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Abstract

In this paper we investigate the problem of designing experiments for series estimators

in nonparametric regression models with correlated observations. We use projection based

estimators to derive an explicit solution of the best linear oracle estimator in the contin-

uous time model for all Markovian-type error processes. These solutions are then used

to construct estimators, which can be calculated from the available data along with their

corresponding optimal design points. Our results are illustrated by means of a simulation

study, which demonstrates that the new series estimator has a better performance than the

commonly used techniques based on the optimal linear unbiased estimators. Moreover, we

show that the performance of the estimators proposed in this paper can be further improved

by choosing the design points appropriately.

Keywords: Optimal design, nonparametric regression, integrated mean squared error, optimal

estimator

AMS Subject classification: 62K05

1 Introduction

Nonparametric regression is a common tool of statistical inference with numerous applications

[see the monographs of Fan and Gijbels (1996), Efromovich (1999), Fan and Yao (2003), Tsybakov

(2009) among many others]. The basic model is formulated in the form

Yi = f(Xi) + εi , i = 1, . . . , n, (1.1)
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where one usually distinguishes between random and fixed predictors Xi. In the latter case a

natural question is how to choose X1, . . . , Xn to obtain the most precise estimates of the regres-

sion function f and several authors have worked on this problem. For example, Müller (1984),

Biedermann and Dette (2001) and Zhao and Yao (2012) derived optimal designs with respect

to different criteria for kernel estimates, while Dette and Wiens (2008a) and Dette and Wiens

(2008b) considered the design problem for series estimation in terms of spherical harmonics and

Zernike polynomials, respectively. We also refer to the work of Efromovich (2008), who proposed

a sequential allocation scheme in a nonparametric model of the form (1.1) with random predic-

tors and heteroscedastic errors. A common feature of the literature in this field is the fact that all

authors investigate the design problem in a model (1.1) with independent errors. However, there

are many situations, where this assumption is not satisfied, in particular, when the explanatory

variable represents time.

The reason for this gap in the existing literature is that the design problem for models with

correlated errors (even parametric models) is substantially harder compared to the uncorrelated

case. In contrast to the latter case, where a very well developed and powerful methodology

for the construction of optimal designs has been established [see, for example, the monograph

of Pukelsheim (2006)], optimal designs for models with correlated observations are only avail-

able in rare circumstances considering parametric models [see, for example, Pázman and Müller

(2001), Näther and Simák (2003), Müller and Stehĺık (2004), Dette et al. (2009), Zhigljavsky

et al. (2010); Pázman (2010), Harman and Stulajter (2010), Amo-Salas et al. (2012), Stehlik

et al. (2015), Rodŕıguez-Dı́az (2017) among others]. Some general results on optimal designs

for linear models with correlated observations can be found in the seminal work of Sacks and

Ylvisaker (1966, 1968), while more recently in a series of papers Dette et al. (2013, 2016, 2017)

provided a general approach for the problem of designing experiments in linear models with

correlated observations by considering the problem of optimal (unbiased linear) estimation and

optimal design simultaneously. Usually, authors use asymptotic arguments to embed the discrete

(non-convex) optimization problem in a continuous (or approximate) one. However, unlike the

uncorrelated case, in the context of correlated observations this approach does not simplify the

problem substantially and due to the lack of convexity the resulting approximate optimal design

problems for regression models with correlated observations are still extremely difficult to solve.

In this paper we consider optimal design theory for series estimation in the nonparametric re-

gression model (1.1) with correlated data. The basic notation and the general design problem

are introduced in Section 2. In order to address the particular difficulties in design problems

for series estimation from correlated data, in Section 3 we consider a continuous time version of

the discrete model. We first determine optimal oracle estimators for the coefficients in a Fourier

expansion of the regression function f . These are shrinkage estimators and not unbiased.

Section 4 is devoted to the implementation of the results from Section 3 for the construction

of an efficient estimator with a corresponding optimal design. In particular, we determine an

optimal approximation of the Fourier coefficients in the continuous model (which requires the

full trajectory of the process) by an estimator which can be calculated from the available data
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{Yt1 , . . . , Ytn} and determine the designs points t1, . . . , tn such that the approximation has mini-

mal mean squared error with respect to the solution in the continuous time model. The resulting

estimator is a two stage estimator shrinking the best linear unbiased estimator when the design

points are chosen in an optimal way. The superiority of our approach is demonstrated in Section

5 by means of a small simulation study, while all technical details are given in Section 6.

2 Optimal designs for series estimation

Throughout this paper we consider the nonparametric regression model with a fixed design, that

is,

Yti = f(ti) + εti , i = 1, . . . , n, (2.1)

where f : [0, 1] → R is the regression function, 0 ≤ t1 < t2 < . . . < tn ≤ 1 are n distinct time

points in the interval [0, 1], E[ε(tj)] = 0 and K(ti, tj) = E[εtiεtj ] denotes the covariance between

observations at the points ti and tj (i, j = 1, . . . , n). Let

L2([0, 1]) =
{
g : [0, 1]→ R :

∫ 1

0

g2(t)dt <∞
}
,

denote the space of square integrable (real valued) functions with inner product 〈g1, g2〉 =∫ 1

0
g1(t)g2(t)dt and norm ‖g‖2 =

( ∫ 1

0
g2(t)dt

)1/2
. Let {ϕj(·) : j ∈ N} be an orthonormal ba-

sis, then any function f ∈ L2([0, 1]) admits a series expansion of the form

f(t) =
∑
j∈N

θjϕj(t), (2.2)

in L2([0, 1]) with Fourier coefficients

θj = 〈f, ϕj〉 =

∫ 1

0

f(t)ϕj(t)dt j ∈ N. (2.3)

Moreover, the coefficients are squared summable, that is,
∑

j∈N θ
2
j < ∞. In order to estimate

the unknown function f we now follow the idea of projection estimators [see Tsybakov (2009),

pp.47] and estimate the truncated series f (J)(t) =
∑J

j=1 θjϕj(t) by

f̂ (J)(t) =
J∑
j=1

θ̂jϕj(t), (2.4)
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where θ̂j is an appropriate estimator for the Fourier coefficient θj (j = 1, . . . , J). For example, if

maxni=2(ti − ti−1)→ 0, as n→∞, an asymptotically unbiased estimator of θj is given by

n∑
i=2

(ti − ti−1)ϕj(ti−1)Yti−1
. (2.5)

More general estimators will be specified later on. At this point it is only important to note that

the performance of any reasonable estimator will depend on the design points t1, . . . , tn. We are

interested in choosing these design points such that the mean integrated squared error

E
[ ∫ 1

0

(
f̂ (J)(t)− f(t)

)2
]

=
J∑
j=1

E
[
(θ̂j − θj)2

]
+

∞∑
j=J+1

θ2
j ,

is minimal. We also note that any solution of this discrete optimization problem depends on

the unknown regression function f , the truncation point J used in (2.4) and on the covariance

kernel K, which is assumed to be known throughout this paper. On the other hand, the term∑∞
j=J+1 θ

2
j does not depend on the design points which can therefore, be determined by minimiz-

ing
∑J

j=1 E
[
(θ̂j − θj)2

]
with respect to the choice of t1, . . . , tn. For example, if θ̂j =

∑`j
i=1 αjiYti

is a linear estimator of θj (j = 1, . . . , J) we have that

J∑
j=1

E
[
(θ̂j − θj)2

]
=

J∑
j=1

( `j∑
i=1

αjif(ti)− θj
)2

+
J∑
j=1

`j∑
i1,i2=1

αji1αji2K(ti1 , ti2), (2.6)

which has to be minimized with respect to the choice of the time points t1, . . . , tn.

3 Optimal estimation in the continuous time model

The discrete optimization problem (2.6) stated in the previous section is extremely difficult to

be solved. In this section in order to derive efficient designs, we investigate a simpler problem

and consider the continuous time nonparametric regression model of the form

Yt = f(t) + εt , t ∈ [0, 1], (3.1)

where f is an unknown square integrable function and the error process ε = {εt : t ∈ [0, 1]} is

a centered Gaussian process with covariance kernel K(s, t) = E[εsεt]. As we assume that the

full trajectory of the process is available, there is in fact no optimal design problem but only the

issue of optimal estimation of the regression function f . The optimal design question will appear

later, when we return to the discrete model (2.1). The main result of this section provides an

oracle solution of the optimal estimation problem. In particular, the optimal estimator depends

on the unknown function f in model (3.1) and is therefore, not implementable (even if the full
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trajectory of the process {Yt : t ∈ [0, 1]} is available). However, our solution serves as benchmark

and actually provides a clear hint how good estimators and corresponding optimal designs can

be constructed. This will be formulated precisely in Section 4.

Model (3.1) is often written in terms of a stochastic differential equation (provided that the

regression function f is differentiable with derivative ḟ), that is

dYt = ḟ(t)dt+ dεt , t ∈ [0, 1] , (3.2)

If ε = {εt : t ∈ [0, 1]} is a Brownian motion, the model (3.2) is called Gaussian white noise

model and has found much attention in the statistical literature [see, for example, Ibragimov

and Hasminskĭı (1981) or Tsybakov (2009) among many others]. In particular, the model is

asymptotically equivalent to the nonparametric regression model Zi = ḟ(i/n) +ηi (i = 1, . . . , n),

where η1, . . . , ηn are independent standard normally distributed random variables [see Brown and

Low (1996)]. Note that the focus in the aforementioned publications is on the optimal estimation

of the function ḟ , whereas in this section we are interested in the estimation the function f in

model (3.1). Nevertheless, under additional assumptions we can investigate the properties of

the derivative of the oracle estimator developed in what follows and a brief discussion of these

relations is given in Example 3.1.

Another important difference between model (3.1) and the Gaussian white noise model commonly

discussed in the literature of mathematical statistics lies in the fact that we consider a general

error process {εt : t ∈ [0, 1]}. In particular, we concentrate on Markovian Gaussian error

processes with a covariance kernel of the form

E[εsεt] = K(s, t) = u(s)v(t) for s ≤ t, (3.3)

where u(·) and v(·) are some (known) functions defined on the interval [0, 1], such that v(t) 6= 0 for

t ∈ [0, 1]. Kernels of this form generalize the Brownian motion, which is obtained for u(t) = t,

v(t) = 1, and are called triangular kernels in the literature. The property (3.3) essentially

characterizes a Gaussian process to be Markovian [see Doob (1949) or Mehr and McFadden

(1965) for more details]. We assume that the process {εt : t ∈ [0, 1]} is non-degenerate on the

open interval (0, 1), which implies that the function

q(t) =
u(t)

v(t)
, (3.4)

is positive on the interval (0, 1) and strictly increasing and continuous on [0, 1].

Regarding the estimation of the unknown function f , we propose to estimate the coefficients θj
in the projection estimator (2.2) using statistics of the form [see Grenander (1950)]

θ̂j =

∫ 1

0

Ytξj(dt), j ∈ N, (3.5)
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where ξj is a signed measure on the interval [0, 1] such that

∞∑
j=1

{
(E[θ̂j])

2 + Var(θ̂j)
}

=
∞∑
j=1

(∫ 1

0

f(t)dξj(t)
)2

+
∞∑
j=1

∫ 1

0

∫ 1

0

K(s, t)dξj(s)dξj(t) <∞. (3.6)

Obviously, this condition implies for the sequence of estimators (θ̂j)j∈N that
∑∞

j=1 E[θ̂2
j ] < ∞,

and thus we can define the random variable

f̂(t) =
∞∑
j=1

θ̂jϕj(t). (3.7)

In particular, if f̂ (J)(t) =
∑J

j=1 θ̂jϕj(t) is the truncated series from (3.7), we have that

lim
J→∞

E
[ ∫ 1

0

(
f̂ (J)(t)− f(t)

)2
dt
]

= lim
J→∞

J∑
j=1

E[(θ̂j − θj)2] =
∞∑
j=1

E[(θ̂j − θj)2] <∞,

and the mean integrated squared error of the estimator f̂ in (3.7) is given by

MISE(f̂) := E
[ ∫ 1

0

(f̂(t)− f(t))2dt
]

=
∞∑
j=1

E[(θ̂j − θj)2]. (3.8)

We conclude that the optimal linear oracle estimator f̂ of the function f minimizing (3.8) can

be determined minimizing the individual mean squared errors E[(θ̂j − θj)2] separately. Due to

the definition of linear estimators in (3.5), this problem corresponds to the determination of a

signed measure ξ∗j on the interval [0, 1], which minimizes the functional

Ψj(ξj) : = E
[( ∫ 1

0

Ytξj(dt)− θj
)2]

=

∫ 1

0

∫ 1

0

[
f(s)f(t) +K(s, t)

]
ξj(ds)ξj(dt)− 2θj

∫ 1

0

f(s)ξj(ds) + θ2
j

=

∫ 1

0

∫ 1

0

K(s, t)ξj(ds)ξj(dt) +
(∫ 1

0

f(s)ξj(ds)− θj
)2

.

(3.9)

Remark 3.1

(1) Note that - in contrast to most of the literature - we do not assume that θ̂j is an unbiased

estimator of the Fourier coefficient θj (j ∈ N). A prominent unbiased estimator for θj is

given by

θ̃j =

∫ 1

0

Ytϕj(t)dt (j ∈ N) , (3.10)
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and for general unbiased estimates of the form (3.5) the condition (3.6) reduces to

∞∑
j=1

∫ 1

0

∫ 1

0

K(s, t)dξj(s)dξj(t) <∞ . (3.11)

Moreover, if the kernel K is continuous on [0, 1]× [0, 1] and if ϕ1, ϕ2, . . . are the eigenfunc-

tions of the integral operator associated with the covariance kernel K with corresponding

eigenvalues λ1, λ2, . . ., then condition (3.6) further reduces to

∞∑
j=1

∫ 1

0

∫ 1

0

K(s, t)ϕj(s)ϕj(t)dsdt =
∞∑
j=1

λi

∫ 1

0

ϕj(t)ϕj(t)dt =
∞∑
j=1

λj <∞.

(2) Under the additional assumption that the estimator (3.5) is unbiased for θj, the second

term in (3.9) vanishes and the resulting optimization problem corresponds to the problem of

finding the best linear estimator in the location scale model Yt = θj+εt, which has been first

studied in a seminal paper of Grenander (1950). This author showed that under the addi-

tional constraint
∫ 1

0
dξj(dt) = 1 the optimal solution ξ∗j minimizing

∫ 1

0

∫ 1

0
K(s, t)ξj(ds)ξj(dt)

can be characterized by the property that the function t→
∫ 1

0
K(s, t)ξ∗j (ds) is constant on

the interval [0, 1].

The following theorem provides a complete solution of the optimization problem (3.9) and is

proven in the appendix. For a precise statement of the result we denote by δx the Dirac measure

at the point x and distinguish the following cases for the triangular kernel (3.3).

(A) u(0) 6= 0.

(B) u(0) = 0, f(0) = 0.

(C) u(0) = 0, f(0) 6= 0.

Theorem 3.1 Consider the functional Ψj in (3.9) with a twice differentiable regression function

f and a triangular covariance kernel of the form (3.3), where the functions u and v are also twice

differentiable. For any j ∈ N the signed measure ξ∗j (dt) minimizing the functional Ψj in the class

of all signed measures on the interval [0, 1] is given by

ξ∗j (dt) =
θj

1 + c
(P0δ0(dt) + P1δ1(dt) + p(t)dt) , (3.12)

where θj is the j-th Fourier coefficient in the Fourier expansion (2.2). The values for c, P0, P1

and the function p(·) do not depend on the index j and take different values corresponding to the

properties of the functions u(·) and f(·). In particular, we have the following cases
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(A) If u(0) 6= 0, the quantities c, P0, P1 and p are given by

c =

∫ 1

0

{ d
dt

[
f(t)

v(t)

]}2( d
dt
q(t)

)−1

dt+
f 2(0)

v2(0)
(q(0))−1, (3.13)

P0 = − 1

v(0)

d

dt

[
f(t)

u(t)

] ∣∣∣
t=0

( d
dt
q(t)

∣∣∣
t=0

)−1

q(0), (3.14)

P1 =
1

u(1)

d

dt

[
f(t)

v(t)

] ∣∣∣
t=1

( d
dt
q(t)

∣∣∣
t=1

)−1

q(1), (3.15)

p(t) = − 1

v(t)

d

dt

{ d
dt

[
f(t)

v(t)

]( d
dt
q(t)

)−1}
, (3.16)

where the function q is defined in (3.4).

(B) If u(0) = 0 and f(0) = 0, the quantities c and P0 are given by

c =

∫ 1

0

{ d
dt

[
f(t)

v(t)

]}2( d
dt
q(t)

)−1

dt, (3.17)

P0 = 0 (3.18)

and P1 and p are given by (3.15) and (3.16), respectively.

(C) If u(0) = 0 and f(0) 6= 0, the quantities c, p(t) and P1 are equal to zero, whereas P0 is

given by

P0 =
1

f(0)
. (3.19)

Corollary 3.1 Consider the regression model (3.1) with a twice differentiable regression func-

tion f and a non-degenerate centered Gaussian error process {εt : t ∈ [0, 1]} with a triangular

covariance kernel of the form (3.3), where the functions u and v are twice differentiable. The

best linear oracle estimator minimizing the mean integrated squared error in (3.8) in the class of

all linear estimators of the form (3.7) satisfying (3.6) is defined by

f ∗(t) =
∞∑
j=1

θ̂∗jϕj(t),

where the coefficients θ̂∗j are given by

θ̂∗j =

∫ 1

0

Ytξ
∗
j (dt) , j ∈ N, (3.20)

and the signed measure ξ∗j (dt) is defined in Theorem 3.1. Moreover, the corresponding mean
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integrated squared error is given by

MISE(f̂ ∗) =
1

1 + c

∞∑
j=1

θ2
j =

1

1 + c

∫ 1

0

f 2(t)dt ,

where c is defined in (3.13).

Note that Theorem 3.1 is a theoretical result as it requires knowledge of the unknown regression

function f . Nevertheless, we will use it extensively in the following section to construct good

estimators and corresponding optimal designs for series estimation in model (2.1).

Remark 3.2

(1) In model (2.1) with covariance kernel (3.3) and u(0) = 0, the observation Y0 at t = 0 does

not contain any error. Therefore, the value of f(0) is known so that it can be checked

whether case (B) or (C) of Theorem 3.1 holds.

(2) The estimator given in Theorem 3.1 depends on the orthonormal system of the series

expansion via the parameter θj.

(3) Using integration by parts the resulting estimator θ̂∗j in Theorem 3.1 can be represented

as stochastic integral. For example, in case (A) (where u(0) 6= 0) the estimator can be

represented as

(A) θ̂∗j =
θj

1 + c

{∫ 1

0

d

dt

[f(t)

v(t)

]( d

dt
q(t)

)−1

d
( Yt
v(t)

)
+
f(0)

u(0)

Y0

v(0)

}
, (3.21)

where the constant c is defined in (3.13). Similarly in case (B) (where u(0) = 0 and

f(0) = 0), the estimator can be represented by

(B) θ̂∗j =
θj

1 + c

{∫ 1

0

d

dt

[f(t)

v(t)

]( d

dt
q(t)

)−1

d
( Yt
v(t)

)}
. (3.22)

Finally, in case (C) (where u(0) = 0 and f(0) 6= 0), the estimator directly reduces to

(C) θ̂∗j = θj. (3.23)

In the latter case the estimator in (3.23) is not random, but fixed to the true - but unknown

- parameter θj.

Example 3.1 A very popular orthonormal basis of L2([0, 1]) is given by the trigonometric func-

tions

ϕj(t) =


1 , j = 1
√

2 cos(2πkt) , j = 2k
√

2 sin(2πkt) , j = 2k + 1

, j = 1, 2, . . . . (3.24)
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Under the assumptions of Theorem 3.1 we assume that f and its derivative ḟ can be represented

as a trigonometric series, that is,

f(t) = θ1 +
∞∑
k=1

√
2 cos(2πkt)θ2k +

∞∑
k=1

√
2 sin(2πkt)θ2k+1 , (3.25)

ḟ(t) = θ̄1 +
∞∑
k=1

√
2 cos(2πkt)θ̄2k +

∞∑
k=1

√
2 sin(2πkt)θ̄2k+1 . (3.26)

Note that (under suitable assumptions) the Fourier coefficients in (3.25) and (3.26) are related

by the equations

θ̄1 = 0, θ̄2k = (2πk)θ2k+1, θ̄2k+1 = −(2πk)θ2k. (3.27)

If the error process {εt : t ∈ [0, 1]} in model (2.1) is given by a Brownian motion, we have u(t) = t,

v(t) = 1 in the definition of the triangular kernel (3.3) and thus q(t) = t. A straightforward

application of Corollary 3.1 (case (B)) yields for the optimal oracle estimator of the function f

f ∗(t) = θ̂∗1 +
∞∑
k=1

√
2 cos(2πkt)θ̂∗2k +

∞∑
k=1

√
2 sin(2πkt)θ̂∗2k+1 , (3.28)

where the estimated Fourier coefficients are given by

θ̂∗j =
θj

1 + c

∫ 1

0

ḟ(t)dYt , j ∈ N , (3.29)

(note that f(0) = f(1) = 0). We thus also obtain an estimator of the function ḟ in model (3.2)

by taking the derivative of f ∗ given n (3.28), that is,

ḟ ∗(t) = −
∞∑
k=1

(2πk)
√

2 sin(2πkt)θ̂∗2k +
∞∑
k=1

(2πk)
√

2 cos(2πkt)θ̂∗2k+1 . (3.30)

Using the relation (3.27), the estimator in (3.29) can be rewritten as

θ̂∗j =

{
− θ̄2k+1

2πk
1

1+c

∫ 1

0
ḟ(t)dYt , j = 2k

θ̄2k
2πk

1
1+c

∫ 1

0
ḟ(t)dYt , j = 2k + 1,

and the mean integrated squared error of the estimator ḟ ∗ in (3.30) is given by

E
[ ∫ 1

0

(
ḟ ∗(t)− ḟ(t)

)2
dt
]

=
∞∑
j=2

θ̄2
j

(1 + c)2
E
[(

1 + c−
∫ 1

0

ḟ(t)dYt
)2
]

(3.31)

=
∞∑
j=2

θ̄2
j

1 + c
=

∑∞
j=2 θ̄

2
j

1 +
∑∞

j=2 θ̄
2
j

,
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where we have used the representation c =
∫ 1

0

(
ḟ(t)

)2
dt =

∑∞
j=1 θ̄

2
j =

∑∞
j=2 θ̄

2
j in the last equality.

It might be of interest to compare this estimator with the linear oracle estimator

˙̃f(t) =
∑
j∈N

θ̃jϕj(t), (3.32)

proposed in Tsybakov (2009)[p. 67], where

θ̃j =
θ̄2
j

1 + θ̄2
j

∫ 1

0

ϕj(t)dYt ,

is used as the estimator of the Fourier coefficient θ̄j (j = 1, 2, . . .). This estimator is a shrinkage

version of the unbiased estimator in (3.10) and the mean integrated squared error of ˙̃f is given

by

E
[ ∫ 1

0

( ˙̃f(t)− ḟ(t)
)2
dt
]

=
∞∑
j=1

θ̄2
j

1 + θ̄2
j

. (3.33)

Comparing (3.31) and (3.33), we observe that the oracle estimator ḟ ∗, which is constructed by

an application of Corollary 3.1, has a smaller mean integrated squared error than the estimator
˙̃f defined in (3.32).

4 Efficient series estimation from correlated data

In this section we apply the results from the continuous time model to construct optimal designs

for series estimation of the function f in model (2.1). In this transition from the continuous to

the discrete model we are faced with several challenges. First, the signed measure defining the

optimal oracle estimator θ̂∗j depends on the unknown function f through its Fourier coefficients

and through the constant c, and the function f also appears in the stochastic integrals in (3.21)

and (3.22). Secondly, we need to address the problem that even with preliminary knowledge

of the function f , the stochastic integrals can not be computed since as the continuous time

process {Yt : t ∈ [0, 1]} is not observable. In order to overcome these difficulties and construct

an implementable estimator, which does not require preliminary knowledge of f , we proceed to

several steps, which are explained in detail below. Roughly speaking, these steps consist of a

two stage estimation procedure, a truncation and an appropriate approximation of the stochastic

integrals by sums, which can be calculated from the available data. In the latter step of this

procedure we also determine the optimal design points.

Throughout this section we will restrict ourselves to the cases (A) and (B) of Theorem 3.1. For

the case (C) we simply propose to replace the parameter value (3.23) by the best linear unbiased

estimator derived in Dette et al. (2017).
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4.1 Truncation in the continuous time model

In model (2.1) with n observations, only a finite number, say J , of Fourier coefficients in the

series expansion (2.2) can be estimated. For this reason, we consider for fixed J ∈ N the best

L2-approximation

f (J)(t) =
J∑
j=1

θjϕj(t) = Φ(J),T (t)θ(J), (4.1)

of the function f by functions from the span{ϕ1, . . . , ϕJ}, space where the vectors θ(J) and

Φ(J) are defined by θ(J) = (θ1, . . . , θJ)T and Φ(J)(t) = (ϕ1(t), . . . , ϕJ(t))T , respectively. We now

replace the function f by the function f (J) in the estimators θ̂∗1, . . . , θ̂
∗
J defined in (3.21) and

(3.22) for cases (A) and (B) respectively. In case (A) this gives the vector

θ̂(J),∗ =
1

1 + c(J)
θ(J)(θ(J))T

{∫ 1

0

d

dt

[Φ(J)(t)

v(t)

]( d

dt
q(t)

)−1

d
( Yt
v(t)

)
+

Φ(J)(0)

u(0)

Y0

v(0)

}
, (4.2)

where

c(J) = (θ(J))TC(J)θ(J), (4.3)

and the J × J matrix C(J) is defined by

C(J) =

∫ 1

0

d

dt

[Φ(J)(t)

v(t)

]( d
dt

[Φ(J)(t)

v(t)

])T( d
dt
q(t)

)−1

dt+
Φ(J)(0)(Φ(J)(0))T

u(0)v(0)
. (4.4)

Similarly, in case (B) we obtain

θ̂(J),∗ =
1

1 +m(J)
θ(J)(θ(J))T

{∫ 1

0

d

dt

[Φ(J)(t)

v(t)

]( d

dt
q(t)

)−1

d
( Yt
v(t)

)}
, (4.5)

where

m(J) = (θ(J))TM (J)θ(J), (4.6)

and the J × J matrix M (J) is given by

M (J) =

∫ 1

0

d

dt

[Φ(J)(t)

v(t)

]( d
dt

[Φ(J)(t)

v(t)

])T( d
dt
q(t)

)−1

dt. (4.7)

The resulting estimators (4.2) and (4.5) still depend on the first J unknown Fourier coefficients

θ1, . . . , θJ and also depend on the full trajectory of the process {Yt : t ∈ [0, 1]}. This dependence

will be removed in the following sections.
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4.2 Discrete approximation of stochastic integrals

In concrete applications the integrals in (4.2) and (4.5) cannot be evaluated and have to be

approximated from the given data. For this purpose we assume that n observations Yt1 , . . . , Ytn
from model (2.1) at n distinct time points 0 = t1 < t2 < . . . < tn−1 < tn = 1 are available and

we consider the estimators

θ̂(J),n =
1

1 + c(J)
θ(J)(θ(J))T

{ n∑
i=2

µi(
Yti
v(ti)

−
Yti−1

v(ti−1)
) +

Φ(J)(0)

u(0)

Y0

v(0)

}
, (4.8)

θ̂(J),n =
1

1 +m(J)
θ(J)(θ(J))T

{ n∑
i=2

µi(
Yti
v(ti)

−
Yti−1

v(ti−1)
)
}
, (4.9)

as approximations of the quantities in (4.2) and (4.5), respectively. Note that θ̂(J),∗ depends

on the full trajectory {Yt : t ∈ [0, 1]}, while θ̂(J),n is an approximation based on the sample

{Yti : i = 1, . . . , n}. In (4.8) and (4.9) µ2, . . . , µn denote J-dimensional weights which depend

on the time points 0 = t1 < t2 < . . . < tn−1 < tn = 1 and will be chosen in an optimal way. In

particular we propose to determine the weights µ2, . . . , µn such that the expected L2-distance

E
[
‖θ̂(J),∗ − θ̂(J),n‖2

]
(4.10)

between θ̂(J),∗ and its discrete analogue θ̂(J),n is minimized, where ‖ · ‖ denotes the Euclidean

norm in RJ .

The following result provides an alternative expression of the expectation of this distance.

Proposition 4.1 Assume that the conditions of Theorem 3.1 are satisfied. The Euclidean dis-

tance between the estimators θ̂(J),∗ and θ̂(J),n can be represented as

E
[
‖θ̂(J),∗ − θ̂(J),n‖2

]
= k(J)

{
V (µ2, . . . , µn) +B(µ2, . . . , µn)

}
, (4.11)

where the quantities V and B are defined by

V (µ2, . . . , µn) = tr
{ n∑

i=2

∫ ti

ti−1

( d
dt

[Φ(J)(t)

v(t)

]
(4.12)

×
( d
dt
q(t)

)−1

− µi
)( d

dt

[Φ(J)(t)

v(t)

]( d
dt
q(t)

)−1

− µi
)T( d

dt
q(t)

)
dt
}
,

B(µ2, . . . , µn) = tr
{ n∑

i=2

∫ ti

ti−1

( d
dt

[Φ(J)(t)

v(t)

]( d

dt
q(t)

)−1

− µi
)( d

dt

[f(t)

v(t)

])
dt

×
( n∑
i=2

∫ ti

ti−1

( d
dt

[Φ(J)(t)

v(t)

]( d
dt
q(t)

)−1

− µi
)( d

dt

[f(t)

v(t)

])
dt
)T}

,
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and the constant k(J) is given by

k(J) =

{ ‖θ(J)‖4
(1+c(J))2

, in case (A)
‖θ(J)‖4

(1+m(J))2
, in case (B) .

Note that the expected L2-distance in (4.11) only differs in the multiplicative factor k(J) for the

different cases (A) and (B) and this factor does not depend on the vector-weights µ2, . . . , µn.

Therefore optimal weights minimizing the expected L2-distance can be determined without dis-

tinguishing between the two cases (A) and (B).

The function B in the criterion (4.11) still depends on the unknown regression function f which

we replace again by its truncation f (J) defined in (4.1). The resulting criterion is given by

Φ(µ2, . . . , µn) = V (µ2, . . . , µn) +B(J)(µ2, . . . , µn), (4.13)

where

B(J)(µ2, . . . , µn) = tr
{ n∑

i=2

∫ ti

ti−1

( d
dt

[Φ(J)(t)

v(t)

]( d

dt
q(t)

)−1

− µi
)( d

dt

[f (J)(t)

v(t)

])
dt (4.14)

×
( n∑
i=2

∫ ti

ti−1

( d
dt

[Φ(J)(t)

v(t)

]( d
dt
q(t)

)−1

− µi
)( d

dt

[f (J)(t)

v(t)

])
dt
)T}

.

We now determine the optimal weights such that the term B(J)(µ2, . . . , µn) in (4.13) vanishes for

all potential Fourier coefficients θ1, . . . , θJ in the function f (J). Therefore, the optimal weights

are obtained by minimizing Φ in (4.13) under the constraint∫ 1

0

[( d
dt

[Φ(J)(t)

v(t)

])( d

dt
q(t)

)−1 ( d
dt

[Φ(J)(t)

v(t)

])T
dt =

n∑
i=2

µi

∫ ti

ti−1

d

dt

[Φ(J)(t)

v(t)

]
dt. (4.15)

In this situation the criterion (4.13) reduces to the minimization of

tr
{ n∑

i=2

∫ ti

ti−1

( d
dt

[Φ(J)(t)

v(t)

]( d
dt
q(t)

)−1

−µi
)( d

dt

[Φ(J)(t)

v(t)

]( d
dt
q(t)

)−1

−µi
)T( d

dt
q(t)

)
dt
}
, (4.16)

with respect to the weights µ2, . . . , µn (depending on the time points 0 = t1 < t2, . . . , tn−1 <

tn = 1). In order to simplify this optimization we introduce the following notation

βi =

Φ(J)(ti)
v(ti)

− Φ(J)(ti−1)
v(ti−1)√

q(ti)− q(ti−1)
, γi = µi

√
q(ti)− q(ti−1) (4.17)

which however does not reflect the dependence on the time points. Using the notation in (4.17),

the approximation of the expected L2-distance in (4.16) can be rewritten in terms of the quantities
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γ2, . . . , γn as

Ψ(γ2, . . . , γn) = −tr(M (J)) +
n∑
i=2

γi
Tγi, (4.18)

and the constraint (4.15) is given by

M (J) =
n∑
i=2

γiβi
T , (4.19)

where M (J) is the matrix defined in (4.7) (for both cases (A) and (B)). Note that both the

function Ψ and the constraint in (4.19) do not involve the function f and only include assumptions

concerning the first J basis functions ϕ1, . . . , ϕJ used in the approximation f (J).

The resulting optimization problem (4.18) with constraint (4.19) has the same structure as an

optimization problem considered in Dette et al. (2017) and from the results in this paper we

obtain the solution

γ∗i = M (J)B−1βi, i = 2, . . . , n, (4.20)

where the matrix B is given by

B =
n∑
i=2

βiβ
T
i , (4.21)

and M (J) and βi are defined in (4.7) and in (4.17), respectively. If the matrix B is singular, we

replace the inverse B−1 in (4.20) by a generalized inverse B−. Using the relation between γi and

µi in (4.17), we obtain the optimal weights

µ∗i =
1√

q(ti)− q(ti−1)
M (J)B−1βi, i = 2, . . . n.

Note that these weighs still depend on the design points t2, . . . , tn−1 which will be determined

next.

4.3 Optimal designs for series estimation

Using the optimal γ∗2 , . . . , γ
∗
n given in (4.20) in the expression for the function Ψ defined in (4.18),

we obtain an appropriate optimal design criterion for the choice of the time points 0 = t1 < t2 <

. . . tn−1 < tn = 1. More precisely, for the optimal weights, the function Ψ depends only on the

design points and can be represented as the function

Ψ̃(t2, . . . , tn−1) = tr{M (J)B−1M (J)}, (4.22)

where the matrices B and M (J) are defined in (4.21) and (4.7), respectively and depend on

0 = t1 < t2, . . . , tn−1 < tn = 1. The optimal design is now determined by minimizing the

function Ψ̃, which is different from the criterion considered in Dette et al. (2017) for unbiased
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linear estimation in the linear regression model

Yti = (Φ(J)(ti))
T θ + εti , i = 1, . . . , n. (4.23)

The optimal time points only depend on the first J basis functions which are used for the

estimator of the regression function f and have to be determined numerically in all cases of

practical interest. We will present some examples in Section 5.

4.4 The final estimate

With the optimal weights µ∗2, . . . , µ
∗
n determined in Section 4.2 and the optimal time points

t∗2, . . . t
∗
n−1 determined in Section 4.3, the estimators in (4.8) and (4.9) corresponding to the cases

(A) and (B) are given by

θ̂(J),n =
1

1 + c(J)
θ(J)(θ(J))T

{
M (J)B−1

n∑
i=2

β∗i (
Yt∗i
v(t∗i )

−
Yt∗i−1

v(t∗i−1)
) +

Φ(J)(0)

u(0)

Y0

v(0)

}
, (4.24)

and

θ̂(J),n =
1

1 +m(J)
θ(J)(θ(J))TM (J)B−1

n∑
i=2

β∗i (
Yt∗i
v(t∗i )

−
Yt∗i−1

v(t∗i−1)
) , (4.25)

respectively, where

β∗i =

Φ(J)(t∗i )

v(t∗i )
− Φ(J)(t∗i−1)

v(t∗i−1)√
q(t∗i )− q(t∗i−1)

i = 2, . . . n.

For their application we still require knowledge of the vector of Fourier coefficients θ(J) and the

constants c(J) and m(J) defined in (4.3) and (4.6) (note that these quantities also depend on

θ(J)). For this purpose we propose to use the linear unbiased estimate derived by Dette et al.

(2017) for the linear model (4.23). This estimate is defined as

θ̌(J),n = (C(J))−1
{
M (J)B−1

n∑
i=2

β∗i (
Yt∗i
v(t∗i )

−
Yt∗i−1

v(t∗i−1)
) +

Φ(J)(0)

u(0)

Y0

v(0)

}
, (4.26)

and the quantity c(J) in (4.3) is estimated by č(J),n = (θ̌(J),n)TC(J)θ̌(J),n. A straightforward

calculation shows that the resulting estimator for the case (A) is given by

θ̂(J),n =
1

1 + č(J),n
θ̌(J),n(θ̌(J),n)T

{
M (J)B−1

n∑
i=2

β∗i (
Yt∗i
v(t∗i )

−
Yt∗i−1

v(t∗i−1)
) +

Φ(J)(0)

u(0)

Y0

v(0)

}
=

1

1 + č(J),n
θ̌(J),n(θ̌(J),n)TC(J)θ̌(J),n =

č(J),n

1 + č(J),n
θ̌(J),n, (4.27)

which is a shrinkage version of the estimator θ̌(J),n in (4.26).
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For the case (B) similar arguments show that the estimator in (4.25) can also be rewritten in

terms of the linear unbiased estimate θ̌(J),n, that is,

θ̂(J),n =
1

1 + m̌(J)
θ̌(J)(θ̌(J))TM (J)B−1

n∑
i=2

β∗i (
Yt∗i
v(t∗i )

−
Yt∗i−1

v(t∗i−1)
) =

m̌(J),n

1 + m̌(J),n
θ̌(J),n,

where m̌(J),n = (θ̌(J),n)TM (J)θ̌(J),n. Here the structure of the estimator θ̌(J),n depends on the

structure of the basis functions contained in the vector Φ(J) [see Section 5 in Dette et al. (2017)

for more details].

5 Numerical results

In this section, we illustrate the properties of the estimator and the corresponding optimal design

derived in Section 4 by means of a small simulation study. We consider a Gaussian process

assuming both an exponential kernel and a Brownian motion as the error process in model (2.1).

In both cases, we present the numerically calculated optimal time points with respect to the

criterion defined in (4.22) and the corresponding simulated integrated mean squared errors for

the estimator

f̂ (J),n(t) =
J∑
j=1

θ̂(J),nϕj(t), (5.1)

proposed in this paper and the estimator

f̌ (J),n(t) =
J∑
j=1

θ̌(J),nϕj(t), (5.2)

which is based on the best linear unbiased estimates in the tuncated Fourier expansion.

Throughout this section, we will use the trigonometric series defined in (3.24) as orthonormal

basis of L2([0, 1]). We further assume that the unknown function f is symmetric on the interval

[0, 1] such that it is sufficient to use only the cosine functions in the series expansions of f .

Consequently, the orthonormal system is given by

ϕ1(t) = 1 , ϕj(t) =
√

2 cos(2π(j − 1)t) , j = 2, 3, . . .

In Section 5.1 we consider the exponential kernel, whereas in Section 5.2 we concentrate on the

Brownian motion.

5.1 The Exponential kernel

We assume that the error process {εt : t ∈ [0, 1]} is a centered Gaussian process with an

exponential kernel of the form K(s, t) = exp(−L|s− t|), where L ∈ R+ is a given constant. This
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can be represented in the triangular form (3.3) with u(t) = exp(Lt) and v(t) = exp(−Lt) and

the function q is obtained as q(t) = u(t)/v(t) = exp(2Lt). Therefore, we have u(0) 6= 0 (which

corresponds to case (A)) and the preliminary estimator θ̌(J),n in (4.26) is given by

θ̌(J),n = (C(J))−1
{
M (J)B−1

n∑
i=2

eLtiΦ(J)(t∗i )− eLti−1Φ(J)(t∗i−1)√
e2Lti − e2Lti−1

(
eLtiYt∗i −e

Lti−1Yt∗i−1

)
+Y0Φ(J)(0)

}
,

where the matrices M (J), C(J) and B become

M (J) =

∫ 1

0

(Φ̇(J)(t) + LΦ(J)(t))(Φ̇(J)(t) + LΦ(J)(t))T

2L
dt,

C(J) = M (J) + Φ(J)(0)(Φ(J)(0))T ,

B =
n∑
i=2

(eLtiΦ(J)(ti)− eLti−1Φ(J)(ti−1))(eLtiΦ(J)(ti)− eLti−1Φ(J)(ti−1))T

e2Lti − e2Lti−1
.

The estimator θ̂(J),n proposed in this paper is given in equation (4.27) and the corresponding

estimators of the function f are defined in (5.1) and (5.2).

We first consider the exponential covariance kernel with L = 1 and assume that three basis

functions ϕ1(t) = 1, ϕ2(t) = cos(2πt), ϕ3(t) = cos(4πt) are used in the series estimator, where

n = 4 and n = 7 observations at different time points 0 = t1 < t2 < . . . < tn−1 < tn = 1 can

be taken. Note that one needs at least n = 4 observations at different time points to guarantee

that the matrix B in the preliminary estimator θ̌(J),n is non-singular. The optimal points are

determined minimizing the criterion (4.22) by particle swarm optimization [see Clerc (2006) for

details] and the results are presented in the first row of Table 1. The second row shows the

results for L = 5 and interestingly the optimal points do not change substantially for different

values of the constant L. Also note that all designs are nearly equidistant.

L n = 4 n = 7

1 0.00, 0.25, 0.52, 1.00 0.00, 0.12, 0.27, 0.45, 0.57, 0.77, 1.00

5 0.00, 0.25, 0.51, 1.00 0.00, 0.12, 0.27, 0.45, 0.57, 0.76, 1.00

Table 1: Optimal time points for series estimation minimizing the criterion (4.22). The co-
variance kernel is given by exp(−L|s − t|) with L = 1 (first row) and L = 5 (second row).

We now evaluate the performance of the different estimators and the optimal time points by

means of a simulation study. For the sake of comparison we also consider non-optimized time
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points for the simulation, which are given by

0.00, 0.45, 0.90, 1.00 (5.3)

0.00, 0.18, 0.36, 0.54, 0.72, 0.90, 1.00 (5.4)

for the case n = 4 and n = 7, respectively.

In the simulation study we generate data according to model (2.1) with two regression functions

f(t) = 4t(t− 1), (5.5)

f(t) =
√
t(t− 1), (5.6)

(note that both proposed functions are symmetric with f(0) = f(1) = 0). For each model

the mean integrated squared error of the estimators f̂ (J),n and f̌ (J),n defined in (5.1) and (5.2)

respectively is determined. More precisely, if S denotes the number of simulation runs and f̄`
is the estimator based on the `-th run (either f̂ (J),n and f̌ (J),n), the simulated mean integrated

squared error, MISEn, is given by

MISEn =
1

S

S∑
`=1

∫ 1

0

(
f̄`(t)− f(t)

)2
dt,

where f , the “true” regression function under consideration, is either given by (5.5) or by (5.6).

All results are based on S = 1000 simulation runs.

n = 4 n = 7

design design

f estimator optimal (5.3) optimal (5.4)

(5.5)
f̂ (J),n 1.72 2.06 1.58 1.59

f̌ (J),n 1.89 2.22 1.76 1.77

(5.6)
f̂ (J),n 1.67 2.04 1.54 1.56

f̌ (J),n 1.89 2.21 1.76 1.79

Table 2: Simulated mean integrated squared error of the estimators f̂ (J),n and f̌ (J),n defined in
(5.1) and (5.2) for different regression functions. The covariance kernel is given by exp(−|s−t|).
Third column: optimal design; Fourth column: comparative design in (5.3). Left part: n = 4
observations; right part: n = 7 observations.

For the case of the sample size n = 4, the resulting mean integrated squared error of the different

estimators (and corresponding optimal time points) is shown in the left part of Table 2. For

instance, the mean integrated squared error of the estimator f̂ (J),n (based on the on the optimal

design) is 1.72, if the true function is given by (5.5), whereas it is 2.06 if the observations are
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taken according to the non-optimized design (5.3). Thus, the optimal design yields a reduction

by 17% in the mean integrated squared error. The optimal design also yields a reduction of 15%

of the mean squared error of the preliminary estimator f̌ (J),n (although it is not constructed for

this purpose). We also observe that the new estimator f̂ (J),n clearly outperforms the estimator

f̌ (J),n in all cases under consideration (reduction of the mean squared error between 9% and

12%).

For the case of the sample size n = 7, the corresponding results are presented in the right part of

Table 2 and we observe a similar behavior. The new estimator f̂ (J),n clearly outperforms f̌ (J),n

regardless of the design and model under consideration. On the other hand the improvement

by the choice of the design is less visible compared to the case where the sample size is n = 4.

This means that the influence of design on the performance of the estimators decreases with

increasing sample size. The reason for this observation lies in the fact that in the models under

consideration the discrete model (2.1) already provides a good approximation of the continuous

model (3.1) for the sample size n = 7. As in this model the full trajectory is available the impact

of the design is negligible for sample sizes larger than 10. As a consequence, a larger sample size

would not decrease the integrated mean squared error substantially either. A similar effect was

also observed by Dette et al. (2017) in the linear regression model with correlated observations.

n = 4 n = 7

design design

f estimator optimal (5.3) optimal (5.4)

(5.5)
f̂ (J),n 0.65 2.13 0.47 0.51

f̌ (J),n 0.77 2.30 0.58 0.62

(5.6)
f̂ (J),n 0.64 2.09 0.43 0.43

f̌ (J),n 0.81 2.30 0.59 0.59

Table 3: Simulated mean integrated squared error of the estimators f̂ (J),n and f̌ (J),n defined in
(5.1) and (5.2) for different regression functions. The covariance kernel is given by exp(−5|s−t|).
Third column: optimal design; Fourth column: comparative design in (5.3). Left part: n = 4
observations; right part: n = 7 observations.

Next we consider a situation where the correlation between the different observations is smaller

and so we use the constant L = 5 for the exponential kernel. The time points minimizing the

criterion Ψ̃ in (4.22) are depicted in the second row of Table 1 for n = 4 and n = 7. The

simulated mean integrated squared error of the estimators f̂ (J),n and f̌ (J),n defined in (5.1) and

(5.2) are displayed in Table 3 for the cases of sample size n = 4 and n = 7. When the sample size

is n = 4, we observe that the optimal design yields a substantial reduction in the mean squared

errors of both estimators (between 65% and 70%). Compared to the case L = 1 (see Table 2)

the reduction is larger. When the sample size is n = 7 the mean integrated squared error of the
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estimators based on the optimal time points are slightly smaller compared to the non-optimized

time points. We observe again that the influence of the position of the time points, and thus

of the design, decreases if the sample size n increases (see Table 3). A comparison of the two

estimators (5.1) and (5.2) shows again that the new estimator f̂ (J),n outperforms the estimator

f̌ (J),n in all cases under consideration (reduction of the mean squared error between 16% and

27%).

5.2 Brownian motion

We now consider the case where the error process in (2.1) is given by a Brownian motion, that

is K(s, t) = s ∧ t , which can be represented by K(s, t) = s, s ≤ t. Therefore, the functions u

and v in (3.3) are given by u(t) = t and v(t) = 1, respectively, and the function q is obtained as

q(t) = u(t)/v(t) = t. This situation corresponds to case (B), where u(0) = 0 and f(0) = 0. The

estimator θ̂(J),n is given by

θ̂(J),n =
1

1 + m̌(J)
θ̌(J)(θ̌(J))TM (J)B−

n∑
i=2

(Φ(J)(ti)− Φ(J)(ti−1))T√
ti − ti−1

(Yti − Yti−1
), (5.7)

where the matrices M (J), B and the constant m(J) are of the form

M (J) =

∫ 1

0

Φ̇(J)(t)(Φ̇(J)(t))Tdt,

B =
n∑
i=2

(Φ(J)(ti)− Φ(J)(ti−1))(Φ(J)(ti)− Φ(J)(ti−1))T

ti − ti−1

,

m̌(J) = (θ̌(J))TM (J) θ̌(J).

Note that both the first row and the first column of the matrices M (J) and B are zero (since

ϕ1(t) = 1), such that both matrices are singular. Consequently, as proposed in Section 4, we use

the generalized inverse

B− =

(
0 0

0 B̃−1

)
,

of B, where the matrix B̃ is given by

B̃ =
(
0(J−1) I(J−1)×(J−1)

)
B

(
0T

(J−1)

I(J−1)×(J−1)

)
.

Here the vector 0(J−1) is of dimension (J − 1) with zero entries. where the matrix I(J−1)×(J−1)

is the (J − 1) dimensional identity matrix. The estimator θ̌(J),n is obtained from Section 5.2 in
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θ̌(J),n = C(J)
n∑
i=2

(Φ(J)(ti)− Φ(J)(ti−1))T√
ti − ti−1

(Yti − Yti−1
),

where the matrix C(J) is of the form

C(J) =

 0 −(Φ(J)(0))T
(

0

B̃−1

)
0(J−1) B̃−1

 .

We now analyze the behavior of the resulting estimators of the function f if the first three basis

functions are used for the series estimator and n = 4 or n = 7 observations at different time

points 0 = t1 < t2 < . . . < tn−1 < tn = 1 are available. The optimal time points minimizing the

criterion (4.22) derived in Section 4 are given by

0.00, 0.25, 0.47, 1.00 (5.8)

0.00, 0.22, 0.28, 0.50, 0.72, 0.78, 1.00 (5.9)

for sample sizes n = 4 and n = 7 respectively. Note that the optimal time points (5.8) and

(5.9) differ from the optimal time points for the case of the exponential kernel displayed in Table

1. This indicates that the position of the optimal time points depends on the structure of the

covariance kernel.

n = 4 n = 7

design design

f estimator optimal (5.3) optimal (5.4)

(5.5)
f̂ (J),n 0.16 0.41 0.13 0.14

f̌ (J),n 0.15 0.43 0.12 0.12

(5.6)
f̂ (J),n 0.13 0.45 0.11 0.11

f̌ (J),n 0.15 0.48 0.12 0.13

Table 4: Simulated mean integrated squared error of the estimators f̂ (J),n and f̌ (J),n defined
in (5.1) and (5.2) for different regression functions. The error process is a Brownian motion.
Third column: optimal design; Fourth column: comparative design in (5.3). Left part: n = 4
observations; right part: n = 7 observations.

The resulting mean integrated squared errors of the estimators f̂ (J),n and f̌ (J),n are displayed in

Table 4, where we again consider the comparative set of time points depicted in (5.3) and (5.4).

We obtain similar results as in Section 5.1. More specifically, for the case of sample size n = 4,
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we observe that the optimal design yields a substantial reduction in the mean squared errors of

both estimators (see the left part of Table 4). When the sample size is n = 7, the difference

between the optimal time points and the design (5.4) is less visible.

A comparison of the two estimators shows a different behavior as in Section 5.1, that is, unlike

the case of an exponential Kernel, when the error process is a Brownian motion, both estimators

perform well and they have similar (small) mean integrated squared errors (see Table 4).
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6 Technical details

Proof of Theorem 3.1 We restrict ourselves to the proof of the result in case (A), the other

cases can be proved in a similar way. Note that the function Ψj is convex on the space of all

signed measures and therefore, a signed measure ξ∗j minimizes Ψj if and only if the directional

derivative from ξ∗j in any direction is nonnegative, that is

∂

∂α
Ψj((1− α)ξ∗j + αη)

∣∣∣
α=0
≥ 0,

for all signed measures η on the interval [0, 1]. A straightforward calculation gives

∂

∂α
Ψj((1− α)ξ∗j + αη)

∣∣∣
α=0

=

∫ 1

0

∫ 1

0

f(s)f(t) +K(s, t)
(
ξ∗j (ds)ξ

∗
j (dt)− ξ∗j (dt)η(dt)

)
+ θj

∫ 1

0

f(t)
(
η(dt)− ξ∗j (dt)

)
.

(5.1)

Consequently, the signed measure ξ∗j minimizes Ψj if and only the inequality∫ 1

0

∫ 1

0

f(s)f(t) +K(s, t)
(
ξ∗j (ds)ξj(dt)− ξ∗j (dt)η(dt)

)
+ θj

∫ 1

0

f(t)
(
η(dt)− ξ∗j (dt)

)
≥ 0, (5.2)

is satisfied for all signed measures η on the interval [0, 1].

In order to check (5.2) for the signed measure ξ∗j we calculate each term in (5.2) separately, where
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we use the following representation of the quantities in (3.13)-(3.16)

c =

∫ 1

0

1

v2(t)

(ḟ(t)v(t)− f(t)v̇(t))2

u̇(t)v(t)− u(t)v̇(t)
dt+

f 2(0)

u(0)v(0)
,

P0 =
1

u(0)

f(0)u̇(0)− ḟ(0)u(0)

v(0)u̇(0)− v̇(0)u(0)
,

P1 =
1

v(1)

ḟ(1)v(1)− f(1)v̇(1)

u̇(1)v(1)− u(1)v̇(1)
,

p(t) = − 1

v(t)

d

dt

[
ḟ(t)v(t)− f(t)v̇(t)

u̇(t)v(t)− u(t)v̇(t)

]
.

To simplify (5.2) we note that integration by parts yields∫ 1

0

f(s)ξ∗j (ds) =
θj

1 + c

(f(0)(u̇(0)f(0)− u(0)ḟ(0))

u(0)(u̇(0)v(0)− u(0)v̇(0))
+
f(1)(v(1)ḟ(1)− v̇(1)f(1))

v(1)(u̇(1)v(1)− u(1)v̇(1))

−
∫ 1

0

f(s)

v(s)

d

ds

[
v(s)ḟ(s)− v̇(s)f(s)

u̇(s)v(s)− u(s)v̇(s)

]
ds
)

=
θj

1 + c

(f(0)(u̇(0)f(0)− u(0)ḟ(0))

u(0)(u̇(0)v(0)− u(0)v̇(0))
+
f(1)(v(1)ḟ(1)− v̇(1)f(1))

v(1)(u̇(1)v(1)− u(1)v̇(1))

−
[f(s)

v(s)

v(s)ḟ(s)− v̇(s)f(s)

u̇(s)v(s)− u(s)v̇(s)

]1

0
+

∫ 1

0

1

v2(s)

(
v̇(s)f(s)− v(s)ḟ(s)

)2

u̇(s)v(s)− u(s)v̇(s)
ds
)

=
θj

1 + c

( f 2(0)

u(0)v(0)
+

∫ 1

0

1

v2(s)

(
v̇(s)f(s)− v(s)ḟ(s)

)2

u̇(s)v(s)− u(s)v̇(s)
ds
)

=
θj

1 + c
c .

Similarly, we obtain∫ 1

0

K(s, t)ξ∗j (ds) =

∫ t

0

u(s)v(t)ξ∗j (ds) +

∫ 1

t

u(t)v(s)ξ∗j (dt)

=
θj

1 + c

(
v(t)

u̇(0)f(0)− u(0)ḟ(0)

u̇(0)v(0)− u(0)v̇(0)
− v(t)

∫ t

0

u(s)

v(s)

d

ds

[
v(s)ḟ(s)− v̇(s)f(s)

u̇(s)v(s)− u(s)v̇(s)

]
ds

+u(t)
v(1)ḟ(1)− v̇(1)f(1)

u̇(1)v(1)− u(1)v̇(1)
− u(t)

∫ 1

t

d

ds

[
v(s)ḟ(s)− v̇(s)f(s)

u̇(s)v(s)− u(s)v̇(s)

]
ds
)

=
θj

1 + c

(
v(t)

f(0)

v(0)
+ f(t)− v(t)

f(0)

v(0)

)
=

θj
1 + c

f(t),
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where we have used again integration by parts for the third equality. Consequently, we get∫ 1

0

∫ 1

0

f(s)f(t)ξ∗j (ds)ξ
∗
j (dt) =

(∫ 1

0

f(s)ξ∗j (ds)
)2

=
θ2
j

(1 + c)2
c2,

∫ 1

0

K(s, t)ξ∗j (ds)ξ
∗
j (dt) =

θj
1 + c

∫ 1

0

f(t)ξ∗j (dt) =
θ2
j

(1 + c)2
c,

and thus the left hand side of (5.2) reduces to

θ2
j c

2

(1 + c)2
+

θ2
j c

(1 + c)2
−

θ2
j c

1 + c
−
∫ 1

0

f(t)η(dt)
( θj

1 + c
c+

θj
1 + c

− θj
)

= 0,

for an arbitrary signed measure η. This proves that (5.2) holds and the signed measure ξ∗j defined

in Theorem 3.1 minimizes the function Ψj.

Proof of Proposition 4.1 For the term on the left hand side of equation (4.11) we obtain

E
[
‖θ̂(J),∗ − θ̂(J),n‖2

]
= tr

{
E
[(
θ̂(J),∗ − θ̂(J),n

)(
θ̂(J),∗ − θ̂(J),n

)T]}
=

‖θ(J)‖4

(1 + c(J))2
tr
{
E
[( n∑

i=2

∫ ti

ti−1

( d
dt

[
Φ(J)(t)

v(t)

] ( d
dt
q(t)

)−1 − µi
)
d
( Yt
v(t)

))
×
( n∑
i=2

∫ ti

ti−1

( d
dt

[
Φ(J)(t)

v(t)

] ( d
dt
q(t)

)−1 − µi
)
d
( Yt
v(t)

))T]}
.

For the determination of the expected value inside the trace

E
[( n∑

i=2

∫ ti

ti−1

( d
dt

Φ(J)(t)

v(t)

( d
dt
q(t)

)−1−µi
)
d
( Yt
v(t)

))( n∑
i=2

∫ ti

ti−1

( d
dt

Φ(J)(t)

v(t)

( d
dt
q(t)

)−1−µi
)
d
( Yt
v(t)

))T]
,

(5.3)

we use a transformation of the Gaussian process {Yt : t ∈ [0, 1]} to a Brownian motion, as it

was introduced by Doob (1949). This result shows that the error process {εt : t ∈ [0, 1]} with

covariance kernel (3.3) can be represented by

εt = ε(t) = v(t)W (q(t)),

where W = {W (s) : s ∈ [q(0), q(1)]} is a Brownian motion on the interval [q(0), q(1)]. We use

this relationship to represent the process {Yt : t ∈ [0, 1]} as

Yt = f(t) + εt = f(t) + v(t)W (q(t)), t ∈ [0, 1].
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Dividing by v(t) and using the transformation s = q(t), we get the transformed model

Zs = g(s) +W (s), s ∈ [q(0), q(1)],

where

Zs =
Yq−1(s)

v(q−1(s))
and g(s) =

f(q−1(s))

v(q−1(s))
.

Consequently, we obtain for arbitrary 0 ≤ ti−1 < ti ≤ 1∫ ti

ti−1

( d
dt

[
Φ(J)(t)

v(t)

] ( d
dt
q(t)

)−1 − µi
)
d
( Yt
v(t)

)
=

∫ q(ti)

q(ti−1)

( d
ds

[
Φ(J)(q−1(s))

v(q−1(s))

]
− µi

)
d
( Yq−1(s)

v(q−1(s))

)
=

∫ q(ti)

q(ti−1)

( d
ds

Φ̃(J)(s)− µi
)
dZs

=

∫ q(ti)

q(ti−1)

( d
ds

Φ̃(J)(s)− µi
)(
dg(s) + dW (s)

)
,

where the function Φ̃(J)(s) is given by Φ̃(J)(s) = Φ(J)(q−1(s))
v(q−1(s))

and we set t = q−1(s). This gives for

the transformed derivatives

d

dt

[
Φ(J)(t)

v(t)

]
=

d

ds

[
Φ(J)(q−1(s))

v(q−1(s))

]
ds

dt
=

d

ds

[
Φ(J)(q−1(s))

v(q−1(s))

] ( d
ds
q−1(s)

)−1

,

d

dt
q(t) =

d

ds
q(q−1(s))

ds

dt
=
( d
ds
q−1(s)

)−1
.

We now introduce the notation

Xi =

∫ q(ti)

q(ti−1)

( d
ds

Φ̃(J)(s)− µi
)(
dg(s) + dW (s)

)
i = 2, . . . , n.

As W is a Brownian motion, the random variables X2, . . . , Xn are independent and the expected

value in (5.3) can be rewritten as

E
[ n∑
i=2

Xi

n∑
i=2

XT
i

]
=

n∑
i=2

E[(Xi − E[Xi])(Xi − E[Xi])
T ] +

n∑
i=2

E[Xi]
n∑
i=2

E[XT
i ]. (5.4)

Obviously

E
[
Xi] =

∫ q(ti)

q(ti−1)

( d
ds

Φ̃(J)(s)− µi
) d
ds
g(s)ds

=

∫ ti

ti−1

( d
dt

[Φ(J)(t)

v(t)

]( d
dt
q(t)

)−1

− µi
)( d

dt

[
f(t)

v(t)

])
dt,
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and Itô’s isometry gives

E[(Xi − E[Xi])(Xi − E[Xi])
T ]

=

∫ q(ti)

q(ti−1)

( d
ds

Φ̃(J)(s)− µi
)( d

ds
Φ̃(J)(s)− µi

)T
ds

=

∫ ti

ti−1

( d
dt

[Φ(J)(t)

v(t)

]( d
dt
q(t)

)−1

− µi
)( d

dt

[Φ(J)(t)

v(t)

]( d
dt
q(t)

)−1

− µi
)T d
dt
q(t)dt.

Inserting these representations in (5.4) results in (4.11), which proves Proposition 4.1.
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