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Abstract

We introduce generalized sign tests based on K-sign depth, shortly denoted
by K-depth. These so-called K-depth tests are motivated by simplicial regression
depth. Since they depend only on the signs of the residuals, these test statistics
are easy to comprehend and outlier robust. We show that the K-depth test with
K = 2 is equivalent to the classical sign test so that K-depth tests with K > 2
are generalizations of the classical sign test. Since the K-depth test with K = 2 is
equivalent to the classical sign test, it has the same drawbacks as the classical sign
test. However, the generalized sign tests with K > 2 are much more powerful. We
show this by deriving their behavior at observations with few sign changes. Thereby
we also prove an upper bound for the K-depth which is attained by observations
with alternating signs of residuals. Furthermore, we prove the consistency of the K-
depth. Finally, we demonstrate the good power of the K-depth tests for relevance
testing, quadratic regression, and tests for explosive AR(2) and nonlinear AR(1)
regression.

Keywords: Simplicial regression depth, K-sign depth, K-depth test, sign test, relevance
test, quadratic regression, nonlinear AR(1) regression, AR(2) regression.

1 Introduction

We consider stochastic models where a parameter θ ∈ Θ ⊂ Rp, p ∈ IN , is unknown and
where residuals R1(θ), . . . , RN(θ) of N observations in R are independent and identically
distributed with

Pθ(Rn(θ) > 0) =
1

2
= Pθ(Rn(θ) < 0). (1)

∗Department of Statistics, TU Dortmund University, D-44227 Dortmund,
Germany, kevin.leckey@tu-dortmund.de, dennis.malcherczyk@tu-dortmund.de,
cmueller@statistik.tu-dortmund.de

1



Examples of such models are linear and nonlinear regression models with additive errors
En where the observations are of the form Yn = g(xn, θ) + En with xn ∈ Rq so that the
residuals are Rn(θ) = Yn − g(xn, θ). Generalized linear and nonlinear models are further
examples if the link function can be expressed by the median of the observations Yn,
i.e. if med(Yn) = g(xn, θ). More examples are given by stochastic processes with i.i.d.
increments as AR(p) processes given by Yn = g(Yn−1, . . . , Yn−p, θ) + En.

In models given by (1), the classical sign test can be used for testing hypotheses H0 :
θ = θ0 and for deriving confidence sets. The classical sign tests counts the positive (or
negative) residuals and uses the fact that the number of positive (negative) residuals
has a binomial distribution with parameter 1

2
. In particular, it does not reject the null

hypothesis H0 : θ = θ0 if half of the residuals Rn(θ0) are positive and half of them are
negative. However, this can happen also for parameters far away from θ0, typically in
situations where the first half of residuals are negative (positive) and the second half
of residuals are positive (negative). Hence the power of the classical sign test for such
alternatives is very bad.

The bad power of the classical sign test can be seen, for example, in the simulations studies
of Kustosz et al. (2016a) and Kustosz et al. (2016b) where the classical sign test was
compared to tests based on simplicial regression depth for linear and nonlinear regression
and autoregression with two unknown regression parameters. Simplicial regression depth
is a modification of the regression depth introduced by Rousseeuw and Hubert (1999) to
generalize the depth notion to regression. Originally, the half space depth of Tukey (1975)
was used to get a generalization of the median for multivariate data. Liu (1988, 1990)
extended this to simplicial depth. Afterwards many depth notions were introduced, see
e.g. Zuo and Serfling (2000); Mosler (2002); Mizera (2002); Mizera and Müller (2004);
López-Pintado and Romo (2007, 2009); Agostinelli and Romanazzi (2011); Denecke and
Müller (2011); Lok and Lee (2011); Paindaveine and van Bever (2013); Claeskens et al.
(2014); López-Pintado et al. (2014); Paindaveine and Van Bever (2018); Nagy and Ferraty
(2018); Wang (2019). Regression depth and simplicial regression depth are two of these
depth notions and the relation between them is the same as between Liu’s simplicial
depth and the half space depth. Both simplicial depth notions are given by the relative
number of subsets with p + 1 observations where the half space depth or the regression
depth, respectively, of a p-dimensional parameter vector is greater than zero.

Simplicial depth has the advantage that it is a U-statistics although it is often a degen-
erated U-statistic so that more effort is necessary to get the asymptotic distribution, see
Dümbgen (1992); Müller (2005); Wellmann et al. (2009); Wellmann and Müller (2010a,b);
Kustosz et al. (2016a). Moreover, for its calculation, Rousseeuw and Hubert (1999) and
Müller (2005) noted that the regression depth of a p-dimensional parameter vector within
p+ 1 observations is greater than zero if and only if the residuals have alternating signs.
Sufficient conditions and a proof for this property are given by Kustosz et al. (2016b).
One of the sufficient conditions is that the observations are given by a natural order as
this is the case for time series. Moreover, the proof of the asymptotic distribution of the
simplicial regression depth for p = 2 given by Kustosz et al. (2016a) is not restricted
to AR(1) regression since it uses only the alternating signs of p + 1 = 3 residuals. In
particular, the derived asymptotic distribution can be used as soon as there is a natural
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ordering of the observations and the median of the residuals is zero. This leads to the idea
to define simplicial depth not via regression depth but via alternating signs of residuals.

We call this depth notion K-sign depth or shortly K-depth where K stands for the
number of residuals used in the simplicial depth. It is not necessary any more to choose
K = p + 1 if the unknown parameter vector is p-dimensional. Tests based on this depth
notion are called K-depth tests. We show in this paper that the K-depth test with
K = 2 is equivalent to the classical sign test so that K-depth tests with K > 2 are indeed
generalizations of the classical sign test. Moreover, we demonstrate that K-depth tests
with K > 2 are much more powerful than the classical sign test. In particular, they do
not have the drawback of bad power as soon as half of the residuals are positive and the
others are negative as is the case for the classical sign test. Since they are based only on
signs of residuals, these tests are outlier robust.

In Section 2, we introduce theK-depth and theK-depth tests, show the consistency ofK-
depth, and provide the equivalence of the K-depth test with K = 2 and the classical sign
test. A comparison between the K-depths and K-depth tests for different values of K is
given in Section 3 by considering their behavior in situations where only few sign changes
appear in the residuals. This is done by p-values of the tests and by the test statistics
themselves. Moreover, we derive the maximum possible value of the test statistics which is
always attained for alternating signs of residuals. Section 4 demonstrates the good power
of the K-depth tests for K = 3 and K = 4 via simulations for relevance testing, quadratic
regression, AR(2)- and nonlinear AR(1)-models. Finally, a discussion of the results and
an outlook is given in Section 5. All proofs are given in the appendix.

2 K-sign depth and K-depth tests

2.1 K-depth

If r1 := r1(θ), . . . , rN := rN(θ) are realized residuals for the parameter θ then the K-
sign depth or shortly K-depth dK(r1, . . . , rN) of these residuals is the relative number of
subsets with K elements with alternating signs of the residuals, i.e.

dK(r1, . . . , rN)

:=
1(
N
K

) ∑
1≤n1<n2<...<nK≤N

(
K∏
k=1

11
{

(−1)krnk
> 0
}

+
K∏
k=1

11
{

(−1)krnk
< 0
})

, (2)

if K ≥ 2. Thereby 11{. . .} denotes the indicator function, i.e. the function which equals
1 if the condition in the brackets is satisfied and 0 otherwise. The definition depends
strongly on the order of the residuals so that an order of the residuals must be specified
in advance.

Since the definition in (2) only makes sense for K ≥ 2, we define for K = 1

d1(r1, . . . , rN) :=
2

N

N∑
n=1

11 {rn < 0} ,
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on which the test statistic of the classical sign test is based.

2.2 Consistency of K-depth

If r1 := r1(θ), . . . , rN := rN(θ) are realizations of independent random variables R1 :=
R1(θ), . . . , RN := RN(θ) satisfying (1) then the expectation of the K-depth is given by

Eθ
(
dK(R1(θ), . . . , RN(θ))

)
=

1(
N
K

) ∑
1≤n1<n2<...<nK≤N

((
1

2

)K
+

(
1

2

)K)
=

(
1

2

)K−1

. (3)

To see that the K-depth converges to this expected value, we need the following repre-
sentation of K alternating signs.

Lemma 2.1.
If En1 , ..., EnK

are random variables with P (Eni
6= 0) = 1 for i = 1, ..., K and K ∈ N\{1}

then we have

K∏
k=1

11{Enk
(−1)k > 0}+

K∏
k=1

11{Enk
(−1)k < 0} −

(
1

2

)K−1

=
1

2K−1

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

(−1)i(1)+...+i(2L)

2L∏
j=1

Φ(Eni(j)
) P -almost surely, (4)

where Φ(x) := 11{x > 0} − 11{x < 0}.

In particular, Formula (4) yields for K = 2, 3, 4

K = 2 : −1

2
Φ(En1)Φ(En2), (5)

K = 3 : −1

4
(Φ(En1)Φ(En2)− Φ(En1)Φ(En3) + Φ(En2)Φ(En3)) ,

K = 4 :
1

8

( 4∏
i=1

Φ(Eni
)− Φ(En1)Φ(En2) + Φ(En1)Φ(En3)

− Φ(En1)Φ(En4)− Φ(En2)Φ(En3) + Φ(En2)Φ(En4)− Φ(En3)Φ(En4)
)
.

Theorem 2.2.
If R1(θ), . . . , RN(θ) are satisfying (1) then

dK(R1(θ), . . . , RN(θ)) −→
(

1

2

)K−1

Pθ-almost surely for N →∞ for all K ∈ N.
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2.3 K-depth tests

Up to now the asymptotic distribution of

TK(θ) := N

(
dK(R1(θ), . . . , RN(θ))−

(
1

2

)K−1
)

(6)

is only known for K = 2 and K = 3. It is the same as for the simplicial depth for
autoregressive models derived in Kustosz and Müller (2014) and Kustosz et al. (2016a)
since only the signs of the residuals are used in these derivations. However, if N is not
too large, the finite sample distribution for any K can be easily simulated since the
determination of the K-depth with an underlying C++ algorithm is fairly fast.

If a K-depth is used with K ≥ 2 then a hypothesis of the form H0 : θ ∈ Θ0 shall be
rejected if the K-depth dK(r1(θ), . . . , rN(θ)) of θ or TK(θ) is too small for all θ ∈ Θ0.
Hence, if qα is the α-quantile of the finite sample or asymptotic distribution of TK(θ)
under θ then the K-depth test for H0 : θ ∈ Θ0 is given by

reject H0 : θ ∈ Θ0 if sup
θ∈Θ0

TK(θ) < qα. (7)

That this is indeed an (asymptotic) α-level test can be seen as in Müller (2005) for
simplicial regression tests.

2.4 2-depth test and the classical sign test

At first, we show that the 2-depth test, i.e. the K-depth test with K = 2, and the classical
sign test for H0 : θ ∈ Θ0 are equivalent. We define the classical sign test in its asymptotic
form here. I.e. the classical sign test is given by

reject H0 : θ ∈ Θ0 if inf
θ∈Θ0

Tsign(θ)2 > χ2
1,1−α, (8)

where Tsign(θ) :=
1√
N

N∑
n=1

(
11{Rn(θ) < 0} − 1

2
1
2

)
=
√
N (d1(R1(θ), . . . , RN(θ))− 1) and

χ2
1,α is the α-quantile of the χ2

1 distribution. Hence the test statistic of the classical sign
test depends only on the number N− of negative residuals. Equivalently, it can be defined
via the number N+ of positive residuals. Thereby Tsign(θ)2 is minimized if N− = N+ = N

2
.

The test statistic (6) for the 2-depth test also only depends on the number N+ of positive
residuals since the 2-depth satisfies almost surely

d2(R1(θ), . . . , RN(θ)) =
1(
N
2

) N+ (N −N+).

In particular the 2-depth and thus the corresponding test statistic is maximized at N+ =
N
2
leading to

d2(R1(θ), . . . , RN(θ)) =
1(
N
2

) N
2

N

2
=

1

2

N

N − 1
.
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If the finite sample distribution of Tsign(θ)2 and TK(θ) with K = 2 is used then the
corresponding tests are equivalent since both test statistics depend only on N+ or N−,
respectively. However, if both tests are used in their asymptotic versions then they are
only asymptotically equivalent.

To see this, note at first that the asymptotic distribution of the test statistic TK(θ) with
K = 2 was derived by Müller (2005). It is the distribution of a random variable 1

2
(1−X)

where X has a χ2
1 distribution. In particular, qα in (7) is then the α-quantile of the

distribution of this random variable and it satisfies qα = 1
2
(1− χ2

1,1−α).

The following lemma provides the relationship between the two test statistics. Thereby,
the representation of alternating signs given by Lemma 2.1 is used.

Lemma 2.3.

T2(θ) =
N

2(N − 1)
− N

2(N − 1)
Tsign(θ)2.
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Figure 1: 12 observations generated by Yn = g(xn, θ
0)+En with g(x, θ0) = 30−6x+0.5x2

(dashed line, θ0 = (30,−6, 0.5)>) and En ∼ N (0, 1.52). Left hand side: nonfit with one
sign change of θ1 = (120,−24, 1)> providing the function g(x, θ1) = 120− 24x+x2 (solid
line). Right hand side: nonfit with two sign changes of θ2 = (3, 6,−0.5)> providing the
function g(x, θ2) = 3 + 6x− 0.5x2 (solid line).

Since the 2-depth test as well as the sign test depend only on the number N+ of positive
residuals, the ordering of the positive and negative residuals is not relevant. In particular
maximum 2-depth d2 and minimum deviation of d1 from 1 is also achieved if e.g. the
residuals of the first half are negative and the residuals of the second half are positive. But
this is a typical situation of a nonfit. Thereby, according to Rousseeuw and Hubert (1999),
a parameter θ is called a nonfit if there is another parameter θ̃ so that |rn(θ̃)| < |rn(θ)| for
all n = 1, . . . , N . Figure 1 shows two cases of nonfit for the quadratic regression. On the
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left hand side, the first 6 residuals are negative while the last 6 residuals are positive, i.e.
there is only one sign change of the residuals. On the right hand side, the first 3 residuals
are positive followed by 6 negative residuals and the last 3 residuals are positive again
so that here are two sign changes. In both cases, 6 residuals are positive and 6 residuals
are negative so that maximum 2-depth and minimum deviation of d1 from 1 is achieved.
However, for K-depth with K ≥ 3 this drawback does not appear which is shown in the
next section.

3 Comparison of K-depths and K-depth tests

3.1 K-depth for alternating signs

At first we study the behavior of K-depth for alternating signs of residuals. The residuals
r1, . . . , rN have alternating signs if sign(rn) = − sign(rn+1) for n = 1, . . . , N−1 is satisfied.
Alternating signs is the best situation for a good fit and K-depth attains its maximum
value in this situation. Therefore it is of interest what exactly this maximum value is.
This is given by the following lemma. As usual, we use the convention

(
n
k

)
= 0 for n < k.

Theorem 3.1. Suppose the residuals r1, . . . , rN have alternating signs. Then the following
holds for all K ≤ N :

(a) If N +K is odd then

dK(r1, . . . , rN) =
2(
N
K

) ((N +K − 1)/2

K

)

(b) If N +K is even then

dK(r1, . . . , rN) =
1(
N
K

) (((N +K)/2

K

)
+

(
(N +K − 2)/2

K

))

Theorem 3.1 provides that the K-depth of alternating signs converges for N →∞ to the
expected values of the K-depth. This holds also if the residuals are alternating in blocks
of size M , i.e. if sign(rn) = sign(r1) for n = 2LM + m and sign(rn) = − sign(r1) for
n = (2L+ 1)M +m for L = 0, 1, 2, . . . and m = 1, . . . ,M .

Corollary 3.1. If the residuals r1, . . . , rN are alternating in blocks of size M , then

lim
N→∞

dK(r1, . . . , rN) =

(
1

2

)K−1

.

Remark 3.2.
a) Since the maximum possible K-depth is converging to the expected value of the K-
depth according to Corollary 3.1 and the minimum possible depth is always zero, the
distribution of the K-depth cannot be symmetric around its expectation.
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b) If the residuals are alternating in blocks then this is an indicator of a good fit of
the overall model to the data although the residuals are not independent. This happens
in particular if the data contain some vibration behavior which is difficult to filter out.
Hence it is desirable to not reject the model when the residuals are alternating in blocks.
Fortunately, the K-depth converges to the maximum possible value in these situations
which is a necessary condition for the test not to reject. Note that a more careful asymp-
totic study along the lines of Corollary 3.1 reveals that, for r1, . . . , rN as in the corollary,
N(dK(r1, . . . , rN) − (1/2)K−1) converges to the maximum possible value (K − 1)K/2K

obtained for residuals with alternating signs. Hence, the K-depth test does not reject
the model if the sample size is sufficiently large. This is not the case for a simplified
K-depth which uses only subsequent residuals. The simplified K-depth can be defined as
in Kustosz et al. (2016b) for K ≥ 2 by

dSK(r1, . . . , rN)

:=
1

N −K + 1

N−K+1∑
n=1

(
K∏
k=1

11
{

(−1)krn+k−1 > 0
}

+
K∏
k=1

11
{

(−1)krn+k−1 < 0
})

.

Although the asymptotic distribution of the simplified K-depth is known for each K ≥ 2
according to Kustosz et al. (2016b) and it is faster to compute, it has the drawback
that a test based on it rejects models if the data are contaminated by some vibration
noise. Moreover, since the simplified K-depth only considers N −K + 1 subsets instead
of
(
N
K

)
, tests based on it are less powerful than tests based on the full K-depth. This

can be clearly seen from the examples in Kustosz et al. (2016a) and Falkenau (2016) for
AR(1)-models.

3.2 Comparison via the test statistics

In Section 2.4, it was shown that maximum 2-depth d2 and minimum deviation of d1

from 1 is achieved if e.g. the residuals of the first half are negative and the residuals of
the second half are positive. This is is a typical situation of a nonfit with only one sign
change in the residuals. However, for K-depth with K ≥ 3 the following lemma is easy
to see.

Lemma 3.3.
a) If there is only one sign change in r1, . . . , rN then dK(r1, . . . , rN) = 0 for all K ≥ 3.
b) If there are L sign changes in r1, . . . , rN then dK(r1, . . . , rN) = 0 for all K ≥ L+ 2.

Note that a K-depth of zero is the smallest possible value of the K-depth. Hence this
will lead always to a rejection of the hypotheses H0 : θ = θ0 by the K-depth test if the
sample size is high enough that a rejection at level α is possible.

Usually a nonfit of a p-dimensional parameter is expressed by at most p−1 sign changes.
Hence a K-depth test with K = p+1 will protect against bad power at nonfits. However,
K = p + 1 is not necessary for consistency of the K-depth tests at alternatives. Usually
already 3-depth tests and 4-depth tests are consistent tests with good power at nonfits.
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Figure 2: Comparison of 2-depth, 3-depth, 4-depth and the test statistic of the sign test
for alternating signs of residuals and residuals with one, two or three sign changes for
different samples sizes N . (For interpretation of this Figure, the reader is referred to the
web version of this article.)

Figure 2 shows a comparison of 2-depth, 3-depth, 4-depth and the test statistic of the sign
test for alternating signs of residuals and residuals with one, two or three sign changes
for different samples sizes N . In the case of one sign change, the sign change happens
after N

2
positive residuals. In the case of two sign changes, the first sign change is after

N
4

positive residuals and the second sign change after N
2

negative residuals so that the
last N

4
residuals are positive again. In the case of three sign changes, the sign changes are

after N
4
, N

2
, and 3N

4
residuals. Hence in all cases, N

2
residuals are positive and N

2
residuals

are negative. In order to differentiate the various cases for the number of sign changes,
different line types and several color brightnesses are used in Figure 2. E.g. the 4-depth
is represented by different blue color levels.

At first note that the case of alternating signs always leads to highest depth which was
derived in Section 3.1. However, Figure 2 demonstrates clearly that there is no difference
between the 2-depth and sign test statistics for one, two, and three sign changes and
alternating signs. This is opposite to 3-depth and 4-depth where the depth for alternating
signs is always above the depth of few sign changes. Although 3-depth is not zero for two
and three sign changes, it is constantly smaller than the 3-depth at alternating signs. The
3-depth for two and three sign changes is the same here and is equal to

(
N
3

)−1N
4
N
2
N
4

=
3
16

N2

(N−1)(N−2)
. This converges to 3

16
for N → ∞ while the 3-depth for alternating signs

converges to 1
4
according to Corollary 3.1 so that the asymptotic difference is 1

16
. Hence

for N large enough, 3-depth for two and three sign changes will reject H0 : θ = θ0
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Figure 3: The exact (left) and the simulated (right) cumulative distribution function of
3-depth and 4-depth for N = 12 and the depths and the p-values for N = 12 observations
with three sign changes (dashed lines).

since T3(θ0) converges in distribution (Kustosz et al., 2016a, Theorem 1) and therefore
d3 shrinks to 1

4
under H0. While the 4-depth for two sign changes is still zero, it becomes(

N
4

)−1 (N
4

)4
= 3

32
N3

(N−1)(N−2)(N−3)
for three sign changes. This converges to 3

32
for N →∞

while the 4-depth for alternating signs converges to 1
8
according to Corollary 3.1. Here

the asymptotic difference between depth for alternating signs and depths for three sign
changes is 1

32
which is smaller than the difference for 3-depth. If the shrinkage of the

distribution of d4 to 1
8
is the same as for d3 to 1

4
, then this would mean that the 3-depth

test is more powerful for this case of three sign changes.

3.3 Comparison via p-values

Another indicator that the 3-depth test seems to be more powerful than the 4-depth
test can be found in Figure 3. The left hand side of Figure 3 shows the exact cu-
mulative distribution function (cdf) for 3-depth and 4-depth where the cdf was de-
termined by calculating the depth of the 212 = 4096 possible residual vectors. More-
over, the dashed lines in Figure 3 show the 3-depth and the 4-depth and the corre-
sponding p-values for the case of three sign changes in N = 12 observations, i.e. for
(1, 1, 1,−1,−1,−1, 1, 1, 1,−1,−1,−1)>. The 3-depth of this residual vector is 0.2454545
which leads to a p-value of 0.3867188 while the 4-depth of this vector is 0.1636364. This
leads to a p-value of 0.7641602 which is much higher than the p-value of the 3-depth test.
The right hand side of Figure 3 provides a simulated cumulative distribution function
where 1 000 times N = 12 observations were simulated. Each observation is chosen uni-
formly at random from {−1, 1}. Figure 3 shows that the exact and the simulated cdf are
very similar. In particular, the simulated cdf yields similar p-values (0.38 and 0.761) for
(1, 1, 1,−1,−1,−1, 1, 1, 1,−1,−1,−1)> in the 3-depth test and 4-depth test.
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Figure 4: Simulated p-values of 3-depth tests and 4-depth tests for two sign changes (left)
and for three sign changes (right) at different sample sizes N .

Simulated distributions based on 1 000 repetitions are also used in Figure 4. On the left
hand side of this figure the simulated p-values of the 3-depth test and the 4-depth are
given for the case of two sign changes. Here the situation is considered that the first third
of the data has positive signs, the second third of the data has negative signs, and the
last third of the data has positive signs. This leads to the highest possible 3-depth in the
case of two sign changes. The right hand side provides the situation of three sign changes
where the first quarter of signs is positive, the second negative, the third positive and the
last negative. Here, the p-value of the sign test is always 1. The left hand side of Figure 4
shows that the 4-depth test leads to smaller simulated p-values than the 3-depth test in
the situation of two sign changes. This is due to the fact that the 4-depth for two sign
changes is always zero according to Lemma 3.3. However, the p-values of 3-depth tests are
strictly falling and are already very close to the p-value of the 4-depth tests for N = 96.
Moreover, the p-values of the 3-depth tests are smaller than those of the 4-depth tests if
there are three sign changes as is demonstrated on the right hand side of Figure 4. Hence
the 3-depth tests, which are easier to calculate, seem to have a very good power at least
for large sample sizes. This is supported by the following applications.

4 Applications

The high power of 3-depth tests in the case of two unknown parameters was already
shown for explosive AR(1) models, namely in Kustosz et al. (2016a) for linear AR(1)-
models given by Yn = θ0 + θ1 Yn−1 + En and in Kustosz et al. (2016b) for nonlinear
AR(1)-models given by Yn = Yn−1 + θ1 Y

θ2
n−1 +En, see also Falkenau (2016). In particular

these results showed for normally distributed errors En that 3-depth tests possess similar
high power compared to classical tests based on least squares. Here we will provide more
applications. At first we show the high power of 3-depth tests for testing of relevant
difference in two samples where the unknown parameter vector is again two dimensional.
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This is a special situation where the classical sign test is ill-suited since it cannot reject in
some of the alternatives. Afterwards, we consider models with three unknown parameters.
One model is a quadratic regression and the other models are an explosive AR(2)-model
with intercept and a nonlinear AR(1)-model with intercept.

Since for relevance testing only the 3-depth test was studied, we used the quantiles of the
asymptotic distribution there. For the other applications, we used the exact distribution
for the small sample size N = 12 and a simulated distribution for the large sample
size N = 96 since both 3-depth and 4-depth tests were considered and no asymptotic
distribution for the 4-depth test is known up to now. Thereby, the simulated distribution
of the both depth tests were obtained with 10 000 repetitions.

In all applications with a three dimensional unknown parameter vector, we used 100
repetitions for each considered alternative. In some cases we used also 500 repetitions.
However, since a difference was not visible for us, we speeded up the computation by
using only 100 repetitions.

4.1 Relevance tests based on 3-depth

Here we consider two samples given by

Yn = µ1 + En, for n = 1, . . . ,M,

Yn = µ2 + En, for n = M + 1, . . . , N,

so that θ = (µ1, µ2)> is the unknown parameter vector. The ordering of the observations
within the two samples is given by the ordering how the observations appeared within
the two samples. The hypotheses for relevance testing are given by

H0 : |µ1 − µ2| ≤ δ, H1 : |µ1 − µ2| > δ.

Often we have M ≈ N
2
. Then a sign test will never reject the null hypothesis since we

can set θ1 =
(
µ01+µ02

2
,
µ01+µ02

2

)>
for any true θ0 = (µ0

1, µ
0
2)> so that approximately half of

the residuals are positive. Hence a sign test makes no sense here.

If the errors are normally distributed then two classical two-sample t-tests for level α
2
can

be used as follows

reject H0 if (9)
H1

0 : µ1 − µ2 ≤ δ is rejected by the corresponding one-sided t-test
or
H2

0 : µ1 − µ2 ≥ −δ is rejected by the corresponding one-sided t-test.

Since two t-tests are used, the Bonferroni correction of α
2
is necessary. If the variance

σ2 of the normal distribution is known or a lower bound σ2 of it is known, then a more
powerful α-level test for

Hσ
0 : |µ1 − µ2| ≤ δσ, H1 : |µ1 − µ2| > δσ

12



is given by

reject Hσ
0 if T > cα (10)

where T is the classical test statistic of the two-sample t-test and cα satisfies

α = 1− F (cα) + F (−cα).

Thereby F is the cumulative distribution function of the t-distribution with N−2 degrees

of freedom and noncentrality parameter
√

M(N−M)
N

δ. The deviation is the same as for
equivalence tests given by Wellek (2010), pp. 119.

The K-depth relevance test is of the form given by (7) with Θ0 = {(µ1, µ2)> ∈ R2; |µ1−
µ2| ≤ δ}. Hence the K-depth must be calculated for {(µ1, µ2)> ∈ R2; |µ1−µ2| ≤ δ}. This
can be done on a grid given by classical confidence intervals for µ1 and µ2. Let [cil, c

i
u] be

a (1− α
L

)-confidence intervals for µi, i = 1, 2, and set

Ci := {cil, cil + ε, cil + 2ε, . . . , ciu − ε, ciu} with ε =
ciu − cil
J

for some L > 0, J ≥ 10, where L determines how large the grid is and J determines how
fine the grid is. Then we have

{(µ1, µ2)> ∈ R2; |µ1 − µ2| ≤ δ} ≈ {(µ1, µ2)> ∈ C1 × C2; |µ1 − µ2| ≤ δ} =: C.

Hence dK and TK must be calculated only for (µ1, µ2)> ∈ C. Thereby it is advantageous
to start the iteration in the middle of the intervals Ci and to stop as soon as a parameter
(µ1, µ2)> is found so that the null hypothesis is not rejected. In the simulations below,
L = 2 and J = 50 was used. Moreover for the Cauchy distribution, the median instead
of the arithmetic mean was used in the confidence intervals. This choice of the middle of
the confidence interval should be used as soon as the distribution is unknown.

Figure 5 provides the power function of the t-test given by (10) with δ = 1 = σ2 for
20 = M = N − M and errors with standard normal distribution. Thereby a 41 × 41
grid with step length 0.1 was used and the number of repetitions per grid point was
100. The border of the nonrelevance set Θ0 is given by the dotted white lines. It is clear
that this is an infinite band where the behavior parallel to the dashed line given by
µ1 = −µ2 is the same. Hence to obtain a power comparison, we can restrict ourselves
to the set {(µ,−µ)>; µ ∈ [−a, a]} for a ∈ {2, 8} where the nonrelevance set is given by
{(µ,−µ)>; µ ∈

[
−1

2
, 1

2

]
}.

The power comparison on this diagonal for normal and Cauchy distribution for 20 =
M = N − M for the two t-tests and the 3-depth test is shown in Figure 6. Thereby
δ = σ = 1, the standard normal distribution and the standard Cauchy distribution are
used as errors and the power is simulated 4000 times for the normal distribution and 1000
times for the Cauchy distribution for the t-tests. The smaller simulation number for the
Cauchy distribution was used since no improvement was visible with a higher number.
Since the calculation of the 3-depth test needs more time, the power of the 3-depth test
was simulated only 100 times for both distributions. Every power was simulated in steps
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Figure 5: Simulated power of the t-test given by (10) for normally distributed errors for
sample sizes M = N −M = 20, δ = 1 = σ2, and α = 0.05.
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Figure 6: Simulated power of the t-test given by (9) (t-test 1 and t-test, respectively), the
t-test given by (10) (t-test 2), and the 3-depth test on the diagonal {(µ,−µ)>; µ ∈ [−2, 2]}
for normally distributed errors (left) and on the diagonal {(µ,−µ)>; µ ∈ [−8, 8]} for
Cauchy distributed errors (right) for sample sizes M = N − M = 20. (For a colored
version of this figure, the reader is referred to the web version of the article.)

of 0.01 along the diagonal {(µ,−µ)>; µ ∈ [−a, a]} for a ∈ {2, 8}. The left hand side of
Figure 6 concerns the normal distribution. Here the power of the 3-depth test is slightly
worse than that of the t-tests and the t-test given by (10) (t-test 2) shows the best power.
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Since both t-tests are very similar, only the t-test given by (9) is used in the simulation
with Cauchy distributed errors shown on the right hand side. Here the power of the 3-
depth test is much better than that of the t-test. More results of power comparison of
these three tests can be found in Malcherczyk (2018).

4.2 Quadratic regression

In the quadratic regression model given by

Yn = θ0 + θ1 xn + θ2 x
2
n + En, n = 1, . . . , N, θ = (θ0, θ1, θ2)>,

we consider the problem of testing the null hypothesis H0 : θ = (1, 0, 1)> with a test with
level α = 0.05 and samples sizes N = 12 and N = 96. For each simulation, a 41× 41 grid
of alternatives and 100 repetitions for each alternative were used. For N = 12, we used
x1 = −5.5, x2 = −4.5, . . . x6 = −0.5, x7 = 0.5, . . . x12 = 5.5 as explanatory variables and
the exact distribution for the 3-depth and the 4-depth was used to obtain the p-values.
For N = 96, the explanatory variables were chosen as x1 = −5.9375, x2 = −5.875, . . .
x48 = −0.0625, x49 = 0.0625, . . . x96 = 5.9375.

Figure 7 shows the simulated power of the sign test, the F test, the 3-depth test, and the
4-depth test for the case where En has a standard normal distribution and the component
θ1 is fixed to 0. The parameter θ0 and θ2 of the null hypothesis is given by the intersection
of the two dotted lines. The results for N = 12 are shown in the upper part of this figure.
Here, the 3-depth test is even worse than the sign test while only the 4-depth test is
slightly worse than the F test. Similar to the sign test, the 3-depth test possesses an
unbounded area of power less or equal to α = 0.05. This is due to the fact that parameter
choices in this area often lead to exactly two sign changes which cannot be rejected by
the 3-depth test because of the small sample size. More precisely, the maximum 3-depth
for two sign changes is 43·6

12·11·10
= 0.291 providing a p-value of 0.758 so that a rejection

of the null hypothesis is not possible. In this case, the numbers of positive and negative
signs are not equal so that the sign test often has a better power for two sign changes
than the 3-depth test. Since the 4-depth is zero for two sign changes, the power of the
4-depth test is similar to the F test. However, as indicated by Figure 4, the power of the
3-depth test becomes much better for N = 96 which shows the lower part of Figure 7. In
particular the maximum 3-depth for two sign changes is now 323·6

96·95·94
= 0.229 providing

a p-value of 0.014 which is smaller than the significance level α = 0.05. A similar result
was obtained when the component θ0 was fixed to 1. However, when the component θ2

was fixed to 1, then, even for N = 12, the power of the 3-depth test is slightly worse
than the power of the F test and even better than the power of the 4-depth test. The
reason is that two sign changes does not appear in this case. These results are given in
the supplementary material.

Figure 8 shows what happens when the normal distribution for the errors is replaced by
the Cauchy distribution. Here the component θ2 is fixed to 1, but similar results were
obtained when the other two components were fixed (see the supplementary material). If
the errors follow a Cauchy distribution, then the power of the F test becomes very bad
while the power functions of the sign test, the 3-depth test and the 4-depth test change
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Normal distribution, N=12
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Figure 7: Simulated power of the sign test, the F test, the 3-depth test, and the 4-depth
test for normally distributed errors for sample size N = 12 (upper part) and N = 96
(lower part) where the component θ1 is fixed to 0 (20 gray levels were used, where black
corresponds to [0, 0.05] and white to (0.95, 1]).

only slightly. Hence the 3-depth test and the 4-depth test are much more robust against
outliers than the F test.
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Normal distribution, N=96
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Figure 8: Simulated power of the sign test, the F test, the 3-depth test, and the 4-depth
test for errors with normal distribution (upper part) and with Cauchy distribution (lower
part) for sample size N = 96, where the component θ2 is fixed to 1 (20 gray levels were
used, where black corresponds to [0, 0.05] and white to (0.95, 1]).

4.3 AR(2)-model

Here we consider the autoregressive model given by

Yn = θ0 + θ1 Yn−1 + θ2 Yn−2 + En, n = 1, . . . , N, θ = (θ0, θ1, θ2)>,

with Y−1 = Y0 = 5. The aim is to test H0 : θ = (0.2, 0.8, 0.21)> with α = 0.05. In
particular, we have an explosive process without stationarity under the null hypothesis.
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θ2 = 0.21, N = 96 θ0 = 0.2, N = 96
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Figure 9: Simulated power of the sign test, 3-depth test, 4-depth test and t test for the
AR(2)-model where θ2 is fixed to 0.21 on the left-hand side and θ0 is fixed to 0.2 on the
right hand side (20 gray levels were used, where black corresponds to [0, 0.05] and white
to (0.95, 1]).

Classical methods are not working for this situation. However, the sign tests based on
the residuals Rn(θ) = Yn − θ0 − θ1 Yn−1 − θ2 Yn−2 can be used and for them only the
assumption P (En > 0) = P (En < 0) = 1

2
is needed. To compare the sign tests with a

more classical test, we test with the t-test whether the residuals have mean zero. This t-
test is an α-level test for H0 under the assumption of normally distributed errors although
it might be not very powerful. To give this t-test a chance in the simulations, we used
a normal distribution with mean 0 and standard deviation 0.01 for the distribution of
the errors En. A comparison of the sign test, the 3-depth test, the 4-depth test, and this
t-test for testing H0 : θ = (0.2, 0.8, 0.21)> with N = 96 is given by the Figure 9. Thereby
a 41 × 41 grid of alternatives and 100 simulations for each alternative were used. As in
Section 4.2, the parameters of the null hypothesis are given by the intersections of the
two dotted lines.

The left-hand side of Figure 9 shows the results for the situation where θ2 is fixed to the
value of the null hypothesis, i.e. θ2 = 0.21. Here the classical sign test and the t-test have
a problem since they have an unbounded area with very bad power (the black area). The
opposite is true for the 3-depth test and the 4-depth test. The power of the two is only
in a small area around the null hypothesis below α = 0.05. The same result was obtained
when θ1 is fixed to 0.8, the value of the null hypothesis, see the supplementary material.
A different behavior appears when θ0 is fixed 0.2, the value of the null hypothesis. This
behavior is given on the right-hand side of Figure 9. Here all four methods behave similarly
and are struggling with an identifiability problem. This identifiability problem disappears
for larger values of θ1 and θ2. However, then no difference between the methods is visible
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anymore.

4.4 Nonlinear AR(1)-model

Motivated by crack growth analysis, Kustosz et al. (2016b) and Falkenau (2016) con-
sidered already an explosive nonlinear AR(1)-model but without intercept since their
method could be used only for a two-dimensional unknown parameter. However, the
Euler-Maruyama approximation (Iacus, 2008) applied to the stochastic differential equa-
tion given by the deterministic Paris-Erdogan equation (Pook, 2000) for crack growth
leads, in its general form, to the following nonlinear autoregressive model with intercept
θ0:

Yn = θ0 + Yn−1 + θ1 Y
θ2
n−1 + En, n = 1, . . . , N, θ = (θ0, θ1, θ2)>,

see also Kustosz and Müller (2014).

Here we test H0 : θ = (0.01, 0.005, 1.002)> with α = 0.05 and set Y0 = 15 which may be
interpreted as an initial crack length. Again, as in Section 4.3, the process is nonstationary
so that classical methods cannot be applied. However, the sign tests based on the residuals
Rn(θ) = Yn − θ0 − Yn−1 − θ1 Y

θ2
n−1can be applied and they need only the assumption

P (En > 0) = P (En < 0) = 1
2
. As in Section 4.3, we compare the sign tests with a t-test

applied to the residuals. Therefore, we used a normal distribution for the errors En with
mean 0 and standard deviation 0.01 in the simulations. A comparison of the sign test,

θ1 = 0.005, N = 96 θ0 = 0.01, N = 96
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Figure 10: Simulated power of the sign test, 3-depth test, 4-depth test and t test for the
AR(2)-model where θ1 is fixed to 0.005 on the left-hand side and θ0 is fixed to 0.01 on the
right-hand side (20 gray levels were used, where black corresponds to [0, 0.05] and white
to (0.95, 1]).
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the 3-depth test, the 4-depth test, and the t-test for N = 96 is given by Figure 10. Again,
100 simulations for each alternative were used.

The left-hand side of Figure 10 shows the behavior when θ1 was fixed to 0.005 and a
81 × 101 grid of alternatives in θ0 and θ2 was used. Here the classical sign test and the
t-test have bad power in an infinite area (the black area). This is not the case for the
3-depth test and the 4-depth test where the 3-depth test shows a better power. A similar
result was obtained when θ2 was fixed to 1.002, see the supplementary material.

In opposite to the results in Section 4.3, the classical sign test and the t-test have a
much worse power than the 3-depth test and the 4-test test when θ0 is fixed to 0.01.
In particular, they have an unbounded area of power below 0.05 which is not the case
for the depth tests. This is shown on the right-hand side of Figure 10 where a 65 × 74
grid of alternatives in θ1 and θ2 was used. This result is very similar to results for the
classical sign test and the 3-depth tests provided in Kustosz et al. (2016b) with θ0 = 0.
Here we see again that the 3-depth test has a better power than the 4-depth tests. The
right upper corner of the results for the t-test shows also a specific problem of the t-test:
because of the explosion of the process, it can happen that the test statistic of the t-test
gets numerical problems.

5 Discussion and outlook

We introduced K-sign depth, shortly denoted by K-depth, and proposed K-depth tests
based on the K-depth. We show that the K-depth test with K = 2 is equivalent to the
classical sign depth applied to residuals. After a comparison via maximum depth, depth
at few signs changes, and p-values at few sign changes in the residuals, we provided a
comparison in four simulation studies including relevance testing, quadratic regression,
explosive AR(2)- and nonlinear AR(1)-models. The example of relevance testing demon-
strates how quite general problems can be treated with the generalized sign tests, even
in situations where the classical sign test cannot be applied. The other three applica-
tions demonstrate the behavior for a three-dimensional unknown parameter vector where
the classical sign tests can be applied. As expected from the theoretical considerations
concerning the behavior at few sign changes, the classical sign test yields bad results for
nonfits leading to at least one sign change in the residuals. We observed similar problems
for the 3-depth test if two sign changes can appear and the sample size is small. However,
these problems disappear for larger sample sizes. For large samples it seems like there
is no advantage in choosing the 4-depth instead of the 3-depth. However, it is not clear
whether this is always the case so that further research is necessary.

For small samples sizes, we used the exact distribution of the K-depth. For larger sample
sizes, the distribution was determined via simulation since the asymptotic distribution
of K-depth is only known for K = 2 and K = 3 up to now. Note that we are currently
working on limit laws for K > 3. Our research indicates that an implementation of the
K-depth is possible which is faster than the O(NK) implementation we have used here.
Thereby, Lemma 2.1 plays an important role.
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Another drawback in the usage of K-depth tests is that a natural ordering of the residuals
is necessary. Various results regarding the ordering of residuals are given in Horn and
Müller (2019).

Acknowledgments

The authors gratefully acknowledge support from the Collaborative Research Center "Sta-
tistical Modeling of Nonlinear Dynamic Processes" (SFB 823, B5) of the German Research
Foundation (DFG).

Appendix

Proof of Lemma 2.1
In order to simplify the notation, we assume (n1, . . . , nK) = (1, . . . , K). Note for x 6= 0

11{x > 0} =
1

2
(Φ(x) + 1) , 11{x < 0} =

1

2
(−Φ(x) + 1) .

It is straight forward to check
K∏
i=1

(ai + 1) =
K∑
`=1

∑
1≤i(1)<...<i(`)≤K

∏̀
j=1

ai(j) + 1 for arbitrary

a1, . . . , aK . Hence this implies almost surely
K∏
k=1

11{Ek(−1)k > 0} =
1

2K

K∏
k=1

(
(−1)kΦ(Ek) + 1

)
=

1

2K

 K∑
`=1

∑
1≤i(1)<...<i(`)≤K

(−1)i(1)+···+i(`)
∏̀
j=1

Φ(Ei(j)) + 1


Similarly

K∏
k=1

11{Ek(−1)k < 0} =
1

2K

 K∑
`=1

∑
1≤i(1)<...<i(`)≤K

(−1)i(1)+···+i(`)+`
∏̀
j=1

Φ(Ei(j)) + 1


=

1

2K

 ∑
`=1,...,K
` even

∑
1≤i(1)<...<i(`)≤K

(−1)i(1)+···+i(`)
∏̀
j=1

Φ(Ei(j)) + 1


− 1

2K

∑
`=1,...,K
` odd

∑
1≤i(1)<...<i(`)≤K

(−1)i(1)+···+i(`)
∏̀
j=1

Φ(Ei(j))

Therefore
K∏
k=1

11{Ek(−1)k > 0}+
K∏
k=1

11{Ek(−1)k < 0}
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=
1

2K−1

 ∑
`=1,...,K
` even

∑
1≤i(1)<...<i(`)≤K

(−1)i(1)+···+i(`)
∏̀
j=1

Φ(Ei(j)) + 1


=

(
1

2

)K−1

+
1

2K−1

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

(−1)i(1)+···+i(2L)

2L∏
j=1

Φ(Ei(j))

and the assertion follows.

Proof of Theorem 2.2
Set Rn = Rn(θ). According to Lemma 2.1, it holds

dK(R1, . . . , RN)−
(

1

2

)K−1

=
1(
N
K

) ∑
1≤n1<n2<...<nK≤N

1

2K−1

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

(−1)i(1)+...+i(2L)

2L∏
j=1

Φ(Rni(j)
)

with Φ(x) := 11{x > 0} − 11{x < 0}. Set

v :=

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

1

for the number of summands in the representation of K alternating signs given by Lemma
2.1. This number depends only on K and not on N . First of all, we show that each of
these v summands is converging in probability to zero.

To this end, let L = 1, . . . ,
⌊
K
2

⌋
and 1 ≤ i(1) < . . . < i(2L) ≤ K be arbitrary. We consider

the summand multiplied by the factor 2K−1.

Because Eθ(Φ(Rn)) = 0 and R1, . . . , RN are independent, we get at once for this summand

Eθ

(
1(
N
K

) ∑
1≤n1<n2<...<nK≤N

2L∏
j=1

Φ(Rni(j)
)

)
= 0.

Moreover, Φ(Rn)2 = 1 almost surely implies

Eθ

(
2L∏
j=1

Φ(Rni(j)
)

2L∏
j=1

Φ(Rñi(j)
)

)

=

{
1, if ni(j) = ñi(j) for j = 1, . . . , 2L,
0, else.

Then

varθ

(
1(
N
K

) ∑
1≤n1<...<nK≤N

(−1)i(1)+...+i(2L)

2L∏
j=1

Φ(Rni(j)
)

)
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= Eθ

( 1(
N
K

) ∑
1≤n1<...<nK≤N

(−1)i(1)+...+i(2L)

2L∏
j=1

Φ(Rni(j)
)

)2


=
1(
N
K

)2

∑
1≤n1<...<nK≤N

∑
1≤ñ1<...<ñK≤N

Eθ

(
2L∏
j=1

Φ(Rni(j)
)

2L∏
j=1

Φ(Rñi(j)
)

)

=
1(
N
K

)2

∑
1≤n1<...<nK≤N, 1≤ñ1<...<ñK≤N

ni(j)=ñi(j) for j=1,...,2L

1

≤ 1(
N
K

)2

∑
1≤n1<...<n2L≤N

∑
n2L+1,...,nK∈{1,...,N}

∑
ñ2L+1,...,ñK∈{1,...,N}

1

=

(
N
2L

)
NK−2LNK−2L(

N
K

)2 ≤ (K!)2

(2L)!

N2L+2K−4L

(N − (K + 1))2K
=

(K!)2

(2L)!

1

N2L

1(
1− K+1

N

)2K
−→ 0

for N →∞ so that Chebyshev inequality provides the convergence in probability to zero.
Furthermore, the convergence in probability is sufficiently quick of order O(N−2L) so that
the Borel-Cantelli lemma implies the convergence to zero almost surely.

Proof of Lemma 2.3
Lemma 2.1 yields for K = 2 using (5)

T2(θ) = N

(
d2(R1, . . . , RN)− 1

2

)
=

N(
N
2

) ( ∑
1≤n1<n2≤N

(
11{Rn1 > 0, Rn2 < 0}+ 11{Rn1 < 0, Rn2 > 0} − 1

2

))

=
N(
N
2

) ∑
1≤n1<n2≤N

(
−1

2
Φ(Rn1)Φ(Rn2)

)
=

N

4
(
N
2

) ∑
1≤n1 6=n2≤N

(−Φ(Rn1)Φ(Rn2))

= − N

2N(N − 1)

(
N∑

n1=1

N∑
n2=1

Φ(Rn1)Φ(Rn2)−
N∑
n=1

Φ(Rn)2

)

= − N

2(N − 1)

(
1√
N

N∑
n=1

Φ(Rn)

)2

+
1

2(N − 1)

N∑
n=1

Φ(Rn)2

= − N

2(N − 1)

(
1√
N

N∑
n=1

Φ(Rn)

)2

+
N

2(N − 1)
=

N

2(N − 1)
− N

2(N − 1)
Tsign(θ)2.

Proof of Theorem 3.1
Set

d0
K(r1, . . . , rN) :=

(
N

K

)
dK(r1, . . . , rN)

for K ≥ 2 to simplify the notation and assume without loss of generality r1 > 0 and
r2 < 0. Then note at first the following recursion for K ≥ 3

d0
K(r1, . . . , rN)
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=
∑

1≤n1<n2<...<nK≤N

(
K∏
k=1

11
{

(−1)krnk
> 0
}

+
K∏
k=1

11
{

(−1)krnk
< 0
})

(r1>0, r2<0)
=

∑
2≤n2<n3<...<nK≤N

11 {r1 > 0}
K∏
k=2

11
{

(−1)krnk
< 0
}

+
∑

2<n2<n3<...<nK≤N

11 {r2 < 0}
K∏
k=2

11
{

(−1)krnk
> 0
}

+
∑

2<n1<n2<...<nK≤N

(
K∏
k=1

11
{

(−1)krnk
> 0
}

+
K∏
k=1

11
{

(−1)krnk
< 0
})

(r2<0)
=

∑
2≤n2<n3<...<nK≤N

(
K∏
k=2

11
{

(−1)krnk
< 0
}

+
K∏
k=2

11
{

(−1)krnk
> 0
})

+ d0
K(r3, . . . , rN).

Hence it holds

d0
K(r1, . . . , rN) = d0

K−1(r2, . . . , rN) + d0
K(r3, . . . , rN). (11)

For arbitrary integers N,K with 2 ≤ K ≤ N let

f(N,K) :=

(
N

K

)
dK(r1, . . . , rN).

First note that

f(K,K) = 1 and f(K + 1, K) = 2 for every K ≥ 2. (12)

Moreover, it is not hard to check that

f(N, 2) =

{(
N
2

)2
, if N is even,

(N−1)(N+1)
4

, if N is odd,
(13)

since a pair ri, rj has alternating signs if and only if either i is even and j is odd or vice
versa. Since there are exactly bN/2c even and dN/2e odd indices to choose from, one
obtains (13).

Furthermore, note that (11) implies

f(N,K) = f(N − 1, K − 1) + f(N − 2, K). (14)

Since (12), (13) and (14) already uniquely determine f , it only remains to find a function
satisfying these equations. To this end, recall that the binomial coefficients satisfy(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
for all 1 ≤ k < n. (15)
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With this property it is not hard to check that the following definition yields a function
that satisfies (12), (13) and (14):

f(N,K) =

{
2
(

(N+K−1)/2
K

)
, if N +K is odd,(

(N+K)/2
K

)
+
(

(N+K−2)/2
K

)
, if N +K is even.

The details of checking (12), (13) and (14) by induction are left to the reader. Finally,
the assertion follows since dK(r1, . . . , rN) = f(N,K)/

(
N
K

)
by definition.

Proof of Corollary 3.1
If N = 2LM with L = 2, 3, . . . and the residuals r1, . . . , rN are alternating in blocks of
size M then Theorem 3.1 provides for odd K

lim
N→∞

dK(r1, . . . , rN) = lim
L→∞

1(
2LM
K

)MK 2

(
(2L+K − 1)/2

K

)

= lim
L→∞

2MK (L+ K−1
2

) (L+ K−1
2
− 1) . . . (L+ K−1

2
−K + 1)

2LM (2LM − 1) . . . (2LM −K + 1)

= lim
L→∞

2MK (L+ K−1
2

) (L+ K−1
2
− 1) . . . (L+ K−1

2
−K + 1)

(2M)K L (L− 1
2M

) . . . (L− K−1
2M

)
=

(
1

2

)K−1

.

The result follows similarly for even K.

Supplementary material

Further results from the simulation study and the R-code can also be found under https:
//www.statistik.tu-dortmund.de/2273.html
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