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NUMERICAL APPROXIMATION OF THE VALUE OF A
STOCHASTIC DIFFERENTIAL GAME WITH ASYMMETRIC
INFORMATION

LUBOMIR BANAS, GIORGIO FERRARI, AND TSIRY A. RANDRIANASOLO

ABSTRACT. We consider a convexity constrained Hamilton-Jacobi-Bellman-type ob-
stacle problem for the value function of a zero-sum differential game with asymmetric
information. We propose a convexity-preserving probabilistic numerical scheme for
the approximation of the value function which is discrete w.r.t. the time and convex-
ity variables, and show that the scheme converges to the unique viscosity solution
of the considered problem. Furthermore, we generalize the semi-discrete scheme to
obtain an implementable fully discrete numerical approximation of the value function
and present numerical experiments to demonstrate the properties of the proposed
numerical scheme.

1. INTRODUCTION

In this paper we consider the Hamilton-Jacobi-Bellman-type obstacle problem
1 o*v
min{é’tv+ §Tr(0<7T(t, 2)D2V)+ H(t, x, DV, p), Amin < ) } =0,

b, 6_172
V(T, z,p)={p, 9),

where V=V (t,z,p), (t,z,p)e[0,T]xR%x A(I), A(I) denotes the set of probability
vectors p= (p1,...,pr)€(0,1)! that satisfy Zlepiz 1 and the Hamiltonian H will be

specified below. The convexity of the solution V' with respect to the variable p is
-\QV
£

(1.1)

enforced via the obstacle term A\, (p, >, which is the minimal eigenvalue of the

Hessian matrix %27‘2/ on the tangent cone to A(I). More precisely, for a symmetric I x [

matrix A we denote

, (Az, z)

Amin(p, A):=  min ——=,
min (P> 4) lamenor 2]

where Taryp) = Us=0(A() —p)/6 is the tangent cone to A(I) at pe A(I), cf. [4].

(L. Banas) FACULTY OF MATHEMATICS, BIELEFELD UNIVERSITY, UNIVERSITATSSTRASSE 25, D-
33615 BIELEFELD

(G.Ferrari) CENTER FOR MATHEMATICAL EcCONOMICS, BIELEFELD UNIVERSITY, UNIVER-
SITATSSTRASSE 25, D-33615 BIELEFELD

(T.A.Randrianasolo) FACULTY OF MATHEMATICS, BIELEFELD UNIVERSITY, UNIVER-
SITATSSTRASSE 25, D-33615 BIELEFELD

Date: December 30, 2019.

1991 Mathematics Subject Classification. 65K15,65C20,49N70,491.25,35F21,52A27,52B55.

Key words and phrases. zero-sum stochastic differential games; asymmetric information; proba-
bilistic numerical approximation; discrete convex envelope; convexity constrained Hamilton-Jacobi-
Bellmann equation; viscosity solution.

This research was supported by the German Research Foundation as part of the Collaborative
Research Center SFB 1283.

1



2 . BANAS, G. FERRARI, AND T.A. RANDRIANASOLO

Problem (1.1) describes the value of a class of zero-sum stochastic differential games
with asymmetric information, cf. [15]. Since the seminal work by Aumann and Maschler
(see |1]) in the framework of repeated games, the literature on games with asymmet-
ric information experienced an increasing interest ([12, 19, 22|, among many others),
recently also in continuous-time differential settings (see, e.g., [7, 8, 9, 13, 16, 24, 25]).

As in [15], in our game both players can adjust the dynamics of a non degenerate
Ito-diffusion by controlling the drift via regular controls taking values in some compact
subset of a finite dimensional space. However, one player has more information than
the other in the following sense (cf. [1] and [7]). Before the game starts, the payoffs
of the game are chosen randomly with some probability p from a finite collection of
size I, and the information on which payoffs have been realized is transmitted only to
one player. Since we assume that both players can observe the actions of the other
one, the uninformed player infers which game is actually played through the moves of
the informed one. It turns out that it is optimal for the informed player to release
information to the uninformed one in a sophisticated way aiming at manipulating the
beliefs of the latter player (see [7]).

The numerical analysis of our paper hinges on the theoretical results of [7]. There it
is shown (in a setting actually more general than ours) that the previously described
game has a value V', whenever the so-called Isaacs conditions are satisfied and addi-
tional technical requirements on the problem’s data area fulfilled. The value function
V' depends on time t, on the state variable x, and on a probability vector pe A(I);
this latter variable describes the initial value of the beliefs of the uninformed player
about the game she is playing. Moreover, it is shown in [4], that V' can be character-
ized as the unique continuous viscosity solution (in the dual sense) to a second-order
partial differential equation complemented by a convexity constraint with respect the
parameter p.

There exist only few results on numerical approximation of differential games with
incomplete information. Numerical approximation of (deterministic) differential games
with incomplete information was first studied in [5] and generalized to games with
incomplete information on both sides in [23]. As far as we are aware the only work on
numerical approximation of stochastic differential games with incomplete information
is [15]. We note that all three aforementioned works only consider semi-discretization in
the time-variable and the remaining variables are kept continuous, hence, the schemes
are not implementable.

In this paper we generalize the probabilistic numerical approximation of [15] to
include the discretization of the convex envelope, i.e., we propose a structure preserving
probabilistic numerical approximation that is discrete in time and in the variable p
and preserves the convexity of the solution. We show that the proposed numerical
approximation converges to the unique viscosity solution of (1.1). The discretization
in the probability variable p is constructed by approximating the lower convex envelope
of the semi-discrete solution in p by its finite-dimensional counterpart. The discrete
lower convex envelope is computed over a finite set of values which coincide with
nodes of a simplicial partition of A(7). The resulting approximation is monotone
and inherits the Lipschitz continuity properties of the solution. To further reduce
the complexity of the numerical approximation we employ random walk instead of the
usual Wiener increments to simulate the associated Ito-diffusion process. Furthermore,
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we propose an implementable fully discrete numerical scheme by combining the semi-
discrete probabilistic approximation in time and p with a spatial discretization that
employs linear interpolation in the state variable x over a simplicial partition.

The paper is organized as follows. In Section 2 we collect basic definitions and
assumptions on the considered problem. In Section 3 we introduce a probabilistic nu-
merical scheme for the approximation of (1.1) which is discrete in the time variable ¢
and the convexity variable p and summarize the regularity properties of the numeri-
cal approximation in Section 4. Convergence of the numerical approximation to the
viscositiy solution is shown in Section 5. Finally, an implementable fully discrete nu-
merical approximation of the problem is introduced in Section 6 along with numerical
studies which demonstrate the practicability of the proposed approach.

2. ASSUMPTIONS AND PRELIMINARIES

Throughout the paper, the scalar product of two vectors z = (xy,...,24) and y=
(y1,-.-,yq) of R? is denoted by {(z, y):= Z?leiyi and the ('-norm is denoted by |z|:=

3% |zi]; furthermore, we use || and |- |, to respectively denote the (*-norm and
the L(R%)-norm.

2.1. Description of the game. Since the aim of this paper is to provide a numeri-
cal approximation of the solution to (1.1), we only provide here a brief and informal
description of the stochastic differential game related to the problem (1.1) and simply
refer to [15] for detailed discussion of the game and further references. We consider a
two-player zero-sum differential game where two players control the d-dimensional Tt
process defined for te [0, T'], re R? as

dXL5"Y =b(s, X0™"Y ug, vs)ds+o(s, X0 ") d By selt, T],

(2.1) Kb _ o

Here B = {BS selt, T]} is a d-dimensional Brownian motion on a complete probability
space, b and o are suitable Borel-Measurable functions and the controls (u, v)e U xV
and U, V are compact subsets of some finite dimensional spaces.

The game is characterized by I configurations with respective running costs (&)z‘e{l,..., n:
[0, T]xR*xUxV—R and terminal payoffs (¢;)icq1,..r; :R* >R and is played as fol-
lows. Before the game starts, one configuration i€ {1,...,1} is chosen with probability
p; and the choice of ¢ is communicated to Player 1. Player 2 only knows the probabil-
ity distribution pe A(1) of the respective configurations. Once the game has started,
both players adjust their control to minimize, for the Player 1, and to maximize, for
the Player 2, the expected payoff, ¢f. [41, Section 6.3]. We assume that both players
observe their opponent’s control.

2.2. General assumptions. The drift term b, the diffusion term o:=(0y,), ,, the

running cost (¢;) _1p» the terminal payoff g:= (gi)ie{le}, and the Hamiltonian H,

e{l,..
cf. (1.1), satisfy th{e following standing assumptions:

(A1) b:[0, T]x R*x U x V—R? is bounded and continuous in all its variables and
Lipschitz continuous with respect to (¢, ) uniformly in (u, v)e U x V.

(Ay) For 1<k,l<d the function oy, :[0, T] x R — R is bounded and Lipschitz con-
tinuous with respect to (¢, ). For any (¢, z)€[0, T] x R? the matrix (o)1,
where the superscript 7" means transpose, is non-singular, bounded, and Lips-
chitz continuous with respect to (¢, z).
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.....

.....

4) 1saacs condition: for all (¢, z, z, p) € |tg, 1| x R® x R x
Ay) I diti for all T] xR x R4 x A(I

I
H(ta €T, z, p) :=inf Sup{<b(t> T, u, U)? Z>+sz€z<ta T, U, U)}

eU
uet eV im1

1
=sup 1n£{<b(t> T, u, U)7 Z>+2p261(t7 T, U, U)}

ue
veV im1

(As) In addition, there exists a constant C'>0 such that for all ¢,t'€[0,T], z,2"€
R?, 2,2'eR?, p,p'e A(I), the following hold

(2.2) [H(t, 2, 2, p)| <C(1+]2]),
[H(t, @, z,p) = H({t', o', 2", )| < C(L+ |2]) (Jo = 2| + [t —1'])

2.3
(23) +Clz—2'|+Clp—p'|.

2.3. Viscosity solution of (1.1). Under the assumptions in the previous section
Cardaliaguet [4, 7] established that there exists a unique uniformly bounded viscos-
ity solution of problem (1.1), which is convex and uniformly Lipschitz continuous in
p. We recall the notion of viscosity solution as well as the corresponding notions of
subsolutions and supersolutions to (1.1) below, cf. [4], [6].

Definition 2.1. We say that V is a subsolution of (1.1) if V=V (t,z,p) is upper
semicontinuous and if, for any smooth test function ¢:(0,T) xR x A(I)—>R such
that V — ¢ has a local mazimum on [0, T] x R x A(I) at some point (t,Z,p)€[0, T x
R x A(I), one has

2
(2.4) min {6’t¢+ %Tr(aaT(t, x)Di(b) + H(t, 2, Dy, D), Amin (p, 27?) } >0,

at (t,x,p)=(t, T, p).
We say that V' is a supersolution of (1.1) if V=V (t, x,p) is lower semicontinuous
and if, for any smooth test function ¢:(0,T) xR x A(I) >R such that V —¢ has a

local minimum on [0, T] x R x A(I) at some point (t, T, p)€[0, T| x RYx A(I), one has

1 (')2
25)  min{ e+ 3 Troo"(.2)D20) + Ht, o, Du ) (1 5 ) | <0
at (t,x,p)=(t, T, D).
We say that V' is a viscosity solution of (1.1) if V is a sub- and a supersolution of
(1.1).

Remark 2.2. For a smooth test function ¢:(0,T) xR x A(I) >R such that V —¢
has a local mazimum on [0, T] x R¢x A(I) at some point (t, 7, p)€[0, T] x R x A(I),
we have that (2.4) is equivalent to

2
(26) 40+ S Te(oo" (1, 0)D20) + H(t, . Dagp) >0 and Amin<p,i—p‘f>>o;
C
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and for the smooth test function ¢:(0,T)xR4x A(I)—R such that V —¢ has a lo-
cal minimum on [0, T]| x R x A(I) at some point (t,7,p)e [0, T] xR x A(I), (2.5) is
equivalent to

2
(2.7) 6t¢+%Tf(wT<t,x>D2¢)+H(w,Dw¢»P)<O or A‘”‘““( (zd)) ;
op?

3. NUMERICAL APPROXIMATION

To simplify the subsequent numerical approximation, we perform a change of measure
via the Girsanov transform in the spirit of, for instance, [14, Lemma 3.8] or [17], and
instead of the controlled process (2.1) we consider the simpler process

dXb* = o(s, Xb®)dB, selt,T],

(3.1) oo

for te[0, 7] and z e R%. Notice that the dynamics in (3.1) is independent of the players’
controls.
For a fixed NeN and a step size 7:=T/N we introduce an equidistant partition

IL,: —{t }n o> tn=n7 of the time interval [0,7]. We define the discrete process
(X'n,x)n .

” ~ as the weak Euler approximation of (3.1), that is

.....

n—1
(3.2) Xr=at Y oty X7 TG/,
j=’
where &,4/7=(€L,...,£9)\/T, n=1,...,N is a suitable approximation of the R%valued

Wiener increment [W(tn) —W(tn_1)]~N(0,7). Here, we take &, to be a Ri-valued
binomial random walk, i.e. &!,... &% are i.i.d. random variables with the law P(&F =
+1)=1/2, for every k=1,...,d; the analysis below can be easily modified to cover other
choices such as, e.g., a trinomial random walk or the discrete Wiener increments. In
the following we abbreviate o, (z):=0(t,, z) and 0,7 (z):= (67 (t,, x)) . The approx-
imation obtained after one step of the Euler scheme (3.2) will be denoted as

(3.3) Xi=Xp =r+on(2)6/T  zeR%

Let {M"}}~o be a family of regular partitions of A(I) into open (I —1)-simplices
K (i.e., line segments, triangles, tetrahedra for I =2,3,4, respectively) with mesh-size
h =max e g {diam(K)} such that A(I) = Ugepn K. The set of vertices of all K e M"
is denoted by N :={p1,...,pa}.

The approximation of the value function V' (t,, z, p,) is denoted by V™ (z) for t, €
I, 7eR% p,,e N*. The discrete numerical solution V™(z), reR% n=0,....N—1,
m=1,...,M is obtained by the following algorithm.

Algorithm 3.1. For e R? set Vi (x) ={pm, 9(z)) for pm e N, m=1,....M, set Vy(z) =
{Va(z),...,VY(x)} and proceed for n=N—1,...,0 as follows:

(1) Forward step: for zeR? compute:

(3.4) Xi o1 =24 0n(2)En/T;
2) Backward step: for xeR* and m=1,...,M set
(2)
7m 1 m T —
(3.5) Zy () = —E[VIL (X))o, (2)6n/T],

(3.6) Yo (2) =E[Vi (X0 )+ 7H (t, 2, 237 (2), pin) 5

n
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(3) Convezification: for x€R? compute the discrete lower convex envelope {an (x),...
of {V,\(z),....Y," ()} as
(3.7) V' (x) = Vex, [ Y, (z),....Y,M ()] (pm) pmeN" m=1,.... M.

We note that for pe A(I) the lower convex envelope in (3.7) is the solution of the
minimization problem, cf. [10],

(3.8)
- - I I I
Vex, [V, (z),....Y,M(z)](p mm{z ) Ag; Zx\kzl, Ax =0, ZAkPkZP}‘

=1 k=1 k=1
We will discuss efficient algorithms for the computation of the discrete lower convex
envelope (3.8) in Section 6.1.

It is well known that the piecewise linear interpolation does not preserve the convex-

ity of the interpolated data. Nevertheless, cf. [10, Corollary 2.3.], there exists a data de-
pendent (regular) simplicial partition M  of A(I) with nodes N :={m} ... g R
N such that the piecewise linear interpolant of the data values at the nodes ./\/'T’}x over

the partition M}, (for a precise definition see (3.9) below) agrees with the discrete

data values {(pm,Vm( )) }M E Pm €N of the discrete lower convex envelope (3.7) for
fixed 0<n< N, zeR% We note that the partition /\/l,w does not necessarily coincide
with the original mesh M".

We consider the set of piecewise linear Lagrange basis functions {z/zn e i=1 M.}
associated with the set of nodes N of the partition M” . We recall the following
properties of the the Lagrange basis functions which will be frequently used throughout

the paper: a) ¢!, (7} ) =0, where d;, is the Kronecker delta and b) S La(0)=1

n,x

for any pe A(I). We note that a) implies that at any point pe A(I) there are at most [

basis functions with non-zero value at this point, hence the sum in b) reduces to ZiI:l‘
We define the convex piecewise linear interpolant V" (z,-), x € R¢ of the discrete lower

convex envelope {V,}(z),...,V,M(z)} over the convexity preserving partition M”  as

Mp,a

(3.9) Z VT (@) (),

i : o _ h
where m(7), ) €N is the index of 7/, , in N, i.e. 7} = pyri ) for some pp,qi ) yEN™.

We note that by construction V(z, p,,)=V"(z) for all pme/\/h For the analysis
below we also consider the (possibly non-convex) interpolant over the fixed partition

Mh

(3.10) Vi(z, p): Z V()™ (p

where {0, m=1,...,M} is the linear Lagrange basis associated with the set of nodes
N™". By a slight abuse of notation in (3.8), we observe that

(3.11) Vi (z, p) = Vex, [V!'(z, )] (p).

Furthermore, we define the time interpolant V(¢, x, p) of (3.9) which is continuous
n [0,7] as

(3.12) VI, x,p):anh(x,p)<L> + VI (2, p)( >, for te [ty thi1]-

T T

Y

VM

n

()}
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4. REGULARITY PROPERTIES OF THE NUMERICAL APPROXIMATION

In this section we study regularity properties of the numerical approximation ob-
tained by Algorithm 3.1. We establish uniform boundedness, almost Hélder continuity
in time and Lipschitz continuity in p, and z, respectively, of the numerical solution.
Furthermore, we show that the numerical approximation satisfies a monotonicity prop-
erty.

We recall the following properties of the discrete lower convex envelope which are a
simple consequence of its definition (3.8).

Lemma 4.1. We consider the set N := {pl, . ,pM} < A(I) with associated scalar values
U(pm), V(pm), such that U(py) <V (pm), m=1,...,M. We denote V={V(p1),...,V(pu)} €
RM and U = {U(pl),...,U(pM)}eRM. The discrete lower convex envelope Vex, salis-

fies the following properties for pe A(I):

i) Monotonicity: Vex,|[U](p) <Vex,[V](p),
ii) Constant preservation: Vex,|V +0](p) = Vex,[V](p) +6 for any 0eR.

4.1. Lipschitz continuity in p.

Lemma 4.2. There exists a constant C' >0 (which only depends on Assumptions (Ay)—
(Ay)) such that for n=0,...,N and all zeR? the numerical solution is Lipschitz con-
tinuous in the variable p, i.e.,

(4.1) Vi x,p) =V (z,q)|<Clp—q|  Vp,qe A(D).

Proof. For n= N, by linearity the function V(x, p) :={p, g(x)) is Lipschitz continuous
in p for any z€R?¢ with a Lipschitz constant Ly that only depends on g.

We proceed by induction and assume that Vnh+1(:1:, p) is Lipschitz continuous in p
with a Lipschitz constant L, 1 for some n< N —2. We consider p, ¢ € A(I) and as-
sume without loss of generality that V"(x, ¢) — V" (z, p) =0, otherwise p and ¢ can be
commuted.

I

Let pe K, where K, =[m} .(p),..., 7} ,(p)] < M" _ is the simplex given by the nodes

e line

Th (D), 7)o (p)ENT,. Hence, pzZiI:lW;,x(p) \ o), where ¥ (p), i=1,....I are
the linear Lagrange basis functions on [7} (p),..., 7. (p)].

We note that 31, Vi .(p)=Tland ¢, (p)=0fori=1,...,I. Hence, by [18, Lemma8.2.],

there exist vectors {w? wl Ve A(I) (the vectors depend on p, ¢, M” and are not
n,x n,x

n,xr

necessarily in N*) such that q=2f21w27x(q) ¢ (p) and

I
(4.2) [p—dl = Im(p) =i o5 ().
i=1

By the convexity of V", since ¢=3"_ wi ¢ (p) it directly follows that
y y n q i=1"n,x

n,x

I
V(e q) < ) Vit (e, wp ), . (p).
i=1
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Using the above inequality, (4.2), the representation V,"(p)|x, = S Ve, T 2V (p)
and Vex,|f] < f we get on recalling (3.6) that

I
0< V) (z, q) =V (z,p <Z V(w7 ). (P)

Z( VJ‘H 1y W )]+7‘H(tn,x Zh(xw ),wflvx)
(43) =1

B[V (X, mh )| = TH (b, 20, ), ) )0 (),

where we used that V'(z, 7}, ,) = Vexp [V, (2)](7}, ), i=1,..., 1.

By the Lipschitz continuity of V", ,, it follows from (4.3) using (4.2) and [15, Lemma 3.6]
that

I
(44) |Vnh(x7 Q) - Vnh(xﬂ p)‘ < Ln+12|ﬂ—;,x _wfm,m|¢;,m(p) = Ln+1|p_ q‘?
i=1

where L, =L, 1(1+C7)+CT.
Recursively, we get that L, =Ly +Ct, —i—C’TZ2 ni1Lln, n=1,...,N—1 and by the
discrete Gronwall lemma it follows L, <L < (LN+C'T)exp(CT). Hence V" is uni-

formly Lipschitz continuous in p with a Lispchitz constant Ly which only depends on
the Assumptions (A;)—(As). O

4.2. Lipschitz continuity in x. The next lemma can be show analogically to [15,
Lemma 3.3].

Lemma 4.3. Let ¢:R% - R be a uniformly Lipschitz continuous function with a Lisp-
schitz constant L. Then, there exists a constant C' >0, depending only on the data of
Assumptions (A1)—(As), such that the following inequality holds for n=0,....N —1

E[6(X2 )] +7H (1, 2, ZE[6(X2, )0, (@607 9)
CE[0(%7, )]~ H (1, SE[O(X)037 ()60 ) | <o)

where Cr.:=L(1+CT1)+CT.

Lemma 4.4 (Lipschitz continuity in x). For n=0,...,N the interpolant V" is
(i) Lipschitz continuous in x:

\Vi(z, p) =V p)|<Clz—2a'| forall x,2"eR? peA(l),
(i) uniformly bounded:
Vi, p)|<C  for all zeR? peA(l),
where C'>0 is a constant which depends only on Assumptions (Ay)—(As).

From the subsequent proof it follows that the non-convex interpolant Vn" defined in
(3.10) enjoys the same boundedness and Lipschitz continuity properties as V.
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Proof. We fix pe A(I) and consider z,2/ € R?. For n=N we have V}*(z, p) = V}(z, p) =
{p, g(x)) and (7), (i7) hold since
Vi (2, p) =V (@', p)| = [(p, g(a) = g(2"))| < L]z —2],
where Ly and Cy are positive constant which depend only on g.
We proceed by induction. We assume that V" (x, p), % " (x, p) are Lipschitz con-
tinuous in = with a Lipschitz constant L,,; and bounded by C).;. We show that

Vi(x, p), 177{1(95, p) are Lipschitz continuous with a Lipschitz constant L,, and bounded
by a constant C,,. On recalling (3.7), (3.11) we may write

(4.5)  V;l(2,p) = Vexy [V ()] (p) = Vex, |:E[Vn+1(X7xL+17 )| =7H (tn, x, Z)(x.-), -)] (),

where Z(x, p):= LE[V!

n+1

it holds by definition

(X2, 1.p)o, " ()&/T]. Moreover, we recall that for p,, e N

(4.6) V' (py,) = Vex,, ls[ml(xgﬂ, ) = 7H (tn, z, Z"(x,"), -)] (Pm)-
i) Lipschitz continuity. By Lemma 4.3 we have for p,, e N"

B[V (X2 1 pm) | +TH (ta, @, Z(2,p10) Pim)
< E[Vn-‘rl(Xrg:-&-l?pm)] _TH(tTLa xla ZS(x/7pm)apm) + LnJrl‘x _x/‘y
with L, :=L,(1+C7)+C7. On noting (4.6) it follows from (4.7) by Lemma 4.1 that

(4.7)

(4.8) VI (2, 0m) = V(& ) < L |z — 2|

We recall (3.10) and obtain from (4.8) (note V" (z,pn) =V™(x)) that for any pe A(I)
it holds

M

(19 Viap) =V )< ) (V@) V@) ) o) < Lo~

=1

~

where we used that Z WM =1, 9" =0 for any 0 <n < N. Consequently by (4.5) and
Lemma 4.1 it also follows that

(410) Vnh(l',p>—‘/;il(l'/,p)<Ln+1|$—$/‘.

After commuting the role of x and 2’ and repeating the above steps we obtain for
any pe A(I)

(4.11) Vo (@,p) = V3 (@' p)| < Lz — 7).

Hence, we get recursively that L, < Ly+Ct, ~|—CTZZ ne1Li- By the discrete Gron-

wall lemma, it follows that L, <(Ly+CT)exp(CT). Consequently, V', Vh n=
0,...,N are Lipschitz continuous in z, with a Lipschitz constant L:= (Ly + CT)exp(CT)
depending only on the data in Assumptions (A1)—(As5).

i) boundedness. Let K, =[x} .(p),..., 7} ,(p)] be asimplex of M" _ such that pe K,

i.e. p—Z@':l T, (D)} (), where {¢}, (p):i=1,....1} is the Lagrange polynomial
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basis on K. In particular, 3/_ ¢ ,(p)=1and 9% ,(p)=0for i=1,...,I. On recalling
(3.9) we may write

(E = Vhl rf+17 fm
(4.12) 7 Z;< " )]

FTH (tn, @, 2@, (0)), 7,0 (9)) ) 0 ),

where Z"(z, p):=1E[V,! (X2, 1, p)o, T (2)€/T]. By (2.2), since V,", | is bounded by
Ch41 we estimate the right hand side of (4.12)

B[V (X ()]
+7H (tn, x, Z) (2, 7w (D), T ()| < Crsr +7C (14| 22 (2, 7, (p))])-

Next, we show that Z)!(z, 7, ,(p )) is bounded. Since V" | is uniformly Lipschitz con-

tinuous in the variable z. On recalling (3.3), by the generalized mean value theorem
|11, Theorem 2.3.7 | there exists © e R? with |0, < C such that

(4.14) Vi (X ar, 2 (0) = Vil (2, 77,0 (0)) +46, 00 (2)€av/T).
We multiply (4.14) with (1/7)0;, " ()&, and take the expectation to get

Zy(x,m, 4 (p) = —E[VnhH(XﬁH, 2P0y (2)6a/7]

- %E[Vnﬂ(:v, T2 (D)) (2)EV/T 40, o (@)€nv/T)0r, " ()60 7]

(4.13)

1 -
(1.15) ~ 1[0, 0, (@) Pro; @]
By Assumption (Ay) 0, and o, 7 are uniformly bounded. Hence, it follows from (4.15)
that
i 1 -
(4.16) |25, 7o (0))| < —llomll oo, [ B[|8] &/ T] < C

We substitute (4.16), (4.13) into (4. 12) and get that

=1

where C,,:=C,,,; +7C. Consequently, V"(x, p), n=0,...,N is uniformly bounded by
C:=Cy+CT. O

4.3. Almost Holder continuity in t.

Lemma 4.5. For any 7>0, h>0 and xeR?, pe A(I) the interpolant V* defined in
(3.12) satisfies the following inequality

VI (s,2,p) = VI(t, x,p)| <C|s—t|Y*+ Cr'/? Vs, te|0, 11,
where the constant C'>0 depends only on Assumptions (Ay)—(Ay).

Proof. We consider the piecewise linear Lagrange basis functions associated with I1. as
t— tn—l

. forte[t,_1,ta],

toar —t
Xn(t) =4 It 78 e [t ],

0 otherwise,
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for n=0,...,N and note that >\, (t)=1 for te [0,T].
For s,t€|0,T] let te(t,, t,s1] and s€[tyin, turn+1]. Hence, we deduce from (3.12)
that

V (t xz p) V (S xz p): Vh (l’ p XnJrk Z n+n’ +k;/ X p Xn+n! +k’(3)

i M“ TMH

1
(417) Z n+k X p Vnh+n/+k/($7p))Xn+k (t)Xn+n’+k’<S)'

for zeR? and pe A(I).
Since Vex,[f] < f we get for p,, e N, recall (3.6), (3.7), that

(4.18) Vn+k(x Pm) <E[Vn+k+1(XgiI’§+ﬁapm)] +TH(tn+k7 x, 7 +k(x Pm); pm)a

with Z"  (z,pm) =1 E[Vn-&-k-&-l(XgilljJrl’pm) o E&nsi/T]. Using (4.16), Assumption (As)
we obtain from (4. 18) that

Vi (@, 0m) = Vil i (2, 0m)
<E[V e (X0 0m) = Vil i (2,0m) |+ TH (b, @, Z0t 4 (2, 0m) D)
<E[V +k+1(XgLf+w17pm) Vnh+n/+k’(x7pm)] +C7’(1+C’ v, pm)|)
<E[V i (X005 Pm) = Vi iw (2,0m) |+ CT.

n+k4+12 M n

(4.19)

Recursively, we estimate the first term on the right-hand side above using the corre-
sponding analogue of (4.18) as

v,

k
n+k<Xsik+xl7 m) Vnh+n’+k' (x,pm)

ntk+1, X0E2

(420) < E[V +k+2(Xn+k+2’ n+k+1 ,pm> — Vnh-l,-nl'i‘k, (x,pm)] + CT.

Tk,
n+k+1, X:Ll_'_k_'_zl (Cf

We substitute (4.20) into (4.19) and obtain on noting X% =X )
(3.2)) that

Vnh+k($apm) Vnh+n’+k’ (@, pm) < E[Vn+k+2(XZilf+éapm) Vnh+n,+k,(x,pm)] +C2r.
Consequently, we get after (n’+ k" —k —2) recursive steps that
V(2. 0m) = Vil o (2, 0m)
<[E[Visw i (Xt tirsm) = Vit oo (@) ||+ (0 + K = K) C.

By Lemma 4.4 and Assumption (Ay) we estimate the first term on the right hand side
of (4.21) as

‘E[Vh+n'+k:’ (T,Pm) — Vn+n +k:’(Xn+k +k”pm ] ‘ < C‘E[ — X ]

n n+n’ n+n’+k’'

(4.21)

n+n’+k'—1

<Cl >

j=n+k

o, (X;L+k, yc)

9 11/2
1/2
T:| < C |tn+k - tn+n’+k’| )

and get
Vh (I pm) - Vnh+n'+k’ (.T,pm) < C |tn+k - tn+n’+k’ ’1/2 + C(tn+n’+k’ - tn+k) .
Since t€ [t,, tyr1] and S€ [ty in, tarn 1] it follows for k, k' =0,1 that

(4.22) V(@ pm) =V (2, pm) SCTY2 |t — 5|2+ C7Y2,
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for p,, e N

On recalling that V" (z,py) = V(2 pn) for pn e N, Vi(z,p) Vexp[‘N/ ,-)](p) for
pe A(I), we deduce analogically as in the proof of Lemma 4.4 (cf. (4.9), (4 10)), that
the inequality (4.22) holds for any pe A(I) . Hence, substituting (4.22) into (4.17) for
peA(I) implies the inequality

(4.23) VI(t,x,p) — VI (s,2,p) <Ot — 8|2+ O,

After reverting the role of s and ¢t and repeating the above steps we get the statement
of the lemma. ]

4.4. Monotonicity.

Lemma 4.6. Let ¢, ¢o:R?—R be two uniformly Lipschitz continuous functions that
satisfy 0< (o1 —d2) <C. Then for any xeRe, pe A(I), 7>0, n=0,...,N —1 it holds
that

E[cbl(XﬁJrl)] —‘rTH(tn, x, [qﬁl( X* o (x )gn\f] )
>E[¢2<Xﬁ+l)] +7'H (tn, Z, [¢2( n+1) ( )5n\/7] ) _CT\/;,

where C'>0 is a constant which depends only on Assumptions (A1)—(As).
Proof. We set

%ZZE[(%—@)(XLJ]+TH<tmx E[¢1(X1)oy " (2)6av/T], )
1 (10,2, ZE[62(X2 1), T (@)6unT] ).

By Assumption (As) H is uniformly Lipschitz continuous in the third variable, hence
using the generalized mean value theorem |11, Theorem 2.3.7 | there exists a © e R%,
|©], < C such that

H=E[(¢1—d2)(X5.1) (1 +(O,0," €”f>)]
¢1—¢2)( n+1) (1+<® On §”f>)]

Bl et shatcyrar} (@1 = 00 Kna) (14COv 0 "wevn)]

Next, we show that the second term of the right hand side of (4.24) is positive. Since
(¢1 — ¢2) =0, it remains to examine the term (1 —|—<@ o, (x fmﬁ» We note that

1440, 0, (2)6uv/7) 2 1= |00, o [€nlv/T = 1= Cllog ol€nl /7.
For C|lo7|x|&|v/T <1 it holds (14(0, 0,7 (x)&,+/7)) >0 and hence

B oo apateavrer} (01~ 92 (K) (14O, 0 T@)&m) |2 0.
Using(4.25) we deduce from (4.24) that

H>E[n {lnrisyr} O (91— ) (Ko1)o, gmf>]
where R:=C?||oc7!|2.

(4.24) _E[ﬂ{clla‘lﬂw|£n\ﬁ>1}(

(4.25)
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On noting that |&,| =& +...+|&¢|=(1+...+1)=d we deduce
E[H{Wol/fc} |5"‘ﬁ]
=1 {d2721/R}d\ﬁ =1 {d2T21/R} R%d\ﬁ <1 {dQTzl/R}RTd:S\/; < Rrd*+/T.
Since —(¢1 — ¢2) = —C we conclude
Mo E[L o (01005201007 o oy

_ 3
>—CE[]1 (oo /R}\gnﬁ\] — —CRdPry/7.

5. CONVERGENCE OF THE NUMERICAL APPROXIMATION

In this section we prove the convergence of numerical approximation, see Theo-
rem 5.1 below, in several steps. First, we show that, up to a subsequence, the sequence
{V1},. -~0 admits a limit denoted by w. We then prove the viscosity super/sub-solution
property of every accumulation point w. Hence, by the uniqueness property of the vis-
cosity solution, see |4|, we may conclude that the whole sequence {V/"},, .~ converges
to the viscosity solution.

Theorem 5.1. Under Assumptions (A;)—(As) the numerical solution V. converges to
the wviscosity solution of (1.1) (uniformly on compact subsets of [0, T] xR x A(I)) in
the sense that for all (', 2',p') — (t, x, p) it holds that

lfiLmOVTh(t',x',p') =V(t, z, p),
where V' is the unique uniformly bounded and continuous viscosity solution to (1.1)
which 1s convex and uniformly Lipschitz continuous in p.

5.1. Existence of a limit.

Lemma 5.2. The sequence {V."}, j~o admits a subsequence which converges uniformly
on every compact subset of [0, T] x R%x A(I) to a uniformly bounded and continuous
function w which is convex and uniformly Lipschitz continuous in p.

Proof. The proof is a consequence of a slight modification of the the Arzela—Ascoli
theorem, [26, Section II1.3]. The equi-boundedness is granted by Lemma 4.4 and the
equi-continuity is granted by Lemmas 4.2, 4.4 and 4.5. U

5.2. Viscosity solution properties and uniqueness of the limit. Below, we show
that every accumulation point w of {VTh}h)wo from Lemma 5.2 is a viscosity sub-
and super-solution to (1.1) which by uniqueness of the viscosity solution V' implies
Theorem 5.1.

5.2.1. Viscosity subsolution property of w.

Proposition 5.3. Every accumulation point w of the sequence {V"}, 1~¢ is a viscosily
subsolution of (1.1) on [0, T] x R% x A([).
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Proof. Let ¢:[0,T] xR x A(I)—>R be a smooth test function such that w—¢ has a
strict global maximum at (¢, Z, p), where pe A(I). We have to show, that ¢ satisfies
(2.6) at (¢, , p).

As a limit of convex functions w is convex in p and (cf. [20, Theorem 1]) we have
since pe A(I)

P

Similarly to [3, Lemma 2.4] we note that there exists a sequence (t,, T,, p,), such
that ¢, =1,7€ll,, I, €N converges to t, p, € N converges to p, and Z, to T for 7,h — 0;
also V" — ¢ has a global maximum at (t,, Z,, p,;) on IT, x RY x N,

Define ¢":= ¢+ (V" —¢)(t,, T, p,). Then for all zeR? p,, e N we have

(5.2) VIE+7 2, pm) — O (47, 2, p) <V (Er, Zr,y Pr) — O (Er, 21, Pr) =0.

Set

Xn+1 =T, U(fn f7')&”\/;;
and for each me{l,...,M}:

_ 1 _ — _
Zi(#) 1= —B[V(E 47, X, o) (0 (E, 72)) " G/T ],
(53) )_/m(fT) ::E[‘/fh(t:' +T? Xn-‘rl? pm)] +7—H('E‘ra f'ra Z:ln(f'r>a pm)

n

We denote the non convex data set by V,(z,):={Y,}(z,),...,Y,M(z,)}. By definition
Vex, [ f1(pm) < f(pm). Thus from (5.3) we have

VI (tr, Tr, D) = Vex, [ Va(Z-) | ()
< E[vrh(t_r +7, Xn+17 ﬁT)]
0.4 _ _
o i (T, 7, %JE[VJL(ZT 7, K1, ) (0(F, ) TG T] ).

We use Lemma 4.6 with ¢o(-):=V(t, +7, -, p,) and ¢(-):=¢"(t, +7, -, p,). Then,
by (5.2) and (5.4) it follows immediately that

0<B[VA(E+7, Xnsr, )] — VP (Er, T )
7 H (B, T, B[V (47, Koir, P 0, 7)) 76,7, )
<E[¢(t: +7, Xns1, Dr)| — 0(Er, T+, D)
O B (B m LB+ 7 K 50 7)) TG,V ) 4 O

First, we calculate the expectation in the first term of the right hand side of (5.5).
By the Taylor expansion

(b(t:' + T, XnJrla ﬁr)
(5.6) = 6(Fr, e, 7o)+ [006(F, T, ) 4 5 Te(00 (b, 7) D20 72, 7) |
+[Dad(ty, Tr, Pr) |0 (tr, Z1)&, /T +7O(T) +7O(T?),
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where O(7) — 0 when 7 — 0. Taking the expectation of (5.6), we obtain
]E[¢(t_r +7, Xni1, ]57)]
61 =6l 5+ [0 T B+ L Te (00" (1 ) D20AT B2, 5) |7
+70(T) —1—7'(’)(71/2).

Next, we calculate the expectation in the third term of the right hand side of (5.5).
We multiply (5.6) with (o(t,, Z,))"7&,+/T to get

O(tr +7, Xnsr, o) (0 (b, T7)) T &GN T=0(tr, 2o, ) (0(Er, 7)) G, VT
D, b(Er, T, )0 (s )60 (Fr ) TG NT
(5:) +2(Er, T, p)7(0 (1, 7)) TG
43 Te(00" (F, 7) D26(E, T2, 52)) (o, 7)) 76, VT

+(o(tr, 7,)) L&, TVTO(T) + (0 (t, :ET))*T&”T\/FO(TUQ),

where O(r) — 0 when r— 0. Taking the expectation in (5.8) yields to

1 T - T o=y P
(5.9) “B[(tr +7, X1, D) (0 (57, )7 6,V 7] = Dath(r, -, Pr)
By substituting (5.7) and (5.9) into (5.5) we arrive to

_ 1 _ _
0<0b(tr, T, Pr) + 5 Tr (00" (Er, 2-) Dio(Er, 2-, D7)
—"_H(t_T? ET’ Dm¢<t_7—7 ET? ﬁ’r)’ ]‘3’7—)
+70(7) —1-7'0(7'1/2) +C14/T.

Taking the limit 7, h — 0 we get on recalling (¢, T, p,) — (f, T, p) that
1
(5.10) 0<o(t, T )+2Tr(00 (t,z)D2¢(t, %, p)) + H(t, z, D,¢(t, T, p), p).

With (5.1) and (5.10), we conclude that the limit w of the sequence {V."}; ;- satisfies
(2.6). Hence, w is a viscosity subsolution of (1.1). O

5.2.2. Viscosity supersolution property of w. To establish the viscosity supersolution
property of the limits of the numerical approximation in Proposition 5.7 below, we
construct in Definition 5.4 martingale processes that satisfy a one step dynamic pro-
gramming principle Lemma 5.6, cf. [15].

Forn=N-—1,...,0, veR? and a given pe A(I), we denote by K,, .(p) = [} ,(p),.... 7L ,(p)]
the simplex in M”  such that pe K, ,(p), and denote by {¢, ,(p):i=1.. I} the La-
grange polynomial basis on K, ,(p). By (3.8) and (3.9), we write

Vi, p)= Vex, [371(3:) . ,YnM(:c)] (p)

5.11 ! _ . ) ,
O BV ] 7 (. 2000, 0) )0,

with Z"(z, 7l ,(p)) == 1E[ V.l (X2, 7 o (9) (0,7 (2)&m/T]- The set of vertices of the

TL,

triangle K, ,(p) will be denoted by N} .(p) :={m}, .(p),.... 7} .(p)}.

n, yIn,x
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Definition 5.4 (One-step feedback). Let ne {N —1,...,0}, zeR?, and p= (p1,...,pr) €
A(I). We define the one-step feedbacks p,\ as a N} .(p)-valued random variables
which are independent of {&, 7]>7=—01 such that

i) forn=0,...,N—1
a) if pi=0 set p; " =p

b) if p;>0: choose p, i among {m} .(p),.... 7. .(p)} €N, with probability

7;7171)_ ] il?x,7pm/
]P’[an = 7an<p)’ (P, )i’e{l,...,l},x’eRd,m’e{l,...,]w},n’e{l,..‘,n}

(512) IR

Di

i1) forn=N set pi;_f’lpzei, where {e;:i=1,...,1} is the canonical basis of RY.

Furthermore we define p&?, :=ph?, where the index i is a random variable with low
p=(p1,...,p1) (i.e. IP’[i zi] =p;, i=1,...,1), independent of {£,}N"3 and of the process

(pjvmvp) .
n je{1,....1},zeRe peA(l),ne{l,...,.L}*

Remark 5.5. The probability p; in Definition 5./ s the i-th component of the prob-
ability vector pe A(I), i.e., it is the probability of the “chosen” game. In this case,
the optimal behavior of Player 1 at time t,,, is derived from the one step feedback
P, :zpi,’i’lp. This feedback is the discrete version (in time and in p) of its continu-
ous counterpart see |6, Lemma3.2.], [15, Definition 3.9] and |5, Section 4.1] for more

details.

The one-step feedback p;7, is a martingale and provides a representation formula
for the discrete lower convex envelope.

Lemma 5.6. For alln=0,...,N—1, zeR% p,, e N"* we have
Vnh<x7pm) = vr:n(x) = VeXp [?nl (ZL’), e 7}7nM(x)] (pm)
—E| Vi (X0 BEr) + TH (b, @, Zik(, B20), ) |
with Z(x, prfi) = 2BV (X n, Pl ) (07,7 (2)&y/T]-

Proof. We consider n=0,...,N —1, zeR%, p,, e N'* and note that the law of the process

Z,Pm

p.Fr is given by (5.12) and p; 7" is independent of i. Hence it holds for any f: N"—R
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that
E[f(pif{”ﬂ:;E[ﬂ{i—i}f Pait™)] Z:] [Liza JE[f (P 5™)]
=2p2(”pﬂ 1 o) 7 )
(5.13) :sz(”pﬂ ) o) (70 ()
-2/ <pm>>w,;z<pm>(é<wz;,w<pm>>i)
=§f( 3 (P ()

since Y11 (7.0 (pm))i = 1. On noting (5.11) the statement follows directly from (5.13)
and the fact that N, < N O

Proposition 5.7. Every accumulation point w of the sequence {V'}, 1~¢ is a viscosity
supersolution of (1.1) on [0, T] x R%x A(I).

Proof. Let ¢:[0, T] x R?x A(I) - R be a smooth test function, such that w—¢ has a
strict global minimum at (¢, Z, p) with (w—¢)(¢, T, p) =0. We show that ¢ satisfies
(2.7) at (¢, T, p).

There exists a sequence (¢, T., ;) such that t,=1,7€Il,, [,€N converges to t,
pre N converges to p, and Z, to T for 7,h— 0; also, V" — ¢ has a global minimum at
(tr, Tr, pr) on 1L x RE x N

Define ¢ := ¢+ (V" —)(t;, Tr, p;). Then for all zeR? and p,, e N"* we have
(514) (‘/:rh _gbﬁ)(t_T +7—7 "L‘y pm) 2 (‘/;'h _¢7}E)<E7'7 j7’7 ]37'> = 0

Set

Xn-‘rl =T+ U<t_77 fT)gln\/;;
and for each me {1,...,M}:

23 (@)= SB[V 47, Ko, 20 (F, 7)) 76, V7],
YoM E) =BVt +7, Xnp1, pm) |+ TH (b, Zr, Z7(Z2), Pn).-
From the non convex data set V,(z,):={Y,}(z,),..., Y, (Z,)}, we define
VAE, e, ) o= Vesy V03] 7).

We can assume that A\, (15, %(ﬂ E,ﬁ)) > 0, otherwise (2.7) is always true. Thus,
there exist 0, 7> 0 such that for all 7 small enough we have
anbh
~(t,x,p)z, z>>4(522
(5.15) P (t, =, p) ||

v(x7p)EBn(‘fT7ﬁT)7Vte[gq—,t_T—’_T] VZGT A (pr)
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Furthermore, we assume without loss of generality that outside of B, (t,, Z,, p,), ¢ is
still convex on A(I). Thus for any p,, e N it holds

‘/Th(ﬂ' +T’ €, pm) 2 ng(f’f' +T7 xz, pm)
_ ool _
(5.16) Zqﬁ?(tT—l—T,x,ﬁ7)+<a—pT(tT+T,x,ﬁT),pm—ﬁT>.
The rest of the proof consists of 4 steps.

Step 1. We prove that for any pe A(7), the following inequality holds
E[V(t +7, 2, p)]
(5.17)

>E[¢l(t.+T, 2, pr) +< pr),p— p7>+5|p bl

op

Fix (z,p)€B,(Z,,p.) and te[t,, t,+7|. Since ¢! is smooth, we expand ¢" into a
Taylor-Lagrange expansion up to the order 2 and obtain for some a€ B, (p;,)

B a¢h 3 B 1 62¢h B B
h __1h T o - T _ _
¢T(t7 ZE,p) _¢T(t7 x7p7') +< (7p (t7 $7p7'>’p pT>+ 2< apz (t7 z, a)(p pT>7p pT>7

which thanks to (5.15) gives

(5.18) ot (t, x,p) = (t, x, p, —|—< ), p— pT>—|—2(5\p p7| .

op
For any pe A(I)\Int (B, (p,)). We set p:=p, +n(p— pT)/|p P-|- Since the function
VI is convex in the variable p, then the subgradlent of V(t,,7,,-) at p, denoted by

O~VI(t., 7., p) is not an empty set. Let ped~ V" (¢, a:T,p) we have by definition of
the subgradient

(5.19) VIt T, p) = VL, Ty, )+ <P, p— D).

By (5.14) we have (V" —¢") (¢, Z,, p) > 0. Since pe B, (p,), using the inequalities (5.18)
and (5.19) we obtain

__ o ool N L
V;—h(tT7xT7p)>¢ﬁ(t7'7x7'7p7')+<a_p(t7'7xT7p7')7p_p7'>+25|p_p7'|2+<p7p_p>

o ool _
>¢£L<tT7xT7pT>+<a;¢;(tT7x‘l‘7p7')7p_p7'>

(5.20) o

+25|p p7'| +<p_ p(tT7xT7p7' yD— p>

We show that the last term in the right hand side of (5.20) is positive. By taking p=p
in (5.16) and taking p=p, in (5.19) we have

_ _ ol
(5.21) vTh(tT,fT,ﬁDVf(tT,fT,ﬁT)+< apT( T, D ),1'5—137>,
(5.22) VIt Ty Pr) 2 VI, 1, B) + (B, Pr— D)
We sum up (5.21) and (5.22). Then with the choice of p we made, it follows that

h a h
0><p__(t7')w7'7p7' p> |p p |< tT7'IT7p’T p>
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Thanks to the choice of p we note that <%) (p—p)=(pr—p). It implies that

R aqﬁh _
(5.23) <p G0 T ) p>>o.

Thus, substituting (5.23) into (5.20) gives

_ _ oot _
VIt T2, p) 2 VI (b, Tr, Pr) + <ai];<t7,:fn@>, p—Pr )+ 265~ Frl’

- oph _
__1/h T _ 2
=V (tT,:BT,pT)+<—ap (tr,@r,Dr)s P pT>+25n .
After taking the limit 7,h — 0, we obtain for all pe A(I)\Int (B, (p)) that

(5.24) w(t, =, p) > w(t, 7, ﬁ)+<§i( T,p), p— p>+25n2-

Next, suppose that (5 17) does not hold for a pe A(I). Thus there exists a sequence
(1, T, py)r with pe A(I) )\B,(p-) such that (7, z., p;) — (0,0, p) for 7,h—0 and

V:,-h<£r +7—7 ET +5U7'7 pT)

9.2 _ h
(5:25) <¢¢(tT+T,TT+$T,ﬁT)+<a?T<
op

7_ +x7’7ﬁT)7pT_ﬁT>+5‘pT_ﬁT‘2'
For 7,h—0, pe A(I)\B,(p) it follows from (5.25) that
w(t.5,0) <0 7.9)+ (o €. 5.9). p—p) + Sl P

which contradicts the inequality (5.24). Hence, (5.17) holds.

Step 2. We prove that for any p,, e N we have

]E‘I:V;—hO?T +7, Xn+1, pm)]

oph
op

(526) >E qbﬁ(t_T +T’ X”+1’ ﬁT) +< (t_T +7—7 Xn+17 ﬁT)? Pm _ﬁ7>

+ 6|pm _p7|2]l|Xn+1iT|<n] :
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With the estimates (5.17) and (5.14) we have for 7 small enough and for all p,, e N
E[V;-h(f‘r +7, Xn+17 pm)]

=K l‘ch(fr + T, XnJrla pm)]1|Xn+1—a;n|<n] +E l%—h({T + T, XnJrlv pm)1|Xn+1—xn>n]

>E[(¢¢(t7+7, v, o1, 57). P e

+6|pm_p’r’ ]1|Xn+1 xn|<n] lvh t +T Xn+17pm)l|Xn+1—x,L|>n]

l(éh(t +T Xn+17p7' n+17p‘r) pm_ﬁ7>

+6|pm_p’r| ]1|Xn+1 J:n|<77:| l t +7, Xn+17pm)]]-|Xn+1—xn|>77—|

:El¢2(57+77 XTLJrl?ﬁT) ’ 7n+17ﬁ7)7pm_ﬁr>

(527) + 5|pm _ﬁ7|2]l|Xn+1—:cn|<7]] +E[<¢7}}(t_7' + T, XTL+17 pm) - qbﬁ(a' +7—7 Xn-i—h ﬁT)

oph _
- < apT (tr +T, Xn+17 57—)7 Pm _ﬁ7—>> ]1|Xn+1—90n|>77‘| .

We recall that ¢” is convex in the variable p, which implies that
gbi-l(t_r + T, Xn+1: pm) - ij—l(a' + T, Xn+17 ﬁr)
(5.28) ol

7n+1a ]37')7 Pm _ﬁ7'> =0.
Hence, from (5.28) and (5.27) the assertion (5.26) holds for all p,, e N

Step 3. Next we establish an estimate for p, . := pl P where plT P75 defined as

a one step martingale as in Definition 5.4 with initial data (¢., Z,, p,).
Note that by Lemma 5.6 it holds

VI (Er, 7, 7) = E| VT 47, X1, Poa)
(5.29) ) .
7 H (T, Ty B[V 47, Kot P 0 7)) 767 | B ) |

We replace the first term of the right hand side of (5.29) with (5.26) (for p=p,, 1)
and obtain using (5.14) for small enough 7, h >0 that

0= E[Qﬁ(t_’r +7, Xn—i—la pT) - ¢ﬁ(z7'7 Zr, pT)]

_ 1 _ — _
+ 7B H (T, T —B|VAE 47, Xt ) (007, ) 76T P |

oot o ) )
+E|:< ap (t‘r +7—7 Xn+17 p7>7 pn+1 _p‘r>] + (SE |:]1|Xn+1—i7|<n|p7 - Pn+1|2]

(5.30) =:I+II+III+1IV.

We estimate the right-hand side of (5.30).
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We note that since ¢ is smooth, from the Taylor expansion it follows
E[¢(tr+7, Xni1, r) = $ltr, Tr, o)
(5.31) = [00(Er, 7, 72) + 5 Te{00™ (Er, ) D20(Er, 72, ) | +7O(r)
<CT+710(T).
Hence, using (5.31) we obtain

(5.32) I<SCT+70(T).
From (2.2), for IT we obtain
1 _ - _
(5.33) I1<Cr (1 + ;]E[Vf(z; +7, Xr, Py ) (0 (E, @)*Tgnﬁ]) <Cr.

Since p,,; is independent of the random walk &, /7 and by the martingale property
E[an] =p,, we have
oV,

(5.34) III < <E[ épfh (T 7, X, @)], Ih:[pn+1 —@]> ~0.

We recall that the random walk /7 and the martingale p,,_; are independent. By
the Markov’s inequality it follows

V= 5]P>[|a(t2, T:)&,\/T| < n]E[IﬁT - pn+1|2]
>6(1= B[ lo(0. 76,71 ) £ 15 —poa ]
(5.35) >C(0,m) (1=7)E| 5~ o]

We substitute the estimates (5.32), (5.33), (5.34), and (5.35) obtained for I, IT, III,
and IV into (5.30). And get

_ T
E[’pf - Pn+1|2] <C(0,n) (m) :

For 0 <7 <1/2 small enough we have

(5.36) E||p: —p,i?] <O )

Step 4. In last step we show that

0=0.6(t, ,p)+ %Tr(oaT(t, T)D;o(t 7,p)) + H(t, 7, Dad(t, 7, D), ).

By Lemma 5.6 it holds

‘/7—h<577 fT? ﬁT) = E[K—h(ET +T7 Xn+17 pn+1)
(5.37) '
7 H (T, Ty B[V 47, Kt P 0, 7)) 60,07, pnﬂ)].
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We recall (5.14) and apply Lemma 4.6 with ¢(-):=V"(t,+7,,p,ss) and ¢o(-):=
O(tr+7, -, Ppyy) to estimate the right hand side of (5.37) from below as

VAT, B, B.) = (s T B) >E[¢(t¢ I .
(5.38)

_ 1 _ — _
+7H (tra Zr, ;E |:¢¢(t7 +T, Xn-i—la pn+1)(0'(t7-, ff))_Téln\/;]a pn+1>:| - CT\E

The stochastic process p,,,; is independent of X,+1 by construction. Since ¢" is
convex and arbitrarily smooth, thanks to (5.16) we obtain

E[qb(t_T—f—T, X1, pn+1)]
SE[6(F +7, Xr, 57) | + <E[§—f@ #7. Xrr, 1) |- Bl oo =5 ])
(5.39) :E[gb(aw, Xnﬂ,@)]-

Furthermore, by the Taylor expansion in z and since the stochastic processes p,,
satisfies to the martingale property E[an] =pp, and is independent of & , we obtain

CE[0h(E+7, Ko, )0, ) 76,7

= CE[6h (7 T Pr) (01 7)) TG T| HE[Degl 477 0,00
+E[(0(tr, 7,))&, (0 (t, 7,)) 16, ]O(T?)
(5.40) zE[ngzS’T‘(fT VT, T, an)] O,
We substitute (5.39) and (5.40) into (5.38) to get

0>E[¢@+T, Koo, 52) — (s T B)
(5.41)

+TH<ET, Tr, E[Dmgb’;(ﬁ—kr, Tr, an)] —i—(’)(TI/Q), pn+1>] —C14/T.

Since ¢ is arbitrarily smooth, we can assume that D,¢" is Lipschitz continuous in p
which with (5.36) imply that

o
- _ o7\ 2 1/2
(5.42) <CIEUPn+1_p7"] éC(E[‘pn+1—pT| ]) <Ct17/e.
Combining (2.3) and (5.42) we have
H (T, T, Dol (T 47, 50, ), )
<E[H (fT, T B[ Dyt (Er 47, Br Priy)] + O(FY2), pnﬂ)}

+EHD$¢¢@ T T, Poat) — Dt (L 4 7, E,, D)

Dx¢?(f7- +7, %, pn+1) —Dl¢?(f7. +7, %, ﬁr)

|+o(r7)
(5.43)
SE[H (fn Tr, B[ Dp(tr + 7, Tr, Prgs) ] +0O(1?), pnﬂ)] +CT2 1 0(rY?).
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By the Taylor expansion we have
(b(t_r +T, Xn+1> ﬁT)

(5.44) = 9, 7, B:) + | b, T, Br) + %Tr(aaT@, 7 D2(Er, 77 5)) |7

+[Dad(tr, @7, pr) |0 (Er, 7)€, /T +TO(1) +7O(712).
Thanks to (5.43) and (5.44), we can derive from (5.41) that
CTV2+ OV +70(1Y2) = 6,0(t,, v\ Dr)
(5.45) 1 _ _ _ _
+5 (00" (&, 7) D;0(Ey, Zr, 7)) + H (b7, B, Dot (b +7, T, D), Pr).
Since (¢, T,, pr) — (¢, T, p) for 7,h— 0, it follows from (5.45) that

0=0:0(t, T, p)+ %Tr(aaT(f, T)D2o(t, z,p)) + H(t, z, Dyé(t, T, p), p)

which concludes the proof.

6. IMPLEMENTATION AND COMPUTATIONAL STUDIES

In this section we present an implementable fully discrete version of Algorithm 3.1
where the discretization in the spatial variable is realized via piecewise linear inter-
polation over a simplicial partition of the spatial domain. We also perform numerical
simulations to demonstrate the properties of the proposed scheme.

6.1. Implementable full discretization. For simplicity we describe the algorithm
for the case of a bounded spatial domain D R? Let 7% be a regular partition
of D into open simplices S with mesh size Ax =maxg.ra.{diam(S)} and denote the

set of “grid” nodes of T2% as X% :={xy,...,x.}. The piecewise linear Lagrange basis
associated with the partition 747 is denoted as {cpg}jzl.
Below we denote ,,¢:= 0 (t,, 7¢), 0, ¢ := (6T (tn, 2¢))~! and introduce the restriction

of (3.3) on the grid nodes z,€ X% as
Xﬁ+13:)_{3i1:$£+0n,£§n\ﬁ (=1,....L.

The fully discrete algorithm computes the numerical approximation at the nodes z,€
TA* ¢=1,...,L. In general, the values X! | do not coincide with the nodes TAz
and we obtain the intermediate value of the solution by linear interpolation over the
simplicial mesh 72%. Given the fully discrete solution {Vnm’g}jzl at tn, pm, {Te}l,
its piecewise linear interpolant on 727 is expressed in terms of the piecewise linear
Lagrange basis functions as

L
(6.1) VAT () = Ve (z)  weRY

i=1
Hence, we obtain the following fully discrete version of Algorithm 3.1.
Algorithm 6.1. For x,e X2*, (=1,...,L set V](,"’Z=<pm,g(:cg)> for pmeN", m=
1,...,M and proceed for n=N—1,...,0 as follows:

(1) Forward step: for x,e X2%, (=1,...,L compute:

Xﬁﬂ =L+ 0 0En/T;
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(2) Backward step: for x,e X2%, (=1,...,L and m=1,...,M set:

Zm —E[v,ﬁﬁx(xf;ﬂ) 0, 1&nNT],
vt :E[Vnnj-le(Xﬁ-&-l)] +7H (tn, e, Z3", pin);

n

(8) Convezification: for {=1,...,L} compute the discrete lower convex envelope

{Vnu, VML of (Y LE YM 1 as:

Vit =Vex, [V VM (p), m=1,..., M.

There exist several efficient algorithms to compute the discrete lower convex envelope
in step (3) of the above algorithm. For I =2 one can directly solve the minimization
problem (3.8) for m=1,..., M, the corresponding algorithm is called Jarvis’s march.
For I >2, where the direct minimization via (3.8) becomes inefficient, one can employ
more efficient convex hull algorithm such as the beneath-beyond or divide-and-conquer
algorithms, or the Quickhull algorithm, cf. [21] and |2].

6.2. Numerical experiments. In the numerical experiments below we take [ =2,
d=1, T=0.5. We eliminate one probability variable from the solution by parametriz-
ing A(2)=(p, 1—p) for pe(0,1) and consider the transformed solution V:=V(-,-,p)
for pe(0,1). We set o(x)=0¢z(l—2x), (00>0), and H(z,p)=sin(27p)cos(brx)—
cos(bmp)sin(3mz) and consider a simplified version of (1.1)

N2

% 02V

(6.2) min{é’thL Lo*(x) e + H (2, p), Amin (p, 8_p2) } =0.
Due to the choice of the diffusion o we may restrict the spatial domain to the interval
[0,1] which is partitioned uniformly into line segments, i.e., T2% = {(z,_1,20)}F |, 2o =
¢Ax with the mesh size Az =1/L. Similarly, we partition the probability domain [0,1]
uniformly into segments with mesh size h =1/M and nodes p,, =mh, m=0,..., M and
the time interval [0,T"] with time-step size T=1/N, t,=n7, n=1,...,N.

In the considered case, Algorithm 6.1 has a particularly simple form, where we denote
or:=0(xy) and express the expectations in step (1) below explicitly since &, = 1.

Algorithm 6.2. For (=0,...,L set V]\T,”’é :={DPm, g(x¢)) and n=N—1,...,0 proceed as
follows:

(1) For £=0,...,.L, m=0,...,M:

Vit (wet+ ooy/T) + Vi £ (w0 = 00/7)
2

(2) For £=0,...,L, m=1,....M —1 compute:

vV, l
Yn

+7’H(1‘5, pm);

Vnm7£: min {(1—1)5_/n %}7’””‘ 4}
ke{l,...M—m}

The numerical solution computed for 0y =0.5, N =25, L =100, and M =100 is dis-
played in Fig. 1a.

Since no analytic solution is know we determine the experimental order of conver-
gence by using a reference solution V. which is computed for small discretization
parameters Tyor = 1/384 and h= Az, =1/1024.

To study the error in the spatial discretization we fix 7=1/50, h=1/1024 and vary
Az=1/L for L=15,30,60, 150, 300, 600. The maximum error over all x,e T2% at
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V(t,z,p) at time t = 0.23 V(t,z,p) at time t = 0.23
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(A) Obtacle on (B) Obstacle off
FIGURE 1. (left) Numerical solution of (6.2) computed with Algo-
rithm 6.2. (right) Numerical solution of (6.2) without the obstacle term
62‘/ . - .
Amin (P, S5 ), computed with Algorithm 6.2 without step (2).
1 op2 )
0.4 0.4 0.4
0.25 0.50 0.75 1 0 0.25 0.50 0.75 10 0.25 0.50 0.75 1

(a) (t,z)=(0.23,0.25) (B) (t, ) =(0.23,0.50) (C) (t, ) =(0.23,0.75)

FIGURE 2. Cross-section of the numerical solution in Fig. 1a (solid line)
and in Fig. 1b (dashed line) at 2 =0.5, 0.50, 0.75

(t,p)=(0,0.5) plotted against Ax is displayed in Fig. 3a. We observe that the conver-
gence in Az is roughly of first order.

Next, we study the error in the discretization in p. We fix 7=1/50, Az =1/1024
and h=1/M for M =15, 30, 60, 150, 300, 600. The maximum error over all p,, e N}, at
(t,z)=(0,0.5) plotted against h is displayed in Fig. 3b. Similarly as for the spatial
discretization, we observe quadratic convergence in h.

Finally, to study the error if the time-discretization we fix Az =h=1/1024 and vary
7=1/N for N=3,6,12,24,48 86. The maximum error over all tile levels ¢,, n=
1,...,N at (x,p)=(0.5,0.5) plotted against h is displayed in Fig. 3c. The convergence
of the discretization with respect to 7 is of linear order.
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FIGURE 3. A log-log plot of the the error wrt. Az, h, 7 for oy =0.5.
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