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ON NONLINEAR EXPECTATIONS AND MARKOV CHAINS
UNDER MODEL UNCERTAINTY

MAX NENDEL1

Abstract. The aim of this work is to give an overview on nonlinear expec-
tation and to relate them to other concepts that describe model uncertainty
or imprecision in a probabilistic framework. We discuss imprecise versions
of stochastic processes with a particular interest in imprecise Markov chains.
First, we focus on basic properties and representations of nonlinear expecta-
tions with additional structural assumptions such as translation invariance or
convexity. In a second step, we discuss how stochastic processes under nonlin-
ear expectations can be constructed via primal and dual representations. We
illustrate the concepts by means of imprecise Markov chains with a countable
state space, and show how families of Markov chains give rise to imprecise
versions of Markov chains. We discuss dual representations and differential
equations related to the latter.
Key words: Nonlinear expectation, imprecise probability, Choquet capacity,

imprecise Markov chain, nonlinear transition probability
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1. Introduction

Model uncertainty appears in many scientific disciplines, when, for example,
due to statistical estimation methods, only a confidence interval for certain pa-
rameters of a model is known, or when certain aspects of a model cannot be
determined exactly. In this context, one often speaks of imprecision or polymor-
phic uncertainty. In mathematical finance, model uncertainty or ambiguity is a
frequent phenomenon since financial markets usually do not allow for repetition,
whereas, in other disciplines, experiments can be repeated under similar condi-
tions arbitrarily often. The most prominent example for ambiguity in mathemat-
ical finance is uncertainty with respect to certain parameters (drift, volatility,
etc.) of the stochastic process describing the value of an underlying asset. This
leads to the task of modelling stochastic processes under model uncertainty.

In mathematical finance, model uncertainty is often being described via nonlin-
ear expectations, introduced by Peng [29]. Some of the most prominent examples
of nonlinear expectations include the g-expectation, see Coquet et al. [10], de-
scribing a Brownian Motion with uncertainty in the drift parameter, and the
G-expectation or G-Brownian Motion introduced by Peng [30],[31], describing a
Brownian Motion with uncertain volatility. There is a close connection between
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g-expectations, backward stochastic differential equations (BSDEs) and semilin-
ear partial differential equations. We refer to and Coquet et al. [10] and Pardoux
and Peng [27] for more details on this topic. We also refer to Cheridito et al.
[5] and Soner et al. [32],[33] for the connection of the G-expectation to 2BSDEs
and fully nonlinear partial differential equations. Moreover, there is a one-to-one
relation between sublinear expectations and coherent monetary risk measure as
introduced by Artzner et al. [1] and Delbaen [13],[14]. Another related concept
is the concept of a (Choquet) capacity (see e.g. Dellacherie-Meyer [15]) leading
to Choquet integrals (see Choquet [6]).

On the other side, there is a large community working on similar questions
related to model uncertainty in the field of imprecise probability. Here, the cen-
tral objects are upper and lower previsions introduced by Walley [37]. In the
sublinear case, there is a one-to-one relation between sublinear expectations and
coherent upper previsions, which creates a huge intersection between the commu-
nities working on nonlinear expectations and upper/lower previsions. Within the
field of imprecise probability, many work has been done in the direction of defin-
ing, axiomatizing, and computing transition operators of, both, discrete-time and
continuous-time imprecise Markov chains, see e.g. De Bock [11], de Cooman et
al. [12], Krak et al. [23], and Škulj [34],[35]. Concepts that are related to impre-
cise Markov chains include Markov set-chains, see Hartfiel [22], and, in the field
of mathematical finance, BSDEs on Markov chains, see Cohen and Elliott [8],[9],
and Markov chains under nonlinear expectations, see Nendel [24] and Peng [29].

The aim of this paper is link and compare the concepts and results obtained in
the fields of imprecise probability and mathematical finance. Since Markov chains
under model uncertainty form the largest intersection between both communities,
we put a special focus on the latter. The paper is organized as follows: In Section
2, we start by introducing nonlinear expectations, and discussing basic properties
and relations to upper/lower previsions, monetary risk measures and Choquet in-
tegrals. In Section 3, we present extension procedures for pre-expectations due
to Denk et al. [16]. Here, we focus on two different extensions, one in terms of
finitely additive measures, and the other in terms of countably additive measures.
In Section 4, we discuss Kolmogorov-type extension theorems and the existence
of stochastic processes under nonlinear expectations due to Denk et al. [16]. We
conclude, in Section 5, by constructing imprecise versions of transition operators
for families of time-homogeneous continuous-time Markov chains with countable
state space. Here, we use an approach due to Nisio [26], which has been used
in various contexts to construct imprecise versions of Markov processes, such
as Lévy processes, Ornstein-Uhlenbeck processes, geometric Brownian Motions,
and finite-state Markov chains, see Denk et al. [17], Nendel [24] and Nendel and
Röckner [25]. We conlcude by comparing the Nisio approach to the approaches
used for continuous-time imprecise Markov chains in the field of imprecise prob-
ability.



ON NONLINEAR EXPECTATIONS AND MARKOV CHAINS 3

2. Nonlinear expectations and related concepts

In this section, we give an introduction into the theory of nonlinear expecta-
tions, and discuss related concepts. Throughout this section, let Ω be a nonempty
set, and F ⊂ 2Ω be an arbitrary σ-algebra on Ω, where 2Ω denotes the power set
of Ω. We emphasize that, throughout this section, F = 2Ω is a possible choice
for F . We denote the space of all bounded F -B(R)-measurable random variables
X : Ω → R by L∞(Ω,F), where B(R) denotes the Borel σ-algebra on R. The
space L∞(Ω,F) and subspaces thereof are endowed with the standard norm ‖·‖∞,
defined by

‖X‖∞ := sup
ω∈Ω
|X(ω)| (X ∈ L∞(Ω,F)).

For α ∈ R, we make use of the notation α := α1Ω, and, for M ⊂ L∞(Ω,F), we
write R ⊂ M instead of {α1Ω : α ∈ R} ⊂ M . Here, 1A stands for the indicator
function of A ⊂ Ω.

We write ba(Ω,F) for the space of all real-valued and finitely additive mea-
sures on (Ω,F) with finite total variation, and ca(Ω,F) for the subspace of all
σ-additive signed measures on (Ω,F). The subsets ba1

+(Ω,F) and ca1
+(Ω,F)

stand for all positive elements µ ∈ ba(Ω,F) and µ ∈ ca(Ω,F) with µ(Ω) = 1,
respectively. Using the identification ba(Ω,F) = (L∞(Ω,F))′ via µX :=

∫
Ω
X dµ

for µ ∈ ba(Ω,F) and X ∈ L∞(Ω,F) (cf. [18, p. 258]), every monotone linear
functional E : L∞(Ω,F) → R with E(α) = α, for all α ∈ R, is the expectation
of a finitely additive probability measure µ ∈ ba1

+(Ω,F). This motivates the
following definition, which is due to Peng [29].

Definition 2.1. Let M ⊂ L∞(Ω,F) with R ⊂M . A (nonlinear) pre-expectation
E on M is a functional E : M → R with the following properties:

(i) Monotonicity: E(X) ≤ E(Y ) for all X, Y ∈M with X ≤ Y .
(ii) Constant preserving: E(α) = α for all α ∈ R.

A pre-expectation on L∞(Ω,F) is called an expectation.

Definition 2.2. Let M ⊂ L∞(Ω,F) with R ⊂ M , and E : M → R be a pre-
expectation on M .

a) If M + R := {X + α : X ∈ M, α ∈ R} ⊂ M and E(X + α) = E(X) + α
for all X ∈M and α ∈ R, we say that E is translation invariant.

b) If M + M := {X + Y : X, Y ∈ M} ⊂ M and E(X + Y ) ≤ E(X) + E(Y )
for all X, Y ∈M , we say that E is subadditive.

c) If M is convex, i.e. λX + (1− λ)Y ∈ M for all X, Y ∈ M and λ ∈ [0, 1],
and E(λX+(1−λY )) ≤ λE(X)+(1−λ)Y for all X, Y ∈M and λ ∈ [0, 1],
we say that E is convex.

d) If [0,∞) ·M := {λX : λ ≥ 0, X ∈ M} ⊂ M and E(λX) = λE(X) for all
λ ≥ 0 and X ∈M , we say that E is positive homogeneous (of degreee 1).

e) If M is a convex cone, i.e. M is convex and [0,∞) ·M ⊂ M , and E is
convex and positive homogeneous, we say that E is sublinear.
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f) If M is a linear subspace of L∞(Ω,F), i.e. λX+Y ∈M for all λ ∈ R and
X, Y ∈M , and E(λX +Y ) = λE(X) +E(Y ) for all λ ∈ R and X, Y ∈M ,
we say that E is linear.

Remark 2.3. Assume that M is a convex cone. Then, X+Y = 2
(

1
2
X+ 1

2
Y
)
∈M

for all X, Y ∈ M , and therefore, M + M ⊂ M . Since 0 ∈ M , any two of the
following three conditions imply the remaining third:

(i) E is convex,
(ii) E is positive homogeneous (of degree 1),
(iii) E is subadditive.

Remark 2.4. A concept that is very much related to nonlinear expectations is
the concept of an upper or lower prevision as introduced by Walley [37]. The
latter are very prominent in the context of imprecise probabilities. Walley [37]
defines a lower prevision as a real-valued functional P : M → R on an arbitrary
set of gambles M ⊂ L∞(Ω,F). A nonlinear pre-expectation can thus be seen
as a lower prevision prevision that is monotone and preserves constants. The
concept of a sublinear expectation is equivalent to the concept of a coherent lower
prevision. More precisely, if E is a sublinear expectation, which is defined on a
linear subspace M of L∞(Ω,F) with R ⊂M , then P (X) := −E(−X), for X ∈M ,
defines a coherent lower prevision. Moreover, if E is a convex expectation, which is
defined on a linear subspace M of L∞(Ω,F) with R ⊂M , then P (X) := −E(−X)
is a convex lower prevision, cf. Pelessoni and Vicig [28, Theorem 3.1].

In this work, we mainly focus on expectations that are translation invariant.
Prominent examples for such expectations are Choquet integrals, see Choquet [6]
and (monetary) risk measures, see e.g. Föllmer and Schied [20]. We start with
some observations that help to verify translation invariance.

Lemma 2.5. Let M ⊂ L∞(Ω,F) with R ⊂ M , and let E : M → R be a pre-
expectation on M .

a) If E is translation invariant, then E is 1-Lipschitz, i.e. |E(X)− E(Y )| ≤
‖X − Y ‖∞ for all X, Y ∈M .

b) Let M + R ⊂M . Then, the following three statements are equivalent:
(i) E is translation invariant,

(ii) E(X + α) ≤ E(X) + α for all X ∈M and all α ∈ R,
(iii) E(X + α) ≥ E(X) + α for all X ∈M and all α ∈ R.

c) If E is subadditive, then E is translation invariant.
d) If E is convex, then E is translation invariant.

Proof.

a) Assume that E is translation invariant. Then,

E(X)− E(Y ) ≤ E(Y + ‖X − Y ‖∞)− E(Y ) = ‖X − Y ‖∞
for all X, Y ∈ M . By a symmetry argument, we obtain that |E(X) −
E(Y )| ≤ ‖X − Y ‖∞ for all X, Y ∈M .

b) First assume that E(X + α) ≤ E(X) + α for all X ∈ M and all α ∈ R.
Then,

E(X) = E
(
(X + α)− α

)
≤ E(X + α)− α.
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Now, assume that E(X + α) ≥ E(X) + α for all X ∈ M and all α ∈ R.
Then,

E(X + α)− α ≤ E
(
(X + α)− α

)
= E(X).

c) This follows directly from part b).
d) Assume that E is convex. Let X ∈M and α ∈ R. Then, for all λ ∈ [0, 1),

E(X + α) ≤ λE(X) + (1− λ)E
(
X + α

1−λ

)
≤ λE(X) + (1− λ)E

(
‖X‖∞ + α

1−λ

)
= λE(X) + (1− λ)‖X‖∞ + α.

Letting λ → 1, we obtain that E(X + α) ≤ E(X) + α. By part b), it
follows that E is translation invariant.

�

Remark 2.6. Since every convex pre-expectation E is translation invariant, ρ(X) :=
E(−X) defines a convex monetary risk measure, cf. Föllmer and Schied [19] and
Frittelli and Rosazza Gianin [21]. If E is sublinear, i.e. convex and subadditive,
then ρ is a coherent monetary risk measure as introduced by Artzner et al. [1],
see also Delbaen [13], [14].

As in the theory of risk measures, random variables with positive expectation,
play a special role, and we refer to them as acceptable positions.

Definition 2.7. Let M ⊂ L∞(Ω,F) with R ⊂M .

a) A set A ⊂M is called an acceptance set of M if
(i) inf{α ∈ R : α ∈ A} = 0,

(ii) for all X ∈ A and all Y ∈M with Y ≥ X we have that Y ∈ A,
(iii) A is a closed subset of M .

b) Let E : M → R be a pre-expectation. Then, the set

AE := {X ∈M : E(X) ≥ 0}
is called the acceptance set of E .

In the field of imprecise probability, acceptable positions are called desirable
gambles, and acceptance sets are called sets of desirable gambles. Translation
invariant expectations are uniquely characterized via their acceptable positions.
This is a well-known fact within the theory of risk measures and imprecise prba-
bilities, and directly carries over to translation invariant expectations. For the
reader’s convenience, we state the result and provide a short proof.

Proposition 2.8. Let M ⊂ L∞(Ω,F) with R ⊂ M and M + R ⊂ M . Then,
the mapping E 7→ AE is a bijection between the set of all translation invariant
pre-expectations on M and the set of all acceptance sets of M . More precisely,
the following holds:

a) Let E : M → R be a translation invariant pre-expectation. Then, AE is an
acceptance set in the sense of Definition 2.7 a), and

E(X) = sup{α ∈ R : X − α ∈ AE}
for all X ∈M .
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b) Let A ⊂M be an acceptance set. Then,

E(X) := sup{α ∈ R : X − α ∈ A}, for X ∈M,

defines a translation invariant pre-expectation E : M → R with AE = A.

Proof.

a) Since E is translation invariant, for all X ∈M ,

E(X) = sup{α ∈ R : E(X) ≥ α} = sup{α ∈ R : E(X − α) ≥ 0}
= sup{α ∈ R : X − α ∈ AE}.

Clearly, A satisfies the properties (i) and (ii) in Definition 2.7. Since E
is translation invariant, it is a 1-Lipschitz continuous map M → R, and
therefore A = E−1

(
[0,∞)

)
is a closed subset of M .

b) One readily verifies that E defines a translation invariant pre-expectation
on M . By definition, A ⊂ AE . On the other hand, for X ∈ AE , there
exists a sequence (αn)n∈N ⊂ (−∞, 0] with X − αn ∈ A and αn → 0 as
n→∞. Since A is a closed subset of M , it follows that X = limn→∞X−
αn ∈ A.

�

We now specialize on the case, where E is a convex expectation on a linear
subspace of L∞(Ω,F). Let M ⊂ L∞(Ω,F) be a linear subspace of L∞(Ω,F)
with R ⊂ M . For a convex function E : M → R, we write E∗ for its conjugate
function or Fenchel-Legendre transform, i.e. we define

E∗(µ) := sup
X∈M

µX − E(X)

for all linear functionals µ : M → R. Note that the conjugate function E∗ may
take the value +∞. In the following proposition, we will see that, for a convex
pre-expectation E on M , its conjugate function E∗ is concentrated on the class of
linear pre-expectations on M . That is, E∗ is finite only for linear pre-expectations
on M . As every linear pre-expectation on M is continuous, we therefore obtain
the representation

E(X) = sup
µ∈M ′

µX − E∗(µ) (X ∈ L∞(Ω,F))

for all convex pre-expectations E on M . Again, this type of representation is well-
known for convex risk measures, and the proof relies on a collection of several
well-known facts from convex analysis and duality theory. In order to keep this
manuscript self-contained, we nevertheless state the proof below.

Proposition 2.9. Let M ⊂ L∞(Ω,F) be a linear subspace of L∞(Ω,F) with
R ⊂M .

a) Let E : M → R be a convex pre-expectation. Then, every linear functional
µ : M → R with E∗(µ) <∞ is a linear pre-expectation on M and therefore,
µ ∈M ′ with ‖µ‖M ′ = 1, where ‖ · ‖M ′ denotes the operator norm on M ′.
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b) Let E : M → R be a convex pre-expectation, and let PE denote the set of
all linear functionals µ : M → R with E∗(µ) <∞. Then, for all X ∈M ,

E(X) = max
µ∈PE

µX − E∗(µ).

Moreover, the map E∗ : PE → R is convex and weak∗ lower semicontinuous
with

min
µ∈PE
E∗(µ) = 0

c) Let P ⊂ M ′ be a set of linear pre-expectations, and σ : P → R be a map
with infµ∈P α(µ) = 0. Then,

E(X) := sup
µ∈P

µX − σ(µ), for X ∈M,

defines a convex pre-expectation on M . It holds P ⊂ PE and E∗(µ) ≤ σ(µ)
for all µ ∈ P.

Proof.

a) Let µ : M → R be linear with E∗(µ) <∞. Then, for all λ > 0,

1− λ−1E∗(µ) = −λ−1
(
E(−λ) + E∗(µ)

)
≤ −λ−1µ(−λ) = µ1 = λ−1µ(λ)

≤ λ−1
(
E(λ) + E∗(µ)

)
= 1 + λ−1E∗(µ).

Letting λ → ∞, we obtain that µ1 = 1. Moreover, for λ > 0 and all
X, Y ∈M with X ≤ Y ,

µ(X − Y ) = λ−1µ
(
λ(X − Y )

)
≤ λ−1

[
E
(
λ(X − Y )

)
+ E∗(µ)

]
≤ λ−1E∗(µ)→ 0, λ→∞.

This shows that µ : M → R is a linear pre-expectation on M . Therefore,
Lemma 2.5 a) and c) imply that µ ∈ M ′ with ‖µ‖M ′ ≤ 1. Since µ1 = 1,
it follows that ‖µ‖M ′ = 1.

b) Let X ∈ M and E0(Y ) := E(X + Y ) − E(X) for all Y ∈ M . Then,
E0 : M → R is convex and E0(0) = 0. By the extension theorem of Hahn-
Banach, there exists a linear functional µ : M → R with µY ≤ E0(Y ) for
all Y ∈M . That is,

µY − E(Y ) ≤ µX − E(X)

for all Y ∈M . Therefore, by definition of the conjugate function,

E(X) = µX − E∗(µ).

One readily checks that PE ⊂M ′ is convex. Hence, for fixed X ∈M , the
map

PE → R, µ 7→ µX − E(X)

is convex and weak∗ continuous. Taking the pointwise supremum over all
X ∈ M , we see that the mapping PE → R, µ 7→ supX∈M µX − E(X)
is convex and weak∗ lower semicontinuous. As 0 ∈ M with E(0) = 0, it
follows that E∗(µ) ≥ 0 for all µ ∈ PE . Again, as 0 ∈M , there exists some
µ ∈ PE with E∗(µ) = µ0− E(0) = 0.
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c) The map E is monotone and convex, as it is a supremum over monotone
affine linear maps. Moreover,

E(α) = sup
µ∈P

µα− σ(µ) = α− inf
µ∈P

σ(µ) = α.

Therefore, E defines a convex pre-expectation on M . Let ν ∈ P . Then,

νX − E(X) = νX − sup
µ∈P

µX − σ(µ) ≤ σ(µ)

for all X ∈M . Hence, E∗(ν) ≤ σ(ν) and, in particular, P ⊂ PE .
�

The set PE from the previous proposition can be used to characterize sublin-
ear and linear pre-expectations. In the field of imprecise probability or, more
precisely, for coherent upper previsions the set PE is called the credal set.

Lemma 2.10. Let M ⊂ L∞(Ω,F) be a linear subspace of L∞(Ω,F) with R ⊂M ,
and let E : M → R be a convex pre-expectation.

a) E is sublinear if and only if PE = {µ ∈M ′ : E∗(µ) = 0}.
b) E is linear if and only if #PE = 1. In this case, PE = {E}.

Proof.

a) First, assume that E is sublinear. Let µ ∈ PE and X ∈ M be arbitrary.
Then,

λ
(
µX − E(X)

)
= µ(λX)− E(λX) ≤ E∗(µ) <∞

for all λ > 0, and therefore, µX − E(X) ≤ 0. Taking the supremum over
all X ∈M , we obtain that E∗(µ) ≤ 0. By Proposition 2.9 b), this implies
that E∗(µ) = 0.
Now assume that PE = {µ ∈ M ′ : E∗(µ) = 0}. Then, for all X ∈ M and
all λ ≥ 0 we have that

E(λX) = max
µ∈P

µ(λX) = λmax
µ∈P

µX = λE(X).

b) Assume that E is linear and let µ ∈ PE . Then, by part a), E∗(µ) = 0, and
therefore, µX ≤ E(X) for all X ∈M . As E is linear, we thus obtain that
µ = E . This shows that P = {E}.
Now let #P = 1 and let µ ∈ P . Then, by Proposition 2.9 b), E∗(µ) = 0,
and therefore, E = µ is linear.

�

Proposition 2.9 together with Lemma 2.10 yields the following characterization
of sublinear pre-expectations.

Proposition 2.11. Let M ⊂ L∞(Ω,F) be a linear subspace of L∞(Ω,F) with
R ⊂ M . Then, the map E 7→ PE is a bijection between the set of all sublinear
expectations and the set of all nonempty, convex and weak∗ compact sets of linear
pre-expectations. More precisely, the following holds:
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a) Let E : M → R be a sublinear pre-expectation. Then,

E(X) = max
µ∈PE

µX.

Moreover, the set PE is nonempty, convex, and weak∗ compact.
b) Let P be a nonempty set of linear pre-expectations. Then,

E(X) := max
µ∈P

µX, for X ∈M,

gives rise to a sublinear pre-expectation on M . If P is convex and weak∗

compact, then P = PE .

Proof.

a) By Lemma 2.10, PE = {µ ∈ M ′ : E∗(µ) = 0}. Therefore, by Proposition
2.9 b),

E(X) = max
µ∈PE

µX.

Clearly, PE is convex and, by Proposition 2.9, nonempty. Since

PE =
⋂
X∈M

{µ ∈M ′ : µX ≤ E(X)}

is closed, and PE ⊂ {µ ∈ M ′ : ‖µ‖M ′ ≤ 1}, we obtain that PE is weak∗

compact by the Banach-Alaoglu Theorem.
b) One readily verifies that E defines a sublinear pre-expectation on M . As-

sume that P is convex and weak∗ compact. Then, by Proposition 2.9 c),
P ⊂ PE . In order to prove the other inclusion, let ν ∈ M ′ \ P . Then, by
the separation theorem of Hahn-Banach, there exists some X ∈M with

E(X) = sup
µ∈PE

µX < νX,

where we used the fact that the topological dual of M ′ (endowed with the
weak∗ topology) is M . Hence, E∗(ν) > 0 and therefore, by Lemma 2.10
a), ν /∈ PE . This shows that P = PE .

�

Example 2.12. Let c : F → [0, 1] be a capacity, i.e. function with c(∅) = 0,
c(Ω) = 1, and c(A) ≤ c(B) for all A,B ∈ F with A ⊂ B. Then, c gives rise to a
translation invariant expectation E : L∞(Ω,F)→ R via

E(X) :=

∫
X dc :=

∫ ∞
0

c(X ≥ x) dx, for X ∈ L∞(Ω,F) with X ≥ 0,

and E(X) :=
∫
X dc := E

(
X+‖X‖∞

)
−‖X‖∞ for X ∈ L∞(Ω,F). The nonlinear

expectation E is called the Choquet integral of X w.r.t. c, see Choquet [6]. By
definition, E is positive homogeneous, translation invariant, and satisfies E(1A) =
c(A) for all A ∈ F . Assume that c is 2-alternating, i.e.

c(A ∪B) + c(A ∩B) ≤ c(A) + c(B) for all A,B ∈ F .
Then it is well-known that E is subadditive and thus sublinear. By definition,
µX ≤ E(X) for all X ∈ L∞(Ω,F) and every linear expectation µ ∈ ba1

+(Ω,F)
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with µ(A) ≤ c(A) for all A ∈ F . Recall that linear expectations can be identified
by finitely additive measures via µ(A) := µ1A, for A ∈ F . This implies that

PE =
{
µ ∈ ba1

+(Ω,F) : ∀A ∈ F : µ(A) ≤ c(A)
}
,

and thus Ẽ(X) ≤ E(X) for all X ∈ L∞(Ω,F) and every sublinear expectation
Ẽ : L∞(Ω,F) → R with Ẽ(1A) ≤ c(A) for all A ∈ F . That is, E is the largest
sublinear expectation with E(1A) ≤ c(A) for all A ∈ F . The following corollary
shows that a sublinear expectation that coincides with a finitely additive measure
on all F -measurable sets is already linear.

Corollary 2.13. Let E : L∞(Ω,F) → R be a sublinear expectation and µ be a
finitely additive measure with E(1A) ≤ µ(A) for all A ∈ F . Then, E(X) = µX
for all X ∈ L∞(Ω,F) and therefore, E is a linear expectation.

Proof. Let ν ∈ PE . Then, ν is a linear expectation, i.e. a finitely additive measure,
with ν(A) ≤ E(1A) ≤ µ(A) for all A ∈ F . Hence, µ = ν, i.e. PE = {µ}, which,
by Lemma 2.10 b), implies that E = µ. �

For sublinear expectations, the following version of Jensen’s inequality holds.

Lemma 2.14. Let E : L∞(Ω,F) → R be a sublinear expectation and h : R → R
be a convex function. Then, for all X ∈ L∞(Ω,F),

h
(
E(X)

)
≤ E

(
h(X)

)
.

Proof. Since h : R→ R is convex, h is continuous, and therefore, h(X) ∈ L∞(Ω,F)
for all X ∈ L∞(Ω,F). Moreover,

h(x) = max
λ∈U

λx− h∗(λ), for all x ∈ R,

where h∗ : R → R is the conjugate function or Fenchel-Legendre transform of h
and U := {λ ∈ R : h∗(λ) <∞}. Now. let X ∈M and λ ∈ U . If λ ≥ 0, then

λE(X)− h∗(λ) = E
(
λX − h∗(λ)

)
≤ E

(
h(X)

)
.

If λ < 0, then

λE(X)− h∗(λ) ≤ E(λX)− h∗(λ) = E
(
λX − h∗(λ)

)
≤ E

(
h(X)

)
,

where, in the first inequality, we used the sublinearity of E . Taking the supremum
over all λ ∈ U yields the assertion. �

As in the linear case, one can define the concept of a distribution for nonlinear
expectations.

Remark 2.15. Let M ⊂ L∞(Ω,F) with R ⊂ M and E : M → R be a pre-
expectation. Moreover, let S 6= ∅ be a set and T : Ω → S be an arbitrary map.
Then, N := {Y ∈ L∞(S, 2S) : Y ◦T ∈M} contains all constant functions S → R,
and one readily verifies that

E ◦ T−1 : N → R, Y 7→ E(Y ◦ T )

defines a pre-expectation on N . We call E ◦ T−1 the distribution of T under
E . Note that if M = L∞(Ω,F), then N = L∞(S,S ), where S := {B ∈
2S : T−1(B) ∈ F}. In particular, N ⊂ L∞(S,S ) for all M ⊂ L∞(Ω,F).
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Now, if M is, additionally, a linear subspace of L∞(Ω,F) and E is sublinear, then,
N is a linear subspace of L∞(S,S ) and E ◦ T−1 is sublinear expectation. In this
case,

PE◦T−1 =
{
ν ∈ N ′ : (E ◦ T−1)∗(ν) <∞

}
= {µ ◦ T−1 : µ ∈ PE} =: PE ◦ T−1.

In fact, as the map M ′ → N ′, µ 7→ µ ◦ T−1 is linear and weak∗ continuous, the
set PE ◦ T−1 is convex and weak∗ compact. Moreover, for all Y ∈ N ,

(E ◦ T−1)(Y ) = E(Y ◦ T ) = max
µ∈PE

µ(Y ◦ T ) = max
µ∈PE

(µ ◦ T−1)Y = max
ν∈PE◦T−1

νY.

By Lemma 2.11 b), it follows that PE◦T−1 = PE ◦ T−1.

3. Extension of pre-expectations

Let M ⊂ L∞(Ω,F) with R ⊂ M . Given a pre-expectation E : M → R, we
are looking for extensions of E to an expectation on L∞(Ω,F). Here, the main
challenge is to preserve monotonicity. We start with the extension of linear pre-
expectations.

Remark 3.1. Let M ⊂ L∞(Ω,F) be a linear subspace of L∞(Ω,F) with 1 ∈ M .
We denote by ba1

+(M) the space of all linear pre-expectations on M . A natural
question is if the mapping

ba1
+(Ω,F)→ ba1

+(M), ν 7→ ν|M (3.1)

is bijective. The following theorem by Kantorovich shows that this mapping
is surjective, i.e. any linear pre-expectation on M can be extended to a linear
expectation on L∞(Ω,F). For the reader’s convenience, we state this theorem
and provide a short sketch of the proof. For more details we refer to [36, p. 277].
However, in Example 3.15, we will see that, in general, the mapping in (3.1) is not
injective, not even if F = σ(M), i.e. even if F = σ(M), a linear pre-expectation
on M usually admits various extensions to an expectation on L∞(Ω,F).

Theorem 3.2 (Kantorovich). Let M ⊂ L∞(Ω,F) be a linear subspace of L∞(Ω,F)
with 1 ∈M and µ : M → R be a linear pre-expectation on M . Then, there exists
a linear expectation ν : L∞(Ω,F)→ R with ν|M = µ.

Proof. Let

µ̂(X) := inf{µX0 : X0 ∈M, X0 ≥ X}

for all X ∈ L∞(Ω,F). Then, µ̂ : L∞(Ω,F) → R is a sublinear expectation with
µ̂|M = µ. By the extension theorem of Hahn-Banach, there exists a linear func-
tional ν : L∞(Ω,F) → R with ν|M = µ and νX ≤ µ̂(X) for all X ∈ L∞(Ω,F).
Thus,

νX − νY = ν(X − Y ) ≤ µ̂(X − Y ) ≤ µ̂(0) = 0

for all X, Y ∈ L∞(Ω,F) with X ≤ Y . �
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In the proof of the previous theorem, before applying the Hahn-Banach Theo-
rem, the linear pre-expectation µ : M → R is extended to a sublinear expectation
µ̂ : L∞(Ω,F)→ R via

µ̂(X) := inf{µX0 : X0 ∈M, X0 ≥ X} (X ∈ L∞(Ω,F)).

The idea for the first extension procedure therefore is, to extend a pre-expectation
E : M → R on M ⊂ L∞(Ω,F) with R ⊂M via

Ê(X) := inf{E(X0) : X0 ∈M, X0 ≥ X} (X ∈ L∞(Ω,F)).

The following proposition is due to Denk et al. [16], and shows that Ê is an expec-

tation with Ê |M = E . Moreover, if M is assumed to be convex or a convex cone,

then convexity or sublinearity of E carry over to the extension Ê , respectively.
For related extension results on niveloids, we refer to Maccheroni et al. [4]. In

the context of lower previsions, for F = 2Ω, the extension Ê is usually referred to
as the natural extension, cf. Walley [37, Section 3.1].

Proposition 3.3. Let M ⊂ L∞(Ω,F) with R ⊂ M and E : M → R be a pre-
expectation on M . Further, let

Ê(X) := inf{E(X0) : X0 ∈M, X0 ≥ X}
for all X ∈ L∞(Ω,F). Then, the following assertions hold:

a) Ê : L∞(Ω,F)→ R is an expectation with Ê |M = E.

b) If E is translation invariant, then Ê is translation invariant.

c) If E is convex, then Ê is convex.

d) If E is sublinear, then Ê is sublinear.

Proof.

a) Let X ∈ L∞(Ω,F). As R ⊂ M , we have that ‖X‖∞ ∈ M with ‖X‖∞ ≥
X. Thus, the set {E(X0) : X0 ∈ M, X0 ≥ X} is nonempty. Since X0 ≥
−‖X‖∞ for all X0 ∈M with X0 ≥ X, we obtain that

E(X0) ≥ E(−‖X‖∞) = −‖X‖∞
for all X0 ∈ M with X0 ≥ X. Hence, Ê : L∞(Ω,F) → R is well-defined.
Further, if X ∈ M we have that E(X) ≤ E(X0) for all X0 ∈ M with

X0 ≥ X and, therefore, Ê(X) = E(X). Since R ⊂M , we thus obtain that

Ê(α) = α for all α ∈ R. Now, let X, Y ∈ L∞(Ω,F) with X ≤ Y . Then,

Y0 ≥ X for all Y0 ∈M with Y0 ≥ Y and, therefore, Ê(X) ≤ Ê(Y ).
b) Assume that M + R ⊂ M and that E is translation invariant. Let X ∈
L∞(Ω,F) and α ∈ R. Then, for all X0 ∈ M with X0 ≥ X + α we have
that X0 − α ≥ X and therefore,

E(X0) = E(X0 − α) + α ≥ Ê(X) + α.

Taking the infimum over all X0 ∈ M with X0 ≥ X + α yields that

Ê(X+α) ≥ Ê(X)+α, which, by Lemma 2.5 b) implies that Ê is translation
invariant.
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c) Assume that M is convex and that E is convex. Let X, Y ∈ L∞(Ω,F)
and λ ∈ [0, 1]. Moreover, let X0, Y0 ∈M with X0 ≥ X and Y0 ≥ Y . Since
M is convex, λX0 + (1− λ)Y0 ∈M with

λX0 + (1− λ)Y0 ≥ λX + (1− λ)Y.

Due to convexity of E , we thus obtain that

Ê(λX + (1− λ)Y ) ≤ E(λX0 + (1− λ)Y0) ≤ λE(X0) + (1− λ)E(Y0).

Taking the infimum over all X0, Y0 ∈ M with X0 ≥ X and Y0 ≥ Y , we
get that

Ê(λX + (1− λ)Y ) ≤ λÊ(X) + (1− λ)Ê(Y ).

d) Now assume that M is a convex cone and that E is sublinear. Then, E is

convex and part b) yields that Ê is convex as well. Moreover, as λX0 ∈M
for all X0 ∈M and λ > 0 we have that

Ê(λX) = inf{E(λX0) : X0 ∈M, X0 ≥ X}

= inf{λE(X0) : X0 ∈M, X0 ≥ X} = λÊ(X)

for all X ∈ L∞(Ω,F) and all λ > 0. Hence, Ê is convex and positive
homogeneous, and therefore sublinear.

�

Remark 3.4.

a) Let M ⊂ L∞(Ω,F) with R ⊂ M and E : M → R be a pre-expectation
on M . Let Ẽ : L∞(Ω,F) → R be an expectation with Ẽ |M = E and
X ∈ L∞(Ω,F). Then,

Ẽ(X) ≤ Ẽ(X0) = E(X0)

for all X0 ∈ M with X0 ≥ X. Taking the infimum over all X0 ∈ M with

X0 ≥ X, we see that Ẽ(X) ≤ Ê(X). That is, Ê is the largest expectation,
which extends E .

b) Let M ⊂ L∞(Ω,F) with R ⊂M and E : M → R be a pre-expectation on
M . For X ∈M , let

Ě(X) := sup{E(X0) : X0 ∈M, X0 ≤ X}.

Then, one readily verifies that Ě : L∞(Ω,F) → R is the smallest expec-
tation, which extends E . However, convexity of E usually does not carry
over to Ě .

Lemma 3.5. Let M ⊂ L∞(Ω,F) with R ⊂M and let E : M → R be a translation
invariant pre-expectation on M . Let

ÂE := {X ∈ L∞(Ω,F) : X0 ∈ AE for all X0 ∈M with X0 ≥ X}.

Then, ÂE = AÊ , i.e. ÂE is the acceptance set of Ê, and therefore,

Ê(X) = sup
{
α ∈ R : X − α ∈ ÂE

}
(3.2)
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for all X ∈ L∞(Ω,F). Thus, (3.2) provides a second extension procedure for E,
which is extending E via its acceptable positions AE .

Proof. Let X ∈ AÊ , i.e. Ê(X) ≥ 0. By definition of Ê , it follows that E(X0) ≥ 0

for all X0 ∈ M with X0 ≥ X, i.e. X ∈ ÂE . Now assume that X ∈ ÂE , i.e.
E(X0) ≥ 0 for all X0 ∈M with X0 ≥ X. Then,

Ê(X) = inf{E(X0) : X0 ∈M, X0 ≥ X} ≥ 0,

i.e. X ∈ AÊ . Now, (3.2) follows directly from Proposition 2.8. �

Although Proposition 3.3 implies the existence of an extension Ê for every
pre-expectation E : M → R, this extension is not neccessarily unique. However,
as translation invariant pre-expectations are 1-Lipschitz by Lemma 2.5 a), the
extension is uniquely determined on the closure M of M for translation invariant
pre-expectations.

Proposition 3.6. Let M ⊂ L∞(Ω,F) with R ⊂M and E : M → R be a transla-
tion invariant pre-expectation. Then, there exists exactly one translation invari-

ant pre-expectation Ê : M → R with Ê |M = E. Here, M denotes the closure of M

as a subset of L∞(Ω,F) and Ê is given as in Proposition 3.3. If E is convex or

sublinear, then Ê is convex or sublinear, respectively.

Proof. As M + R ⊂ M it follows that M + R ⊂ M . Hence, by Proposition 3.3,

there exists a translation invariant pre-expectation Ê : M → R with Ê |M = E .
Since, by Lemma 2.5 a), every translation invariant pre-expectation on M is
1-Lipschitz, it is uniquely determined by its values on M . �

Lemma 3.7. Let M and N be two linear subspaces of L∞(Ω,F) with R ⊂M ⊂
N , and let E : N → R a convex pre-expectation. Then,{

µ ∈M ′ : (E|M)∗(µ) <∞
}

=
{
ν|M : ν ∈ PE

}
and, for all µ ∈M ′ with (E|M)∗(µ) <∞,

(E|M)∗(µ) = min
ν∈PE ,ν|M=µ

E∗(ν).

Proof. By Proposition 2.9 c),{
µ ∈M ′ : (E|M)∗(µ) <∞

}
⊃
{
ν|M : ν ∈ N ′, E∗(ν) <∞

}
and (E|M)∗(ν|M) ≤ E∗(ν) for all ν ∈ PE . Therefore, let µ ∈M ′ with (E|M)∗(µ) <
∞. Then, we have that

µX ≤ E(X)− E∗(µ)

for all X ∈ M . Hence, by the extension theorem of Hahn-Banach, there exists a
linear functional ν : N → R with ν|M = µ and

νX ≤ E(X) + E∗(µ)

for all X ∈ N . Therefore, E∗(ν) ≤ (E|M)∗(µ), i.e. ν ∈ PE with ν|M = µ and
E∗(ν) = (E|M)∗(µ). �

We apply Lemma 3.7 to the case N = L∞(Ω,F) and obtain the following
corollary.
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Corollary 3.8. Let M be a linear subspace of L∞(Ω,F) with R ⊂ M and

E : M → R be a convex pre-expectation. If Ẽ : L∞(Ω,F)→ R be a convex expec-
tation, which extends E, then,

PE =
{
ν|M : ν ∈ PẼ

}
and, for all µ ∈ PE ,

E∗(µ) = min
ν∈PẼ ,ν|M=µ

Ẽ∗(ν).

In view of Proposition 2.9 and Corollary 3.8, another natural approach to

extend a convex pre-expectation E on M would be to consider P̂E := {ν ∈
ba1

+(Ω,F) : ν|M ∈ PE}, and to define Ẽ : L∞(Ω,F)→ R by

Ẽ(X) := sup
ν∈P̂E

νX − E∗(ν|M) (3.3)

for all X ∈ L∞(Ω,F). By Proposition 2.9 c) and Theorem 3.2, Ẽ : L∞(Ω,F)→ R
is an expectation with Ẽ |M = E . In the following proposition, we will prove that

Ê = Ẽ and that the supremum in (3.3) is attained.

Proposition 3.9. Let M be a linear subspace of L∞(Ω,F) with R ⊂ M and
E : M → R be a convex pre-expectation. Further, let

P̂E := {ν ∈ ba1
+(Ω,F) : ν|M ∈ PE},

Then, P̂E = PÊ and Ê∗(ν) = E∗(ν|M) for all ν ∈ P̂E . In particular,

Ê(X) = max
ν∈P̂E

νX − E∗(ν|M) (X ∈ L∞(Ω,F)).

Proof. By Corollary 3.8, PÊ ⊂ P̂E and Ê∗(ν) ≥ E∗(ν|M) for all ν ∈ PÊ . Proposi-

tion 2.9 c), thus implies that P̂E = PÊ with Ê∗(ν) = E∗(ν|M) for all ν ∈ P̂E �

Corollary 3.10. Let M be a linear subspace of L∞(Ω,F) with R ⊂ M and

E : M → R be a sublinear pre-expectation. Then, P̂E = PÊ , and therefore,

Ê(X) = max
ν∈P̂E

νX for all X ∈ L∞(Ω,F).

Corollary 3.11. Let M be a linear subspace of L∞(Ω,F) with R ⊂ M and
E : M → R be a sublinear pre-expectation. Then, there exists a convex weak∗

compact set P ⊂ ba1
+(Ω,F) such that

E(X) = max
µ∈P

µX for all X ∈M.

We return to the setting of Theorem 3.2. For a given linear pre-expectation
µ : M → R on M , we consider the sublinear expectation µ̂ : L∞(Ω,F)→ R which
extends µ. Then, for every ν ∈ M ′ we have that µ∗(ν) = 0 if and only if ν = µ.
With the previous results, we therefore obtain the following corollary, which states
that µ̂ is the pointwise maximum of all linear expectations ν ∈ ba1

+(Ω,F) that
extend µ.
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Corollary 3.12. Let M be a linear subspace of L∞(Ω,F) with R ⊂ M and
µ : M → R be a linear pre-expectation. Further, let

P̂ := {ν ∈ ba1
+(Ω,F) : ν|M = µ}.

Then, P̂ = {ν ∈ ba(Ω,F) : µ̂∗(ν) = 0}, and therefore,

µ̂(X) = max
ν∈P̂

νX for all X ∈ L∞(Ω,F).

Let E : M → R be a convex pre-expectation. Considering the sublinear expec-
tation µ̂, which extends µ ∈ PE , one could also think of

Ẽ(X) := sup
µ∈PE

µ̂(X)− E∗(µ), for all X ∈ L∞(Ω,F), (3.4)

as another possible extension of E . Clearly, we have that Ẽ |M = E and therefore,

Ẽ(α) = α for all α ∈ R. Moreover, as µ̂ is monotone for all µ ∈ PE , we also have

that Ẽ is monotone. Hence, Ẽ is an expectation which extends E . In the following

proposition, we will use Corollary 3.12 to show that the expectation Ẽ coincides

with Ê and that the supremum in (3.4) is attained.

Proposition 3.13. Let M be a linear subspace of L∞(Ω,F) with R ⊂ M and
E : M → R be a convex pre-expectation. Then,

Ê(X) = max
µ∈PE

µ̂(X)− E∗(µ) for all X ∈ L∞(Ω,F).

Proof. Let X ∈ L∞(Ω,F) and Ẽ : L∞(Ω,F) → R be given by (3.4). We have

already seen that Ẽ : L∞(Ω,F) → R is an expectation that extends E . Remark

3.4 thus yields that Ẽ(X) ≤ Ê(X). By Proposition 3.9, there exists a linear

expectation ν ∈ ba1
+(Ω,F) which satisfies µ := ν|M ∈ PE and Ê(X) = νX−E∗(µ).

Hence, by Corollary 3.12, we get that

Ê(X) = νX − E∗(µ) ≤ µ̂(X)− E∗(µ) ≤ Ẽ(X) ≤ Ê(X).

This shows that Ê(X) = νX − E∗(µ) = µ̂(X)− E∗(µ). �

Remark 3.14. Let E : M → R be a convex pre-expectation on M . In Lemma
3.5, Proposition 3.3, Proposition 3.9 and Proposition 3.13, we have seen that the
following four extension procedures all lead to the same (maximal) expectation
extending E .

(i) E 7→ Ê ,

(ii) E 7→ AE 7→ ÂE 7→
[
X 7→ sup

{
α ∈ R : X − α ∈ ÂE

}]
,

(iii) E 7→ (P , E∗) 7→
(
P̂ , [ν 7→ E∗(ν|M)]

)
7→
[
X 7→ maxν∈P̂ νX − E∗(ν|M)

]
,

(iv) E 7→ (P , E∗) 7→
(
{µ̂ : µ ∈ P}, E∗

)
7→ [X 7→ maxµ∈P µ̂X − E∗(µ)].

Example 3.15. Let Ω := R, F be the Borel σ-algebra on R, and M := Cb(Ω)
be the space of all bounded continuous functions Ω → R. Let δ0 be the Dirac
measure with center 0, E := δ0|M be the restriction of the Dirac measure to M ,
and X := 1(0,∞). Then,

Ê(X) = inf{Y ∈M : Y ≥ X} = 1,
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while δ0(X) = 0. This shows that PÊ 6= δ0, i.e. E admits several extensions in
terms of finitely additive measures.

The previous examples shows that the extension Ê , already in the linear case,
ususally does not reslut in uniqueness of any kind. In order to obtain unique-
ness, one therefore needs additional continuity properties of the expectation as
an analogue of σ-additivity in the linear case

Definition 3.16.

a) Let M ⊂ L∞(Ω,F) with R ⊂ M and E : M → R be a pre-expectation.
Then, we say that E is continuous from above or below if E(Xn)→ X as
n → ∞ for all sequences (Xn)n∈N ⊂ M with Xn ≥ Xn+1 or Xn ≤ Xn+1

for all n ∈ N and X := limn→∞Xn ∈M , respectively.
b) Let E : L∞(Ω,F)→ R be a convex expectation. Assume that there exists

a set P of probability measures, i.e. linear expectations, which are con-
tinuous from above, and a function ρ : P → R with infµ∈P ρ(µ) = 0 such
that

E(X) = sup
µ∈P

µX − ρ(µ), for all X ∈ L∞(Ω,F),

then, we say that (Ω,F , E) is a convex expectation space. If E is sublinear
or linear, we say that (Ω,F , E) is a sublinear or linear expectation space,
respectively.

Notice that every linear expectation space is a probability space and vice versa.

Let E : M → R be a convex pre-expectation on a linear subspaceM of L∞(Ω,F)
with R ⊂M . Then, one can show that the following statements are equivalent:

(i) E is continuous from above.
(ii) Every µ ∈ PE is continuous from above.

Remark 3.17. Assume that M is a Riesz subspace of L∞(Ω,F), i.e. a linear
subspace of L∞(Ω,F) with X ∨ Y ∈ M and X ∧ Y ∈ M for all X, Y ∈ M ,
with R ⊂M . Then, by the Daniell-Stone Theorem, every linear pre-expectation
on M , which is continuous from above, can uniquely be extended to a linear
expectation µ̄ on L∞

(
Ω, σ(M)

)
, which is continuous from above. Now, assume

that E is a convex expectation, and assume that there exists a set P ⊂ M ′ of
linear pre-expectations, which are continuous from above, and a map ρ : P → R
with infµ∈P ρ(µ) = 0. Then,

Ē(X) := sup
µ∈P

µ̄X − ρ(µ), for X ∈ L∞
(
Ω, σ(M)

)
,

defines a convex expectation, which extends E to L∞
(
Ω, σ(M)

)
(see Bartl et

al. [3]). If E : M → R is continuous from above, using a modification of Choquet’s
capacibility theorem [7], one can show that

Ē(X) := sup

{
inf
n∈N
E(Xn) : (Xn)n∈N ∈MN, Xn ≥ Xn+1 (n ∈ N), X ≥ inf

n∈N
Xn

}
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for P = PE and ρ := E∗, and that uniqueness within a certain class of expectations
can be achieved. We refer to Bartl [2] and Denk et al. [16] for more details on
the uniqueness of this extension.

4. Stochastic processes under nonlinear expectation

In this section, we apply the extension results of the previous chapter to a
Kolmogorov-type setting. That is, given a consistent family of finite-dimensional
marginal expectations, we are looking for an expectation on a suitable path space
with these marginals.

Throughout this section, let I 6= ∅ be an index set, H :=
{
J ⊂ I : |J | ∈ N

}
the set of all finite, nonempty subsets of I and (S,S ) be a measurable (state)
space. For each J ∈H let MJ ⊂ L∞(SJ ,BJ) be a linear subspace with 1 ∈MJ ,
where BJ is the product σ-algebra on SJ . For all K ⊂ J ⊂ I let

prJK : SJ → SK , (xi)i∈J 7→ (xi)i∈K

and prJ := prIJ . Throughout this section, we assume that

MK ◦ prJK :=
{
f ◦ prJK : f ∈MK

}
⊂MJ

for all J,K ∈H with K ⊂ J . Typical examples for the family (MJ)J∈H are:

(i) the space L∞(SJ) := L∞(SJ ,BJ) of all bounded BJ -B(R)-measurable
functions, where BJ denotes the product σ-algebra on SJ ,

(ii) the space Cb(S
J) of all bounded continuous functions SJ → R, where SJ

is endowed with the product topology,
(iii) the space BUC(SJ) of all bounded uniformly continuous functions SJ → R

w.r.t. a fixed metric, which generates the topology on S.

Let J,K ∈ H with K ⊂ J . For a pre-expectation EJ : MJ → R we then
denote by EJ ◦ pr−1

JK the restriction of the distribution (see Remark 2.15) of EJ
under pr−1

JK to MK , i.e.

EJ ◦ pr−1
JK : MK → R, f 7→ EJ(f ◦ prJK).

In [29], Peng defines a consistency condition for nonlinear expectations and
proves an extension to the subspace

M :=
{
f ◦ prJ : J ∈H , f ∈ L∞(SJ ,BJ)

}
of L∞(SI ,BI). Here BI denotes the product σ-algebra of B, i.e. the σ-algebra
generated by the sets of the form pr−1

J (BJ) with J ∈ H and BJ ∈ BJ . In the
sequel, we use the same notion of consistency as Peng and apply the extension
results from the previous section in order to obtain an extension to L∞(SI ,BI).

Definition 4.1. For all J ∈ H let EJ : MJ → R be a pre-expectation. Then,
the family (EJ)J∈H is called consistent if, for all J,K ∈H with K ⊂ J ,

EK(f) = EJ(f ◦ prJK) for all f ∈MK ,

i.e. if EK = EJ ◦ pr−1
JK .
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Remark 4.2. For all J ∈ H let EJ : MJ → R be a pre-expectation. Then, the
family (EJ)J∈H is consistent if and only if

EK = EJ ◦ pr−1
JK

for all J,K ∈ H with K ⊂ J and |J | = |K| + 1. In fact, assume that EK =
EJ ◦ pr−1

JK for all J,K ∈H with K ⊂ J and |J | = |K|+ 1. We prove that

EK = EJ ◦ pr−1
JK

for all J ∈ H with K ⊂ J by induction on n = |J | − |K| ∈ N0. For n = 0 the
statement is trivial. Now, assume that there exists some n ∈ N0 such that

EK = EJ ◦ pr−1
JK

for all J ∈H with K ⊂ J and |J | = |K|+n. Let J ∈H with |J | = |K|+n+ 1,
J ′ := J \{i} for some i ∈ J \K and f ∈MK . Then, we have that g := f ◦prJ ′K ∈
MJ ′ with g ◦ prJJ ′ = f ◦ prJK . Therefore, by the induction hypothesis, we have
that

EJ(f ◦ prJK) = EJ(g ◦ prJJ ′) = EJ ′(g) = EJ ′(f ◦ prJ ′K) = EK(f).

The following theorem due to Denk et al. [16] is a finitely additive and nonlinear
version of Kolmogorov’s extension theorem.

Theorem 4.3. Let (EJ)J∈H be a consistent family of pre-expectations EJ : MJ →
R. Then, there exists an expectation Ê : L∞(SI ,BI)→ R such that

Ê(f ◦ prJ) = EJ(f) for all J ∈H and all f ∈MJ .

If the pre-expectations EJ are translation invariant, convex or sublinear for all

J ∈H , then Ê is translation invariant, convex or sublinear, respectively.

Proof. Let M :=
{
f ◦ prJ : f ∈ MJ , J ∈ H

}
. Then M is a linear subspace of

L∞(SI ,BI) with 1 ∈ M . For every J ∈ H and f ∈ MJ let E(f ◦ prJ) := EJ(f).
Since the family (EJ)J∈H is consistent, the functional E : M → R is well-defined.
Moreover, E : M → R is a pre-expectation on M . The assertion now follows from
Proposition 3.3. �

In Theorem 4.3, we proved the existence of an extension without any continuity
properties and any structural assumptions. The following theorem due to Denk
et al. [16] can be viewed as a continuous and convex version of Theorem 4.3.

Theorem 4.4. Let S be a Polish space and S be the Borel σ-algebra on S.
For all J ∈ H let MJ be a Riesz subspace of L∞(SJ ,BJ) with σ(MJ) = BJ
and EJ : MJ → R be a convex pre-expectation, which is continuous from above.
If the family (EJ)J∈H is consistent, then there exists a convex expectation space(
SI ,BI , Ē

)
with

EJ(f) = Ē(f ◦ prJ) for all J ∈H and f ∈MJ .

If the pre-expectations EJ are sublinear or linear for all J ∈H , then Ē is sublinear
or linear, respectively.
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Proof. Let M :=
{
f ◦ prJ : f ∈MJ , J ∈H

}
, and define E(f ◦ prJ) := EJ(f) for

all f ∈ MJ and all J ∈ H . Since the family (EJ)J∈H is consistent, E : M → R
defines a convex pre-expectation on M . Let µ ∈ M ′ with E∗(µ) < ∞. We
will first show that µ : M → R is continuous from above. Let µJ := µ ◦ pr−1

J

for all J ∈ H . Then, E∗J(µJ) ≤ E∗(µ) < ∞, and therefore, µJ : MJ → R is
continuous from above. By the theorem of Daniell-Stone, there exists a unique
νJ ∈ ca1

+(SJ ,BJ) with νJ |MJ
= µJ for all J ∈ H . Let J,K ∈ H with K ⊂ J

and f ∈MK . Then,

µKf = µJ(f ◦ prJK) = νJ(f ◦ prJK) for all f ∈MK

and therefore,

νKf = νJ(f ◦ prJK) for all f ∈ L∞(SK ,BK)

as the extension of µK to a probability measure is unique. By Kolmogorov’s
extension theorem, there exists a unique ν ∈ ca1

+(SI ,BI) with ν(f ◦ prJ) = νJf
for all J ∈ H and f ∈ L∞(SJ ,BJ). Hence, we get that ν|M = µ, which implies
that µ : M → R is continuous from above as well. Using Remark 3.17, we thus
obtain that there exists an expectation Ē : L∞(Ω, σ(M)), which extends E and
results in a convex expectation space

(
SI , σ(M), Ē

)
,

It remains to show that BI = σ(M). It is clear that BI ⊃ σ(M). In order to
show the inverse inclusion, let J ∈ H and BJ ∈ BJ . Then, by assumption,
BJ ∈ σ(MJ) and therefore, we obtain that pr−1

J (BJ) ∈ σ(MJ ◦ prJ) ⊂ σ(M). �

In the situation of Theorem 4.4, considering the canonical process (pr{i})i∈I on

the convex expectation space
(
SI ,BI , E

)
, we obtain the following two corollaries

on the existence of stochastic processes under nonlinear expectations.

Corollary 4.5. Let S be a Polish space and S be the Borel σ-algebra on S. For
all J ∈ H let MJ be a Riesz subspace of L∞(SJ ,BJ) with σ(MJ) = BJ and
EJ : MJ → R be a convex pre-expectation which is continuous from above. Then,
the following two statements are equivalent:

(i) The family (EJ)J∈H is consistent,
(ii) There exists a convex expectation space (Ω,F , E) and a stochastic process

(Xi)i∈I with

E(f(XJ)) = EJ(f)

for all J ∈H and f ∈MJ , where XJ := (Xi)i∈J .

Corollary 4.6. Let S be a Polish space and S be the Borel σ-algebra on S.
For all J ∈ H let MJ be a Riesz subspace of L∞(SJ ,BJ) with σ(MJ) = BJ
and EJ : MJ → R be a sublinear pre-expectation which is continuous from above.
Then, the following two statements are equivalent:

(i) The family (EJ)J∈H is consistent,
(ii) There exists a sublinear expectation space (Ω,F , E) and a stochastic pro-

cess (Xi)i∈I with

E(f(XJ)) = EJ(f)

for all J ∈H and f ∈MJ , where XJ := (Xi)i∈J .
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We conclude this section with the following example on discrete-time Markov
chains, which is taken from Denk et al. [16].

Example 4.7. Let S be a finite state space and S := 2S, so that L∞(S,B) = RS.
Let

P : L∞(S,B)→ L∞(S,B) and µ0 : L∞(S,B)→ R

be convex, constant preserving, i.e. P(α) = α and µ0(α) = α for all α ∈ R,
and monotone, i.e. P(f) ≤ P(g) and µ0(f) ≤ µ0(g) for all f, g ∈ L∞(S,B) with
f ≤ g. For every k, l ∈ N0 with k < l, we define

Ek,l( · , f) := P l−k(f) for all f ∈ L∞(S,B).

Let H := {J ⊂ N0 : #J ∈ N} be the set of all finite, nonempty subsets of N0.
For k ∈ N0 we define

E{k}(f) := µ0(Pk(f)) for all f ∈ L∞(S,B),

where P0 is the identity. For n ∈ N, k1, . . . , kn+1 ∈ N0 with k1 < . . . < kn+1 and
f ∈ L∞(Sn+1,Bn+1) we now define recursively

E{k1,...,kn+1}(f) := E{k1,...,kn}(g)

where g(x1, . . . , xn) := Ekn,kn+1(xn, f(x1, . . . , xn, · )) for all x1, . . . , xn ∈ S. Then,
EJ : L∞(SJ ,BJ) → R is a convex expectation and, therefore, continuous from
above since SJ is finite for all J ∈ H . By Remark 4.2, the family (EJ)J∈H

is consistent. Hence, Theorem 4.4 or, more precisely, Corollary 4.5 implies that
there exists a convex expectation space (Ω,F , E) and a stochastic process (Xi)i∈N0

with

E(f(XJ)) = EJ(f)

for all J ∈ H and f ∈ MJ , where XJ := (Xi)i∈J . The process (Xi)i∈N0 can be
viewed as a convex version of a discrete-time Markov chain. If P is sublinear, the
set {

µ ∈ RS×S : µf ≤ P(f) for all f ∈ RS
}

induces a Markov-set chain, see Hartfiel [22], and the operator P coincides with
the concept of a conditional coherent upper prevision or upper transition operator,
cf. de Cooman et al. [12] and Škulj [34].

5. Continuous-time Markov chains under nonlinear expectation

In this section, we consider time-homogeneous continuous-time Markov chains
with a countable state space S (endowed with the discrete topology 2S). We
identify (measurable) functions S → R via sequences of the form (ui)i∈S ∈ RS,
and use the notation `∞ := L∞

(
S, 2S

)
. We call a (possibly nonlinear) map

P : `∞ → `∞ a kernel if

(i) Pu ≤ Pv for all u, v ∈ `∞,
(ii) Pα = α for all α ∈ R.
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Here and throughout, we use the notation Pu = P(u) for a kernel P and u ∈ `∞.
In this section, we consider an arbitrary familiy of linear Markov chains and con-
struct a sublinear Markov chain, which can be interpreted as an imprecise version
of the familiy of Markov chains. The proofs and statements in this section rely
on an approach proposed by Nisio [26], which has been applied in various settings
in order to construct Markov processes under model uncertainty, see e.g. Denk et
al. [17], Nendel [24], and Nendel and Röckner [25].

Throughout, we consider the following setup: Let Λ be a nonempty index set.
For each λ ∈ Λ let Sλ =

(
Sλ(t)

)
t≥0

be the family of transition probabilites of a

time-homogeneous Markov chain. i.e.

(i) Sλ(t)ij ≥ 0 for all t ≥ 0 and i, j ∈ S,
(ii)

∑
j∈S Sλ(t)ij = 1 for all t ≥ 0 and i ∈ S,

(iii) Sλ(0) = I, where I is the identity,
(iv) Sλ(s)Sλ(t) = Sλ(s+ t) for all s, t ≥ 0.

For the family (Sλ)λ∈Λ, we construct a semigroup of sublinear kernels, i.e. a
family

(
S(t)

)
t≥0

of sublinear kernels `∞ → `∞ with

(i) S(0) = I,
(ii) S(s)S(t)u = S(s+ t)u for all s, t ≥ 0 and u ∈ `∞.

To this end, we consider the set of finite partitions

P :=
{
π ⊂ [0,∞) : 0 ∈ π, |π| <∞

}
.

For a partition π ∈ P , π = {t0, t1, . . . , tm} with 0 = t0 < t1 < . . . < tm we set

|π|∞ := max
j=1,...,m

(tj − tj−1).

Moreover, we define |{0}|∞ := 0. The set of partitions with end-point t will be
denoted by Pt, i.e. Pt := {π ∈ P : maxπ = t}. Note that

P =
⋃
t≥0

Pt.

For all h ≥ 0 and u ∈ `∞ we define

Ehu := sup
λ∈Λ

Sλ(h)u,

where the supremum is taken componentwise. Then, Eh is well-defined since

‖Sλ(h)u‖∞ ≤ ‖u‖∞
for all λ ∈ Λ. Moreover, Eh is a sublinear kernel as it is monotone and Ehα = α
for all α ∈ R. For a partition π = {t0, t1, . . . , tm} ∈ P with m ∈ N and 0 = t0 <
t1 < . . . < tm, we set

Eπ := Et1−t0 . . . Etm−tm−1 .

Moreover, we set E{0} := E0. Then, Eπ is a sublinear kernel for all π ∈ P as it is
a concatenation of sublinar kernels. We define

S (t)u := sup
π∈Pt

Eπu
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for all u ∈ `∞ and t ≥ 0, and call
(
S (t)

)
t≥0

the Nisio semigroup or (upper)

semigroup envelope of (Sλ)λ∈Λ. Note that S (t) : `∞ → `∞ is well-defined and a
sublinear kernel for all t ≥ 0 since Eπ is a sublinear kernel for all π ∈ P .

For h1, h2 ≥ 0,

Eh1+h2u = sup
q∈P

Sλ(h1 + h2)u = sup
q∈P

Sλ(h1)Sλ(h2)u

≤ sup
q∈P

Sλ(h1)Eh2u = Eh1Eh2u,

which implies the inequality

Eπ1u ≤ Eπ2u (5.1)

for π1, π2 ∈ P with π1 ⊂ π2. The following lemma shows that S (t) can be
obtained by a pointwise monotone approximation with finite partitions letting
the mesh size tend to zero.

Lemma 5.1. Let u ∈ `∞ and t ≥ 0. Then, there exists a sequence (πn)n∈N ⊂ Pt
with Eπnu ≤ Eπn+1u for all n ∈ N and

Eπnu→ S (t)u as n→∞.

Proof. For t = 0 the statement is trivial. We therefore assume that t > 0. Then,
for every i ∈ S, there exists a sequence (πin)n∈N ⊂ Pt with πin ⊂ πin+1 for all n ∈ N
and (

Eπi
n
u
)
(i)→

(
S (t)u

)
(i) as n→∞.

Since S is countable, there exists a sequence (Sn)n∈N with Sn ⊂ Sn+1 ⊂ S for all
n ∈ N and S =

⋃
n∈N Sn. Let

πn :=
⋃
i∈Sn

πin

for all n ∈ N. Then, πin ⊂ πn ⊂ πn+1 for all n ∈ N and i ∈ Sn, and therefore,

Eπi
n
≤ Eπn ≤ Eπn+1

for all n ∈ N and i ∈ Sn, which implies that S (t)u = supn∈N Eπnu. �

Proposition 5.2. S (s+ t) = S (s)S (t) for all s, t ≥ 0.

Proof. Let u ∈ `∞. If s = 0 or t = 0 the statement is trivial. Therefore, let
s, t > 0, π0 ∈ Ps+t and π := π0 ∪ {s}. Then, π ∈ Ps+t with π0 ⊂ π. Hence, by
(5.1),

Eπ0u ≤ Eπu.
Let m ∈ N and 0 = t0 < t1 < . . . tm = s + t with π = {t0, . . . , tm} and k ∈
{1, . . . ,m} with tk = s. Then, π1 := {t0, . . . , tk} ∈ Ps and π2 := {tk − s, . . . , tn −
s} ∈ Pt with

Eπ1 = Et1−t0 · · · Eti−ti−1

and

Eπ2 = Eti+1−ti · · · Etm−tm−1 .
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Therefore,

Eπ0u ≤ Eπu = Et1−t0 · · · Etm−tm−1u =
(
Et1−t0 · · · Eti−ti−1

)(
Eti+1−ti · · · Etm−tm−1u

)
= Eπ1Eπ2u ≤ Eπ1S (t)u ≤ S (s)S (t)u.

Taking the supremum over all π0 ∈ Ps+t, we obtain that S (s+t)u ≤ S (s)S (t)u.

Now, let (πn)n∈N ⊂ Pt with Eπnu ≤ Eπn+1u for all n ∈ N and Eπnu→ S (t)u as
n→∞ (see Lemma 5.1), and fix π0 ∈ Ps. Then, for all n ∈ N,

π′n := π0 ∪ {s+ τ : τ ∈ πn} ∈ Ps+t
with Eπ′n = Eπ0Eπn . As Eπ0 is continuous from below, we obtain that

Eπ0
(
S (t)u

)
= lim

n→∞
Eπ0Eπnu = lim

n→∞
Eπ′nu ≤ S (s+ t)u.

Taking the supremum over all π0 ∈ Ps, we see that S (s)S (t)u ≤ S (s+ t)u. �

Remark 5.3. The semigroup S is the smallest semigroup that dominates the
family (Sλ)λ∈Λ. In fact, let T be an upper bound of the family (Sλ)λ∈Λ, i.e.

Sλ(t)u ≤ T (t)u

for all λ ∈ Λ, u ∈ `∞ and t ≥ 0. Then,

Sλ(h)u ≤ Ehu ≤ T (h)u

for all λ ∈ Λ, u ∈ `∞ and h ≥ 0. Since Sλ and T are semigroups, it follows that

Sλ(t)u ≤ Eπu ≤ T (t)u

for all λ ∈ Λ, u ∈ `∞, t ≥ 0 and π ∈ Pt. Taking the supremum over all π ∈ Pt,
we obtain that

Sλ(t)u ≤ S (t)u ≤ T (t)u

for all λ ∈ Λ, u ∈ `∞ and t ≥ 0.

The Nisio semigroup
(
S (t)

)
t≥0

has been used by various authors in the field of

imprecise probability in order to describe imprecise Markov chains via conditional
upper previsions, cf. Škulj [35] and Krak et al. [23]. In fact, the operator S (t)
coincides with the conditional upper prevision over a time interval of the length
t ≥ 0. However, one can actually go one step further and extend the family of
transition operators to a Markov chain on a canonical path space. In [24], this
has been done in the finite-state-case using the Theorem 4.4, which is due to
Denk et al. [16]. However, in the case of infinitely many states, the continuity
from above is not trivial and leads to restrictions for the family of Markov chains
indexed by the set Λ. Nevertheless, using an explicit dual representation of the
Nisio semigroup one can extend the family of transition operators to a Markov
chain on the canonical path space without requiring the continuity from above.

In the following remark, we start by deriving a dual representation of the Nisio
semigroup by viewing it as the cost functional of an optimal control problem,
where, roughly speaking, “nature” tries to control the system into the worst
possible scenario (using contols within the set Λ).
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Remark 5.4. For λ = (λ1, . . . λd) ∈ Λd and t ≥ 0, let Sλ(t) : `∞ → `∞ be given by(
Sλ(t)u

)
i

:=
(
Sλi(t)u

)
i

(5.2)

for all u0 ∈ `∞ and i ∈ S. That is, Sλ(t) is the matrix whose i-th row is the
i-th row of Sλi(t) for all i ∈ S. Here, the interpretation is that, in every state
i ∈ S, “nature” is allowed to choose a different Markov chain, which is indexed
by λ ∈ Λ. We now add a dynamic component, and define

Qt :=

{
(λk, hk)k=1,...,m ∈

(
Λd × [0, t]

)m
: m ∈ N,

m∑
k=1

hk = t

}
.

Roughly speaking, the set Qt corresponds to the set of all (space-time discrete)
admissible controls for the control set Λ. For θ = (λk, hk)k=1,...,m ∈ Qt with m ∈ N
and u ∈ `∞, we define

Sθu := Sλ1(h1) · · ·Sλm(hm)u,

where Sλk(hk) is defined as in (5.2) for k = 1, . . . ,m. Then, for all u ∈ `∞,

S (t)u = sup
π∈Pt

Eπu = sup
θ∈Qt

Sθu. (5.3)

In fact, by definition of Qt, it follows that Sλ(t)u0 ≤ supθ∈Qt
Sθu0 ≤ S (t)u0

for all λ ∈ Λ, t ≥ 0 and u0 ∈ Rd. On the other hand, one readily verifies
that T (t)u0 := supθ∈Qt

Sθu0, for t ≥ 0 and u0 ∈ Rd, gives rise to a semigroup(
T (t)

)
t≥0

. Since
(
S (t)

)
t≥0

is the smallest semigroup that dominates the family

(Sλ)λ∈Λ of (P , f), it follows that T (t) = S (t) for all t ≥ 0.

The explicit dual representation from the previous remark can be used as in
[17, Proposition 5.12] in order to obtain a sublinear Markov chain in the following
sense:

Definition 5.5. A (time-homogeneous) sublinear Markov chain is a quadruple(
Ω,F , E , (Xt)t≥0

)
, where

(i) (Ω,F) is a measurable space.
(ii) Xt : Ω→ N is F -measurable for all t ≥ 0.

(iiii) E = (Ei)i∈S, where (Ω,F , Ei) is a sublinear expectation space for all i ∈ S
with Ei

(
u(X0)

)
= u(i) for all u ∈ `∞.

(iv) For all s, t ≥ 0, n ∈ N, 0 ≤ t1 < . . . < tn ≤ s and v ∈ L∞
(
Sn+1, 2S

n+1)
,

E
(
v0(Xt1 , . . . , Xtn , Xs+t)

)
= E

[(
S(t)v0(Xt1 , . . . , Xtn , · )

)
(Xs)

]
with

(
S(t)u

)
(i) := Ei

(
u(Xt)

)
for all u ∈ `∞ and i ∈ S. The family of

kernels
(
S(t)

)
t≥0

is called the transition semigroup of the Markov chain(
Ω,F , E , (Xt)t≥0

)
.

Remark 5.6. Assume that for all λ ∈ Λ, there exists an infinite matrix qλ =
(qλij)i,j∈S ∈ RS×S such that, for all u ∈ `∞∥∥∥∥Sλ(h)u− u

h
− qλu

∥∥∥∥
∞
→ 0 as h↘ 0.

Then, for each λ ∈ Λ, qλ satisfies the following:
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(i) qii ≤ 0 for all i ∈ S,
(ii) qij ≥ 0 for all i, j ∈ S with i 6= j,
(iii)

∑
j∈S qij = 0 for all i ∈ S.

Then, the above conditions imply that∑
j∈S

|qij| = −qii +
∑

j∈N\{i}

qij = −2qii = 2|qii| <∞. (5.4)

In particular, qλ : `∞ → `∞ is a bounded linear operator if and only if ‖qλ‖ :=
2 supi∈S |qλii| <∞. If

sup
λ∈Λ

sup
i∈S
|qλii| =

1

2
sup
λ∈Λ
‖qλ‖ <∞, (5.5)

then, by [25, Example 6.7], it follows that∥∥∥∥S (h)u− u
h

−Qu
∥∥∥∥
∞
→ 0 as h↘ 0

with Qu := supλ∈Λ q
λu for all u ∈ `∞. Moreover, the function v : [0,∞) →

`∞, t 7→ S (t)u is the unique classical solution to the differential equation

v′(t) = Qv(t), for all t ≥ 0, v(0) = u.

Therefore, S (t)u can be computed by solving the above differential equation. In
the finite-state case, this approach has been used by Škulj [35] and by Nendel
[24] for Markov chains under convex expectations in order to define and compute
the transition operator as a solution to an ordinary differential equation. Krak et
al. [23] use the explicit Euler method in order to discretize the time interval, and
come up with the transition operator as the limit of the Euler approximation.
Both approaches result in the same transition operator as shown in [23] and
[24]. Examples for a family (qλ)λ∈Λ that satisfies (5.5) are given by qλ = λq for
λ ∈ Λ, Λ ⊂ [0,∞) compact, and a fixed bounded operator q satisfying the above
conditions (i) - (iii). The operator q could, for example, be the generator of a
Poisson process (with intensity 1). In this case, the Nisio semigroup

(
S (t)

)
t≥0

can be viewed as the family of transition operators for an imprecise Poisson
process with imprecision in the intensity of the process.
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