set A of alternatives,
if no alternative b ∈ A exists with a ≺ b. Now we are in a position to describe
an algorithm to identify Nash Equilibria in consistent strategies.

2.1 Algorithm: Given the voting process (a1, . . . , an), we define

ν(S) := max{i|ai ∈ S} ∀S ⊂ A,S 6= ∅. (2)

On the set of all subsets of all alternatives A we define the mapping φ by

φ(S) := {a ∈ S|aν(S) ≺ a} ∀S ⊂ A,S 6= ∅. (3)

As a consequence of aν(S) /∈ φ(S), we have

φ(S) ⊂ S und φ(S) 6= S ∀S ⊂ A,S 6= ∅. (4)

We make use of the abbreviation µ(j) := ν(φj(A)) for j = 0, . . . , k. Hence,
we have aµ(k−1) ≺ a ∀a ∈ φk(A), whenever k > 0, and a ≺ aµ(k) ∀a ∈ φk(A),

whenever φk+1(A) = ∅.
We start the algorithm with S := A and apply successively the mapping φ.

In each step of the algorithm, the initial set is reduced by at least one element.
The algorithm generates a sequence φ0(A), . . . , φk(A) of non-empty sets and
ends after k steps, as soon as φk+1(A) = ∅.
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The algorithm 2.1 provides an efficient method to determine the Shapley
Values of the agents in the voting process. For each agent we count the number
of occurrences, where the agent is elected as candidate for the cluster head and
take the mean over all permutations of the sequence of decision steps. The
Shapley Value determined in this way will be denoted by SHV (a) ∀a ∈ A.

The following example shows how the algorithm works.

2.2 Example: We consider the case where the preference scheme of seven
agents is given by the matrix

Ranking (5)

[0 1 2 5 4 3 6]

[2 4 1 6 5 0 3]

[1 4 2 3 6 0 5]

[3 6 5 2 0 1 4]

[2 0 6 5 3 4 1]

[6 4 2 3 5 0 1]

[4 5 0 1 2 6 3]

and make use of an implemented version of the algorithm in the NetLogo ([9])
environment. The algorithm starts with the last alternative and successively

Figure 1: Sequence of algorithmic steps

excludes all alternatives dominated by the actually examined alternative (green
point with arrows for dominated other alternatives). Finally, the algorithm
stops at alternative 3, which dominates the only remaining alternative 0. Hence,
alternative 3 is the solution of the decision process based on the given decision
sequence. In the left upper corner, the collective preferences are shown by arrows
with red arrowheads building a network.
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3 Electing the Cluster Head

We draw on the assumptions and results of [4]. In the sequel, we continue
therefore with the following premises.

3.1 Assumptions: For simplicity we assume:

1. The preference relations �i of all agents i are complete.

2. The preference relations �i of all agents i are transitive.

3. The preference relations �i of all agents i are strict.

4. The number of agents is odd.

As a consequence of these assumptions the collective preference relation � is
also complete and strict, but not necessarily transitive. Nevertheless, in many
cases an undominated agent exists, and due to the strictness of the collective
preference relation this undominated agent is unique. The following result is a
justification for the chosen approach via voting processes.

3.2 Theorem: Suppose, there exists an undominated agent a∗. Then, a∗ is the
unique result of all voting processes, independent of the order of the agents in
the process.

Proof. We make use of the results of [4]. The algorithm 2.1 stops at a certain
stage k with φk(A) 6= ∅ and φk+1(A) = ∅, where aν(φk(A)) is the solution of the
voting process. Now, if a∗ is undominated,

a∗ ∈ φj(A) for j = 0, . . . , k. (6)

In the case aν(φk(A)) 6= a∗, because of aν(φk(A)) � a∗ and the strictness of �,
step k would not be the last step of the algorithm. Therefore, we have shown
aν(φk(A)) = a∗. The argumentation of the proof does not make use of any order
of the agents within the voting process.

The previous theorem shows that in case of the existence of an undominated
agent with respect to strict collective preferences, the voting process will always
end up in a unique result. Therefore, considering all permutations of voting
sequences, there exists a unique candidate for the role of the cluster head. The
Shapley Value of this candidate is equal to 1, while all other agents will be
dummies in the voting game.

In addition, we will derive a result, which can be considered as the worst
case concerning the Shapley Values of the voting process, because all agents are
assessed equally. To this end we first introduce a concept of cycling individual
preferences.

3.3 Definition: Let be given a voting game with alternatives A = {a1, . . . , an}
and individual preferences �a for all players a ∈ A. We say that the preference
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relations �a (a ∈ A) are floating preferences, if for the shift operation τ on
A, i.e.

τ(ai) =

{
ai+1 for i < n,

a1 for i = n

the individual preference relation of player ai is given by

τ i(a1) ≺ai . . . ≺ai τ i(an). (7)

For floating preferences we can realize the following properties.

3.4 Remarks: 1. For each voting game A = {a1, . . . , an} with floating pref-
erences, the only situation, where alternative b ∈ A is preferred to τ(b) by
a player ai ∈ A occurs in the case τ−i(b) = an. Consequently,

|{b ∈ A|a ≺b τ(a)}| = n− 1 ∀a ∈ A, (8)

holds true and we have
a ≺ τ(a) ∀a ∈ A. (9)

Continuing with this argumentation, we realize

|{b ∈ A|a ≺b τ2(a)}| = n− 2 ∀a ∈ A, (10)

and get by induction

|{b ∈ A|a ≺b τk(a)}| = n− k ∀a ∈ A. (11)

Therefore, a ≺ τk(a) holds true as long as k ≤ n
2 . Setting bcc := max{i ∈

N|i ≤ c} for all c ∈ R+, these findings lead us to the result

a ≺ τk(a) for 1 ≤ k ≤
⌊n

2

⌋
, (12)

τk(a) ≺ a for
⌊n

2

⌋
< k ≤ n− 1

∀a ∈ A.

2. First, the previous considerations (cf. (9)) show that the alternatives can
be arranged as a cycle

a1 = τ1(an) ≺ . . . ≺ τn(an) = an ≺ a1 (13)

with respect to the collective preferences.

3. We consider again the algorithm 2.1. Now, by the definition of the algo-
rithm, we get an /∈ φ(A), and from (12), we see that

φ(A) = {τ j(an)|j = 1, . . . ,
⌊n

2

⌋
, an ≺ τ j(an)}. (14)
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From this fact, we derive by induction

φk(A) = {τ j(an)|j = 1, . . . ,
⌊n

2

⌋
, aµ(k−1) ≺ τ j(an)} for k > 0. (15)

Therefore, because the τ j(an) with the highest j always dominates all
other members of φk(A), we conclude by induction that

τb
n
2 c(an) ∈ φk(A) (16)

for k ≤
⌊
n
2

⌋
. The algorithm stops as soon as µ(k) =

⌊
n
2

⌋
. Hence, τb

n
2 c(an)

is the identified solution of the algorithm.

4. The previous remark provides a method to identify the solution of the
algorithm without going through all steps. Starting the algorithm with

an will always result in τb
n
2 c(an). Thus, having regard to (13), we obtain a

one-to-one mapping of the starting point to the solution of the algorithm.

3.5 Theorem: If the individual preference relations of the voting game with
alternatives A = {a1, . . . , an} are floating preferences, then the Shapley Value
SHV of the given game satisfies

SHV (a) = SHV (b) for all a, b ∈ A. (17)

Proof. All the proof of the theorem is already provided by the previous remarks
3.4 . Specifically, we draw on remark 3.4 (4.) and conclude that for different last
alternatives an and bn the cluster head identification algorithm finds different

solutions τb
n
2 c(an) and τb

n
2 c(bn). Now the probability for a permutation to

assign the last position in the sequence of alternatives to an is the same as

for bn, namely 1
n . Since the mapping a → τb

n
2 c(a) is one-to-one, the proof is

completed.

Both Theorems 3.2 as well as 3.5 cover two extreme cases of preference
schemes. Nonetheless, in many other cases the Shapley Value approach can also
provide a method to identify a cluster head in an accurate way.

3.6 Example: We consider the case where the preference scheme of seven
agents is given by the matrix

Ranking (18)

[1 4 0 2 3 6 5]

[1 4 3 2 6 5 0]

[6 5 2 4 0 1 3]

[5 6 2 1 4 3 0]

[6 1 5 0 4 2 3]

[0 3 5 6 4 1 2]

[4 0 6 3 1 2 5]
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and calculate the corresponding Shapley Values using a NetLogo ([9]) environ-
ment. The network of collective preferences shows that there exists no undom-
inated alternative. All collective preferences are represented by arrows with
red arrowheads. The Shapley Values for the given alternatives are unfolded as

Figure 2: Network of collective preferences

the vector [0 0 1008 3024 0 1008 0] without normative factor. It turns
out that alternative 3 is significantly better than all other alternatives and is
therefore qualified as cluster head.

The previous considerations lead us to the question how often an undom-
inated agent will appear, when the preferences of all players are the result of
a random process. More precisely, we will be interested in the most preferred
agents of the individual preference schemes of all players. Clearly, by Theorem
3.2, an agent a∗ is the favorite for the majority all agents, if a∗ is undominated
in the set A of all agents with respect to collective preferences. As an example,
we will analyze the situation of a network with three agents.

3.7 Example: The individual preferences of the three players can be repre-
sented by a matrix

a11 ≺1 a12 ≺1 a13 (19)

a21 ≺2 a22 ≺2 a23

a31 ≺3 a32 ≺3 a33

where aij ∈ {1, 2, 3} and line i defines the ranking of player i concerning the
alternatives. The overall number of such matrices is given by (3!)3 = 216. Now,
we can list all the cases, where an undominated alternative exists. We start
with a fixed alternative a. It dominates all other alternatives in the following
cases:

1: a has three times rank 3
2: a has twice rank 3, once rank 1
3: a has twice rank 3, once rank 2
4: a has once rank 3, twice rank 2 with different alternatives on rank 1

And these are the only cases, where a given alternative is undominated.
Counting all these cases, we get

9



1: 23 = 8 cases
2: 3× 23 = 24 cases
3: 3× 23 = 24 cases
4: 3× 22 = 12 cases

Totally, this makes 68 cases. We can set up the same table for both other
alternatives and arrive at a number of 3×68 = 204 cases, where an undominated
alternative exists. This is somehow surprising and shows that for 3 agents we
have a probility of 17

18 to find a cluster head, who dominates all other agents. Of
course, this result depends on the way how collective preferences are composed
by individual preferences in consideration of the majority rule.

Of course, further analysis on the asymptotic behavior of these probabili-
ties would be desirable. Monte-Carlo-Simulations show that the probabilities
decrease only slowly for small networks. For instance, we got an estimated
probability of 78, 4% for networks with 5 members and 1000 runs as well as 64%
for networks with 7 members and 100 runs. A theoretical analysis, whether
the probabilities approach zero or have a positive lower limit is actually not
available.

4 Concluding Remarks

Some of the results have been inspired rather by experimental exploration using
computer models than by strong top down theoretical derivation, in particu-
lar the algorithm 2.1 and some probabilistic analysis. This way of research is
specifically helpful to underpin hypothesis or to reject them. Since Artificial
Intelligence (AI) is a fashion topic in the area of computer science, it seems to
be adequate to pose the question how this discipline could contribute to the
development of theories and in particular to the organization of communication
networks. Of course, there exists some progress in the field of logical argumenta-
tion and proof of theorems. But the most successful application of AI seems to
be the evaluation of experiments for the formulation of hypothesis and testing.
The theoretical derivation is then a matter of traditional methods.
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