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On scale estimation under shifts in the mean

Ieva Axt1 and Roland Fried

In many situations it is crucial to estimate the variance properly. Ordinary variance esti-
mators perform poorly in the presence of shifts in the mean. We investigate an approach
based on non-overlapping blocks, which yields good results in this change-point scenario.
We show the strong consistency and the asymptotic normality of such blocks-estimators
of the variance under rather general conditions. For estimation of the standard deviation
a blocks-estimator based on average standard deviations turns out to be preferable over
the square root of the average variances. We provide recommendations on the appro-
priate choice of the block size and compare this blocks-approach with difference-based
estimators. If level shifts occur rather frequently even better results can be obtained by
adaptive trimming of the blocks under the assumption of normality.
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1 Introduction

We consider a sequence of observations (Yt)t≥1 generated by

Yt = Xt +

K∑
k=1

hkIt≥tk , (1)

where (Xt)t∈N are i.i.d. random variables with E[Xt] = µ and V ar[X2
t ] = σ2. W.l.o.g we will

assume µ = 0 in the following. This means that the observed data y1, ..., yN are affected by K level
shifts of possibly different heights at different time points t1, ..., tK . Our goal is estimation of the
variance σ2 or the standard deviation σ.
In Section 2 we analyse estimators of σ2 from the sequence of observations (Yt)t≥1 by combining

estimates obtained from splitting the data into several blocks. Without the need of explicit distri-
butional assumptions the mean of the block-wise estimates turns out to be consistent if the size and
the number of blocks increases and the fraction of jumps is asymptotically negligible. Otherwise, an
adaptively trimmed mean of the block-wise estimates can be used if distributional assumptions can
be made. Section 3 treats estimation of σ in a similar way. In Section 4 the estimation procedures
are applied to real data sets, while Section 5 summarizes the results of this paper.

2 Estimation of the variance

When dealing with independent identically distributed data the sample variance is the common
choice for estimation of σ2. However, if we are aware of a possible presence of level shifts at unknown
locations, it is reasonable to divide the sample Y1, ..., YN into m non-overlapping blocks of size
n = bN/mc and to calculate the average of them sample variances derived from the different blocks.
A similar approach has been used in Dai et al. (2015) in the context of repeated measurements data
and in Rooch et al. (2016) for estimation of the Hurst parameter.

1Corresponding author. TU Dortmund University, Faculty of Statistics, 44221 Dortmund, Germany

1



The blocks-estimator σ̂2Mean of the variance investigated here is defined as

σ̂2Mean =
1

m

m∑
j=1

S2
j , (2)

where S2
j = 1

n−1
∑n

t=1(Yj,t − Y j)
2, Y j = 1

n

∑n
t=1 Yj,t and Yj,1, ..., Yj,n are the observations in the

j-th block. We are interested in finding the MSE-optimal block size n to achieve desirable results
under certain assumptions.
In what follows, we will concentrate on the situation where all jump heights are positive. This is

a worse scenario than having both, positive and negative jumps, since the data is more spread in
the former case resulting in a larger positive bias of most scale estimates.
We will use some algebraic rules for derivation of the expectation and the variance of quadratic

forms in order to calculate the MSE of σ̂2Mean, see Seber and Lee (2012). Let B be the number of
blocks with jumps in the mean and K ≥ B the total number of jumps. The expected value and the
variance of σ̂2Mean are given as follows:

E
(
σ̂2Mean

)
=

1

m

tr (AΣ) +
B∑
j=1

ΘT
j AΘj

 ,

V ar
(
σ̂2Mean

)
=

1

m2

m (µ4 − 3µ22
)
aTa+ 2mµ22tr(A

2) +
B∑
j=1

(
4µ2Θ

T
j A

2Θj + 4µ3Θ
T
j Aa

) ,

where µi = E
(
Xi

1

)
, Σ = µ2In, A = In − 1

n1n1Tn , Θj contains the expected values of the random
variables in the perturbed block j = 1, ..., B and a is a vector of the diagonal elements of A. The
blocks-estimator (2) estimates the variance consistently if the number of blocks grows sufficiently
fast.

Theorem 1. Let Y1, ..., YN from Model (1) be segregated into m blocks of size n. Let B = BN out
of m blocks be contaminated by K̃1, ..., K̃B jumps, respectively, with

∑B
j=1 K̃j = K. Moreover, let

B
(∑K

k=1 hk

)2
= o (m) and m→∞. Then σ̂2Mean = 1

m

∑m
j=1 S

2
j → σ2 almost surely.

Proof. W.l.o.g. assume that the last B out of m blocks are contaminated by K̃1, ..., K̃B jumps,
respectively. Let the term S2

j,0 denote the empirical variance of the uncontaminated data in block
j, while S2

j,h is the empirical variance when K̃j level shifts are present. Moreover, Yj,1, ..., Yj,n are
the observations in the j-th block. Furthermore, let ∆j,t = E (Yj,t) and ∆j = 1

n

∑n
t=1E (Yj,t), e.g.

in block j = m − B + 1 we have ∆m−B+1,t =
∑K̃1

k=1 hkI(m−B)·n+t≥tk , t = 1, ..., n, and ∆m−B+1 =

1
n

∑n
t=1

∑K̃1
k=1 hkI(m−B)·n+t≥tk . Then we have

σ̂2Mean =
1

m

m∑
j=1

S2
j =

1

m

m−B∑
j=1

S2
j,0 +

1

m

m∑
j=m−B+1

S2
j,h

=
1

m

m−B∑
j=1

S2
j,0 +

1

m

m∑
j=m−B+1

1

n− 1

n∑
t=1

(
Xj,t − X̄j + ∆j,t −∆j

)2
=

1

m

m∑
j=1

S2
j,0 +

1

m

m∑
j=m−B+1

2

n− 1

n∑
t=1

(Xj,t − X̄j)(∆j,t −∆j)

+
1

m

m∑
j=m−B+1

1

n− 1

n∑
t=1

(
∆j,t −∆j

)2
. (3)
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For the second term in the last equation (3) we have∣∣∣∣∣∣ 2

m(n− 1)

m∑
j=m−B+1

n∑
t=1

(Xj,t − X̄j)(∆j,t −∆j)

∣∣∣∣∣∣
≤ 2

m(n− 1)

m∑
j=m−B+1

n∑
t=1

∣∣(Xj,t − X̄j)
∣∣ ∣∣(∆j,t −∆j)

∣∣
≤ 2

m(n− 1)

m∑
j=m−B+1

n∑
t=1

∣∣(Xj,t − X̄j)
∣∣ ∣∣∣∣∣

K∑
k=1

hk

∣∣∣∣∣
= B

∣∣∣∣∣
K∑
k=1

hk

∣∣∣∣∣︸ ︷︷ ︸
=o(m)

2

m

n

n− 1

1

B

m∑
j=m−B+1

1

n

n∑
t=1

∣∣(Xj,t − X̄j)
∣∣

︸ ︷︷ ︸
→E(|X1|) if n→∞, see Hu et al. (1989), otherwise <∞

−→ 0.

The following is valid for the third term in (3):

1

m

m∑
j=m−B+1

1

n− 1

n∑
t=1

(
∆j,t −∆j

)2 ≤ 1

m

m∑
j=m−B+1

1

n− 1

n∑
t=1

(
K∑
k=1

hk

)2

=
B

m

n

n− 1

(
K∑
k=1

hk

)2

−→ 0.

The first term of the last equation (3) converges almost surely to σ2 due to the results on triangular
arrays in Hu et al. (1989). Application of Slutsky’s Theorem proves the result.

Remark 2. 1. If the jump heights are bounded by a constant h ≥ hk, k = 1, ...,K, the worst re-

striction arises if all heights equal this upper bound resulting in the constraint B
(∑K

k=1 hk

)2
=

BK2h2 = o (m), which is worst for B = K (at most one jump is located in one block). Con-
sistency is thus guaranteed if the number of blocks grows faster than K3.

2. The proof uses B
∣∣∣∑K

k=1 hk

∣∣∣ = O
(
B
∣∣∣∑K

k=1 hk

∣∣∣2) = o(m) since we assume that all jump

heights are positive.

3. The result is valid for constant block size n as well as for n→∞.

4. Application of the ordinary Central Limit Theorem shows that σ̂2Mean is asymptotically normal
if the block size n is fixed, and its efficiency relative to the ordinary sample variance is (µ4 −
σ4)

[
µ4 − σ4(n− 3)/(n− 1)

]−1 in case of i.i.d data with finite fourth moments, which is (n−
1)n−1 under normality. The next Theorem shows that σ̂2Mean is not only asymptotically normal
but even fully efficient in case of a growing block size.

Theorem 3. Assume that Y1 = X1, ..., YN = XN are segregated into m blocks of size n, with
m, n → ∞ such that m = o (n), n = o (N). Moreover, assume that µ4 = E

(
X4
t

)
< ∞. Then we

have
√
N
(
σ̂2Mean − σ2

)
d−→ N

(
0, µ4 − σ4

)
.
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Proof. Rewriting the estimator σ̂2Mean we get

σ̂2Mean − σ2√
V ar

(
σ̂2Mean

) =

1
m(n−1)

m∑
j=1

n∑
t=1

(
Xj,t −Xj

)2 − σ2√
1
m

(
µ4
n −

σ4(n−3)
n(n−1)

)

=
√
N

1
m(n−1)

m∑
j=1

n∑
t=1

X2
j,t − n

m(n−1)

m∑
j=1

X
2
j − σ2√

µ4 − σ4(n−3)
n−1

, (4)

see Angelova (2012) for V ar
(
σ̂2Mean

)
. For the second term of the numerator in (4) we have that

E

∣∣∣∣∣∣√N n

m(n− 1)

m∑
j=1

X
2
j

∣∣∣∣∣∣
 =

√
N

m

n

n− 1

m∑
j=1

E
(
X

2
j

)
=

√
N

n

n

n− 1
σ2

=

√
mn

n

n

n− 1
σ2 =

√
m

n

n

n− 1
σ2 → 0, (5)

since m = o(n). Convergence of the term (5) in mean implies convergence in probability to zero.
Application of the standard Central Limit Theorem to the remaining terms of (4) yields the desired
result.

Remark 4. In the proof of Theorem 3 we have assumed that m = o(n), i.e., the block size grows
faster than the number of blocks. This condition can be dropped using the Lyapunov condition under
the assumption of finite sixth moments.

2.1 Choice of the block size

When considering blocks of length n = 2, the estimator σ̂2Mean results in a difference-based estimator,
which considers bN/2c consecutive non-overlapping differences:

σ̂2Mean,n=2 =
1

2bN/2c

bN/2c∑
j=1

(Y2j − Y2j−1)2 .

Difference-based estimators have been considered in many papers, see Von Neumann et al. (1941),
Rice et al. (1984), Gasser et al. (1986), Hall et al. (1990), Dette et al. (1998), Munk et al. (2005), Tong
et al. (2013), Tecuapetla-Gómez and Munk (2017), among many others. An ordinary difference-
based estimator of first order, which considers all N−1 consecutive differences, is (see e.g. Von Neu-
mann et al. (1941)):

σ̂2Diff =
1

2(N − 1)

N−1∑
j=1

(Yj+1 − Yj)2 . (6)

W.l.o.g. we assume that the K jumps in the mean occur in the last K observations, since the
position of the jumps has no influence on the performance of the estimator in (6). The expectation
and the variance of quadratic forms can be calculated using Seber and Lee (2012), leading to the
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following formulae for the expectation and the variance of the estimator σ̂2Diff:

E
(
σ̂2Diff

)
=

1

2(N − 1)

(
tr (AΣ) + ΘTAΘ

)
,

V ar
(
σ̂2Diff

)
=

1

4(N − 1)2
((
µ4 − 3µ22

)
aTa+ 2µ22tr(A

2)

+ 4µ2Θ
TA2Θ + 4µ3Θ

TAa
)
,

where Θ = E(Y ) = (0, ..., 0, h1, h1 + h2, ..., h1 + ...+ hK)T , µi = E
(
Xi

1

)
, Σ = µ2IN , A = ÃT Ã,

ÃY = (Y2 − Y1, ..., YN − YN−1)T and a is a vector of the diagonal elements of A.
In the following we investigate in which scenarios the estimator σ̂2Mean is preferable over σ̂2Diff

defined in (6). All calculations in this paper have been performed with the statistical software R,
version 3.5.2, R Core Team (2018).
For known jump positions the MSE of both variance estimators can be determined analytically.

The position of the jump is relevant for the performance of the estimator σ̂2Mean. Therefore, it
is reasonable to consider different positions of the K jumps to get an overall assessment of the
performance of the blocks-estimator. For every K ∈ {1, 3, 5}, we generate K jumps of equal
heights h = δ · σ, with δ ∈ {0, 0.1, 0.2, ..., 4.9, 5}, at positions sampled randomly from a uniform
distribution on the values maxn (N − bN/ncn)+1, ..., N−maxn (N − bN/ncn) without replacement,
and calculate the MSE for every reasonable block size n ∈ {2, 3, 4, ..., bN/2c}. This is repeated 1000
times, leading to 1000 MSE values for every h and n based on different jump positions. The average
of these MSE-values is taken for each h and n. Data are generated from the standard normal or the
t5-distribution.
The first panel of Figure 1 shows the MSE-optimal block size nopt of the estimator σ̂2Mean de-

pending on the jump height h = δ · σ with K ∈ {1, 3, 5} jumps for N = 1000 observations. We
observe that nopt decreases for σ̂2Mean as the jump height grows. Blocks of size 2 (resulting in a
non-overlapping difference-based estimator) are preferred when h ≈ 4σ and K = 5 (· · ·), while
larger blocks lead to better results in case of smaller or less jumps.
The second panel of Figure 1 depicts the MSE of σ̂2Mean for the respective MSE-optimal block

size nopt. The MSE of σ̂2Diff is shown in grey for comparison. When dealing with only one jump
( ), the blocks-estimator outperforms the difference based estimator as long as the jump height is
below h = 4.5σ. The corresponding block size satisfies nopt ≥ 5, depending on the height of the
jump. For K = 3 (- - -), the estimator σ̂2Mean yields better results when the jump height is less
than h ≈ 3 · σ, and for K = 5 when the jump height is at most h ≈ 2σ.
Different values for the optimal block-size nopt are obtained in different scenarios. As the true

number and height of the jumps in the mean are usually not known in practice, we wish to choose
a block size which yields good results in many scenarios. We do not consider very high jumps any
further, since they can be detected easily and are thus not very interesting. The square root of
the sample size N has proven to be a good choice for the block size in many applications. If the
estimation of the variance is in the focus of the application, we suggest the following block size,
depending on K:

n = max

{⌊ √
N

K + 1

⌋
, 2

}
. (7)

Therefore, for large N , we get m = N/n =
√
N(K + 1). In this case the number of jumps K

needs to satisfy K = o
(
m1/3

)
= o

(
N1/6K1/3

)
, i.e. K = o

(
N1/4

)
, see Remark 2. A larger rate

5



0 1 2 3 4 5

0
20

40
60

80

δ

M
S

E
−

op
tim

al
 b

lo
ck

 le
ng

th

0 1 2 3 4 5

0.
00

2
0.

00
4

0.
00

6

δ

M
S

E

0 1 2 3 4 5

0.
00

2
0.

00
4

0.
00

6

δ

M
S

E

Figure 1: MSE-optimal block length nopt of σ̂2Mean (top), exact MSE regarding nopt of σ̂2Mean

together with σ̂2Diff (bottom left) and exact MSE of σ̂2Mean when choosing n =
√
N

K+1 (bottom right)
for K = 1 ( ), K = 3 (- - -) and K = 5 (· · ·) with N = 1000, Yt = Xt +

∑K
k=1 hIt≥tk , where

Xt ∼ N(0, 1) and h = δ · σ, δ ∈ {0, 0.1, ..., 5}.

K = o
(
N1/3

)
can be dealt with by choosing m = N/c for some constant c, i.e. a fixed block length

n. Otherwise, if testing is of interest in view of Theorem 3, we suggest choosing a block size which
grows slightly faster than

√
N , e.g. n = max

{⌊
N6/10

K+1

⌋
, 2
}
, which yields similar results as (7). As

K is not known exactly in real applications, there are several possibilities to set K in this formula:

1. Use prior knowledge about the possible value of K.

2. Determine a reasonable upper bound for K.

3. Pre-estimate K with any appropriate procedure (e.g. robust regression trees, see Galimberti
et al. (2007)).

The third panel of Figure 1 shows the MSE of the estimator σ̂2Mean with the block size n chosen
according to (7). For K ∈ {3, 5} there is only a moderate loss of performance when choosing n
according to (7) instead of nopt which depends on the number of jumps K and the height h = δ · σ.
When dealing with K = 1 changes in the mean the performance of the blocks-estimator worsens
slightly, but still yields better results than the difference-based method when the jump height is at
most h ≈ 3σ.
Table 1 shows the exact MSE of the ordinary sample variance for normally distributed data and

different values of K and h, with N = 1000. We observe that the MSE gets very large when the
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number and height of the level shifts increases. Obviously, the blocks- and the difference-based
estimators perform much better than the sample variance.

Table 1: Exact MSE of the sample variance for normally distributed data and different K and h,
N = 1000.

h

0 1 2 3 4 5
1 0.0020 0.0362 0.5404 2.7202 8.5845 20.9459

K 3 - 1.1540 18.3869 93.0310 293.9704 717.6425
5 - 6.7829 108.3786 548.5482 1733.5569 4232.1758

The results for data from the t5-distribution are similar to those obtained for the normal distribu-
tion, see Figure 2. Again, the blocks-estimator with the block size which is a function of the square
root of N performs well and does not lose too much performance compared to the second panel of
Figure 2, where the optimal block size is considered.
Similar results are obtained for N = 2500, see Figures 6 and 7 in the Appendix.
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Figure 2: MSE-optimal block length nopt of σ̂2Mean (top), exact MSE regarding nopt of σ̂2Mean

together with σ̂2Diff (bottom left) and exact MSE of σ̂2Mean when choosing n =
√
N

K+1 (bottom right)
for K = 1 ( ), K = 3 (- - -) and K = 5 (· · ·) with N = 1000, Yt = Xt +

∑K
k=1 hIt≥tk , where

Xt ∼ t5 and h = δ · σ, δ ∈ {0, 0.1, ..., 5}.
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2.2 Estimation of the variance under frequently occurring level shifts

So far we have discussed the case where the number of changes in the mean K is asymptotically
negligible with respect to the number of the blocks m and thus the number of observations N .
However, there might be situations in which level shifts occur frequently, say, with frequency p =

1/P , e.g. p = 1/1000 corresponds to one jump every P = 1000 points on average. The choice of a
growing block size according to the rule in (7) is no longer reasonable in this case.

2.2.1 Estimation with a fixed trimming fraction

Situations with frequent level shifts can be dealt with using an asymmetric trimmed mean of the
block-wise estimates instead of their ordinary average. Thereby we assume that the practitioner
knows this frequency, that it was pre-estimated in a prior study or a lower bound for P was deter-
mined. The corresponding trimmed blocks-estimator is given as

σ̂2Tr,α = CN,Tr,α
1

m− bαmc

m−bαmc∑
j=1

S2
(j), (8)

wherem is the number of blocks and CN,Tr,α is a sample and distribution dependent correction factor
to ensure unbiasedness in the absence of level shifts. In practice this constant can be simulated.
E.g., for the standard normal distribution, α = 0.2, N = 1000 and n = 20 (m = 50) we generate
1000 samples of length N = 1000 and calculate the average of the uncorrected trimmed variance
estimates. The reciprocal of this average value yields C1000,Tr,0.2 = 1.1980

As an example, we generate 1000 time series of length N ∈ {1000, 2500}. We add K = N · p
jumps, with p ∈ {0, 2/1000, 4/1000, 6/1000, 10/1000} of height h ∈ {0, 2, 3, 5} to the generated data
at randomly chosen positions, as was done in Subsection 2.1. We choose n = 20 in order to ensure
that the number of jump-contaminated blocks is sufficiently smaller than the total number of blocks.
Table 2 shows the simulated MSE of the trimmed estimator (8) for α ∈ {0.1, 0.2, 0.5}, as well

as the MSE of σ̂2Mean, σ̂2Diff and σ̂2
β

Tr,ad (see Subsection 2.2.2). We can observe that the trimmed
estimator σ̂2Tr performs better than σ̂2Mean when dealing with many high jumps in the mean. When
zero or few level shifts are present the averaging approach yields the lowest MSE value. Clearly,
the performance of the trimmed estimator depends on the number of jumps in the mean and the
trimming parameter α. Larger values of α are required when dealing with many jumps but lead to
an increased MSE if there are only a few jumps. Therefore, it is reasonable to choose α adaptively,
as will be described in the next Subsection 2.2.2.

2.2.2 Adaptive choice of the trimming fraction

Instead of using a fixed trimming fraction we can choose α adaptively, yielding the adaptive trimmed
estimator σ̂2Tr,ad with

σ̂2Tr,ad = CN,Tr,ad
1

m− bαadaptmc

m−bαadaptmc∑
j=1

S2
(j) (9)

and αadapt the adaptively chosen percentage of the blocks-estimates which will be removed. We
use the approach for outlier detection discussed in Davies and Gather (1993) to determine αadapt,
assuming that the underlying distribution is normal. In this case the distribution of the sample
variance is well known, i.e., in block j we have that (n− 1)S2

j /σ
2 ∼ χ2

n−1. Since the true variance

8



Table 2: Simulated MSE of σ̂2Tr,α, σ̂2Mean , σ̂2Diff and σ̂2
β

Tr,ad for normally distributed data and
different N , h and K = p ·N with p ∈ {0, 2/1000, 4/1000, 6/1000, 10/1000}.

K h σ̂2Tr,0.1 σ̂2Tr,0.2 σ̂2Tr,0.5 σ̂2Mean σ̂2Diff σ̂2
0.05

Tr,ad σ̂2
0.1

Tr,ad

N = 1000

0 0 0.0021 0.0023 0.0031 0.0021 0.0030 0.0020 0.0021

2

2 0.0025 0.0026 0.0034 0.0025 0.0030 0.0026 0.0027
3 0.0028 0.0028 0.0037 0.0037 0.0031 0.0026 0.0026
5 0.0032 0.0031 0.0038 0.0122 0.0037 0.0025 0.0024

4

2 0.0038 0.0036 0.0040 0.0029 0.0031 0.0042 0.0037
3 0.0047 0.0040 0.0043 0.0045 0.0033 0.0034 0.0034
5 0.0050 0.0040 0.0042 0.0179 0.0056 0.0025 0.0027

6

2 0.0053 0.0046 0.0047 0.0032 0.0032 0.0058 0.0053
3 0.0082 0.0055 0.0049 0.0051 0.0038 0.0047 0.0043
5 0.0135 0.0062 0.0050 0.0202 0.0087 0.0029 0.0029

10

2 0.0120 0.0088 0.0068 0.0046 0.0034 0.0125 0.0109
3 0.0288 0.0130 0.0077 0.0066 0.0050 0.0098 0.0075
5 0.1330 0.0147 0.0075 0.0222 0.0187 0.0033 0.0032

N = 2500

0 0 0.0010 0.0010 0.0014 0.0008 0.0012 0.0009 0.0009

5

2 0.0012 0.0012 0.0014 0.0011 0.0012 0.0013 0.0013
3 0.0014 0.0013 0.0015 0.0018 0.0013 0.0013 0.0011
5 0.0015 0.0014 0.0016 0.0069 0.0018 0.0010 0.0009

10

2 0.0023 0.0020 0.0020 0.0013 0.0013 0.0029 0.0025
3 0.0030 0.0022 0.0019 0.0021 0.0015 0.0021 0.0017
5 0.0034 0.0022 0.0019 0.0086 0.0037 0.0011 0.0011

15

2 0.0039 0.0029 0.0024 0.0015 0.0013 0.0049 0.0044
3 0.0064 0.0037 0.0025 0.0027 0.0019 0.0035 0.0030
5 0.0107 0.0042 0.0028 0.0119 0.0068 0.0013 0.0012

25

2 0.0100 0.0069 0.0042 0.0021 0.0016 0.0117 0.0102
3 0.0268 0.0105 0.0050 0.0039 0.0032 0.0092 0.0069
5 0.1239 0.0130 0.0054 0.0186 0.0168 0.0019 0.0015

σ2 is not known we propose to replace σ2 by an appropriate initial estimate, such as the median of
the blocks-estimates, i.e.,

σ̂2Med = CN,Med ·med{S2
1 , ..., S

2
m}, (10)

where CN,Med is a correction factor in order to ensure unbiasedness in the absence of level shifts.
Subsequently, we remove those values (n − 1)S2

j /σ̂
2Med which exceed qχ2

n−1,1−βm , the (1 − βm)-
quantile of the χ2

n−1-distribution, with βm = 1 − (1 − β)1/m and β ∈ (0, 1). We will refer to the

adaptively trimmed estimator based on the approach of Davies and Gather (1993) as σ̂2
β

Tr,ad.
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Assuming that the expected percentage of level shifts in the data is at most 1%, i.e. the occurrence
frequency is p = 1/P = 1/100, we suggest choosing the block size n = 20. In this way it is ensured
that the number of uncontaminated blocks is much larger than the number of perturbed blocks.
Moreover, we choose β ∈ {0.05, 0.1}.

Table 3: Average number of trimmed blocks in the absence of level shifts for normally distributed
data and different N and β.

N

1000 2500

β
0.05 0.0647 0.0583
0.1 0.1268 0.1208

In the absence of level shifts slightly more than βm ·m blocks will be removed on average, as the fol-
lowing simulation suggests. We generated 10000 sequences of observations of size N ∈ {1000, 2500}
for β ∈ {0.05, 0.1}. Table 3 shows the average number of trimmed blocks in the absence of level
shifts.
In order to assess the performance of the adaptive trimmed estimator σ̂2

β

Tr,ad we conduct a simu-
lation study. We will consider N ∈ {1000, 2500}, h ∈ {0, 2, 3, 5}, K ∈ {0, 2, 5, 10} and the block size
n = 20. The correction factor in (9) has to be simulated taking into account that the percentage
of the omitted block-estimates is no longer fixed. Therefore, for given N and β we generate 1000
sequences of observations. In each simulation run we calculate the block estimates Sj , j = 1, ...,m,

and the initial estimate of the variance σ̂2Med. Subsequently, we remove the values (n−1)S2
j /σ̂

2Med

which exceed the quantile qχ2
19,1−βm . Then the average value of the remaining block-estimates is com-

puted. The procedure yields 1000 estimates. The correction factor is the reciprocal of the average
of these values. For N = 1000 and β = 0.05 the simulated correction factor is C0.05

1000,Tr,ad = 1.0020,
while for N = 2500 we have C0.05

2500,Tr,ad = 1.0009, so both are are nearly 1 and could be neglected
with little loss. For β = 0.1 similar values are obtained.

The simulated MSE for the adaptive trimmed variance estimator σ̂2
β

Tr,ad is given in Table 2. We

see that the estimator σ̂2
β

Tr,ad performs better than σ̂2Tr,α, σ̂2Mean and σ̂2Diff when the number or
the height of the jumps is large. Large level shifts are detected easily and removed by the adaptive
approach. When there are only a few level shifts, which are not very large, the estimator σ̂2Mean

yields slightly better results.

Remark 5. When other distributional assumptions are made, one can use the fact that the term
√
n
(
S2
j − σ2

)
/
√
E
(
X4

1

)
− σ4 is approximately standard normal, when n is large enough, i.e. at

least 50 observations per block are recommended. In this case the amount of level shifts should
be reasonably smaller to ensure that the number of uncontaminated blocks is much larger than the
number of perturbed blocks, i.e. p should be not larger than 0.5% of N .
The fourth non-central moment µ4 = E

(
X4

1

)
has to be estimated properly in the presence of level

shifts then. We can estimate this quantity in blocks and then compute the median of the blocks-

estimates µ̂4,Med, as was done in (10). Then, blocks-values
√
n
(
S2
j − σ̂2Med

)
/

√
µ̂4,Med − σ̂2

2

Med

which exceed the (1− βm)-quantile of the standard normal distribution are removed.

10



3 Block-wise estimation of the standard deviation

In many applications we do not wish to estimate the variance σ2 but rather the standard deviation
σ, e.g. for standardization.
We will consider the two blocks-estimators

σ̂Mean,1 = CN,1
1

m

m∑
j=1

Sj and (11)

σ̂Mean,2 = CN,2

√√√√ 1

m

m∑
j=1

S2
j = CN,2

√
σ̂2Mean, (12)

where CN,1 and CN,2 are sample dependent correction factors to ensure unbiasedness when no
changes in the mean are present. For the first estimator the expected value and the variance are
needed for Sj rather than for S2

j in every block j = 1, ...,m.
For this purpose we will first consider the exact distribution of the empirical variance when dealing

with jumps in the mean. Given independent identically normally distributed data Xj,1, ..., Xj,n it

is well known that
(n−1)S2

j

σ2 ∼ χ2
n−1 in a j-th jump-free block with n observations. The situation

is different in the presence of jumps. Without loss of generality the following lemma is expressed
in terms of the first block consisting of the observation times t = 1, . . . , n and containing K̃1 ≤ K

jumps.

Lemma 6. Assume that X1, ..., Xn ∼ N (0, σ2) and Yt = Xt +
∑K̃1

k=1 hkIt≥tk for t = 1, ..., n. Then
we have for S2

1 = 1
n−1

∑n
t=1(Yt − Y 1)

2 that

n− 1

σ2
S2
1 ∼ χ2

n−1,λ1 (the non-central chi-squared distribution),

where λ1 = 1
σ2

∑n
t=1

(
∆1,t −∆1

)2
, ∆1,t =

∑K̃1
k=1 hkIt≥tk and ∆1 = 1

n

∑n
t=1

∑K̃1
k=1 hkIt≥tk .

Proof. Y 1 = X1 + ∆1 and Yt − Y 1 = Xt −X1 −∆1 + ∆1,t, t = 1, ..., n, are independent, since X1

and Xt −X1 are independent and the remaining terms are deterministic constants. Hence, S2
1 and

Y 1 are independent. Furthermore,

n∑
t=1

(
Yt −∆1

σ

)2

︸ ︷︷ ︸
∼χ2

n,λ1
(Yt ∀t independent)

=

n∑
t=1

(
Yt − Y 1 + Y 1 −∆1

σ

)2

=
n∑
t=1

(
Yt − Y 1

σ

)2

+
n∑
t=1

(
Y 1 −∆1

σ

)2

+ 2

(
Y 1 −∆1

σ

) n∑
t=1

(
Yt − Y 1

σ

)
=
n− 1

σ2
S2
1 +

n

σ2
(
Y 1 −∆1

)2
=
n− 1

σ2
S2
1 +

n

σ2
X

2
1︸ ︷︷ ︸

∼χ2
1

The moment generating function at z ∈ R of both sides and the independence of S2
1 and Y 1 yield:

(1− 2 · z)−n/2 exp

(
λ1z

1− 2z

)
= Mχ2

n,λ1

(z) = Mn−1

σ2
S2
1
(z) ·Mχ2

1
(z)

11



= Mn−1

σ2
S2
1
(z) · (1− 2 · z)−1/2

⇔Mn−1

σ2
S2
1
(z) = (1− 2 · z)−(n−1)/2 exp

(
λ1z

1− 2z

)
= Mχ2

n−1,λ1

(z)

⇒ n− 1

σ2
S2
1 ∼ χ2

n−1,λ1 .

In the following we assume that B ≤ K blocks are contaminated by K̃1, ..., K̃B jumps, respectively,
with

∑B
k=1 K̃k = K. W.l.o.g. assume that the jumps are contained in the last B blocks, while the

first m−B > 0 blocks do not contain any jumps. The square root of a χ2
n−1,λj -distributed random

variable (n− 1)S2
j /σ

2 is χ-distributed with n− 1 degrees of freedom and non-centrality parameter√
λj , see e.g. Lax (1985) and Miller (1964). We hence have

√
n− 1Sj/σ ∼ χn−1,√λj , j = 1, . . . ,m,

where λj = 0 for the first blocks j = 1, . . . ,m − B, i.e.,
√
n− 1Sj/σ ∼ χn−1. The moments of Sj

are given by

E(Sj) =

√
2σ√
n− 1

Γ(0.5n)

Γ(0.5(n− 1))
F1,1(−0.5, 0.5(n− 1),−0.5λj),

V ar(Sj) = σ2 +
σ2

n− 1

(
λj −

(
E(Sj)

√
n− 1

σ

)2
)
,

where F1,1(a, b, z) represents the generalized hypergeometric function, see Olver et al. (2010) for
more details. The exact finite sample correction factor to ensure unbiasedness when no change in
the mean is present, i.e., K = 0, is

CN,1 =

√
n− 1√

2

Γ(0.5(n− 1))

Γ(0.5n)
.

Therefore, the MSE of the estimator σ̂Mean,1 (see (11)) is given as

MSE(σ̂Mean,1, σ) =

CN,1
m

(m−B)E(S1) +

m∑
j=m−B+1

E (Sj)

− σ
2

+ C2
N,1

m−B
m2

V ar (S1) +
1

m2

B∑
j=m−B+1

V ar (Sj)

 ,

assuming that S1 arises from a block without jumps, while Sj , j = m−B+1, ...,m, are the estimates
in contaminated blocks.
For the second estimator (12) we have the following statements on its expectation and its variance

as well as a suitable finite sample correction factor in the absence of jumps.

σ̂Mean,2 = CN,2
σ√

m(n− 1)

√√√√√√√√
n− 1

σ2

m−B∑
j=1

S2
j︸ ︷︷ ︸

∼χ2
(m−B)(n−1)

+
n− 1

σ2

m∑
j=m−B+1

S2
j︸ ︷︷ ︸

∼χ2
B(n−1),

∑m
j=m−B+1

λj︸ ︷︷ ︸
∼χ

m(n−1),
√∑m

j=m−B+1
λj

12



E (σ̂Mean,2) = CN,2
σ
√

2√
m(n− 1)

Γ(0.5(m(n− 1) + 1))

Γ(0.5m(n− 1))
F1,1

−0.5, 0.5m(n− 1),

m∑
j=m−B+1

−λj
2

 ,

V ar (σ̂Mean,2) = C2
N,2

σ2 +
σ2

m(n− 1)

 m∑
j=m−B+1

λj −

(
E(σ̂Mean,2)

CN,2

√
m(n− 1)

σ

)2
 ,

CN,2 =

√
m(n− 1)√

2

Γ(0.5m(n− 1))

Γ(0.5(m(n− 1) + 1))
.

The following consistency statements are valid for the two introduced estimators σ̂Mean,1 =

CN,1
1
m

∑m
j=1 Sj (as defined in (11)) and σ̂Mean,2 = CN,2

√
1
m

∑m
j=1 S

2
j (as defined in (12)) of σ:

Corollary 7. Under the conditions of Theorem 1 the estimators σ̂Mean,1 and σ̂Mean,2 converge almost
surely to σ, as N →∞.

Proof. The strong consistency of σ̂Mean,2 follows immediately from the Continuous Mapping Theo-
rem.
For σ̂Mean,1, we have due to Hu et al. (1989) that

CN,1
1

m

m∑
j=1

(Sj − E (Sj))→ 0 almost surely,

where CN,1 → 1, since the sample standard deviation is a consistent estimator for σ in every block
when no changes in the mean are present, see Remark 8. Let Sj,h be the sample standard deviation
in the perturbed block while Sj,0 is the estimate in the uncontaminated block. We have that

CN,1
m

m∑
j=1

(Sj − E (Sj)) = σ̂Mean,1 −
CN,1
m

m−B∑
j=1

E (Sj,0) +
m∑

j=m−B+1

E (Sj,h)

 ,

i.e., it suffices to show CN,1
m

(∑m−B
j=1 E (Sj,0) +

∑m
j=m−B+1E (Sj,h)

)
→ σ. For the first of these two

terms we have

1

m

m−B∑
j=1

E (Sj,0CN,1)︸ ︷︷ ︸
=σ

=
m−B
m

σ −→ σ as N −→∞,

13



and for the second

1

m

m∑
j=m−B+1

E (Sj,hCN,1) =
CN,1
m

m∑
j=m−B+1

E
(√

S2
j

)

≤
CN,1
m

m∑
j=m−B+1

√√√√E

(
S2
j,0 +

n∑
t=1

2(Xj,t − X̄j)(∆j,t −∆j) +
(
∆j,t −∆j

)2
n− 1

)

=
CN,1
m

m∑
j=m−B+1

√√√√E

(
S2
j,0 +

n∑
t=1

(
∆j,t −∆j

)2
n− 1

)

=
CN,1
m

m∑
j=m−B+1

√√√√σ2 +
n∑
t=1

(
∆j,t −∆j

)2
n− 1︸ ︷︷ ︸

∈
[
σ,
√
σ2+ n

n−1(
∑K
k=1 hk)

2
]

≤ CN,1
B

m

√√√√σ2 +
n

n− 1

(
K∑
k=1

hk

)2

−→ 0,

where ∆j,t and ∆j are defined in the proof of Theorem 1.

Remark 8. The correction factors CN,1 and CN,2 satisfy

CN,1 → 1 and CN,2 → 1 as N →∞.

This can be shown with Lemma 1.4A in Serfling (2009). Therefore, for large N and n we can
neglect the correction factors when using the estimators σ̂Mean,1, σ̂Mean,2 with block sizes n which are
a function of N with n→∞.

We will now investigate the performance of both estimators under normality, where the exact
MSE can be considered. Again, we will generate jumps at random positions as was done in Section
2.
In the first panel of Figure 3 we see that in many cases the estimator σ̂Mean,1 requires larger block

sizes than σ̂Mean,2. The second panel of Figure 3 shows the MSE arising from the optimal block size.
For this choice, the estimator σ̂Mean,1 apparently works better since its MSE is smaller than that of
the square root of the blocks-variance estimator. This is plausible since jumps cause large positive
biases in the corresponding blocks which affect the mean even more after taking squares. Otherwise,
when choosing the block size according to the rule (7), this conclusion remains valid when the jump
height is rather large, while the estimator σ̂Mean,2 is preferable in case of small jumps, see the third
panel of Figure 3. All in all, the results worsen only slightly when choosing the block size according
to the rule (7) instead of the optimal one.

Remark 9. When dealing with frequently occurring level shifts, as is discussed in Section 2.2, the

square root of the variance estimator σ̂2
β

Tr,ad from (9) can be used in order to estimate the standard
deviation σ. For large N a correction factor to ensure unbiasedness under no level shifts can be
neglected.
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Figure 3: MSE-optimal block length nopt of σ̂Mean,1 and σ̂Mean,2 (top), exact MSE regarding nopt
of σ̂Mean,1 together with σ̂Mean,2 (bottom left) and exact MSE of σ̂Mean,1 and σ̂Mean,2 when choosing
n =

√
N

K+1 (bottom right) for K = 1 ( ), K = 3 (- - -) and K = 5 (· · ·) with N = 1000,
Yt = Xt +

∑K
k=1 hIt≥tk , where Xt ∼ N(0, 1) and h = δ · σ, δ ∈ {0, 0.1, ..., 5}.

4 Application

In this section we apply the blocks-approach to two datasets in order to estimate the variance (or
the standard deviation).

4.1 Nile river flow data

The first dataset contains the widely discussed Nile river flow records in Aswan from 1871 to 1984,
see e.g. Hassan (1981), Hipel and McLeod (1994), Syvitski and Saito (2007), among many others.
We consider the N = 114 annual maxima of the average monthly discharge in m3/s, since these
values are often assumed to be independent in hydrology. The maxima are determined from January
to December. The flooding season is from July to September, see Hassan (1981). The construction
of the two Aswan dams in 1902 and from 1960 to 1969 obviously caused changes in the river flow, see
Hassan (1981) and Hipel and McLeod (1994). In order to verify that the annual maximal values are
independent we plot the ACF and the PACF of the values between the two possible change-points,
i.e. for the period 1903 – 1960, see the lower panel of Figure 4, which indicates that the assumption
of independence is justified. Moreover, we used Levene’s test to check the three segments of the
data (divided by the years 1902 and 1960) for equality of variances. The null hypothesis of equal
variances was not rejected with a p-value of p = 0.40.
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The ordinary sample variance of the entire data yields the value 3243866, the corresponding
sample standard deviation is 1801.07, see Table 4. For the blocks-estimator of the variance from (2)
we choose the block size according to (7) with K = 2 getting n = b

√
114/3c = 3. The corresponding

estimate of the variance is σ̂2Mean = 2123327.60. In order to avoid determining a correction factor for
the estimator of the standard deviation we use the estimator (12) since the number of observations is
not large enough to use the estimator (11) without the correction factor. We get σ̂Mean,2 = 1457.16.
This can be compared to the ordinary sample variance of the values between the years 1903 and 1960
which is 2129229.70, and the sample standard deviation of 1459.19. We conclude that the blocks-
procedures from (2) and (12) perform better than their ordinary counterparts since the estimated
values on the whole dataset are similar to those for the period 1903 – 1960 in between the changes.

Table 4: Estimates of the variance and the standard deviation for the annual maxima of the average
monthly discharge of the Nile river in Aswan.

Period K S2 S σ̂2Mean σ̂Mean,2

1871 – 1984 2 3243866 1801.07 2123327.60 1457.16
1903 – 1960 0 2129229.70 1459.19 2003210.50 1415.35
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Figure 4: Maximal monthly discharge of the Nile river at Aswan in the period 1871 – 1984 (upper
panel); the corresponding ACF (left lower panel) and PACF (right lower panel) for the years 1903
– 1960.

Furthermore, we apply the adaptive trimmed estimator σ̂2
β

Tr,ad to the data for comparison, al-
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though frequent level shifts are not assumed to appear in the river flow data. A Q-Q plot of the
data indicates that the deviation from a normal distribution is not very large, see Figure 8 in the
Appendix. With β = 0.05 and n = 10 (m = 11 blocks) no blocks are trimmed away during the

procedure. We get an estimate σ̂2
0.05

Tr,ad = 2260282 which is much smaller than the ordinary sample
variance of the data and not far from σ̂2Mean with n = 3.

4.2 PAMONO data

In the next example we use data from the PAMONO (Plasmon Assisted Microscopy of Nano-Size
Objects) biosensor, provided by the Leibniz- Institut für Analytische Wissenschaften – ISAS – e.V.
in Dortmund, see Zybin et al. (2010). The PAMONO biosensor is used for detection of particles,
primarily viruses, see e.g. Siedhoff et al. (2011), Timm et al. (2011) and Zybin et al. (2010). A time
series of grayscale images is obtained during the process of recording. An obvious level shift in the
data is caused by the adhesion of a virus on the sensor surface. A change of the variance after a
jump in the mean is not expected to occur. More information on this can be found in Timm et al.
(2011) and Abbas et al. (2016).
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Figure 5: Intensity over time for one pixel (upper panel) and a boxplot of variances for the virus-
free pixels (lower panel) together with the ordinary sample variance of the above data (- - -) and
blocks-variance estimates for K ∈ 0, 1, ..., 5 ( ).

In the upper panel of Figure 5 we see a time series corresponding to one pixel which exhibits a
virus adhesion, therefore revealing several level shifts in the mean of the time series. N = 1000

observations are available. The lower panel shows a boxplot of 101070 values of the ordinary sample
variance for time series which correspond to pixels without virus adhesion. Since changes in the
mean are not expected there, we use these data in order to have an insight into the typical value
range of the variance. The sample variance of the contaminated data (upper panel) is 1.59 · 10−4

(- - -) which is not within the typical range of values, since it exceeds the upper whisker of the
boxplot. The blocks-estimator σ̂2Mean with n chosen according to the rule (7), with K ∈ 0, 1, ..., 5,
yields values within the interval [1.15 ·10−4, 1.18 ·10−4] ( ) which are well within the interquartile
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range. We conclude that the blocks-approach yields reasonable estimates for these data.

Again, we apply the adaptive trimmed estimator σ̂2
β

Tr,ad for comparison, although level shifts
occur only rarely in this application. A Q-Q plot of the data indicates that the assumption of a
normal distribution is reasonable, see Figure 9 in the Appendix. With n = 20 and β = 0.05 one
block is trimmed away during the procedure and we get σ̂2

0.05

Tr,ad = 1.11 · 10−4. This value is within
the interquartile range and also a reasonable estimate of the variance.

5 Conclusion

In the presence of level shifts ordinary variance estimators perform poorly. In this paper we con-
sidered several estimation procedures in order to account for possible changes in the mean. If only
few level shifts are expected in a long sequence of observations our recommendation is to use the
blocks-variance estimator σ̂2Mean. This estimation procedure does not require knowledge of the
underlying distribution and performs well in the aforementioned situation.
If level shifts are expected to occur frequently and the practitioner is willing to make a distribu-

tional assumption we recommend using the adaptive trimmed procedure σ̂2
β

Tr,ad. Under normality
the χ2-distribution of the sample variance is used in order to choose the trimming parameter prop-
erly. An appropriate estimate of the fourth moment of the data is required when other distributions
are assumed.
If no distributional assumptions can be made in the case of frequently occurring level shifts the

difference-based estimator, as defined in (6) can be used.
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Figure 6: MSE-optimal block length nopt of σ̂2Mean (top), exact MSE regarding nopt of σ̂2Mean

together with σ̂2Diff (bottom left) and exact MSE of σ̂2Mean when choosing n =
√
N

K+1 (bottom right)
for K = 1 ( ), K = 3 (- - -) and K = 5 (· · ·) with N = 2500, Yt = Xt +

∑K
k=1 hIt≥tk , where

Xt ∼ N(0, 1) and h = δ · σ, δ ∈ {0, 0.1, ..., 5}.
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Figure 7: MSE-optimal block length nopt of σ̂2Mean (top), exact MSE regarding nopt of σ̂2Mean

together with σ̂2Diff (bottom left) and exact MSE of σ̂2Mean when choosing n =
√
N

K+1 (bottom right)
for K = 1 ( ), K = 3 (- - -) and K = 5 (· · ·) with N = 2500, Yt = Xt +

∑K
k=1 hIt≥tk , where

Xt ∼ t5 and h = δ · σ, δ ∈ {0, 0.1, ..., 5}.
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Figure 8: Q-Q plot of the maximal monthly discharge of the Nile river in the period 1871 – 1984.
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Figure 9: Q-Q plot of a pixel with a virus adhesion from the PAMONO data.
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